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Abstract 

Nathan G. Salomonis 

 

 

The development of an organism from conception to adulthood requires the 

specification of cell types to distinct fates.  In an adult organism, tissues can similarly 

undergo dramatic transformation, altering their structure, physiology, and overall 

biochemical properties.  In both of these paradigms, the study of gene transcription and 

its contribution to protein content in the cells has been the primary focus.  While clearly 

important, more recently, alternative splicing and microRNA regulation have been 

recognized as significant processes that can have crucial regulatory influences on the 

diversity of mRNAs produced and their over-all expression in the cell. 

 In this dissertation, I have set out to characterize the molecular changes that 

occur in two distinct cellular paradigms, muscle remodeling in the uterus throughout 

pregnancy and the differentiation of embryonic stem cells to distinct fates using DNA 

microarray technology.  To achieve this goal, I developed several new software 

applications, designed specifically to assess the relevance of coordinated gene 

regulatory events along biological pathways (GenMAPP and GO-Elite) and characterize 

sequence level functional attributes of proteins and mRNAs regulated by alternative 

splicing (AltAnalyze). 

 Studies of the mouse uterus during gestation reveal novel coordinated 

transcriptional networks regulating quiescence, contraction, and involution when 

multiple time-points are considered.  Analysis of alternative splicing in mouse and 



 x 

human embryonic stem cell differentiation uncovered novel mechanisms for the 

regulation of protein domain and microRNA binding site inclusion and at least for one 

gene, Tcf3, the requirement of splicing to properly promote the early steps of embryonic 

lineage commitment down multiple paths.  In summary, I have used novel 

computational methods and genomic resources to uncover new regulatory networks 

and potential biological mechanisms from both differentiating and transitioning cells, that 

involve regulation at the level of transcription, alternative splicing, and translational 

regulation by micoRNAs. 
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Chapter 1 

Introduction: Utilizing Genome-Wide Methods to Gain Novel Biological 

Insights into Physiological and Developmental Programs 

 

 

1.1 Genomic era opportunities and challenges 

With the completion of the human genome sequencing project, researchers now 

have access to biological data on an unprecedented scale.  This information has 

provided the means to design new assays and new technologies to efficiently 

and in an unbiased fashion, measure biological responses simultaneously on a 

molecular and genomic level.  Access to such genome-level data provides both 

new opportunities and new challenges to integrate the wealth of complex 

information.  I have focused on this area of research to help translate these data 

into findings that will hopefully impact human health and biological knowledge. To 

meet this challenge, I have built a series of software tools (e.g., GenMAPP, GO-

Elite, and AltAnalyze) and have applied them to specific biological problems. 

 

1.2 Interrogating mRNA content on a genome-wide level 

An immediate application of genome sequencing data has been the development 

of biological assays to specifically measure the relative abundance of all known 

RNA transcripts at a cellular level.  One of the primary tools to assess genomic 

responses in living cells and whole organisms is the DNA microarray. DNA 

microarrays are high throughput platforms for assaying the relative quantity of 
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both DNA and RNA for specific targets with extremely high resolution. 

Microarrays are composed of either small (20-70mer) DNA probes or longer 

transcript sequences which are synthesized or chemically attached to glass or 

silicon substrate at picomolar levels, with only a few microns separating probes 

of distinct composition.  Since microarray probes can be synthesized on a large 

scale and are composed of millions of unique, pre-designed oligomers onto an 

area that is a fraction of an inch, this technology is ideal for assessing highly 

complex gene level transcript variation.  While typically utilized for the purposes 

of measuring gene expression, or transcriptional activity of a gene, current 

microarrays allow users to examine hundreds of thousands of distinct RNAs, 

including alternative splice variants, alternative promoter transcripts, and non-

coding RNAs, such as microRNAs, with biological functions that are largely 

unknown (Figure 1.1).  The role of these distinct biological entities is only recently 

coming to light, largely as a result of the development of new technologies such 

as whole-genome level transcript microarrays.  
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Conventional Array Probes (3' arrays)

All Exon Array Probes

Junction Array Probes

 

Figure 1.1. Interrogating multiple gene level features on a genomic 

scale.  As microarray feature size has increased, so has the diversity of 

probe set selection and targets.  Shown here are alternative exons 

produced through alternative splicing for a single pre-mRNA transcript, 

with different possible probe sets (colored lines). Underneath this 

depiction is a conventional microarray strategy, with a protocol that is 

biased towards amplification of the 3’ end of the mRNA and thus, probe 

sets are typically associated with this region of the transcript. When 

multiple mRNA transcripts are produced, such a strategy may not yield 

optimal information on gene expression. An all-exon array or genomic 

tiling strategy has the advantage of assaying for all known regions of 

possible transcripts.  However, this requires knowledge of which exons 

are informative for transcription and/or alternative modes of exon 

regulation.  A junction array focuses specifically on the expression of 

alternative isoforms that can occur as a result of either alternative splicing 
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or alternative promoter selection.  This strategy, however, is typically 

biased by existing mRNA information and has limited sequence space for 

optimal probe design. 

 

 

1.3 Proteomic diversity through alternative splicing 

Alternative splicing (AS) is the process by which the composition of a primary 

mRNA transcript is alternatively regulated to produce distinct processed mRNAs. 

These alternative mRNAs may produce different protein translations or be 

specifically targeted for degradation (non-sense mediated decay) (Cooper 2005). 

Splicing is an essential mechanism that cells utilize in order to excise long 

intronic sequences, at canonical splice sites, from the primary mRNA transcript 

since these sequences to do not contribute to translated protein products (Figure 

1.2 A). This same mechanism can be used to alternatively include exons and/or 

introns in the processed mRNA sequences (Figure 1.2 B).  Both exons and 

introns can contain binding sites for regulatory splicing factors, which can 

enhance or inhibit splice site selection and thus regulated splicing. 
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U2AF 65 35U2 snRNPU2 snRNP

U1 snRNPU1 snRNP
U4U4

U5U5U6U6 U5U5

5' 3'

Pre-mRNA transcript

exon exon

intron

GU AGA  YYYY

U2AF 65 35U2 snRNPU2 snRNPU1 snRNPU1 snRNP

Constitutive spliceosome 
complex formation

Alternative Exon Exclusion

U5U6

U4

U5U6

U4

Pre-mRNA transcript

A B

 

Figure 1.2. Regulation of mRNA composition by alternative splicing.  

(A) For constitutive forms of splicing (always present), factors not typically 

regulated in the nucleus bind to consensus splice site sequences to 

regulate exon inclusion and intron exclusion. This occurs through the 

formation of a lariat structure and subsequent cleavage.  (B) With AS, 

factors not present at optimal concentrations fail to bind to the 

spliceosomal complex, resulting in both exon and intron exclusion.  A lariat 

structure shown is shown with the red line indicating introns and the gray 

boxes indicating exons. 
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 Splicing factors can consist of both proteins and RNAs that directly bind to 

primary mRNA transcripts. These factors can also associate with signaling 

components of the cell, such as regulatory kinases that can directly and indirectly 

effect expression, conformation, and localization of these factors.  As a result, 

signaling within the cell can influence splicing.  In humans 40-80% of all genes 

produce alternative transcripts, as compared to lower eukaryotes that have a 

similar number of genes but produce significantly fewer alternative transcripts 

(Ruzanov et al. 2007).  This case is well-illustrated for the model organism 

Caenorhabditis elegans which has ~20,000 identified genes, of which only ~9% 

produce multiple mRNA transcripts (Ruzanov et al. 2007).  AS therefore provides 

a potent means to produce a vast number of distinct mRNAs in different cell 

types and discrete developmental transitions, which are likely coordinated by the 

differential expression or activation of splicing factors in a developmentally 

controlled manner (Figure 1.3). 
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Isoform 1 Isoform 2 Isoform 3

Genomic Diversity through Alterantive Splicing

pre-mRNA transcript

 

Figure 1.3. Protein diversity through alternative exon inclusion.  A 

common outcome with AS is the inclusion or exclusion of sequences that 

are critical for protein function, localization, or expression. Thus, by 

regulating splice variant expression in distinct tissues, the cell can produce 

distinct isoforms that can differentially impact critical signaling cascades. 
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1.4 Genomic analysis of discrete cellular transitions 

The majority of genome-wide AS analyses have been comparisons between 

distinct adult tissues.  Such analyses have shown that there is a diverse range of 

transcripts expressed among tissues, with the largest differences often found 

between neural and muscle lineages (Figure 1.4) (Yeo et al. 2004).  While these 

studies are useful as a means to assess diversity of transcripts for genes 

between tissues, they are convoluted by the fact that adult tissues possess highly 

distinct processes and are themselves composed of highly heterogeneous cell 

types.  To better assess the functional contribution of specific splice variants to 

biological processes and development, we require comparisons between 

derivative cell types, such as the lineage commitment of cells as they 

differentiate or physiological transformation of cells as they undergo altered 

demand.  Such comparisons decrease the number of variables assessed by the 

researcher and yield more biologically informative results.  This is especially true 

when the conditions examined occur as a linear continuum of responses in the 

cell that can be correlated back to specific physiological differences. 

 With the recent availability of microarrays designed to assay for all known 

transcripts, a number of studies have begun to assess more discrete biological 

comparisons in order to identify splicing events that directly correlate with 

isoform-specific functions.  These include the knock-out of the neuron-specific 

splicing factor, Nova2, in mouse (Ule et al. 2005) and AS of human embryonic 

stem cells to neural precursors (Yeo et al. 2007).  In the case of Nova2 ablation, 

genome-wide AS analysis identified that Nova2 specifically regulates the splicing 
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of genes that localize to the synapse.  These changes correlate with a decrease 

in hippocampal synaptic plasticity as measured by electrophysiology recordings 

(Huang et al. 2005).  Other studies have demonstrated that splicing variation is 

sufficient and necessary for regulating critical developmental transitions.  These 

include mouse juvenile cardiac adaptation (Xu et al. 2005), sex-determination, 

and synaptogenesis (Burgess et al. 1999), all which result from a failure to alter 

the splice isoform distribution of genes during development. 
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Figure 1.4. Distinct tissues possess varying degrees of transcript 

diversity.  Data is shown for distinct EST sequences in public databases 

for various cell and tissue types.  This data suggest that the brain encodes 

for a highly diverse set of transcripts compared to other tissues, while 

muscle encodes for a far less diverse set.  
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1.5 Primary research aims 

To effectively assess the role of specific proteins, differentially expressed or 

alternatively spliced, that are critical for discrete cellular transitions, we must 

perform unbiased genome-wide analyses that integrate multiple genomic and 

informatics approaches. To achieve this goal I have focused my doctoral studies 

on the delineation of temporally regulated gene expression and splicing events 

restricted to two informative model systems:  (1) the mouse myometrium as it 

transitions from virgin to term gestation and through to postpartum; and (2) the 

differentiation of mouse and human embryonic stem cells (ESC) to distinct cell 

fates.   

 Using these systems, I have been able to identify novel genetic programs 

that correspond to both unique and overlapping biological pathways that impact 

pluripotency and muscle remodeling.  These studies highlight the important role 

of coordinated transcription and AS events in the regulation of cell physiology 

and cell development.  By characterizing a single alternatively spliced microarray 

target, Tcf3, we found that specific splice isoforms had distinct roles in the 

regulation of ESC differentiation to distinct cell fates.  These analyses required 

the development of new bioinformatics tools and methods, including pathway 

analysis (GenMAPP, MAPPFinder and GO-Elite), genomic expression clustering 

(GEMFinder), and AS/functional analysis software (AltAnalyze).  In summary, this 

thesis outlines the development of a series of powerful new open-source 

bioinformatics tools and strategies to assess complex trends from large-scale 
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genomic data.  We believe such methodologies will become increasingly more 

necessary as genome-wide technologies and their applications evolve. 
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Chapter 2 

GenMAPP 2: New Features and Resources for Pathway Analysis 

 

 

2.1 Abstract 

Background: Microarray technologies have evolved rapidly, enabling biologists 

to quantify genome-wide levels of gene expression, alternative splicing, and 

sequence variations for a variety of species. Analyzing and displaying these data 

present a significant challenge. Pathway-based approaches for analyzing 

microarray data have proven useful for presenting data and for generating 

testable hypotheses.  

Results: To address the growing needs of the microarray community we have 

released version 2 of Gene Map Annotator and Pathway Profiler (GenMAPP), a 

new GenMAPP database schema, and integrated resources for pathway 

analysis. We have redesigned the GenMAPP database to support multiple gene 

annotations and species as well as custom species database creation for a 

potentially unlimited number of species. We have expanded our pathway 

resources by utilizing homology information to translate pathway content 

between species and extending existing pathways with data derived from 

conserved protein interactions and coexpression. We have implemented a new 

mode of data visualization to support analysis of complex data, including time-

course, single nucleotide polymorphism (SNP), and splicing. GenMAPP version 2 
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also offers innovative ways to display and share data by incorporating HTML 

export of analyses for entire sets of pathways as organized web pages.  

Conclusions: GenMAPP version 2 provides a means to rapidly interrogate 

complex experimental data for pathway-level changes in a diverse range of 

organisms.  

 

2.2 Introduction  

Advances in DNA microarrays, RNA interference, and genome-wide gene 

engineering have contributed a wealth of genomic data to the public domain.  

The average researcher is faced with the challenge of connecting these genome 

level results to specific biological processes. Therefore intuitive tools for 

integrating, analyzing, and displaying this data are welcomed by many biologists. 

One popular approach is pathway-oriented data analysis, which enables 

biologists to interpret genomic data in the framework of biological processes and 

systems, rather than in a traditional gene-centric manner.  

 We developed Gene Map Annotator and Pathway Profiler (GenMAPP) as a 

free, open-source, stand-alone computer program for organizing, analyzing, and 

sharing genome-scale data in the context of biological pathways (Dahlquist et al. 

2002). GenMAPP was initially released in 2001 and has been widely used with 

over 15,000 unique user registrations and over 250 publications citing its use. 

GenMAPP allows users to view and analyze genome-scale data, such as 

microarray data, on biological pathways, Gene Ontology terms or any other 

desired grouping of genes. These groupings are represented and stored in 
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GenMAPP as “MAPPs”. GenMAPP automatically and dynamically colors genes 

on MAPPs according to data and criteria supplied by the user. In addition, 

GenMAPP allows investigators to easily access annotation for genes at major 

genomic databases, such as Ensembl (http://www.ensembl.org), Entrez Gene 

(http://www.ncbi.nlm.nih.gov/entrez), and Gene Ontology (GO) (Ashburner et al. 

2000). Using the integrated MAPPFinder tool, researchers can rapidly explore 

their data in the context of pathways and the GO hierarchy by over-

representation analysis (Doniger et al. 2003). 

 GenMAPP was developed by biologists and remains focused on pathway 

visualization for bench biologists, our major user base as judged from 

publications citing GenMAPP. Unlike other computational systems biology tools 

(e.g., BioSPICE (Kumar et al. 2003), CellDesigner (Kitano et al. 2005), E-Cell 

(Tomita et al. 1997)), GenMAPP is not designed for cell/systems modeling. 

GenMAPP focuses on the immediate needs of bench biologists by enabling them 

to rapidly interpret genomic data with an intuitive, easy-to-use interface.  

2.3 Implementation 

GenMAPP is implemented in Visual Basic 6.0 and is available as a stand-alone 

application for Windows operating systems (Dahlquist et al. 2002). The program 

includes an automatic update feature that allows rapid and reliable updates to the 

program and documentation. 

 The three main data components in GenMAPP—experimental data (.gex), 

gene databases (.gdb), and pathways (.mapp)—are stored in separate files 

accessible by GenMAPP. All three file types are stored in Microsoft Jet format. 
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Experimental datasets store any data imported by the user, together with a set of 

custom coloring criteria (color sets). The gene databases contain species-

specific gene annotation from a number of public resources. Databases are 

created through an ETL (Extract, Transform, and Load) process, by which 

information is collected from Ensembl, Entrez Gene, Affymetrix 

(http://www.affymetrix.com), and GOA (UniProt) (http://www.pir.uniprot.org) and 

reassembled. Annotations supported by GenMAPP include Ensembl gene IDs, 

UniProt IDs, Entrez Gene IDs, Gene Symbols, UniGene IDs, RefSeq protein IDs, 

HUGO IDs, GO terms, Affymetrix probe set IDs, RGD IDs (rat), MGI IDs 

(mouse), SGD IDs (yeast), FlyBase IDs (fruit fly), WormBase IDs (worm), ZFIN 

IDs (zebrafish), InterPro IDs, EMBL IDs, PDB IDs, OMIM disease associations, 

and Pfam IDs. MAPPs contain a set of gene or protein identifiers as well as 

optional graphical elements which are laid out manually.. It is up to the author of 

the MAPP to choose how to illustrate activation, inhibition, compartments, etc. 

