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Abstract

The Decoupling of Linear Dynamical Systems

by

Daniel Takashi Kawano

Doctor of Philosophy in Engineering − Mechanical Engineering

University of California, Berkeley

Professor Fai Ma, Chair

Decoupling a second-order linear dynamical system requires that one develop a trans-
formation that simultaneously diagonalizes the coefficient matrices that define the system
in terms of its distribution of inertia and viscoelasticity. A traditional approach to decou-
pling a viscously damped system uses the eigenvectors of the corresponding undamped
system to diagonalize the mass, damping, and stiffness matrices through a real congruence
transformation in the configuration space, a process known as classical modal analysis.
However, it is well known that classical modal analysis fails to decouple a linear dynamical
system if its damping matrix does not satisfy a commutativity relationship involving the
system matrices. Such a system is said to be non-classically damped. We demonstrate that
it is possible to decouple any non-classically damped system in the configuration and state
spaces through generally time-dependent transformations constructed using spectral data
obtained from the solution of a quadratic eigenvalue problem.

When a non-classically damped system has complex but non-defective eigenvalues, the
effect of non-classical damping is that it introduces constant phase shifts among the com-
ponents of the system’s free response. Decoupling of free vibration in the configuration
space is achieved through a real, linear, time-shifting transformation that eliminates these
phase differences, yielding classical modes of vibration. This decoupling transformation,
referred to as phase synchronization, preserves both the eigenvalues and their multiplicities.
When cast in a state space form, the transformation between the coupled and decoupled
systems is real, linear, but time-invariant. Through the concept of real quadratic conjuga-
tion, we illustrate that there is no fundamental difference in the representation of the free
response of a system with complex eigenvalues and one with real eigenvalues, and thus sys-
tems with non-defective real eigenvalues can also be decoupled by phase synchronization.
When phase synchronization is extended to forced systems, the decoupling transformation
in both the configuration and state spaces is nonlinear and depends continuously on the
applied excitation.
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If a non-classically damped system is defective, it may only be partially decoupled
if one insists on preserving the geometric multiplicities of the defective eigenvalues. We
present the first systematic effort to decouple defective systems in free or forced vibration
by not demanding invariance of the geometric multiplicities. In the course of this devel-
opment, the notion of critical damping in multi-degree-of-freedom systems is clarified and
expanded. It is shown that the decoupling of defective systems is a rather delicate pro-
cedure that depends on the multiplicities of the system eigenvalues. A generalized state
space-based decoupling transformation is developed that relates the response of any non-
classically damped system to that of its decoupled form. In principle, one could extract
from the state space a decoupling transformation in the configuration space, but it generally
does not have an explicit form. The decoupling transformation in both the configuration
and state spaces is real and time-dependent. Several numerical examples are provided to
illustrate the theoretical developments.
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Chapter 1
Introduction

Coordinate coupling in linear dynamical systems under viscous damping has long been
viewed as an undesired phenomenon with respect to system analysis in both practice and
theoretical pursuits. Consequently, the decoupling of dynamical systems is a subject with
a long history that attracts much attention from researchers even to this day. The problem
of decoupling a linear dynamical system is concerned with developing a transformation
that simultaneously diagonalizes the coefficient matrices that define the system in terms
of its distribution of inertia and viscoelasticity. The equation of motion of an n-degree-of-
freedom linear dynamical system subject to viscous damping and external forcing has the
matrix-vector representation

M
..
x(t)+C

.
x(t)+Kx(t)= f(t) , (1.1)

where the real and order n coefficient matrices M, C, and K are positive definite (i.e.,
rigid body modes have been removed) and correspond to the system inertia, damping, and
elasticity, respectively. The real n-dimensional column vectors x(t) and f(t) denote, respec-
tively, the generalized coordinates and external excitation.

The individual equations comprising system (1.1) are often coupled since the mass,
damping, and stiffness matrices are, in general, not diagonal. Coupling is not an inherent
property of a system but rather depends on the choice of generalized coordinates. This
dissertation addresses the issue of devising a general methodology for decoupling by which
any system of the form (1.1) is transformed into, and its response exactly recovered from
the solution of,

..
p(t)+D

.
p(t)+Ωp(t)= g(t) , (1.2)
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for which the coefficient matrices D and Ω are real, diagonal, of order n, and represent
the damping and elasticity properties, respectively, of the decoupled system. Moreover,
the real n-long column vectors p(t) and g(t) denote the decoupled (or modal) coordinates
and applied excitation, respectively. We begin with a survey of classical techniques and
methods proposed in the literature for analyzing the response of a linear dynamical system
of the type (1.1).

1.1 Classical modal analysis

It is well known that a class of systems of the form (1.1) can be decoupled by a congru-
ence transformation in the n-dimensional configuration space using the eigenvectors of the
undamped system (e.g., see [1–3]). Associated with the undamped form of system (1.1) is
the generalized eigenvalue problem (e.g., see [1])

λMu = Ku (1.3)

that, because the mass matrix M and stiffness matrix K are real and positive definite, gener-
ates n real and positive eigenvalues λk (k= 1, 2, . . . , n) with corresponding real eigenvectors
uk that are orthogonal with respect to M and K. It is customary to normalize the eigenvec-
tors in accordance with u j · (Muk)= δ jk ( j = 1, 2, . . . , n), where a ·b = aTb for any vectors
a and b, and δ jk denotes the Kronecker delta. Upon arranging the normalized eigenvectors
in a modal matrix U and defining a linear time-invariant coordinate transformation

x(t)= Up(t) , U =
[

u1 · · · un

]
, (1.4)

application of transformation (1.4) converts system (1.1) into the form (1.2) with

D = UTCU , Ω= UTKU =
n⊕

k = 1

λk , g(t)= UTf(t) . (1.5)

If the matrix D is diagonal upon congruence transformation, then system (1.1) has been
decoupled by a procedure referred to as classical modal analysis. Consequently, a sys-
tem (1.1) for which D is diagonal is said to be classically damped. Since the coordinate
transformation (1.4) is real, the modal response p(t) can be identified with a displacement,
and hence classical modal analysis is amenable to physical interpretation. It was known to
Lord Rayleigh [4] in the late 19th century that a sufficient condition for classical damping
is that the damping matrix C of system (1.1) be a linear combination of the mass matrix M
and stiffness matrix K. It was not until 1965 that a necessary and sufficient condition for
classical damping was provided by Caughey and O’Kelly [5]: system (1.1) is classically
damped if and only if its coefficient matrices satisfy

CM−1K = KM−1C . (1.6)
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Practically speaking, condition (1.6) implies a fairly uniform distribution of energy dissi-
pation in a system [6,7], but there is no reason for this to be true for any given system. For
example, systems incorporating base isolation or involving soil-structure or fluid-structure
interaction are not appropriately characterized as classically damped [6–9]. The conclusion
is that it is generally not possible to decouple system (1.1) by classical modal analysis.

1.2 Complex modal analysis

Of course, one may also consider decoupling in the 2n-dimensional state space. In
view of the inadequacy of classical modal analysis, a procedure known as complex modal
analysis was developed in the mid 20th century to decouple non-classically damped sys-
tems of the form (1.1) in the state space via complex congruence transformation (e.g.,
see [10–12]). However, complex modal analysis is limited by the requirement that system
(1.1) be non-defective (i.e., every eigenvalue of system (1.1) has an eigenvector), and there
is a clear numerical disadvantage to analysis in the 2n-dimensional state space over the
n-dimensional configuration space. Moreover, unlike classical modal analysis, complex
modal analysis provides little in the way of physical insight since the complex congruence
transformation involved generally makes it impossible to relate the 2n state variables to
corresponding displacements and velocities.

1.3 Approximate methods for non-classically damped systems

Efforts by engineers and researchers in the mid 20th century to the present day to ana-
lyze non-classically damped systems while avoiding state space techniques, but exploiting
the ease and physical insight of classical modal analysis, have led to the development of
numerous schemes for quantifying the degree of coordinate coupling, through so-called in-
dices of coupling or non-proportionality (e.g., see [13–24]), and for approximating the sys-
tem response via analysis in the configuration space. For example, Knowles has proposed
replacing the original system matrices with other simultaneously diagonalizable matrices
such that the difference between the two systems, in the sense of a matrix norm, is min-
imized [25]. However, this does not imply that the incurred error in the system response
is minimized. A more common procedure is to replace the matrix D by some equivalent
diagonal form and then proceed with classical modal analysis as usual (e.g., see [26–30]).
The simplest and most popular approach involves neglecting the off-diagonal elements of
D. This technique is commonly justified so long as D is diagonally dominant [1, 2] or the
natural frequencies are sufficiently far apart [31]. However, even when either or both of
these conditions are satisfied, significant errors in the system response may be incurred by
neglecting the off-diagonal elements of D because of the response’s dependence on other
factors, such as the type of forcing and its distribution [16, 32]. In response, various iter-
ative techniques aimed at increasing the accuracy of solution have been developed (e.g.,
see [33–36]).
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1.4 Exact methods for non-classically damped systems

In 2002, Garvey et al. [37, 38] introduced the notion of structure-preserving transfor-
mations and illustrated how they may be used to exactly decouple non-defective linear
dynamical systems of the form (1.1). A structure-preserving transformation is defined as a
real equivalence transformation (U`,Ur) such that

UT
`

[
C M
M O

]
Ur =

[
C0 M0

M0 O

]
, (1.7)

UT
`

[
K O
O −M

]
Ur =

[
K0 O
O −M0

]
, (1.8)

UT
`

[
O K
K C

]
Ur =

[
O K0

K0 C0

]
, (1.9)

where the order 2n left and right transformation matrices U` and Ur , respectively, are
invertible and O denotes the zero matrix of order n. A structure-preserving transformation
is said to be diagonalizing if the real and order n matrices M0, C0, and K0 are diagonal. A
notable feature of a structure-preserving transformation is that it preserves the eigenvalues
of system (1.1) and their multiplicities (i.e., the transformation is strictly isospectral).

How does a structure-preserving transformation decouple the equation of motion (1.1)?
Begin by casting Eq. (1.1) in a symmetric state space realization, say,[

C M
M O

][ .
x(t)
..
x(t)

]
+
[

K O
O −M

][
x(t)
.
x(t)

]
=
[

0
0

]
, (1.10)

where the applied excitation f(t) = 0 for convenience. Define a linear time-invariant coor-
dinate transformation[

x(t)
.
x(t)

]
= Ur

[
p(t)
.
p(t)

]
, (1.11)

for which the order 2n transformation matrix Ur is real and nonsingular. Apply transfor-
mation (1.11) to the state space representation (1.10), and then premultiply the resulting
equation by a real, order 2n, and invertible matrix UT

` . If the equivalence transformation
(U`,Ur ) is structure-preserving and diagonalizing, then Eq. (1.10) becomes[

C0 M0

M0 O

][ .
p(t)
..
p(t)

]
+
[

K0 O
O −M0

][
p(t)
.
p(t)

]
=
[

0
0

]
, (1.12)

4



the upper half of which yields the decoupled equation of motion

M0
..
p(t)+C0

.
p(t)+K0 p(t)= 0 . (1.13)

While structure-preserving transformations are certainly very powerful in principle, the
various algorithms developed to generate these transformations (if they exist at all) are
fairly convoluted and can be quite restrictive [37, 39, 40]. Moreover, because structure-
preserving transformations are strictly isospectral, their application to defective systems
(i.e., those systems with eigenvalues which do not have corresponding eigenvectors) is
very limited (e.g., see [41, 42]).

1.5 Goals and motivation for exact decoupling

To be clear, our goal here is to develop an exact decoupling transformation for system
(1.1) that is real, that preserves the eigenvalues of the system, and which (if possible) exists
in both the configuration and state spaces. The reasons for these conditions are as follows.
First, if the decoupling transformation is real, then the solution p(t) of the decoupled sys-
tem (1.2) and its time derivative

.
p(t) can be associated with a physical system displacement

and velocity, respectively, making interpretation of system behavior more manageable than
when using complex modal analysis. Second, if the eigenvalues of system (1.1) are un-
altered, then the decoupled system (1.2) exhibits the same fundamental characteristics as
the coupled system (i.e., the coupled and decoupled systems are fundamentally related).
Lastly, it is often the case that we are interested in the system response x(t) only and not
its corresponding velocity

.
x(t) as well, and thus it is ideal to be able to decouple in the

configuration space to minimize computational effort. Of course, if desired, a decoupling
transformation in the configuration space may be cast in a state space form.

On a final note, the following work on decoupling any linear dynamical system of the
form (1.1) is motivated by both practical and academic reasons. From a practical stand-
point, decoupling facilitates system analysis and design by revealing characteristic system
behaviors whose importance with respect to a desired design criterion can be evaluated.
Systems derived from practical applications are almost always non-defective since it is rare
to obtain exactly repeated eigenvalues, and thus the treatment of defective systems here is
more of academic interest. While it is quite common in the literature to avoid the issue of
systems with defective eigenvalues, recent efforts have revealed that defective systems may
be more common in practice than originally thought [43, 44], and hence greater attention
to the analysis of defective systems seems justified.
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Chapter 2
Decoupling of Non-Defective Systems in
Free Motion

In this chapter, we devise a procedure by which the unforced form of a non-defective
system (1.1) (i.e., f(t) = 0) is decoupled into the form (1.2) with g(t) = 0 and the free
response x(t) is recovered exactly from the decoupled system response p(t). We begin by
discussing the solutions of the quadratic eigenvalue problem for non-defective systems in
Section 2.1. We next address the issue of decoupling by first considering systems with
all complex eigenvalues in Section 2.2, and we follow this with a treatment of systems
with all real eigenvalues in Section 2.3. Decoupling systems with mixed eigenvalues is
briefly summarized in Section 2.4, and the relationship between phase synchronization and
structure-preserving transformations is explored in Section 2.5. We conclude the chapter
by illustrating in Section 2.6 how the decoupling methodology developed herein is a direct
generalization of classical modal analysis. Much of the presentation given here is based
on [45–47], but some topics (such as eigenvalue indexing) are not discussed for the sake of
generality, while others (such as real quadratic conjugation) are expanded upon for clarity.

2.1 The quadratic eigenvalue problem

Assume that x(t) = veλ t is a solution to the homogeneous (i.e., unforced) form of the
equation of motion (1.1), where v is an n-long vector of unspecified constants and λ is an
undetermined scalar parameter. Consequently, associated with system (1.1) is the quadratic
eigenvalue problem (e.g., see [48–50])

(Mλ
2 +Cλ +K)v = 0 , (2.1)
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the solution of which yields 2n complex or real eigenvalues λ j ( j = 1, 2, . . . , 2n) and up
to n linearly independent eigenvectors v j. When system (1.1) is non-defective and simple,
the 2n eigenvalues λ j are distinct and may be divided into two categories: 2c complex and
2r = 2(n−c) real eigenvalues. Because the coefficient matrices M, C, and K of system (1.1)
are real, the 2c complex eigenvalues and their associated eigenvectors necessarily form c
complex conjugate pairs. Some of the eigenvalues of a non-defective system (1.1) may be
repeated so long as those eigenvalues that are repeated possess a full set of corresponding
linearly independent eigenvectors. In this case, system (1.1) is said to be semi-simple. In
either case, the free response x(t) of a non-defective system (1.1) may be cast in the form

x(t)=
2n∑

j = 1

c jv j eλ jt , (2.2)

for which the 2n eigensolution coefficients c j are determined from the initial conditions
x(0) and

.
x(0).

2.2 Complex eigenvalues

Suppose that every eigenvalue of system (1.1) is complex. Write the n eigenvalues
λk (k = 1, 2, . . . ,n) (that constitute the n complex conjugate pairs) in the rectangular form
λk =αk+ iωk, where the parameters αk < 0 and ωk > 0 are real. The associated eigenvectors
vk are also complex, and it is convenient to express their elements vkl (l = 1, 2, . . . ,n) in
polar form:

vk =
[

vk1 · · · vkn

]T
=
[

rk1e−iϕk1 · · · rkne−iϕkn

]T
, (2.3)

for which the coefficients rkl and phase angles ϕkl are real. It is also convenient to normalize
the eigenvectors vk and their complex conjugates vk in accordance with

2λkvk · (Mvk)+vk · (Cvk)= λk −λ k , (2.4)

2λ kvk · (Mvk)+vk · (Cvk)= λ k −λk , (2.5)

which reduce to normalization with respect to the mass matrix M in the event that system
(1.1) is either undamped or classically damped [51].

