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Physica D LBL~10515
Non-Linear Diffusion in Hamiltonian Systems
Exhibiting Chaotic Motion*
Henry D. 1. Abarbanel
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720
Abstract
The exact evolution equation for the angle averaged phase space
density in action-angle space is derived from the Liouville eguation
using projection operator technigues. This equation involves a correla-
tion function of the initial value of the phase space density with the
angle dependent part of the Hamiltonian and a correlation function of
the angle dependent part of the Hamiltonian and a correlation function
of the angle dependent part of the Hamiltonian with itself. FEach of
these correlation functions develops in time with angle projected dyna-
mics. We show their relation to the correlation functions which develop
in time with usual Hamiltonian dynamics. These correlation functions
are then studied in the standard model of Chirikov, and we conclude that
they behave as eﬁﬁtcos(9t+é)) in regions of irregular motion. We
conjecture that angle averaged correlation functions behave this way in
general, and we give an argument based on the mixing property of the
Hamiltonian system. Our argument goes beyond the usual mixing, so we

regard it as a quasi-mixing hypothesis. Under this hypothesis the

equation for the angle averaged phase space density becomes a diffusion
equation which incorporates much of the non-linear dynamics of Hamilton-

ian systems exhibiting chaotic motion,

*Work supported by the U. S. Department of Enerqgy, 0ffice of Fusion
Energy, under contract W-7405-ENG-48,



L. Introduction
Mechanical systems of even a few particles are known to show regions

” e

of complicated or irregular motion. Depending in detail on the
strength of the non-integrable perturbation, these regions may be quite
small or may occupy the whole of the allowed phase space. A very
attractive physical picture of the onset of choatic motion has been
developed over the years hy Chirikova1 He argues that the regularity
of motion is most clearly seen in the existence of adiabatic action
invariants, and that the overlap of resonances in the non-linear
interaction of these invariants causes the system to wander about in
phase space from one resonant region to othersg3 Once this resonance
overlap sets in, the values of the adiabatic invariants diffuse away
from any given region of phase space and we expect the distribution

function F(I,t) for the invariants I = (11,1?3beaIN) to satisfy

some sort of diffusion equation of the form

In the quasi-linear approximation diffusion equation ;uch as this
has bheen considered by'Kaufmang for particle motion in an axisymmetric
plasma, by Rosenbluth, et a?? for the diffusion of magnetic field
1ines and surely by many others.

In this paper we will employ the projection operator method of
Zwanz%g6 to investigate the validity and properties of diffusion

equations such as (1). Beginning with the Liouville equation for the



phase space density function, we project out those variables not of
interest—typically the ones varying rapidly. We arrive at an equation
much of the form of (1) with an additional term representing a
correlation of information about the system at t = 0 with information at
the Tater time, t, of interest. On the bhasis of some model numerical
calculations and on the idea of mixing we argue that such correlation
functions behave as emgtcos ot when the system motion is chaotic. So
that to exponential accuracy Equation (1) will hold. Our arqument at
this stage is a refinement of some observations by Sagdeev and
Zas1avskiis7

?) vhich appears is given hy a projected

The diffusion tensor Djk(
form of dynamics, not by the full dynamics of the problem. We derive a
relation between the full diffusion tensor and the projected diffusion

tensor for Hamiltonian systems characterized by action-angle variables.



IT. MNon-linear Diffusion

Since we wish to describe the departure of adiabatic invariants from
constancy, we will work with a time independent Hamiltonian system with
Hamiltonian given in terms of N actions Ii’ J=1,...,N, and N angles

8., J=T1,00,N
i J

>
1

HT,e) = HO(T) + H(T,0). (2)

The HO term atone would result in Ij = constant, and it is the H?

term which is responsible for chaotic motion and diffusion of the
actions. H“1 is not assumed to be small.
. e
The Liouville equation for the phase space density f(I,e,t) takes

the two forms

and S =~ LF, (4)

We want to discuss the evolution of the angle averaged phase space

density



> N >
F(I,t) = [ sszjq F(T,0,t) ()
(2w)

which defines the projection operator P. Since P is time independent,

from the Liouville equation we have

3 >
2F(1,t) = - PLF - PLG (8)
where
> > >
G(Iaest)z (1“p>{(1389t) (Q)

> >
The function G s made of all the terms of f(I,e,t) with non-trivial

angle dependence. Similarly by multiplication of (4) by (1-P) we arrive

at
%¥G = - (1-P)LF - (1-P)LG (10)
=
Since F depends on the I's alone, (repeated indices are summed over
now )
aH
1 = ,
LF = Rk F(I,t), (11)
a “a
and



N aH
s de 1y -
PLF“”(J N se )aI =0

7 + 4 13 9 - ’_%
since H](fge) is periodic in e.