There is no graph underlying MAPPs, there are no formal nodes and edges:  the 

gene boxes are data-linked, but all lines, edges and sub-groupings are 

illustrations only. Each MAPP can also contain a record of the author and any 

relevant literature references. GenMAPP does not restrict users to particular 

semantics. A MAPP can represent any gene set whether it is a metabolic 

pathway, a signaling pathway, a disease process or an arbitrary set. The 

pathway archives GenMAPP distributes undergo general review and revision by 

the GenMAPP staff.  
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 Databases and pathway archives are available through the Data Acquisition 

Tool in GenMAPP and from the GenMAPP website. The tools known as 

MAPPFinder 2 and MAPPBuilder 2 are bundled with and accessible from 

GenMAPP. MAPPBuilder creates .mapp files from imported lists of genes, and 

MAPPFinder (Doniger et al. 2003) computes permutation test P values for over-

representation of differentially expressed genes in individual GO categories and 

MAPPs.  Westfall-Young adjusted P values (Westfall et al. 1993) are included as 

a control for multiple testing. 

  

2.4 Results and Discussion 

GenMAPP version 2 provides 1) new built-in features to support user data import 

and mapping, 2) expanded pathway resources and 3) increased support for 

different high-throughput biological assays.  These improvements substantially 

increase the usability and flexibility of this tool for pathway level genomic 

analysis.  

 

2.4.1 GenMAPP version 2 new features 

Several new features have been implemented in GenMAPP version 2. A new 

gene database schema supports a variety of gene and protein identifiers, 

annotations, and microarray probe set IDs, more thoroughly connecting user data 

to the archive of pathway MAPPs and Gene Ontology terms and to external gene 

annotation. A new visualization mode allows for simultaneous access to multiple 
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data points, statistics or custom annotations. A new export option packages sets 

of pathways, including data, to a web-ready format for display and browsing.  

 

2.4.2 Expanded gene and species support in GenMAPP version 2 

A major shortcoming of GenMAPP 1.0 and other pathway analysis programs has 

been the limited number of species supported, permitting analysis of a few model 

organisms (human, mouse, rat, and yeast) and a few gene identifier or ID 

systems (GenBank, SGD, and UniProt). To solve this problem, the GenMAPP 

version 2 gene database schema has been redesigned to allow expanded gene 

content and greater species support. Support of many diverse gene and protein 

ID systems is essential to establish critical relationships between disparate 

sources of information, providing greater flexibility for users importing data 

associated with virtually any identifier. In addition to expanded gene and protein 

ID support, secondary annotation systems such as GO, OMIM, and PDB have 

been added into the GenMAPP gene databases. These IDs and annotations are 

provided on HTML “backpages” of MAPP gene objects, providing critical links to 

primary resources. As additional genomes are assembled and annotated, 

GenMAPP can readily integrate the information and support pathway analysis for 

these species.  

 Databases in GenMAPP version 2 are created through a semi-automated 

process, using information extracted from major public resources, primarily 

Ensembl, Entrez Gene, UniProt, and Affymetrix. The process of extracting gene 

information has been greatly simplified by populating our gene database with 
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data from Ensembl’s “mart” tables (Kasprzyk et al. 2004), which effectively 

integrates gene information for major sequenced genomes. GenMAPP.org 

currently distributes databases for eleven species: human, mouse, rat, yeast, 

worm, zebrafish, fruit fly, mosquito, chicken, dog, and cow. GenMAPP version 2 

also supports user-defined additions to these databases as well as the creation 

of custom gene databases for any other species. The ability to create custom 

databases is of vital importance to research groups working with model 

organisms not supported by the major public databases. This feature is 

supported by only one other pathway analysis tool we are aware of (Hu et al. 

2005). Creating a custom database is a collaborative effort where GenMAPP 

developers generate a template database containing relevant GO term 

associations for the species of interest. A user interface within GenMAPP version 

2 allows users to add to the template database by importing additional gene and 

annotation information as a set of relational tables. The build process can be 

completed entirely using GenMAPP and common spreadsheet programs (e.g., 

Excel), without the need for specialized database software. The resulting 

database has full GenMAPP functionality, including the ability to display 

information on HTML backpages, link to external sources, and perform global GO 

queries using MAPPFinder. Custom GenMAPP version 2 databases are currently 

available for Escherichia coli K12 (KDD and John David N. Dionisio, personal 

communication) and Saccharomyces pombe 

(http://www.databases.niper.ac.in/Pombe/ S.pombe gene database for 
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GenMAPP). A detailed manual describing the process of creating a custom gene 

database is available at GenMAPP.org.  

 

2.4.3 Visualizing complex genomic data  

As microarray experimental designs grow increasingly complex researchers 

require tools to examine data across multiple time-points and conditions, and 

over multiple datasets. The types of biological entities measured have also 

increased. Various array platforms measure polymorphisms, splice variants, 

regulatory protein binding and genomic amplifications and deletions. Methods for 

visualizing the complex outputs from these technologies have not been well 

established and remain a critical challenge for researchers. With previous 

versions of GenMAPP, users could view multiple sets of criteria only serially. For 

example, genes up-regulated at different time-points of an experiment could be 

viewed by creating a custom set of coloring criteria (color set) for each time point. 

While informative, this method is not well suited to assess the temporal effects of 

gene level changes over an extended time or to examine multiple data 

simultaneously. To expedite the analysis of such datasets, GenMAPP version 2 

now allows multiple color sets to be viewed simultaneously, depicted as vertical 

stripes within each gene box. In the case of multiple time points, the stripes could 

represent the criteria at each time point (Figure 2.5). 

 The ability to view multiple color sets concurrently can also be extended to 

datasets where different biological substrates are examined, such as 

transcription and mRNA splicing. Demand for this feature is increasing because 
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current microarrays can assay distinct regions of mRNA transcripts, such as 

exons and exon junctions, thereby allowing assessment of both transcriptional 

changes and changes in splice isoform expression. While there are many 

possible ways to view such data, using multiple color sets in GenMAPP is now a 

powerful way to explore such complex data in a single view. Similar visualization 

options are only available in a few freely available (Yi et al. 2006) and 

commercial applications (Chu et al. 2001; Ekins et al. 2007).  

 

2.4.4 Batch export of data to the web  

In addition to visualizing data on pathway MAPPs, GenMAPP version 2 also 

exports pathways with data to various graphical formats and to the web. Because 

genome-scale data are difficult to share with a larger community, GenMAPP 

version 2 includes the option to export any number of MAPPs with their 

associated data to an organized web-ready format. This MAPP Set Export 

feature allows any or all established color sets to be exported with the pathway, 

including the striped view of multiple color sets. Instead of static images, each 

MAPP retains its interactive features, such as gene backpage information, 

including data display, gene annotations, and hyperlinks to external resources. 

The different criteria can be browsed through a pull-down tab on each exported 

MAPP. The MAPP Set can be navigated through an index of all MAPPs or 

through a gene index, which stores all gene-to-MAPP relationships for all related 

gene/protein IDs. MAPP Sets are stored in HTML format, ready for immediately 

posting on any web site, where collaborators can browse the data independently 
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of the GenMAPP program. An example of how a GenMAPP MAPP Set can be 

used to display large-scale data is the International Gene Trap Consortium web 

site (http://www.genetrap.org), where thousands of publicly available gene trap 

ES cell lines can be viewed in the context of biological pathways 

(http://www.genetrap.org/dataaccess/pathways.html). This method of data 

presentation allows users to quickly share information over the Internet and 

perform efficient searches for gene pathway information. Batch export of fully 

interactive pathways and user data is not available in other pathway analysis 

tools we are aware of (http://cancer.cellmap.org/cellmap/; 

http://www.ingenuity.com/; Chu et al. 2001; Shannon et al. 2003; Hu et al. 2005; 

Mlecnik et al. 2005; Yi et al. 2006; Yuryev et al. 2006; Ekins et al. 2007; Mi et al. 

2007). 

 

2.4.5 New Pathway Resources 

Integral to any pathway analysis tool is its access to pathway content. One of the 

goals of the GenMAPP project is to facilitate community curation of pathway 

content. GenMAPP’s built-in drawing tool allows users to illustrate biology and 

associate gene objects with identifiers maintained in a given gene database. The 

ability to customize the layout and to annotate a pathway with basic graphics 

provides a powerful means of communication to the biological community. The 

expertise of the biological research community is the most important source of 

new pathway information, and GenMAPP’s pathway content is primarily 

contributed by this community.  We have added several new sources of MAPPs.  
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For example the NetPath project is a human pathway annotation project, initiated 

by the Pandey lab at Johns Hopkins University (http://pandeylab.igm.jhmi.edu; 

http://www.netpath.org) and the Institute of Bioinformatics 

(http://www.ibioinformatics.org). The NetPath group has produced 10 cancer and 

10 immune pathways in GenMAPP, BioPAX (http://www.biopax.org), and PSI-MI 

(Hermjakob et al. 2004) formats, and are planning a substantial increase within 

the first year. Another ongoing pathway curation effort is being performed by 

undergraduate research students directed by Dr. Kam Dahlquist. These students 

have contributed 120 yeast pathways that were created by hand using the SGD 

BioCyc metabolic pathways (http://pathway.yeastgenome.org/biocyc/) as 

templates. The GenMAPP pathway archives also include selected content from 

KEGG (Kanehisa et al. 2000), Reactome (Joshi-Tope et al. 2005; Vastrik et al. 

2007), The European Nutrigenomics Organization (http://www.bigcat.nl), 

Neurocrine Biosciences, PharmGKB (Hewett et al. 2002), and various academic 

laboratories. The content from these resources was manually migrated by the 

MAPP authors with the exception of the “KEGG Converted” archive, which is not 

updated or synchronized. The pathways from community resources are collected 

and organized at GenMAPP.org and automatically downloadable through the 

GenMAPP program.  

 We now also provide pathways that have been mapped through homology so 

that users with genomic data from relatively unsupported species can perform 

pathway analyses.  These homology MAPPs represent a starting point for further 

curation, an interim solution until species-specific pathways are elucidated and 
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contributed. Another means of increasing the biological content available to the 

user is the extension of existing pathways using interaction and coexpression 

data.  Together, these methods only begin to address the paucity of pathway 

content available for the analysis of complex genomics data across the multitude 

of organisms. 

 

2.4.6 Making homology MAPPs  

Despite the relative ease with which we can gather gene information for many 

species, pathway information is generally not available for many of the newly 

supported species (Table 2.1). To address this problem, we implemented a 

strategy that utilizes the existing pathway content in our pathway archives. Using 

publicly available gene homology information (Kasprzyk et al. 2004; Wheeler et 

al. 2006) , we generated pathways for several species from our archive of 

existing human pathways (Figure 2.1).  
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Figure 2.1. The WNT-signaling pathway is shown in GenMAPP for human 

and dog (left to right). The dog pathway MAPP was mapped from the original 

curated human pathway MAPP by using homology information from 

Homologene and Ensembl.  Additional information in the top-left corner of the 

MAPP indicates the origin. 
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 The process of rapidly mapping pathways between species relies on the 

Converter function in GenMAPP version 2, which allows for conversion of genes 

on MAPPs between gene ID systems in the database without altering the 

graphical layout of the MAPP. MAPP conversion is possible between any gene 

ID systems linked in the database; adding homology information to a GenMAPP 

database consequently enables conversion of MAPPs between species. 

 The GenMAPP human MAPPs were chosen as template MAPPs because 

they represent the highest quality of curation in our archive. Homology 

information between human and the applicable target species was obtained from 

Homologene (Wheeler et al. 2006) and form BioMart (Spudich et al. 2007)(for 

cow only)(Algorithm details in Supplemental Data). For simplicity we restricted 

the use of data from these resources to 1:1 gene relationships between template 

and target species. This restriction reduces clutter in the converted MAPPs and 

avoids potentially ambiguous homology relationships. Conversion rates 

(percentage of genes converted) were calculated for each pathway MAPP 

(Figure 2.2 and Supplemental Data). To maintain reasonable gene content on 

MAPPs, a cutoff of 50% for the conversion rate was set for inclusion in the MAPP 

archives. The cutoff of 50% was chosen based on the qualitative assessment of 

structure and pathway information retained following conversion (see 

supplemental data for MAPP conversion rates). Qualitatively, the conversion 

rates correlated with the expected conservation of biological processes across 

species. The MAPPs representing the central dogma of DNA replication, RNA 



 27 

transcription and translation, for example, were converted with high fidelity from 

human to each of the target species, whereas specialized signaling pathways 

failed to be translated beyond dog, cow and chicken. This strategy of utilizing 

public homology information, existing pathway information and the Converter 

function can be applied to any species with available homology information to a 

species for which pathway information exists. Instructions for translating MAPPs 

between species using the GenMAPP Converter is available at GenMAPP.org 

(http://www.genmapp.org/tutorials/Converting-MAPPs-between-species.pdf).  
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Species Contributed  Homology KEGG Converted 

Human 109     

Mouse 109     

Rat 100     

Dog   94   

Cow   87   

Chicken   85   

Zebrafish   19 18 

Fruit fly 2 25 89 

Mosquito       

Worm   19 87 

Yeast 122* 9   

 

Table 2.1. Number of GenMAPP MAPPs for GenMAPP supported 

species. Column Headers: Contributed: MAPPs contributed to the 

GenMAPP project. Homology: MAPPs mapped from human pathways 

using homology information. KEGG Converted: MAPPs automatically 

created from the KEGG resource. Note: *Includes 120 SGD metabolic 

MAPPs contributed by undergraduate research students mentored by Dr. 

Kam Dahlquist. 
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Figure 2.2. Conversion rate (percentage of genes converted) for MAPPs in 

the Cellular Process category of the Contributed archives. Colored lines 

indicate conversions per species; dashed line indicates the 50% cutoff for 

inclusion in the Homology MAPPs archive. As expected, highly conserved 

processes showed high conversion rates across species (far left), while more 

specialized processes were homologous only among more closely related 

species. 
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 The development of homology MAPPs in GenMAPP builds upon similar 

efforts at other databases(Vastrik et al. 2007) and addresses the dearth of 

pathway content that can be queried computationally. However, it is important to 

note that these MAPPs are not genuine species-specific pathways, but rather 

translations of human pathways where target species genes have been mapped 

based on homology. This distinction is important since accurate pathway 

inference requires knowledge that the particular biological process and molecular 

interactions are conserved between organisms and that predicted homologues 

encode for gene products that perform the same biological function. Another 

current limitation is that, unlike several other resources (Mao et al. 2006; Wu et 

al. 2006; Vastrik et al. 2007), the reactions in a GenMAPP pathway are 

illustrations rather than computable networks that allow for identification of 

conserved interactions. Furthermore, pathways for non-mammalian species are 

mapped from human rather than the most closely related organism. As such, 

these homology MAPPs are by no means equal to the quality of manually 

curated MAPPs. For that reason homology MAPPs are distributed as a separate 

archive, accompanied by a README file explaining the nature of these MAPPs. 

They nonetheless offer an immediate and concrete solution for many researchers 

studying organisms with minimally annotated genomes not supported by other 

analysis programs. It is our hope that these pathways will serve to nucleate 

additional curated pathways. Furthermore, the information provided by pathway 

representations of known biology, especially for minimally annotated genomes, is 
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crucial not only for analyzing large-scale datasets, but also for assigning gene 

function. 

