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ABSTRACT 10	
Some specialty crops, such as strawberries and table grapes, are harvested by large crews of pickers who 11	
spend significant amounts of time carrying empty and full (with the harvested crop) trays. A step toward 12	
increasing harvest automation for such crops is to deploy harvest-aid robots that transport the empty and 13	
full trays, thus increasing harvest efficiency by reducing pickers’ non-productive walking times. To that 14	
end, this work addresses human-robot collaboration modeling in a harvesting context. First, a modeling 15	
framework for all-manual and robot-aided harvesting was developed, which can be used for off-line 16	
simulation by system designers, but also as a representation model for robot control, during real-time 17	
operation. To serve both functions, the framework utilizes hybrid systems to model picker and robot 18	
activities. Finite state machines model discrete operating states, and difference equations describe motion 19	
and mass transfer within each discrete state. To capture the variability in human behavior and 20	
performance during harvesting, the human activity model utilizes stochastic parameters (e.g., picking 21	
time, walking speed) that can be estimated by measurements during harvesting. The stochastic model 22	
does not require direct yield measurements, which are not available for most specialty crops. Second, a 23	
stochastic simulator was developed based on the developed model. For a given field and crew size, the 24	
simulator samples all stochastic parameters to generate many instances of the harvest operation, and 25	
estimates metrics such as pickers’ non-productive time and harvest operation efficiency. Part II of this 26	
work presents the calibration and evaluation of the simulator based on field data, and a case study that 27	
evaluates the effect of various robot scheduling algorithms on harvest efficiency.  28	
 29	
Keyword: Specialty crops harvest mechanization; human-robot collaboration; stochastic modelling; 30	
harvest simulation. 31	
 32	

1 INTRODUCTION 33	
Mechanizing the hand harvesting of fresh market crops constitutes one of the biggest challenges to the 34	
sustainability of the fruit and vegetable industries. Depending on the commodity, labor for manual 35	
harvesting can contribute up to 60% of the yearly operating costs per acre (e.g. Bolda, Tourte, Murdock & 36	
Sumner, 2016). Additionally, recent studies indicate that the farm labor supply cannot keep up with 37	
demand in many parts of the world as a result of socioeconomic, structural and political factors 38	
(Bloomberg News, 2018; Z. Guan, Wu, Roka, & Whidden, 2015). Despite recent progress on shake-catch 39	
approaches for mechanical harvesting of apples (He et al., 2017) and cherries (Zhou et al., 2016), fruit 40	
quality and collection efficiency are still not adequate to justify adoption of these technologies for 41	
harvesting tree fruits. Shake-catch is also not applicable to the harvest of high-value crops like fresh 42	
strawberries, raspberries, blackberries, table grapes and tomatoes. These crops are very frail and must be 43	
harvested selectively, based on ripeness criteria, without inflicting damage. Robotic harvester prototypes 44	



 

 

are being developed and field-tested for high-volume, high-value crops such as apples (Silwal et al., 45	
2017), kiwifruit (Williams et al., 2019), sweet pepper (Bac et al., 2017) and strawberries (Xiong, Ge, & 46	
Grimstad, 2019). However, the developed robots have not successfully replaced yet the judgment, 47	
dexterity and speed of experienced pickers at a competing cost; the challenges of achieving high fruit 48	
picking efficiency and throughput remain still largely unsolved (Bac, Henten, Hemming, & Edan, 2014; 49	
Silwal et al., 2017; Williams et al., 2019). 50	
 51	
The manual harvesting operations for crops like strawberries, raspberries, blackberries, table grapes and 52	
tomatoes share a common feature: pickers spend significant amounts of (non-productive) time walking, to 53	
carry full and empty containers for the crops they pick. More specifically, during harvesting, each picker 54	
selects and picks the desired crops and places them in a small container (e.g., a basket, tray, bag or 55	
wheelbarrow). Once the container is full, the picker walks to a loading-inspection station at the edge of 56	
the field, waits in a queue, delivers the container with the harvested crops for inspection and 57	
compensation purposes, takes an empty container and walks back to resume picking. As a short or 58	
medium-term alternative to complete mechanization, teams of harvest-aiding robots are being developed 59	
that supply pickers with empty trays and transport full trays to collection stations (Vougioukas, 60	
Spanomitros, & Slaughter, 2012). Such robots can reduce walking, which often takes place on slippery 61	
ground, and consequently increase picker and harvest operation efficiency and safety.  62	
 63	

  
Figure 1. a) Workers picking and transporting trays; b) robot prototype transporting a tray. Photos taken 
in a strawberry field in Salinas, CA, on August 1, 2017. 

It is important to note that manual harvesting with robot-based transportation and the associated robot 64	
scheduling problem, resemble agricultural field operations, where several machines (Primary Units - PUs) 65	
perform the main field task (e.g., spraying, fertilizing, harvesting), and other machines (Service Units - 66	
SUs) provide in-field logistics support, by transporting working materials (crop, seeds, chemicals) 67	
between PUs and other units stationed outside the field (DD Bochtis & Sørensen, 2010). For example, 68	
pickers can be considered as grain harvesters (PUs), personal crop containers (tray, bag) as harvester 69	
grain tanks, and robots as transport trucks (SUs); of course, manual harvesting rates vary among workers 70	
in non-deterministic ways and are very difficult to measure in the field. Simulation models have been 71	
developed to study field machine operations. Arjona, Bueno, and Salazar (2001) used a discrete event 72	
simulation model to study the processes of harvesting and transporting sugarcane. De Toro and Hansson 73	
(2004) simulated in-field machinery performance for a series of years using a discrete events approach. 74	
Dionysis Bochtis, Vougioukas, Ampatzidis, and Tsatsarelis (2007) developed a hierarchical modeling 75	
framework for field operations planning of a fleet of machines. S. Guan, Nakamura, Shikanai, and 76	
Okazaki (2008) introduced hybrid modelling to simulate farm work planning and applied it to sugarcane 77	
farming. Hameed, Bochtis, Sørensen, and Vougioukas (2012) developed an object-oriented simulation 78	
model to evaluate machinery activities that involve transport and application of inputs (e.g., seeds, 79	



 