We have now

3 g e
3§F(19t) = - PLG({I,e,t)
and
3G _
T LF - (1-P)LG
This Tast equation has the solution
~(1-P)Lt b (1-P)Lz
G(t) = e '° G(0) - dz e '~ LF(t-2)
0
which Teads to
2 F(T,t) = - pLe”(IPIEG(T .5, 0)

3t

0

t .
+ [ g pL e TP R (T ),

(15)

(16)

Consider the first term of this equation. Using the properties of L

expressed in (3) we find



N aH o
(1WP)LtG(Y999txO) B %T“‘P sgl'em(le)LtG(fggstxo) a (17)
J J

Next we look at the second term. Using (3) and (5) we cast this into

the form
. t N ) >
3 3 - 19
T [ Djk(Igi) F(I,t=T)dt (18)

with

-+ ahH aH
1 —(1-P)Lr 1)
e Doz s
Djk(I”T) (ae. 26 (19)
J k
=
Note that Djk(IgT) is an operator of multiplication by I and
derivatives with respect to I. We have separated out Djk in this
>
fashion since the projection operator has no effect on the function of I
e
alone upon which Djk(lgT) acts.
So altogether we arrive at
> aH >
R, = A P(m-—i e (LPILt ¢ F 2 o)
at al, 38 .,
J J
{20)



The diffusion tensor Djk arises from the prciacted Liouville operator
(1-P)L and so its dynamics are a bit unfamiliar. We shall call D the

projected diffusion tensor. The dynamics of (1-P)L can be seen by its

role in the evolution of initial action-angle variables Ijgej into

> I
Ij(I,aet) and ej(l,e5t) via

i, aH
a’?{; = (]mP)LI] L = '?%(TSgat) ~ (2‘})
[=] i I=]
=0 8=6
and
%{é = (1-P)Le| _ = ;;l (ieit)i - (22)
J I=] i I=1
85=6 9:=6

The motion of f and e differs from the usual motion due to L in that
the term due to HO - the regular motion - is absent from the e time
development. So the projected motion is missing the regular, integrable
piece most familiar to us and may be expected to take an even more
irregular form than the usual motion. the projected motion is a kind of
"generalized interaction representation” since the influence of Ho is
absent.

Under the influence of the usual dynamics we would encounter the

direct diffusion tensor

aH aH
s Tt) = P( Lot m-la) (23)



This is also a correlation function between 3}—{1/39!r< and aHl/aej
separated by a time t. [f the system is chaotic or irregular, we would
expect information at t = 0 to he rapidly forgotten by the system on a
time scale similar to the time it takes for nearby orbits in phase space
to separate exponentially. The direct diffusion tensor may fall very
rapidly in t in chaotic motion; its behavior is easily amenable to
numerical investigation.

Now we will find the relation between D., and aA. . Introduce

Jk Jk
the Laplace transforms
e ® -5t r /
D. (I,s) = dt e 7D, (1,t), (24)
jk 0 ik
and
T i -st (7 9
b (1) = JO ot e St a, (1,0). (25)
We have
> aHl 1 aH?
Djk(l’s) =P 20, sH{I-PYL 2o, )’ (26)
and
N aH] 1 sHl
= RO R SR 2
Ajk<z’s) - P(agj s+ ae, : (27)

-9 -



Using the operator identity

1 1, 1, 1
STI-PIC = S0 s+ “s*(1-P)L

we find

In the second term we use

4

3 3 o
PLW(T, Bo.(e. W) * Rl (1.W
W(l,e) P(aej(eJ ) aIJ(TJ )>

oH

Ewwﬂ<_~1. )
- P al,{ 20, W
a1 | 20,

for any W periodic in ej'ss and find

it

N N aH} 1 2 aHl 1 aH
Dy (1,8) = a5 (1,8) - P 6, SH 0T " Fo, SFIFIL 3ey

or

- 10 -



Note that

aH
11 .
and P<§§T'§> = 0. Since

J

Lo(T,s) = - o= g? (T,s),
a a
we arrive at the operator equation
5 > 1 > 3 >
D\}k(lss) = Ajk(zss) - “g' A]H( 9§) BIHBIQ Dﬂ,k(lss)
92 -] kY
+ N s

or alaaic s(a )a;>ch(I”S) = S8

(34)

