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Neuroblastoma and MYCN

Miller Huang and William A. Weiss

Departments of Neurology, Pediatrics, and Neurosurgery, University of California, San Francisco,
California 94158-9001

Correspondence: waweiss@gmail.com

Neuroblastoma, the most common extracranial solid tumor of childhood, is thought to
originate from undifferentiated neural crest cells. Amplification of the MYC family
member, MYCN, is found in �25% of cases and correlates with high-risk disease and
poor prognosis. Currently, amplification of MYCN remains the best-characterized genetic
marker of risk in neuroblastoma. This article reviews roles for MYCN in neuroblastoma and
highlights recent identification of other driver mutations. Strategies to target MYCN at the
level of protein stability and transcription are also reviewed.

Neuroblastoma, described by James Wright
in 1910, was named because cells were as-

sociated with fibrils in arrangements similar to
neuroblasts. Nine of 12 cases were in children,
suggesting the disease manifests early in life
from primitive undifferentiated cells (Wright
1910). Today, neuroblastoma ranks as the most
common cancer in infants (,1 year old), with
90% of cases diagnosed by age 5. The primary
tumor is frequently located in tissues originating
from the sympathetic nervous system, adrenal
medulla, or paraspinal ganglia, and metastases
are found in a majority of cases at diagnosis,
consistent with an origin from multipotent mi-
gratory neural crest cells.

RISK IN NEUROBLASTOMA

Risk in neuroblastoma is classified as low, in-
termediate, or high. Although low- and inter-
mediate-risk patients generally have a favorable
outcome (�80%–95% event-free survival rate),

high-risk patients have ,50% event-free sur-
vival rate, and there is also a subset of “ultra-
high” risk patients who do not respond to
therapy (Maris et al. 2007; Matthay et al.
2012). Current treatment for high-risk patients
includes intensive and toxic chemotherapy,
followed by surgical resection, myeloablation
and autologous stem cell rescue, radiation, and
intensive biologic/immunotherapy. Although
most high-risk patients initially respond to che-
motherapy, the majority relapse and succumb
to therapy-resistant disease. Established charac-
teristics for high-risk neuroblastoma patients
include age, unfavorable histopathology, loss of
heterozygosity for chromosome 1p or 11q, and
amplification of MYCN (Mueller and Matthay
2009).

MYCN VERSUS MYC

MYCN was identified in 1983 as an amplified
gene homologous to v-myc but distinct from
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MYC in human neuroblastoma (Kohl et al.
1983; Schwab et al. 1983). Structurally, the cod-
ing regions of both MYC and MYCN are high-
ly homologous (Fig. 1A), with long 50 and 30

untranslated regions (UTRs) and gene products
at similar sizes (�50–55 kDa) (Kohl et al. 1986;
Stanton et al. 1986). MYC and MYCN proteins
both heterodimerize with MAX at consensus
E-box sequences (CANNTG), and both pro-
teins have conserved regions for DNA-protein
and protein-protein interactions (reviewed in
Meyer and Penn 2008). Although a role for
MYC in trans-repression (through heterodi-
merization with MIZ1) is well established (see
Wiese et al. 2013), comparatively less is known
about trans-repression by MYCN (Akter et al.
2011; Iraci et al. 2011).

Biologically, MYCN, like MYC, was found
to promote transformation in rat embryo fibro-
blasts and induced proliferation and cell cycle

progression in quiescent fibroblasts (Fig. 1B)
(Schwab et al. 1985; Yancopoulos et al. 1985;
Cavalieri and Goldfarb 1988). Mouse embryon-
ic stem cells (ESCs) homozygous for deletion
of either MYC or MYCN showed normal mor-
phology, and did not show aberrant prolifer-
ation or differentiation compared to wild-type
ESCs, presumably because MYC and MYCN can
compensate for each other (Charron et al. 1992;
Davis et al. 1993; Sawai et al. 1993). Further
supporting this idea of redundancy is the ability
of MYCN knocked-in at the MYC locus to res-
cue embryonic lethality and to restore immune
functions in MYC knockout mice (although
MYCN animals were smaller, developed dystro-
phy of skeletal muscles, and showed differences
in growth responses in some cell types; Malynn
et al. 2000). Taken together, these findings sug-
gest that MYC and MYCN show prominent,
albeit incomplete, redundancy.
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Figure 1. Similarities and differences between MYC and MYCN. MYC and MYCNare similar both in (A) structure
(homologous sequences in red), and (B) biological functions. However, MYC and MYCN differ in (C) the
spatiotemporal expression levels. In particular, MYCN is preferentially expressed in neural tissue, whereas
MYC ismore ubiquitouslyexpressed. Expression of MYCand MYCNat each tissue is based on a relativepercentage
of the highest expressing tissue (newborn forebrain for MYCN and newborn thymus for MYC), which was
arbitrarily set to 100%. (Panel A based on Hartl et al. 2010. Panel C based on data from Zimmerman et al. 1986.)
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What evidence suggests that MYCN is truly
distinct from MYC? In MYCN null embryos,
the regional morphology of the central nervous
system (hindbrain prominently) differed from
wild-type embryos, despite up-regulation of
MYC (Stanton et al. 1992). In addition to a
lack of compensation, this observation suggests
that MYCN and MYC may regulate each oth-
er’s expression levels, as observed in other stud-
ies (Breit and Schwab 1989; Rosenbaum et al.
1989; Westermann et al. 2008; Helland et al.
2011). Although MYCN knockin can compen-
sate for knockout of MYC, knockout of either
MYC or MYCN results in embryonic lethality at
approximately E10.5–E11.5 (Charron et al.
1992; Davis et al. 1993; Sawai et al. 1993). The
inability of endogenous MYCN and MYC to
compensate for these knockout phenotypes
may be because of the distinct spatiotemporal
expression patterns displayed by MYC family
proteins (Fig. 1C).