 

fertilizers, chemicals) in fields. Zhou, Jensen, Bochtis, and Sørensen (2015) modeled the sequential 80	
operations of rotation farming (e.g., planting, spraying and harvesting) to predict the performance of 81	
potato production operations.  82	
 83	
Although machine field activity modelling has been pursued by many researchers, the modelling of 84	
manual harvesting has not received as much attention. Researchers have shown that simulation models 85	
can improve greenhouse operations (Van Henten, Bac, Hemming, & Edan, 2013). Bechar, Yosef, 86	
Netanyahu, and Edan (2007) modelled manual tomato trellising and harvesting operations in greenhouses 87	
using an event-based approach; simulated changes in work practices yielded up to 32% improvements. 88	
Van't Ooster, Bontsema, van Henten, and Hemming (2012) developed a discrete event simulator to model 89	
worker actions in a rose cultivation system inside greenhouses. They used the model to determine the best 90	
system settings at given rose yield levels and increase labor efficiency. The model was also used for static 91	
cut rose cultivation system (van't Ooster, Bontsema, van Henten, & Hemming, 2015) and sweet pepper 92	
harvesting operations (Elkoby, van’t Ooster, & Edan, 2014). All the work cited above addressed protected 93	
cultivation environments – not open fields- and yield distribution was assumed to be a known input to the 94	
models, because measurements of yield were possible using greenhouse worker tracking systems (e.g., 95	
rose stems per m2). Unfortunately, yield distributions are not available for open-field, manually harvested 96	
specialty crops. Also, the above works modeled only manual labor and did not incorporate any machine 97	
operations, or human-machine interactions. A few works have modeled workers actions during open-field 98	
harvest operations. Ampatzidis, Vougioukas, Whiting, and Zhang (2014) adopted a queueing model from 99	
operations research to describe the fruit picking process in sweet cherry harvest and the bin loading 100	
process in table grape harvest. Mesabbah, Mahfouz, Ragab, and Arisha (2016) developed a hybrid model, 101	
consisting of discrete event simulation and agent-based modeling to study the effect of varying 102	
performance of human harvesters in the productivity and operational cost of vineyard harvesting 103	
operations. Again, the researches cited above modelled manual activities only, and did not incorporate 104	
machine operations or collaboration between pickers and machines. Also, all cited modeling approaches 105	
could be used only for simulation and were not suitable as task models for robot control purposes, in the 106	
context of human-robot collaboration. As identified by Sheridan (2016) and others, humans need a mental 107	
model of the robot’s capabilities and vice versa—also robots need to understand human actions and 108	
reactions.  109	
 110	
Hence, to the best of our knowledge, models that describe the collaboration of robots and humans during 111	
open-field specialty crop harvesting without explicit knowledge of yield spatial distribution, and that can 112	
be used for simulation and robot control purposes have not been studied yet. Motivated by the above 113	
mentioned challenges and limitations, the major contribution of this work is the development of a novel 114	
approach that utilizes hybrid automata with stochastic parameters to model the all-manual and robot-aided 115	
harvest and crop-transport operations for specialty crops that involve picking and walking. The developed 116	
models are suitable for simulation and robot control, and are based on parameters which can be estimated 117	
from measurements that can be made in real harvesting conditions; knowledge of crop yield maps (which 118	
are actually not available for manually harvested crops) and human picking rates (which are stochastic, 119	
time varying and extremely difficult to measure) are not required. Additionally, based on the presented 120	
methodology, a simulator was developed to predict picking efficiencies of a picking crew in harvesting 121	
operations for specialty crops and to evaluate various scheduling and dispatching policies for robot teams 122	
of different sizes serving the picking crew. 123	
 124	
The rest of this paper is organized as follows: Section 2 describes the manual and robot-aided harvesting 125	
processes for specialty crops that require picking and transport. In Section 3 and 4, a methodology is 126	
presented that uses multiple interacting stochastic hybrid automata to model manual picking and robot 127	
crop transport operations, and their interactions. Then the implementation of a simulator is presented that 128	
is based on the developed methodology. Lastly, the work in concluded, in Section 5, by discussing how 129	
useful the developed model can be for in harvest-aid robotics. 130	



 

 

2 MANUAL HARVESTING WITHOUT AND WITH CROP-131	

TRANSPORTING ROBOTS  132	
In California and other parts of the world, soft-fruit crops such as strawberries, raspberries, table grapes 133	
and fresh tomatoes are typically planted in equally spaced parallel rows with furrows/aisles between them 134	
that accommodate human and machine traffic (Figure 2). 135	

The field headlands are reserved for collection/packing/inspection stations and traffic of people, forklifts 136	
and trucks involved in the handling and transportation of the harvested crop. Strawberry harvesting will 137	
be used as an example in the rest of this paper; however, the methods and approaches are applicable for 138	
any manually harvested crops that require picking and transport. 139	
The size of the picking crew ranges from 15-20 pickers (for smaller fields) to 35-40 pickers (for larger 140	
fields). Furrows can be quite long (up to 100 m). Picking starts from one corner of a field block, and 141	
advances towards the other corner. Each picker enters a furrow and starts picking strawberries selectively 142	
from the plants on the raised beds on each side of that furrow. Plucked strawberries are placed in a carton 143	
container called a ‘tray’ or ‘flat’; fresh-market strawberries are actually placed in small plastic containers 144	
(aka clamshells) inside the tray. The tray lies on a small ‘picking cart’ that is essentially a wheelbarrow 145	
made of wire (Figure 3).  146	

 147	
Figure 3. A picker is picking and placing strawberry into a tray, carried by a cart, while in a furrow. Photo taken in 148	
a strawberry field in Salinas, CA, on August 1, 2017. 149	

At any time during picking, the worker may pause due to fatigue or the need for personal time. The picker 150	
moves forward and continues picking until the tray is full. This may happen inside the furrow the picker 151	
has been working in, or, if all fruit reachable from that furrow has been picked, in another furrow. In the 152	
former case, the picker leaves the cart where (s)he stopped picking, and walks to carry the tray to the 153	
collection station. In the latter case, the picker exits the current furrow, walks along the field’s headland, 154	

 
Figure 2. Layout of a typical raised-bed strawberry field (left) and vineyard (right) (AFP, 2013). 



 

 

carrying the cart with them, and enters the next empty furrow (no one else has used it) to harvest the next 155	
non-harvested bed. Once a tray is full it must be transported to the collection station. To reduce transport 156	
time, each block is split into two sections which also mark the center of furrows; so pickers typically start 157	
picking from the beginning of a section (the center of each furrow) and advance towards the headland 158	
where the collection station is located. After one section of the field is harvested,  the collection station is 159	
moved to the opposite headland and the other section is harvested. Additionally, in some cases (when a 160	
field is very wide) there may be more than one collection stations dispersed along the headland that are 161	
manned – and become active – progressively as the crew sweeps the field from left to right, or vice versa. 162	
If crop-transport automation is not available, pickers must walk and bring their filled trays to a collection 163	
station, wait for quality inspection, register their tray for compensation, and get an empty tray to return to 164	
the field and resume picking (Figure 4). 165	

 166	

 167	
Figure 4. Pickers wait in a queue at a collection station to register their tray. 168	

In the proposed robot-aided harvesting scheme, a team of identical small robots brings empty trays to 169	
pickers and transports their full trays to the collection station. Robot are small, so they can carry only one 170	
tray, and tray loading and unloading is done manually. At any given time, given a set of tray-transport 171	
requests and a number of idle robots at the collection station, a scheduling/dispatching module schedules 172	
and dispatches robots to pickers. A dispatched robot departs from the collection station and carries an 173	
empty tray to the designated picker; when the robot arrives, the picker exchanges the filled tray with the 174	
empty tray and resumes picking. The robot carries the filled tray back to the collection station where 175	
someone takes the full tray and loads an empty one. Given that the number of robots will be small, this 176	
work assumes that robots don’t wait in a queue at the collection station. The job cycle continues until all 177	
trays have been harvested and transported. Hence, non-productive walking time (traveling to a collection 178	
station) and waiting in a queue is eliminated. However, since robots are shared, pickers may have to wait 179	
for a robot to arrive.  180	
 181	

