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Abstract
Reliable drought monitoring requires long-term and continuous precipitation data. High
resolution satellite measurements provide valuable precipitation information on a quasi-global
scale. However, their short lengths of records limit their applications in drought monitoring. In
addition to this limitation, long-term low resolution satellite-based gauge-adjusted data sets
such as the Global Precipitation Climatology Project (GPCP) one are not available in near
real-time form for timely drought monitoring. This study bridges the gap between low
resolution long-term satellite gauge-adjusted data and the emerging high resolution satellite
precipitation data sets to create a long-term climate data record of droughts. To accomplish
this, a Bayesian correction algorithm is used to combine GPCP data with real-time satellite
precipitation data sets for drought monitoring and analysis. The results showed that the
combined data sets after the Bayesian correction were a significant improvement compared to
the uncorrected data. Furthermore, several recent major droughts such as the 2011 Texas, 2010
Amazon and 2010 Horn of Africa droughts were detected in the combined real-time and
long-term satellite observations. This highlights the potential application of satellite
precipitation data for regional to global drought monitoring. The final product is a real-time
data-driven satellite-based standardized precipitation index that can be used for drought
monitoring especially over remote and/or ungauged regions.

Keywords: drought, satellite data, precipitation

1. Introduction

Droughts are typically categorized into four major classes:
(a) meteorological drought, a deficit in precipitation;
(b) hydrological drought, a deficit in streamflow, groundwater
level or water storage; (c) agricultural drought, a deficit in
soil moisture; and (d) socioeconomic drought, incorporating
water supply and demand (Anderson et al 2011, Wilhite and
Glantz 1985). All four categories of droughts are related to
a sustained lack of precipitation and thus, having accurate,
long-term, and timely precipitation data is fundamental to
drought monitoring and analysis.

Content from this work may be used under the terms
of the Creative Commons Attribution-NonCommercial-

ShareAlike 3.0 licence. Any further distribution of this work must maintain
attribution to the author(s) and the title of the work, journal citation and DOI.

Several indices have been developed for drought
monitoring based on indicator variables such as precipitation,
soil moisture, runoff and evapotranspiration (Karl 1983,
McKee et al 1993, Hao and AghaKouchak 2012, Dai et al
2004, Mo 2008, Shukla and Wood 2008, Anderson et al 2011).
The precipitation deficit can be expressed with the commonly
used standardized precipitation index (SPI) (McKee et al
1993, Hayes et al 1999). The SPI identifies precipitation
deficits at various timescales (e.g., 1-, 3-, 6- and 12-month).
The amount of precipitation with respect to climatology in a
normalized scale and over a given time period (e.g., 6-month)
is represented by this value. The SPI is standardized to a
normal distribution having zero mean and a standard deviation
of one (Tsakiris and Vangelis 2004). A positive SPI value
indicates an above average precipitation accumulation over a
period of time (for example, 6-month), whereas a negative
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SPI indicates a dry period with an average precipitation
accumulation below the climatological mean. An SPI value
near zero refers to precipitation accumulation near the
climatological mean. In other words, a sequence of negative
(positive) SPI values indicates that the climate condition has a
dry (wet) status (McKee et al 1993).

In a recent meeting (WMO 2009), drought experts
made a consensus agreement to recommend the SPI for
the characterization of meteorological droughts (Hayes et al
2011). Following the discussions at (WMO 2009), the
National Meteorological and Hydrological Services (NMHSs)
has been encouraged to use the SPI for meteorological drought
analysis (Hayes et al 2011, WCRP 2010). The true strength
of SPI is that precipitation anomalies can be calculated over
flexible timescales in a consistent fashion. Another attractive
feature of the SPI is that drought information can be provided
in a timely manner for operational drought-monitoring
applications if precipitation is available in near real-time.

