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Abstract: Bonner Spheres have been used widely for the measurement of neutron spectra
with neutron energies ranged from thermal up to at least 20 MeV. A Bonner Sphere neutron
spectrometer (BSS) was developed by extending a Berthold LB 6411 neutron-dose-rate
meter. The BSS consists of a 3He thermal-neutron detector with integrated electronics, a
set of eight polyethylene spherical shells and two optional lead shells of various sizes. The
response matrix of the BSS was calculated with GEANT4 Monte Carlo simulation. The BSS
had a calibration uncertainty of±8.6% and a detector background rate of (1.57±0.04)×10−3

s−1. A spectral unfolding code NSUGA was developed. The NSUGA code utilizes genetic
algorithms and has been shown to perform well in the absence of a priori information.
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1 Introduction

Neutron spectrometry using Bonner Spheres was introduced by Bramblett et al. [1]. Bonner
Spheres can measure neutron energy spectra in a wide energy range from thermal up to at
least 20 MeV [2]. The energy range can be extended above 1 GeV if some high atomic num-
ber materials, such as lead, copper, iron, tungsten, etc., is included into the spheres [3–6].
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Neutron detection using Bonner Spheres also has the advantages of high detection efficiency,
simple electronics, simple operation, isotropic angular response, and excellent photon dis-
crimination [7, 8]. On the other hand, it has the drawback of poor energy resolution. In
addition, the spectral unfolding process, the process which determines the energy spectrum
from detector response, is generally complex [7, 8]. Bonner Sphere neutron spectrometers
can be used in, for example, workplaces around nuclear reactors, high-energy accelerators,
fabrication plants of radioactive sources, and flight altitude where the knowledge of neutron
energy spectrum or dose is important.

In this paper, we present our work of developing a Bonner Sphere neutron spectrometer
and a spectral unfolding code. The hardware configuration of the detector and the data
acquisition system will be described in sections 2 and 3, respectively. The determination
of the detector response and the detection background will be discussed in sections 4 and
5, respectively. Section 6 outlines the spectral unfolding procedure. The result of the
development will be discussed in section 7, followed by a conclusion in section 8.

2 Detector configuration

The Bonner Sphere neutron spectrometer (BSS) we developed consists of a 3He thermal-
neutron detector, a set of eight polyethylene spherical shells for neutron moderation and
two optional lead shells. The BSS utilizes a Berthold LB 6411 neutron-dose-rate meter [9–
11] as the thermal-neutron detector. The active detector is a cylindrical 3He proportional
counter tube. The diameter and the active length of the counter tube were designed to
be both 4 cm, resulting in a better isotropic response [10]. The counter tube was made of
stainless steel and filled with 3He and methane at partial pressures of 3.5 bar and 1 bar,
respectively [10].

The moderating spheres of the BSS were made of polyethylene with mass density of
0.96 g cm−3. The outer diameters of the eight spheres are 5" (12.7 cm), 6" (15.24 cm), 7"
(17.78 cm), 8" (20.32 cm), 9" (22.86 cm), 10" (25.40 cm), 11" (27.94 cm), and 12" (30.48
cm), respectively.1 Figure 1 shows a mechanical drawing of the 6"-diameter Bonner Sphere.
Each sphere has an identical cylindrical hollow region for inserting the counter tube. The
active volume of the counter tube is located at the center of each sphere, regardless of the
diameter of the sphere. In order to increase the detector responses to neutrons above 10
MeV, spherical lead shells of either 1-cm or 2-cm thickness can be added to enclose the 6"
sphere. Therefore, ten detector configurations with different neutron energy responses can
be achieved. Figure 2 shows a picture of the Bonner Spheres.

3 Data acquisition

The Berthold LB 6411 neutron-dose-rate meter has an integrated high-voltage supply and
front-end electronics such as preamplifier and discriminator for signal processing [9, 10]. It
is connected to a microprocessor-controlled portable data logger Berthold UMo LB 123.

1The convention of labeling Bonner Spheres by their diameters in inches has developed over the years
and it is the convention adopted here.
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Figure 1. Mechanical drawing of the Bonner Sphere with diameter of 6" (15.24 cm). The central
hollow cylinder is for inserting the thermal neutron detector of Berthold LB 6411.

Figure 2. Eight Bonner Spheres with diameters from 5" (12.7 cm) to 12" (30.48 cm), and four
1-cm-thick lead half shells (bottom left). The lead half shells can be combined to form either a
1-cm or a 2-cm-thick lead shell surrounding the 6" Bonner Sphere.

With the original LB 6411 counter, the data logger can give the neutron dose rate as well
as the detection count rate. When the LB 6411 was used as a thermal neutron detector of
the BSS, the original neutron moderator sphere was replaced by custom-made moderator
spheres of different sizes, thus the neutron dose rate reported by the data logger was no
longer valid. The requirement of the BSS data acquisition (DAQ) system is to record the
neutron detection count rates when the spectrometer is equipped with different sizes of
moderator.