3 MODELLING CHALLENGES AND OVERVIEW OF PROPOSED 182	

APPROACH 183	
To reduce cost, each robot should serve multiple pickers. That is, the robot team is a shared resource; so 184	
the robot deployment will introduce a waiting time, twait, for each transported container. This is non-185	
productive time, ∆𝑡!", during which a picker waits for a robot to arrive, after (s)he has filled their 186	
personal container. Clearly, reducing non-productive walking will cause ∆𝑡!" to decrease, but the waiting 187	



 

 

time will cause it to increase. Therefore, proper/optimal scheduling of robot teams, in real-time, is 188	
essential to minimize waiting times and equivalently maximize labor savings and efficiency, in a cost-189	
effective manner.  190	
 191	
Computing the distributions of waiting times and efficiencies of different robot scheduling algorithms, 192	
and comparing them with all-manual harvesting, for different harvest scenarios (field size, crop load, 193	
picking crew size and characteristics) and robot teams (size, operating speeds, and capacities) is 194	
extremely important for designing cost-effective robotic crop-transport systems. Such prediction requires 195	
validated models and simulators of all-manual and coupled human-robot operations. More specifically, 196	
the location and time when each picker fills up each of their container and the time it takes to transport it 197	
manually and return must be computed, along with the waiting time a picker waits for a robot to arrive, in 198	
robot-aided operation. Therefore, the goals of this paper are: to present a modelling framework for the 199	
coupled operations of manual harvesting and robot-aided crop transport, for specialty crops whose harvest 200	
requires workers to pick and deliver; and to present a stochastic simulator based on the proposed model 201	
that can be used to predict picking efficiencies for a crew of pickers, and evaluate various scheduling 202	
strategies for teams of harvest-aid transport robots. 203	
 204	
At the very core of the manual harvesting model lies the calculation of the position of a picker and the 205	
amount of crop harvested by the picker as functions of time. A picker’s current path, c, depends on what 206	
(s)he is doing, i.e., an operating state/mode: when picking, the path is a straight line inside a furrow; when 207	
delivering a tray it is typically a straight line segment from the exit point of the current furrow to the 208	
collection station; when moving to the next unharvested row, it is the line segment between the current 209	
furrow’s exit and the next furrow’s entry point. Hence, it is assumed that all travel paths are known in 210	
advance. A picker’s position d(t) on a predefined path c, is the line integral of the picker’s instantaneous 211	
moving speed, v(t) (m s-1), along this path:  212	

𝑑(𝑡) = 	' 𝑣(𝜏)𝑑𝜏
!!"#!

!!
 (1) 

The moving speed depends on the individual picker and on what (s)he is doing (e.g., picking, carrying a 213	
tray, waiting); it will also typically vary with time, and depend on other random factors. From the above, 214	
it becomes clear that a harvesting model must have a discrete aspect, which represents different 215	
‘operating states’, and a continuous aspect, for worker position integration. It would also not be practical 216	
to develop models that rely on knowledge of workers’ moving speed profiles along paths to calculate 217	
worker positions. 218	
 219	
The picking operating state is of particular importance. When picking fruit from plants along a straight-220	
line path c inside a furrow, the moving speed depends strongly on the yield, y(c) (kg m-1), along the path, 221	
and on the worker picking rate, p(t), (kg s-1). High yields result in slow moving speeds because the picker 222	
must collect a lot of fruit at the same or nearby locations, whereas high picking rates result in high 223	
moving speeds, since all harvestable fruit at the same or nearby locations is picked quickly. If yield 224	
distribution and picking rate were known, moving speed could be calculated as: 225	

𝑣(𝑡) = 	
𝑝(𝑡)

𝑦(𝑐(𝑡)) (2) 

However, yield distributions are not available for specialty crops – even from historical data - because 226	
they are harvested manually, and harvest monitors that measure yield are not available. Also, picking 227	
rates vary among workers (e.g., due to age, physical ability); are time-varying (e.g., due to fatigue, 228	
psychological condition); stochastic (e.g., sudden pauses for personal reasons) and very difficult to 229	
measure in the field. Calculating the weight of harvested fruit in the tray at time t, W(t), also requires that 230	
the picking rate is known:  231	



 

 

𝑊(𝑡) = 	' 𝑝(𝜏)𝑑𝜏
!

$
 (3) 

Furthermore, knowing the amount of time required for a tray to fill up,	∆𝑡"!, is necessary for modelling 232	
purposes, because it specifies the time and location of the next tray transport request (upper limit of 233	
integration in equation (3)). If a worker starts filling up an empty tray at some position inside a furrow at 234	
time 0, one could compute the time ∆𝑡"! by solving the equation shown above for w(∆𝑡"!) = Wfull-Wempty, 235	
i.e., when the tray becomes full (since the tray’s capacity and empty weight are known). Unfortunately, 236	
the picking rate is not known and therefore ∆𝑡"! cannot be calculated. 237	
 238	
For all the above reasons, manual harvesting models that assume that the yield and picking rate 239	
parameters are available are not practical. To address this problem, the following approach is adopted in 240	
this work.  241	
1) Hybrid automata are used to model the discrete and continuous activities taking place during manual 242	
and robot-aided harvesting. 243	
2) The picker mean moving speeds during all different harvest activities, the time needed to fill-up trays 244	
∆𝑡"!, and the idle time spent waiting at the collection station, ∆𝑡#$, are modelled as stochastic parameters 245	
with distributions that are approximated from frequency histograms identified from measurements of 246	
these parameters during the corresponding field harvest activities.  247	
3) Monte-Carlo simulation is used to sample the corresponding stochastic parameters for each picker and 248	
for each harvested and delivered tray, and to estimate the distributions of waiting times twait, and non-249	
productive times ∆𝑡!", so that efficiency metrics can be predicted.    250	
 251	
Since the picking time ∆𝑡"! is known (from measurements) the mean picking rate that is consistent with 252	
equation (3) is computed from the mean value theorem and used in equation (3) to simulate fruit picking, 253	
assuming constant picking rate. The mean moving speed 𝑣̅ during picking is modelled directly, without 254	
the need to know picking rates and yields. Again, because of the mean value theorem, 𝑣̅ and ∆𝑡"! can be 255	
used in equation (1) to update worker position and compute the location along the furrow d(∆𝑡"!)=	𝑣	&∆𝑡"! 256	
where the tray will fill-up. Next, the developed modelling framework will be presented in detail. 257	
 258	