In numerous studies, the SPI were derived using
long-term rain gauge data (Santos et al 2010, Gonzalez and
Valdes 2006). However, the spatial distribution of rain gauges
in most parts of the world is not sufficient enough to capture
reliable estimates of precipitation and its spatial variabil-
ity (Easterling 2012). Additionally, individual rain gauges of
a global observation network often have different lengths of
records which can affect the climatology, and thus SPI-based
drought information. Alternative to rain gauges is satellite
precipitation data, as they offer near real-time accessibility,
better representation of spatial variability of precipitation,
and uninterrupted measurement (Sorooshian et al 2011).
Several satellite-based algorithms and products have been
developed to derive global precipitation estimates (e.g., Trop-
ical Rainfall Measuring Mission (TRMM) Multisatellite
Precipitation Analysis (TMPA) (Huffman et al 2007); CPC
Morphing Technique (CMORPH) (Joyce et al 2004); and
Precipitation Estimation from Remotely Sensed Information
using Artificial Neural Networks (PERSIANN) (Sorooshian
et al 2000, Hsu et al 1997)).

Recently, satellite precipitation data sets have been used
for drought monitoring (Sheffield et al 2006, Paridal et al
2008, Zhang et al 2008). For example, the experimental
African Drought Monitor provides drought conditions using
a land-surface model trained by remotely sensed precipitation
data (Sheffield et al 2006). (Anderson et al 2008) analysed
droughts based on vegetation response using remotely sensed
precipitation data, and concluded that satellite data can
improve drought monitoring.

One limitation of the near real-time and high resolution
satellite precipitation data sets for drought monitoring is the
relatively short record of data (currently, 10–14 years). Also,
the Global Precipitation Climatology Project (GPCP; Huff-
man et al 1997, Adler et al 2003) provides satellite-based
gauge-adjusted precipitation data in a global scale. However,
the GPCP data set is not available in real-time. In this paper,
a Bayesian algorithm is used to combine real-time satellite
data sets with GPCP observations to create a long-term and
near real-time record with consistent climatology for drought
analysis. Using the final merged product, a global data record

of the SPI is generated for the applicability of drought
monitoring and analysis. This data set provides a basis for
greater utilization of satellite data for drought monitoring,
particularly in describing the spatial extent and dependences
of drought events. It should be noted that this data set is
data-driven (satellite-based observations corrected with gauge
data), and numerical weather/climate models are not used
in its development. Therefore, this data set can be used for
validation and verification of model outputs.

2. Data resources

In this study, the following remotely sensed precipitation
products are used for drought analysis:

• The Global Precipitation Climatology Project (GPCP;
Adler et al 2003, Huffman et al 2009) obtained
from merged analysis of satellite data and rain gauge
measurements (available since 1979). The rain gauge data
used in GPCP are analysed and assembled by the Climate
Prediction Center (CPC) of the National Oceanic and
Atmospheric Administration (NOAA), and by the Global
Precipitation Climatology Centre (GPCC) of the Deutscher
Wetterdienst.
• The Precipitation Estimation from Remotely Sensed In-

formation using Artificial Neural Networks (PERSIANN;
Sorooshian et al 2000, Hsu et al 1997), which uses a neural
network classification algorithm to derive precipitation
estimates based on IR data after near real-time adjustment
using microwave scans (available since 2000).
• The Tropical Rainfall Measuring Mission (TRMM)

Multisatellite Precipitation Analysis (TMPA; Huffman
et al 2007) real-time (hereafter, TRMM-RT). The TRMM-
RT algorithm is mainly based on the microwave-based
estimates of precipitation with the gaps filled with
Infrared-based precipitation estimates (Huffman et al
2007).

3. Methodology

Having long-term precipitation data is fundamental to reliable
drought monitoring. The GPCP, with global coverage and
long-term monthly data, has been widely used in weather and
climate change studies. However, the data is not available
in near real-time due to post-processing needed to combine
all satellite and rain gauge data sets. This issue limits the
application of long-term satellite data to real-time drought
monitoring. In this study, as schematically shown in figure 1,
the long-term GPCP satellite data is merged with real-time
satellite estimates (here, TMPA-RT and PERSIANN) for
drought analysis using a Bayesian-based correction algorithm.
In the merged data set, the climatology is driven by
GPCP data, whereas the near past data (approximately 9–18
months) are based on real-time satellite precipitation data
(typically available to public within few hours to days after
observation).