Expression of MYCN is tissue specific, and
is found during early developmental stages,
whereas expression of MYC is more generalized
(Fig. 1C). For example, expression of MYCN is
highest in forebrain, kidney, and hindbrain of
newborn mice, and is virtually absent in all tis-
sues of adult mice. In contrast, expression of
MYC was detected in a broad spectrum of tis-
sues in newborn mice (highest in thymus,
spleen, and liver), and subsided substantially in
many, but not all, tissues of adult mice (adrenal
and thymus maintained high levels; Zimmer-
man et al. 1986). The differential expression of
MYCN and MYC is particularly striking in the
kidneys and B-cell development, in which both
MYCN and MYC are expressed before matura-
tion, with MYC alone remaining detectable in
kidneys and B cells in adult organisms (Zimmer-
man et al. 1986). Thus, double knockout of
MYCN and MYC in hematopoietic cells has a
significantly more disabling phenotype than
either single knockout, suggesting cooperation
in the biology of hematopoietic stem cells (Lau-
renti et al. 2008). Another structure demonstrat-
ing differential requirements for MYCN and
MYC is the cerebellum. Conditional deletion of
MYCN in neural stem and progenitorcells mark-
edly reduced proliferation of cerebellar granule

neural precursors (GNPs); however, this effect
was not seen with deletion of MYC (Hatton
et al. 2006). This differential requirement for
MYCN over MYC is further highlighted by the
fact that sonic hedgehog (SHH) signaling drives
the expansion of cerebellar GNPs and associates
with transcription ofMYCN, but not MYC (Ken-
ney et al. 2003).

Expression of MYCN is generally highest in
immature cells in newborn mice, with reduced
expression in differentiated adult tissues. Con-
sistent with this paradigm is the finding that
differentiation of neuroblastoma cells is associ-
ated with reduced expression of MYCN (Matsu-
moto et al. 1989; Cinatl et al. 1993; Han et al.
2001; Reddy et al. 2006). Interestingly, MYCN is
down-regulated during retinoic acid-induced
differentiation of neuroblastoma lines before
cell cycle and morphological changes (Thiele
et al. 1985). Conversely, MYCN has a direct
role in blocking differentiation pathways and
maintaining pluripotency (Wakamatsu et al.
1997; Kang et al. 2006; Nara et al. 2007; Cotter-
man and Knoepfler 2009; Lovén et al. 2010;
Henriksen et al. 2011). In particular, mice with
conditional deletion of MYCN in neural progen-
itor cells showed decreased brain size (especially
in the cerebellum where its size was reduced six-
fold) and showed a substantial increase in neu-
ronal differentiation compared to control mice
(Knoepfler et al. 2002). The enhanced differen-
tiation in MYCN null neural progenitor cells
may be a result of increased levels of the cyclin-
dependent kinase inhibitor p27Kip1, which
plays a role in differentiation and is normally
degraded by the E3 ubiquitin ligase S-phase ki-
nase associated protein (SKP2), a MYCN tran-
scriptional target (Casaccia-Bonnefil et al. 1997;
Gómez-Casares et al. 2013). While MYCN and
MYC were both found to have roles in maintain-
ing pluripotency and self-renewal of stem cells,
and both proteins can reprogram fibroblasts
into induced pluripotent stem (iPS) cells (Na-
kagawa et al. 2010; Varlakhanova et al. 2010),
evidence for differential functions of MYC and
MYCN in regulating pluripotency comes from
studies in medulloblastoma (see Roussel and
Robinson 2013). When misexpressed in GNPs
dependent on SHH signaling for survival,
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MYCN promotes an expected SHH-driven ma-
lignancy, whereas MYC drives malignancy down
a distinct SHH-independent lineage. These data
suggest that MYCN can transform cells in a com-
mitted lineage. In contrast, MYC can similarly
transform cells, and can also drive cancer stem
cell functionality, the latter enabling reprogram-
ming down a distinct lineage (Kawauchi et al.
2012; Pei et al. 2012). It is likely that MYCN can
also direct cancer stem cell functionality,
through interactions with cooperating tran-
scription factors. Support for this view comes
from experiments in which co-expression of
SOX9 with MYCN in cerebellar stem and pro-
genitor cells could drive self-renewal, whereas
neither SOX9 nor MYCN could drive self-re-
newal individually (Swartling et al. 2012).

MYCN IN NEUROBLASTOMA

Within two years of MYCN’s discovery in neu-
roblastoma, amplification of MYCN was shown
to correlate with poor prognosis in patients
(Brodeur et al. 1984; Seeger et al. 1985), a bio-
marker that is still used today to stratify risk.
Mice with targeted misexpression of MYCN
to the peripheral neural crest via the rat tyro-
sine hydroxylase (TH)-promoter developed neu-
roblastoma, establishing that misexpression of
MYCN in migrating neural crest cells can ini-
tiate this disease (Weiss et al. 1997). Tumors in
these mice had a prolonged latency and showed
recurrent chromosomal copy number abnor-
malities, suggesting that genetic mutations in
addition to misexpressed MYCN were required
to promote neuroblast transformation. This
requirement for additional mutations was sup-
ported by the fact that loss of tumor suppressors
neurofibromin1 or retinoblastoma1 (Rb), when
combined with misexpression of MYCN, result-
ed in reduced latency and increased penetrance
for tumors. The sections below illustrate some of
the many roles that MYCN subserves in neuro-
blastoma tumorigenesis (Fig. 2).

Metastasis

Metastasis occurs in �50% of neuroblastoma
patients at diagnosis (Maris et al. 2007) with

frequent spread to bone marrow (70%), bone
(55%), lymph nodes (30%), liver (30%), and
brain (18%) (DuBois et al. 1999). Not surpris-
ingly, levels of MYCN correlate with invasive
and metastatic behavior (Zaizen et al. 1993;
Bénard 1995; Goodman et al. 1997). MYCN con-
tributes to all facets of metastasis: adhesion, mo-
tility, invasion, and degradation of surrounding
matrices. Specifically, MYCN-directed down-
regulation of integrins a1 and b1 promotes de-
tachment from the extracellular matrix and al-
low cells to migrate and invade (van Golen et al.
2003; Tanaka and Fukuzawa 2008). MYCN pro-
motes transcription of focal adhesion kinase
(FAK), a critical regulator of integrin signaling,
and generally promotes increased migration and
metastasis in tumor cells (Beierle et al. 2007;
Megison et al. 2012). Notably, FAK can also be
repressed transcriptionally by p53, indicating a
possible competition between MYCN and p53
in regulating FAK levels (Golubovskaya et al.
2008). MYCN also increases activity of matrix
metalloproteinases (MMPs). In SHEP neuro-
blastoma cells, expression of BCL2 led to an in-
crease in expression and secretion of MMP2,
whereas co-expression of MYCN and BCL2 sup-
pressed the MMP2 antagonist, TIMP-2 (Nou-
jaim et al. 2002). miR-9, a microRNA activated
by MYCN, targets and suppresses E-cadherin,
contributing to an epithelial to mesenchymal
transition (EMT) (Ma et al. 2010).