This result relates the direct diffusion tensor, about which we might

chance some guesses or make some approximations; e.g. the quasi-linear

. s /‘ . n 3 1 -
approximation;  to the projected diffusion tensor which we need for

>
the evolution of the projected phase space density F(I,t) in Egquation

(20).

> A

From (37) we infer that for s = o, D .
ab ah

find from (26) and (27) that

- 11 -

fore directly we



aH, aH.\_ 2 aH. aH
> > 1M B, ) i
D, (I,s) - s (I,s) ~ -MP( P +0(1/s7) (38)
ab 3 \ee, ve ol sl “\oe a6,

This result is understood physically by remembering that the Laplace
transform variable s » » corresponds to t » 0 in real time. For very
short times projected and direct dynamics should correspond. Indeed,
(38) shows they differ by O(tz)e

This suggests we introduce yet another diffusion tensor

5

>
= = {
ﬂjk(zas) - D\jk(t{sS) Ajk\

which we call the anomalous diffusion tensor. It satisfies

To make any progress in learning about D or n we need some ideas

about 4; we turn now to that.

- 12 -



[11, The Direct Diffusion Tensor

We begin our study of the direct diffusion tensor by considering the

one dimension system

H(I,e):HO(I) +V sin e (41)

Such systems are always integrable and, thus, regular so they will show
no diffusion of actions. However, it does provide an example of what
not to expect for chaotic systems. It is straightforward to integrate

the equations of motion for e(t) from (41)

o(t) =0 + w(I)t, o(l) = ETQ (42)
and then to evaluate
(2T 4o aH Lt oH
- ae g -Ltl af 4
A(1,t) = 5 g © = (43)
2 5
= Vocos e cos(e-w(l)t), (14)
0
V2
= ﬁm-ccs(w(I)t)c (45)

So, in the case of regular motion we can anticipate that the correlation

function (or direct diffusion tensor)

- 13 -



will exhibit pure oscillatory behavior. This is a reflection of the
regularity of the systems motion -~ namely the motion in quasi-periodic
and "smooth." Orbits which are nearby at some time separate slowly from
each other and do not lose information rapidly about having been close.
Next we turn to the other extreme; namely, we consider a system
which is Eﬂéiﬁgng The definition of such systems is in terms of
corretation functions of two bounded phase functions f{I'}) and ¢(T)
defined on phase space T'. The houndedness of such functions is a
mathematical requirement of no distinct physical importance, but since
we will soon consider unbounded functions it is useful to be clear that
proofs of mixing entail bounded, or more precisely square integrable
functions on phase space. The correlation function of f and g is given

by

where T is 2N dimensional phase space and () is defined as an integral

over the energy shell:

- 14 -



The system is said to be mixing, if for all bounded f and g,

C, (¢ 48
fq )|t}»wX) (48)

{The need for choosing square integrable phase space functions is seen

in (46), since we must look at Cff(t) in determining whether a system

is mixing. Cff(O) involves (if(T)|2> and this must be finite.}

Mixing systems are certainly irreqular in the usual sense of the idea.
To get an idea how fast such correlation functions decay to zero

for [t]| > » we arque in the following heuristic manner. Introduce, in

a formal fashion, the eigenfunctions WX(T) and eigenvalues » of the

Liouville operator

Ly, (T) = v, () (49)

the A are pure imaginary since L is anti-hermitean. Choose f and g

so (f) ={(g) =0, and expand f(T) and g(T) as

f(r) =7 f v(0), (50)
A
and
() = Jy, v (T) (51)
A

- 15 ~



qu(t) is now given by

This sum, or integral along the imaginary axis, is governed for large t
by the singularities in the complex a-plane of the guantity f*kgke

The singularity whith the smallest real part will give the dominant
behavior for large t. For systems showing regular motion Cfg
not decay for large t but show multiple periodicity. So for such

(t) will

regular systems f*xgx must have all of its singularity structure on
the imaginary axis. When the motion hecomes irregular, these
singularities will move off into the r-plane and Tie at some position
A= o * Q. Suppose the dominant singularity is a pole at this point,

then

Cfg(t) ~ @ “cos(Qt +¢); o >0, t >0 (53)

where ¢ is a phase reflecting the residue at the pole. For t » -« the

xr-plane must contain a "conjugate" pole at » = —¢' 10 ' so L. » 0

in that 1imit too. Mixing systems thus may be expected to exhibit
exponential decay for correlation functions. This seems rather natural
actually, since such systems also have the property that nearby points
Q

in phase space diverge exponentilly from each other at later times.’