 

2.4.7 Extending pathways 

The use of homology mapping addresses the critical need to extend biological 

representations across species. Yet it is also necessary to expand the pathway 

content within a given species. In the case of mammalian model organisms, such 

as mouse, only ~14% of annotated genes in the genome are represented in 

curated pathways (from the combined archives of GenMAPP, KEGG, BioCarta 

(http://www.biocarta.com) and Reactome). Figure 2.3 illustrates the collection of 

curated pathways in the GenMAPP archive over time, which, in terms of gene 

content is >90% redundant with BioCarta and Reactome. The collection of 

curated pathways from the scientific community is a slow, iterative process that 

requires the synthesis of a variety of evidence. Such evidence is being cataloged 

in numerous databases as protein-protein interactions, genetic interactions, and 

coexpression patterns, which are rapidly expanding with the advent of large-

scale, high-throughput assays. But it remains a challenge to form meaningful 

networks from this data and grow our understanding of pathways.  
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Figure 2.3. Number of mouse genes represented on GenMAPP 

Pathways and in Gene Ontology. The unique gene content in the 

GenMAPP pathway archive is traced over time (blue) for the mouse 

genome in terms of the number of genes (left axis) and corresponding 

percentage of the genome (right axis).  For comparison, the unique gene 

content annotated by Gene Ontology is shown (green). Significant gains in 

absolute gene content were made by collecting new pathways targeting 

new biology (e.g., NetPath) and by extending pathways with orthogonal 

datasets from coexpression and protein-protein interaction networks (latest 

GenMAPP count at 7095 genes, or ~25% of the genome). 
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 To address this challenge, we created a new pathway resource, which 

incorporates additional genes into our existing set of pathways using prior 

evidence. This method of pathway extension has been previously used to include 

new genes predicted to expand and enhance the content of existing pathways 

and gene sets (Novak et al. 2006). The method can work with any type of data 

that can be modeled as pairs of linked genes. The most obvious example is 

protein-protein interactions, where the link between genes represents the 

physical association of two proteins. The link could also represent coexpression, 

transcriptional regulation, or literature search results. The extension method is 

currently implemented as a set of in-house Perl scripts used as an accessory to 

GenMAPP to expand a given pathway. Each pathway MAPP is processed 

individually. First, the gene IDs are extracted from the pathway and converted to 

a uniform ID system (e.g., Entrez Gene). The resulting gene list is used to query 

one or more specified databases (e.g., protein-protein interactions). A threshold 

is set for including new genes (e.g., one or more links to original gene list). 

Finally, the new genes are added to a side panel of the original MAPP, separate 

from the curated pathway, and the interaction partners are noted and stored in 

the remarks field of each involved gene (Figure 2.4). 
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Figure 2.4. G1 to S cell-cycle control pathway extended with genes from a 

coexpression network. All genes assigned to the original pathway were queried 

against the coexpression network. Yellow designates the genes found in the 

coexpression network and blue designates their coexpression partners that were 

extracted from the network and added to the pathway. 
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 Using this approach, we extended the GenMAPP curated pathway archives 

for mouse with two types of data: protein-protein interactions and coexpression 

data (Stuart et al. 2003) (see supplemental data). The coexpression links were 

derived from a network analysis of correlated gene expression across multiple 

species networks (Stuart et al. 2003) under the premise that genes that maintain 

an evolutionary conservation of coregulation often participate in a related 

biological process (van Noort et al. 2003; Bergmann et al. 2004). With the 

additional genes added from these datasets, we have significantly increased the 

coverage (~25%) per genome (Figure 2.3). It is important to distinguish the 

added genes from those originally in the pathway since the added genes are not 

necessarily involved in the pathway; rather, they are related to the pathway by a 

particular type of evidence. Having access to this related information in the same 

view as the pathway allows for simultaneous data visualization and statistical 

analysis using MAPPFinder. These extended pathways may also serve as 

launching points for improved pathway curation by the community and as a 

predictive method for identifying new pathway interactions.   

 

2.4.8 Examples of pathway analysis  

Here we explore three of the many examples of how GenMAPP version 2 can be 

used to analyze data from complex genomic experiments and the types of 

biological insights potentially gained. 

 

2.4.8.1 Gene expression time course analysis 
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In figure 2.5, we display gene expression data from multiple time-point 

comparisons for the myometrium during gestation(Salomonis et al. 2005). There 

are two baselines in this analysis: virgin non-pregnant (NP) myometrium and 

mid-pregnancy myometrium. The comparison allows the user to simultaneously 

examine the effects of pregnancy as compared to non-pregnant animals and the 

specific temporal effects leading up to labor through postpartum. 

 The prostaglandin synthesis and regulation pathway contains molecular 

interactions that are critical in the transition of the myometrium from a relatively 

quiescent tissue throughout pregnancy to a highly contractile tissue at term. By 

viewing multiple time-point comparisons in this pathway, one can easily see 

which genes are differentially expressed just prior to the onset of labor (18 days 

of pregnancy) compared to mid-pregnancy (14 days of pregnancy) (e.g. Ptgs2, 

Edn1 and Hsd11b1) alongside the relative expression of these genes at mid-

pregnancy versus the virgin state (first stripe).  Making such comparisons in the 

new version of GenMAPP is relatively straightforward and flexible, supporting not 

only multiple data points, but also multiple types of data (see SNP example, 

figure 6c). In GenMAPP version 2, the user can also select any combination of 

color sets to view on a given MAPP simply by selecting them from the “Choose 

Color Set” pull-down. 
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Figure 2.5. Striped view of multiple time-point comparisons. Gene 

expression data from mouse uterine smooth muscle from mid-to-late pregnancy 

through postpartum are shown as striped color sets on a pathway for 

prostaglandin synthesis and regulation. For each comparison, a separate color 

set was generated, with eight colors designating different fold thresholds. The 

order of the criteria dictates the priority for how a gene box is colored. For this 

dataset, the striped view allows comparison of expression changes that are 

predicted to promote versus block contraction during distinct phases of 

pregnancy. Multiple probe sets from the microarray linking to a gene are 

indicated by a dashed edge around the gene box. The central color of the gene 

box corresponds to the predominant criterion met (mode) and the rim colors 

represent the second most prevalent criterion met. 
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2.4.8.2 Analysis of whole-genome exon array data 

As the feature size of DNA microarrays have decreased, the number of probes 

hybridizing to specific targets has increased by well over an order of magnitude. 

In the example shown in Figure 2.6 A, we examined a publicly available 

microarray dataset that measured the expression of all known and predicted 

exons from 11 different adult human tissues (Figure 2.6 A) 

(http://www.affymetrix.com/support/technical/sample_data/exon_array_data.affx).  

From these data, both gene expression changes between tissues and splicing 

scores can be calculated for all genes (see supplemental methods). GenMAPP 

version 2 can display this information in each gene box, with the central color 

stripes indicating relative expression change for each tissue (red or blue) and the 

rim color designating a threshold for the significance of an alternative splicing call 

(green, gray, or white). This strategy takes advantage of how GenMAPP 

prioritizes assignment of central and rim colors of a gene box based on the order 

of the underlying data. Viewing related identifiers to a given gene as a secondary 

rim criterion can provide critical information to the analysis and is a unique 

feature of GenMAPP. When viewed in the context of Monoamine G-protein 

coupled receptors, we can clearly identify in which tissues a gene is most highly 

expressed (bright red center color) and which genes have a significant alternative 

splicing call (green rim color). By creating a color set for each of the 11 tissues 

and selecting “all” for visualization, both the tissue specific regulation of gene 

expression and the likelihood of splicing can be assessed in a single view.  The 
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results from this dataset can be exported for any given set of pathways with web-

ready images and HTML backpages for each and every gene.  The web export 

function allows researchers to navigate and effectively communicate the impact 

of both gene expression and splicing on specific pathways and genes (see the 

GenMAPP website (http://www.genmapp.org/multiple_cs.html) for this example 

and others). 

 

2.4.8.3 Combining proteomic and gene expression data 

In another example, gene expression and proteomic data (Griffin et al. 2002) is 

viewed concurrently as two adjacent stripes of color (Figure 2.6 B).  The example 

displays data from an experiment measuring both mRNA and protein levels in 

yeast in response to changes in carbon source. Simultaneously visualizing 

changes at the transcript and protein level in the context of pathways represents 

a more informative depiction of the system-level changes occurring in the 

organism than if either data was analyzed alone. The flexibility of combining any 

number of disparate data types in a single view is a relatively uncommon feature 

in pathway analysis tools. To view two data types side by side, datasets are 

combined into a single spreadsheet before import into GenMAPP. There are no 

restrictions on the nature of data that can be viewed as independent, adjacent 

color sets, provided that the data links to the GenMAPP gene database. 
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Figure 2.6. Striped view of multiple data types. (A) Transcription and splicing 

data, collected on whole-genome exon tiling microarrays (see supplemental 

methods), are represented by stripes of color on a functionally organized list of 

monoamine G-protein-coupled receptors. Transcriptional changes for 11 different 

human tissues are displayed as the center color of the gene box, and splicing for 

the gene across all tissues is displayed as the rim color. (B) In the context of 

glycolysis and gluconeogenesis, mRNA and protein levels change in response to 

carbon source perturbation in Saccharomyces cerevisiae growing on galactose 

or ethanol. The color on the left side of the gene box illustrates mRNA changes; 

the color on the right indicates corresponding protein-level changes. (C) A variety 

of SNP parameters can be viewed simultaneously using the striped view. SNP 

distribution (dbSNP www.ncbi.nih.gov/SNP), structure-based functional 
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predictions (LS-SNP alto.compbio.ucsf.edu/LS-SNP/), and myocardial infarction 

(MI) association data are combined to asses the coverage of the SNP panel over 

a pathway depicting the role of statin drugs. To view the complete versions of 

these MAPPs with live backpages see Supplemental Data. 

 

2.4.8.4 Integrating genomic, phenotypic and structural information for 

polymorphism data 

One of the key principles of pathway analysis is the integration of multiple pieces 

of information in order to assess new data in the context of known biology. In 

studying polymorphic, or SNP, differences that may contribute to disease, the 

ability to compare the distribution of polymorphisms in the population along with 

phenotypic and protein product effects in the context of biological pathways 

provides both a birds-eye view and detailed dissection of how specific changes 

might impact larger biological systems. An example of how these different types 

of biological data can be combined is shown in Figure 2.6 C using data from a 

whole-genome myocardial infarction SNP array experiment (Tobin et al. 2004). 

Displaying data in this format highlights genes evidenced by association, 

experimental and bioinformatics predictions (e.g. CETP, MTP) as well as their 

relationship to each other and with other genes upstream and downstream of 

these components. Display formats such as this allow access to multiple modes 

of gene regulation from a single display.  

Although these examples illustrate three possible methods for displaying 

complex results, users can customize such views and apply them to any 

combination of data types that have been merged and ordered before import to 
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GenMAPP. This feature provides a means to assess multiple modes of gene 

regulation and thus new avenues of insight into complex biological relationships.  

 

2.4.8.5 Ongoing development of GenMAPP 

GenMAPP version 2 provides new tools for analyzing complex data in the 

context of biological pathways for a variety of genomes. Although the new 

features of GenMAPP version 2 are a useful starting point for the analysis of 

complex microarray data, there are still a number of obstacles to overcome. 

These obstacles include providing cross-platform tools for integrating pathway 

resources, representing gene features (such as SNPs and splicing variation), and 

supporting structured pathway vocabularies for more efficient pathway migration, 

update, curation and exchange.  

 To accelerate development and take full advantage of the growing base of 

open source pathway tools we are actively working with the Cytoscape 

Consortium (www.cytoscape.org)(Shannon et al. 2003) and BioPAX 

(www.biopax.org) developers to implement GenMAPP-style visualization and 

analysis methods in a new software framework.  The primary aims are (1) to 

transition to a platform-independent Java code base that is readily integrated with 

online resources, (2) to support dynamically generated gene databases that not 

only organize identifiers and aliases, but also sub-gene entities such as 

transcripts, exons, and polymorphisms, and (3) to provide innovative analysis 

tools to preprocesses high-throughput datasets preparing them for integration 

with gene databases and statistical analyses, as well as for abstracted 
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visualization at multiple levels of resolution.  We are also working on an XML-

based pathway data format that captures relationships, coordinates, and 

annotations, as well as a Web tool that facilitates pathway content migration, and 

curation from the community. We anticipate that open source bioinformatics tools 

such as GenMAPP and Cytoscape will provide researchers with a new view of 

biology that integrates genomic data with our growing knowledgebase of 

pathways.  

 

2.5 Conclusions 

GenMAPP version 2 represents a step towards fostering the critical link between 

the biologist and their data, providing powerful analyses and intuitive 

representations of increasingly large and complex high-throughput datasets. 

2.6 Availability and requirements 

Project Name: GenMAPP 

Project Home Page: http://www.genmapp.org 

Operating System: Windows 

Programming Language: Visual Basic 

Requirements: Species-specific databases and pathway file collections 

distributed by GenMAPP.org 

License: Open-source (Apache) 

Any Restrictions to Use by Non-academics: None 
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Chapter 3 

Identifying Genetic Networks Underlying Myometrial Transition to Labor 

 

 

3.1 Abstract 

Background: Early transition to labor remains a major cause of infant mortality, 

yet the causes are largely unknown. Although several marker genes have been 

identified, little is known about the underlying global gene expression patterns 

and pathways that orchestrate these striking changes.  

Results: We performed a detailed time-course study of over 9,000 genes in 

mouse myometrium at defined physiological states: nonpregnant, mid-gestation, 

late gestation, and postpartum.  This dataset allowed us to identify distinct 

patterns of gene expression that correspond to phases of myometrial 

“quiescence,” “term activation,” and “postpartum involution.” Using recently 

developed functional mapping tools (e.g., HOPACH, GenMAPP 2.0), we have 

identified new potential transcriptional regulatory gene networks mediating the 

transition from quiescence to term activation.  

Conclusions: These results implicate the myometrium as an essential regulator 

of endocrine hormone (cortisol and progesterone synthesis) and signaling 

pathways (cAMP and cGMP stimulation) that direct quiescence via the 

transcripitional up-regulation of both novel and previously associated regulators. 

With term activation, we observe the up-regulation of cytoskeletal remodeling 

mediators (intermediate filaments), cell junctions, transcriptional regulators, and 
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the coordinate down-regulation of negative control checkpoints of smooth muscle 

contractile signaling. This analysis provides new evidence of multiple parallel 

mechanisms of uterine contractile regulation and presents new putative targets 

for regulating myometrial transformation and contraction. 

 

3.2 Introduction 

The initiation of mammalian labor is a complex physiological process that 

requires the expression and secretion of many factors, both maternal and fetal 

(Norwitz et al. 1999; Challis et al. 2000). The majority of these factors exert their 

effect on the myometrium, the smooth muscle responsible for expelling the fetus 

from the uterus. While species differences in labor regulation have been 

observed, several common signaling pathways and factors have been implicated 

as key regulators across species. During mid to late gestation, myometrial 

quiescence is maintained by several contractile inhibitors, such as relaxin, 

adrenomedullin, nitric oxide, prostacyclin, and progesterone (Norwitz et al. 1999; 

Challis et al. 2000). A number of these regulators stimulate cAMP- and cGMP-

mediated signaling pathways. Smooth muscle contraction is inhibited by the 

phosphorylation of myosin light chain kinase by the cAMP-dependent protein 

kinase. This inhibition is believed to promote quiescence. In addition, the 

myometrium undergoes major structural changes throughout pregnancy that are 

required to generate the necessary contractile force for labor, including 

hypertrophy and hyperplasia of smooth muscle, connective tissue, focal 

adhesion, and cytoskeletal remodeling (Lopez et al. 2000). 
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The transition to labor results in synchronous contractions of high 

amplitude and high frequency by the myometrium. Factors previously associated 

with the regulation of myometrial activation include the oxytocin receptor, gap 

junction protein connexin-43, voltage-gated calcium channels, prostaglandin 

receptor subtypes, estrogen, cortisol, and transcription factors c-jun and c-fos. 

Most of these proteins participate in pathways that stimulate calcium release 

(e.g., calcium-calmodulin G protein signaling) and the formation of intracellular 

junctions, leading to stimulation of contractions. Although several important 

components that regulate the initiation of labor have been identified, the 

mechanisms that guide this transition are poorly understood.  