4 METHODOLOGY 259	

4.1 WORKSPACE MODELLING 260	
In a field with F furrows, each furrow is given a unique number/index, 𝑓 (1 ≤ 𝑓 ≤ 𝐹). The point in the 261	
middle of furrow f - along its length - is the ‘split-point’ (x%(𝑓), y%(𝑓)). The line through the split-points 262	
of all furrows divides the field block into two sections, which are harvested in sequence. Each section has 263	
an index, denoted as 𝑠𝑒𝑐, that is equal to one or zero for ‘upper’ or ‘lower’ block section, respectively. 264	
The end-point of a furrow, f, in section, sec, is represented by coordinates  x"(𝑓, 𝑠𝑒𝑐), y"(𝑓, 𝑠𝑒𝑐), and 265	
represents the border between the furrow and the headland: pickers and robots enter and exit the furrow 266	
via the end-point. The point inside a furrow where a picker stops picking because the tray filled up (and 267	
from where the picker will resume harvesting) is denoted as x&(𝑓, 𝑠𝑒𝑐), y&(𝑓, 𝑠𝑒𝑐). For brevity, the 268	
dependence on (f, sec) will not be shown in the rest of the text, except where necessary. Finally, the 269	
position of the collection station is denoted as (x'%, y'%). All the above points are used as nodes in a graph 270	
that models field coverage as graph traversal (DD Bochtis, Vougioukas, & Griepentrog, 2009; 271	
Seyyedhasani & Dvorak, 2017). 272	
 273	

4.2 MODELLING OF MANUAL AND ROBOT-AIDED HARVESTING 274	
Discrete-time hybrid systems/automata are adopted as a unified approach to model the activities, motions 275	
and interactions of all agents - human pickers and robots - involved in harvesting. Finite State Machines 276	



 

 

(FSMs) are used to model the discrete operating states/modes of the agents and the transitions between 277	
states, whereas difference equations describe motion and mass (crop) transfer inside each operating state. 278	
Hybrid automata were originally proposed as an approach to the control of complex motion control 279	
systems and robots (Brocket, 1993; Huber & Grupen, 1996), because of their ability to implement 280	
reactive control (continuous domain) in a task-dependent fashion (discrete domain). It is also known that 281	
complex robotic “behavioral procedures” (Arkin, 1998)  can be modeled formally using hybrid automata 282	
(Egersted, 2000). Discrete-time dynamic systems offer a powerful and flexible approach that has been 283	
used for more than 60 years to describe and analyze the dynamics of human–machine systems, when a 284	
human operator acts as manual controller (Rouse and Gopher, 1977). Hybrid automata have been 285	
proposed to model more complex human behavior in the context of dynamically coupled man-machine 286	
cooperative systems such as power-assist mechanisms (Okuda et al., 2007).  In this work, hybrid 287	
automata were used to model both human and robotic “behaviors” during harvest. There are, of course, 288	
other ways to model/program behaviors (e.g., arbitrating or fusing independent reactive control actions or 289	
rules (Arkin, 1998)). However, in the context of harvesting, picker “behavior” and interaction with robots 290	
via tray exchange depends on yield and other factors, such as picker physical and psychological state, 291	
random work interruption for personal time. Hybrid automata enable the modeling of human pickers’ 292	
actions using stochastic parameters and variables (e.g., walking speed, time to fill a tray) that can be 293	
measured in the field, so that the model and simulator can be calibrated and validated. Furthermore, 294	
hybrid automata models can be used for simulation - off-line - and for robot control, online. 295	
 296	
At any discrete time k, each agent α (𝑎 ∈ {𝑝, 𝑟} for picker and robot) involved in the harvesting process is 297	
in a discrete operating mode/state 𝑠(# . The agent has also a continuous state,	𝑿𝒂,𝒌 = (x(,, , y(,, ,𝑊(,, , 𝑇(,,) 298	
with known initial conditions 𝑿𝒂,𝟎. The continuous state variables are: the agent’s position coordinates x, 299	
y in the world frame; the weight W of the agent’s tray, and the elapsed time T inside the current state 300	
𝑠(# .	In state 𝑠(#  the continuous state is governed by discrete state-dependent difference equations of the 301	
form: 302	
 303	

 x𝑎,𝑘+1 = x𝑎,𝑘 + ∆𝑡 ∙ 𝑉𝑠𝑎𝑖 𝑐𝑜𝑠(𝜃),  (4) 

 y𝑎,𝑘+1 = y𝑎,𝑘 + ∆𝑡 ∙ 𝑉𝑠𝑎𝑖 𝑠𝑖𝑛(𝜃),  (5) 

 W𝑎,𝑘+1 = W𝑘 + ∆𝑡 ∙ 𝑝𝑠𝑎𝑖 ,  (6) 

 𝑇𝑎,𝑘+1 = 	 𝑇𝑎,𝑘 + ∆𝑡.  (7) 

𝑉%!" is the agent’s moving speed, θ is the direction of motion, 𝑝%!" 	is the agent’s picking rate, and ∆𝑡 is a 304	
discrete time step; all quantities with a subscript 𝑠(# depend on the operating state. The initial conditions 305	
are 𝐗(,. = @x%!" ,., y%!" ,.,W%!" ,., 𝑡B.	 In this work, the agents are assumed to have single-integrator dynamics 306	
for position (Eqs. 4 and 5) and zero-order dynamics for speed V and direction θ (they can change 307	
instantaneously). Such simplified modeling of dynamics is common for planning and analyses of teams of 308	
agents (Gazi et al., 2015). Furthermore, during manual harvesting in long rows (like our scenarios), the 309	
large majority of motions are straight-line motions along furrows – and fewer motions in headlands - at 310	
constant speeds. Therefore, changes in speed and direction take place only at the (short-lasting) transitions 311	
when an agent crosses furrow and headland. Therefore, any differences in the simulated tray transport 312	
times from the simplified dynamics are not expected to be significant. At the next time step the agent may 313	
remain in 𝑠(#  or transition to another discrete state 𝑠(

/; the transition is denoted as (𝑿(,, , 𝑠(# , 𝑠(
/). State 314	

transitions are either deterministic or stochastic. Next, models are presented for the operations of a single 315	
picker, a group of pickers, a group of independent robots, and collaborating pickers and robots. 316	
 317	



 

 

4.2.1 Single Picker Manual Picking Model  318	
Finite State Machine for picker operating modes 319	
The activities of a picker during manual harvesting can be grouped in nine discrete operating states 320	
(Table 1). These states are: s0# ∈ {START, IDLE-IN-QUEUE, WALK-EMPTY-TRAY-HEADLAND, 321	
WALK-EMPTY-TRAY-FURROW, PICKING, WALK-TO-NEXT-FURROW, SETUP, TRANSP-322	
FULL-TRAY-FURROW, TRANSP-FULL-TRAY-HEADLAND, STOP}. 323	
 324	
Table 1. States defined to represent a picker’s actions during manual harvesting. 325	

𝑺𝒑 State Action 

𝒔𝒑𝟎 START A picker with an empty tray in hand starts harvesting. 

𝒔𝒑𝟏 IDLE-IN-QUEUE A picker waits in a line at the collection station to deliver her/his 
full tray, and receive an empty tray. 

𝒔𝒑𝟐 WALK-EMPTY-TRAY-HEADLAND A picker walks in the headland - toward a furrow - carrying an 
empty tray, to continue harvesting. 

𝒔𝒑𝟑 WALK-EMPTY-TRAY-FURROW 
A picker with an empty tray walks inside a furrow toward its split-
point to either harvest the furrow for the first time or continue 
harvesting in it. 

𝒔𝒑𝟒 PICKING A picker is picking inside a furrow, with direction from its split-
point toward the headland. 