It is tempting to guess that the rate of divergence is e”t with the

-~ 16 -~



same o as in (53). In some very simple examples that is indeed the
1,10
case.

We assumed a pole in the a-plane in order to arrive at (53). A
branch point at x = ¢ + iQ would yield additional powers of time
multiplied by (53).

Gur actual problem in the case of the correlation function

.«%. .

Aah(Ist) involves an averaging process over part of phase space only,

namely the angle variables. Let us look at C,. (t) ahove with

fg
(f) = (g> = 0 and choose for f the unbounded function

while g is left unspecified except for (g) = 0. Now Cf is
dNe > - ‘”Lt S >
Cegl V) = [ £ o0 020 0(T ,3)
g (2m)"
where
B .
N }; (m("i@ 2 al(de) aw_>
=1\ 2 09y LR
Clearly C,. (t) now depends on 3‘as well as time. The use nf the

fg

unbounded function f takes us out of the usual realm of mixing and leads

us to the gquasi-mixing hypothesis: angle averaged functions Tike

- 17 =



N > NN
A (?ﬂt) :( de aH(l,e) -Lt aH(I,e)
* ) (2 7 9
behave as
> > N R
~ o Wteosat + 6(1)), o(1) > 0,  (55)

when the system motion is irreqular. This is a stronger requirement
.}
than mixing alone and requires mixing to be local in I space and to

result from the averaging over only some of the chaotically varying

phase space co-ordinates.
y%
On the basis of this hypothesis I propose to approximate ﬁah(zst)

.

for regions of irregular motion by

and



3
Many choices for v(I,t) clearly satisfy these requirements, but an
=
>

=3 S d . 1
especially simple one is vw(I,t) = Q(I)t + ¢(I)(1-e n(‘{)t)e Another

3
choice for parametrizing Aab(lat)9 indeed one we will use below is

cos{Q{I)t + ﬁ(?))/cos é(?), (59)

"~ which clearly supposes d £ (2n*1)w/2 n = 0, #1,...

None of these specific parametrizations has a fundamentel
significance; each expresses the asymptotic behavior e”gtcos(ﬂt = )
suggested before.

A1l of these statements refer to t > 0. For t < 0, we expect the
corvelation functions to behave as eﬁ.t cos{Q't +¢'), ¢ > 0. If the
correlation functions involved integrals over all of phase space rather
than just over angular variables, we could demonstrate a connection
between the t > 0 and t < 0 behavior of the correlation function using
the anti-hermitiean property of L. Here we do not integrate over action
variables and have found no general relation between positive t and

ke

negative t behavior of a_ (I,t).

ab
Evidence for this behavior of the direct correlation function comes
from several sources. First there is the work by M011 on the onset of
stochasticity in Hamiltonian systems. Mo examined the pole positions of
the Laplace transform of correlation functions for three Hamiltonians
including the well-known Henon-Heiles example. At the parameter values
associated with the onset of chaotic behavior in the surface of section

plot, the pole positions moved into the complex plane in such a way as

to produce behavior like (56).



Secondly, we present some calculations done on correlation functions
‘ , e | .
in the standard mapping of Chirikov. fhis is an area preserving
mapping which takes variables Ing o, each lying between 0 and 1 into

Iﬂ+13 0 41 in the same interval:

k oo o
Liwp = b, *opsin 2o

(mod 1)

&1 = 8y T L

The mapping can be derived from a physical system which is a pendulum
subject to delta function kicks at unit intervals. In and @n are
the values of momentum and angle after the nth kick.