2.2.1 Underdamped modes of real vibration

Since the 2n complex eigensolutions of system (1.1) occur as n complex conjugate
pairs, the system’s free response x(t) has the representation

x(t)=
n∑

k = 1

(
ckvk eλkt +ckvk eλ kt

)
=

n∑
k = 1

sk(t) . (2.6)
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By expressing the complex coefficients ck in polar form as 2ck = Ake−iθk , with the coeffi-
cients Ak and phase angles θk real, each vector sk(t) may be written as

sk(t)= ckvk eλkt +ckvk eλ kt = Akeαkt


rk1 cos(ωkt −θk −ϕk1)

...

rkn cos(ωkt −θk −ϕkn)

=


sk1(t)

...

skn(t)

 . (2.7)

We define sk(t) as an underdamped mode of real vibration (or simply, an underdamped
mode) since every component skl(t) executes physically excitable oscillatory decay at a
real characteristic exponential decay rate αk and real damped frequency ωk. Moreover,
every mode evolves independently of one another, with any particular mode sk(t) capable
of being independently excited by the initial conditions

x(0)= Ak


rk1 cos(θk +ϕk1)

...

rkn cos( θk +ϕkn)

 , (2.8)

.
x(0)= αkAk


rk1 cos(θk +ϕk1)

...

rkn cos( θk +ϕkn)

+ωkAk


rk1 sin(θk +ϕk1)

...

rkn sin( θk +ϕkn)

 (2.9)

upon prescribing arbitrary values for Ak and θk.

It is interesting to note that each modal component skl(t) is separated by a constant
phase shift ϕkl . This observation physically manifests itself as a modal response in which all
system components pass through their respective equilibria at different times, with the rel-
ative time shifts among components being constant. When a system is classically damped,
all components execute synchronous motion when vibrating in a mode, passing through
their respective equilibria at the same instant. Thus, the effect of non-classical damping
is that it introduces relative phase drifts among system components in all modes of vi-
bration. Should system (1.1) be classically damped, then the phase shifts ϕkl = 0 and the
eigenvectors vk coincide with the natural modes uk of the undamped system (assuming the
eigenvectors have been normalized in accordance with Eqs. (2.4) and (2.5)).

2.2.2 The mechanics of phase synchronization

To decouple a non-classically damped system (1.1), we must transform the damped
modes sk(t) so that the modal responses of all system components are either in phase or out
of phase, which is characteristic of a classically damped system. To do so, we will need
to eliminate the relative phase shifts ϕkl introduced by non-classical damping, which may
be accomplished by appropriately time shifting each modal component skl(t). We refer to
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this time-shifting transformation as phase synchronization. Suppose we shift each modal
component skl(t) by ϕkl/ωk amount of time into another function ykl(t):

yk(t)=


yk1(t)

...

ykn(t)

=


sk1(t + ϕk1

ωk
)

...

skn(t + ϕkn
ωk

)

= Akeαkt cos(ωkt −θk)


rk1e

αkϕk1
ωk

...

rkne
αkϕkn

ωk

 . (2.10)

If we take

pk(t)= Akeαkt cos(ωkt −θk) , zk =


zk1
...

zkn

=


rk1e

αkϕk1
ωk

...

rkne
αkϕkn

ωk

 , (2.11)

it becomes clear that yk(t)= pk(t)zk represents a damped mode of vibration for a classically
damped system whose kth modal response, characterized by oscillatory decay, is given by
pk(t) and has corresponding natural mode zk. The form of this classically damped system
(i.e., its inertia, damping, and stiffness matrices) is irrelevant to the decoupling procedure
itself, but, in principle, we may recover the system matrices, if desired, by an inverse
congruence transformation using a modal matrix Z whose columns are the natural modes
zk. It can be verified that the response pk(t) for each decoupled coordinate satisfies the
equation of motion

..
pk(t)− (λk +λ k)

.
pk(t)+λkλ k pk(t)= 0 , (2.12)

and thus, upon comparing Eq. (2.12) to the decoupled system (1.2) with g(t) = 0, we
observe that the coefficient matrices D and Ω have the structures

D =−(Λ+Λ) , Ω=ΛΛ , (2.13)

where Λ is an order n matrix of the eigenvalues λk on the diagonal:

Λ=
n⊕

k = 1

λk . (2.14)

Moreover, we conclude that phase synchronization constitutes a strictly isospectral trans-
formation between the non-classically damped system (1.1) and its decoupled form (1.2)
since the eigenvalues and their multiplicities are preserved. Preservation of the system
eigenvalues is important since it implies that there exists a fundamental similarity between
the original and decoupled systems.
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2.2.3 A configuration space representation of decoupling

The system modes sk(t), in terms of the modal responses pk(t) and natural modes zk,
may be recovered from the transformed modes yk(t) by inverting the time-shifting trans-
formation:

sk(t)=


yk1(t − ϕk1

ωk
)

...

ykn(t − ϕkn
ωk

)

=


pk(t − ϕk1

ωk
) zk1

...

pk(t − ϕkn
ωk

) zkn

=
n⊕

l = 1

pk(t − ϕkl
ωk
)zk . (2.15)

Since the free response x(t) is a linear superposition of the modes sk(t),

x(t)=
n∑

k = 1

n⊕
l = 1

pk(t − ϕkl
ωk
)zk . (2.16)

Thus, we have shown that a non-classically damped system (1.1) with complex eigenvalues
may be decoupled into and retrieved from system (1.2) by a linear time-shifting transfor-
mation in the n-dimensional configuration space.

It is interesting to note that the decoupled solutions pk(t) are not connected to the sys-
tem free response x(t) at the same instant in time, which is a direct consequence of the time
shifting resulting from phase synchronization. Unfortunately, this disconnect in time is an
inconvenience when determining the modal initial conditions p(0) and

.
p(0) in terms of the

system initial conditions x(0) and
.
x(0). In addition, it is desirable to avoid extracting the

phase shifts ϕkl and constructing the modal vectors zk after having to solve the system’s
quadratic eigenvalue problem. For these reasons and for subsequent developments, it is
more convenient to consider decoupling in the 2n-dimensional state space.

2.2.4 A state space representation of decoupling

Based on the paired eigensolution summation representation of the free response x(t)
in Eq. (2.6), we may cast x(t) in the matrix-vector form

x(t)= VeΛtc+VeΛtc , (2.17)

where V is an order n matrix whose columns are the system eigenvectors vk, and c is an
n-dimensional vector of the corresponding eigensolution coefficients ck:

V =
[

v1 · · · vn

]
, c =

[
c1 · · · cn

]T
. (2.18)
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Writing Eq. (2.17) and its derivative as a state equation gives us[
x(t)
.
x(t)

]
=
[

V V
VΛ VΛ

][
eΛtc
eΛtc

]
. (2.19)

Since 2ck = Ake−iθk , Eqs. (2.10) and (2.11) imply that phase synchronization does not
disturb the eigensolution coefficients ck, and hence the decoupled solutions pk(t) have the
equivalent representations

pk(t)= Akeαkt cos(ωkt −θk)= ckeλkt +ckeλ kt . (2.20)

Consequently, the modal response p(t) may be expressed in matrix-vector form as

p(t)= eΛtc+eΛtc . (2.21)

Casting Eq. (2.21) and its derivative in the form of a state equation,[
p(t)
.
p(t)

]
=
[

I I
Λ Λ

][
eΛtc
eΛtc

]
, (2.22)

where I is the identity matrix of order n, unless otherwise indicated by a subscript. Com-
bining Eqs. (2.19) and (2.22) yields the state space representation of the free response x(t)
for system (1.1):[

x(t)
.
x(t)

]
=
[

V V
VΛ VΛ

][
I I
Λ Λ

]−1[
p(t)
.
p(t)

]
. (2.23)

Curiously, while the decoupling transformation in the configuration space is linear and
time-shifting in nature, decoupling in the state space is achieved through a linear time-
invariant transformation. It should be noted that, while some of the matrices in Eq. (2.23)
contain complex elements, the overall transformation is real. Since the original and decou-
pled systems are connected at the same instant in time, representation (2.23) is convenient
for calculating the modal initial conditions p(0) and

.
p(0) given the system initial condi-

tions x(0) and
.
x(0). Indeed, by inverting Eq. (2.23) and setting t = 0, we obtain the initial

conditions for the decoupled system:[
p(0)
.
p(0)

]
=
[

I I
Λ Λ

][
V V

VΛ VΛ

]−1[
x(0)
.
x(0)

]
. (2.24)
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Upon determining p(0) and
.
p(0), the free response pk(t) for each decoupled coordinate

may be evaluated exactly as

pk(t)= eαkt
[

pk(0)cosωkt +
 .

pk(0)−αk pk(0)
ωk

sinωkt
]
. (2.25)

In addition to streamlining the calculation of the modal initial conditions, the state space
representation (2.23) has the advantage of simplifying the decoupling transformation by
eliminating time shifting of each of the decoupled solutions pk(t). Moreover, it is interest-
ing to note that, because the 2n complex eigenvalues necessarily form n pairs of complex
conjugates, the order 2n transformation matrices of Eq. (2.23) are partitioned into blocks
of size n. Consequently, it is possible to extract a concise analytical expression for the free
response x(t) only from transformation (2.23), making it unnecessary to evaluate the larger
state equation. Isolating the upper half of Eq. (2.23) yields

x(t)= T1 p(t)+T2
.
p(t) , (2.26)

where the real coefficient matrices T1 and T2 are given by

T1 = (VΛ−VΛ)(Λ−Λ)−1 , T2 = (V−V)(Λ−Λ)−1 . (2.27)

Unlike the transformation of Eq. (2.16), recovering the free response x(t) via Eq. (2.26)
requires not only the modal displacements pk(t), but the corresponding velocities

.
pk(t) as

well, which can be obtained exactly from Eq. (2.25). If we consider the operator L =
T1 +T2 d/dt, then transformation (2.26) represents a linear mapping between x(t) and
p(t): x(t)=Lp(t).

To summarize, if the coupled n-degree-of-freedom system (1.1) is non-defective and
possesses complex eigenvalues only (but not necessarily distinct), it can be decoupled by
phase synchronization into a set of n independent, underdamped oscillators with initial con-
ditions given by Eq. (2.24). Upon solution of the decoupled system (1.2), the free response
x(t) may be recovered through either transformation (2.16) or (2.26). All parameters re-
quired for decoupling are obtained by solving the quadratic eigenvalue problem (2.1).

2.3 Real eigenvalues

Now suppose that all eigenvalues of system (1.1) are real, and thus the associated eigen-
vectors may be taken as real. Since energy is dissipated due to viscous damping, every
eigenvalue is also negative. Consequently, the free response x(t) is described by pure ex-
ponential decay. For the case when the eigenvalues of system (1.1) are complex, we have
demonstrated how the order n equation of motion (1.1) can be decoupled into a system of
n independent oscillators of the form (1.2) by synchronizing the components of the non-
classically damped modes of vibration to yield classically damped modes (i.e., via phase
synchronization). When system (1.1) possesses all real eigenvalues, it is not immediately
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clear if or how the non-classically damped system may be decoupled. However, we will
show that, with some new terminology and slight modification, phase synchronization can
also be used to decouple a non-oscillatory system (1.1).

2.3.1 The concept of real quadratic conjugation

Consider a quadratic equation P(c) = 0 with real coefficients that has roots c1 and c2.
Assuming c1 and c2 are distinct, there are two possibilities regarding the nature of the
roots: either c1 and c2 are complex conjugates, or both roots are real. If c1 and c2 are real,
we may regard them as being real quadratic conjugates. Making use of complex notation,
express the first real root c1 = c in rectangular form: c = a+ ib, where a is real and b is
imaginary. The second real root c2 = c̃ is interpreted as the real quadratic conjugate of the
first: c̃ = a− ib. By simple algebraic manipulation, it can be verified that the rectangular
components a and b are given by

a = 1
2
(c̃+c) , b = i

2
(c̃−c) . (2.28)

It is also possible to write c and its real quadratic conjugate c̃ in polar form: c = re−iθ, and
hence c̃ = reiθ, where the coefficient r satisfies

r2 = cc̃ (2.29)

and may either be real or imaginary, depending on the signs of c and c̃. Likewise, the signs
of the real quadratic conjugate roots dictate if the phase angle θ is imaginary or complex:

θ =


i
2

ln
(c

c̃

)
for

c
c̃
> 0 ,

−π

2
+ i

2
ln
∣∣∣c
c̃

∣∣∣ for
c
c̃
< 0 .

(2.30)

Limiting cases (such as when c = 0 or c̃ = 0) should be interpreted appropriately.

While a complex number has a unique complex conjugate, the same is not true of real
quadratic conjugation. To illustrate this point, let P(c) = 0 be a fourth order polynomial
equation with distinct real roots ci (i = 1, 2, 3, 4). One may assign (c1,c2) and (c3,c4) as
real quadratic conjugate pairs. Associated with these pairs are two quadratic polynomials
P12(c) and P34(c), respectively, whose product necessarily yields the original fourth order
polynomial: P(c) = P12(c)P34(c). However, we may just as well take (c1,c3) and (c2,c4)
to be real quadratic conjugate pairs, and the product of the associated quadratic polynomi-
als P13(c) and P24(c), respectively, must also generate P(c). Thus, the same fourth order
polynomial P(c) may be factored into different sets of real quadratic conjugate pairs. In
general, for an order 2n polynomial equation with all real roots, there are (2n)!/(2nn!)
different ways to pair the roots as real quadratic conjugates.
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2.3.2 Pure exponential decay as imaginary vibration

Consider a single-degree-of-freedom system with displacement x(t) that is overdamped
and in free motion. By assuming a solution of the form x(t) = ceλ t , where c and λ are
scalar parameters to be determined, we obtain a quadratic characteristic equation whose
roots yield the system eigenvalues λ1 and λ2, which are distinct, real, and negative. Conse-
quently, the system’s free response x(t) takes the form

x(t)= c1eλ1t +c2eλ2t , (2.31)

for which the coefficients c1 and c2, obtained by applying initial conditions, must be real. In
light of our previous discussion on real quadratic conjugation, express the real eigenvalues
in complex notation such that λ = λ1 = α + iω and λ̃ = λ2 = α − iω , where α and ω are
calculated as

α = 1
2
(λ̃ +λ ) , ω = i

2
(λ̃ −λ ) , (2.32)

with λ < λ̃ < 0 so that ω is a positive imaginary number by convention. In addition, pair
the coefficients of Eq. (2.31) as real quadratic conjugates according to c = c1 and c̃ = c2,
and write the coefficient c in polar form: 2c = Ae−iθ. In doing so, the overdamped system’s
non-oscillatory free response x(t) has the equivalent representations

x(t)= ceλ t + c̃eλ̃ t = Aeαt cos(ωt −θ) . (2.33)

It is implied by Eq. (2.33) that pure exponential decay may be thought of as exponentially
decaying oscillation with real decay rate α at an imaginary damped frequency ω . While it
may be disconcerting that, depending on the signs of the coefficients c and c̃, the amplitude
A of “oscillation” may possibly be imaginary and the phase angle θ will either be imagi-
nary or complex, the combined effect is such that the system response x(t) will always be
real. Thus, using the concept of real quadratic conjugation, we have shown that the free
response of an overdamped system is functionally identical to that of an underdamped sys-
tem vibrating at an imaginary frequency. It is this result that sets the stage for extending
phase synchronization to decoupling non-oscillatory systems.

2.3.3 Overdamped modes of imaginary vibration

It is possible to extend our previous discussion on imaginary vibration of an over-
damped single-degree-of-freedom oscillator to higher dimensional systems. If the 2n eigen-
solutions of the order n non-defective system (1.1) are real, they may be grouped into n real
quadratic conjugate pairs so that the system’s free response x(t) can be expressed as

x(t)=
n∑

k = 1

(
ckvk eλkt + c̃kṽk eλ̃kt

)
=

n∑
k = 1

sk(t) . (2.34)
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As in the single-degree-of-freedom case, we shall express the eigenvalues λk and coeffi-
cients ck in rectangular and polar form, respectively: λk =αk+iωk, where the real decay rate
αk and imaginary damped frequency ωk are determined from Eq. (2.32), and 2ck = Ake−iθk .
Paralleling the case when the system eigenvalues are complex, normalize the eigenvectors
vk and their real quadratic conjugates ṽk according to

2λkvk · (Mvk)+vk · (Cvk)= λk − λ̃k , (2.35)

2λ̃kṽk · (Mṽk)+ ṽk · (Cṽk)= λ̃k −λk . (2.36)

Should system (1.1) be undamped or classically damped, Eqs. (2.35) and (2.36) reduce
to normalization with respect to the mass matrix M. In addition, if the real eigenvector
components are cast in the polar form vkl = rkle

−iϕkl , as in Eq. (2.3), then each vector sk(t)
has the representation

sk(t)= ckvk eλkt + c̃kṽk eλ̃kt = Akeαkt


rk1 cos(ωkt −θk −ϕk1)

...

rkn cos(ωkt −θk −ϕkn)

 . (2.37)

We refer to sk(t) as an overdamped mode of imaginary vibration (or simply, an overdamped
mode) since every component exhibits oscillatory decay at a real exponential decay rate αk
and imaginary damped frequency ωk. While the parameters Ak, rkl , θk, and ϕkl may not
be real because of real quadratic conjugation, every overdamped mode sk(t) is necessarily
real. Moreover, the evolution of any particular mode is independent of the others, and any
mode sk(t) may be independently excited by the real initial conditions (2.8) and (2.9).