A difficult challenge in identifying the regulatory events that control the 

switch from myometrial quiescence to activation is developing tools for examining 

whole genome expression profiles in the context of known biology.  Recent 

efforts to identify transcriptional changes from laboring and non-laboring human 

myometrium have proven to be valuable in identifying putative physiological 

regulators (Aguan et al. 2000; Bethin et al. 2003; Charpigny et al. 2003; Rehman 

et al. 2003; Havelock et al. 2004); however, the lack of gestational time points 

examined have limited these approaches to interrogating only those genes with 

large fold changes at term activation without exploring the global patterns of gene 

expression over the time-course of myometrial transformation. While gene 

profiling of the rodent uterus during gestation has proved fruitful in revealing 

some of the large scale patterns of gene expression throughput pregnancy 

(Bethin et al. 2003; Girotti et al. 2003), there is still a critical need to improve the 
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global view of myometrial gene expression with greater temporal resolution using 

newly developed bioinformatics tools.  

To identify molecular mechanisms involved in the transition from myometrial 

quiescence to labor, we analyzed gene expression changes in mouse 

myometrium at midgestation, throughout late gestation, and during the 

postpartum period. Our results reveal several novel patterns of expression 

occurring along the phases of myometrial quiescence to term activation and 

postpartum involution. Analysis of putative quiescence and term activation 

regulators in the context of well-defined biological pathways revealed new 

putative functional roles for several previously unassociated genes in the 

suppression of contraction throughout gestation and activation of phase-

dependent contractions at labor. This analysis further implicates the regulation of 

several novel pathways, including smooth muscle/extracellular matrix interactions 

throughout late gestation and cell junction/cytoskeletal interactions immediately 

prior to the onset of labor.  

 
3.3 Results 
 

3.3.1 Clustering of expression changes in gestational myometrium 

mRNA transcript levels were measured from isolated myometrium of 35 time-

mated mice at four time-points of late gestation (14.5–18.5 days), at postpartum 

(6 and 24 h after labor), and from a nonpregnant control group. In all, ~13,000 

probe sets corresponding to ~9,000 unique cDNAs and ESTs were probed with 

oligonucleotide microarrays. About 35% these transcripts (p<0.05 and >20% fold 
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change) were regulated throughout gestation and postpartum (14.5 days through 

24 h postpartum). 

Analysis of these probe sets with HOPACH (http://www.bioconductor.org; 

Pollard et al. 2002; van der Laan et al. 2003) revealed eight primary cluster 

groups and 133 subclusters. The majority of these clusters showed a clear 

association with known physiological phases of uterine gestation: quiescence 

(clusters 2, 3, 7,and 8), term activation (cluster 6), and postpartum involution 

(clusters 3, 4, and 7).  In addition to these clusters, we observed two cluster 

groups with genes down-regulated or up-regulated throughout the analyzed time-

course (clusters 1 and 5) (Figure 3.1).  

 

3.3.2 MAPPFinder Analysis 

To characterize the major biological processes, molecular functions, and cellular 

components associated with the HOPACH pattern groups, we used MAPPFinder 

(a component of GenMAPP version 2.0) (http://www.genmapp.org; Ashburner et 

al. 2000; Dahlquist et al. 2002; Doniger et al. 2003). MAPPFinder produced a 

statistically ranked list (based on p value) of Gene Ontology (GO) biological 

categories associated with each cluster, from which the most significant 

nonsynonymous groups are listed (Figure 3.1, GO Categories). In each cluster, 

several highly significant biological associations were identified (adjusted 

permutation p<0.05).  
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Figure 3.1. Clustering of Myometrial Expression Profiles with 

HOPACH. Gene expression profiles for 27 microarrays (vertical axis) and 

4,510 probe sets (horizontal axis) are shown in the context of the 

HOPACH cluster map (nonpregnant data excluded). The array groups 

correspond to mid-to-late gestation (14.5, 16.5, 17.5, and 18.5 days), and 

postpartum (6 and 24 h). Eight clusters of genes are arranged vertically. 

Physiological phase groups are assigned based on visual observation and 

association with previously associated regulators. MAPPFinder results are 

shown for the top ranking distinct biological process, molecular function, 

and cellular component groups based on a permuted p value. Previous 

associated regulators of uterine quiescence and activation are indicated 

by a colored line next to the location of the corresponding gene probe set 

in the cluster map. 

 

3.3.3 Association of Expression Clusters with Previously Associated 

Uterine Quiescence and Activation Genes 

Gene expression groups associated with the maintenance of pregnancy 

(quiescence) or induction of labor (activation) were confirmed by mapping lists of 

previously identified regulators of uterine quiescence and activation onto our 

HOPACH cluster map. Extensive literature searches for such regulators identified 

66 genes, of which 23 were regulated in our dataset (Figure 3.1, Previously 

Associated Regulators). Genes hypothesized to regulate quiescence by 

transcriptional up-regulation or secretion were largely associated with clusters 7 

and 8 (increased “quiescence”), while putative activators of uterine activation 

were largely associated with cluster 6 (increased “term activation”). Although only 
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three down-regulated quiescence regulators were associated with HOPACH 

clusters, two of them mapped to cluster 2 (decreased “quiescence”), as 

predicted. 

 

3.3.4 Functional Analysis of “Quiescence” and “Term Activation” Pattern 

Groups 

To further elucidate specific genes and pathways linked to the regulation of 

uterine quiescence and the initiation of labor, we examined pattern groups linked 

to quiescence and term activation, in the context of GO categories, GenMAPP 

pathway maps, and literature associations. While low magnitude fold changes 

have been included within these functional analyses to broaden our survey of 

biological groups, we have largely restricted our discussion to transcripts with 

fold changes greater than 2. 

 

3.3.5 Up-regulation of Pathways of Relaxation and Remodeling during 

Quiescence 

Analysis of genes up-regulated throughout gestation (“increased quiescence”) 

revealed a number of biological categories associated with uterine quiescence. 

These categories contain a large number of highly regulated genes coupled to 

the inhibition of prostaglandin and cortisol synthesis, stimulation of cAMP and 

cGMP signaling pathways, extracellular matrix remodeling, cytolysis, and 

regulation of cell growth (Figure 3.2 and Table 3.1). To explore the potential 

relationships between the products of these transcriptionally regulated genes, we 
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mapped the data onto respective metabolic and signaling pathways (Figure 3.3 

A, B). 

Besides well-established quiescence regulators (Adm, Cgrp, Hsd11b2, 

Gnas, Cnn1, and Utg)(see Tables 1-3 for complete gene names), several genes 

previously unassociated with the maintenance of quiescence were identified 

along the same or related biological pathways. The most highly regulated of 

these genes were those implicated in the induction of cGMP and cAMP signaling 

pathways (Guca2b and Cmkor1), calcium-dependent phospholipid binding genes 

(Anxa1, Anxa2, Anxa3 and Anxa8), and the Anxa2 dimerization partner S100A10 

(Figure 3.3 A). Other changes in expression from this pattern group were 

observed among cytolysis-inducing proteases (granzymes B–G), regulators of 

cell growth (Igfbp2 and Il1r2), and transcriptional regulation (Sfrp4 and Klf4).  

Several of these and other genes were found to have highly reproducible 

patterns of expression using quantitative real-time PCR (TaqMan), with typically 

larger fold changes produced by TaqMan than by GeneChip (consistent with the 

more conservative folds typically produced after RMA normalization) 

(Supplemental Figure 1).  
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Figure 3.2. Association of Quiescence and Term Activation Pattern Groups 

with Biological Pathways. Significant associations to GO classification groups 

and GenMAPP pathways were determined for each of the four examined 

expression pattern groups, (A) increased quiescence, increased activation, (B) 

decreased quiescence and decreased activation. GO terms and GenMAPP 

pathways highlighted by analysis with the program MAPPFinder are indicated by 

italicized blue text. Biological processes identified by literature association are 

indicated in black text or bold black text for general contraction associated 

biological groups. 
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Up Quiescence Expression Group > 2 Fold 
   
Increased Gestation Pattern Group Gene Symbol 14 days fold 

Prostaglandin and Cortisol Synthesis   

hydroxysteroid 11-beta dehydrogenase 1 Hsd11b1 10.6 

decidual/trophoblast prolactin-related protein Dtprp 6.2 

hydroxysteroid 11-beta dehydrogenase 2 Hsd11b2 3.6 

cytochrome P450, 11a Cyp11a1 2.3 

prostaglandin-endoperoxide synthase 1 Ptgs1 2.0 

Phospholipase Inhibition   

annexin A8 Anxa8 4.4 

annexin A3 Anxa3 3.1 

uteroglobin Utg 2.7 

calpactin S100a10 2.5 

annexin A1 Anxa1 2.4 

annexin A2 Anxa2 2.1 

   

Proteolysis and Peptidolysis   

kidney-derived aspartic protease-like protein Kdap 8.2 

CTLA-2-beta Ctla2b 8.1 

cathepsin Z Ctsz 3.1 

dipeptidase 1 Dpep1 3.1 

procollagen C-proteinase enhancer protein Pcolce 2.6 

lipocalin 7 Lcn7 2.6 

Serine-Type Endopeptidases   

granzyme G Gzmg 71.4 

granzyme D Gzmd 45.7 

granzyme F Gzmf 40.2 

granzyme E Gzme 19.8 

granzyme C Gzmc 10.7 

RIKEN cDNA 2210021K23 gene 2210021K23Rik 2.9 

cathepsin G Ctsg 2.2 

protease, serine, 11 (Igf binding) Prss11 2.2 

granzyme B Gzmb 2.1 

Protease inhibitors   

tissue factor pathway inhibitor 2 Tfpi2 4.2 

serine protease inhibitor 14 Serpinb9e 3.3 

plasma protease C1 inhibitor  Serping1 2.7 

   

ECM Remodelling and Cell Growth   

Regulation of Cell Growth   

insulin-like growth factor binding protein 2 Igfbp2 12.4 

interleukin 1 receptor, type II Il1r2 5.0 

glucocorticoid-induced leucine zipper Gilz 3.8 

tumor necrosis factor, alpha-induced protein 2 Tnfaip2 3.3 

c-fos induced growth factor Figf 3.2 

related RAS viral (r-ras) oncogene homolog 2 Rras2 3.0 

cysteine rich protein 2 Crip2 2.9 

MORF-related gene X Morf4l2 2.6 

epithelial membrane protein 1 Emp1 2.5 

four and a half LIM domains 1 Fhl1 2.3 

S100 calcium binding protein A6 (calcyclin) S100a6 2.3 

insulin-like growth factor binding protein 6 Igfbp6 2.1 

transforming growth factor, beta 2 Tgfb2 2.0 

Integrin-Mediated Signaling Pathway   

secreted phosphoprotein 1 Spp1 17.3 

connective tissue growth factor Ctgf 2.8 

caveolin, caveolae protein Cav 2.5 

ras homolog gene family, member A2 Arha 2.4 

Structural Constituent of Cytoskeleton   

gelsolin Gsn 2.4 

tropomyosin 4 Tpm4 3.1 

tubulin, beta 2 Tubb2 2.2 

Extracellular Matrix Structural Constituent   

microfibrillar associated protein 5 Mfap5-pending 6.9 

elastin Eln 3.1 

procollagen, type XI, alpha 1 Col11a1 3.0 

fibromodulin Fmod 2.4 

fibrillin 1 Fbn1 2.3 

procollagen, type V, alpha 2 Col5a2 2.2 

laminin, gamma 1 Lamc1 2.2 

procollagen, type I, alpha 2 Col1a2 2.2 
   

G protein Signaling   

guanylate cyclase activator 2b Guca2b 15.2 

chemokine orphan receptor 1 Cmkor1 5.0 
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adrenomedullin Adm 2.0 

guanine nucleotide binding protein, gamma 11 Gng11 2.0 
   

Transcriptional Regulation   

secreted frizzled-related sequence protein 4 Sfrp4 4.2 

Kruppel-like factor 4  Klf4 3.0 

C/EBP delta Cebpd 2.3 

inhibitor of DNA binding 1 Idb1 2.1 

X-box binding protein 1 Xbp1 2.0 

Kruppel-like factor 2  Klf2 2.0 

 

 

Table 3.1. Genes Up-regulated with Quiescence. Only up-regulated 

genes with a relative fold change versus nonpregnant mice 2 at 14.5 

days gestation and linked to biological categories highlighted by the 

expression analysis are shown. Full gene lists can be obtained online 

(Supplemental Table 2). 
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Figure 3.3. Analysis of Pathways of Uterine Smooth Muscle Contraction. 

Prostaglandin synthesis (A) and G protein signaling (B) pathways in the 

myometrium are overlaid with gene expression color criterion and fold 

changes from the program GenMAPP. Interactions suggested by results of 

this microarray analysis are included in these figures. Some of the genes in 

these pathways that are not significant in this analysis are indicated by blue 
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text. Detailed gene-expression data, statistics and full gene annotations are 

available on the GenMAPP interactive version of these pathways online. 

 

Several cAMP response element transcription factors were also found 

within the “increased quiescence” group (Atf4, Crebl1, and Creb3, see Figure 3.3 

B). These genes are all members of a larger group of basic leucine zipper (bZip) 

transcription factors not previously associated with quiescence, which also 

includes the CCAAT/enhancer binding protein Cebpd, the Maf protein Mafk, the 

nuclear factor, interleukin 3, regulated Nfil3, and the X-box binding protein Xbp1, 

also up-regulated with quiescence. 

 

3.3.6 Down-regulation of mRNA Processing and Contraction-Associated 

Signaling during Quiescence 

MAPPFinder analysis of genes in the “decreased quiescence” group identified a 

wide variety of cell maintenance, transcription, and cell signaling biological 

processes. Many of these GO categories were associated with the onset of labor 

(calcium ion transport and protein tyrosine phosphatase activity) or myometrial 

postpartum involution (programmed cell death, collagen catabolism, and ubiquitin 

conjugating enzyme activity). These results are in accordance with the inhibition 

of contraction and suppression of cell death in late gestation. Unlike term-related 

biological processes, categories shared between the “decreased quiescence” 

and “increased postpartum involution” group appear to be largely the result of a 

common transcript expression profile (Figure 3.1, cluster 3; Figure 3.2). 
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 Although similar numbers of genes were down-regulated or up-regulated 

with “quiescence” (~480–520 genes), very few genes were down-regulated more 

than two fold at 14.5 days of gestation (Table 3.2). One of the most down-

regulated transcripts was the myosin light chain gene Myl4, the primary target for 

oxytocin-induced phosphorylation leading to uterine contraction at term. Several 

additional putative components of the oxytocin contractile signaling pathway 

(calcium-calmodulin signaling pathway) were also present in this expression 

group (Iptr1, Ryr3, Plcg1, and Atp2a2) (Figure 3.3 B). Another large set of 

coordinately down-regulated genes include factors involved in RNA processing. 

Alternative splicing of putative quiescence and term activation regulators has 

been proposed to be a critical mechanism of the physiological switch to labor 

(Benkusky et al. 2000; Pollard et al. 2000). 
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Down Quiescence Expression Group > 2 Fold 
   
Decreased Gestation Pattern Group Gene Symbol 14days fold 

Regulation of Cell Growth   

myosin light chain, alkali, cardiac atria Myl4 -2.8 

N-myc downstream regulated 2 Ndr2 -2.7 

actin, beta, cytoplasmic Actb -2.2 
   

Calmodulin-Signlaing   

MARCKS-like protein Mlp -2.2 
   

Proteolysis   

matrix metalloproteinase 3 Mmp3 -2.2 
   

Ion Channels   

expressed sequence AW538430 Kctd12 -2.9 
   

Transcriptional Regulation   

SRY-box containing gene 4 Sox4 -2.9 

homeobox protein Meis2 Mrg1 -2.5 

special AT-rich sequence binding protein 1 Satb1 -2.1 

D site albumin promoter binding protein Dbp -2.1 

RIKEN cDNA 1110033A15 gene 1110033A15Rik -2.1 

myeloid ecotropic viral integration site 1 Meis1 -2.0 

   

Regulation of Alternative Splicing   

CDC-like kinase Clk -2.1 

 

Table 3.2. Genes Down-regulated with Quiescence. Only down-

regulated genes with a relative fold change versus nonpregnant mice 2 

at 14.5 days gestation and linked to biological categories highlighted by 

the expression analysis are shown. Full gene lists can be obtained online 

(Supplemental Table 3.2). 
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3.3.7 Transition from Remodeling and Relaxation to Cell-Cell Signaling and 

Transcriptional Regulation with Activation of the Myometrium at Term 

A large percentage of genes regulated with “quiescence” continued to be highly 

regulated at term. This result emphasizes the importance of expression changes 

immediately before labor to counteract the effects of quiescence. Consistent with 

the number of up-regulated genes, MAPPFinder analysis of the “increased term 

activation” group identified a smaller set of GO terms and pathways. Prominent 

among these were genes associated with the formation of cell junctions, kinesin 

complexes, and endopeptidase inhibitors. In addition, functionally related 

transcription factors (basic helix-loop-helix members or BHLH), ion transport 

proteins and ion transport regulators were coordinately up-regulated at term. 