In a recent study, (Tian et al 2010) introduced a real-time
bias adjustment method for correcting satellite data. In this
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Figure 1. Merging GPCP and real-time (TMPA-RT and
PERSIANN) data for drought analysis.

paper, a similar methodology is adopted for creating a
consistent climatology. Having both GPCP (G) and real-time
satellite data (S) for the overlap period (2000–10), one
can derive the joint probability P(G, S) using the Bayesian
theorem:

P(G|S) =
P(G, S)

P(S)
(1)

where G and S denote GPCP and real-time satellite
data (here, PERSIANN and TRMM-RT), respectively. The
conditional probability P(G|S) indicates the likelihood of
the measurement G given the satellite observation S. For
more detail about this methodology, the reader is pointed
to Tian et al (2010). The right hand side of the equation (1)
can be computed for the overlap period (2000–10). Then,
one can derive G for any S by maximizing P(Gi, Sj) using
the maximum likelihood method. Using this approach, for
the period for which GPCP (here, G) observations are not

available (real-time data S), one can obtain the likely value
G given S. In other words, based on the overlap period, the
algorithm will estimate the likely value of G (here, GPCP
data) given an observed S from real-time satellite data. The
likely value of G, and hence the adjusted satellite data,
is derived based on historical values of G and S over the
same period of time (e.g., January, February) to account
for seasonality. Figure 2 displays example time series of
GPCP (solid blue), satellite data (here, PERSIANN) before
correction (dashed red), and satellite data after the Bayesian
correction (solid green) for two locations. One can see that
the differences between real-time satellite data and GPCP
observations reduce after applying the Bayesian correction
algorithm.

4. Results: near real-time global SPI data

The GPCP data is available with a special resolution of
2.5◦, while the real-time PERSIANN and TRMM-RT satellite
data are available in a 0.25◦ resolution. In this study, the
merged products of SPI are generated at the following spatial
resolution: (a) 2.5◦ grid—GPCP in the original resolution
and real-time satellite data re-gridded onto a 2.5◦ grid; (b)
0.5◦ grid—all data sets re-gridded onto a common 0.5◦ grid.
The presented results are based on GPCP data from Jan.
1979–Dec. 2010 and real-time PERSIANN and TRMM-RT
satellite data from Jan. 2011 to Mar. 2012.

SPI obtained by merging GPCP and real-time satellite
data are validated by removing one year of data (2010)
from the overlap period (2000–10). The final product is
then validated over 2010 by comparing SPI data from the
corrected real-time satellite and GPCP data in 2010. Table 1
lists error (%) of the number of drought pixels derived
from 6-month and 12-month SPI based on PERISANN and
TRMM-RT merged with GPCP for the validation period
(2010) before and after the proposed Bayesian correction to

Figure 2. Example time series of GPCP (solid blue), satellite data (here, PERSIANN) before correction (dashed red), and satellite data
after the Bayesian correction (solid green) for two locations.
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Figure 3. 6-month global 2.5◦ SPI data for March and September 2010.

Table 1. Error (%) of the number of drought pixels derived from 6-month and 12-month SPI based on PERISANN and TRMM-RT merged
with GPCP for 2010.

Data set Resolution
Before
correction (%)

Bayesian
correction (%)

PERSIANN; 6-m SPI HR (0.5◦) 163.1 13.7
LR (2.5◦) 162.3 6.6

PERSIANN; 12-m SPI HR (0.5◦) 137.3 8.3
LR (2.5◦) 133.6 3.2

TRMM-RT; 6-m SPI HR (0.5◦) 70.9 29.0
LR (2.5◦) 72.0 28.4

TRMM-RT; 12-m SPI HR (0.5◦) 68.1 15.0
LR (2.5◦) 68.0 15.9

the climatology. Here, drought is defined as pixels with SPI
≤ −1 (SPI = −1 indicates moderate drought). One can see
that the combined GPCP-PERSIANN data at a 2.5◦ resolution
leads to a relatively small error of 6.58% and 3.22% for
6-month and 12-month SPI data, respectively.