2.3.4 Phase synchronization of imaginary vibration

As we have demonstrated, from a mathematical standpoint, there need not be a distinc-
tion between the functional representation of oscillatory and non-oscillatory motions since
pure exponential decay may be thought of as oscillatory decay at an imaginary damped fre-
quency. Consequently, decoupling of a non-classically damped system (1.1) with all real
eigenvalues is treated in essentially the same manner as when the system eigenvalues are
all complex, with some minor differences here and there. For example, decoupling of non-
oscillatory systems in the configuration space is still achieved via phase synchronization,
but the associated time shifts may no longer be real.

So long as complex conjugation is replaced with real quadratic conjugation, the decou-
pling transformation developed in Section 2.2 for oscillatory systems is directly applicable
to non-oscillatory systems. Specifically, arrange the n real eigenvalues (that constitute the
n real quadratic conjugate pairs) and their associated eigenvectors in the order n matrices
Λ and V, respectively, in accordance with Eqs. (2.14) and (2.18), and let Λ̃ and Ṽ be the
corresponding matrices of assigned real quadratic conjugates. Phase synchronization of

15



the overdamped modes of imaginary vibration yields coefficient matrices for the decoupled
system (1.2) given by D =−(Λ+ Λ̃) and Ω=ΛΛ̃, and the free response x(t) of the original
system may be recovered from the modal free response p(t) in the state space by[

x(t)
.
x(t)

]
=
[

V Ṽ
VΛ ṼΛ

][
I I
Λ Λ̃

]−1[
p(t)
.
p(t)

]
. (2.38)

The response pk(t) for each decoupled coordinate is evaluated exactly as

pk(t)=
 λ̃k pk(0)−

.
pk(0)

λ̃k −λk

eλkt −
λk pk(0)−

.
pk(0)

λ̃k −λk

eλ̃kt (2.39)

upon determining the modal initial conditions p(0) and
.
p(0):[

p(0)
.
p(0)

]
=
[

I I
Λ Λ̃

][
V Ṽ

VΛ ṼΛ

]−1[
x(0)
.
x(0)

]
. (2.40)

By isolating the upper half of the state equation (2.38), we observe that the free response
x(t) may still be obtained directly via Eq. (2.26), but the transformation matrices T1 and
T2 are now given by

T1 = (VΛ̃− ṼΛ)(Λ̃−Λ)−1 , T2 = (Ṽ−V)(Λ̃−Λ)−1 . (2.41)

In summary, if the order n non-classically damped system (1.1) is non-defective and
has all real eigenvalues that are distinct, then, using the concept of real quadratic conju-
gation, it may be decoupled by phase synchronization into a set of n independent, over-
damped oscillators with initial conditions (2.40). After solving the decoupled system (1.2),
transformation (2.26) may be used to recover the free response x(t). All parameters re-
quired for decoupling are obtained through solution of the quadratic eigenvalue problem
(2.1). Because of the non-uniqueness associated with real quadratic conjugation, there are
(2n)!/(2nn!) different forms of the decoupled system (1.2), but the decoupling transforma-
tion (2.26) will of course yield the same free response x(t) regardless of the chosen pairing
scheme.

Should some eigenvalues be repeated, Eq. (2.26) remains a valid decoupling transfor-
mation so long as the repeated eigenvalues are not paired as real quadratic conjugates. The
reason for this is clear upon inspecting Eq. (2.39) – pairing (non-defective) repeated real
eigenvalues implies that the associated modal solutions pk(t) are undefined. Moreover,
the pairing of repeated real eigenvalues as real quadratic conjugates implies that the corre-
sponding degree of freedom is critically damped, which cannot be the case when system
(1.1) is non-defective. The issue of critical damping will be discussed when the decoupling
of defective systems is addressed in Chapter 4.
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2.4 Mixed eigenvalues

In general, the eigenspectrum of system (1.1) consists of some combination of complex
and real eigenvalues. Suppose 2c of the system eigenvalues are complex and the remain-
ing 2r = 2(n− c) eigenvalues are real. The 2c complex eigenvalues necessarily form c
complex conjugate pairs, and the 2r real eigenvalues may be grouped into r real quadratic
conjugate pairs. Based on the methodologies developed previously for decoupling systems
with all complex or all real eigenvalues, an extension to systems with mixed eigenvalues is
straightforward. The order n matrix Λ of Eq. (2.14) is now composed of some arrangement
of the c complex and r real eigenvalues (that constitute the c complex conjugate and r real
quadratic conjugate pairs, respectively) on the diagonal. While the particular arrangement
of eigenvalues in Λ is not important, it may be convenient to, say, partition Λ so that the c
complex eigenvalues are followed by the r real eigenvalues, or vice versa. Normalize the
eigenvectors and their conjugates according to, respectively,

2λkvk · (Mvk)+vk · (Cvk)= λk − λ̂k , (2.42)

2λ̂kv̂k · (Mv̂k)+ v̂k · (Cv̂k)= λ̂k −λk , (2.43)

in which case the eigenvectors are normalized with respect to the mass matrix M if it so
happens that system (1.1) is undamped or classically damped. In normalization (2.43),
the ornamenting hat denotes either complex or real quadratic conjugation, whichever is
appropriate. However the eigenvalues are arranged in Λ, the corresponding order n matrix
V of eigenvectors, defined in Eq. (2.18), is constructed to be conformable to Λ. The
structure of the conjugate matrices Λ̂ and V̂ is dictated by the choice of pairing scheme for
the real eigenvalues. Analogous to Eqs. (2.6) and (2.34), the system’s free response x(t)
can be expressed as

x(t)=
n∑

k = 1

(
ckvk eλkt + ĉkv̂k eλ̂kt

)
=

n∑
k = 1

sk(t) . (2.44)

Simultaneous application of phase synchronization to the underdamped and overdamped
modes sk(t) reveals that the decoupled system (1.2) has as its coefficient matrices

D =−(Λ+ Λ̂) , Ω=ΛΛ̂ , (2.45)

and that the general form of the response pk(t) for each decoupled coordinate is

pk(t)= ckeλkt + ĉkeλ̂kt . (2.46)
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The free response x(t) of system (1.1) is related to the modal free response p(t) by the state
equation[

x(t)
.
x(t)

]
=
[

V V̂
VΛ V̂Λ

][
I I
Λ Λ̂

]−1[
p(t)
.
p(t)

]
= S

[
p(t)
.
p(t)

]
, (2.47)

and hence the modal initial conditions are determined from the system initial conditions
according to[

p(0)
.
p(0)

]
=
[

I I
Λ Λ̂

][
V V̂

VΛ V̂Λ

]−1[
x(0)
.
x(0)

]
. (2.48)

Extracting the upper half of the order 2n state equation (2.47) yields the order n transfor-
mation (2.26) that gives the free response x(t) directly. Of course, the coefficient matrices
T1 and T2 must be modified slightly to account for conjugation of both complex and real
eigenvalues and eigenvectors:

T1 = (VΛ̂− V̂Λ)(Λ̂−Λ)−1 , T2 = (V̂−V)(Λ̂−Λ)−1 . (2.49)

Thus, when the coupled n-degree-of-freedom system (1.1) is non-defective and pos-
sesses mixed eigenvalues, it may be decoupled by phase synchronization into c under-
damped and r = n−c overdamped, independent oscillators with initial conditions governed
by Eq. (2.48). Upon solution of the decoupled system (1.2), the free response x(t) is ob-
tained via transformation (2.26). All parameters required for decoupling are obtained by
solving the quadratic eigenvalue problem (2.1). Assuming the real eigenvalues are distinct,
there are (2r)!/(2rr!) possible forms of the decoupled system (1.2) that depend on the
choice of pairing scheme. Transformation (2.26) still holds when some of the eigenvalues,
complex or real, are repeated, as long as the repeated real eigenvalues are not paired as real
quadratic conjugates to avoid introducing critical damping where it does not exist.

2.5 Phase synchronization and structure-preserving transformations

We now demonstrate how phase synchronization, when cast in a state space form, gen-
erates a diagonalizing structure-preserving transformation. For the sake of generality, sup-
pose system (1.1) possesses mixed eigenvalues, and further assume that the corresponding
eigenvectors are normalized in accordance with Eqs. (2.42) and (2.43). We have shown
that decoupling via phase synchronization yields the linear time-invariant coordinate trans-
formation (2.47) in the state space. It can be readily verified that by applying the coordinate
transformation (2.47) to the symmetric state space realization (1.10) and then premultiply-
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ing the resulting equation by ST, we obtain the state equation[
D I
I O

][ .
p(t)
..
p(t)

]
+
[
Ω O
O −I

][
p(t)
.
p(t)

]
=
[

0
0

]
, (2.50)

the upper half of which contains the decoupled equation of motion (1.2) with g(t) = 0.
Comparing the state equation (2.50) with Eq. (1.12), it is clear that the state space formu-
lation of phase synchronization coincides with a diagonalizing structure-preserving trans-
formation with U` = Ur = S and coefficient matrices M0 = I, C0 = D, and K0 =Ω. The ad-
vantage of the decoupling procedure described herein is that generating the order 2n trans-
formation matrix S is far simpler than constructing a diagonalizing structure-preserving
transformation (U`,Ur) by the algorithms detailed in [37, 39].

2.6 Reduction to classical modal analysis

The decoupling procedure developed herein represents a direct generalization of classi-
cal modal analysis. First, consider the case in which the eigenvalues of system (1.1) are all
complex and the associated eigenvectors vk are normalized in accordance with Eqs. (2.4)
and (2.5). In the event that system (1.1) is classically damped, the eigenvectors vk = vk
coincide with the classical normal modes uk of the undamped system. As a result, the ma-
trix of eigenvectors V = V = U, and hence the transformation matrices T1 = U and T2 = O.
Consequently, Eq. (2.26) simplifies to the classical modal transformation x(t)= Up(t).

Now suppose system (1.1) has all real eigenvalues and the corresponding eigenvectors
are normalized using Eqs. (2.35) and (2.36). Should system (1.1) be classically damped,
then the set of system eigenvectors vk and ṽk coincides with the set of classical normal
modes uk. Among the (2n)!/(2nn!) different ways to pair the real eigenvalues, there is a
particular pairing scheme for which vk = ṽk = uk, and hence reduction to classical modal
analysis for a non-oscillatory system with this choice of pairing follows in the same manner
as for an oscillatory system. Because this pairing scheme may not be the one chosen for
decoupling, reduction to classical modal analysis for a non-oscillatory system is not as
clean as for an oscillatory system, for which there is a natural pairing scheme.

Finally, for the general case of mixed eigenvalues (i.e., 2c are complex and 2r = 2(n−c)
are real), it is obvious that reduction to classical modal analysis is achieved for the particular
pairing scheme (of the (2r)!/(2rr!) different ways to pair the real eigenvalues) that results
in V = V̂ = U, where it is assumed that the eigenvectors have been normalized according
to Eqs. (2.42) and (2.43). Should the eigenvectors not be normalized as such, reduction to
classical modal analysis is still achieved, albeit with V 6= U, since eigenvectors are unique
up to a multiplicative constant.
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2.7 An illustrative example

Here we provide a numerical example that illustrates the decoupling procedure for an
unforced non-defective system of the form (1.1). We focus on a system with all real eigen-
values to highlight the non-uniqueness associated with real quadratic conjugation. In ad-
dition, without loss of generality, we take the mass matrix M = I in the following example
(and in subsequent examples) for convenience since we may always convert a system

M1
..
x1(t)+C1

.
x1(t)+K1 x1(t)= f1(t) , (2.51)

where the coefficient matrices M1, C1, and K1 are positive definite, into system (1.1) with

M= I through a coordinate transformation x1(t)=M− 1
2

1 x(t), followed by multiplication on

the left by M− 1
2

1 :

C = M− 1
2

1 C1 M− 1
2

1 , K = M− 1
2

1 K1 M− 1
2

1 , f(t)= M− 1
2

1 f1(t) . (2.52)

Additional examples of decoupling non-defective systems in free motion can be found
in [45–47].

Example 1

Consider a non-classically damped, 2-degree-of-freedom system with mass matrix M=
I2 and for which the damping matrix C and stiffness matrix K are given by

C =
[

3 −1

−1 4

]
, K =

[
1 −1

−1 3

]
. (2.53)

The initial conditions are prescribed as x(0) = [1, −1]T and
.
x(0) = [1, 1]T. Solving the

associated quadratic eigenvalue problem, we find that the system’s eigenvalues are all real
and distinct (i.e., the system is non-defective):

λ1 =−3.73 , λ2 =−2 , λ3 =−1 , λ4 =−0.27 . (2.54)

Of the (2 ·2)!/(22 ·2!) = 3 possible ways to pair the eigenvalues λi (i = 1, 2, 3, 4) as real
quadratic conjugates, suppose we assign (λ1, λ3) and (λ2, λ4) as conjugate pairs. The
associated eigenvectors vi, normalized in accordance with Eqs. (2.42) and (2.43) for the
chosen pairing scheme, are given by

v1 =
[
−0.58

0.79

]
, v2 =

[
0.76

0.76

]
, v3 =

[
0

1.17

]
, v4 =

[
0.89

0.33

]
. (2.55)
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For our choice of real quadratic conjugate pairs, Eqs. (2.14) and (2.18) imply that

Λ=
[
−3.73 0

0 −2

]
, V =

[
−0.58 0.76

0.79 0.76

]
, (2.56)

whose corresponding conjugates are

Λ̂=
[
−1 0

0 −0.27

]
, V̂ =

[
0 0.89

1.17 0.33

]
. (2.57)

From Eq. (2.49),

T1 =
[

0.21 0.91

1.31 0.26

]
, T2 =

[
0.21 0.07

0.14 −0.25

]
. (2.58)

By Eqs. (2.45), (2.56), and (2.57), the coefficient matrices for the decoupled system are

D =
[

4.73 0

0 2.27

]
, Ω=

[
3.73 0

0 0.54

]
, (2.59)

which describe a set of independent, overdamped degrees of freedom p j(t) ( j = 1, 2) with
viscous damping factors ζ1 = 1.22 and ζ2 = 1.55, respectively. Using Eq. (2.48), the initial
conditions for the decoupled system are p(0) = [−0.94, 1.29]T and

.
p(0) = [−0.01, 0.41]T.

The solution p(t) of the decoupled system defined by Eq. (2.59) is illustrated in Fig. 1(a),
and the system response x(t) obtained via transformation (2.26) is shown in Fig. 1(b). It
can be verified that the solution by direct numerical integration of the original system and
that obtained by Eq. (2.26) are indeed the same. Should we have decided to let the real
quadratic conjugate pairs be (λ1, λ2) and (λ3, λ4), then the overdamped decoupled system
would have the form

D =
[

5.73 0

0 1.27

]
, Ω=

[
7.46 0

0 0.27

]
, (2.60)

where the corresponding viscous damping factors for p j(t) are ζ1 = 1.05 and ζ2 = 1.22,
respectively. Finally, if instead (λ1, λ4) and (λ2, λ3) are assigned as conjugate pairs, then

D =
[

4 0

0 3

]
, Ω=

[
1 0

0 2

]
, (2.61)

for which the associated viscous damping factors are ζ1 = 2 and ζ2 = 1.06. It is straight-
forward to show that, with appropriate modifications to the transformation matrices T1 and
T2, the solutions of the alternative decoupled system representations (2.60) and (2.61) lead
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to the system response x(t) depicted in Fig. 1(b), as should be the case.
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Fig. 1 Free response of Example 1. (a) Decoupled solutions p j(t) ( j = 1, 2).
(b) System responses x j(t).
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Chapter 3
Decoupling of Non-Defective Systems in
Forced Motion

This chapter is concerned with decoupling a forced non-defective system (1.1) into
the form (1.2) and exactly recovering the forced response x(t) from the decoupled sys-
tem response p(t). For the sake of generality, we consider the case in which system (1.1)
has mixed eigenvalues. Additionally, while it is possible to approach decoupling in the
n-dimensional configuration space, it is more convenient to perform manipulations in the
2n-dimensional state space. We begin in Section 3.1 by establishing a state space repre-
sentation of system (1.1) and postulating an associated solution based on the free response.
Next, the relationship between the applied excitation f(t) and modal forcing g(t) is ex-
plored in Section 3.2, and a transformation that recovers the forced response x(t) exactly is
presented in Section 3.3. The chapter closes with a discussion in Section 3.4 demonstrating
how the decoupling procedure developed here generalizes classical modal analysis. The
methodology presented here is largely based on [46], but we perform manipulations in the
state space in a different and more generalized manner.