𝒔𝒑𝟓 WALK-PARTLY-FULL-TRAY- 
HEADLAND 

After finishing a bed, if the tray is still not full, the picker walks in 
the headland toward an empty furrow (no one has used it) to harvest 
the next non-harvested bed.  

𝒔𝒑𝟔 WALK-PARTLY-FULL-TRAY-
FURROW 

A picker with a partially full tray walks inside an empty furrow – 
until its split-point is reached – to continue harvesting from an 
unharvested bed. 

𝒔𝒑𝟕 TRANSP-FULL-TRAY-FURROW A picker walks inside a furrow toward the headland to transport the 
full tray to the collection station. 

𝒔𝒑𝟖 TRANSP-FULL-TRAY-HEADLAND A picker walks in headland to transport the full tray to the 
collection station. 

𝒔𝒑𝟗 STOP A picker stops picking after delivering the last tray. 

 326	
The states and possible transitions are shown in Figure 5. For brevity, same-state transitions are not 327	
shown, as all the states continuously transition to themselves until a transition condition to another state is 328	
satisfied.  329	
 330	



 

 

  331	

Figure 5. State diagram of a picker’s operating states/modes (𝑠67 ) during manual strawberry harvesting. 332	

START 333	
In state 𝑠0., the picker with an empty tray in hand starts the harvesting operation. The state initial 334	
conditions are 𝐗0,. = Dx'%, y'%,W"1023 , 0F, where (x'%, y'%) is the position of the collection station, and 335	
W"1023 is the weight of an empty tray. The transition “Start of harvest” takes place immediately, i.e., no 336	
integration is performed. 337	
 338	
IDLE-IN-QUEUE 339	
In state 𝑠04, the picker waits in the queue at the collection station, delivers the full tray and gets an empty 340	
tray. The picker stays in this state for ∆𝑡#$ 	(s). The pdf of ∆𝑡#$ is approximated from a frequency 341	
histogram identified from measurements. The initial condition for the continuous states is 𝐗0,. =342	
Dx'%, y'%,W!566 , tF, where W!566 is the weight of a full tray (including the empty tray’s weight). The fact 343	
that the picker leaves with an empty tray is modeled by using a ‘picking rate’ 𝑝%#$ = (𝑊"1023 −344	
𝑊!566)/∆𝑡#$., The picker moving speed is 𝑉%#$ = 0. As soon as 𝑇0,, − 𝑇0,. ≥ ∆𝑡#$, if there are still 345	
unharvested beds the “Ready to pick next tray” transition, 𝑠04 to 𝑠07, takes place; otherwise, the “End of 346	
harvest” transition to the “STOP’ state 𝑠08 takes place. 347	
 348	
WALK-EMPTY-TRAY-HEADLAND 349	
In state 𝑠07, the picker walks in the headland, from the collection station toward the ‘end-point’ of a 350	
furrow. This furrow is the closest un-occupied furrow that has not been traversed yet for harvesting (see 351	
section 4.2.2 for the furrow selection process), or the furrow the picker was already working in. The travel 352	
angle 𝜃 is defined by the straight line connecting the collection station and the target furrow’s end-point 353	
x" , y", and corresponds to a direction away from the collection station.  The state initial conditions are: 354	
𝐗0,. = [x'%, y'%,𝑊!566 , 𝑡]  . The picker walking speed 𝑉%#% = 𝑉9, a random variable whose pdf is 355	
approximated from a frequency histogram identified from measurements, and the picking rate 𝑝%#% = 0. 356	
The “Start of furrow” transition, 𝑠07 to 𝑠0:, takes place when a picker reaches the end-point of the furrow. 357	
 358	
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WALK-EMPTY-TRAY-FURROW 359	
In state 𝑠0:, a picker with an empty tray walks inside a furrow toward its middle to either harvest it for the 360	
first time or continue harvesting in it. The initial conditions are 𝐗0,. = [x" , y" ,𝑊"1023 , 𝑡]. The picker’s 361	
walking speed is 𝑉%#& = 𝑉9 and the travel angle 𝜃 is the heading of the furrow with direction toward its 362	
split-point (x%, y%). The picking rate is 𝑝%#& = 0. The  transition “Endpoint of un-harvested bed” from 𝑠0: 363	
to 𝑠0; (picking state) takes place as soon as the picker reaches the split-point (if the furrow is entered for 364	
the first time) or the location in the furrow where the previous tray had been filled, i.e., the boundary 365	
between harvested and un-harvested crop (x& , y&).  366	
 367	
PICKING 368	
In state 𝑠0;, the picker picks inside a furrow, with direction from its split-point toward the headland. If this 369	
furrow was entered for the first time the initial coordinates are  the furrow’s split-point (x%, y%), and if the 370	
previous state was 𝑠0: (carrying an empty tray), then the initial weight is W𝑠𝑝4,0 = 𝑊𝑒𝑚𝑝𝑡𝑦; otherwise, the 371	
previous state was 𝑠0C (carrying a partially full tray), and the initial weight is the weight of partially full 372	
tray, W𝑠𝑝4,0 = 𝑊𝑝𝑎𝑟𝑡𝑖𝑎𝑙. If the picker was picking in this furrow before, the initial position is (x& , y&) and 373	
corresponds to the point where the previous tray had filled up, and W𝑠𝑝4,0 = 𝑊𝑒𝑚𝑝𝑡𝑦. The picker walking 374	
speed is 𝑉%#) = 𝑉H, a random variable whose pdf is approximated by a frequency histogram identified 375	
from measurements during picking from a furrow. The travel angle 𝜃 is the heading of the furrow with 376	
direction toward the headland. The process of filling one tray lasts ∆𝑡"! seconds. This time interval is a 377	
random variable (Anjom et al., 2018) whose pdf is approximated by a frequency histogram identified 378	
from measurements. The picking rate is 𝑝%#) = (𝑊!566 −𝑊"1023)/∆𝑡"!. If the time spent picking (𝑇0,, −379	
𝑡)	exceeds ∆𝑡"! before the picker reaches the end-point of the furrow, the transition “Tray full” takes 380	
place from 𝑠0; to 𝑠0I, and the picker begins transporting the full tray. However, if the end of the furrow is 381	
reached before ∆𝑡"! is exceeded, the “End of furrow” transition occurs from 𝑠0; to 𝑠0J, and the picker 382	
walks to the next empty furrow to continue picking and filling the same tray.   383	