Within these biological categories, several contractile regulators, both 

associated and unassociated with parturition, were highly up-regulated. These 

genes include cell junction molecules (Cx43, Cx26, Ocln, and Dsp), the 

pulmonary smooth muscle contractile regulator and complement component C3, 

the estrogen signaling regulator Hsp70, the chloride conductance regulator 

Fxyd3, and the ryanodine receptor regulator Gsto1 (Table 3.3). These changes 

occurred in concert with the up-regulation of signaling molecules, such as growth 

factors (Inhba, Inhbb), G protein signaling components (Edg2, Gng12) (Figure 

3.3 B), and collagen catabolism proteins (Pep4, Mmp7). On the whole, however, 

this pattern group was predominated by the up-regulation of genes that encode 

for proteins that are largely epithelial cell–specific. Most prominent among these 

are the cytokeratin intermediate filaments, Krt2-7, Krt2-8, Krt1-18, and Krt1-19, 
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and the cytokeratin transcriptional regulator Elf3, which are among the most 

highly up-regulated genes at term.  

 

3.3.8 Down-regulation of Pathways of Calcium Mobilization and G Protein 

Signaling in Term Myometrium 

HOPACH analysis with a metric that disregarded the direction of fold change 

(Supplemental Figure 2) revealed a small number of down-regulated genes at 

term that mirror the “increased term activation” group. Among these, we 

observed two highly down-regulated genes, regulator of G-protein signaling 2 

(Rgs2), a potent inactivator of G q-GTP bound activity and inhibitor of DNA 

binding 2 (Idb2), a bHLH factor that heterodimerizes with other HLH proteins to 

inhibit their function. Rgs2 is one of the most down-regulated genes throughout 

the gestation-postpartum time-course, in addition to being highly expressed in 

nonpregnant myometrium and throughout gestation. Additional term down-

regulated G protein signaling proteins that act to antagonize calcium-calmodulin 

signaling are illustrated in Figure 3.3 B.
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Up Term Activation Expression Group > 2 Fold 
   

Title Gene Symbol 18days fold 

Regulation of Cell Growth   

inhibin beta-B Inhbb 3.1 

inhibin beta-A Inhba 2.2 

Cell Death   
growth arrest and DNA-damage-inducible 45  Gadd45g 3.2 

baculoviral IAP repeat-containing 1a Birc1a 2.1 

clusterin Clu 2.0 
   

Cell Junctions   

occludin Ocln 2.8 
gap junction membrane channel protein  1 Gja1 2.8 

desmoplakin Dsp 2.8 
   

G Protein Signaling   

lysophosphatidic acid receptor Edg-2 Edg2 2.8 
guanine nucleotide binding protein,  12 Gng12 2.1 

   

Structural Constituent of Cytoskeleton   

villin 2 Vil2 3.1 

Kinesin Complex   

keratin complex 1, acidic, gene 19 Krt1-19 7.8 

keratin complex 2, basic, gene 7 Krt2-7 4.6 

keratin complex 2, basic, gene 8 Krt2-8 4.6 

keratin complex 1, acidic, gene 18 Krt1-18 4.5 

surfactant associated protein D Sftpd 3.4 
   

Metabolism and Biosynthic Reactions   

lipoprotein lipase Lpl 4.5 

aldehyde dehydrogenase family 1, subfamily A2 Aldh1a2 3.9 

glutathione S-transferase omega 1 Gsto1 3.7 

branched chain aminotransferase 1, cytosolic Bcat1 3.4 

protein phosphatase 1, regulatory subunit 3C Ppp1r3c 2.2 

carbonic anhydrase 2 Car2 2.1 
   

Proteolysis and Peptidolysis   

cytosolic nonspecific dipeptidase 0610010E05Rik 3.2 

transmembrane protease, serine 2 Tmprss2 2.1 

kallikrein 5 Klk5 2.1 

Collagen Catabolism   

peptidase 4 Pep4 2.3 

matrix metalloproteinase 7 Mmp7 2.2 

Proteolysis inhibitors   

complement component 3 C3 4.3 

RIKEN cDNA 1600023A02 gene 1600023A02Rik 2.9 

extracellular proteinase inhibitor Expi 2.8 
   

Transcriptional Reglation   

Transcription Factors   

myeloblastosis oncogene Myb 2.5 

hairy and enhancer of split 1 Hes1 2.3 

E74-like factor 3 Elf3 2.1 

Androgen Regulation   

kidney androgen regulated protein Kap 33.9 

heat shock protein 4 Hspa4 3.1 

alpha fetoprotein Afp 3.1 
   

Transport   

FXYD domain-containing ion transport regulator 3 Fxyd3 2.8 

lipocalin 2 Lcn2 2.5 

lactotransferrin Ltf 2.2 

solute carrier family 16, member 1 Slc16a1 2.1 

fatty acid binding protein 5, epidermal Fabp5 2.0 

 

Table 3.3. Genes Up-regulated with Term Activation. Only up-regulated 

genes with a relative fold change versus nonpregnant mice 2 at 18.5 

days gestation and linked to biological categories highlighted by the 

expression analysis are shown. Full gene lists can be obtained online 
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(Supplemental Table 3.2). 

 

3.3.9 Global Mechanisms of Transcriptional Regulation 

One of the most prominent observations in this dataset is the highly significant 

correlation in the expression and genomic position of eight serine-type 

endopeptidases (Gzmb–Gzmg, Mcpt8, and Ctsg) during the phase of 

quiescence. Genes within this multi-gene cluster undergo tight coordinate 

regulation in response to cell stimulus (Pham et al. 1996; Allen et al. 1998). 

Examination of this expression cluster group in the context of genomic position 

reveals a novel pattern of positional gene regulation, where relative fold 

increases from the peripheral members in the cluster to the center of the gene 

cluster (Figure 3.4 A).  
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Figure 3.4. Association of Genomic Localization with Expression 

Coregulation. (A) and (B), Chromosomal gene clusters contain highly 

correlated expression changes among multiple members. Global patterns of 

gene expression within these genomic intervals are visualized by representing 

mean log expression for four of the myometrium time-point groups 

(nonpregnant, 14.5 and 18.5 days gestation, and 24 h postpartum), versus 

relative gene position on the chromosome. Gene strand orientation and 

position is designated by the orientation of arrows. Gene symbols above and 

below arrows are shown, where italicized black text indicates coregulated 

genes (same HOPACH cluster) and italicized grey genes noncoregulated for 

increased quiescence (A) and increased postpartum involution (B). Non-

italicized grey text indicates genes not probed by the arrays. 
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To determine whether other gene clusters exhibit a similar form of 

positional coregulation, we developed a program to identify genomic intervals 

containing several co-expressed genes. Searching for regions with three or more 

members in a broad genomic interval (500 kb), we identified 11 clusters of genes 

that are co-localized and coregulated (same HOPACH cluster)(Supplemental 

Figure 3). Among these, we were able to identify at least one other gene cluster 

that possessed a genomic pattern of gene expression similar to that of the 

granzyme cluster, with genes maximally up-regulated postpartum (Figure 3.4 B). 

These genes, which encode several of the collagen catabolism matrix 

metalloproteinases Mmp3, Mmp10, Mmp12, and Mmp13, are among the most 

highly up-regulated genes postpartum. Since we do not have data from full 

genome arrays, it is difficult to determine if these coregulated clusters of genes 

occur more frequently. However, these coregulated gene clusters suggest 

coordinated gene regulation by an unknown mechanism. 

 

3.4 Discussion  

This time-course analysis provides the first global view of gene-expression 

changes in mouse myometrium from uterine quiescence through the activation of 

the myometrium before labor and to its postpartum involution. Examination of 

multiple time points, the use of replicates, robust array normalization, and 

powerful clustering tools enabled us to delineate and characterize unique 

patterns of gene expression throughout this physiological process. In addition to 

partitioning clusters of genes, analysis with the program HOPACH also provides 
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us with a continuum of expression changes that reveals an overall transition in 

the expression of genes from one cluster group to another (Figure 3.1). 

Annotation of these clusters with GO terms provides a bird’s eye view of the 

major processes regulating each of these pattern groups. These results support 

the hypothesis that mid-to-late gestation is predominated by changes in the 

expression of genes related to cell growth and extracellular matrix remodeling 

(cluster 7), term gestation by changes in the content of cell junctions (cluster 6), 

and postpartum by targeted protein degradation, collagen digestion, and 

apoptosis (clusters 3 and 4). Furthermore, results from genes up-regulated 

throughout gestation through postpartum suggest a continual local uterine 

immune response throughout this process (cluster 5). To help visualize the large 

scale gene expression changes in the context of myometrial physiology, we have 

depicted the data in an animation (see supplementary data Flash movie) that 

summarizes our major findings. 

A number of studies emphasize the importance of fetal regulation of the 

switch from quiescence to term activation, particularly increased cortisol and 

estrogen output from the fetal adrenal gland (Norwitz et al. 1999; Challis et al. 

2000). Interestingly, our studies provide evidence of a dynamic interplay between 

the myometrium and the fetus, particularly at the level of cortisol and 

progesterone synthesis (Figure 3.3 A). Genes highly up-regulated with 

quiescence include Hsd11b, which converts cortisol to the inactive cortisone, and 

Cyp11a1, which promotes the synthesis of progesterone. Conversely, Hsd11a, 

which catalyzes the synthesis of cortisol, increased expression from 11- to 18-
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fold throughout gestation, suggesting that local regulation of cortisol levels are 

important for myometrial activation. While we observed the up-regulation of the 

estrogen signaling regulator, Hsp70, with “term activation,” downstream markers 

of estrogen action are among the most highly up-regulated genes with term 

activation, supporting the role of the fetus in myometrial activation. 

Examination of highly up-regulated putative quiescence and term 

activation genes revealed several novel changes within important assoicated 

pathways for quiescence and activation (cAMP and cGMP signaling, calcium and 

calmodulin signaling and prostaglandin synthesis). Such factors include Guca2b 

(uroguanylin), Anxa3, and Anxa8 with quiescence and C3, Edg2, Gsto1, and 

Fxyd3 during activation (see Figure 3.3). These factors may represent novel 

targets for controlling gestational length. This is evidenced by the parallel 

observed up-regulation of Guca2b from a recent microarray analysis of rat 

uterine gestation, where this factor has also been proposed to be a crucial 

regulator of cGMP mediated smooth muscle relaxation throughout late 

pregnancy(Girotti et al. 2003; Buxton 2004). We have validated the expression 

patterns of a number of these genes using quantitative real-time PCR 

(Supplemental Figure 3.1). In addition to these mentioned candidates, a number 

of other highly up-regulated genes, whose functions have not been elucidated 

are also found in these two expression groups (Supplemental Table Set 2).  

 Although a number of genes up-regulated with quiescence or with term 

activation can be clearly implicated in the regulation of contractile pathways or 

uterine growth, several more groups of genes with little known functional 
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connection to these processes were coordinately expressed. Highlighted among 

these groups are serine endopeptidases (granzymes) and bZip transcription 

factors, up-regulated during quiescence, and endopeptidase inhibitors and bHLH 

factors, up-regulated with term activation. In addition to cytolysis, granzyme 

expression has been associated with the breakdown of extracelluar matrix 

proteins in the uterus during pregnancy by secretion from T-lymphocytes (Garcia-

Sanz et al. 1990; Croy et al. 1997; Benkusky et al. 2000). Interestingly, the up-

regulation of serine endopeptidases appears to be antagonized prior to the onset 

of labor by the up-regulation of several serine endopeptidase inhibitors with term 

activation. A similar antagonistic relationship may also exist for bHLH factors up-

regulated at term with inhibitors of HLH function that are up-regulated with 

quiescence and become down-regulated at term.  

Although the myometrium is considered to be relatively homogenous, 

many of the largest changes in gene expression at term occurred in genes that 

are not normally associated with muscle such as the keratins, tight junction and 

desmosome junction proteins. Indeed, altered gene expression due to changes 

in cell type distribution or the invasion of the myometrium by the decidua and 

endometrium would not be distinguished if those changes occur consistently 

between gestational myometrium preparations. Further inspection of the 

literature reveals that the cytokeratins, which compose the bulk of this group, are 

expressed within smooth muscle and likely function as intermediate filaments of 

the cytoskeleton (Brown et al. 1987; Gown et al. 1988; Stiemer et al. 1995; Yu et 

al. 1998). Furthermore, several components of desmosome spot junctions and 
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hemidesmosomes, which interact with keratin intermediate filaments and the 

extracellular matrix to impart tensile strength between cells, are also up-regulated 

with term activation (see Supplemental Animation). These data suggest that an 

increase in rigidity imparting cell junctions and remodeling of the cytoskeleton 

immediately before labor may promote coordinate contractions. However, further 

studies are needed to determine if cytokeratin expression at term occurs within 

resident or infiltrating cells. 

In addition to the capability to group and annotate clusters of genes, 

pattern analysis with HOPACH can be used to interrogate gene clusters in the 

context of genomic location. For this analysis, we developed a program to isolate 

gene clusters that are likely to be coregulated based on genomic location, similar 

to other reported methods (Gabrielsson et al. 2000; Caron et al. 2001; Megy et 

al. 2003; Trinklein et al. 2004). Using this program, we identified genomic regions 

that undergo correlated changes in gene expression associated with specific 

phases of the myometrial time-course. These groups highlight novel forms of 

gene regulation during quiescence and postpartum to coordinate cell responses 

(serine-protease activation and collagen catabolism). The prominent coregulation 

among members of these two gene clusters further suggests that immune cell 

trafficking and activation also play important roles in the progression towards 

labor and recovery from pregnancy. 

 
3.5 Conclusions 

We have identified several highly regulated genes not previously associated 

with myometrial quiescence or activation, in addition to families of genes 
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coregulated at different phases of the myometrial time-course. In addition to 

providing new hypotheses about how the switch from quiescence to term 

activation may be facilitated (see Figure 3.5), these data highlighted several 

proteins which may serve as new candidate pharmacological targets for 

regulating myometrial contraction and thus the onset of labor. Such analyses will 

also be useful in predicting and correlating gene expression changes in human 

pregnancy, where several time-points are often difficult to obtain(Aguan et al. 

2000; Bethin et al. 2003; Charpigny et al. 2003; Rehman et al. 2003; Havelock et 

al. 2004). Similar studies in other species using complementary methods of 

transcript measurement will also be necessary to validate these changes and 

understand the species-specific and regional myometrium transcriptional 

differences that likely occur. A detailed examination of the precise physiological 

roles of these regulators and mechanisms of regulation will be essential for 

developing a more detailed view of the regulation of labor. 
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Figure 3.5. Proposed Maternal Model of Uterine-Directed Contractile 

Regulation. Theoretical model based on the major gene expression pattern 

groups for quiescence, term activation, and postpartum involution (light grey box 

outline). Arrows next to gene processes and functional groups indicate the 

predominant direction of fold change as indicated by HOPACH analysis. This 

model proposes new roles for transcriptional regulators, regulators of mRNA 

processing, local hormone regulation, protease activity, and cell junction 

formation in the control of both contractile signaling and contraction propagation 

in the myometrium during pregnancy. A model of postpartum involution is also 

presented based on additional results (Supplemental Table Sets 1 and 2). 
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3.6 Materials and Methods 

3.6.1 Tissue Harvesting 

FVB/N mice (Jackson Laboratory) were sacrificed in the morning (10 to noon) at 

14.5 (n = 3), 16.5 (n = 4), 17.5 (n = 5), or 18.5 days (n = 7) after timed mating, 

and 6 (n = 4) or 24 hours (n = 4) after delivery. Control myometrium was 

harvested from nonpregnant littermate females (n = 8) 1 day after timed mating 

with a vasectomized male. After dissection of both uterine horns, the tissue 

closest to the cervix was removed. Each horn was washed with PBS and opened 

longitudinally. Pups and placenta were discarded, and the decidua was removed 

by blunt dissection. The myometrium from each horn was then immediately 

frozen in liquid nitrogen and stored at –80 ºC. 