3.1 State space formulation

Suppose a non-defective system (1.1) possesses a mixed eigenspectrum and is acted
upon by an arbitrary external excitation f(t). It is assumed that the eigenvectors are nor-
malized in accordance with Eqs. (2.42) and (2.43). We may cast system (1.1) in the non-
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symmetric state space realization (e.g., see [52])[ .
x(t)
..
x(t)

]
=
[

O I
−M−1K −M−1C

][
x(t)
.
x(t)

]
+
[

O
M−1

]
f(t) . (3.1)

It is well known that the application of external forcing does not alter the fundamental
structure of the decoupled system for the case of classical damping (e.g., see [1–3]). Thus,
it is reasonable to postulate that system (1.1) is decoupled into the form (1.2) such that the
coefficient matrices D and Ω are the same as those in the case of free motion under initial
excitation (i.e., D and Ω are as defined in Eq. (2.45)). Based on this assumption and the
free response’s state space representation (2.47), define a linear time-invariant coordinate
transformation[

x(t)
.
x(t)

]
=
[

V V̂
VΛ V̂Λ

][
I I
Λ Λ̂

]−1[
p1(t)

p2(t)

]
= S

[
p1(t)

p2(t)

]
, (3.2)

for which p1(t) and p2(t) are n-dimensional vectors whose relationships to the forced
modal response p(t) and its associated velocity

.
p(t) are to be determined. It also remains

to be seen how the modal excitation g(t) is related to the applied forcing f(t).

3.2 Transformation of the applied forcing

Inserting transformation (3.2) into the first-order formulation (3.1) and premultiplying
the resulting state equation by S−1, we obtain[ .

p1(t)
.
p2(t)

]
=
[

O I
−Ω −D

][
p1(t)

p2(t)

]
+
[

TT
2

TT
1 −DTT

2

]
f(t) , (3.3)

where the matrices T1 and T2 are as given in Eq. (2.49). The upper and lower halves of
state equation (3.3) are, respectively,

.
p1(t)−p2(t)= TT

2 f(t) , (3.4)
.
p2(t)+Dp2(t)+Ωp1(t)= (TT

1 −DTT
2 ) f(t) . (3.5)

Using Eq. (3.4) to eliminate p2(t) from Eq. (3.5) yields an equation of motion in p1(t):

..
p1(t)+D

.
p1(t)+Ωp1(t)= TT

1 f(t)+TT
2

.
f(t) . (3.6)

Comparing Eq. (3.6) to the decoupled system (1.2), it becomes clear that p1(t) corresponds
to the modal displacement p(t), and thus the modal forcing g(t) is related to the applied

24



excitation f(t) by

g(t)= TT
1 f(t)+TT

2
.
f(t) . (3.7)

While continuous differentiability of the driving force f(t) seems to be implied by Eq. (3.7),
this constraint may be relaxed by treating the derivative

.
f(t) in the sense of distributions

(e.g., the derivative of a unit step is a Dirac delta; see [53]).

3.3 Recovering the forced response

Combining Eqs. (3.2) and (3.4) with p1(t)= p(t), we have that the forced response x(t)
of a non-defective system (1.1) with mixed eigenvalues is related to the modal response
p(t) by the state equation[

x(t)
.
x(t)

]
=
[

V V̂
VΛ V̂Λ

][
I I
Λ Λ̂

]−1[
p(t)

.
p(t)−TT

2 f(t)

]
, (3.8)

and hence the modal initial conditions p(0) and
.
p(0) are calculated from the system initial

conditions x(0) and
.
x(0) according to[

p(0)
.
p(0)

]
=
[

I I
Λ Λ̂

][
V V̂

VΛ V̂Λ

]−1[
x(0)
.
x(0)

]
+
[

0
TT

2 f(0)

]
. (3.9)

As in the case of free vibration, it is possible to extract an analytical expression from the
state space transformation (3.8) that recovers the forced response x(t) directly. Isolating
the upper half of Eq. (3.8) gives

x(t)= T1 p(t)+T2
.
p(t)−T2TT

2 f(t) . (3.10)

It is interesting to note that transformation (3.10) depends continuously on the driving force
f(t) and constitutes a nonlinear mapping between x(t) and p(t).

In summary, upon solving the quadratic eigenvalue problem (2.1) and evaluating the
decoupled system (1.2) subject to the excitation (3.7) and initial conditions (3.9), the forced
response x(t) of any non-defective system (1.1) can be determined exactly from the modal
response p(t) via transformation (3.10). Simplification of Eq. (3.10) to the free response
transformation (2.26) when f(t)= 0 is obvious. A flowchart outlining the general procedure
for decoupling any non-defective system (1.1) and determining its response (free or forced)
is illustrated in Figure 2.
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Coupled linear system
M

..
x(t)+C

.
x(t)+Kx(t)= f(t)

with coordinate x(t)

Solve
(Mλ

2 +Cλ +K)v = 0

Normalize vk, v̂k (k = 1, 2, . . . , n):

2λkvk · (Mvk)+vk · (Cvk)= λk − λ̂k

2λ̂kv̂k · (Mv̂k)+ v̂k · (Cv̂k)= λ̂k −λk

Construct

Λ=
n⊕

k = 1

λk

V =
[

v1 · · · vn

]
and their conjugates

Construct

D =−(Λ+ Λ̂)
Ω=ΛΛ̂

T1 = (VΛ̂− V̂Λ)(Λ̂−Λ)−1

T2 = (V̂−V)(Λ̂−Λ)−1

g(t)= TT
1 f(t)+TT

2
.
f(t)

Decoupled linear system
..
p(t)+D

.
p(t)+Ωp(t)= g(t)

with coordinate p(t)

Eq. (3.10)

Fig. 2 Flowchart for decoupling and response calculation of any non-defective
linear dynamical system in free or forced motion. This flowchart is based
on Figure 1 in [46].
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3.4 Reduction to classical modal analysis

We now demonstrate how the decoupling methodology developed in this chapter rep-
resents a direct generalization of classical modal analysis. Suppose the eigenvectors of
system (1.1) are normalized in accordance with Eqs. (2.42) and (2.43). Should system
(1.1) be classically damped, then among the (2r)!/(2rr!) different ways to pair the real
eigenvalues, there is a particular pairing scheme such that the matrix V of eigenvectors
and its conjugate coincide with the modal matrix U containing the eigenvectors of the un-
damped system: V= V̂=U. Consequently, the transformation matrices T1 =U and T2 =O,
and hence Eqs. (3.8) and (3.7) reduce to the coordinate transformation x(t) = Up(t) and
excitation g(t) = UT f(t), respectively, that are indicative of classical modal analysis. Of
course, reduction to classical modal analysis occurs regardless of eigenvector normaliza-
tion, with multiplicative constants appearing here and there if normalizations (2.42) and
(2.43) are not used.

3.5 Efficiency of the decoupling algorithm

The utility of an algorithm is often based not only on how well it performs a desired
task, but also on how efficiently it does so. To motivate the acceptance and widespread
use of the decoupling algorithm illustrated in Figure 2, its efficiency should be examined
and compared to that of direct numerical integration of system (1.1). Here we assume
that the system response x(t) and applied forcing f(t) are sufficiently smooth. Counting
the number of floating point operations (flops) executed by an algorithm is one way of
measuring its performance. For direct numerical integration, typically the n-degree-of-
freedom system (1.1) is transformed into the first-order form (3.1) and then discretized into
a difference equation with m time steps, from which the response x(t) can be solved for
through recursion (e.g., see [3, 52, 54]). An estimate of the flop count for this procedure
is [55–57]

N1 = 160n3 +16mn2 , (3.11)

where mÀ n in general. Using the decoupling algorithm outlined in Figure 2, the quadratic
eigenvalue problem (2.1) is solved, the decoupled system (1.2) is then constructed, the
response of each independent subsystem is obtained through direct numerical integration
via discretization, and finally the system response x(t) is recovered from transformation
(3.10). An estimate of the flop count for the decoupling algorithm is [55–57]

N2 = 213n3 + (10m+4)n2 +16mn . (3.12)

Figure 3 illustrates how the flop count estimates N1 and N2 scale with the size of system
(1.1) for m = 106 time instants. As shown, solution of system (1.1) using the decoupling
algorithm in Figure 2 is more efficient than by direct numerical integration, and this is true
so long as there are approximately m > 4000 time instants.
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Fig. 3 Comparison of the estimated flops for solution of a non-defective system
(1.1) with n degrees of freedom using direct numerical integration via dis-
cretization (N1) and using the decoupling algorithm (N2) illustrated in Fig-
ure 2. The number of time instants is m = 106. This diagram is adapted
from Figure 2 in [46].

3.6 An illustrative example

Here we provide a numerical example illustrating the decoupling procedure for a forced
non-defective system of the type (1.1). We focus on a system that has complex and real
eigenvalues to demonstrate the method by which a system with mixed damping charac-
teristics is decoupled. Refer to [46] for additional examples of decoupling non-defective
systems in forced motion.

Example 2

Suppose a non-classically damped, 2-degree-of-freedom system with mass matrix M =
I2 has damping matrix C, stiffness matrix K, and excitation f(t) given by

C =
[

3 −1

−1 4

]
, K =

[
2 −1

−1 5

]
, f(t)=

[
1

0

]
sint . (3.13)

Take as initial conditions x(0) = [1, 0]T and
.
x(0) = [1, −1]T. Solution of the associated

quadratic eigenvalue problem reveals that the system is non-defective and has mixed eigen-
values:

λ1 = λ 2 =−1.5+ i 0.87 , λ3 =−3 , λ4 =−1 , (3.14)
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for which the corresponding eigenvectors vi (i = 1, 2, 3, 4), normalized according to Eqs.
(2.42) and (2.43), are

v1 = v2 =
[

0.76e−i 45◦

−0.76e−i 165◦

]
, v3 =

[
0.82

−0.82

]
, v4 =

[
1.41

0

]
. (3.15)

By Eqs. (2.14) and (2.18),

Λ=
[
−1.5+ i 0.87 0

0 −3

]
, V =

[
0.76e−i 45◦ 0.82

−0.76e−i 165◦ −0.82

]
, (3.16)

where the associated conjugates are given by

Λ̂=
[
−1.5− i 0.87 0

0 −1

]
, V̂ =

[
0.76ei 45◦ 1.41

−0.76ei 165◦ 0

]
. (3.17)

It follows from Eq. (2.49) that

T1 =
[
−0.39 1.71

1.07 0.41

]
, T2 =

[
−0.62 0.30

0.23 −0.41

]
. (3.18)

From Eqs. (2.45), (3.16), and (3.17), the decoupled system’s coefficient matrices are

D =
[

3 0

0 4

]
, Ω= 3 I2 , (3.19)

implying that the degree of freedom p1(t) is underdamped with viscous damping factor
ζ1 = 0.87, while p2(t) is overdamped with ζ2 = 1.15. The corresponding initial conditions
are p(0) = [−1.47, 0.90]T and

.
p(0) = [2.54, 1.55]T from Eq. (3.9). The modal excitation

g(t) determined from Eq. (3.7) is depicted in Fig. 4. The response p(t) of the decoupled
system is illustrated in Fig. 5(a), and the system response x(t) recovered from transforma-
tion (3.10) is shown in Fig. 5(b). It can be verified that the solution by direct numerical
integration of the original system and that obtained by Eq. (3.10) are indeed the same.

29



0 2 4 6 8 10
−2

−1

0

1

2

g1(t)

g2(t)

t

g(t)

Fig. 4 Modal excitation components g j(t) ( j = 1, 2) for Example 2.
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Fig. 5 Forced response of Example 2. (a) Decoupled solutions p j(t) ( j = 1, 2).
(b) System responses x j(t).
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Chapter 4
Decoupling of Defective Systems in Free
Motion

In this chapter, we present a method by which an unforced defective system (1.1) (i.e.,
f(t) = 0) is decoupled into the form (1.2) with g(t) = 0 and the free response x(t) is re-
covered exactly from the decoupled system response p(t). We begin with a discussion of
the quadratic eigenvalue problem for defective systems in Section 4.1. Next, we develop
a generalized decoupling transformation in Section 4.2 via analysis in state space, and the
relationship between the state space representations of the original and decoupled systems
is briefly explored in Section 4.3. To streamline the introduction of new details, an as-
sumption regarding the defective eigenvalues of system (1.1) is made in Section 4.4 for
convenience. We illustrate how the generalized decoupling procedure outlined in Section
4.2 is applied to defective systems with complex eigenvalues in Section 4.5, and we fol-
low this with an application to the case of defective real eigenvalues in Section 4.6. While
the decoupling of systems in free motion with defective complex eigenvalues was briefly
touched upon in [45], we provide an alternative and more in-depth analysis here. We dis-
cuss in Section 4.7 how the decoupling procedure is affected when the constraint imposed
in Section 4.4 is relaxed. We conclude the chapter by demonstrating in Section 4.8 how the
decoupling methodology described here reduces to classical modal analysis when system
(1.1) is classically damped.
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4.1 The quadratic eigenvalue problem

In the event that system (1.1) is defective, solution of the quadratic eigenvalue problem
(2.1) reveals that some of the eigenvalues are repeated and do not have associated with
them a full complement of linearly independent eigenvectors. Such eigenvalues are termed
defective. As an example, an eigenvalue that is repeated more than n times is necessarily
defective. Let λk denote the kth eigenvalue of system (1.1), and suppose it is defective. The
number of times the defective eigenvalue λk is repeated is referred to as its algebraic multi-
plicity mk. Considering the quadratic matrix pencil Q(λ ) = Mλ

2 +Cλ +K, the geometric
multiplicity ρk of the defective eigenvalue λk is given by the dimension of the null space
of Q(λk), and hence it is equivalent to the number of linearly independent eigenvectors as-
sociated with λk. For obvious reasons, the geometric multiplicity cannot exceed either the
algebraic multiplicity mk or the system order n, whichever is smaller: ρk 6min(mk,n). The
associated ρk eigenvectors vk

j ( j = 1, 2, . . . , ρk) are supplemented with mk −ρk generalized
eigenvectors to form a complete set of vectors for λk, where the final eigenvector vk

ρk
and

the generalized eigenvectors constitute a Jordan chain of length mk −ρk +1 characterized
by the recursive scheme (see [50])

0 = Q(λk)vk
ρk

,

0 = Q(λk)vk
ρk+1 +Q′(λk)vk

ρk
,

0 = Q(λk)vk
ρk+2 +Q′(λk)vk

ρk+1 +
1
2

Q′′(λk)vk
ρk

,

...

0 = Q(λk)vk
mk

+Q′(λk)vk
mk−1 +

1
2

Q′′(λk)vk
mk−2 .

(4.1)

In the above sequence, Q′(λk) and Q′′(λk) denote the first and second derivatives of Q(λ ),
respectively, with respect to λ and evaluated at the defective eigenvalue λk:

Q′(λk)=
dQ(λ )

dλ

∣∣∣∣∣
λ =λk

= 2Mλk +C , (4.2)

Q′′(λk)=
d2Q(λ )

dλ
2

∣∣∣∣∣
λ =λk

= 2M . (4.3)

Regardless of the nature of the system’s eigenspectrum, the free response x(t) of system
(1.1) may be cast in the general matrix-vector form (e.g., see [48, 49])

x(t)= Vx eJxtc , (4.4)

for which Jx is an order 2n Jordan matrix with the system eigenvalues on the diagonal, Vx
is an n×2n matrix of the associated eigenvectors and generalized eigenvectors, and c is a
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2n-dimensional vector of coefficients determined from the initial conditions x(0) and
.
x(0).

Writing Eq. (4.4) and its derivative in the form of a state equation,[
x(t)
.
x(t)

]
=
[

Vx

Vx Jx

]
eJxtc = Sx eJxtc , (4.5)

where the order 2n matrix Sx is invertible since Jx and Vx constitute a Jordan pair. If system
(1.1) is non-defective, the Jordan matrix Jx is diagonal and every eigenvalue (repeated
or not) has a corresponding eigenvector, and thus Eq. (4.4) reduces to the eigensolution
summation (2.2). However, when system (1.1) is defective, the Jordan decomposition (4.4)
is the only available representation of the free response x(t).

4.2 A generalized state space representation

Defective or not, we assume that system (1.1) may be decoupled into the form (1.2)
such that the diagonal coefficient matrices D and Ω are always given by Eq. (2.45), where
the arrangement of eigenvalues in the diagonal matrix Λ and its conjugate Λ̂ is dependent
on the choice of eigensolution pairing. We have demonstrated previously that it is possible
to decouple a non-defective system (1.1) while preserving both the algebraic and geometric
multiplicities of the associated eigenvalues (i.e., the decoupling transformation is strictly
isospectral). If one insists that geometric multiplicities be preserved, then a defective sys-
tem (1.1) may only be partially decoupled [58]. Our main goal is to demonstrate how
defective systems can be decoupled, at any cost, by not requiring geometric multiplicities
to be preserved.