Although caspase-8 has been associated
mostly with promoting apoptosis, caspase-8
also has a paradoxical role in both promoting
and inhibiting metastasis in neuroblastoma, de-
pending on the cellular context. A significant-
ly higher incidence of spontaneous metastasis
was observed in primary neuroblastoma tumors
without caspase-8, as compared to tumors ex-
pressing caspase-8, although the primary tumor
sizes were similar. NB7 neuroblastoma lines with
ectopic expression of caspase-8 eventually lost
expression of caspase-8 at sites of dissemination
(Stupack et al. 2006). The lack of caspase-8 trig-
gered integrin-mediated death, a mechanism of
apoptosis in cells that have detached from the
extracellular matrix and unligated their integ-
rins (Stupack et al. 2001). In the TH-MYCN
mouse model of neuroblastoma, deletion of ca-
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pase-8 did not affect apoptosis, but instead, in-
creased significantly the incidence of metasta-
sis specifically to the bone marrow, possibly
caused by up-regulation of genes involved in
EMT, decreased cell adhesion, and increased fi-
brosis (Teitz et al. 2013). The prometastatic ca-
pabilities of caspase-8 were dependent on the
tumor being resistant to apoptosis, which oc-
curs when caspase-3 is lost. In this setting, cas-
pase-8 associated with focal adhesion complex
proteins, such as SRC, integrins, calpain-2
(CPN2), and FAK. Within this complex, cas-
pase-8, independent of its proteolytic activity,
permitted CPN2 to become activated and cleave
focal adhesion substrates to promote cell mi-
gration (Barbero et al. 2009).

Immune Surveillance

MYCN influences immune surveillance by mod-
ulating antigens expressed on tumor cells. One
antigen repressed by MYCN is monocyte che-
moattractant protein-1/CC chemokine ligand
2 (MCP-1/CCL2), required forchemoattraction
of natural killer T (NKT) cells (Song et al. 2007).
Knockdown of MYCN in MYCN-amplified neu-
roblastoma lines rescued MCP-1 production
and NKT cell chemoattraction. In contrast, over-
expression of MYCN in neuroblastoma xeno-
grafts inhibited the ability to attract NKT cells.
Presumably, MYCN binds to the E-box element
of the MCP-1 promoter to block expression of
the chemokine. Support for this model was ob-
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Figure 2. MYCN plays multiple roles in malignancy and maintenance of stem-like state. MYCN can activate
transcription of genes involved in metastasis, survival, proliferation, pluripotency, self-renewal, and angiogen-
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served in patients with MYCN-amplified neuro-
blastoma metastasizing to the bone marrow,
which had fourfold fewer bone marrow NKT
cells compared to their nonamplified counter-
parts (Song et al. 2007). Although NKT cells
have not been shown directly to be effective
against neuroblastoma cells, NKT cells can ini-
tially secrete a set of proinflammatory cytokines
to recruit immune cells, stimulate the matura-
tion of dendritic cells, and generate antigen-spe-
cific T cells to target the tumor.

Angiogenesis

High vascularity in neuroblastoma correlates
with poor survival, increased dissemination,
and amplification of MYCN (Meitar et al.
1996; Ribatti et al. 2002; Ozer et al. 2007). The
association of vascularity with amplification of
MYCN suggests antiangiogenic therapy as a vi-
able approach towards MYCN-amplified neuro-
blastoma. Does MYCN facilitate the secretion of
factors to promote growth of endothelial cells
and/or block the release of inhibitors of angio-
genesis? Conditioned media from neuroblasto-
ma cell lines with induced expression of MYCN
revealed the loss of inhibitors of endothelial
growth (Fotsis et al. 1999). These inhibitors of
angiogenesis include Activin A (Hatzi et al.
2000), leukemia inhibitory factor (LIF; Hatzi
et al. 2002a), and interleukin 6 (IL-6; Hatzi
et al. 2002b). Misexpression of MYCN also had
a positive effect on proangiogenic factors in-
cluding angiogenin (Dungwa et al. 2012) and
vascular endothelial growth factor (VEGF) via
the phosphoinositide 30-kinase (PI3K)/mam-
malian target of rapamycin (mTOR) pathway
(Kang et al. 2008). Indeed, the PI3K/mTOR
inhibitor, NVP-BEZ235, suppressed growth of
MYCN-amplified tumors and disrupted angio-
genesis (Chanthery et al. 2012). Here, blockade
of PI3K/mTOR signaling destabilized MYCN,
which subsequently suppressed transcription
and secretion of VEGF.

Self-Renewal and Pluripotency

As described above, neuroblastoma likely arises
from neural crest cells, which possess the char-

acteristics of self-renewal and multipotency.
MYCN is likely involved in the regulation of
both traits, as MYCN can substitute for MYC
in reprogramming fibroblasts into iPS cells
(Nakagawa et al. 2010). Thus, both MYC and
MYCN promote a stem-like state, likely because
of blockade of differentiation pathways and
expression of self-renewal and pluripotency
factors. Indeed, MYCN up-regulates the pluri-
potency genes KLF2, KLF4, and LIN28B (Cot-
terman and Knoepfler 2009). Although MYCN
also increased LIF expression in this study, an-
other report found that MYCN reduced levels of
LIF in neuroblastoma, suggesting that MYCN
may differentially regulate LIF based on cellular
context (Hatzi et al. 2002a). Mouse ESCs
knocked out for both MYC and MYCN showed
up-regulation of endodermal and mesodermal
markers of differentiation (BMP4, GATA6), as
well as activators of lymphocytic differentiation
(STAT1, EGR1, ELK3), and sensory organ devel-
opment (DLL1, BMP4, GBX2, FGFR1), suggest-
ing that MYC proteins repress differentiation
pathways (Varlakhanova et al. 2010). Other dif-
ferentiation proteins suppressed by MYCN in-
clude cyclin-dependent kinase-like 5 (CDKL5)
and tissue transglutaminase (TG2) (Liu et al.
2007; Valli et al. 2012). MYC and MYCN deleted
mESC also lost expression of the pluripotency
marker SSEA-1, although other pluripotency
markers NANOG, OCT4, and REX-1 were not
affected significantly (Varlakhanova et al. 2010).
Nevertheless, the loss of MYC and MYCN in
mouse ESCs resulted in loss of self-renewal, in
part, because of an inability to progress efficient-
ly through S-phase and the G2/M checkpoint.
Importantly, MYCN up-regulates expression of
the polycomb and self-renewal protein BMI1 in
neuroblastoma by directly binding to the E-Box
sites within the promoter of BMI1 (Ochiai et al.
2010; Huang et al. 2011). Additionally, MYCN-
mediated expression of DLL3, a Notch1 ligand,
has been described as a mechanism to maintain
neural stem cell fate (Zhao et al. 2009). Further
support for MYCN promoting self-renewal is
the finding that MYCN-amplified neuroblas-
toma cell lines tend to undergo symmetric
cell division, whereas nonamplified lines pref-
erentially divide asymmetrically (Izumi and
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Kaneko 2012). Thus, MYCN plays a critical role
in maintaining a stem-like state by blocking dif-
ferentiation pathways and activating self-renew-
al and pluripotency genes (see Chappell and
Dalton 2013).