 

3.6.2 Sample Preparation and Microarray Data Normalization 

For each sample, labeled cRNA was prepared from 20 μg of purified total RNA 

and hybridized to Affymetrix Mu11k A and B arrays according to the 

manufacturer’s instructions. Tissue from each mouse was hybridized individually 

to one array set. Microarrays were scanned at a photomultiplier tube (PMT) 

setting of 100%. Resulting .cel files were generated with Affymetrix Microarray 

Suite 5.0 and analyzed with robust multi-array average (RMA) (Irizarry et al. 

2003). 

 

3.6.3 Statistical Analysis 
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To identify transcripts differing in mean expression across the seven 

experimental groups, p values were calculated from a permutation test with the 

F-statistic function from the mult test package of Bioconductor (Dudoit et al. 

2003). Fold changes in transcript levels were calculated from the mean log2 

expression values of each time-point group versus the mean of nonpregnant 

controls. For cluster analysis, the dataset was filtered for probe sets with a 

p<0.05 across the full expression time-course and fold change of >20% (positive 

or negative) for at least one time-point group versus nonpregnant controls. 

Additional filters were used downstream of clustering for genes related to uterine 

quiescence and term activation.  For clusters related to “quiescence” and “term 

activation,” a fold change >20% was required for the midgestation (14.5 days) 

and term (18.5 days) time-points, respectively, versus non-pregnant controls.  

 

3.6.4 Clustering and Pattern Analysis 

Gene expression clustering for 4,510 significant probe sets was performed using 

the program HOPACH (hierarchical ordered partitioning and collapsing hybrid), 

with uncentered correlation distance (http://www.bioconductor.org; Pollard et al. 

2002; van der Laan et al. 2003). HOPACH produced a tree with six levels of 

clusters (eight primary level clusters and 133 main clusters). To examine 

expression patterns independently of the direction of the fold change, HOPACH 

was re-run with absolute uncentered correlation distance. Associations with GO 

biological process, molecular function, cellular component groups, and 

GenMAPP biological pathways were obtained with MAPPFinder 2.0, a part of the 
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GenMAPP 2.0 application package(Ashburner et al. 2000; Dahlquist et al. 2002; 

Doniger et al. 2003). A permuted p value was calculated by MAPPFinder 2.0 to 

adjust for multiple hypothesis testing (supplemental Methods). Due to the highly 

redundant nature of the oligonucleotide arrays used, redundant probe sets 

corresponding to a single gene were identified from the Affymetrix NetAFFX 

website (Liu et al. 2003). 

 

3.6.5 Real Time PCR validation of Microarray Data 

Real-time (RT) PCR was used to validate the expression patterns of several 

highly regulated genes associated with specific phases of myometrium gestation. 

Gene-specific primers for multiplex real time RT-PCR were designed for each 

gene of interest (n=18) using “Primer Express” software (Perkin Elmer, Foster 

City, CA) based on sequencing data from NCBI databases and purchased from 

Biosearch Technologies, Inc. (Novato, CA). Sequence data for all oligos are 

available online. Total RNA concentration and quality was assessed using the 

Agilent Bioanalyzer 2001 (Agilent Technologies, Palo Alto, CA). First strand 

cDNA synthesis was performed using total cellular RNA (BD Biosciences 

Clontech, Palo Alto, CA), Powerscript™ reverse transcriptase (BD Biosciences 

Clontech), and random hexamer primers. Finally, an equivalent of 10 ng of total 

RNA from the first strand cDNA synthesis reaction was used in 10 μl of each 

TaqMan gene quantification in 384-well format. Universal Master Mix for real time 

PCR was purchased from InvitrogenTM life technologies (Carlsbad, CA). Raw 

data from an ABI Prizm7900 were processed into Excel spreadsheets and 
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conversion of raw Ct values to relative gene copy numbers (GCN) were done as 

described previously (Dolganov et al. 2001). Gene-expression analysis requires 

proper internal control genes for normalization. By using an endogenous control 

as an active reference, quantification of an mRNA target can be normalized for 

differences in the amount of total RNA added to each reaction. For this purpose, 

we used four mouse housekeeping genes—PPIA, GAPDH, PGK1 and S9. 

Moreover, using GeNorm (Vandesompele et al. 2002), we selected PGK and 

GAPDH as the two most stable housekeeping genes across all 12 specimens 

and used their geomeans for normalization. Normalized data were graphed and 

compared to the data generated on similar specimens via microarrays. Genes 

could be broken down into the following groups: a) 13 genes with concordant 

microarray-TaqMan patterns, b) 1 false negative result by microarray (Acta2), c) 

3 genes with high TaqMan variability (Mmp9, Krt19, Id1) and d) 1 gene with 

evidence of alternative splicing (Csb) (supplemental Figure 1). It should be noted 

that Acta2 baseline expression was relatively high for both microarray and 

TaqMan results.  Since both of these techniques probed different regions of the 

Acta2 gene, we can not exclude the possibility of alternatively splicing. 

 

3.6.6 Chromosomal Localization Analysis 

We constructed a program to link HOPACH expression data to chromosome start 

site location and strand orientation, obtained from the Ensembl database. Co-

localized clusters of genes were identified as those genes clustered within a 500-

kb genomic interval, belonging to the same HOPACH cluster, with a z-score 



 81 

>1.96, and an average pair-wise Pearson correlation among cluster members of r 

>0.65. See Supplemental Methods for calculation details and the full 

Supplemental Chromosome Cluster Lists online. 

 

3.7 Supplemental Methods 

Filename: supplemental_methods.doc 

see: http://www.genmapp.org/myometrium.html or Genome Biology website. 

 

3.8 Supplemental Figures/Movie/Datasets: Complete Expression Dataset. 

Myometrium gene expression time-course expression dataset with statistics is 

supplied as a MS-Excel spreadsheet in addition to a GenMAPP format GEX file 

for use with GenMAPP format pathway maps (MAPP files). MAPP files can be 

downloaded from http://www.genmapp.org/. 

File name (XLS): full_dataset.zip 

File name (GEX – GenMAPP format): GenMAPP_myometrium_timecourse.zip 

For all additional supplemental files, see: 

http://www.genmapp.org/myometrium.html 

 

3.9 Acknowledgments 

We would like to thank Chris Barker, Kristina Hanspers, Yanxia Hao, and Anita 

Chow from the Gladstone Genomics Core and Michael McMaster for his 

assistance with uterine dissections. We would like to thank Susan Fisher, Janet 

A. Warrington, Gary Howard, Bethany Taylor, and members of the Conklin lab for 

her helpful discussions and editorial assistance. This work is supported by the J. 



 82 

David Gladstone Institutes and grants from the National Institutes of Health: 

NHLBI, R01-HL61689 (B.R.C.) NHGRI R01-HG002766 (B.R.C) and SBIR 

1R44DK53325-01 (Janet A. Warrington and B.R.C.), T32 GM07175 (N.S.). 

 
3.10 References 
 

Aguan, K., J. A. Carvajal, L. P. Thompson and C. P. Weiner (2000). "Application 
of a functional genomics approach to identify differentially expressed 
genes in human myometrium during pregnancy and labour." Mol. Hum. 
Reprod. 6(12): 1141–1145. 

Allen, M. P. and M. Nilsen-Hamilton (1998). "Granzymes D, E, F, and G are 
regulated through pregnancy and by IL-2 and IL-15 in granulated metrial 
gland cells." J. Immunol. 161(6): 2772–2779. 

Ashburner, M., C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry, A. P. 
Davis, K. Dolinski, S. S. Dwight, J. T. Eppig, M. A. Harris, D. P. Hill, L. 
Issel-Tarver, A. Kasarskis, S. Lewis, J. C. Matese, J. E. Richardson, M. 
Ringwald, G. M. Rubin and G. Sherlock (2000). "Gene Ontology: Tool for 
the unification of biology." Nat. Genet. 25(1): 25–29. 

Benkusky, N. A., D. J. Fergus, T. M. Zucchero and S. K. England (2000). 
"Regulation of the Ca2+-sensitive domains of the maxi-K channel in the 
mouse myometrium during gestation." J. Biol. Chem. 275(36): 27712-
27719. 

Bethin, K. E., Y. Nagai, R. Sladek, M. Asada, Y. Sadovsky, T. J. Hudson and L. 
J. Muglia (2003). "Microarray analysis of uterine gene expression in 
mouse and human pregnancy." Mol. Endocrinol. 17(8): 1454–1469. 

Brown, D. C., J. M. Theaker, P. M. Banks, K. C. Gatter and D. Y. Mason (1987). 
"Cytokeratin expression in smooth muscle and smooth muscle tumours." 
Histopathology 11(5): 477–486. 

Buxton, I. L. (2004). "Regulation of uterine function: a biochemical conundrum in 
the regulation of smooth muscle relaxation." Mol Pharmacol 65(5): 1051-
1059. 

Caron, H., B. van Schaik, M. van der Mee, F. Baas, G. Riggins, P. van Sluis, M. 
C. Hermus, R. van Asperen, K. Boon, P. A. Voute, S. Heisterkamp, A. van 
Kampen and R. Versteeg (2001). "The human transcriptome map: 
clustering of highly expressed genes in chromosomal domains." Science 
291(5507): 1289–1292. 

Challis, J. R. G., S. G. Matthews, W. Gibb and S. J. Lye (2000). "Endocrine and 
paracrine regulation of birth at term and preterm." Endocr. Rev. 21(5): 
514–550. 

Charpigny, G., M. J. Leroy, M. Breuiller-Fouche, Z. Tanfin, S. Mhaouty-Kodja, P. 
Robin, D. Leiber, J. Cohen-Tannoudji, D. Cabrol, C. Barberis and G. 
Germain (2003). "A functional genomic study to identify differential gene 
expression in the preterm and term human myometrium." Biol. Reprod. 
68(6): 2289–2296. 



 83 

Croy, B. A., B. A. McBey, L. A. Villeneuve, K. Kusakabe, Y. Kiso and M. van den 
Heuvel (1997). "Characterization of the cells that migrate from metrial 
glands of the pregnant mouse uterus during explant culture." J Reprod 
Immunol 32(3): 241-63. 

Dahlquist, K. D., N. Salomonis, K. Vranizan, S. C. Lawlor and B. R. Conklin 
(2002). "GenMAPP, a new tool for viewing and analyzing microarray data 
on biological pathways." Nat. Genet. 31: 19–20. 

Dolganov, G. M., P. G. Woodruff, A. A. Novikov, Y. Zhang, R. E. Ferrando, R. 
Szubin and J. V. Fahy (2001). "A novel method of gene transcript profiling 
in airway biopsy homogenates reveals increased expression of a Na+-K+-
Cl- cotransporter (NKCC1) in asthmatic subjects." Genome Res 11(9): 
1473-1483. 

Doniger, S. W., N. Salomonis, K. D. Dahlquist, K. Vranizan, S. C. Lawlor and B. 
R. Conklin (2003). "MAPPFinder: Using Gene Ontology and GenMAPP to 
create a global gene-expression profile from microarray data." Genome 
Biol. 4: R7–R7.12. 

Dudoit, S., R. C. Gentleman and J. Quackenbush (2003). "Open source software 
for the analysis of microarray data." Biotechniques Suppl: 45–51. 

Gabrielsson, B. L., B. Carlsson and L. M. Carlsson (2000). "Partial genome scale 
analysis of gene expression in human adipose tissue using DNA array." 
Obes. Res. 8(5): 374–384. 

Garcia-Sanz, J. A., H. R. MacDonald, D. E. Jenne, J. Tschopp and M. Nabholz 
(1990). "Cell specificity of granzyme gene expression." J Immunol 145(9): 
3111-3118. 

Girotti, M. and H. H. Zingg (2003). "Gene expression profiling of rat uterus at 
different stages of parturition." Endocrinology 144(6): 2254–2265. 

Gown, A. M., H. C. Boyd, Y. Chang, M. Ferguson, B. Reichler and D. Tippens 
(1988). "Smooth muscle cells can express cytokeratins of "simple" 
epithelium. Immunocytochemical and biochemical studies in vitro and in 
vivo." Am. J. Pathol. 132(2): 223–232. 

Havelock, J. C., P. Keller, N. Muleba, B. A. Mayhew, B. M. Casey, W. E. Rainey 
and R. A. Word (2004). "Human Myometrial Gene Expression Before and 
During Parturition." Biol Reprod: Epub ahead of print. 

http://asthmagenomics.ucsf.edu/pubs/publication/Myometrium.htm. from 
http://asthmagenomics.ucsf.edu/pubs/publication/Myometrium.htm. 

http://www.bioconductor.org. from http://www.bioconductor.org. 
http://www.ensembl.org/Multi/martview. from 

http://www.ensembl.org/Multi/martview. 
http://www.genmapp.org. from http://www.genmapp.org. 
http://www.genmapp.org/supplemental/MAPPs/supp_fig3.html. from 

http://www.genmapp.org/supplemental/MAPPs/supp_fig3.html. 
Irizarry, R. A., B. M. Bolstad, F. Collin, L. M. Cope, B. Hobbs and T. P. Speed 

(2003). "Summaries of Affymetrix GeneChip probe level data." Nucleic 
Acids Res. 31(4): e15. 



 84 

Liu, G., A. E. Loraine, R. Shigeta, M. Cline, J. Cheng, V. Valmeekam, S. Sun, D. 
Kulp and M. A. Siani-Rose (2003). "NetAffx: Affymetrix probesets and 
annotations." Nucleic Acids Res. 31(1): 82–86. 

Lopez, B. A. and R. L. Tamby-Raja (2000). "Preterm labour." Baillieres Best 
Pract. Res. Clin. Obstet. Gynaecol. 14: 133–153. 

Megy, K., S. Audic and J. M. Claverie (2003). "Positional clustering of 
differentially expressed genes on human chromosomes 20, 21 and 22." 
Genome Biol. 4(2): P1. 

Norwitz, E. R., J. N. Robinson and J. R. Challis (1999). "The control of labor." N. 
Engl. J. Med. 341(9): 660–666. 

Pham, C. T., D. M. MacIvor, B. A. Hug, J. W. Heusel and T. J. Ley (1996). "Long-
range disruption of gene expression by a selectable marker cassette." 
Proc. Natl. Acad. Sci. USA 93(23): 13090–13095. 

Pollard, A. J., C. Sparey, S. C. Robson, A. R. Krainer and G. N. Europe-Finner 
(2000). "Spatio-temporal expression of the trans-acting splicing factors 
SF2/ASF and heterogeneous ribonuclear proteins A1/A1B in the 
myometrium of the pregnant human uterus: a molecular mechanism for 
regulating regional protein isoform expression in vivo." J. Clin. Endocrinol. 
Metab. 85(5): 1928-1936. 

Pollard, K. S. and M. J. van der Laan (2002). "A method to identify significant 
clusters in gene expression data." Proceedings of 6th World 
Multiconference on Systemics, Cybernetics and Informatics (SCI2002) II: 
318–325. 

Rehman, K. S., S. Yin, B. A. Mayhew, R. A. Word and W. E. Rainey (2003). 
"Human myometrial adaptation to pregnancy: cDNA microarray gene 
expression profiling of myometrium from non-pregnant and pregnant 
women." Mol Hum Reprod 9(11): 681-700. 

Stiemer, B., R. Graf, H. Neudeck, R. Hildebrandt, H. Hopp and H. K. Weitzel 
(1995). "Antibodies to cytokeratins bind to epitopes in human uterine 
smooth muscle cells in normal and pathological pregnancies." 
Histopathology 27(5): 407–414. 