Since phase synchronization for a non-defective system (1.1) does not disturb the eigen-
solution coefficients, we shall construct the decoupling transformation for a defective sys-
tem (1.1) so that it also preserves these coefficients. Consequently, the modal response p(t)
may be cast in a matrix-vector form analogous to Eq. (4.4):

p(t)= Vp eJptc . (4.6)

Here, Jp is an order 2n Jordan matrix consisting of the system eigenvalues, but it may
not necessarily be the same as Jx. The matrix Jp has the same diagonal elements (i.e.,
the eigenvalues) as Jx, but the off-diagonal elements are generally different since we do
not impose preservation of geometric multiplicities. The matrix Vp is an n×2n matrix of
vectors that essentially pairs the eigensolutions according to a specified pairing scheme.
Expressing Eq. (4.6) and its derivative as a state equation,[

p(t)
.
p(t)

]
=
[

Vp

Vp Jp

]
eJptc = Sp eJptc , (4.7)
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where the order 2n matrix Sp will always be invertible so long as eigenvalues are paired to
preserve the second-order structure of the equation of motion (1.1). Combining Eqs. (4.5)
and (4.7), the response x(t) of system (1.1) is recovered from the modal response p(t) in
the state space according to[

x(t)
.
x(t)

]
=
[

Vx

Vx Jx

]
eJxt e−Jpt

[
Vp

Vp Jp

]−1[
p(t)
.
p(t)

]
= Sx eJxt e−Jpt S−1

p

[
p(t)
.
p(t)

]
, (4.8)

and thus the modal initial conditions p(0) and
.
p(0) are connected to the system initial

conditions x(0) and
.
x(0) by the state equation[

p(0)
.
p(0)

]
=
[

Vp

Vp Jp

][
Vx

Vx Jx

]−1[
x(0)
.
x(0)

]
. (4.9)

A generalized procedure for decoupling system (1.1) into the form (1.2) and recovering
the response x(t) from the decoupled solution p(t) via state space transformation is summa-
rized as follows. (i) Solve the quadratic eigenvalue problem (2.1) to determine the system
eigenvalues and eigenvectors. If system (1.1) is defective, additional analysis is required to
obtain generalized eigenvectors as needed. (ii) Based on the nature of the system’s eigen-
spectrum, specify an appropriate eigenvalue pairing scheme, and arrange the eigenvalues
accordingly in the diagonal matrix Λ and its conjugate Λ̂. (iii) Construct the matrices Jx
and Vx from the system eigenvalues, eigenvectors, and generalized eigenvectors. (iv) Form
the matrices Jp and Vp such that the solution p(t) of the decoupled system (1.2) satisfies the
specified pairing scheme. (v) Obtain the initial conditions p(0) and

.
p(0) for the decoupled

system via transformation (4.9). (vi) Construct the coefficient matrices D and Ω in accor-
dance with Eq. (2.45), and then determine the response p(t) of the decoupled system. (vii)
Retrieve the response x(t) from the decoupled solution p(t) using transformation (4.8).

The heart of the decoupling procedure described herein lies in steps (ii) through (iv).
To illustrate, we shall demonstrate how the above procedure relates to the decoupling of
a non-defective system (1.1) with mixed eigenvalues (2c complex and the remaining 2r
real) as presented in Chapter 2. Because the eigenvalues are generally semi-simple (i.e.,
they may be repeated but have corresponding eigenvectors), they may be paired as complex
and real quadratic conjugates to yield c underdamped and r overdamped (not necessarily
distinct) decoupled degrees of freedom, respectively. Consequently, the c complex and
r real eigenvalues and eigenvectors (that constitute the c complex conjugate and r real
quadratic conjugate pairs, respectively) may be arranged in some order in the matrices Λ
and V, respectively, in accordance with Eqs. (2.14) and (2.18). Comparing the summation
representation of the response x(t) given in Eq. (2.44) to the general form (4.4), it is clear
that

Jx =Λ⊕ Λ̂ , Vx =
[

V V̂
]
. (4.10)

34



The decoupled solutions pk(t) given by Eq. (2.46) imply that

Jp = Jx , Vp =
[

I I
]

(4.11)

in Eq. (4.6). As a result, Eqs. (4.8) and (4.9) reduce to the familiar transformations (2.47)
and (2.48), respectively, for a non-defective system (1.1). There currently does not exist
criteria for eigenvalue pairing when system (1.1) is defective. Put another way, it is not
clear how to form Λ and its conjugate Λ̂ when the eigenvalues are defective in order to
construct the coefficient matrices D and Ω that define the decoupled system (1.2). This
chapter presents a solution to this problem.

4.3 State transformation of the equation of motion

Suppose we cast an unforced system (1.1) and its decoupled form (1.2), respectively, in
the nonsymmetric state space realizations[ .

x(t)
..
x(t)

]
=
[

O I
−M−1K −M−1C

][
x(t)
.
x(t)

]
= A

[
x(t)
.
x(t)

]
, (4.12)

[ .
p(t)
..
p(t)

]
=
[

O I
−Ω −D

][
p(t)
.
p(t)

]
= B

[
p(t)
.
p(t)

]
. (4.13)

Since the eigenvalues of system (1.1) and their algebraic multiplicities are preserved during
decoupling, the nonsymmetric order 2n matrices A and B have the same eigenvalues (i.e.,
they are isospectral), but the corresponding geometric multiplicities may be different (that
is, A and B are not strictly isospectral), which is reflected in the associated Jordan matrices
Jx and Jp, respectively.

In the general case of a defective system (1.1), what is the real transformation that
converts its state space representation (4.12) into Eq. (4.13), from which the decoupled
system (1.2) is extracted? In other words, how are the matrices A and B related? To answer
this question, begin by writing the general state space transformation (4.8) in the more
compact form[

x(t)
.
x(t)

]
= Sx eJxt e−Jpt S−1

p

[
p(t)
.
p(t)

]
= S(t)

[
p(t)
.
p(t)

]
. (4.14)
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Substitute the state vector (4.14) and its derivative into Eq. (4.12) and then premultiply the
resulting equation by S−1(t) to obtain[ .

p(t)
..
p(t)

]
=
(

S−1(t)AS(t)−S−1(t)
.
S(t)

)[p(t)
.
p(t)

]
. (4.15)

Comparing Eqs. (4.13) and (4.15) reveals that the constant matrices A and B are related by
the time-dependent transformation

B = S−1(t)AS(t)−S−1(t)
.
S(t) . (4.16)

Time variation in Eq. (4.16) is a direct result of not requiring that geometric multiplici-
ties be preserved during decoupling. In other words, transformation (4.16) is time-varying
when the Jordan matrices Jx and Jp are not identical. In the event that Jx = Jp, the matrix
S(t) = S is independent of time t, and hence Eq. (4.16) reduces to the similarity transfor-
mation B = S−1AS. One situation for which this reduction occurs is when system (1.1) is
non-defective, in which case the constant matrix S is given by the order 2n transformation
in state equation (2.47). This similarity transformation was implied in Eqs. (3.1)-(3.3)
when decoupling of non-defective systems in forced vibration was addressed.

4.4 Restriction on the geometric multiplicity

To streamline our subsequent discussion of decoupling defective systems, it will be as-
sumed that every defective eigenvalue λk of system (1.1) has unit geometric multiplicity
(i.e., ρk = 1), and hence the length of its associated Jordan chain is given by the algebraic
multiplicity mk. In the case of defective complex eigenvalues, relaxation of this constraint
leads to a trivial modification of the decoupling procedure. When system (1.1) possesses
defective real eigenvalues, however, the situation is more delicate and requires some dis-
cussion.

4.5 Complex eigenvalues

Suppose that solution of the quadratic eigenvalue problem (2.1) reveals that the 2n
eigenvalues of system (1.1) are complex and defective. As the system matrices M, C, and
K are real, these eigenvalues necessarily form nc complex conjugate pairs, where 2nc < 2n.
Let mk (k = 1, 2, . . . , nc) be the algebraic multiplicity of the defective complex eigenvalue
λk. Then mk is also the algebraic multiplicity of the complex conjugate eigenvalue λ k so
that m1+·· ·+mnc

= n. Under the assumption of unit geometric multiplicity, each defective
eigenvalue λk has a single (complex) eigenvector vk

1 associated with it. Let Jk be a Jordan
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block of order mk formed from the defective eigenvalue λk:

Jk =



λk 1 0 · · · 0

0 λk 1 · · · 0
... . . . . . . . . . ...

0 · · · 0 λk 1

0 · · · 0 0 λk


. (4.17)

In addition, construct an n×mk matrix Vk whose columns contain the single eigenvector vk
1

and the mk −1 generalized eigenvectors that constitute the mk-long Jordan chain associated
with λk, and take ck to be an mk-dimensional vector consisting of the complex coefficients
ck

j ( j = 1, 2, . . . , mk) for the corresponding eigensolutions:

Vk =
[

vk
1 · · · vk

mk

]
, ck =

[
ck

1 · · · ck
mk

]T
. (4.18)

Expressing the general form (4.4) of the free response x(t) in terms of the Jordan pairs
(Jk,Vk) and their complex conjugates,

x(t)=
nc∑

k = 1

(
Vk eJktck +Vk eJktck

)
. (4.19)

If system (1.1) is non-defective and it possesses a complex eigenvalue λk repeated mk
times, then associated with λk are mk independent underdamped oscillators that execute
oscillatory free motion, governed by the equation of motion (1.2), with identical decay
rate αk and damped frequency ωk. The initial conditions, however, are generally differ-
ent because the eigensolution coefficients ck are typically not the same. In progressing to
defective oscillatory systems, each defective complex eigenvalue λk with algebraic multi-
plicity mk yields mk identical and independent underdamped systems subject to different
sets of initial conditions upon decoupling. Specifically, every decoupled coordinate pk

j(t)
( j = 1, 2, . . . , mk) corresponding to the defective eigenvalue λk satisfies the same equation
of motion

..
pk

j(t)− (λk +λ k)
.
pk

j(t)+λkλ k pk
j(t)= 0 , (4.20)

for which the solution pk
j(t) is of the form

pk
j(t)= ck

je
λkt +ck

je
λ kt . (4.21)
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The decoupled equation of motion (4.20) implies that the nc eigenvalues (that constitute
the nc complex conjugate pairs) may be arranged in the diagonal matrix Λ according to

Λ=
nc⊕

k = 1

Λk , Λk = λk Imk
. (4.22)

The (complex) conjugate of Λ immediately follows. Given Eq. (4.22) and its conjugate,
we may then construct the coefficient matrices D and Ω in accordance with Eq. (2.45) to
establish the decoupled system (1.2). Equation (4.22) permits us to write the Jordan block
(4.17) in the form Jk = Λk +Nk, where Nk is an order mk nilpotent matrix of 1’s on the
superdiagonal. Comparing Eqs. (4.4) and (4.19) reveals that

Jx = J⊕J , Vx =
[

V V
]
, (4.23)

where the order n block diagonal matrix J and the n× n matrix V of eigenvectors and
generalized eigenvectors are given by, respectively,

J =
nc⊕

k = 1

Jk =Λ+N , V =
[

V1 · · · Vnc

]
. (4.24)

Based on the arrangement of eigenvalues in Λ, the modal response vector p(t) has the
conformable structure

p(t)=
[

pT
1 (t) · · · pT

nc
(t)
]T

, pk(t)=
[

pk
1(t) · · · pk

mk
(t)
]T

, (4.25)

from which we deduce that

Jp =Λ⊕Λ , Vp =
[

I I
]

(4.26)

in order to satisfy the response (4.21) for each decoupled coordinate pk
j(t). In addition,

it can be shown, by exploiting the commutativity of Λk = λk Imk
and Nk in multiplication,

that eJxte−Jpt = eNt ⊕ eNt . Consequently, the state space formulation (4.8) for defective
oscillatory motion has the equivalent time-dependent representations[

x(t)
.
x(t)

]
=
[

V V
VJ VJ

][
eNt O
O eNt

][
I I
Λ Λ

]−1[
p(t)
.
p(t)

]

=
[

V V
VJ VJ

][
I I
Λ Λ

]−1[
eNt O
O eNt

][
p(t)
.
p(t)

]
.

(4.27)
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The modal and system initial conditions are related by the state equation[
p(0)
.
p(0)

]
=
[

I I
Λ Λ

][
V V
VJ VJ

]−1[
x(0)
.
x(0)

]
. (4.28)

As with non-defective systems, it is possible to isolate an order n transformation from the
state space representation (4.27) to directly give the response x(t):

x(t)= T1 eNt p(t)+T2 eNt .
p(t) , (4.29)

where the transformation matrices T1 and T2 are as defined in Eq. (2.27). Thus, upon
calculating the modal initial conditions p(0) and

.
p(0) from Eq. (4.28), the free response

pk
j(t) for each decoupled coordinate may be evaluated exactly as

pk
j(t)= eαkt

[
pk

j(0)cosωkt +
 .

pk
j(0)−αk pk

j(0)
ωk

sinωkt

]
, (4.30)

from which the response x(t) of system (1.1) can be obtained directly via transformation
(4.29). In addition to the quadratic eigenvalue problem (2.1), it becomes necessary to
evaluate the recursive scheme (4.1) to obtain all parameters required for retrieving the free
response x(t) from Eq. (4.29).

In summary, if the coupled n-degree-of-freedom system (1.1) is defective with nc pairs
of complex conjugate eigenvalues of respective algebraic multiplicity mk, then it may be
decoupled into n underdamped degrees of freedom corresponding to nc collections of mk
identical, underdamped single-degree-of-freedom oscillators subject to different initial con-
ditions. In the event that system (1.1) is non-defective, the nilpotent matrix N=O, and thus
the Jordan matrix J =Λ. As a result, Eqs. (4.27)-(4.29) reduce to transformations (2.23),
(2.24), and (2.26), respectively, associated with non-defective complex eigenvalues, as ex-
pected.

The partitioning of the order 2n transformation matrices in state equation (4.27) into
blocks of size n makes it convenient to look further into the mechanics of transformation
(4.16) and how it relates the state matrices A and B of the nonsymmetric state space realiza-
tions (4.12) and (4.13), respectively. Based on Eq. (4.27), the matrix S(t) and its derivative
are given by, respectively,

S(t)=
[

V V
VJ VJ

][
I I
Λ Λ

]−1[
eNt O
O eNt

]
= S0

[
eNt O
O eNt

]
, (4.31)

.
S(t)= S0

[
N O
O N

][
eNt O
O eNt

]
. (4.32)
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Inserting Eqs. (4.31) and (4.32) into transformation (4.16) yields

B =
[

e−Nt O
O e−Nt

]S−1
0 AS0 −

[
N O
O N

]
[

eNt O
O eNt

]
, (4.33)

where it can be verified that

S−1
0 AS0 =

[
N I
−Ω N−D

]
. (4.34)

Finally, by exploiting the commutativity in blockwise multiplication of the diagonal coef-
ficient matrices D and Ω with the matrix exponential eNt , it is straightforward to show that
the resulting matrix B is indeed the order 2n state matrix in Eq. (4.13).

4.6 Real eigenvalues

Suppose that solution of the quadratic eigenvalue problem (2.1) for system (1.1) yields
real eigenvalues λk that are repeated and defective. By Theorem 4.2 in [48], every eigen-
vector vk

j associated with a defective real eigenvalue λk satisfies

2vk
j · (Mvk

j)λk +vk
j · (Cvk

j)= 0 . (4.35)

However, the quadratic eigenvalue problem (2.1) implies that

λk =− vk
j · (Cvk

j)

2vk
j · (Mvk

j)
± i

√
4(vk

j · (Mvk
j))(v

k
j · (Kvk

j))− (vk
j · (Cvk

j))
2

2vk
j · (Mvk

j)
. (4.36)

Equations (4.35) and (4.36) are simultaneously satisfied when the discriminant of Eq.
(4.36) vanishes, resulting in

λk =−

√√√√ vk
j · (Kvk

j)

vk
j · (Mvk

j)
± i 0 = αk ± i 0 . (4.37)

Thus, defective real eigenvalues are such that ωk = 0, implying that these eigenvalues cor-
respond to the boundary between real vibration (complex eigenvalues) and imaginary vi-
bration (non-defective real eigenvalues). Consequently, we associate defective real eigen-
values with critical damping.