Figure 3 displays 6-month SPI data for March and
September 2010, whereas figure 4 presents 12-month SPI data

for the same periods. In the two figures, the top panels show
the reference GPCP data. The second row (panels 3(c), (d),
4(c), (d)) displays SPI data from GPCP-PERSIANN without
any correction. Given the biases in satellite precipitation data
(see (Tian et al 2009, AghaKouchak et al 2012)), one can
see that the SPI data are rather unrealistic (e.g., compare
figures 3(a) and (c)). This issue reflects in high errors in
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Figure 4. 12-month global 2.5◦ SPI data for March and September 2010.

the combined GPCP-PERSIANN data before the Bayesian
correction (see table 1). For example, comparing North
America in figures 3(a), (c) and (e), one can see that there are
major discrepancies between reference data (figure 3(a)) and
uncorrected GPCP-PERSIANN data (figure 3(c)), especially
over Canada. Figure 3(c)—before the Bayesian correction—
shows a major drought event over northern Canada, and is not
consistent with reference observation (figure 3(a)). After the
Bayesian correction (figure 3(e)), the drought condition over
Canada is more consistent with reference data.

As shown in figures 3(e), (f), 4(e), (f), the Bayesian
correction leads to drought information more consistent
with the reference data (GPCP). Note that in these figures
(similar to table 1), GPCP data from 2010 is eliminated
from the correction analysis. Figures 3(g) and (h) show
6-month SPI data based on combined GPCP and TRMM-RT
before the proposed Bayesian correction for September
and March 2010, respectively. Figures 3(i) and (j) present
6-month SPI data based on combined GPCP and TRMM-RT
after the suggested correction. Figure 4 shows similar
examples for 12-month SPI data before and after correction,

and for both GPCP-PERSIANN and GPCP-TRMM-RT. A
visual comparison and the error values provided in table 1
confirms that the Bayesian correction algorithm improves
real-time drought monitoring by combining long-term low
resolution GPCP data with real-time high resolution satellite
observations.

While SPI data from corrected real-time satellite data are
consistent with GPCP data, one can see discrepancies over
several regions. For example, all data sets correctly identify
the 2010 drought of Horn of Africa (see figure 4). Also, the
2010 drought of Australia has been captured in all data sets
(see figures 3 and 4). However, discrepancies between SPI
values form reference GPCP and corrected satellite data can
be observed over several regions (e.g., China). Overall, the
SPI data derived from the merged GPCP-PERSIANN is in
a better agreement with GPCP data for the validation period
(2010). For example, the 2010 Amazon drought (Lewis et al
2011, Marengo et al 2011) has been correctly identified in the
merged GPCP-PERSIANN, while it does not appear in the
merged TRMM-RT and GPCP (see figure 3 left panels).
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Figure 5. 6-month SPI data (2.5◦) for 8 points from across the globe.

Previous publications indicate that satellite precipitation
data sets are subject to uncertainties and different algorithms
have their advantageous and disadvantageous over different
geographical and climate regions (Turk et al 2008,
AghaKouchak et al 2011a, Tian et al 2009, Ebert et al
2007, AghaKouchak et al 2011b, Hong et al 2006). For this
reason, the authors believe combinations of multiple real-time
satellite products and long-term GPCP observations should
be considered for more reliable drought monitoring. While
we acknowledge uncertainties in satellite precipitation data,
we believe that integrating real-time satellite observations
will provide additional information on droughts especially
on droughts onset. In a recent study (Mo 2011), investigated
the drought onset in the United States and concluded that
SPI often detects the droughts onset a few month earlier
than other drought indicators. This indicates improvements in
global drought analysis using satellite precipitation data sets
could advance drought detection and monitoring. Integration
of satellite data for real-time drought analysis is particularly
important for regions where dense networks of observations
are not available.

Figures 5 and 6 present example time series of 6-month
(figure 5) and 12-month (figure 6) SPI data for several regions
across the globe using the combined GPCP and PERSIANN

data sets: Texas, USA (5(a) and 6(a)); Ethiopia (5(b) and
6(b)); Amazon (5(c) and 6(c)); Central Europe (5(d) and 6(d));
Australia (5(e) and 6(e)); India (5(f) and 6(f)); and China (5(g)
and 6(g)). One can see that several recent major droughts
can be detected from the proposed data set. For example,
the 2011 Texas drought can be observed in both figures 5(a)
and 6(a)—see negative SPI values in 2011. Also, the 2010
droughts in Ethiopia (figures 5(b) and 6(b)) and Amazon
(figures 5(c) and 6(c)) can be detected from the time series.