Apoptosis

Like MYC, MYCN activates both proliferation
and apoptosis (Evan et al. 1992; Fulda et al.
2000). Whether MYCN promotes a net prolifer-
ative response is therefore dependent on the
status of cooperating apoptotic factors, such as
the antiapoptotic protein, BCL2 (Strasser et al.

1990) or p53 (Elson et al. 1995; Chesler et al.
2008). Interestingly, TP53 mutations are rare
in neuroblastoma at diagnosis, suggesting that
MYCN likely cooperates with suppressers of
p53 signaling, including miRNA-380-5p, the
oncogene CUL7, BMI1, and transcription factor
H-Twist, and MDM2 (Valsesia-Wittmann et al.
2004; Slacket al. 2005; Kim et al. 2007; Swarbrick
et al. 2010; Huang et al. 2011). In contrast, mu-
tations in TP53 and p53 pathway members oc-
curcommonly in neuroblastoma at relapse, con-
sistent with the idea that such mutations, which
drive therapy-resistant disease, may arise in re-
sponse to cytotoxic chemotherapy. The impor-
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Figure 3. Amplified MYCN marks chemoresistance in patients with neuroblastoma. (A,B) Amplified MYCN
results in elevated transcription of MDM2 and TP53. High levels of p53 sensitize tumors to apoptosis. (C)
Patients initially respond to chemotherapy as p53 triggers apoptosis. (D) At relapse, tumors show mutation in
p53 or p53 pathways, resulting in therapy resistance.
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tance of p53 signaling is further highlighted by
the role of MYCN in the MDM2-p53 pathway
(Fig. 3). MDM2 is an E3 ubiquitin ligase that
promotes survival by ubiquitinating and driving
degradation of p53, and has also been implicat-
ed in promoting the stability of MYCN mRNA
by binding to the AU-rich elements of the
30UTR of MYCN (Gu et al. 2012). Interestingly,
MDM2 is a target for p53-mediated transcrip-
tion, and MYCN can promote transcription of
both MDM2 and TP53 (Slack et al. 2005; Chen
et al. 2010). The role of MYCN in activating
both MDM2 and TP53 explains conflicting
sensitivities to chemotherapy in MYCN-ampli-
fied neuroblastoma. MYCN-amplified neuro-
blastoma initially respond to chemotherapy,
perhaps due, in part, to MYCN-mediated ac-
tivation of p53. However, these tumors even-
tually relapse and become resistant, possibly
through chemotherapy-induced inactivating
mutations of p53, resulting in a feed-forward
loop between MDM2 and MYCN to promote
survival (Fig. 3).

Loss of caspase-8 function in neuroblas-
toma has been speculated to be a mechanism
of apoptosis evasion in MYCN-amplified neu-
roblastoma (Teitz et al. 2000; Gonzalez-Gomez
et al. 2003; Iolascon et al. 2003). A later study did
not find correlation between caspase-8 expres-
sion and risk in neuroblastoma (MYCN status,
chromosome 1p36 deletion, disease stage, etc.)
(Fulda et al. 2006); however, multiple groups
have reported methylation of the promoter for
caspase-8 (Casciano et al. 2004; Banelli et al.
2005; Lázcoz et al. 2006). Loss of caspase-8 pro-
motes resistance to tumor necrosis factor-relat-
ed apoptosis-inducing ligand-induced apopto-
sis (Eggert et al. 2001).

In addition to associating with suppression
of proapoptotic pathways, MYCN-amplified
neuroblastoma could survive via constitutive ac-
tivation of prosurvival signaling cascades, such
as tropomyosin receptor kinase B (TRKB). In-
terestingly, levels of TRKB expression are low
in neuroblastoma not amplified for MYCN. In
contrast, TRKBis frequentlyactivated in MYCN-
amplified neuroblastoma, signaling through
both autocrine and paracrine survival pathways
(Nakagawara et al. 1994). Activation of TRKB is

implicated in resistance to chemotherapy and
can up-regulate MYCN mRNA, which may
provide insights into the association of TRKB
with MYCN-amplified neuroblastoma (Ho et al.
2002; Dewitt et al. 2013). Conversely, MYCN
appears to down-regulate tropomyosin receptor
kinase A (TRKA), which is normally found in
low-risk neuroblastoma, recruiting HDAC1 to
the TRKA promoter to induce a repressed chro-
matin state (Iraci et al. 2011).