We have evaluated the correlation function

1
C(NSIO) = 2 Jodeos1n 2W6N(103@O)S1ﬂ Eweog C(O,IO): 1, (62)

for various values of 10 for 0 < N < 10 for values of the mapping
parameter k which are known to give significant regions of stochastic
behavior. Irregular motion in the standard mapping sets in for

LR

and exhibits itself by the filling of large portions of
the I,e plane by a single trajectory.
As an example we show in Figure 1 the trajectory Ihgan for n =

0919256595104 for the standard mapping with k = 3.5 and IO = 0.4357

and 9, = 0.078695. These initial values were essentially arbitrary

- 20 -



except that previous experience with the mapping indicated that they tay
outside the large islands seen in Figure 1. Excluding the Targe islands
we would expect 28.25 points/square in Figure 1 if the 104 points are
uniformly distributed., A survey of the squares reveals a mean number of
26,1 points with <(Nﬂ(N))2)/<N>2’§ 0.038 which is very close to
(N)'=1 = 0,027. This seems to indicate that a uniform distribution with
normal fluctuations is what we are seeing in Figure 2.
We calculated C(NSIO) for ZO = 0.4357 and k = 3.5 and this is
shown in Figure 2 for 0 < N < 10. A1l e  integrated over here lie in
the apparently chaotic region. The points can be fit rather well by
C(N,I,) = e”NUcos(QN + ¢)/cos ¢ (63)
with o = 0.25, @~ 1,578, and ¢ = -0.44. The comparison between (63)
and C(NQIO) is given in Figure 3. In Figure 4 the same correlation
function at k = 3.5 is shown for IO = 0,4, 0.5, and 0.55 to give an
indication of the sensitivity of 103 The variation of C(Ngio) with
respect to k for fixed IO is shown in Figure 5 for IO = 0.5 and k =
3.5, 4.0, 4.5, and 5.0. In Figure 6 we show C(NSIO) for two closely
spaced values of k, k = 5.00 and k = 5.03, for Io = 0,5,
There is a sublty in making these calculations. Since the function
eN(IoseO) becomes very rapidly varying, many integration points
are needed 1in the calculation of C(NSIO)E For the range of N shown
and the value of k chosen, we found that for > 2000 integration points

we reproduced the same C(N,IO) while for much fewer, the computed

values differed as they "settled" into the answer shown. Clearly one



must get to the stage where there are at least several integration
points between each wiggle of the integrand. As k increases the
integrand becomes more and more wiggly, we expect it to be increasingly
difficult to numerically evaluate C(NSIO)g Indeed at k = 5, some 7000
integration points were needed to get a stable answer over the same
range of N. The behavior observed by Sm‘ithl3 that the r.m.s. value of
C(NQIO) decreases as (integration Doints)mllz is consistent with
this view of the way errors will disappear as we settle in on the
reproducible answer since we are slowly getting between the rapid
variations.

A further complication is connected with the growth of errors in any
calculation with the standard mapping for sizeable k and a Targe number

of steps. Errors grow according to the tangent mapping

#

0+ AIn + (k cos ngﬂ)Aeﬂ (64)

846,41 = 88, + Ain+1 (65)

. n n
and for sizeable k should hehave as Aenf¥ k 88 s Alnﬁik AIO,

This behavior has been verified by Chirikov1 and discussed

v ey " 1 PR | . PO N s o
Oy Lreene, For FArae enouan i, the errors arow S0 farce, even ror a

small number of steps, that any numerical calculation of @N(Ioggo)

C(NSIO) must be examined very carefully.

- 27 -



IV. Projected Diffusion Tensor

Now we turn to the eguation which determines the projected diffusion

T
tensor Dab( ,S)

32 -1 T
LN - 2
<aI a1 s(a )ab>Dab( s) = SOac (37)
a b
Our replacement of the operator form of Aab(?ss), Equation (23), hy
the ansatz of Equation (56) which is an ordinary function, not an
operator, means that this equation for Dah(?as) is no longer an
operator equation.
We know that for s > o,
S -
D p(1s8) =2, (I,s) (66)

and have discussed that above. (See before Equation (38)). For s > 0,

. -1,7 . . 14
assuming Aah(zas) is not singular,

»2 Ee
al ol Dbc(igs = 0) = 0. (67)
a b
> >

So Dab(lgs = 0) is a polynomial in I of first order. The general

solution to (67) is

>

I, =0) = A * 1B+ 1C, (68)

0 ab h h7a

ab(

- 723 -



with Aab’ Bhg and Ca fixed tensors of the indicated rank which are

N >
independent of 1.