 384	
WALK-PARTLY-FULL-TRAY-TO-NEXT-FURROW 385	
After harvesting a bed, if the tray is partly full, the picker enters state 𝑠0J, where (s)he walks in the 386	
headland toward the closest un-occupied furrow that has not been used yet. During walking, the picker 387	
carries the partly full tray and the picking cart. The initial conditions are 𝐗0,. = [x!" , y!" ,𝑊0(K2#(6 , t]. 388	
The picker walking speed is 𝑉%#* = 𝑉L, a random variable whose pdf is approximated by the frequency 389	
histogram identified from measurements. The travel direction 𝜃 is defined from (x"(𝑓, 𝑠𝑒𝑐), y"(𝑓, 𝑠𝑒𝑐)) 390	
of the current furrow, f, to the end-point of the next furrow, f’, (x"(𝑓′, 𝑠𝑒𝑐), y"(𝑓′, 𝑠𝑒𝑐)); the picking rate 391	
is 𝑝%#* = 0. The “Start of furrow” transition, 𝑠0J to 𝑠0C, occurs when a picker reaches (x"(𝑓′, 𝑠𝑒𝑐),392	
y"(𝑓′, 𝑠𝑒𝑐)). 393	
 394	
WALK-PARTLY-FULL-TRAY-FURROW 395	
In state	𝑠0C, a picker carrying a partly-full tray walks in a furrow toward – and until - its split-point. The 396	
initial condition for the continuous states is 𝐗0,. = [(x"(𝑓′, 𝑠𝑒𝑐), y"(𝑓′, 𝑠𝑒𝑐)),W0(K2#(6 , t].  The picker 397	
walking speed is	𝑉%#* = 𝑉L and the travel angle 𝜃 is the heading of the furrow with direction toward the 398	
headland. The picking rate is 𝑝%#+ = 0. The transition from 𝑠0C to 𝑠0; occurs once the picker reaches the 399	
furrow’s split-point (x%, y%). 400	
 401	
TRANSP-FULL-TRAY-FURROW 402	



 

 

In state 𝑠0M the picker walks inside the furrow toward the collection station to deliver the full tray. The 403	
state initial conditions are 𝐗0,. = [x& , y& ,W!566 , t]. The walking speed is 𝑉%#+ = 𝑉9 and the travel angle 𝜃 404	
is the heading of the furrow with direction toward the headland. The picking rate is 𝑝%#, = 0. The “End of 405	
furrow” transition, 𝑠0M to 𝑠0I, occurs when the picker reaches the furrow’s end-point (x" , y"). 406	
 407	
TRANSP-FULL-TRAY-HEADLAND 408	
In state 𝑠0I, the picker walks in headland to transport the full tray to the collection station. The state initial 409	
conditions are 𝐗0,. = [x" , y" 	,W!566 , t]. The walking speed is 𝑉%#- = 𝑉9, and the angle 𝜃 is the travel 410	
direction in the headland. The picking rate is 𝑝%#- = 0. The “Collection station” transition 𝑠0I to 𝑠04, occurs 411	
when the picker arrives at the collection station, at the point (x'%, y'%). 412	
 413	
STOP 414	
In state 𝑠08, the picker stops harvesting, after having delivered the last tray to the collection station. The 415	
state initial conditions are 𝐗0,. = [x'%, y'%	,0, t] and the time clock stops. This may happen before a lunch 416	
break, at the end of the day, or for other reasons. 417	
 418	
4.2.2 Multi-Picker Crew Operation Model 419	
Harvest crews consist of large numbers of pickers (15-30). Pickers harvest independently of each other; 420	
however, each furrow is typically traversed/occupied by only one picker. When harvest begins, each 421	
picker selects the closest furrow to that is unoccupied as the first furrow to work in; let its index be f(1).  422	
When the picker finishes harvesting from furrow f(1), (s)he moves to the next closest unoccupied furrow 423	
that corresponds to an unharvested bed (the index is f(2)). This process continues (f(3), f(4)…), until the 424	
entire field section is harvested; then, the whole crew transitions to the other section of the field. Through 425	
this process, a picker’s choice of the next bed to harvest – and the corresponding furrow to walk in – 426	
restricts the selection of furrows by other pickers. The simulator models this interaction (i.e., coordination 427	
among the crew) by implementing for each picker the furrow transition pattern described above, and 428	
ensuring that a furrow visited by a picker is not available for another picker.  429	
There are, however, a few exceptions to the typical traversal pattern: 1) if a tray becomes full while only a 430	
small length of the bed remains unharvested, a picker may harvest the remaining distance by overfilling 431	
the clamshells in the tray; 2) when a tray is almost full at the end of a bed/furrow, a picker may pick some 432	
strawberries from neighboring beds; and 3) if the tray is more than half-full when a picker enters a new 433	
furrow, the picker may choose to start harvesting from the entry point of the furrow rather than walking to 434	
its center first and then start picking. Including these exceptions in the model is possible, albeit at the cost 435	
of increased complexity. However, estimating their statistics is very difficult, as they don’t happen often 436	
and depend on picker random/subjective decisions, habits, fatigue. Extensive observation of pickers 437	
confirmed that these exceptions are sporadic and as such would not affect the calculation of picking 438	
efficiency. Hence, they were not modeled in the developed system. 439	
 440	
4.2.4 Integrated Human-Robot Harvesting Model 441	
During human-robot collaborative harvesting, the pickers don’t walk to the collection station to deliver 442	
full trays; they do so only once, for their last tray of the day. The operation of the transport-robots 443	
introduces two new picker states (Table 2). The state diagram of pickers and robots carrying trays is 444	
shown in Figure 6. Pairs of robot and picker state transitions that are mutually dependent have underlined 445	
text and same color. 446	
 447	
Table 2. New picker states introduced for collaboration with crop-transport robots. 448	

𝑺𝒑 State Action 



 

 

𝒔𝒑𝟏𝟎 WAITING-FOR-ROBOT A picker with a full tray waits (idle) for a robot to arrive. 

𝒔𝒑𝟏𝟏 TRAY-LOADING A picker takes the empty tray brought by the robot and places a full 
tray on the robot. 

 449	
WAITING-FOR-ROBOT 450	
In state 𝑠04., the picker has filled a tray and waits for a robot to arrive. The initial conditions are 𝐗0,. =451	
Dx!& , y!& ,W!566 , tF. The picking rate 𝑝%#$. and picker moving speed 𝑉%#$. are zero. The “Robot arrived” 452	
transition, 𝑠04. to 𝑠044, takes place when a robot arrives, i.e., the robot’s “Picker location” condition (and 453	
transition) becomes true. Obviously, if the robot is already there, the picker exits this state immediately. 454	
 455	
TRAY-LOADING 456	
In state 𝑠044, the picker takes the empty tray brought by the robot and places a full tray on the robot. The 457	
initial conditions are 𝐗0,. = Dx& , y& ,W!566 , tF. The picking rate 𝑝%#$. and picker moving speed 𝑉%#$. are 458	
zero. The duration of this state is assumed constant and equal to some ‘handling time’ ∆𝑡N. Tray handling 459	
is modeled with a picking rate 𝑝%/& = (𝑊!566 −𝑊"1023)/∆𝑡N, which results in switching from a full to an 460	
empty tray (WK,, = 𝑊!566) when the state is exited. The “Empty tray from robot” transition, 𝑠044 to 𝑠0;, 461	
takes place once 𝑇0,, ≥ 𝑡 + ∆𝑡N. 462	

 463	
Figure 6. State diagram of picker states (𝑠67 ) and transport robot states (𝑠87) during human-robot collaborative 464	
harvesting, where robots carry empty and full trays between pickers and the collection station.   465	

As with picker actions, the operations of a crop-transport robot can be grouped in discrete operational 466	
states (Table 3): sK# ∈ {START, IDLE, TRANSP-EMPTY-TRAY-HEADLAND, TRANSP-EMPTY-467	
TRAY-FURROW, TRAY-LOADING, TRANSP-FULL-TRAY-FURROW, TRANSP-FULL-TRAY-468	
HEADLAND, STOP}.  469	
 470	
Table 3. States defined to represent robot actions during the tray transportation 471	

𝑺𝒓 State Action 



 

 

𝒔𝒓𝟎 START A robot at the collection station starts operation with no tray on it. 