Critical damping in multi-degree-of-freedom systems, classically damped or not, has
been discussed extensively in the literature (e.g., see [59–64]). The common thread in
these works is that every defective real eigenvalue λk giving rise to a critically damped
degree of freedom has algebraic multiplicity mk = 2. However, there is generally no reason
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why the algebraic multiplicities of the defective real eigenvalues should be limited in this
way for a non-classically damped system. We place no such restriction on the algebraic
multiplicities. By a thorough examination, we shall demonstrate that decoupling of systems
with defective real eigenvalues is a delicate procedure that depends on the multiplicities of
these eigenvalues.

4.6.1 Critical damping in a single-degree-of-freedom system

Recall that a critically damped single-degree-of-freedom oscillator in free vibration
with natural frequency ω possesses a repeated and defective eigenvalue λ = −ω and is
governed by the equation of motion (e.g., see [3, 65])

..
x(t)+2ω

.
x(t)+ω

2x(t)= 0 . (4.38)

Expressing Eq. (4.38) and its derivative in a nonsymmetric first-order form,[ .
x(t)
..
x(t)

]
=
[

0 1

−ω
2 −2ω

][
x(t)
.
x(t)

]
= A

[
x(t)
.
x(t)

]
. (4.39)

The solution of the state equation (4.39) is given by[
x(t)
.
x(t)

]
= VeJtc , (4.40)

where V contains the eigenvector and generalized eigenvector of the state matrix A, J is the
Jordan normal form of A (i.e., J=V−1AV), and c is a vector of real coefficients determined
by the initial conditions x(0) and

.
x(0):

V =
[

1 0

−ω 1

]
, J =

[
−ω 1

0 −ω

]
, c =

[
c1

c2

]
. (4.41)

Extracting the first row of Eq. (4.40), the solution x(t) of the critically damped system
(4.38) has the equivalent representations

x(t)=
[

1 0
]

eJtc = (c1 +c2t)e−ωt . (4.42)

Upon applying initial conditions,

x(t)= [x(0)+ (
.
x(0)+ωx(0))t]e−ωt . (4.43)
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4.6.2 Even algebraic multiplicity

Consider the case in which system (1.1) possesses nr < 2n defective real eigenvalues
λk (k = 1, 2, . . . , nr), each of even algebraic multiplicity mk and unit geometric multiplicity,
such that m1+·· ·+mnr

= 2n. Construct an order mk Jordan block Jk, an n×mk matrix Vk of
the single eigenvector vk

1 and the mk −1 generalized eigenvectors, and an mk-long vector ck
of eigensolution coefficients according to Eqs. (4.17) and (4.18), respectively. In this case,
the free response x(t) may be expressed as

x(t)=
nr∑

k = 1

Vk eJktck . (4.44)

Since defective real eigenvalues in multi-degree-of-freedom systems correspond to critical
damping, we seek decoupled degrees of freedom governed by an equation of motion of the
form (4.38). Specifically, much like the case of defective complex conjugate eigenvalues,
associated with each defective real eigenvalue λk of even algebraic multiplicity mk are
mk = mk/2 identical, critically damped single-degree-of-freedom systems described by

..
pk

j(t)−2λk
.
pk

j(t)+λ
2
k pk

j(t)= 0 (4.45)

that are subject to different initial conditions pk
j(0) and

.
pk

j(0) ( j = 1, 2, . . . , mk). It follows
from the decoupled equation of motion (4.45) that the nr eigenvalues may be arranged in
Λ as

Λ=
nr⊕

k = 1

Λk , Λk = λk Imk
, (4.46)

where Λ is its own conjugate since the eigenvalues are identical in the case of critical
damping. The decoupled system (1.2) is subsequently established by using Eq. (4.46) to
form the coefficient matrices D and Ω according to Eq. (2.45). Next, from Eq. (4.44), we
deduce that

Jx =
nr⊕

k = 1

Jk , Vx =
[

V1 · · · Vnr

]
. (4.47)

As an extension of the single-degree-of-freedom response (4.42), the mk decoupled solu-
tions pk

j(t) associated with the equation of motion (4.45) for the defective eigenvalue λk
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may be arranged in a column vector as

pk(t)=


pk

1(t)

pk
2(t)

...

pk
mk
(t)

=


(ck

1 +ck
2t)eλkt

(ck
3 +ck

4t)eλkt

...

(ck
mk−1 +ck

mk
t)eλkt

 . (4.48)

Analogous to Eq. (4.42), we may cast Eq. (4.48) in the matrix-vector form

pk(t)= Ek eΓktck , (4.49)

for which the order mk Jordan matrix Γk and the mk×mk matrix Ek have the block diagonal
structures

Γk =
mk⊕

j = 1

[
λk 1

0 λk

]
, Ek =

mk⊕
j = 1

[
1 0

]
. (4.50)

Finally, with the modal response p(t) given by Eq. (4.25) (with nc = nr) so as to be con-
formable to Λ, it follows that

Jp =
nr⊕

k = 1

Γk , Vp =
nr⊕

k = 1

Ek . (4.51)

The free response x(t) of system (1.1) may then be obtained via Eq. (4.8) upon solution
of the decoupled system, where the modal initial conditions are given by Eq. (4.9) and the
response pk

j(t) of each critically damped degree of freedom is

pk
j(t)=

[
pk

j(0)+
( .

pk
j(0)−λk pk

j(0)
)

t
]

eλkt . (4.52)

Unlike the cases in which system (1.1) is non-defective or has defective complex eigen-
values only, the order 2n transformation matrices Sx and Sp generally do not simplify into
neatly partitioned matrices with order n blocks when the eigenvalues are real and defec-
tive, and the same is true of the matrix exponential product eJxte−Jpt . Consequently, it is
generally not possible to extract an order n transformation from the state equation (4.8)
in a concise form, such as in Eqs. (2.26) and (4.29), that recovers the free response x(t)
directly. However, in principle, one may isolate such a transformation from Eq. (4.8) using
a computer algebra system upon calculating Sx and Sp.

In the special case when every defective real eigenvalue λk has algebraic multiplicity
mk = 2, the Jordan matrices Jp and Jx are identical, and hence both algebraic and geomet-
ric multiplicities are preserved during decoupling. As a result, transformation (4.8) is no
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longer time-dependent because the matrix exponential product eJxte−Jpt simplifies to an or-
der 2n identity matrix: S(t) = S = Sx S−1

p . Moreover, when system (1.1) and its decoupled
form (1.2) are cast in the state space according to Eqs. (4.12) and (4.13), respectively, the
relationship (4.16) between the state matrices A and B reduces to a similarity transforma-
tion.

To summarize, when the coupled n-degree-of-freedom system (1.1) has nr defective real
eigenvalues λk with even algebraic multiplicities mk, it may be decoupled into n degrees of
freedom that are critically damped. Associated with each of the nr defective eigenvalues
are mk/2 identical, critically damped systems subject to different initial conditions.

4.6.3 Odd algebraic multiplicity with an unpaired distinct eigenvalue

Let the n-degree-of-freedom system (1.1) have all real eigenvalues, of which 2r+1 are
distinct. By the method of phase synchronization, 2r of these eigenvalues are paired as real
quadratic conjugates to generate r decoupled systems that are overdamped. What then is
to be done with the unpaired distinct eigenvalue? We shall refer to this eigenvalue as a free
eigenvalue and denote it by λ f . Since 2r+1 is odd, then 2(n−r)−1 is also odd. Assuming
each defective eigenvalue has unit geometric multiplicity, it is implied that, even if some
of the defective eigenvalues are of even algebraic multiplicity, at least one eigenvalue will
necessarily have odd algebraic multiplicity. In order to decouple a system of this nature,
we will need to introduce an additional, and rather peculiar, criterion for the pairing of
eigenvalues.

To streamline our presentation, we consider the case when r = 0 so that system (1.1)
has only one distinct eigenvalue, which is necessarily a free eigenvalue λ f . In addition,
we assume that the remaining defective real eigenvalues are identical, i.e., there is a single
defective real eigenvalue λ1 of algebraic multiplicity m1 = 2n−1. The corresponding free
response x(t) is given by

x(t)= V1 eJ1tc1 +v f eλ f tc f , (4.53)

where the order m1 Jordan block J1, the n×m1 matrix V1 of vectors, and the m1-dimensional
vector c1 of eigensolution coefficients are as detailed in Eqs. (4.17) and (4.18), respectively.
In Eq. (4.53), v f and c f denote the eigenvector and eigensolution coefficient, respectively,
associated with the free eigenvalue λ f . Let m̂1 = m1 −1 = 2(n−1). Similar to the case of
even algebraic multiplicity, the single defective real eigenvalue λ1 of odd algebraic multi-
plicity m1 = 2n−1 has associated with it m1 = m̂1/2 = n−1 decoupled degrees of freedom
p1

j(t) ( j = 1, 2, . . . , m1) that are critically damped and governed by the equation of motion
(4.45) with k = 1. Since system (1.1) is to be decoupled into n independent subsystems,
what is the remaining degree of freedom and its corresponding equation of motion?

The free eigenvalue λ f remains unpaired, and because the defective eigenvalue λ1 is
the only other eigenvalue, we must conclude that it is necessary to pair λ1 and λ f in order
to completely decouple system (1.1). Treating the eigenvalues λ1 and λ f as real quadratic
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conjugates, this unusual pairing implies that the remaining degree of freedom p∗(t) is ef-
fectively overdamped and governed by the equation of motion

..
p∗(t)− (λ1 +λ f )

.
p∗(t)+λ1λ f p∗(t)= 0 . (4.54)

Consequently, by Eqs. (4.45) (with k = 1) and (4.54), the eigenvalues may be arranged in
Λ and its conjugate Λ̂ according to

Λ= λ1 Im1
⊕λ1 , Λ̂= λ1 Im1

⊕λ f , (4.55)

from which the coefficient matrices D and Ω defining the decoupled system (1.2) may be
determined via Eq. (2.45). A comparison of Eqs. (4.6) and (4.53) reveals that

Jx = J1 ⊕λ f , Vx =
[

V1 v f

]
. (4.56)

With the assistance of Eqs. (4.48)-(4.50), it is straightforward to show that the responses
p1

j(t) for the m1 critically damped degrees of freedom have the equivalent representations

p1(t)=


p1

1(t)

p1
2(t)

...

p1
m1
(t)

=


(c1

1 +c1
2t)eλ1t

(c1
3 +c1

4t)eλ1t

...

(c1
m̂1−1 +c1

m̂1
t)eλ1t

= E1 eΓ1tc1 , (4.57)

for which the matrices Γ1 and E1 are

Γ1 =
m1⊕
j = 1

[
λ1 1

0 λ1

]
, E1 =

m1⊕
j = 1

[
1 0

]
. (4.58)

The response p∗(t) for the overdamped degree of freedom corresponding to the equation
of motion (4.54) is given by

p∗(t)= c f eλ f t +c1
m1

eλ1t . (4.59)

It is important to note that the eigensolution coefficient associated with the defective eigen-
value λ1 is the coefficient c1

m1
that remains after having established m1 critically damped

systems. This ensures that the initial conditions for p∗(t) are independent of those for the
critically damped solutions p1

j(t). When initial conditions are applied to Eq. (4.59), the
response p∗(t) has the form

p∗(t)=
λ f p∗(0)− .

p∗(0)
λ f −λ1

eλ1t −
λ1 p∗(0)− .

p∗(0)
λ f −λ1

eλ f t . (4.60)
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Structuring the modal response vector as

p(t)=
[

pT
1 (t) p∗(t)

]T
(4.61)

to be conformable to Λ, it is implied by Eqs. (4.57) and (4.59) that

Jp = Γ1 ⊕λ1 ⊕λ f , Vp = E1 ⊕
[

1 1
]
. (4.62)

We are now in a position to solve the decoupled system and then retrieve the free response
x(t) of system (1.1) via transformation (4.8).

In summary, if the coupled n-degree-of-freedom system (1.1) possesses a free eigen-
value λ f and a single defective real eigenvalue λ1 with odd algebraic multiplicity m1 =
2n− 1 (i.e., r = 0), then the system may be decoupled into (m1 − 1)/2 = n− 1 identical,
independent critically damped oscillators subject to different initial conditions and an over-
damped degree of freedom formed by pairing the defective eigenvalue λ1 with λ f . In the
general case when r > 0, the 2r distinct real eigenvalues of system (1.1) are arranged into
r real quadratic conjugate pairs, and thus the matrices Λ, Λ̂, Jx, Vx, Jp, and Vp are con-
structed blockwise by a direct sum of Eqs. (4.55), (4.56), and (4.62) with their respective
non-defective counterparts. Lastly, since the pairing of non-defective real eigenvalues as
real quadratic conjugates is not unique, it should be no surprise that the free eigenvalue λ f
is also not unique, and hence the coefficient matrices D and Ω of the decoupled system
may take on a variety of forms.

Is it possible to decouple a system of the type described in this section by leaving the
free eigenvalue λ f unpaired and have Eq. (4.8) remain a valid transformation to deter-
mine the system’s free response x(t)? A short answer to this question is “no” because
the second-order structure inherent in transformation (4.8), based on eigenvalue pairing,
would otherwise be violated. To elaborate upon this, replace the matrix

[
1
∣∣1] in Vp from

Eq. (4.62) with
[
0
∣∣1] so that the free eigenvalue λ f is no longer paired with the defective

real eigenvalue λ1. It can be verified that the order 2n transformation matrix Sp is singular
when Vp has this structure, and hence the free response x(t) of system (1.1) may not be
recovered from Eq. (4.8). Indeed, since it is implied from Eq. (4.59) that the decoupled
solution p∗(t) would correspond to a massless first-order system in this case, system (1.1)
is decoupled not into the form (1.2), but rather

A2
..
p(t)+A1

.
p(t)+A0 p(t)= 0 , (4.63)

A2 = Im1
⊕0 , A1 =−(2λ1 Im1

⊕λ f ) , A0 = (λ1)
2 Im1

⊕λ
2
f . (4.64)

From Eq. (4.64), the leading coefficient matrix A2 is singular, and hence the decoupled
system (4.63) has an infinite eigenvalue (e.g., see pg. 255 of [50]). Since the decoupling
transformation is eigenvalue-preserving, this implies that the coupled system (1.1) must
also have an infinite eigenvalue, but we know that is not the case because the mass matrix
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M is positive definite. Thus, it is not surprising that the transformation matrix Sp is singular
in this situation because of an apparent disconnect between the spectrum of the coupled
system (1.1) and that of the decoupled form (4.63).

4.6.4 Odd algebraic multiplicity

Suppose system (1.1) possesses an even number nr < 2n of defective real eigenvalues
λk (k = 1, 2, . . . , nr), each of odd algebraic multiplicity mk and unit geometric multiplicity,
such that m1 + ·· · +mnr

= 2n. We wish to show that a system of the type described here
may be decoupled in a manner similar to that in Section 4.6.3, namely by pairing particular
eigenvalues in an appropriate (though somewhat peculiar) manner.

To streamline our discussion, we shall consider the case when system (1.1) has nr = 2
defective eigenvalues λ1 and λ2 with algebraic multiplicities m1 and m2, respectively, where
m1 6=m2 in general. The free response x(t) may be cast in the form of Eq. (4.44) with nr = 2
and where Jk (k = 1, 2), Vk, and ck have the structure (4.17) and (4.18), respectively. Since
the defective real eigenvalues λ1 and λ2 have odd algebraic multiplicity, decoupling begins
in essentially the same way as in the procedure outlined in Section 4.6.3. That is to say,
associated with each defective eigenvalue λk are mk = m̂k/2= (mk−1)/2 critically damped,
decoupled coordinates pk

j(t) ( j = 1, 2, . . . , mk) governed by the equation of motion (4.45).
The independent critically damped systems (4.45) corresponding to λ1 and λ2 account
for m1 +m2 = n− 1 degrees of freedom of the decoupled system (1.2). What about the
remaining degree of freedom?

Because the defective eigenvalues λ1 and λ2 are the only eigenvalues, we have no choice
but to pair them if complete decoupling is to be achieved. As λ1 6= λ2, treat the eigenval-
ues as real quadratic conjugates so that their pairing generates an effectively overdamped
degree of freedom p∗(t) governed by the equation of motion

..
p∗(t)− (λ1 +λ2)

.
p∗(t)+λ1λ2 p∗(t)= 0 . (4.65)

It follows from Eqs. (4.45) and (4.65) that we may form Λ and its conjugate Λ̂ as

Λ= λ1 Im1
⊕λ1 ⊕λ2 Im2

, Λ̂= λ1 Im1
⊕λ2 ⊕λ2 Im2

, (4.66)

which then allows us to construct the coefficient matrices D and Ω that define the decoupled
system (1.2) using Eq. (2.45). The free response x(t) is governed by Eq. (4.44) with nr = 2,
and thus the matrices Jx and Vx are formed according to Eq. (4.47) with nr = 2. Analogous
to Eqs. (4.48) and (4.49), the mk critically damped responses pk

j(t) corresponding to each
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defective eigenvalue λk may be cast in the compact matrix-vector form

pk(t)=


pk

1(t)

pk
2(t)

...

pk
mk
(t)

=


(ck

1 +ck
2t)eλkt

(ck
3 +ck

4t)eλkt

...