5. Summary and conclusions

Reliable drought monitoring and analysis requires long-term
and continuous precipitation measurements. High resolution
satellite data provide valuable precipitation information on a
quasi-global scale. However, their short length of records limit
their applications to drought monitoring. On the other hand,
long-term low resolution satellite-based gauge-adjusted data
sets such as GPCP are not available in real-time for timely
drought monitoring. The overarching goal of this study is
to bridge the gap between low resolution long-term satellite
gauge-adjusted data and the emerging high resolution satellite
precipitation data sets. It is worth mentioning that merging
multiple data sets may lead to some level of inconsistency
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Figure 6. 12-month SPI data (2.5◦) for 8 points from across the globe.

in the climatology, since different data sets may be biased
with respect to each other and lead to unrealistic changes
in the climatology at different periods in the record. For
this reason, methods/algorithms are necessary to create a
consistent climatology from multiple data sets. This paper
introduces a Bayesian approach for combining long-term
GPCP and real-time satellite data (here, PERSIANN and
TRMM-RT) to create a long-term climate data record for
drought monitoring and analysis.

The results revealed that the combined data after the
Bayesian correction improved significantly compared to the
uncorrected data (original GPCP and real-time satellite data
stitched together—see table 1). Figures 3 and 4 confirm
that the combined GPCP-PERSIANN and GPCP-TRMM-RT
exhibited less error during the validation period (2010) after
implementing the correction. Furthermore, several major
drought such as the 2011 Texas, 2010 Horn of Africa,
and 2010 Amazon droughts were detected in the combined
real-time and long-term satellite observations. This highlights
the potential application of satellite precipitation data for near
real-time global drought monitoring.

Currently, real-time satellite observations are available
within few hours to days from observation. This provides a
unique opportunity to create a real-time climate data record

with monthly or weakly updates as the observations becomes
available. We predict more efforts in future will be devoted
to combining data sets from different sensors or sources to
create long-term climate records. The authors acknowledge
that satellite data sets have biases and uncertainties that
could affect drought analysis. Similarly, numerical models
and even ground observations are subject to different levels
of uncertainty. Given that over many regions of the world
no other source of precipitation information is available,
satellite data sets cannot be ignored. The authors argue that
the presented data set is particularly important for drought
monitoring over remote and/or ungauged basins.

In recent years, regional and global climate models
have been extensively used to study droughts and their
causes. The presented observation-driven drought data is
model-independent and can be used a validation and
verification data set. Finally, climate change and its impacts
on extreme climate events including droughts has been the
subject of numerous studies most of which are based on
climate simulations. The presented satellite-based data sets
provide the opportunity to investigate changes in patterns and
severity of droughts over the past three decades. The entire
record of data sets, presented in this study, (1979–present) can
be made available to interested researchers upon request.

7



Environ. Res. Lett. 7 (2012) 044037 A AghaKouchak and N Nakhjiri

Acknowledgment

The financial support for the authors of this study is made
available from the United States Bureau of Reclamation
(USBR) Award No. R11AP81451.

References

Adler R et al 2003 The version-2 global precipitation climatology
project (GPCP) monthly precipitation analysis (1979–present)
J. Hydrometeorol. 4 1147–67

AghaKouchak A, Behrangi A, Sorooshian S, Hsu K and
Amitai E 2011a Evaluation of satellite-retrieved extreme
precipitation rates across the central United States J. Geophys.
Res. Atmos. 116 D02115

AghaKouchak A, Mehran A, Norouzi H and Behrangi A 2012
Systematic and random error components in satellite
precipitation data sets Geophys. Res. Lett. 39 L09406

AghaKouchak A, Nasrollahi N, Li J, Imam B and
Sorooshian S 2011b Geometrical characterization of
precipitation patterns J. Hydrometeorol. 12 274–85

Anderson L, Malhi Y, Aragao L and Saatchi S 2008 Spatial patterns
of the canopy stress during 2005 drought in amazonia IGARSS
2007: 2007 IEEE Int. Geoscience and Remote Sensing Symp.
pp 2294–7