Trinklein, N. D., S. F. Aldred, S. J. Hartman, D. I. Schroeder, R. P. Otillar and R. 
M. Myers (2004). "An abundance of bidirectional promoters in the human 
genome." Genome Res. 14(1): 62–66. 

van der Laan, M. J. and K. S. Pollard (2003). "A new algorithm for hybrid 
clustering with visualization and the bootstrap." J. Stat. Planning Infer. 
117: 275–303. 

Vandesompele, J., K. De Preter, F. Pattyn, B. Poppe, N. Van Roy, A. De Paepe 
and F. Speleman (2002). "Accurate normalization of real-time quantitative 
RT-PCR data by geometric averaging of multiple internal control genes." 
Genome Biol 3(7): research0034.1-0034.11. 

Yu, J. T. and A. Lopez Bernal (1998). "The cytoskeleton of human myometrial 
cells." J. Reprod. Fertil. 112(1): 185–198. 

 
 
 



 85 

 

 

Chapter 4 

Optimized Selection of Pathways for Over-representation analysis from 

Gene Expression and Alternative Splicing Data 

 

 
Nathan Salomonis

1,2
, Stan Gaj

3,4
, Alexander C. Zambon

1,5
, Karen Vranizan

1,6
, Chris Evelo

3
 and  

Bruce R. Conklin
1,2

 
 
1
Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, CA, 

2
Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, 

San Francisco, CA, 
3
Department of Bioinformatics, BiGCaT Bioinformatics, Maastricht University, 

Maastricht, The Netherlands, 
4
Nutrigenomics Consortium, Top Institute Food and Nutrition, 

Wageningen, The Netherlands, 
5
Department of Pharmacology, University of California at San 

Diego, La Jolla, CA, 
6
Functional Genomics Laboratory, University of California, Berkeley, CA 

 

4.1 Abstract 

Background: Microarray experiments provide a powerful means to elucidate the 

genetic and expression networks that regulate cellular functions.  Numerous tools 

are available to annotate microarray data with Gene Ontology (GO) and pathway 

annotations to help illuminate higher-level biological processes related to such 

data.  GO has a hierarchical structure that provides a means to assess gene 

changes at specific levels of the GO tree as well as nested relationships that 

include gene associations from children terms. While nesting such relationships 

provides richer annotations at every level within the GO hierarchy, this approach 

is disadvantaged in its ability to report a minimal set of significant GO 

associations, often with many highly related terms reported.  

Implementation: To improve on this technique, we have written a stand-alone 

program, named GO-Elite (http://www.genmapp.org/go_elite), with an efficient 

algorithm to derive and prune GO and pathway results to provide a minimal set of 
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non-redundant terms to describe a set of input genes. By considering both the 

over-representation score of a GO term and its relative position along each trunk 

and branch of the GO hierarchy, this approach identifies a minimal set of 

descriptive terms for the original GO categories. GO-Elite can prune up to 90% of 

redundant GO results, while retaining as much as a 100% of the original 

associated genes and biological trends. When combined with gene redundancy 

pruning, GO-Elite can further compress GO and pathway results. In addition to 

redundancy filtering, GO-Elite provides multiple levels of gene annotation along 

with GO and pathway-level gene data averaging. To facilitate community 

contribution and update, this software has built-in tools for the addition of new 

gene and species relationships as well as a simple underlying data structure. 

 

4.2 Introduction 

In recent years, the use of pathway/ontology over-representation analysis 

(ORA) has become the gold standard for obtaining biological insights into data 

from genome-scale experiments. This method has wide-ranging applications, 

from understanding the basis of phenotypic differences in cell and animal models 

from whole-genome mRNA expression data, to identifying DNA polymorphisms 

which co-occur within biologically pathways (Wang et al. 2007).  With an ever-

increasing amount of data produced from microarray and high-throughput 

sequencing technologies, efficient and informative pathway-level analyses are in 

great demand. 
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We previously described a freely available tool called MAPPFinder 

(Doniger et al. 2003) for linking genomic datasets to curated biological pathways 

and hierarchically organized GO terms (Ashburner et al. 2000) for ORA. Unlike 

many other tools, MAPPFinder, which is a component of the GenMAPP 

application (Salomonis et al. 2007), uses user-defined criteria to perform ORA on 

curated and custom pathways and nested GO terms. Results are displayed in a 

hierarchically ordered tree, and gene-level changes for any biological term can 

be visualized in GenMAPP.  More recent versions of MAPPFinder perform a 

permutation analysis of z-scores (normal approximation to the hypergeometric 

distribution) to determine an overall and multiple hypothesis corrected likelihood 

that over-representation of each biological category is due to chance.  

MAPPFinder’s ease of use has made it a highly popular application among 

computational biologists and typical bench biologists. 

Both GO and pathway-level perspectives can provide distinct insights into 

user data. The GO has a hierarchical structure and thus allows for distinct 

annotations and ORA at each level of the hierarchy. This structure allows for the 

user to assess changes for each parent, child and sibling GO term. The genomic 

coverage of GO terms is typically far greater than that observed for pathways 

(~70% versus ~ 25%) (Salomonis et al. 2007) and can include electronically 

inferred content including biological interactions that have not been confirmed. 

Nonetheless, pathway information can provide detailed interactions, additional 

cellular context and annotation information as well as highlighting critical rate 

limiting steps. 
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In addition to the approach used by MAPPFinder, several other methods 

have been developed that exploit additional relationships either from the user 

data or from pathway interactions to additionally weight their ORA statistics.  One 

approach, Gene Set Enrichment Analysis (GSEA) (Subramanian et al. 2005), 

uses a prior ranking of the gene data (e.g., by expression clustering) to identify 

more highly related sets of genes (based on their distance by ranking) that are 

specifically enriched in certain pathways, GO categories and genomic loci. An 

advantage of this approach is that stringent filtering of the data may not be 

necessary since ranking can be based on the pattern and robustness of the 

change.  However, the user must appropriately rank their genes, and that ranking 

must be biologically significant for ORA.  Another intriguing strategy is used by 

the tool Pathway-Express: (Draghici et al. 2007), a component of Onto-Tools 

(Khatri et al. 2007). Pathway-Express weights gene changes based on 

magnitude and also considers the position of the protein within the context of 

known interaction networks to determine the overall impact of that change and 

others on the entire network.  

A principle challenge for all of these approaches is to identify a minimal 

set of non-redundant terms to describe genome-level results. Such methods are 

necessary to efficiently summarize ORA results in a publication-ready manner.  

The most popular GO ORA tools, including MAPPFinder, include child gene 

associations with those from the parent often producing many related GO terms 

(sharing overlapping gene content) as being over-represented. Methods such as 

GO-Slim (http://www.geneontology.org), provide a slimmed down version of GO 
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hierarchy to address this, but can result in lost associations to highly specific 

terms. Although some algorithms provide methods to cluster (DAVID) (Dennis et 

al. 2003) and identify the most statistically enriched GO terms among a set of 

ORA results (TopGO) (Alexa et al. 2006), these tools provide little control over 

how to best identify an optimal set of descriptive terms based on different 

enrichment options and to obtain gene associations for these terms.  

Redundancy is also an issue for pathway/network ORA, where multiple highly 

related pathways are often present within a single pathway archive. 

To address these challenges we developed a new approach, called GO-

Elite, to eliminate or highlight redundant GO terms or pathways from ORA results 

for genomic datasets. This method can be applied directly to genomic data or to 

existing ORA results from other sources to reduce these results to a 

manageable, optimal set of descriptive terms. Along with GO-Elite terms, this 

approach includes maximally informative gene-level annotation and data 

summarization results, which allow users to easily view associated data at 

glance.  In addition to GO terms, GO-Elite includes pathway-level ORA along 

with the ability to assess gene redundancy between pathways. This software was 

written with the bench biologist in mind and thus requires no prior expertise with 

bioinformatics applications. With a modular structure and simple built-in tools for 

database file creation, GO-Elite will allow any user to analyze data for any 

number of custom species or gene relationship systems. 

 

4.3 Methods 
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4.3.1 Over-representation analysis 

There are three critical steps in the GO-Elite analysis: (1) building ORA files, (2) 

establishing criterion for filtering and (3) GO-Elite pruning and gene/data 

summarization.  Input ORA files for the GO-Elite analysis can be created in one 

of three ways: (1) by directly using the GO-Elite-ORA in GO-Elite from gene-level 

data, (2) by using existing MAPPFinder 2.0 (a component of the GenMAPP 2.0 

application (http://www.GenMAPP.org, Dahlquist et. al 2002) results and by using 

(3) output from other GO analysis programs re-formatted into the MAPPFinder 

format.  When building ORA from scratch in GO-Elite, users must begin with at 

least two input gene lists: a set of regulated genes (numerator) and a list with all 

gene identifiers (IDs) initially examined (denominator), stored in an existing 

species-specific directory. Multiple gene ID systems are supported in GO-Elite, 

including Affymetrix, Ensembl, and EntrezGene, however, additional systems can 

easily be added by modifying or adding database text files (see Building New 

Relationship). By default, the user has the option of using either Ensembl or 

EntrezGene as the primary gene system to link to GO or supplied pathways, 

where GO relationships are supplied by the respective resource. For non-primary 

gene systems, such Affymetrix, relationships to Ensembl and EntrezGene are 

stored in database file folders, which can be augmented by users using built-in 

tools.  

GO-Elite uses the locally stored versions of the latest OBO files (supplied 

with the program or updated by users from files posted at GeneOntology.org) 

along with gene to GO relationship files to build a nested tree of gene to GO 
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relationships, similar to MAPPFinder.  Unique nested gene to GO relationships 

are identified for each GO term, a permuted non-adjusted p-value from the GO-

Elite-ORA z-score and a Benjamini-Hochberg false-discovery rate p-value are 

exported to output files. Z-scores are calculated using a normal approximation to 

the hypergeometric distribution as previously described (Doniger et al. 2003), 

where a particular gene or array ID is counted only once per GO term 

independent of the number of times it is present in the regulated gene list or 

redundant gene associations present to IDs in the GO term. To calculate a 

permuted p-value for each GO term, the GO-Elite-ORA function randomly selects 

the same number of input genes or array IDs in the user’s input gene list from the 

denominator list, 2000 times (or user-defined) to determine the likelihood of 

obtaining a z-score greater than or equal to the empirically derived z-score.  This 

p-value is adjusted for multiple hypothesis testing, using the Benjamini-Hochberg 

(Benjamini et al. 1995) correction method and saved as a second set of p-values 

in the output file. Run-time for ORA in GO-Elite is typically one to dozens of 

minutes per gene list, depending on the number of genes in the regulated list and 

number permutations selected. 

As an alternative to running ORA directly in GO-Elite, such results can 

also be supplied by MAPPFinder or from other methods supplied in the 

MAPPFinder format. The MAPPFinder analysis method in GenMAPP is similar to 

that employed by GO-Elite-ORA function, except that the multiple hypothesis 

correction method used is based on the Westfall-Young method (Westfall et al. 

1993). GO-Elite can use the text files automatically produced by MAPPFinder 
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along with corresponding input gene lists to build a minimal non-redundant set of 

GO terms or pathways matching the user’s original GenMAPP criterion along 

with gene/data summary information. 

 

4.3.2 Filtering statistics 

The over-representation z-score, number of genes changed, and non-adjusted 

permutation p-value generated by either the GO-Elite-ORA function or 

MAPPFinder are the default statistics used to prune GO terms and pathways in 

GO-Elite.  When ORA data from other GO and pathway analysis programs are 

used as input for GO-Elite filtering, analogous statistics are recommended.  Upon 

import of ORA data, only those GO terms and pathways that meet the user-

defined minimum filters (by default, permuted p-value < 0.05, z-score > 1.96 and 

number of genes change > 2) are processed for redundancy. Once imported, 

GO-Elite will compare related GO terms based one of three possible options: (1) 

the z-score, (2) the number of genes changed or (3) the z-score weighted by 

genes changed (i.e. combination).  The z-score option ranks GO terms only 

based on the z-score, ranked from highest to lowest. The gene number option 

allows ranking based on the number of genes changed in the GO hierarchy, 

again from highest to lowest.  The combination option is a weighted metric based 

on both number of genes changed and the z-score, generated by multiplying the 

z-score by the log base 2 of the number of genes changed for a given GO term. 

These scores are used to select GO terms to report by GO-Elite. 
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4.3.3 GO-Elite Algorithm 

GO-Elite can process different types of ORA files, corresponding to GO results 

(file suffix “-GO.txt”) or pathway results (file suffix “-local.txt”).  For GO results, 

once GO terms are initially filtered based on user-defined statistics, all possible 

parent-child relationships are built and stored for these GO terms, where each 

parent is the key in the database (Python dictionary object) and all of its children 

are the values.  This full database is stored for later queries, while the full parent-

child paths (agglomerated path relationships) for all entries are generated by 

iterating this process. The program then searches these relationships in a 

hierarchical manner to identify the highest scoring GO term that either has a 

higher score (see Algorithm Statistics) than all of its children (along that branch of 

the tree) or sibling terms (children of a single parent, each representing distinct 

branches), where at least one of the sibling terms on a branch scores greater 

than the parent. For these sibling terms, if one sibling branch scores higher than 

the parent and another branch does not, the highest scoring term from the latter 

sibling branch is also selected for the GO-Elite output, but the parent term is not.  

A visual representation of this pruning strategy is shown for a theoretical set of 

parent-child relationships with corresponding z-scores (Figure 4.1).  
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Step 1) Build all possible parent-child relationships.
Step 2) Find parents from this list more significant (see score options) than all of their children
Step 3) Find the most significant child terms (downstream of the last bifurcation)
Step 4) Eliminate terms from step 3 that are children of any other term from step 3
Step 5) Report the most signficant parent OR child terms  

Figure 4.1. Gene GO-Elite Node Selection Strategy. A theoretical GO 

tree with GO paths (black text) is displayed along with associated z-scores 

(blue text). Here, a single GO term can be represented by multiple paths, 

since the GO is represented as a directed acyclic graph. Red boxes 

indicate the "reported significant term" selected by GO-Elite.  Since 

multiple paths can exist for each GO term, if the GO paths A.B.2 and 

A.C.1 correspond to the same GO term (e.g., apoptosis), only A.B would 

be reported since the GO term for both A.B.2 and A.C.1 is a child of A.B. 

As a result, 16 distinct GO paths would be reduced to five GO terms. The 

order of GO-Elite operations is listed below this network. 
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 This process allows the user to view the highest scoring term(s) for a 

particular branch of GO terms and eliminates redundancy of GO terms within the 

same global category (e.g., biological process, molecular function and cellular 

component) without needing to consider associated gene content. Since some 

terms and branches are replicated within the GO hierarchy (redundant), already 

eliminated or selected GO terms are removed from the results from other 

branches.  Finally, GO-Elite reports the list of pruned GO terms along with a 

summary of gene symbols associated with input regulated genes, user data, and 

other reported GO-Elite terms that have gene content that is redundant with that 

term (if gene lists are supplied by user).  These data are stored in a results file for 

each input gene list, a combined file with all lists run in the batch analysis and 

detailed gene association files with gene ID, symbol, description, array IDs and 

data provided in the user input files. 

  

4.3.4 Building New Relationship Files 

GO-Elite was built with a modular design, that allows for the addition of new gene 

ID systems (primary and secondary) and species support, with minimal work and 

no specific expertise.  Gene ID system and species support are controlled by two 

configuration files in the main database directory (“Databases”) of GO-Elite 

(“species.txt” and “source_data.txt”). Support for additional species requires the 

addition of the species code (e.g., Hs) and species name (e.g., Homo sapiens) to 

the species configuration file (via text or spreadsheet editor), creation of new 
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species directories in the “input” and “Databases” directories (see existing 

structure), and creation of relationship text files. The latter can be done in an 

automated fashion using either Affymetrix microarray annotation files for the 

species (relationships extracted directly by GO-Elite), the cross-species GO-

EntrezGene relationship file provided by NCBI 

(ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2go.gz) or direct downloads for 

Ensembl relationships from BioMart (http://www.ensembl.org).  The resulting 

tables, along with GO hierarchy files supplied at http://www.geneontology.org, 

are sufficient to analyze data for a new species. To add additional gene ID 

systems, the user must add a new gene ID system name, system code 

(optionally included in the gene input file to ensure proper gene ID system 

selection), and an indicator if the system is a possible primary ID (which links 

directly to GO).  For new primary ID systems, the user must supply a gene 

annotation table, gene-GO relationship table and any array ID or unique ID to 

primary system (e.g., Ensembl) tables in the corresponding folders. GO-Elite will 

automatically build intermediate tables from this information (e.g., nested gene-

GO relationships). For more information, please see the online or packaged GO-

Elite Help file. 