: >
We can acquire some handle on the bhehavior of Da (I,s) from the

b
> -
properties of Aab(Igs)s Suppose first that, in some sense, Aah(Iss)
is large and A;;Dac is small compared to 1. Then the second
term on the left hand side of (37) can be dropped with respect to 56

9

and

2 >
J D, (I,s) = sé (69)
al_al, “bhett? T o7ract "
a“ b
The solution to this is
- + =
Dah(is) = A, * 1B * L0 ey LI (70)

where Aab’ Bbs and Ca have the same meaning as hefore, and N is

a - h%
the dimension of 1 space.

Secondly, if Aab(fgs) is independent of ?3 then an acceptable and

consistent solution for D is

). (71)

Thirdly, if Aah(Ias) is onty weakly dependent on I, then we write (as

in Equation (39))

- 24 -



- 7N

= A
ah ah ah

and use (40) to solve for n the anomalous diffusion tensor, in a

ab?

perturbative fashion.

o > . -1
Finally, suppose A, (I,s) becomes small. Since (a )

h
will become large, we have again Da

= A except near s = 0,

b ab

It seems clear that whenever neither D nor A have rapid variation in

-3
I that Dab *‘Ajh and the singularities of U in the s plane will be
al

slightly displaced from those of A.

.,}
We can introduce the eigenfunctions ng)(l) and eigenvalues
r(s) of the operator
32 1
Yan F a0 a1, RIS (72)
and then write
. ; w(*)mﬁég)( J(1ydr
= ! 2
Dab(lss> h S) as) (73)

From this it is clear that the zeroes of a(s) are what determine the

singularity structure in the s-plane for Dah(fss)s a(s) may be taken

from the variational principle



. N > . T N M 7 74
Alx, 8] = fd I Xa<1)0ab®b(x)/[d L, (06, (1) e
Varying A[X,8] with respect to x, or ¢  yields
sALX0] . ! (0,9, - 1o (75)
ax, (1) Jd Xa?,
BAFX;éj‘: N1 {bchxb - AXC} (76)
8¢C(I) [d IXaéa
where
2 “
~ 3"~ T, -1
b = 5T s T (77)
c b

and T means transpose. In our ansatz, (56), B, is symmetric so if
the variations of A with respect to X and & are set to zero, we have

that A is the eigenvalue of Oa we seek.

b

Henceforth in this paper, we will assume L is almost independent

b

= A . Small corrections lie in .
b ab a Nab

-3
Now we turn our attention back to the evolution equation for F(I,t),

of f‘and D
a

Equation (20), the angle averaged phase space distribution function. We

must first consider the correlation function

. aH ;
yk(f;t) = P<%~l e“(1“P)LtG(f;é;t=o)>g (78)

- 72h -



One can derive a connection hetween this projected correlation function
of initial information, G(f,ggtaO)gand the perturbation Hamiltonian H1

and the direct correlation

i

3H N
c (T,0) : P(-«:i et (1,0, = oge (79)

Using the methods of Section II we find

so the eigenvalues of 0 Equation (72), play a key role here as

ah®

well, since in terms of wék)(I) we have

- 27 -



The behavior of hoth D1h and Ty is thus governed hy the zeroes
asl 1S

of a(s). Let us take them to he simple zeroes at s = S, =
- £ 1 &) o) -
o, * 19 Then each of Da and Yy behave as {exp Got)

b

Cog(th + ée) which is similar to the behavior of A o and

b
QO we can find directly from a{s) or the variational principle for

it. For éo we need some knowledge of the residue at the pole in s at

S .
0

Our equation for F(Tgﬁ) reads in the present notation

t
T SN k¢ 4 TN 7
5 P Sy () 2] oy (ogrden. @)

Our suppositions to this point have led us to the same exponential decay
in time for each of i and Dah° The decay has a time scale
agl. For t »> ogl, the first term in (82) is exponentially

L, , -1
negligible. In the second term only 'rf % contributes to the

integral, and we may extend the integration to T »ewith exponentially

small error. We now arrive at

>

® >
3 = o 3 -
3 rln - i | 0t FE e, (83)

.,.%
which is our desired diffusion equation for F(I,t). The non-linear

5
dynamics lies in Da (I,t) for which we have been making the ansatz

b

N ~o (1)t cos(a (1)t + 6_(T))
cos éO(I) Bab
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-+
noting Dab(f9 t = 0) = Aah(l,t = Q). (85)

B

> >
To this stage we have said nothing about the size of H,(I,e)-the
non-integrahle piece of the underlying Hamiltonian. If, on the scale of
H03 W, is large, we must use the full Equation (83) to determine
N
F(L,t).