The battery-driven data logger LB 123 has 250 memory locations to store the average
detection count rate over the measurement period. The maximum time for each data
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Figure 3. Schematic diagram of the computerized DAQ system. The TTL signal is extracted from
pin-1 of the ST1 connector inside the LB 123. The signal levels are referenced to pin-3 of the ST1
connector.

acquisition run is limited to 99,999 s. In order to extend the capability of the DAQ system,
a computerized DAQ system was added on top of the LB 123. A simplified schematic
diagram of the computerized DAQ system is shown in figure 3. A detection in the form of a
TTL signal is extracted from the LB 123 and passed to a microcontroller unit (MCU), with
a monostable in between to widen the TTL pulse width to 3 µs. The MCU has an internal
counter to count the number of TTL signals. The MCU is controlled by a computer via
the RS232 interface and is powered by the computer’s USB port. A DAQ software written
in the C programming language is used to read the accumulated count from the counter
every second and to provide basic run control. If the count read from the counter is greater
than the previous cached value, it will be written to an ASCII-formatted file together with
a time stamp. The data files show the time-ordered values of the accumulated count, so
that the count rate in various time intervals can be calculated. Every data file has a header
which records the start time, measurement location, BSS configuration, and parameters
such as preset time limit and preset count limit. The LB 123 was also modified to be able
to obtain power from the computer’s USB port. The modified DAQ system is able to run
over an extended period of time beyond the default 99,999 s.

4 Detector responses

The response of a Bonner Sphere is defined as the ratio of the expected Bonner Sphere
reading to the neutron fluence at the point where the center of the sphere is placed in the
absence of the sphere [7]. Assuming both an isotropic neutron field and BSS response, the
response Rd(E) (in cm2) of a Bonner Sphere to neutrons of energy E is given by

Rd(E) =
Bd
φ(E)

, (4.1)

where Bd is the reading of the sphere (in counts), φ(E) is the incident neutron fluence
(in neutrons cm−2), and the subscript d is an index identifying the Bonner Sphere. If the
Bonner Sphere is exposed to a neutron field with spectral fluence φE(E), the reading of
each sphere can be obtained by integrating (folding) its fluence response with the spectral
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fluence, that is,

Bd =

∫ ∞
0
Rd(E)φE(E) dE . (4.2)

When processing the BSS data, the integral in eq. (4.2) is approximated by a quadrature
sum:

Bd ∼=
nE∑
g=1

Rd(Eg)φE(Eg) ∆Eg (4.3)

=

nE∑
g=1

Rd,g φg , (4.4)

where φg = φE(Eg) ∆Eg is the total neutron fluence in the gth energy group of width ∆Eg,
Rd,g = Rd(Eg) is the fluence response of Bonner Sphere d to neutrons in energy group g,
and nE is the number of energy groups.

4.1 Calculation of the response matrix

The response functions of the BSS were calculated with GEANT4 simulation code [12]
version 9.4 (patch-02). The neutron data library G4NDL 3.14 with thermal-neutron cross
sections was used. In the simulation, detailed geometry and composition of the Bonner
Spheres and the 3He proportional counter tube were implemented, and fluence responses
were calculated for the eight Bonner Spheres and the two configurations with the two
lead shells. The calculations were performed for 45 logarithmic equidistant energy points
between 10 meV and 1 GeV. For each Bonner Sphere configuration and each energy point,
one million monoenergetic neutrons were generated uniformly on a disc which had the
same diameter as the sphere being considered. The neutrons were transported in the same
direction towards the sphere and the number of 3He(n, p)T reactions that occurred in the
active volume of the counter tube was recorded. The fluence response was the recorded
number divided by the neutron fluence of the plane source. The calculated fluence response
matrix of the BSS is shown in figure 4. For the Bonner Spheres without the lead shells,
the peak response energy increases with the size of the sphere. Addition of the lead shells
improves the responses to neutron energies higher than 20 MeV due to the extra (n, xn)

reactions in lead.

4.2 Verification of the response matrix

A good knowledge of the fluence response matrix of the BSS is crucial for obtaining reli-
able spectrometric results [13]. In order to validate the GEANT4 simulation, a series of
measurements with an 241Am-Be(α, n) neutron source was performed. The source produces
neutrons predominantly through the following reactions:

9Be + α→13 C∗ →12 C + n+ γ(4.4 MeV) , (4.5)

9Be(α, α′)9Be→8 Be + n . (4.6)

The ratio of the 4.4-MeV gamma-ray intensity to the neutron intensity is a characteristic
of 241Am-Be sources. The gamma emission rate of the 241Am-Be source was measured
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Figure 4. Neutron fluence response matrix of the Bonner Sphere neutron spectrometer calculated
with GEANT4.

using a calibrated high-purity germanium (HPGe) detector. The source was placed next
to the aluminum shell of the HPGe detector and measured for a live time of τ = 316268 s.
The absolute efficiencies of detecting the full-energy peak, the single-escape peak, and the
double-escape peak of the 4.4-MeV gamma rays were studied by irradiating Nγ = 1 × 107

gamma photons in a GEANT4 simulation with the same configuration as the experiment.
A linear regression of the net measured counts of the three gamma-ray peaks versus the
simulated counts gave a proportionality constant of 1.19± 0.08. Thus, the emission rate of
4.4-MeV gamma-rays of the 241Am-Be source was determined to be (1.19± 0.08)×Nγ/τ =

(37.6 ± 2.7) s−1. Liu et al. [14] measured and gave a review of the 4.4-MeV gamma-to-
neutron intensity ratio R of 241Am-Be sources. We adopted their recommended value of
R = 0.575 ± 0.028. Therefore, the neutron emission rate of the 241Am-Be source was
determined to be (37.6± 2.7)/R = (65.3± 5.6) s−1.