Anderson M C, Hain C, Wardlow B, Pimstein A,
Mecikalski J R and Kustas W P 2011 Evaluation of drought
indices based on thermal remote sensing of evapotranspiration
over the continental United States J. Clim. 24 2025–44

Dai A, Trenberth K and Qian T 2004 A global dataset of Palmer
Drought Severity Index for 1870–2002: relationship with soil
moisture and effects of surface warming J. Hydrometeorol.
5 1117–30

Easterling D 2012 Global data sets for analysis of climate extremes
Extremes in a Changing Climate: Detection, Analysis and
Uncertainty ed A AghaKouchak, D Easterling, K Hsu,
S Schubert and S Sorooshian (Berlin: Springer) (doi:10.1007/
978-94-007-4479-012)

Ebert E, Janowiak J and Kidd C 2007 Comparison of near real time
precipitation estimates from satellite observations and
numerical models Bull. Am. Meteorol. Soc. 88 47–64

Gonzalez J and Valdes J B 2006 New drought frequency index:
definition and comparative performance analysis Water
Resources Res. 42 W11421

Hao Z and AghaKouchak A 2012 A multivariate multi-index
drought modeling framework J. Hydrometeorol. under review

Hayes M, Svoboda M, Wall N and Widhalm M 2011 The Lincoln
declaration on drought indices: universal meteorological
drought index recommended Bull. Am. Meteorol. Soc.
92 485–8

Hayes M, Svoboda M, Wilhite D and Vanyarkho O 1999
Monitoring the 1996 drought using the standardized
precipitation index Bull. Am. Meteor. Soc. 80 429–38

Hong Y, Hsu K, Moradkhani H and Sorooshian S 2006 Uncertainty
quantification of satellite precipitation estimation and Monte
Carlo assessment of the error propagation into hydrologic
response Water Resources Res. 42 W08421

Hsu K, Gao X, Sorooshian S and Gupta H 1997 Precipitation
estimation from remotely sensed information using artificial
neural networks J. Appl. Meteorol. 36 1176–90

Huffman G, Adler R, Arkin P, Chang A, Ferraro R, Gruber A,
Janowiak J, McNab A, Rudolf B and Schneider U 1997 The
global precipitation climatology project (GPCP) combined
precipitation dataset Bull. Am. Meteorol. Soc. 78 5–20

Huffman G, Adler R, Bolvin D, Gu G, Nelkin E, Bowman K,
Stocker E and Wolff D 2007 The TRMM multi-satellite
precipitation analysis: quasi-global, multiyear,
combined-sensor precipitation estimates at fine scale
J. Hydrometeorol. 8 38–55

Huffman G J, Adler R F, Bolvin D T and Gu G 2009 Improving the
global precipitation record: GPCP version 2.1 Geophys. Res.
Lett. 36 L17808

Joyce R, Janowiak J, Arkin P and Xie P 2004 CMORPH: a method
that produces global precipitation estimates from passive
microwave and infrared data at high spatial and temporal
resolution J. Hydrometeorol. 5 487–503

Karl T 1983 Some spatial characteristics of drought duration in the
United States J. Clim. Appl. Meterol. 22 1356–66

Lewis S L, Brando P M, Phillips O L, van der Heijden G M F and
Nepstad D 2011 The 2010 Amazon drought Science 331 554

Marengo J A, Tomasella J, Alves L M, Soares W R and
Rodriguez D A 2011 The drought of 2010 in the context of
historical droughts in the Amazon region Geophys. Res. Lett.
38 L12703

McKee T, Doesken N and Kleist J 1993 The relationship of drought
frequency and duration to time scales Proc. 8th Conf. of
Applied Climatology (Jan. 1993) (Anaheim, CA: American
Meteorological Society) pp 179–84

Mo K 2008 Model based drought indices over the United States
J. Hydrometeorol. 9 1212–30

Mo K C 2011 Drought onset and recovery over the United States
J. Geophys. Res. Atmos. 116 D20106

Paridal B R, Collado W B, Borah R, Hazarika M K and
Sarnarakoon L 2008 Detecting drought-prone areas of rice
agriculture using a modis-derived soil moisture index GISci.
Remote Sens. 45 109–29