. . ? oF
2 1 [ nel F NT=) AE e

If II1 is small, then Dab is O(H1> and from (83) we see ot

is O(H?)c Under the integral in (83) we may write

(86)

and, since H} is small, so is

1oaF

- 1.
oy ot

N
Fay

2 (Lt = 2 1) 2 k(T )
at (1,t) = EX Dab(z) ?T; (1,t) (88)
3 JOO -3
W = | Qc
with Dab(l) = Oct Dab(lgt)9 (89)

which is the form of diffusion equation encountered in the guasi-linear

. . £
approximation.
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We call (83) the evolution equation for non-linear diffusion. The

e
equation is of course linear in F(I,t), but through D it incorporates

the non-linearity of the inderlying dynamical problem governed hy H(fsg)a
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V. Conclusions

In this paper we have studied the evolution equation for the angle

averaged phase space density

F(I,t) = |—=— f(l,0,t)

- f{_r Ne >

R
where f(I,6,t) = the density in action-angle space - satisfies the usual

Liouville equation. F(f;t) satisfies an exact equation, Egquation (20),
which we derived using the projection operator technique of Zwanziga6
By studying the connection hetween the diffusion tensor Dab entering
the evolution equation for F(f;t) and the direct diffusion tensor
Aab(f;t) (Equations (23) and (37)) we arqued that for times large

compared to the exponential decay of correlation functions of the

general form

the equation of evolution for F(?;t) becomes the usual diffusion
equation to exponential accuracy with the diffusion fensor governed hy
angle projected dvnamics, see Equations (21) and (22).

The exponential fall off in time of CAB(f;t) which we tested

nunerically in the so-called standard mapping of Chirikov153 we callad



the quasi-mixing hypothesis. More specifically we suggested writing

3
C.oll,t) as

AB(

(o) = o ost

AB

>
This quasi-mixing can only be true in the regions of I, & space where

irregular or chaotic motion is occurring. Outside those regions we
generally anticipate o = 0 and the correlation functions will show
oscillations characteristic of regular motion.

Although we did not explore any applications of our diffusion
formalism we have two in mind which will be pursued in future articles:
(1) the diffusion away from adiabatically constant values of the
adiabatic invariants of a particle in a magnetically confined plasma
when one tries to heat the plasma with electrostatic waves@}3 The
formulation of this problem by Smith and Kaufman15 is precisely
adapted to the techniques presented here. (2) The braiding or
destruction of magnetic field Hnes5 in the presence of small
perturbations is also amenable to the analysis given here. With various
physical mechanisms in mind for the perturbations of the lines, we can
proceed to use our evolution equation for F(?Qt) to estimate the
transport of energy from the confining regions.

A Tast point: we have talked in this paper about the behavior of
F(f}t) for times long compared to the decay time of angle averaged
correlation functions and only in the region of chaotic motion. Since
the evolution equation for F(?9t) is exact, our ansatz for CAB(T,t)
may prove useful for all ? and t recalling s(?} = 0 in domains of

regular motion,
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Figure Captions

Figure 1. 104 points along one trajectory for the standard mapping,
Equations (60) and (61) of the text, for k = 3.5. The
initial point was IO = 0,4357, 8, = 0605986959

Figure 2. The correlation function C(NaIO) = 2 J; deogin ZneN(Icseo)
sin QWSO for the standard mapping with k = 3.5, IO =
0.4357. 2000 integration points were used. The use of
more integration points reproduces the values shown.

Figure 3, Comparison between C(N,IO) in Figure 2 and
eV cos(Ng + ¢)/cos 6.

Figure 4, C(Naio) for k = 3.5 and IO = 0.4, 0.5, and 0.55, 2000
integration points were used in each case,

Figure 5. C{Nglo) for IO = 0.5 and k = 3.5, 4.0, 4.5, and 5.0,
7000 integration points were used in each case.

Figure 6. C(Naig) for IO = 0.5 and k = 5.00 and k = 5.03. 7000

integration points were used in each case.
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