Proliferation and Cell Cycle

The best characterized tumorigenic effect of
MYCN is to promote proliferation and cell
cycle progression. Specifically, MYCN-ampli-
fied neuroblastomas show an inability to arrest
in G1-phase in response to irradiation and DNA
damage, possibly via down-regulation of TP53
inducible nuclear protein 1 (TP53INP1) and
up-regulation of both CDK4 and SKP2, allow-
ing CDK2 to escape p21 inhibition (Tweddle
et al. 2001; Bell et al. 2007; Muth et al. 2010;
Gogolin et al. 2013). MYCN up-regulation of
checkpoint kinase 1 (CHK1), an important reg-
ulator of S-phase and G2/M checkpoints, has
been suggested as a mechanism through which
MYCN-amplified neuroblastoma becomes re-
fractory to standard chemotherapy (Cole et al.
2011). Indeed, inhibition of CHK1 promotes
chemosensitization in various types of tumor
cells (Blasina et al. 2008; Zhang et al. 2009).
MYCN also directly represses expression of
anti-proliferative proteins such as Dickkopf-1,
which disrupts the WNT/b-catenin signaling
pathway, and CDKL5, which arrests cells be-
tween G0/G1 phase (Koppen et al. 2007a; Valli
et al. 2012). ID2, a helix-loop-helix transcrip-
tion factor, is also a target of MYCN. MYCN
directly binds to the promoter of ID2 to stimu-
late its expression, leading to inactivation of Rb
to permit progression through the cell cycle
(Iavarone et al. 1994; Lasorella et al. 1996).
Consistent with the idea that MYCN activates
transcription of ID2, MYCN-amplified neuro-
blastoma lines show elevated levels of ID2,
and MYCN and ID2 expression levels correlate
during development (Lasorella et al. 2000;
2002).
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MYC has also been implicated in progres-
sion through the G1-S phase of the cell cycle by
cooperating with RAS to induce cyclin D/CDK4
and/or cyclin E/CDK2 complexes that phos-
phorylate and inactivate Rb proteins, activating
E2F transcription factors to induce S-phase (re-
viewed in Farrell and Sears 2014). This cycle is
further amplified because RAS signaling stabi-
lizes MYC proteins by activating AKT, which
phosphorylates and blocks glycogen synthase
kinase 3b (GSK-3b)-mediated degradation of
MYC proteins. Thus, blockade of RAS signaling
can induce growth arrest in MYCN-amplified
neuroblastoma cells (Yaari et al. 2005). mTOR
signals downstream from the RAS/PI3K/AKT
pathway and has essential functions in transla-
tional control, impacting metabolism, prolifer-
ation, and tumorigenesis. Allosteric blockade of
mTOR with rapamycin or CCI-779 displayed a
more pronounced antiproliferative effect in
MYCN-amplified than in MYCN-nonamplified
neuroblastoma tumors. Additionally, allosteric
mTOR inhibitors also suppressed expression of
VEGF-A and cyclin D1 (Johnsen et al. 2008).
Other targets of MYCN that appear to drive
proliferation are neuronal leucine-rich re-
peat protein-1, which also enhances expression
of MYCN, the transcription factor MYBL2, a
downstream target of MYCN and a factor in
drug resistance, and minichromosome mainte-
nance (MCM) genes that are responsible for
DNA elongation and unwinding during the rep-
lication process (Raschella et al. 1999; Koppen
et al. 2007b; Hossain et al. 2008; 2012; Gualdrini
et al. 2010) .

EPIGENETIC ROLES OF MYCN

Because neuroblastoma typically occurs in early
childhood (as opposed to adult cancers that
have more time to accumulate mutations that
promote transformation), the profound tumor-
igenic influence of MYCN likely extends beyond
its ability to directly regulate expression of any
individual gene. MYCN can also indirectly me-
diate the expression of multiple genes simulta-
neously via activation of noncoding RNAs, such
as miRNA and long noncoding RNA (reviewed
in Buechner and Einvik 2012). Additional-

ly, MYCN impacts global histone methylation
and acetylation, markers of transcriptional re-
pression and activation, respectively (Knoepfler
et al. 2006). Recently, MYCN was found to as-
sociate with EZH2, a methyltransferase and
member of the polycomb repressor complex 2
(Corvetta et al. 2013). EZH2 has been implicat-
ed in the trimethylation of Histone 3 K27, a
transcriptional silencing mark (Kotake et al.
2007; Au et al. 2012). Interestingly, the interac-
tion between MYCN and EZH2 requires the
MYC box domain III, which is necessary for
MYC to promote transformation (Herbst et al.
2005). In support of a transcriptionally repres-
sive function for a MYCN/EZH2 complex is the
finding that the interaction between MYC and
another DNA methyltransferase, DNMT3A,
silences the transcription of p21CIP1, an in-
hibitor of cyclin-dependent kinases (Brenner
et al. 2005). Furthermore, MYCN up-regulates
the expression of histone deacetylases (HDACs)
in neuroblastoma, including HDAC1, HDAC2,
and SIRT1. HDAC1 represses expression of the
differentiation protein TG2. HDAC2 silences
cyclin G2, a suppressor of cell cycle progression,
whereas SIRT1 represses mitogen-activated pro-
tein kinase phosphatase 3, activating ERK (Mar-
shall et al. 2010; 2011; Iraci et al. 2011). Notably,
SIRT1 stabilizes MYCN, promoting a feed-for-
ward loop between the two proteins (Marshall
et al. 2011). Thus, MYCN may enhance silenc-
ing of tumor suppressors in neuroblastoma by
increasing DNA methylation and deacetylation.

ROLE OF MYCL AND MYC IN
NEUROBLASTOMA

Amplification of other MYC family members
(i.e., MYCL, MYC) is uncommon in neuroblas-
toma (Slavc et al. 1990). As compared with levels
of MYCL and MYC, expression of MYCN is
higher in developing tissues that normally give
rise to neuroblastoma (Kohl et al. 1986; Stanton
et al. 1992). In fact, loss of heterozygosity for
chromosome 1p (a marker of risk) suggests
that deletion of MYCL (on chromosome 1p34)
may indicate unfavorable prognosis (Hiyama
et al. 2001), with the caveat that other tumor
suppressors also reside in this subchromosomal
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region. MYC is infrequently amplified in neuro-
blastoma, and expression of MYC correlates in-
versely with MYCN (Breit and Schwab 1989).
Specifically, MYCN-nonamplified Stage 4 and
4S neuroblastoma tumors may show high levels
of MYC mRNA (Westermann et al. 2008), sug-
gesting that amplified MYC may compensate in
MYCN-nonamplified tumors.

TARGETING MYCN-AMPLIFIED
NEUROBLASTOMA

Knockdown of MYCN expression via RNA in-
terference and antisense oligonucleotides in
MYCN-amplified neuroblastoma has shown
an increase in apoptosis and differentiation,

and suppression of cell growth, suggesting that
blockade of MYCN may be a therapeutic option
in MYCN-driven neuroblastoma (Burkhart et al.
2003; Kang et al. 2006). However, the develop-
ment of inhibitors targeting MYC proteins has
been challenging, as MYC/MYCN proteins are
composed of two extended alpha-helices with
no obvious surfaces for small molecule bind-
ing. Strategies to circumvent blocking MYCN
directly include: (1) targeting epigenetic reader
proteins, such as acetyl-lysine binding modules
(bromodomains) that link chromatin marks to
activation of MYC/MYCN, (2) targeting regula-
tors of MYCN mRNA and protein stability, (3)
activating p53-induced apoptosis, and (4) trig-
gering differentiation (Fig. 4).