𝐬𝒓𝟏 IDLE Robot remains idle until dispatched to a picker. 

𝐬𝒓𝟐 TRANSP-EMPTY-
TRAY-HEADLAND 

Robot travels in the headland - carrying an empty tray - toward the end-
point of the furrow where the service request originated. 

𝐬𝒓𝟑 TRANSP-EMPTY-
TRAY-FURROW 

Robot travels inside a furrow - carrying an empty tray - toward the location 
where the transport request originated.  

𝐬𝒓𝟒 WAITING-FOR-PICKER The robot waits until the picker fills her/his tray. 

𝐬𝒓𝟓 TRAY-LOADING The robot is still while the picker exchanges the empty tray with a full tray. 

𝐬𝒓𝟔 TRANSP-FULL-TRAY-
FURROW 

Robot travels inside a furrow - carrying a full tray - toward the collection 
station. 

𝐬𝒓𝟕 TRANSP-FULL-TRAY-
HEADLAND 

Robot travels in the headland - carrying a full tray - toward the collection 
station. 

𝒔𝒓𝟖 STOP The robot at the collection station stops its harvest-aid operation after 
transporting the last tray. 

 472	
A robot’s operating modes are described next: 473	
START 474	
In state 𝑠K., the robot is at the collection station with an empty tray on it, and starts its operation. The 475	
initial conditions are 𝐗0,. = Dx'%, y'%,W"1023 , 0F.  The transition “Start of harvest” takes place 476	
immediately. 477	
 478	
IDLE 479	
In state 𝑠K4, the robot remains idle (waits) at the collection station. If this state is entered for the first time 480	
from the START state, the initial tray weight is W#O#2 = W"1023; otherwise,  W#O#2 = W!566. The initial 481	
conditions are 𝐗K,. = [x'%, y'%,W#O#2 , t]. The picking speed is 𝑝%/$ = (𝑊"1023 −𝑊#O#2)/∆t, and its 482	
moving speed is zero.  If there are still requests for tray transportation the “Dispatch robot” transition, 𝑠K4 483	
to 𝑠K7 is initiated by the scheduling/dispatching module; otherwise, the “End of harvest” transition to the 484	
“STOP’ state 𝑠KI takes place. 485	
 486	
TRANSP-EMPTY-TRAY-HEADLAND 487	
In state 𝑠K7, the robot travels in the headland - carrying an empty tray – toward the end-point of the next 488	
furrow, (x" , y"), which is specified by some scheduling algorithm. The initial conditions are 𝐗K,. =489	
[x'%, y'%,W"1023 , t]. The robot speed is constant and pre-set at 𝑉%/% = 𝑉K; 𝜃 is defined by the collection 490	
station and furrow end-point locations, with direction toward the furrow. The picking rate is zero. The 491	
“Start of furrow” transition, 𝑠K7 to 𝑠K:, takes place when the robot reaches the end-point of the furrow 492	
(x" , y"). 493	
 494	
TRANSP-EMPTY-TRAY-FURROW 495	
In state 𝑠K:, the robot travels inside a furrow - carrying an empty tray - toward the location where the 496	
transport request originated.  The initial conditions are 𝐗K,. = [x" , y" ,𝑊"1023 , 𝑡]. The robot speed is 497	
𝑉%/0 = 𝑉K, and the travel angle 𝜃 is the heading of the furrow with direction toward the position where the 498	
tray becomes full (x& , y&); the picking rate is zero. The “Picker location” transition, 𝑠K: to 𝑠K;, occurs 499	
once the robot arrives at the picker position (within a small fixed distance before it). 500	
 501	
WAITING-FOR-PICKER 502	
In state, 𝑠K;, the robot is idle and waits for the picker to finish. Depending on the operation scenario, if 503	
robots respond to requests the time spent in this state will be zero; however, if some form of predictive 504	



 

 

scheduling is performed, the robot may arrive early. The initial conditions are 𝐗K,. = [x& , y& ,𝑊"1023 , 𝑡], 505	
and the robot speed and picking rate are both zero. The “Picker ready” transition, 𝑠K; to 𝑠KJ, takes place 506	
when the picker’s “Tray full” condition (and transition from 𝑠0; to 𝑠04.) becomes true. 507	
 508	
TRAY-LOADING 509	
In state, 𝑠KJ, the robot is idle, while a picker takes its empty tray and places a full tray on it. The initial 510	
conditions are 𝐗K,. = [x& , y& ,𝑊"1023 , 𝑡], and the robot speed is zero. The “handling time” for this state is 511	
assumed constant and equal to ∆𝑡N. Tray handling is modeled with a picking rate 𝑝%/& = (𝑊!566 −512	
𝑊"1023)/∆𝑡N, which results in a fully loaded robot (WK,, = 𝑊!566) at the end of the state. The “Full tray 513	
from picker” transition, 𝑠KJ to 𝑠KC, takes place when the picker’s “Empty tray from robot” condition (𝑇0,, ≥514	
𝑡 + ∆𝑡N) and corresponding transition becomes true. 515	
 516	
TRANSP-FULL-TRAY-FURROW 517	
In state 𝑠KC, the robot travels inside a furrow – carrying a full tray – toward the furrow’s end-point. The 518	
initial conditions are 𝐗K,. = [x& , y& ,𝑊!566 , 𝑡], and the robot speed is 𝑉%/) = 𝑉K, and the travel angle 𝜃 is the 519	
heading of the furrow with direction toward the headland; the picking rate is zero.  The “End of furrow” 520	
transition, 𝑠KC to 𝑠KM, takes place reaches the end-point of the furrow (x" , y"). 521	
 522	
TRANSP-FULL-TRAY-HEADLAND 523	
In state 𝑠KM, the robot travels in the headland – carrying a full tray – toward the collection station. The 524	
initial conditions are 𝐗K,. = [x" , y" ,𝑊!566 , 𝑡], the robot speed is 𝑉%/* = 𝑉K, and 𝜃 is defined by the furrow 525	
end-point and collection station point, with direction toward the furrow.; the picking rate is zero.  The 526	
“Reached collection station” transition from 𝑠KM to 𝑠K4, takes place once the robot reaches the collection 527	
station at (x'%, y'%). 528	
 529	
STOP 530	
In state 𝑠KI, the robot stops its operation, after all harvesting and transporting is done. The state initial 531	
conditions are 𝐗K,. = [x'%, y'%	,𝑊"1023 , t] and the time clock stops . 532	
 533	
4.3 DEVELOPMENT OF A ROBOT-AIDED HARVEST SIMULATOR 534	