The 241Am-Be source was attached to the surface of each Bonner Sphere in turn and
the resulting measured count rates Bmeas are tabulated in table 1. The same set up with
the 241Am-Be source was implemented in a GEANT4 simulation. In the simulation, one
million neutrons were generated isotropically from the source following the 241Am-Be neu-
tron energy spectrum recommended by the International Organization for Standardization
(ISO) [15]. The simulated counts were scaled to the equivalent count rates BGEANT4 us-
ing the determined neutron emission rate of the 241Am-Be source, and the results are also
listed in table 1. The ratios BGEANT4/Bmeas calculated from the count rates are shown in
figure 5. On average, the simulated count rates were about 1.4% lower than the measured
count rates, but this was within the ±8.6% uncertainty of the neutron emission rate of
the 241Am-Be source. The variability (one standard deviation) of the ratios was ±4.1%,
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Table 1. Measured (Bmeas) and simulated (BGEANT4) count rates of each Bonner Sphere when
the 241Am-Be neutron source was attached to the surface. Errors were statistical uncertainties
assuming Poisson distribution of counts.

Bonner Sphere Bmeas (10−1 s−1) BGEANT4 (10−1 s−1)

5”-BS 2.95± 0.08 2.67± 0.04

6”-BS 3.12± 0.08 3.03± 0.04

7”-BS 3.03± 0.08 2.97± 0.04

8”-BS 2.60± 0.07 2.56± 0.04

9”-BS 2.13± 0.05 2.07± 0.04

10”-BS 1.66± 0.04 1.66± 0.03

11”-BS 1.30± 0.03 1.35± 0.03

12”-BS 1.01± 0.03 1.07± 0.03

6”-BS+1cm-Pb 2.58± 0.05 2.53± 0.04

6”-BS+2cm-Pb 2.28± 0.05 2.19± 0.04

0.85
0.87
0.89
0.91
0.93
0.95
0.97
0.99
1.01
1.03
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1.07
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1.11
1.13
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m
ea

s

Bonner Sphere

Figure 5. Ratios of simulated to measured count rates from table 1. The errors were propagated
from the statistical uncertainties of the count rates. The grey line shows the average ratio of 0.986.

suggesting a high level of accuracy in the GEANT4 simulation. The same level of accuracy
could possibly be assigned to the response matrix simulation.

5 Neutron detection backgrounds

5.1 Detector background

The detector background rate of the 3He proportional counter was measured by shielding the
counter tube from ambient neutrons. The counter tube was submerged in borax (molecular
formula: Na2B4O7 · 10H2O) powders with minimum thickness of 30 cm in all directions.
Simulations showed that the amount of borax used could effectively reduce the detection
of ambient neutrons by almost four orders of magnitude. The measurement set up was
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Figure 6. Detector background rates of the BSS as a function of time. The number of signals was
binned by every 6 hours. The grey line shows the average rate of (1.57± 0.04)× 10−3 s−1.

put in an underground environment with 611 meters water equivalent of overburden to
further reduce the influences of neutrons induced by cosmic-ray muons. The time series
of the detector background rates is shown in figure 6. No obvious trends of systematic
fluctuations could be observed. The average detector background rate of the BSS was
(1.57± 0.04)× 10−3 s−1.

5.2 Gamma-ray discrimination

The gamma-ray discrimination factor of the thermal-neutron detector was tested with a
60Co gamma-ray source, which emits two gamma rays at energies of 1.17 and 1.33 MeV,
respectively. The 60Co source was placed at 2 cm away from the bare counter tube, resulted
in a rate of 2.7× 105 gamma rays penetrating the 3He active volume per second. With the
60Co source in place, the count rate was increased by (3.9± 2.2)× 10−3 s−1 in one hour of
measurement. Therefore, the lower limit of the gamma-ray discrimination factor in a 60Co
gamma-ray field was determined to be 2× 107.

6 Unfolding of neutron spectra

6.1 The unfolding problem

If a neutron field is measured with a set of nD Bonner Spheres, we obtain a set of nD
readings. Each reading Bd originates from a linear combination of neutron fluence and
detector response like that in eq. (4.4). The set of these nD equations can be written in a
matrix form

B = R Φ , (6.1)

where B is the reading vector with nD components Bd (d = 1, 2, ..., nD), Φ is a vector
which contains the spectral fluence information with nE energy groups φg (g = 1, 2, ..., nE),
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and R is the nD×nE rectangular fluence response matrix. The matrix R can be seen as an
operator which transforms the information from fluence space to reading space during the
measurement process. We are interested in determining the fluence φg for all energy groups
given a number of measurement readings Bd and the fluence response matrix R of the BSS.
Since the number of energy groups is normally greater then the number of measurement
readings (nE > nD) and the response functions of the BSS are considerably overlapped,
the matrix problem is underdetermined leading to an infinite number of possible Φ which
satisfies eq. (6.1). Therefore, the goal of the unfolding process is to find a single solution Φ

which closely approximates the actual neutron energy spectrum.
Several ways by which the unfolding problem may be solved and a number of repre-

sentative unfolding codes are described in ref. [16]. Many of the unfolding codes require an
input guess spectrum which is iteratively adjusted until a solution spectrum is obtained [7].