(ck
m̂k−1 +ck

m̂k
t)eλkt

= Ek eΓktck , (4.67)

where the matrices Γk and Ek are as given in Eq. (4.50). The solution p∗(t) of the over-
damped system governed by the equation of motion (4.65) is of the form

p∗(t)= c1
m1

eλ1t +c2
m2

eλ2t . (4.68)

The eigensolution coefficients c1
m1

and c2
m2

associated with the defective eigenvalues λ1
and λ2, respectively, are those coefficients that do not correspond to the m1 +m2 critically
damped systems, and thus the initial conditions for p∗(t) are independent of those for the
critically damped solutions pk

j(t). Upon applying initial conditions to Eq. (4.68),

p∗(t)=
λ2 p∗(0)− .

p∗(0)
λ2 −λ1

eλ1t −
λ1 p∗(0)− .

p∗(0)
λ2 −λ1

eλ2t . (4.69)

Based on the structure of Λ, take the modal response vector p(t) as

p(t)=
[

pT
1 (t) p∗(t) pT

2 (t)
]T

, (4.70)

and hence Eqs. (4.67) and (4.70) imply that

Jp = Γ1 ⊕λ1 ⊕Γ2 ⊕λ2 , Vp =
[

E1 ⊕1⊕E2 em
m1+1

]
, (4.71)

where el
i denotes a unit vector of length l that has 1 as its ith element and 0 for the rest, and

m = (m1 +m2)/2. The decoupled system can now be readily solved, and the free response
x(t) of system (1.1) may be recovered from transformation (4.8).

To summarize, if the coupled system (1.1) has two defective real eigenvalues λ1 and
λ2 with odd algebraic multiplicities m1 and m2, respectively, it may be decoupled into
(m1 −1)/2 and (m2 −1)/2 identical, critically damped degrees of freedom with different
initial conditions and one degree of freedom that is overdamped, formed by pairing the
defective eigenvalues λ1 and λ2. In the general case of even nr < 2n, the matrices Λ, Λ̂,
Jp, and Vp are constructed by a direct sum of nr/2 sub-matrices of the form (4.66) and
(4.71), respectively. Likewise, the modal response vector p(t) is partitioned conformably
with Λ into nr/2 sub-vectors with the structure (4.70). The matrices Jx and Vx are still
given by Eq. (4.47). The decoupled system is not unique in this case since the pairing of
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the defective eigenvalues as real quadratic conjugates is not unique.

4.7 Relaxation of the unit geometric multiplicity constraint

How are the decoupling procedures outlined in the previous sections affected when the
unit geometric multiplicity restriction on the defective eigenvalues is lifted? In the case of
complex eigenvalues, easing of this constraint is a non-issue since the complex eigenvalues
and their associated eigenvectors must always occur in complex conjugate pairs for real
system matrices M, C, and K. Indeed, transformations (4.27) and (4.29) remain valid
when some defective complex eigenvalues λk have ρk > 1 eigenvectors so long as the order
mk Jordan block Jk given in Eq. (4.17) is replaced with

Jk =



λkIρk−1 0 0 · · · 0

0 λk 1 · · · 0
... . . . . . . . . . ...

0 · · · 0 λk 1

0 · · · 0 0 λk


= λk Imk

+Nk =Λk +Nk . (4.72)

Note that the nilpotent matrix Nk is redefined by Eq. (4.72).

When there are defective real eigenvalues λk with geometric multiplicity ρk > 1, de-
coupling becomes an even more delicate task than described earlier, and this statement is
best demonstrated through a simple example. Suppose system (1.1) has a lone distinct real
eigenvalue, necessarily making it a free eigenvalue λ f , and a single defective real eigen-
value λ1 of odd algebraic multiplicity m1 and geometric multiplicity ρ1 = 2 (i.e., the defec-
tive eigenvalue has two associated eigenvectors). In this case, the methodology presented
in Section 4.6.3 fails to decouple system (1.1) since the first eigenvector v1

1 for λ1 does not
initiate a Jordan chain, and hence its corresponding eigensolution should be treated as if
it has been generated from a distinct eigenvalue. Consequently, the defective eigenvalue
λ1, with associated eigenvector v1

1, and the free eigenvalue λ f are paired as real quadratic
conjugates to yield an overdamped degree of freedom upon decoupling. Contrast this with
the case of unit geometric multiplicity: an overdamped degree of freedom is formed from
pairing λ1 and λ f , but associated with λ1 is the generalized eigenvector v1

m1
. Lastly, since

the Jordan chain for λ1 is of even length m1 −1, the decoupling procedure in Section 4.6.2
may be utilized to generate (m1 −1)/2 identical, critically damped degrees of freedom.

Of course, there are many other combinations of eigenvalues and their multiplicities to
consider, but this example sufficiently illustrates the cautious manner in which decoupling
should be approached for systems with defective real eigenvalues of arbitrary (yet permis-
sible) geometric multiplicity. Moreover, the point to take from this example is that, with
careful attention to the pairing of eigenvalues, decoupling is still possible using the basic
procedures outlined in this chapter.

49



4.8 Reduction to classical modal analysis

As one would expect, transformation (4.8) reduces to classical modal analysis in the
event that system (1.1) is classically damped. Because classical modal analysis constitutes
a strictly isospectral transformation, the Jordan matrices Jx and Jp are identical, simplifying
the matrix exponential product eJxte−Jpt to an order 2n identity matrix, which leaves the
transformation Sx S−1

p . If the system eigenvectors are normalized in accordance with Eqs.
(2.42) and (2.43), then there exists a particular pairing of the non-defective real eigenvalues
such that Sx S−1

p = U⊕U, and thus the upper half of the state equation (4.8) yields the
classical modal transformation x(t)=Up(t). Multiplicative constants appear here and there
if normalizations (2.42) and (2.43) are not used. Moreover, the coefficient matrices D and
Ω defined by Eq. (2.45) are the same as those given by classical modal analysis.

4.9 Illustrative examples

The following four numerical examples illustrate how unforced defective systems of the
form (1.1) are decoupled by the methodologies provided in this chapter. The first example
(Example 3) demonstrates the decoupling procedure for a system with defective complex
conjugate eigenvalues, while the remaining examples focus on decoupling systems with
defective real eigenvalues. The defective eigenvalues of the first three examples are all of
unit geometric multiplicity. The last example (Example 6) serves to clarify how a system
that has a defective (real) eigenvalue with geometric multiplicity greater than unity may be
decoupled.

Example 3

A non-classically damped, 2-degree-of-freedom system has mass matrix M = I2, and
its damping matrix C and stiffness matrix K are given by

C =
[

2 −1

−1 2

]
, K =

[
2 −1

−1 5

]
. (4.73)

The initial conditions are prescribed as x(0)= [−1, 1]T and
.
x(0)= [−2, 2]T. Solving the as-

sociated quadratic eigenvalue problem, we find that there is nc = 1 pair of defective complex
conjugate eigenvalues with algebraic multiplicity m1 = 2 and unit geometric multiplicity:

λ1 =−1+ i
p

2 , v1
1 =
[
−i

p
2

1

]
, v1

2 =
[

3

0

]
. (4.74)

The sole eigenvector v1
1 has not been subjected to any normalization scheme. Since the

eigenvalues are all complex and defective, the system may be decoupled by the methodol-
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ogy presented in Section 4.5. From Eq. (4.22), we have

Λ= (−1+ i
p

2) I2 . (4.75)

By Eqs. (4.17), (4.18), and (4.24),

J =
[
−1+ i

p
2 1

0 −1+ i
p

2

]
, V =

[
−i

p
2 3

1 0

]
, N =

[
0 1

0 0

]
. (4.76)

Evaluating Eq. (2.27) yields

T1 =
[
−1 3

1 0

]
, T2 =

[
−1 0

0 0

]
. (4.77)

Using Eqs. (2.45) and (4.75) to construct the decoupled system’s coefficient matrices,

D = 2 I2 , Ω= 3 I2 . (4.78)

Equation (4.78) implies that the decoupled system consists of m1 = 2 identical, under-
damped single-degree-of-freedom oscillators with viscous damping factor ζ1 = ζ2 = 0.58.
However, the initial conditions for each decoupled coordinate p1

j(t) = p j(t) ( j = 1, 2) are
different: p(0) = [1, 0.5]T and

.
p(0) = [1.5, −3]T from Eq. (4.28). The decoupled solution

p(t) is illustrated in Fig. 6(a), and the system free response x(t) obtained via transforma-
tion (4.29) is shown in Fig. 6(b). It can be verified that the solution by direct numerical
integration of the original system and that obtained by Eq. (4.29) are indeed the same.
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Fig. 6 Free response of Example 3. (a) Decoupled solutions p j(t) ( j = 1, 2).
(b) System responses x j(t).
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Example 4

Consider a non-classically damped, 2-degree-of-freedom system with mass matrix M=
I2 and for which the damping matrix C and stiffness matrix K are given by

C =
[

2 −1

−1 2

]
, K =

[
1 −1

−1 2

]
. (4.79)

Let the initial conditions be x(0) = [1, −1]T and
.
x(0) = [−2, −1]T. Solution of the associ-

ated quadratic eigenvalue problem reveals that the system possesses a single eigenvalue,
a defective real eigenvalue λ1 = −1 with algebraic multiplicity m1 = 4 and unit geometric
multiplicity. The corresponding eigenvector v1

1 and generalized eigenvectors v1
i (i= 2, 3, 4)

are

v1
1 =
[

1

0

]
, v1

2 =
[

1

1

]
, v1

3 =
[

0

1

]
, v1

4 =
[

1

−1

]
. (4.80)

The sole eigenvector v1
1 has not been subjected to any normalization scheme. Since the al-

gebraic multiplicity of the single eigenvalue λ1 is even, we follow the decoupling procedure
presented in Section 4.6.2 with nr = 1. As m1 = 2, Eq. (4.46) yields

Λ= Λ̂=−I2 . (4.81)

By Eqs. (4.17), (4.18), and (4.47),

Jx =


−1 1 0 0

0 −1 1 0

0 0 −1 1

0 0 0 −1

 , Vx =
[

1 1 0 1

0 1 1 −1

]
, (4.82)

and it follows from Eqs. (4.50) and (4.51) that

Jp =


−1 1 0 0

0 −1 0 0

0 0 −1 1

0 0 0 −1

 , Vp =
[

1 0 0 0

0 0 1 0

]
. (4.83)

From Eqs. (2.45) and (4.81), the coefficient matrices of the decoupled system are

D = 2 I2 , Ω= I2 . (4.84)
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Thus, the decoupled system is composed of m1 = 2 identical, critically damped single-
degree-of-freedom oscillators. The initial conditions for the decoupled coordinates p1

j(t)=
p j(t) ( j = 1, 2) are p(0)= [0, −2]T and

.
p(0)= [1, 2]T from Eq. (4.9). The response p(t) of

the decoupled system is illustrated in Fig. 7(a), and the system free response x(t) recovered
from transformation (4.8) is shown in Fig. 7(b). It can be verified that the solution by direct
numerical integration of the original system and that obtained by Eq. (4.8) are indeed the
same.
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Fig. 7 Free response of Example 4. (a) Decoupled solutions p j(t) ( j = 1, 2).
(b) System responses x j(t).

Example 5

Suppose a non-classically damped, 2-degree-of-freedom system with mass matrix M =
I2 has damping matrix C and stiffness matrix K given by

C =
[

2 −1

−1 3

]
, K =

[
1 −1

−1 3

]
. (4.85)

The initial conditions are prescribed as x(0) = [−1, 1]T and
.
x(0) = [2, 1]T. Solving the as-

sociated quadratic eigenvalue problem, we find that the system has a defective real eigen-
value λ1 = −1 with algebraic multiplicity m1 = 3 and unit geometric multiplicity whose
non-normalized eigenvector v1

1 and generalized eigenvectors v1
i (i = 2, 3) are

v1
1 =
[

1

0

]
, v1

2 =
[

0

1

]
, v1

3 =
[

0.5

−1

]
. (4.86)

The remaining eigenvalue is necessarily real and unpaired, and hence it is a free eigenvalue:
λ f = −2, v f = [1, −1]T. This system may be decoupled using the procedure outlined in
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Section 4.6.3. Since m̂1 = 2 and m1 = 1, Eq. (4.55) implies that

Λ=−I2 , Λ̂=
[
−1 0

0 −2

]
. (4.87)

From Eqs. (4.17), (4.18), and (4.56), we have

Jx =


−1 1 0 0

0 −1 1 0

0 0 −1 0

0 0 0 −2

 , Vx =
[

1 0 0.5 1

0 1 −1 −1

]
, (4.88)

while Eqs. (4.58) and (4.62) yield

Jp =


−1 1 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −2

 , Vp =
[

1 0 0 0

0 0 1 1

]
. (4.89)

By Eqs. (2.45) and (4.87), the decoupled system’s coefficient matrices are

D =
[

2 0

0 3

]
, Ω=

[
1 0

0 2

]
. (4.90)

The first row of the decoupled system defined by Eq. (4.90) represents the m1 = 1 critically
damped degree of freedom p1

1(t)= p1(t) associated with the defective eigenvalue λ1, while
the second row corresponds to the overdamped degree of freedom p∗(t) = p2(t) generated
by pairing λ1 with the free eigenvalue λ f . Using Eq. (4.9), the modal initial conditions are
p(0)= [−3, 2]T and

.
p(0)= [6, −4]T. The decoupled solution p(t) is illustrated in Fig. 8(a),

and the system free response x(t) obtained via transformation (4.8) is shown in Fig. 8(b). It
can be verified that the solution by direct numerical integration of the original system and
that obtained by Eq. (4.8) are indeed the same.

Example 6

A non-classically damped, 3-degree-of-freedom system has mass matrix M = I3, and
its damping matrix C and stiffness matrix K are given by

C =

 4 −1 0

−1 2 −1

0 −1 2

 , K =

 3 −1 0

−1 2 −1

0 −1 1

 . (4.91)

54



0 2 4 6 8 10
−3

−2

−1

0

1

2

p1(t)

p2(t)

(a)

t

p(t)

0 2 4 6 8 10
−1.5

−1

−0.5

0

0.5

1

1.5

x1(t)

x2(t)

(b)

t

x(t)

Fig. 8 Free response of Example 5. (a) Decoupled solutions p j(t) ( j = 1, 2).
(b) System responses x j(t).

Take as initial conditions x(0)= [1, 0, −1]T and
.
x(0)= [2, 1, 0]T. Solution of the associated

quadratic eigenvalue problem reveals that the system possesses a defective real eigenvalue
λ1 = −1 with algebraic multiplicity m1 = 4 and geometric multiplicity ρ1 = 2. The corre-
sponding eigenvectors v1

i (i = 1, 2) and generalized eigenvectors v1
j ( j = 3, 4) are

v1
1 =

1

0

0

 , v1
2 =

0

0

2

 , v1
3 =

 1

2

−2

 , v1
4 =

 0

−1

0

 . (4.92)

The remaining eigenvalues are real and distinct:

λ2 =−3.41 , v2 =

 1

−0.41

0.17

 , λ3 =−0.59 , v3 =

0.17

0.41

1

 . (4.93)

The eigenvectors v1
i , v2, and v3 have not been subjected to any normalization scheme. To

decouple this system with mixed defective and non-defective real eigenvalues, the matrices
Jx, Vx, etc., will need to be constructed blockwise via direct sum using the matrix structures
(4.10) and (4.11) at the end of Section 4.2 for non-defective eigenvalues and those presented
in Section 4.6 for defective real eigenvalues. However, while the algebraic multiplicity of
the defective real eigenvalue λ1 is even, we may not employ the decoupling methodology
of Section 4.6.2 because λ1 has more than one associated eigenvector. Instead, proceed
with decoupling as follows. Pair the defective eigenvalue λ1 with corresponding eigen-
vector v1

1 and, say, the distinct eigenvalue λ3 as real quadratic conjugates so as to yield an
overdamped degree of freedom. Of course, one may pair λ1 with λ2 instead, if preferred.
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The remaining distinct eigenvalue λ2 necessarily becomes a free eigenvalue (i.e., λ f = λ2).
Moreover, the Jordan chain for λ1 is of odd length m1 −1 = 3, and thus we may use the
procedure outlined in Section 4.6.3 to generate (m1 −2)/2 = 1 critically damped degree of
freedom associated with λ1 and an overdamped degree of freedom by pairing λ1 with λ2.
To implement this, use Eqs. (2.14) and (4.55) to construct

Λ=−I3 , Λ̂=

−1 0 0

0 −3.41 0

0 0 −0.59

 . (4.94)

With the assistance of Eqs. (4.10) and (4.56),

Jx =



−1 1 0 0 0 0

0 −1 1 0 0 0

0 0 −1 0 0 0

0 0 0 −3.41 0 0

0 0 0 0 −1 0

0 0 0 0 0 −0.59


, (4.95)

Vx =

 0 1 0 1 1 0.17

0 2 −1 −0.41 0 0.41

2 −2 0 0.17 0 1

 . (4.96)

In addition, Eqs. (4.11), (4.58), and (4.62) imply that

Jp =



−1 1 0 0 0 0

0 −1 0 0 0 0

0 0 −1 0 0 0

0 0 0 −3.41 0 0

0 0 0 0 −1 0

0 0 0 0 0 −0.59


, (4.97)

Vp =

1 0 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

 . (4.98)
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From Eqs. (2.45) and (4.94), the decoupled system’s coefficient matrices are given by

D =

2 0 0

0 4.41 0

0 0 1.59

 , Ω=

1 0 0

0 3.41 0

0 0 0.59

 . (4.99)

To summarize, the decoupled system is composed of (i) a single critically damped degree
of freedom p1

1(t) = p1(t) (corresponding to the first row of Eq. (4.99)) associated with the
defective eigenvalue λ1; (ii) an overdamped degree of freedom p∗(t) = p2(t) (second row
of Eq. (4.99)) generated by pairing λ1 with the non-defective eigenvalue λ2; and (iii) an
overdamped degree of freedom p3(t) (third row of Eq. (4.99)) obtained by pairing λ1, with
associated eigenvector v1

1, and the non-defective eigenvalue λ3. From Eq. (4.9), the modal
initial conditions are p(0)= [0.5, 0.15, 0.65]T and

.
p(0)= [0, 1.91, −1]T. The response p(t)

of the decoupled system is illustrated in Fig. 9(a), and the system response x(t) recovered
from transformation (4.8) is shown in Fig. 9(b). It can be verified that the solution by direct
numerical integration of the original system and that obtained by Eq. (4.8) are indeed the
same.