Santos J F, Pulido-Calvo I and Portela M M 2010 Spatial and
temporal variability of droughts in Portugal Water Resources
Res. 46 W03503

Sheffield J, Goteti G and Wood E 2006 Development of a 50-yr,
high resolution global dataset of meteorological forcings for
land surface modeling J. Clim. 13 3088–111

Shukla S and Wood A 2008 Use of a standardized runoff index for
characterizing hydrologic drought Geophys. Res. Lett.
35 L02405

Sorooshian S et al 2011 Advanced concepts on remote sensing of
precipitation at multiple scales Bull. Am. Meteorol. Soc.
92 1353–7

Sorooshian S, Hsu K, Gao X, Gupta H, Imam B and
Braithwaite D 2000 Evolution of the PERSIANN system
satellite-based estimates of tropical rainfall Bull. Am. Meteorol.
Soc. 81 2035–46

Tian Y, Peters-Lidard C D and Eylander J B 2010 Real-time bias
reduction for satellite-based precipitation estimates
J. Hydrometeorol. 11 1275–85

Tian Y, Peters-Lidard C, Eylander J, Joyce R, Huffman G, Adler R,
Hsu K, Turk F, Garcia M and Zeng J 2009 Component analysis
of errors in satellite-based precipitation estimates J. Geophys.
Res. 114 D24101

Tsakiris G and Vangelis H 2004 Towards a drought watch system
based on spatial SPI Water Resources Manag. 18 1–12

Turk F J, Arkin P, Ebert E E and Sapiano M R P 2008 Evaluating
high-resolution precipitation products Bull. Am. Meteorol. Soc.
89 1911–6

WCRP 2010 A WCRP white paper on drought predictability and
prediction in a changing climate: assessing current predictive
knowledge and capabilities, user requirements and research
priorities Technical Report (Geneva: World Climate Research
Programme)

Wilhite D and Glantz M 1985 Understanding the drought
phenomenon: the role of definitions Water Int. 10 111–20

WMO 2009 Inter-Regional Workshop on Indices and Early Warning
Systems for Drought (Lincoln, NE, Dec. 2009) (Geneva: World
Meteorological Organization)

Zhang R, Su H, Tian J, Li Z, Chen S, Zhan J, Deng X, Sun X and
Wu J 2008 Drought monitoring in northern China based on
remote sensing data and land surface modeling IGARSS 2008:
2008 IEEE Int. Geoscience and Remote Sensing Symp.
vol 3 pp III:860–3