6.2 Search space

The search space defines the range of possible neutron fluence in each energy group. Ob-
viously, the lower fluence bound Φmin is 0 and the upper bound Φmax is related to the
measured readings of the BSS. The upper bound φmax,g for any energy group g can be
constructed from the measured reading of all Bonner Spheres by assuming that all of the
fluence is concentrated in that particular energy group, that is,

φmax,g = min{ Bd
Rd,g

| ∀d ∈ [1, nD]} . (6.2)

Minimum values are taken in eq. (6.2) for a tighter search space. Although the above method
is rigorous, it is too conservative for most part of the spectrum unless it is dominated by
a handful of monoenergetic energy peaks. The search space can be reduced by assuming
that during the construction process all of the fluence is concentrated but spread out over a
handful of energy groups, instead of all concentrated in a single energy group. The reduced
upper bound ΦG

max is therefore

φGmax,g = min{ Bd∑EH(g)
m=EL(g)

Rd,m
| ∀d ∈ [1, nD]} , (6.3)

with the lower (EL) and upper (EH) bounds of the range of energy groups following

EL(g) = max{g − bG/2c , 1} , (6.4)

EH(g) = min{g + dG/2e − 1, nE} , (6.5)

where G ∈ N is the number of energy groups where the fluence is spread. Equation (6.3)
reduces to eq. (6.2) when G = 1. The choice of G depends on the neutron energy spectrum
in question. For example, large G values may greatly reduce the search space, but may
result in the clipping of some prominent energy peaks. A suitable choice of G is discussed
in section 7.1.
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6.3 Genetic algorithm spectral unfolding

Genetic algorithm was introduced by Holland [17] to mimic the process of natural evolution.
It generates solutions to optimization problems using techniques which are inspired by
natural evolution, such as inheritance, selection, mutation, and crossover. Each candidate
solution is referred to as an “individual” and all candidate solutions form a “population”.
Individuals are encoded in strings of numbers which represent the “chromosomes”. The
“worth” of each individual is characterized by its similarity with the expected solution
and is expressed by a numerical value known as “fitness”. In each generation, multiple
individuals are selected from the current population based on their fitness, and modified
by the means of mutation and recombination of chromosomes to form a new population.
The new population is used in the next iteration. The evolution process continues until a
satisfactory fitness has been reached by any individual, or the number of generations has
reached a prescribed maximum.

Freeman et al. [18] applied genetic algorithms to the Bonner Sphere neutron spectrum
unfolding problem and developed the UMRGA code. The code was shown to perform well
in the absence of a priori information such as an input guess spectrum. A multi-seed
averaging technique could be implemented to improve the spectral quality by averaging
solutions with different random seeds. It also had a monoenergetic peak reward technique
to encourage spectral peaks at particular energies assuming that the energy levels of the
peaks were known in advance. Mukherjee [19, 20] utilized a commercial genetic-algorithm
engine running on Microsoft Excel to develop the BONDI-97 unfolding code. The code
was able to reproduce the integrated neutron fluence rate and the dose-equivalent rate of
an 241Am-Be source. Recently, Wang et al. [21] developed an unfolding code using genetic
algorithms with a pseudo-parallel strategy to prevent premature convergence. They tested
two different definitions of fitness and showed that the choice of fitness functions had a
crucial effect in the unfolded spectra.

In conjunction of the development of the BSS, a spectral unfolding code NSUGA (Neu-
tron Spectrum Unfolding by Genetic Algorithm) was developed based on the ideas proposed
by Freeman et al. [18]. NSUGA, written in the C++ programming language, is implemented
with a multi-seed averaging technique and a peak reward technique similar to UMRGA, but
the peak reward is extended to include energy peaks of different spectral widths. NSUGA
uses a fitness definition based on Poisson’s statistics, which is naturally associated with
the neutron and background detection processes. Furthermore, it employs a Monte Carlo
technique to estimate the uncertainty in each energy group in the unfolded spectra. Taking
the advantages of modern multi-thread and multi-core computers, NSUGA uses parallel
processing to reduce the unfolding time. The spectral unfolding procedures of NSUGA is
illustrated in figure 7. The following subsections describe the key concepts of the building
blocks of NSUGA.

6.3.1 Encoding and decoding of solutions

Since the fluences in a neutron energy spectrum can span a few orders of magnitude, the
fluences are digitized to reduce the number of possible values while retaining the dynamic
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Figure 7. Flow chart of the spectral unfolding procedures of NSUGA.

range. The search space of each energy group is linearly partitioned into Npart = 28 = 256

discrete values between φmin,g and φGmax,g. The ith candidate fluence value, φi,g, in energy
group g can be calculated as

φi,g =

(
i− 1

Npart − 1

)(
φGmax,g − φmin,g

)
+ φmin,g , (6.6)

for i ∈ [1, Npart]. Therefore, each candidate solution in NSUGA can be defined by nE
integers and the chromosome K is defined by an array of 8-bit unsigned integers as:

K = {Kg | ∀g ∈ [1, nE ]} , (6.7)

where Kg ∈ [0, Npart − 1] determines the fluence of the gth energy group. In the case of
Φmin = 0, eq. (6.6) can be reduced to