0 2 4 6 8 10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

p1(t)

p2(t)p3(t)

(a)

t

p(t)

0 2 4 6 8 10
−1.5

−1

−0.5

0

0.5

1

1.5

x1(t)

x2(t)

x3(t)

(b)

t

x(t)

Fig. 9 Free response of Example 6. (a) Decoupled solutions p j(t) ( j = 1, 2, 3).
(b) System responses x j(t).
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Chapter 5
Decoupling of Defective Systems in
Forced Motion

This chapter is concerned with (i) decoupling a forced defective system (1.1) into the
form (1.2) and (ii) recovering the forced response x(t) exactly from the decoupled system
response p(t). We begin in Section 5.1 by developing a generalized decoupling transfor-
mation in the state space that relates the decoupled solution p(t) to the response x(t) of any
system of the type (1.1). The relationship between the applied excitation f(t) and the modal
forcing g(t) is also established. We show in Section 5.2 that an explicit decoupling trans-
formation exists in the configuration space when the eigenvalues are complex. The chapter
closes by illustrating in Section 5.3 how the methods presented here reduce to classical
modal analysis if the coupled system (1.1) is classically damped.

5.1 A generalized state space representation

In general, the spectrum of a defective system (1.1) may contain any combination of
complex conjugate and real eigenvalues that are defective or not. With the assistance of
previous work on forced non-defective systems and defective systems in free motion, de-
coupling of forced vibration in this general setting is a fairly straightforward task. Begin
by casting the equation of motion (1.1) in the first-order formulation[ .

x(t)
..
x(t)

]
= A

[
x(t)
.
x(t)

]
+
[

O
M−1

]
f(t) , (5.1)
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where the order 2n state matrix A is the same nonsymmetric matrix defined in Eq. (4.12).
As before, we assume that the coefficient matrices D and Ω of the decoupled system (1.2)
in free vibration remain unchanged upon application of an excitation f(t). Consequently,
we define a generalized coordinate transformation for forced vibration based on the free
response’s time-dependent decoupling transformation (4.14):[

x(t)
.
x(t)

]
= Sx eJxt e−Jpt S−1

p

[
p1(t)

p2(t)

]
= S(t)

[
p1(t)

p2(t)

]
. (5.2)

It remains to be seen how the transformed coordinates p1(t) and p2(t) are related to the
response p(t) of the decoupled system (1.2) and its corresponding velocity

.
p(t). In the

usual manner, we next apply the coordinate transformation (5.2) to the first-order equation
(5.1) and premultiply the resulting state equation by S−1(t), which gives[ .

p1(t)
.
p2(t)

]
= B

[
p1(t)

p2(t)

]
+S−1(t)

[
O

M−1

]
f(t)=

[
O I
−Ω −D

][
p1(t)

p2(t)

]
+
[

g1(t)

g2(t)

]
, (5.3)

where the state matrix B is related to A by the time-varying transformation (4.16) and the
transformed excitations g1(t) and g2(t) are determined from[

g1(t)

g2(t)

]
=
[

Vp

Vp Jp

]
eJpt e−Jxt

[
Vx

Vx Jx

]−1[
O

M−1

]
f(t) . (5.4)

The upper and lower halves of state equation (5.3) are, respectively,

.
p1(t)−p2(t)= g1(t) , (5.5)

.
p2(t)+Dp2(t)+Ωp1(t)= g2(t) . (5.6)

By eliminating p2(t) from Eq. (5.6) using Eq. (5.5), we obtain

..
p1(t)+D

.
p1(t)+Ωp1(t)= Dg1(t)+

.
g1(t)+g2(t) , (5.7)

which, by comparing it to system (1.2), implies that p1(t) can be identified with the decou-
pled response p(t) and the modal excitation g(t) is given by

g(t)= Dg1(t)+
.
g1(t)+g2(t) . (5.8)

Lastly, setting p1(t) = p(t) in Eq. (5.5) and combining it with Eq. (5.2) yields the gen-
eralized state space transformation that relates the decoupled solution p(t) to the system
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response x(t) in forced vibration:[
x(t)
.
x(t)

]
=
[

Vx

Vx Jx

]
eJxt e−Jpt

[
Vp

Vp Jp

]−1[
p(t)

.
p(t)−g1(t)

]
. (5.9)

The modal initial conditions p(0) and
.
p(0) are connected to the system initial conditions

x(0) and
.
x(0) by the state equation[

p(0)
.
p(0)

]
=
[

Vp

Vp Jp

][
Vx

Vx Jx

]−1[
x(0)
.
x(0)

]
+
[

0
g1(0)

]
. (5.10)

Thus, whether the eigenvalues of system (1.1) are defective or non-defective, complex
or real, the system’s forced response x(t) may be recovered via transformation (5.9) upon
solution of the decoupled system (1.2) with excitation (5.8) and initial conditions (5.10).
Differences between defective and non-defective systems and in how they are decoupled
arise in the structures of the matrices Λ, Λ̂, Jx, Vx, Jp, and Vp, but the overall trans-
formation in (5.9) is real regardless of the nature of the system’s spectrum. In principle,
one could extract the upper half of the state equation (5.9) to obtain a time-dependent de-
coupling transformation for x(t) itself in the n-dimensional configuration space, but there
is generally no concise analytical form. A flowchart outlining the general procedure for
decoupling any system of the form (1.1) and determining its response (free or forced) is
illustrated in Fig. 10.

5.2 Complex eigenvalues

When the eigenvalues of system (1.1) are complex and defective, a decoupling trans-
formation in the configuration space exists in a concise analytical form. By comparing the
generalized decoupling transformation (5.9) for forced motion with its unforced counter-
part (4.8), it is not difficult to see that one obtains state equation (5.9) by replacing the
modal velocity p(t) in transformation (4.8) with

.
p(t)−g1(t). Making this substitution in

Eq. (4.29) yields the configuration space transformation

x(t)= T1 eNt p(t)+T2 eNt .
p(t)−T2 eNt g1(t) , (5.11)

where, with the aid of the time-dependent transformation S(t) in Eq. (4.31) and the state
equation (5.3), it is straightforward to show that[

g1(t)

g2(t)

]
=
[

e−Nt O
O e−Nt

][
I I
Λ Λ

][
V V

VJ VJ

]−1[
O

M−1

]
f(t) . (5.12)
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Coupled linear system
M

..
x(t)+C

.
x(t)+Kx(t)= f(t)

with coordinate x(t)

Solve
(Mλ

2 +Cλ +K)v = 0
and recursive scheme

(4.1) if necessary

Construct
Λ, Λ̂

Construct
Jx, Vx, Jp, Vp, g(t)

Construct

D =−(Λ+ Λ̂)
Ω=ΛΛ̂

Decoupled linear system
..
p(t)+D

.
p(t)+Ωp(t)= g(t)

with coordinate p(t)

Eq. (5.9)

Fig. 10 Flowchart for decoupling and response calculation of any linear dynami-
cal system in free or forced motion.

Moreover, by swapping p(0) in transformation (4.28) for
.
p(0)−g1(0), we find that the

initial conditions p(0) and
.
p(0) for the forced decoupled system are related to the system

initial conditions x(0) and
.
x(0) by[

p(0)
.
p(0)

]
=
[

I I
Λ Λ

][
V V
VJ VJ

]−1[
x(0)
.
x(0)

]
+
[

0
g1(0)

]
. (5.13)
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In the event that the eigenvalues of system (1.1) are complex but non-defective, the
nilpotent matrix N = O, and hence the Jordan matrix J = Λ. In this case, assuming the
eigenvectors and their complex conjugates have been normalized in accordance with Eqs.
(2.4) and (2.5), respectively, it can be shown that Eq. (5.12) for the excitations g1(t) and
g2(t) simplifies to yield

g1(t)= TT
2 f(t) , g2(t)= (TT

1 −DTT
2 ) f(t) . (5.14)

As a result, the configuration space decoupling transformation (5.11) and modal forc-
ing (5.8) reduce to the corresponding equations (3.10) and (3.7), respectively, for a non-
defective system, as expected.

5.3 Reduction to classical modal analysis

Finally, we demonstrate how the decoupling transformation (5.9) is a direct generaliza-
tion of classical modal analysis. Should system (1.1) be classically damped, the Jordan ma-
trices Jx and Jp are identical because classical modal analysis preserves both the eigenval-
ues and their multiplicities. Consequently, the time-dependent coordinate transformation
S(t) in Eq. (5.2) reduces to the time-invariant form S(t) = S = Sx S−1

p . If the eigenvectors
are normalized according to Eqs. (2.42) and (2.43), then there is a certain pairing of the
non-defective real eigenvalues for which S = U⊕U, implying that the excitations g1(t)= 0
and g2(t) = (MU)−1 f(t) = UT f(t) in Eq. (5.4). It follows that Eq. (5.8) yields the modal
forcing g(t)= UT f(t) indicative of classical modal analysis. Furthermore, the upper half of
the state equation (5.9) reduces to the classical modal transformation x(t)= Up(t). If nor-
malizations (2.42) and (2.43) are not used, multiplicative constants may appear in certain
equations.

5.4 An illustrative example

Here we provide a numerical example that demonstrates the decoupling procedure for
a forced defective system of the type (1.1). We focus on a system with a non-defective
complex conjugate eigenvalue and a defective real eigenvalue to illustrate how one would
decouple a defective system with mixed damping characteristics.

Example 7

Consider a non-classically damped, 2-degree-of-freedom system with mass matrix M=
I2 and damping matrix C, stiffness matrix K, and excitation f(t) given by

C =
[

2 −1

−1 2

]
, K =

[
1 −1

−1 3

]
, f(t)=

[
0.2 cost

−0.7sint

]
. (5.15)
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Let the initial conditions be x(0) = [−1, 1]T and
.
x(0) = [2, −1]T. Solving the associated

quadratic eigenvalue problem, we find that the system has a pair of non-defective com-
plex conjugate eigenvalues, λ1 = λ 2 =−1+ i , and a defective real eigenvalue λ3 =−1 with
algebraic multiplicity m3 = 2 and unit geometric multiplicity:

v1 = v2 =
[

1

i

]
, v3

1 =
[

1

0

]
, v3

2 =
[

1

0.5

]
. (5.16)

The eigenvectors v1, v2, and v3
1 have not been subjected to any normalization scheme. Be-

cause the system possesses both non-defective and defective eigenvalues, like in Example
4.9, the decoupling transformation involves a combination of the matrix structures given at
the end of Section 4.2 for non-defective eigenvalues and those in Section 4.6.2 for defective
real eigenvalues with even algebraic multiplicity. From Eqs. (2.14) and (4.46) with nr = 1,
we have

Λ=
[
−1+ i 0

0 −1

]
, Λ̂=

[
−1− i 0

0 −1

]
. (5.17)

Combining Eqs. (4.10) and (4.47) yields

Jx =


−1+ i 0 0 0

0 −1− i 0 0

0 0 −1 1

0 0 0 −1

 , Vx =
[

1 1 1 1

i −i 0 0.5

]
. (5.18)

Likewise, a direct sum of Eq. (4.11) with Eqs. (4.50) and (4.51) gives

Jp = Jx , Vp =
[

1 1 0 0

0 0 1 0

]
. (5.19)

By Eqs. (2.45) and (5.17), the coefficient matrices for the decoupled system are

D = 2 I2 , Ω=
[

2 0

0 1

]
. (5.20)

The first row of the decoupled system defined by Eq. (5.20) corresponds to the under-
damped degree of freedom p1(t) associated with the non-defective complex eigenvalue
λ1 and its conjugate, whereas the second row represents the critically damped degree of
freedom p3

1(t) = p2(t) arising from the defective real eigenvalue λ3. The excitation g1(t)
determined from Eq. (5.4) and the modal forcing g(t) given by Eq. (5.8) are depicted
in Figs. 11(a) and 11(b), respectively. Using Eq. (5.10), the modal initial conditions are
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p(0) = [0, −1]T and
.
p(0) = [1, 0.6]T. The response p(t) of the decoupled system is illus-

trated in Fig. 12(a), and the system response x(t) obtained via transformation (5.9) is
shown in Fig. 12(b). It can be verified that the solution by direct numerical integration of
the original system and that obtained by Eq. (5.9) are indeed the same.
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Fig. 11 Transformed excitations for Example 7. (a) Excitation components g1 j(t)
( j = 1, 2). (b) Modal forcing components g j(t).
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Fig. 12 Forced response of Example 7. (a) Decoupled solutions p j(t) ( j = 1, 2).
(b) System responses x j(t).
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Chapter 6
Closing Comments

We have demonstrated how classical modal analysis may be extended to decouple any
second-order linear dynamical system (1.1). By formulating a decoupling transformation
in a general framework, a complete solution to the problem of decoupling linear dynam-
ical systems, defective or not, in free or forced motion has been provided. Major results
presented in this dissertation are summarized in the following statements:

1. Any non-defective system can be decoupled via phase synchronization, which gen-
erates a real, nonlinear, and time-dependent decoupling transformation in both the
configuration and state spaces that preserves the system eigenvalues and their multi-
plicities. In the case of free vibration, the decoupling transformation becomes linear
and time-shifting in the configuration space, while it reduces to a linear but time-
invariant transformation in the state space.

2. Non-defective complex conjugate eigenvalues are associated with underdamped de-
grees of freedom. Pairing of non-defective real eigenvalues as real quadratic conju-
gates generates overdamped degrees of freedom. Non-uniqueness in pairing the real
eigenvalues results in a set of admissible decoupled systems.

3. Any system with defective eigenvalues can be decoupled if one does not insist on
preserving geometric multiplicities. In contrast with non-defective systems, the de-
coupling transformation for defective systems in free vibration is time-dependent in
both the configuration and state spaces.
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4. Associated with defective complex conjugate eigenvalues are underdamped degrees
of freedom. Defective real eigenvalues correspond to critical damping. Depending
on the multiplicities of these eigenvalues, decoupling yields some combination of
critically damped degrees of freedom and overdamped degrees of freedom, the latter
resulting from a necessary pairing of either defective and non-defective eigenvalues,
or two distinct defective eigenvalues.

5. All parameters required for generating the decoupled system (1.2) and evaluating
the general decoupling transformation (5.9) are obtained by solving the quadratic
eigenvalue problem (2.1), determining generalized eigenvectors from the recursive
scheme (4.1) when eigenvalues are defective, and applying an admissible eigenvalue
pairing scheme as described herein.

6. Decoupling transformation (5.9) is a direct generalization of classical modal analysis.

As system decoupling plays a fundamental role in linear vibratory analysis, it is our
hope that the information presented in this dissertation will facilitate numerical and qual-
itative analyses of linear dynamical systems, as well as inspire both theorists and practi-
tioners to pursue further research in oft-slighted, but mathematically fascinating, defective
systems.
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