PI3K/
AKT

C

MYCN

MDM2

D
p53

Translation

mRNA degradation

MYCN
MYCN

MYCN
C

AURKA

Apoptosis

HDAC

MYCN
MYCN-mediated

transcriptionB

E

A

HDAC

Cell cycle arrest Differentiation Survival Proliferation

MYCN mRNA

MYCN

MYCN degradation

GSK-3β

PP2AS62

T58 S62

T58

Figure 4. Therapeutic strategies to target MYCN in neuroblastoma. Possible strategies to treat MYCN-amplified
neuroblastoma patients include (A) blocking MYCN-dependent transcription with BET-bromodomain in-
hibitors, (B) inhibiting HDACs, (C) antagonizing proteins involved in stabilizing MYCN protein, (D) sup-
pressing MDM2 (which stabilizes MYCN mRNA and disrupts p53-mediated apoptosis), and (E) inducing
differentiation.
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BET Bromodomain Inhibitors

Gene expression from enhancer and promoter-
bound oncogenic transcription factors is medi-
ated by multiprotein assemblies, such as the
mediator complex, the positive transcriptional
elongation factor complex (PTEFB), and chro-
matin-associated protein complexes and chro-
matin-remodeling complexes (e.g., SWI/SNF).
In addition, memory of the cancer-cell state is
maintained through cell division by covalent
modification of the unstructured amino-termi-
nal tails of histone proteins (see Bradner 2013;
Sabó and Amati 2014). Lysine side-chain ace-
tylation figures prominently in activation of
MYCN. Acetylation marks are placed in regions
of active transcription by histone acetyltransfer-
ases. Their interpretation is mediated by acetyl-
lysine reader domains or bromodomains, a fam-
ily of 47 transcriptional coactivators. Members
of the bromodomain and extraterminal (BET)
subfamily, BRD2-4, are compelling targets ow-
ing to characterized binding interactions with
SWI/SNF and their interaction with PTEFB.
MYC also recruits PTEFB to release RNA poly-
merase II, promoting transcription. The tool
compound and BRD2-4 inhibitor JQ1 was
shown to block MYC targets as well as MYC itself
in multiple myeloma, a MYC-dependent malig-
nancy (Delmore et al. 2011). JQ1 also suppresses
growth of MYCN-amplified neuroblastoma in
multiple in vivo models including orthotopic
transplantation of patient derived xenografts
and the TH-MYCN mouse model. Mice treated
with JQ1 showed a significant increase in overall
survival, and tumors showed increased apopto-
sis and decreased proliferation as well as de-
creased expression of MYCN itself (Puissant
et al. 2013). Thus, BET bromodomain inhibitors
may be a therapeutic option for patients with
MYCN-amplified neuroblastoma (Fig. 4A).

HDAC

As described above, MYCN silences tumor sup-
pressor genes by recruitment of DNA methyl-
transferases and elevated expression of HDAC,
suggesting a possible therapeutic role for HDAC
inhibitors. Several preclinical studies have found

promising results using HDAC inhibitors in the
TH-MYCN model of neuroblastoma. For in-
stance, treatment of TH-MYCN mice with the
SIRT1 inhibitor, Cambinol, reduced tumori-
genesis (Marshall et al. 2011). Liu and colleagues
found that Trichostatin A (class I and II HDAC
inhibitor) restored expression of the differenti-
ation protein TG2, resulting in reduced tumor
weight and volume in the same mouse model
(Liu et al. 2007). Therefore, HDAC inhibitors
may be a viable route to target MYCN-amplified
neuroblastoma (Fig. 4B).

Regulators of MYC Protein Stability

MYC and MYCN proteins are proteolyzed
through a sequential stepwise set of phosphory-
lation events. Initially, MYC and MYCN are
phosphorylated at S62 (via kinases in the RAS
signaling pathway, such as MAPK [Seth et al.
1991; Lutterbach and Hann 1994] and CDK1
[Sjostrom et al. 2005]), stabilizing MYC and
MYCN and priming these proteins for phos-
phorylation at T58 via GSK-3b (Pulverer et al.
1994). Dephosphorylation of S62 via protein
phosphatase 2A (PP2A) sensitizes MYC and
MYCN phosphorylated at T58 to bind F-box
and WD repeat domain-containing 7 (FBW7)
or other E3 ligases, leading to the ubiquitina-
tion and degradation in the proteasome (Fig.
4) (Sears et al. 2000; Welcker et al. 2004; Yada
et al. 2004).

PI3K inhibition can decrease MYCN pro-
tein levels without impacting the mRNA by
blocking a PI3K-driven inhibitory phosphory-
lation on GSK-3b and promoting MYCN phos-
phorylation (Fig. 4C) (reviewed in Gustafson
and Weiss 2010). Neuroblastoma lines express-
ing MYCNT58A (lacking a GSK-3b phosphory-
lation site) were resistant to antiproliferative ef-
fects from treatment with the PI3K/mTOR
inhibitor, LY294002 (Chesler et al. 2006). These
data, and subsequent studies using the clinical
inhibitor BEZ235 (Chanthery et al. 2012) sug-
gest that PI3K/mTOR inhibitors represent a
viable strategy to target MYCN-amplified neu-
roblastoma tumors.

Proteins that prevent dephosphorylation at
T58 stabilize MYCN, which may be the case
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with aurora kinase A (AURKA) in neuroblasto-
ma (Fig. 4C) (Otto et al. 2009). Interestingly,
increased expression of AURKA is found in
MYCN-amplified neuroblastoma, mediated po-
tentially by MYCN itself (Shang et al. 2009).
Thus, elevated levels of either MYCN or AURKA
promote a potential feed-forward loop that sta-
bilizes both proteins. Because AURKA has pos-
sible ligand binding sites for small molecule in-
hibitors, targeting AURKA could potentially
represent a strategy to treat MYCN-amplified
tumors (Faisal et al. 2011); however, the ability
of AURKA to stabilize MYCN has been shown to
be independent of kinase activity (Otto et al.
2009). A similar mechanism of tumor suppres-
sion has also been proposed for protein tyrosine
phosphatase receptor type D (PTPRD). Ectopic
expression of PTPRD dephosphorylates tyro-
sine residues on AURKA, which destabilizes
AURKA, and subsequently lowers levels of
MYCN and proliferation (Meehan et al. 2012).

MDM2

Down-regulation of MDM2 would presumably
have two significant effects in MYCN-amplified
neuroblastoma. Because MDM2 can bind to the
30UTR of MYCN, loss of MDM2 would destabi-
lize MYCN mRNA and subsequently block ex-
pression of MYCN protein (Gu et al. 2012). In
parallel, decreased MDM2 levels should stabilize
p53 and increase the likelihood of p53-depen-

dent apoptosis (Fig. 4D). Indeed, MYCN-am-
plified neuroblastoma cell lines have been found
to be more sensitive than MYCN-nonamplified
lines to antagonists of MDM2: Nutlin-3 and MI-
63 (Gamble et al. 2012).