4.3.1 Simulation Platform Architecture 535	
A simulator for manual and robot-aided strawberry harvesting was developed based on the hybrid system 536	
models presented above using the Python programing language. Figure 7 shows the simulator’s 537	
architecture. The Pickers Operation module implements the picker hybrid model during manual or robot-538	
aided harvesting. The Robots Operation module implements the hybrid model of the robots’ operations. 539	
The picker and robot states and transport requests are fed to the Robot Scheduler module, which 540	
schedules robot operations and issues dispatching commands to the robots.  541	
 542	



 

 

 
Figure 7. The architecture of the all-manual and robot-aided harvesting simulator. The picker and robot operations 543	
modules integrate the continuous picker and robot states	𝑿𝒑,𝒌 and	𝑿𝒓,𝒌 respectively, and execute the transitions of 544	
the respective discrete states, 𝑠67  and 𝑠87 . 545	

The simulator has a global “clock”, i.e., a global time variable, 𝑡, that represents the current time of the 546	
harvesting activity; time starts at t = 0 s and increases by ∆𝑡 (0.5 s was used). The state updates are 547	
computed at every step and the simulation terminates when the entire field block is harvested, or after a 548	
pre-set harvest time has elapsed. During each execution of the simulator, the stochastic 549	
variables	𝑉H , 𝑉L , 𝑉9 , ∆𝑡"! , and	∆𝑡#$ are sampled randomly from their respective non-parametric 550	
distributions. The random samples are stored, so that different scheduling algorithms can be compared for 551	
identical harvest conditions (yield, picker activity). A Monte-Carlo approach is adopted to estimate the 552	
mean harvest operation efficiency (Eq. 8). As a result, multiple runs of the harvest simulation are 553	
executed. 554	
 555	
The simulation platform does not adopt a specific scheduling algorithm, as its purpose is to enable 556	
experimentation with various scheduling algorithms and optimization criteria. Instead, it defines the 557	
inputs and outputs of the Robot Scheduler module. The scheduler has access to the picker and robot 558	
continuous and discrete states, and to the set of all issued and yet-unserved tray transport requests at step 559	
k (each request contains its location and time). The output of the scheduler at step k, is the set of 560	
dispatching commands, where each dispatching command assigns a specific robot to a tray-transport 561	
location. For example, if only idle robots are dispatched, non-preemptive scheduling can be implemented; 562	
otherwise, if a robot that is on its way to an unserved request is assigned another request, preemptive 563	
scheduling can be performed. The scheduler module may contain a request prediction module, so that 564	
predictive scheduling is implemented; otherwise, reactive scheduling will be performed.  565	
 566	
Figure 8 shows a visualization of simulated manual and robot-aided harvest with nine pickers and nine 567	
pickers and three robots respectively. In the manual harvesting mode (Figure 8a) as a picker fills up a tray 568	
(gold diamond), (s)he transports the filled tray to the active collection station (gold circle). Whereas, in 569	
the robot-aid harvesting mode (Figure 8b), as a picker fills up a tray, (s)he waits for a robot (colored 570	
circles) to arrive. 571	



 

 

4.3.2.3 Simulator Evaluation Metrics 572	
Let the (productive) picking time required to fill an empty container be ∆𝑡"!; also let the non-productive 573	
time be ∆𝑡!" (due to picker’s walking to the collection station, waiting in a queue, delivering harvested 574	
crops and receiving an empty container, and walking back to resume picking). If the size of the harvesting 575	
crew is P, and the number of containers harvested by picker 𝑖 during a work shift is 𝑛#, the harvest 576	
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Figure 8. Snapshots of the simulator’s visual outputs after 36 minutes of harvesting, in: a) manual 
harvesting mode, with nine pickers; b) robot-aided harvesting mode, with nine pickers and three robots. 
(Dimensions are not scaled for the purpose of illustration.) 
 



 

 

operation efficiency, 𝐸, can be defined as the ratio of the sum of all productive times over the sum of all 577	
productive and non-productive times: 578	
 579	

𝐸 = 	
∑ ∑ (∆𝑡𝑒𝑓)𝑖𝑗

𝑛𝑖
𝑗=1

𝑃
𝑖=1

∑ ∑ (∆𝑡𝑒𝑓)𝑖𝑗
𝑛𝑖
𝑗=1

𝑃
𝑖=1 + ∑ ∑ (∆𝑡𝑓𝑒)𝑖𝑗

𝑛𝑖
𝑗=1

𝑃
𝑖=1

 (8) 

The primary goal of the simulator is to predict the harvest operation efficiency, 𝐸, under various operating 580	
scenarios. Since the distribution of ∆𝑡"! is the result of measurements and it used (sampled) directly in the 581	
simulator, the actual metric of the simulator’s performance must quantify how well ∆𝑡!" is predicted. The 582	
simulator-predicted nonproductive time ∆𝑡V!" is computed by summing the times spent in non-productive 583	
states, and is used as the simulator evaluation metric: 584	

 
∆𝑡W 𝑓𝑒 =X∆𝑡𝑠𝑝𝑘

:

𝑘	=1

+X∆𝑡𝑠𝑝𝑘
I

𝑘	=7

 (9) 

5 SUMMARY AND DISCUSSION   585	
In this work, hybrid automata with stochastic parameters were used to model and simulate all-manual 586	
harvesting and machine aided harvesting using crop-transport robots. The discrete operating states of the 587	
pickers and robots, and their transitions and interactions, were modelled using finite state machines. The 588	
continuous states, including agent motions and mass transfer during both harvesting and tray-exchanges, 589	
were modeled using difference equations with stochastic parameters. Based on this methodology, a 590	
Monte-Carlo harvesting simulator was developed. The simulator samples the picker stochastic parameters 591	
and executes the hybrid automata which represents pickers, robots and their interactions. The robot 592	
scheduler module of the simulator enables the integration of various schedulers (such as reactive, pre-593	
emptive, or predictive) for efficient robot dispatching. 594	
 595	
The model and simulator can be used for the off-line evaluation of harvest-aid robots, by predicting the 596	
efficiency of harvest operations performed by a crew of human pickers and a team of crop-transport 597	
robots under various operating scenarios. Due to its foundation on hybrid automata, the model was 598	
developed to be used for harvesting simulation, but also to serve as an executable task model for robots to 599	
represent human actions, in the context of human-robot collaboration. The current model assumes that 600	
robots can carry only one tray, and hence must return to the collection station after serving one picker. 601	
This is not a structural limitation, and robot tray-carrying capacity can increase. The corresponding finite 602	
state machine would need to change slightly, so that the robot is dispatched to a new picker, until its tray 603	
carrying capacity is reached and it has to return to the collection station. The model and simulator were 604	
developed using commercial strawberry harvesting in mind; however, similar hybrid automata can be 605	
used to model manual and robot-aided harvesting in different settings, even with different crops – such as 606	
table grapes, tomatoes, blackberries - which are picked similarly to strawberries. The accompanying paper 607	
(Part II) of this work utilizes data gathered in two commercial strawberry fields during harvesting, to 608	
estimate the stochastic parameters involved in modeling pickers, and evaluate the prediction accuracy of 609	
the simulator for all-manual picking. Then, as a case study, the effects of different picker-robot ratios and 610	
priority-based reactive dispatching policies are reported on non-productive time and harvest efficiency. 611	
 612	
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