φg =

(
Kg

Npart − 1

)
φGmax,g . (6.8)

6.3.2 Initial population

The chromosomes of the initial population are filled with random numbers ranged from 0 to
Npart−1. A fundamental issue in genetic algorithms is to decide an appropriate population
size Npop. Carroll [22, 23] recommended the following population sizing equation based on
the work presented by Goldberg et al. [24]:

Npop = O
[
nE · χk

]
, (6.9)

where χ is the cardinality of chromosomes (for binary coding, χ = 2) and k is the number
of bits in each parameter. In our case where binary coding is chosen, χk = Npart, thus

Npop = O [nE ·Npart] . (6.10)
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With the number of energy groups nE = 45 (as the same one used in the calculation of the
response matrix) and taking Npart = 28 = 256, the population size Npop = 45×256 = 11520

is used as the default value in NSUGA.

6.3.3 Fitness evaluation

Genetic algorithms search the optimum solution based on Darwin’s theory of natural se-
lection. An individual which performs well in its environment has a higher probability to
survive and pass its genetic information to the next generation. In NSUGA, every individ-
ual in the population is evaluated for its fitness at the beginning of each generation. For our
purpose of Bonner Sphere spectral unfolding, fitness is a measure of how well a candidate
solution can reproduce the measured readings of the Bonner Spheres. To determine the
fitness of an individual, the chromosome is first decoded into fluence values by eq. (6.8),
then the decoded spectral fluence is folded with the fluence response matrix to form a set
of calculated sphere readings Bcalc,d, where

Bcalc,d =

nE∑
g=1

Rd,g

(
Kg

Npart − 1

)
φGmax,g . (6.11)

The probability of observing Bd counts while expecting Bcalc,d counts follows a Poisson
distribution:

p(Bd;Bcalc,d) =
(Bcalc,d)

Bd · e−Bcalc,d

Bd!
. (6.12)

If we include the contribution of detector backgrounds during measurements, the joint
likelihood of observing a set of BSS counts B while expecting Bcalc can be written as:

L =

nD∏
d=1

[ ∞∑
c=1

p(Bd;Bcalc,d + c · Td
TBG

) · p(BBG; c)

]
, (6.13)

where BBG is the measured detector background count, and Td (TBG) is the measurement
time of Bonner Sphere d (detector background). The fitness function f is defined as the
average log-likelihood:

f = 100 +
1

nD
logL . (6.14)

The fitness increases with increasing agreement between the measured and the calculated
readings. The value of 100 is added to eliminate negative f values and to scale f so that
perfect agreement between measurements and expectations will result in a fitness of 100.
The goal of the genetic algorithm is to maximize f in a reasonable amount of time.

6.3.4 Evolution

Apart from fitness evaluation, the evolution cycle also includes processes such as parent
selection, mating, mutation, and a replacement operation.

Selections of parents are biased such that a healthier (higher fitness value) candidate
has a higher chance to be a parent. A particular technique known as binary tournament
selection [25] is used. In each tournament, a pair of individuals are selected randomly
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from the population, and the individual with higher fitness is selected to be a parent. The
tournament is repeated to find the mate. Tournament selection has a good time complexity
of O(n) [25].

Because of the tournament selection, individuals which are selected to be parents may
possess some strong genetic materials. Parents mate by mixing their genetic information to
form new individuals in the hope of producing a stronger candidate solution. The mixing
is done using a technique known as uniform crossover. The crossover process is random
and a child is produced according to nE randomly generated binary bits. For example, if
the gth random bit is 0, then the chromosome for energy group g of the child is inherited
from parent 1, otherwise it is inherited from parent 2. The processes of parent selection
and reproduction are repeated until a new population of Npop children is formed.

The children then undergo mutation which is carried out by randomly and infrequently
changing the chromosome value of one or more energy groups. Since the changes are
random, a gain in fitness after the mutation is not guaranteed and may result in worse
performances. However, mutation can explore unexplored region within the search space.
Two different types of mutation operations are defined in NSUGA: jump mutation and
creep mutation. Jump mutation is performed by randomly changing the chromosome value
of a randomly selected energy group. Jump mutation can result in a dramatic change
of value within the search space of that particular energy group. On the contrary, creep
mutation changes the chromosome value by a relatively small amount. It either increases
or decreases the chromosome value of a randomly selected energy group by one step. The
probability of jump and creep mutation of each individual in each generation is controlled
by two parameters, Pjump and Pcreep, respectively. The following settings as recommended
by Carroll [23] and adopted by Freeman et al. [18] are used throughout this study:

Pjump = 1/Npop , (6.15)

Pcreep = 2/Npop . (6.16)

After the mutation process, the children population replaces its parent population
and becomes the parent population in the next generation. In order to preserve the best
candidate solution known as the elite, which has the highest fitness among the population,
the elite solution is carried over to the next generation. This elitist strategy can ensure a
non-decreasing fitness of the elite along the evolution timeline and guarantee a convergence
of solution [26].

The whole evolution cycle is repeated until Ngen number of generations are produced.
The best solution is decoded from the elite in the last generation.