Inducers of Differentiation

Because neuroblastoma is believed to originate
from immature neural crest cells, triggering
differentiation in these cells should result in
reduced proliferation and increased cell death.
Indeed, retinoic acid, nitric oxide, and phenyl-
acetate have all been shown to induce differ-
entiation, and inhibit both anchorage indepen-
dence and cell growth in neuroblastoma (Sidell
1982; Han et al. 2001; Ciani et al. 2004). Al-
though MYCN is known to inhibit differentia-
tion pathways, each of these molecules have been
found to reduce MYCN levels as well, indicating
that MYCN-amplified tumors can still be in-
duced to differentiate as a means to suppress
proliferation and promote apoptosis (Fig. 4E).

OTHER GENETIC DRIVER MUTATIONS
OF NEUROBLASTOMA

To identify novel driver mutations of neuro-
blastoma, intense efforts have focused on ge-
nome-wide association studies (GWAS), as well
as whole exome and whole genome sequencing
studies of tumor samples (Table 1). Although

Table 1. Non-MYCN drivers of neuroblastoma

Gene GOF or LOF Frequency Number of tumors

ALK GOF 6%,1,2 8%,3 9%,4 12.4%,5 14%,6 87,1 215,2 93,3 240,4 194,5 1306

ATRX LOF 9.6%,4 25%7,a 240,4 407

ARID1A LOF 1%–2%,4 6%6 240,4 716

ARID1B LOF ,1%,4 7%6 240,4 716

LIN28B GOF 1.1%,8 1.4%6 263,8 716

PTPN11 GOF 2.9%,4 3.4%9 240,4 899

TIAM1 LOF 0%,4 3%1 240,4 871

Tumor susceptibility SNPs were identified in BARD1 (Capasso et al. 2009; Nguyen et al. 2011; Diskin et al. 2012), HACE1

(Diskin et al. 2012), LMO1 (Wang et al. 2011; Diskin et al. 2012; Nguyen et al. 2011), and LIN28B (Diskin et al. 2012). Pugh

et al. (2013) identified other genetic mutations that had frequencies ,1%.

References: 1Molenaar et al. 2012b, 2Chen et al. 2008, 3George et al. 2008, 4Pugh et al. 2013, 5Mossé et al. 2008, 6Sausen et al.

2013. 7Cheung et al. 2012, 8Molenaar et al. 2012a, 9Bentires-Alj et al. 2004.
aHalf of tumors with ATRX mutations were from older patients, which account for a small percentage of neuroblastoma

patients.
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subchromosomal aberrations occur robustly in
this disease, genetic mutations were quite rare
(some could not be verified in independent
studies). Two of the more commonly altered
genesthat have been observed in multiple studies
include anaplastic lymphoma kinase (ALK) and
Alpha thalassemia/mental retardation syn-
drome X-linked (ATRX).

ALK

Familial neuroblastoma occurs rarely com-
pared to sporadic cases. Gain of function mu-
tations in the receptor tyrosine kinase ALK
(chromosome 2p23) occur in �50% of familial
neuroblastoma cases, and �7% of sporadic
neuroblastoma cases (Chen et al. 2008; George
et al. 2008; Janoueix-Lerosey et al. 2008; Mossé
et al. 2008; Molenaaret al. 2012b). ALK can drive
neuroblastoma in genetically engineered mice
misexpressing the most potent mutation of
ALK, F1174L (Heukamp et al. 2012; Schulte
et al. 2012). Additionally, ALK cooperates with
MYCN to drive malignancy, as activation of ALK
results in increased expression of MYCN by ele-
vating activity of the MYCN promoter, and sta-
bilizing MYCN protein likely via activation of
AKT and ERK (Chesler et al. 2006; Berry et al.
2012; Schönherr et al. 2012; Zhu et al. 2012).
ALK and MYCN are also physically linked on
chromosome 2p, which may explain why ampli-
fication of MYCN and ALK frequently co-occur
(De Brouwer et al. 2010).

ATRX

Whole genome sequencing of 40 neuroblastoma
patient samples revealed loss of function muta-
tions in ATRX (chromosome Xq21) in 10 sam-
ples, five of which belong to older patients,
which constitutes a small percentage of overall
neuroblastoma cases. Eight of the 10 samples
with ATRX mutations showed longer telomeres
(via alternative lengthening of telomeres [ALT]),
and lacked ATRX in the nucleus (Cheung et al.
2012). Patients with ATRX mutant neuroblasto-
ma were typically adolescents with a chronic
progressive form of this disease. Other than telo-
mere lengthening, ATRX is thought to function

epigenetically by recruitment of Histone 3.3
at telomeric regions to maintain chromosome
stability (reviewed in De La Fuente et al. 2011).
Intriguingly, ATRX mutations were mutually ex-
clusive from amplification of MYCN in neuro-
blastoma, which was verified in a separate study
(Pugh et al. 2013). In contrast, elevated expres-
sion of MYCN and mutation of ATRX are both
associated with mutation of G34 site in Histone
3.3 in pediatric glioblastoma (Schwartzentruber
et al. 2012; Wu et al. 2012; Bjerke et al. 2013).

In a separate study, a subset of neuroblasto-
ma tumors (five of 87) with ATRX mutations
also had defects in PTPRD and odd Oz 3
(ODZ3) (Molenaar et al. 2012b). The investiga-
tors reasoned that these three genes were likely
co-selected, as the probability of finding defects
in three concurrent genes in at least five tumors is
,1024. The connection among these genes may
relate to a role in neuritogenesis, which is critical
for differentiation of neuroblasts. PTPRD and
ODZ3 are transmembrane receptors that local-
ize to axons and axonal growth cones and are
known to enhance neuritogenesis (Arregui
et al. 2000). Transgenic mice with ATRX muta-
tions showed aberrant dendritic spine morphol-
ogy and altered signaling through the GTPase,
Rac1, which also promotes neuritogenesis
(Shioda et al. 2011). Importantly, activators of
Rac1 (guanine exchange factors [GEF]), but not
inhibitors (GTPase activating proteins [GAP])
are mutated in neuroblastoma, albeit rarely
(e.g., TIAM1 was found mutated in three out
of 87 tumors) (Molenaar et al. 2012b). In con-
trast, Rho signaling opposes neuritogenesis and
more mutations in Rho GAPs than GEFs were
identified in the same study (Molenaar et al.
2012b). Taken together, this evidence implicates
neuritogenesis as a process that is antagonized in
neuroblastoma tumorigenesis. Interestingly, a
recent study by Pugh et al. (2013) did not detect
mutations in GEFs and GAPs involved in Rac/
Rho signaling to a statistically significant degree,
with TIAM1, the Rac1 GEF most frequently mu-
tated in the Molenaar study, not altered in the
larger study by Pugh et al. (2013). The discrep-
ancy between these studies may be a result of the
rarity of neuritogenesis mutations and/or bio-
logical differences between the two data sets.
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Recently, a correlation was described among
different types of tumors with respect to the
frequency of mutations within the telomerase
reverse transcriptase (TERT) promoter, with
neural tumors (e.g., glioblastoma, oligodendro-
glioma, and medulloblastoma), particularly in
older patients, showing the highest occurrences
(Killela et al. 2013). These mutations are linked
to maintaining telomere length,analogoustothe
effect of ALT, a commonly occurring phenome-
non due to ATRX mutations. Based on these
data, the Yan group hypothesizes that tumor
types showing high frequencies of ALT might
also show high frequencies of TERT mutations,
and these mutations, as exemplified by glioblas-
toma, would be distributed in a mutually exclu-
sive fashion. Older children with neuroblastoma
have been shown to have ATRX mutations. To
our knowledge, however, TERT mutations were
not examined in these sequencing studies, an
intriguing area for future investigation.