8

http://dx.doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2
http://dx.doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2
http://dx.doi.org/10.1029/2010JD014741
http://dx.doi.org/10.1029/2010JD014741
http://dx.doi.org/10.1029/2012GL051592
http://dx.doi.org/10.1029/2012GL051592
http://dx.doi.org/10.1175/2010JHM1298.1
http://dx.doi.org/10.1175/2010JHM1298.1
http://dx.doi.org/10.1175/2010JCLI3812.1
http://dx.doi.org/10.1175/2010JCLI3812.1
http://dx.doi.org/10.1175/JHM-386.1
http://dx.doi.org/10.1175/JHM-386.1
http://dx.doi.org/10.1007/978-94-007-4479-012
http://dx.doi.org/10.1007/978-94-007-4479-012
http://dx.doi.org/10.1007/978-94-007-4479-012
http://dx.doi.org/10.1007/978-94-007-4479-012
http://dx.doi.org/10.1007/978-94-007-4479-012
http://dx.doi.org/10.1007/978-94-007-4479-012
http://dx.doi.org/10.1007/978-94-007-4479-012
http://dx.doi.org/10.1007/978-94-007-4479-012
http://dx.doi.org/10.1007/978-94-007-4479-012
http://dx.doi.org/10.1007/978-94-007-4479-012
http://dx.doi.org/10.1007/978-94-007-4479-012
http://dx.doi.org/10.1007/978-94-007-4479-012
http://dx.doi.org/10.1007/978-94-007-4479-012
http://dx.doi.org/10.1007/978-94-007-4479-012
http://dx.doi.org/10.1007/978-94-007-4479-012
http://dx.doi.org/10.1007/978-94-007-4479-012
http://dx.doi.org/10.1007/978-94-007-4479-012
http://dx.doi.org/10.1007/978-94-007-4479-012
http://dx.doi.org/10.1007/978-94-007-4479-012
http://dx.doi.org/10.1007/978-94-007-4479-012
http://dx.doi.org/10.1007/978-94-007-4479-012
http://dx.doi.org/10.1007/978-94-007-4479-012
http://dx.doi.org/10.1007/978-94-007-4479-012
http://dx.doi.org/10.1007/978-94-007-4479-012
http://dx.doi.org/10.1007/978-94-007-4479-012
http://dx.doi.org/10.1007/978-94-007-4479-012
http://dx.doi.org/10.1007/978-94-007-4479-012
http://dx.doi.org/10.1175/BAMS-88-1-47
http://dx.doi.org/10.1175/BAMS-88-1-47
http://dx.doi.org/10.1029/2005WR004308
http://dx.doi.org/10.1029/2005WR004308
http://dx.doi.org/10.1175/2010BAMS3103.1
http://dx.doi.org/10.1175/2010BAMS3103.1
http://dx.doi.org/10.1175/1520-0477(1999)080<0429:MTDUTS>2.0.CO;2
http://dx.doi.org/10.1175/1520-0477(1999)080<0429:MTDUTS>2.0.CO;2
http://dx.doi.org/10.1029/2005WR004398
http://dx.doi.org/10.1029/2005WR004398
http://dx.doi.org/10.1175/1520-0450(1997)036<1176:PEFRSI>2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(1997)036<1176:PEFRSI>2.0.CO;2
http://dx.doi.org/10.1175/1520-0477(1997)078<0005:TGPCPG>2.0.CO;2
http://dx.doi.org/10.1175/1520-0477(1997)078<0005:TGPCPG>2.0.CO;2
http://dx.doi.org/10.1175/JHM560.1
http://dx.doi.org/10.1175/JHM560.1
http://dx.doi.org/10.1029/2009GL040000
http://dx.doi.org/10.1029/2009GL040000
http://dx.doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2
http://dx.doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(1983)022<1356:SSCODD>2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(1983)022<1356:SSCODD>2.0.CO;2
http://dx.doi.org/10.1126/science.1200807
http://dx.doi.org/10.1126/science.1200807
http://dx.doi.org/10.1029/2011GL047436
http://dx.doi.org/10.1029/2011GL047436
http://dx.doi.org/10.1175/2008JHM1002.1
http://dx.doi.org/10.1175/2008JHM1002.1
http://dx.doi.org/10.1029/2011JD016168
http://dx.doi.org/10.1029/2011JD016168
http://dx.doi.org/10.2747/1548-1603.45.1.109
http://dx.doi.org/10.2747/1548-1603.45.1.109
http://dx.doi.org/10.1029/2009WR008071
http://dx.doi.org/10.1029/2009WR008071
http://dx.doi.org/10.1175/JCLI3790.1
http://dx.doi.org/10.1175/JCLI3790.1
http://dx.doi.org/10.1029/2007GL032487
http://dx.doi.org/10.1029/2007GL032487
http://dx.doi.org/10.1175/2011BAMS3158.1
http://dx.doi.org/10.1175/2011BAMS3158.1
http://dx.doi.org/10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2
http://dx.doi.org/10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2
http://dx.doi.org/10.1175/2010JHM1246.1
http://dx.doi.org/10.1175/2010JHM1246.1
http://dx.doi.org/10.1029/2009JD011949
http://dx.doi.org/10.1029/2009JD011949
http://dx.doi.org/10.1023/B:WARM.0000015410.47014.a4
http://dx.doi.org/10.1023/B:WARM.0000015410.47014.a4
http://dx.doi.org/10.1175/2008BAMS2652.1
http://dx.doi.org/10.1175/2008BAMS2652.1
http://dx.doi.org/10.1080/02508068508686328
http://dx.doi.org/10.1080/02508068508686328

	A near real-time satellite-based global drought climate data record
	Introduction
	Data resources
	Methodology
	Results: near real-time global SPI data
	Summary and conclusions
	Acknowledgment
	References