6.3.5 Incorporating a priori information

The underdetermined nature of the unfolding problems leads to an infinite number of pos-
sible solutions. Although NSUGA does not require an input guess spectrum to start with,
it can adopt some a priori information of the investigated neutron field. Incorporation of a
priori knowledge of the spectrum could possibly result in a more reliable unfolded spectrum
and could also provide some fine details in the spectrum such as monoenergetic peaks.
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A priori information about the neutron field can be derived from calculations or pre-
vious measurements. A drawback of BSS is its poor energy resolution [7, 8], thus a priori
information on energy peaks can potentially help to improve the spectral quality of the
unfolded spectrum. NSUGA considers a priori energy peaks when evaluating the fitness of
each candidate solution. Each a priori energy peak is characterized by three parameters:
peak position ρ, spectral half-width ω, and minimum peak-to-valley ratio γ. One more
attribute known as importance η is added to each a priori energy peak to quantify the
additional weighting given to these peaks in the calculation of the fitness factor. NSUGA
looks for a peak at energy group g = ρ which satisfies the criteria

φρ/φρ−ω > γ and φρ/φρ+ω > γ , (6.17)

along with the criteria of a peak in the form

φg > φg−1, ∀g ∈ (ρ− ω, ρ] and φg > φg+1,∀g ∈ [ρ, ρ+ ω) . (6.18)

A candidate solution which satisfies the above criteria is rewarded by giving it a rescaled
fitness f ′, where

f ′ = f × (1 + η/100) . (6.19)

The importance of the peak determines the amount of the reward. If a monoenergetic peak
(i.e., ω = 1) is defined, the unscaled search space (eq. (6.2)) is used for that particular
energy group. Multiple a priori peaks can be defined and rewarded separately.

6.3.6 Error estimation

Equation (6.1) represents an idealized model of the unfolding problem. In real situations,
an actual measured reading B has uncertainty and can be written as:

B = B + e , (6.20)

where e is a fluctuation term due to statistical and systematic uncertainties.
In BSS, two fluctuation components contribute to the uncertainty of the unfolded spec-

trum. The first one is the uncertainty of input quantities such as sphere readings, response
functions, and any a priori information. The second one is the ambiguity of the solution
due to the underdetermined nature of the problem [16]. NSUGA employs a Monte Carlo
technique [27] to estimate the uncertainty of the solution due to the uncertainty of sphere
readings and the ambiguity in the unfolding process.

Suppose the measurement was repeated for Niter times, we would get Niter sets of
sphere readings Bi and the corresponding unfolded spectra Φi (i ∈ [0, Niter − 1]). The
sphere readings Bi would have the same probability distribution as the uncertainty ei. If
the number Niter was large enough, the distribution of the unfolded spectra Φi should
represent the fluctuation in ei as well as the ambiguity in the unfolding process.

Multiple sets of sphere readings are simulated by a Monte Carlo process. The unfolding
process is repeated for Niter times. In each iteration, the measured readings are perturbed
randomly according to their uncertainties, and the perturbed readings are unfolded. The
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result is a set of Niter synthetic sphere readings Bi and a set of the corresponding un-
folded spectra Φi. The unfolded spectra are averaged to give the solution Φ. The fluence
uncertainty εg of energy group g can be estimated as

εg =


[

1

Niter

Niter−1∑
i=0

|φi,g − φg|

]2
+

1

4

(
φGmax,g − φmin,g

Npart − 1

)2


1/2

, (6.21)

where the first term is an estimate of statistical uncertainties and fluctuations due to the
ambiguity using mean absolute deviation, and the last term is the uncertainty due to the
partition of search space.

6.3.7 Parallelization and random seeds

The Niter times of repetition of the unfolding tasks can be executed in parallel to reduce the
processing time. The parallelization of the loop is realized by using OpenMP.2 The OpenMP
API provides a set of complier directives which can be used to transform a sequential C++
code into parallel execution. The execution of NSUGA begins with a single thread. The
initial thread reads all the required input files and performs the construction of search
space. After that, it creates a certain number of new threads. The multiple iterations of
the unfolding tasks are executed in parallel by all threads, including the initial thread and
the new threads. The parallel region ends with an implicit synchronization of all threads to
make sure that all unfolding tasks have been finished before the next step. Finally, the Niter

unfolded spectra are averaged and the spectral uncertainties are calculated. The parallel
region in the execution path is indicated by the outer dashed box in figure 7.

The stochastic processes of NSUGA rely on the generation of random numbers, or more
precisely in actual applications, pseudo-random numbers. NSUGA uses random number
generators (RNG) recommended by Matsumoto and Nishimura [29]. Since each call to a
RNG updates the internal state of the generator, separate generators have to be used in
different threads to avoid conflicts and race conditions. In fact, because of the object-
oriented implementation of NSUGA, every candidate solution is an object and has its own
RNG. The sequence of numbers generated by a RNG is initiated by a random seed. The
initial random seed si,j assigned to the jth individual in the ith iteration is

si,j = 17 + (Niter − 1)2 ×Npop + (i− 1)×Npop + (j − 1) . (6.22)

The value 17 is an arbitrarily chosen number. The number of iterations Niter is added
to the calculation such that the spectra obtained with a smaller Niter are not necessarily
a subset of the spectra obtained with a larger Niter. This may yield a better statistical
comparison between results which are obtained with different values of Niter.