Remarks

The search for driver mutations in neuroblasto-
ma has led to the identification of several other
candidate genes, although the frequencies of
mutations among these candidates are much
lower than ALK and ATRX. These include gain
of function in protein tyrosine phosphatase 11
(PTPN11) and LIN28B, structural mutations
in neural growth cone genes (ODZ3, PTPRD,
and CSMD1), and heterozygous loss of AT-rich
interactive domain 1A and 1B (ARID1A and
ARID1B; Molenaar et al. 2012a,b; Pugh et al.
2013; Sausen et al. 2013). Tumor susceptibility
SNPs were associated with loci located at or near
BRCA1-associated RING domain-1 (BARD1),
HECT domain- and ankyrin repeat-containing
E3 ubiquitin protein ligase 1 (HACE1), LIN28B,
and LIM domain only 1 (LMO1) (Capasso et al.
2009, 2013; Wang et al. 2011; Diskin et al. 2012).
In addition to the low mutation frequencies,
several of these genes were not validated in mul-
tiple studies (e.g., PTPRD, ODZ3, CSMD1,
TIAM1). In fact, while one study found PTPRD
acts as a tumor suppressor in neuroblastoma
(Meehan et al. 2012), a separate study found
overexpression of PTPRD to have minimal effect

on colony formation in neuroblastoma cells,
whereas levels of PTPRD were similar between
embryonic adrenal cells and neuroblastoma
lines, calling into question the role of PTPRD
in neuroblastoma (Clark et al. 2012). One of
the largest studies to date (240 samples) identi-
fied additional mutations (including a recur-
rent point mutation in MYCN (P44L) at a fre-
quency of �2%, leading to a twofold increased
level of expression); however, the vast majorityof
mutations occurred at frequencies under 1%
(Pugh et al. 2013).

The low mutation rate in neuroblastoma re-
sembles other pediatric tumors, including me-
dulloblastoma (Pugh et al. 2012), and stands in
contrast to changes in chromosomal copy num-
ber, which are quite frequent and robust. Further
support for the idea that chromosome aberra-
tions contribute to neuroblastoma is the finding
that chromothripsis (shredding of subchromo-
somal regions and random reassembly of frag-
ments) may be associated with high-risk and
late-stage neuroblastoma, as this phenomenon
was observed in one of the recent papers report-
ing sequencing results (Molenaar et al. 2012b).
Might neuroblastoma be driven by these sub-
chromosomal gains and losses? Forexample, de-
letion of chromosome 1p or 11q occurs in 25%–
35% of patients, whereas gain of chromosome
17q occurs in .70% of tumors (Plantaz et al.
1997; Attiyeh et al. 2005; Mossé et al. 2007). In-
terestingly, multiple studies have found amplifi-
cation of MYCN to be directly correlated with
chromosome 1p loss, while inversely related to
chromosome 11q deletion (Cheng et al. 1995;
Komuro et al. 1998; Caron et al. 2001; Attiyeh
et al. 2005; Carén et al. 2010). In addition, gains
of chromosome 17q have also been detected in
tumors with amplified MYCN, although this is
not unexpected because of the high frequency of
chromosome 17q gains (Plantaz et al. 1997; Val-
entijnet al. 2005). Potentially, these somaticcopy
number variations of subchromosomal regions
could equate to multiple genetic mutations oc-
curring simultaneously, contributing to trans-
formation. Modeling these chromosomal ab-
normalities, and identifying minimal regions
of gains and losses may lead to the identification
of new and potent drivers of neuroblastoma.
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SUMMARY

Although neuroblastoma was first described
more than 100 years ago, progress in identifying
genetic causes and therapeutic targets has taken
time. In 1983, MYCN was identified as the sec-
ond member of the MYC family and two years
later, amplification of MYCN was identified as
among the first genetic biomarkers of any can-
cer, specifically marking high-risk neuroblasto-
ma (Brodeur et al. 1984; Seeger et al. 1985). A
genetically engineered mouse model of neuro-
blastoma (TH-MYCN) was established in 1997
and along with other studies, implicated MYCN
in all aspects of tumorigenesis and malignancy
(Nakagawara et al. 1994; Weiss et al. 1997; Song
et al. 2007; Kang et al. 2008; Cotterman and
Knoepfler 2009; Ma et al. 2010). Unfortunately,
because MYCN is considered “undruggable,”
standard care for MYCN-amplified neuroblas-
toma patients does not include targeting MYCN
itself. GWAS, whole exome, and whole genome
sequencing studies over the past few years have
identified few recurrently mutated genes. ALK
represents one of the most druggable and prom-
ising targets and was validated as a driver of
neuroblastoma in both fish and mouse models
(Heukamp et al. 2012; Schulte et al. 2012; Zhu
et al. 2012). However, ALK mutations occur in
,10% of neuroblastoma cases and initial clin-
ical studies using targeted therapy against ALK
in these patients have been disappointing (Car-
penter and Mossé 2012). Preclinical studies us-
ing bromodomain inhibitors and targeting
molecules that destabilize MYCN show promise
preclinically, and should be tested in children
with aggressive forms of neuroblastoma. In ad-
dition, because chromosomal aberrations ap-
pear to be robust in pediatric tumors, clues
for uncovering novel drivers and therapeutic
targets may depend on developing models of
these chromosomal abnormalities.
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