2OpenMP is a portable standard for the programming of shared memory systems. A good introduction to
OpenMP and parallel programming is given by Rauber and Runger [28]. More information about OpenMP
and the standard definition can be found at: http://openmp.org/
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Figure 8. Test spectrum for the NSUGA unfolding code. The spectral shape was taken from
ref. [30].

Table 2. A priori peak information given to the NSUGA unfolding code when unfolding the test
spectrum.

Peak ρ (MeV) ω (log(MeV)) γ η

Thermal 1.8× 10−8 1 2.0 1.0
Evaporation 1.8 1 2.0 1.0
Cascade 100 0.75 2.0 1.0

7 Results

7.1 Tests of unfolding code parameters

Suitable choices of the search space grouping parameter G and the number of generations
Ngen for the NSUGA code were examined. The test spectrum as shown in figure 8 was
used because it resembled the spectrum of secondary neutrons from cosmic radiation or
outside a high-energy particle accelerator. Expected readings of the BSS were calculated
from the test spectrum and the response functions of the different Bonner Spheres. A
priori information of the thermal, evaporation, and cascade peaks as tabulated in table 2
was input to the NSUGA code.

First, the search space grouping parameter G was examined. The goal is to find a value
of G which is large enough to reduce the search space, but at the same time does not clip
any part of the target spectrum. The search spaces from G = 1 to G = 9 are visualized in
figure 9. The size of the search space could be reduced by an order of magnitude. As the
evaporation peak of the test spectrum was starting to be clipped by the search space for
G = 9, a value of G = 8 was adopted in the test.

Next, the number of generations Ngen required to yield a good enough solution was
examined. In addition to the fitness f , the goodness of the solution is also assessed by the
spectral quality Qs, which is a measure of how closely the unfolded fluence φg matches the
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Figure 9. Search spaces with grouping parameters from top to bottom for G = 1 to G = 9. The
test spectrum (bold line) is shown for comparison.

Generation
1 10 210 310

Fi
tn

es
s

80

82

84

86

88

90

92

94

96

98

100
(a)

Generation
1 10 210 310

Sp
ec

tra
l q

ua
lit

y 
(%

)

20

30

40

50

60

70

80

90

100

110

120
(b)

Figure 10. (a) Fitness and (b) spectral quality of the unfolded test spectra as functions of the
number of generations. Different lines represent results from different iterations.

actual fluence φtrue,g in each energy group [18], in the form

Qs = 100%×

[∑nE
g=1 (φg − φtrue,g)2∑nE

g=1 (φtrue,g)
2

]1/2
. (7.1)

A perfect match between the unfolded spectrum and the actual spectrum would give Qs =

0%. Figure 10 shows the fitness and the spectral quality of the unfolded spectra as functions
of Ngen, with Niter = 10 in all cases. Both fitness and spectral quality converged quickly
within 300 generations. A good match between the unfolded spectrum and the actual
spectrum could be seen in the comparison plot in figure 11.

7.2 Unfolding tests with simulated spectra

The ability of the NSUGA code was tested with a number of simulated spectra. The
simulated spectra as shown in figure 12 were constructed by combining the following basic
differential spectra, which are similar to those used in refs. [18] and [21]:
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Figure 11. Unfolded test spectrum with G = 8, Niter = 100, Ngen = 300, and a priori peak
information in table 2. The actual test spectrum (bold line) is shown for comparison.

Table 3. A priori peak information given to the NSUGA unfolding code when unfolding the
simulated spectra.

Peak ρ (MeV) ω (log(MeV)) γ η Applicable spectrum

Thermal 3× 10−8 1 5.0 1.0 3, 4
30 keV 3× 10−2 0.25 10.0 1.0 3
10 MeV 10 0.25 10.0 1.0 4

• Thermal Maxwellian spectrum,

• 1/E spectrum,

• 252Cf spontaneous fast fission spectrum, and

• monoenergetic neutron beams at 30 keV and 10 MeV, respectively.

Spectrum 1 is simply a 1/E spectrum. Spectrum 2 consists of a 252Cf spontaneous fission
spectrum and a 1/E component. Spectrum 3 contains a thermal Maxwellian spectrum,
a 1/E contribution, and a strong monoenergetic peak at 30 keV. Spectrum 4 is a combi-
nation of the thermal Maxwellian, 1/E, 252Cf spontaneous fission spectra, and a strong
monoenergetic peak at 10 MeV. Expected readings of the BSS were calculated from each
of the synthesized spectra and the response functions of the different Bonner Spheres. The
measured average detector background rate of the BSS was considered in the simulation.
The synthesized spectra were scaled such that the calculated readings maintained a signal-
to-background ratio between 10 to 100. Then, the readings were added with the detector
background. Finally, the calculated readings were randomized to simulate a statistical
fluctuation of roughly 2%.
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Figure 12. Simulated spectra for testing the NSUGA unfolding code.

A priori information of the 30-keV peak for spectrum 3 and the 10-MeV peak for spec-
trum 4 was input to the NSUGA code. The response functions of the BSS suggested that
the energy resolution in the thermal-neutron region was poor. Therefore, the information
of the thermal Maxwellian peak was also given to the code for spectra 3 and 4. Table 3
shows the parameters of the a priori information. As can be seen in figure 13, the unfolding
results were satisfactory, even without any a priori information for spectra 1 and 2. The
thermal Maxwellian spectrum and the 1/E contribution were reconstructed very well. The
energy resolution of the unfolded spectra was in general much lower than the actual spectra,
as exhibited by the 252Cf spontaneous fission spectrum and the monoenegetic peaks. This
is considered to be an intrinsic characteristic of the BSS instead of the unfolding code. Fur-
thermore, the reconstruction of the strong monoenergetic peak at 30 keV was not favorable.
This is due to the fact that the BSS is not a suitable instrument to resolve sharp energy
peaks.

In addition to the spectral quality and fitness, each unfolded spectrum is also assessed
by a parameter Qr, which is a measure of how closely it can reproduce the actual reading
Bd of each sphere [18], in the form

Qr = 100%×

[
1

nD

nD∑
d=1

(
Bcalc,d −Bd

Bd

)2
]1/2

. (7.2)

A perfect match between the calculated and the actual readings would give Qr = 0%.
However, it is more desirable to have a value of Qr which is close to the measurement
uncertainty instead of vanishingly small, because otherwise it may be a consequence of
overfitting. Table 4 shows the calculated quality parameters for the unfolded spectra. The
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Figure 13. Unfolded simulated spectra with a priori peak information in table 3. The actual
spectra (bold lines) are shown for comparison.
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Table 4. Quality parameters associated with the unfolded simulated spectra.

Spectrum Qs (%) Qr (%) f

1 26.72 2.488 97.6514
2 45.85 5.277 97.5935
3 79.76 6.699 97.7272
4 42.11 3.508 97.4682

Average 48.61 4.493 97.6101

Table 5. Integrated fluence rates of the simulated spectra.

Spectrum Unfolded (10−2 cm−2s−1) Truth (10−2 cm−2s−1) Difference (%)

1 3.78± 0.30 3.60 5.00
2 0.887± 0.033 0.795 11.6
3 1.03± 0.08 1.01 1.98
4 2.76± 0.13 2.51 9.96

Average 7.14

spectral qualities were good except spectrum 3, where its strong monoenergetic component
was considered to be a difficult problem to unfold [18]. The values of Qr showed a similar
behavior, with spectrum 1 gave the best result while spectrum 3 was the worst. The average
value of 4.493% was considered acceptable. The fitness values cannot be compared between
different problems, because they depends strongly on the uncertainty in the BSS readings.
Despite the relatively poor spectral performance, the resulting integrated fluence rate was
very close to the actual value for spectrum 3, as shown in table 5. For the other spectra,
the integrated fluence rates were consistent with the actual values within three times the
estimated uncertainties.

7.3 Unfolding the Am-Be neutron source spectrum

The NSUGA code was also tested using real measurement results of an 241Am-Be neutron
source. The measurement results shown in table 1 were unfolded with and without providing
a priori peak information (ρ = 4 MeV, ω = 0.6 log(MeV), γ = 3.0 and η = 1.0). Since the
241Am-Be source was attached to the surface of the Bonner Spheres during the measurement,
a neutron response matrix with the same configuration was calculated and was used in the
unfolding process. Figure 14 shows the unfolded spectra of the 241Am-Be source. The
NSUGA code could recover the general spectral shape of an 241Am-Be source even without
any a priori peak information, and the advantage of incorporating a priori information was
revealed as indicated by a better spectral quality.

By adding up the neutron emission rate of every energy group in the unfolded 241Am-Be
spectra, the total neutron emission rates were (59.4± 2.5) s−1 (with a priori information)
and (58.7±2.7) s−1 (without a priori information), respectively. The BSS had a calibration
uncertainty of ±8.6% due to the uncertainty in the neutron emission rate of the calibration
source. This calibration uncertainty should be added to the uncertainty of the unfolded
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Figure 14. Unfolded spectra of an 241Am-Be neutron source (a) with a priori peak information
(Qs = 27.3%) and (b) without any a priori peak information (Qs = 33.3%) . The ISO 241Am-Be
reference neutron energy spectrum [15] (bold line) is shown for comparison.

neutron emission rates. In both cases, the results were in good agreement with the value
of (65.3± 5.6) s−1 determined in section 4.2 with a completely different method.

8 Conclusion

A multi-sphere neutron spectrometer was developed by extending a commercial neutron
dosimeter. The GEANT4 simulation code used to calculate the fluence response matrix
was verified by comparing the simulated and the experimental count rates of an 241Am-Be
source. The spectrometer had a calibration uncertainty of ±8.6%, which came from the
uncertainty of the neutron emission rate of the 241Am-Be source. The detector background
rate sets the limits for low-level measurements. The detector background rate was mea-
sured to be (1.57 ± 0.04) × 10−3 s−1, suggesting that the spectrometer should be suitable
for measuring low-fluence neutron fields, such as natural neutron backgrounds at ground
level. A spectral unfolding code NSUGA utilizing genetic algorithms was developed. The
NSUGA code could reproduce the typical neutron energy spectrum of secondary neutrons
from cosmic radiation or outside a high-energy particle accelerator. The performance of
the spectrometer and the unfolding code was tested with simulations and the result was
satisfactory. Real measurement with an 241Am-Be source demonstrated the spectrometer’s
ability to reproduce the neutron energy spectrum of the source. The neutron emission
rate of the 241Am-Be source determined from the spectrometer was consistent with the
expectation.
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