 

4.3.5 Compatibility and Installation 

GO-Elite is a Python (Python 2.3.4) program that is provided as a stand-alone 

Windows executable application and as cross-platform source-code, compressed 

as a ZIP file. Program files and additional documentation can be found at 
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http://www.genmapp.org/go_elite/ and at http://sourceforge.net. No additional 

files are required, beyond those typically packaged with the operating system 

(Python for Mac OS X and Linux, but not required for PCs when using the stand-

alone executable). 

 

4.4 Results and Discussion 

 

4.4.1 GO-Elite Increases Gene Ontology ORA Specificity for Example 

Queries 

To estimate the specificity which GO-Elite summarizes biological associations for 

a given set of genes without including redundant or nonspecific terms, we 

compared this method to different ORA strategies for three examples.  As a test 

case, we presumed that given a list of genes matching a single GO category, 

ORA would report only the most descriptive GO term, the input GO term.  

Although we are only analyzing genes belonging to one GO category, with typical 

ORA, we would expect an increasing number of additional nonspecific and child 

GO terms to be reported with an increasing number of genes associated with the 

input parent category.  Therefore, we tested the ability of GO-Elite to report a 

minimal, non-redundant set of GO terms for input gene lists containing all genes 

for a GO category with a large (apoptosis), mid-range (response to unfolded 

protein), and small number (stem cell division) of gene associations.   

 For each of three input GO category gene sets, GO-Elite was compared to 

typical ORA, non-nested ORA, and GO-Slim association, all derived using the 
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GO-Elite-ORA function using different ontology tables or nesting options for more 

accurate comparison (Table 4.1 A).  Although in each case, genes for only one 

GO term were provided, the smallest input gene set, stem cell division, had an 

additional 57 categories over-represented by conventional ORA filters, although, 

this method accurately assigned the highest z-score for each query to the same 

input GO category supplied (e.g., apoptosis was the highest scoring term for the 

apoptosis input list, with 100% of genes ‘regulated’). For non-nested and GO-

Slim ORA, only 6 and 5 additional GO categories were associated with the stem 

cell division test list, respectively; however, neither method included the category 

stem cell division (although the child term, somatic stem cell division was 

selected by non-nested ORA) (Table 4.1 B), reflecting the lack of specificity for 

reporting nested results for specific terms. GO-Elite analysis for this test case 

retained stem cell division as the top scoring GO term in addition to 13 additional 

nonspecific terms, eliminating 44 related redundant terms.  For the two additional 

test cases, GO-Elite reduced the outputs by a similar magnitude. While the 

overall number of categories reported by GO-Slim was also relatively small, this 

method produced associations to less specific or unrelated terms with much 

lower overall z-scores.  In the case of response to unfolded protein, GO-Elite did 

not report the test GO category but rather its parent term response to protein 

stimulus. Since both the parent and the child terms contained identical possible 

gene content, GO-Elite selected the parent term, because additional specificity 

could not be found in the child.  Furthermore, when gene content redundancy is 

considered, only a single GO-Elite term remained for each test case (the positive 
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control), since all other categories contained a subset of genes from this 

‘regulated’ input GO category. Thus for the three test cases examined, GO-Elite 

selected a representative set of high-scoring non-redundant GO terms that 

reduced the number of results produced by typical approaches.  

 

4.4.2 GO-Elite Eliminates up to 90% of Redundant GO terms without 

Decreasing Associated Gene Content from Experimental Data 

To observe how GO-Elite performs with real data, we examined published 

microarray datasets for two biological processes highlighted by large phenotypic 

transitions: (1) differentiation of human embryonic stem cells (hESCs) in to 

cardiomyocytes (Kita-Matsuo, Barcova et al. submitted) and (2) mouse uterine 

gestation (Salomonis et al. 2005). The first of these datasets, hESC 

differentiation, possess over 1,500 up-regulated genes (fold>2 and t-test p<0.05). 

For the second dataset, we looked at two criterion: (1) up or down-regulation 

across 7 time-points (fold>2 as compared to non-pregnant and f-test p<0.05) 

corresponding to ~2,500 genes and (2) a smaller subset of these genes (~150) 

specifically expressed in the myometrium just before to the onset of labor 

(HOPACH clustering) (Salomonis et al. 2005). For each of these datasets, the 

highlighted pathways and GO terms can be correlated to physiologically relevant 

functions, in this case regulation of contraction and structural myocyte changes.  
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A. 

GO terms changed 

non-

nested GO-Slim nested GO-Elite GCR GO-Elite 

Response to unfolded protein 39 16 160 38 1 

stem cell division 6 5 58 14 1 

apoptosis 571 48 1639 254 1 

GCR: Gene Content Redundancy filtering     

 

B. 

Top scoring association non-nested GO-Slim nested GO-Elite  

same protein complex same 
response to 

protein stimulus 
top-term 

response to unfolded protein 

120 15 134 134 z-score 

same 
multicellular organismal 

development 
same same top-term 

stem cell division 

110 5 134 134 z-score 

same protein binding same same top-term 
apoptosis 

91 14 134 134 z-score 

 

Table 4.1. Comparison of GO-Elite to Alternative ORA Methods Using 

Simulated Data. A summary of ORA and GO-Elite analyses using 

different strategies to determine which methods produce the least and 

most specific set of GO associations given all genes associated with 3 

different GO categories (response to unfolded protein, stem cell division 

and apoptosis). ORA methods include GO-Elite-ORA selecting non-nested 

GO terms (genes specifically associated with each term), nested (nesting 

child associated terms to parents), GO-Slim, GO-Elite filtering, and GO-

Elite filtering including gene content redundancy filtering (GCR).  (A) The 

number of GO terms that were produced (after common default filtering) 

for each input GO-category list. (B) The top ranked GO term (based on z-

score) for each method along with the GO term’s z-score value are shown, 

where “same” indicates that the top-ranked GO term is the same as the 

GO-category input gene list. 
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To determine if sensitivity is affected by GO-Elite pruning, we compared 

excluded GO terms to the retained GO-Elite terms and corresponding gene 

content to see what information may be lost upon filtering (Tables 4.2 A-B). For 

this analysis, we compared the three built-in filtering strategies that can be 

employed by GO-Elite: (1) ordering by z-score, (2) number of genes changed 

and (3) z-score weighted by genes changed (combination). Traditional ORA for 

each of the datasets and default filtering resulted in 520 GO terms being reported 

for hESC regulated, 845 for uterine gestational and 56 term-regulated criterion. 

GO-Elite pruning, ranking by z-score alone, resulted in a 61- 88% reduction in 

the number of GO categories reported, where the percentage of GO terms 

excluded is inversely proportional to the number of originally filtered ORA 

categories. This effect is due to the improved ability of GO-Elite to filter terms 

given more related sets of terms.  Examination of eliminated versus retained GO 

terms revealed that the eliminated content was largely redundant with the 

retained set and preserved the ORA reported biological trends (Table 4.3 A-B). 



 102 

 

A. 

  GO-Elite Pruning Options 

GO terms 
changed 

GO-Elite-
ORA  z-score gene count combination 

hESC cardiac 
differentiation 

520 146 (47) 110 (42) 109 (37) 

uterine gestation 
time-course 

845 103 (50) 20 (11) 69 (32) 

Uterine term 
pregnancy 

56 22 (6) 16 (7) 19 (6) 

 
B. 
  GO-Elite Pruning Options 

Associated 
Genes 

GO-Elite-
ORA z-score gene count combination 

hESC cardiac 
differentiation 

872 753 872 847 

uterine gestation 
time-course 

2553 2362 2553 2438 

uterine term 
pregnancy 

111 98 111 106 

 

 

Table 4.2. GO-Elite Filtering For Muscle Differentiation and 

Remodeling Paradigms. Different GO-Elite filtering options are 

compared with the GO-Elite-ORA. The three pruning methods shown are 

z-score, gene-count, and combination (gene-count-weighted z-scores), 

obtained from the input ORA files. (A) The number of GO terms changed 

using the different strategies are shown, with the number of additional GO 

terms that are redundant based on gene content in parentheses (e.g., for 

hESC cardiac differentiation, of 146 highlighted GO terms with the GO-

Elite z-score method, 47 have gene content redundant with other GO-Elite 

terms). (B) Number of genes associated with each set results produced by 

the different GO-Elite filtering methods. 
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A. 

GO Name 
GO 

Type 

Number 

Changed 

Z-

score 

Permute

P 

Adjusted

P 

redundant 

with terms 

inverse 

redundant 

Intercellular junction C 8 6.35 0 0   
intercalated 

disc 

B cell differentiation P 4 5.38 0.0005 0.352     

intermediate filament C 6 5.03 0.0005 0.352     

Intercalated disc C 4 4.98 0 0 
intercellular 

junction 
  

basolateral plasma 

membrane 
C 5 4.54 0.0015 0.5025     

structural constituent of 

cytoskeleton 
F 6 4.28 0.0055 1     

cytokine and chemokine 
mediated signaling pathway 

P 4 4.16 0.0015 0.5025 
cell 

development, 
death 

  

positive regulation of growth P 3 3.98 0.0125 1     

extracellular region C 43 3.89 0 0   

endopeptidase 
inhibitor activity, 

serine-type 
endopeptidase 

activity 

erythrocyte homeostasis P 3 3.20 0.016 1 
cell 

development   

endopeptidase inhibitor 
activity 

F 5 3.17 0.011 1 
extracellular 

region 
  

apical plasma membrane C 3 3.13 0.016 1     
cellular structure 
morphogenesis 

P 12 3.00 0.0055 1     

regulation of cell adhesion P 3 2.91 0.0175 1     

amine biosynthetic process P 3 2.85 0.018 1     
morphogenesis of an 
epithelium 

P 5 2.71 0.011 1     

intrinsic to membrane C 45 2.70 0.016 1     
carbohydrate biosynthetic 
process 

P 3 2.45 0.041 1     

cell development P 21 2.26 0.0185 1   

cytokine and 
chemokine mediated 
signaling pathway, 
death, erythrocyte 

homeostasis 

serine-type endopeptidase 

activity 
F 5 2.26 0.029 1 

extracellular 

region 
  

epidermis development P 3 2.17 0.0445 1     

death P 13 2.14 0.0265 1 
cell 

development 

cytokine and 
chemokine mediated 

signaling pathway 

 
B. 

GO Name 
GO 

Type Z-score  GO Name 
GO 

Type Z-score 

apical junction complex C 6.25  biological adhesion P 2.57 

apicolateral plasma membrane C 6.11  cell adhesion P 2.57 

intermediate filament cytoskeleton C 4.97  structural molecule activity F 2.54 

tight junction C 4.70  integral to membrane C 2.53 

plasma membrane C 3.75  lymphocyte differentiation P 2.27 

cell junction C 3.60  enzyme regulator activity F 2.26 

protease inhibitor activity F 3.13 
 

hemopoietic or lymphoid 

organ development 
P 2.24 
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apical part of cell C 3.11  developmental process P 2.23 

serine-type endopeptidase inhibitor 
activity 

F 3.11 
 

growth P 2.22 

membrane C 3.07  regulation of growth P 2.18 

cell morphogenesis P 3.00 
 

nitrogen compound 

biosynthetic process 
P 2.17 

B cell activation P 2.92  cell death P 2.14 

enzyme inhibitor activity F 2.88  serine hydrolase activity F 2.11 

anatomical structure 
morphogenesis 

P 2.83  serine-type peptidase activity F 2.11 

plasma membrane part C 2.80  endopeptidase activity F 2.08 

anatomical structure development P 2.71  immune system development P 2.05 

membrane part C 2.60  apoptosis P 1.97 

 

Table 4.3. Comparison of Uterine Term Gestation Elite and Non-Elite 

GO terms. (A) 22 GO-Elite terms for a cluster of genes, maximally up-

regulated just prior to the onset of labor from a mouse uterine microarray 

analysis. (B) 34 GO terms that were filtered out of the original set of 56 

ORA highlighted terms. 
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 When comparing total gene content before and after pruning, we observe 

a loss of 11-14% of genes associated with input GO categories as compared to 

GO-Elite terms. Examining these lost genes revealed that they typically align to 

more general GO categories with relatively high gene content. These data 

therefore suggests that GO-Elite pruning dramatically reduces the amount of 

redundant content without compromising biological sensitivity. 

While a 14% loss in associated gene content is largely acceptable, given 

the large decrease in redundant GO terms, we wanted to assess the cost versus 

benefit of alternate GO ranking strategies in more detail. For both gene number 

and combination methods we observed an increase in the associated gene 

content, relative to using the z-score method alone. In fact, ranking by gene 

number yielded no loss in gene content while further decreasing the number of 

reported GO categories to as much as 13% the number of original ORA terms 

(hESC differentiation)(Table 4.2 A). While this observation suggests that gene 

number is the preferred method for GO-Elite analysis, this method can result in 

agglomeration of highly descriptive child terms, into large, less descriptive 

parents, which may prevent highlighting important biology. 

Combination filtering, on the other hand, largely preserved gene content 

and decreased the number of reported terms, but did not largely effect the 

biological description of these datasets, compared to z-score alone or the 

published reports. This is likely because gene number ranking will always favor 

the GO term that is highest up on the tree and thus contains more genes, while 

the z-score ranking can commonly favor more specific child terms with sibling 
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terms that will be retained by GO-Elite, because they are on distinct branches. 

The combination of gene number and z-score however, will tend to favor parents 

that can occur before a bifurcation as opposed to child terms, since the scores 

are close but lower in the parent because they have a larger denominator.  In the 

case of uterine term pattern genes, 15 GO terms were shared between the 

combination and z-score methods, whereas five GO terms were unique to 

combination and eight for z-score.  Comparison of these distinct results reveals 

that the GO terms B-cell differentiation, epidermis development, cellular structure 

morphogenesis, and morphogenesis of an epithelium, found using the z-score 

method, are represented by their common upstream parent term, anatomical 

structure development, which is a general development category. Therefore, we 

conclude that the combination z-score approach is suitable for retaining 

associated gene content from ORA analyses, though it produces a loss of some 

biologically descriptive content. 

 

4.4.3 Gene Content Redundancy Additionally Increases Specificity for Both 

GO and Pathways 

We have shown that pruning of the hierarchy is a useful means of selecting a set 

of fairly non-redundant GO terms.  However, this method does not take into 

account terms that cannot be directly related to each other within the GO 

hierarchy but contain overlapping gene content. In addition to the primary GO-

Elite analysis strategy, considering gene redundancy, can be useful in further 

pruning of GO terms and even non-GO pathways with redundant gene content.  
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 In GO-Elite, two additional columns of information are included with the 

summary results, terms redundant with a given category and vice versa (Table 

4.3 A).  As an example, two terms reported from the uterine gestation GO-Elite 

analysis, gas transport (biological process) and oxygen transport activity 

(molecular function) have overlapping gene content, where oxygen transport 

activity transport genes (n=4) are a subset of gas transport (n=5). As a result, in 

the first redundancy column, gas transport will be reported as having a super-set 

of genes for oxygen transport activity.  In the second column, GO-Elite reports 

the reciprocal relationship, that oxygen transport activity is redundant with gas 

transport.  These annotations allow the user to filter for relationships that are 

maximally descriptive for their dataset, eliminating either categories containing 

redundant gene content with another or the inverse, which can highlight or more 

specialized, less generic terms. Considering the three experimental datasets 

analyzed here, after removing terms annotated as being redundant with other 

GO terms, we observe as much as an additional 38% decrease in redundant 

terms (Table 4.2 A). Since these terms have entirely redundant gene content, 

there is no decrease in the total associated gene content.  As a result, however, 

more descriptive GO categories with fewer genes tend to be ‘absorbed’ into 

larger, less descriptive categories (e.g., creatine kinase activity is redundant with 

the term cytoplasm).  Therefore, this annotation, in the result summary file, can 

be used as a guide to decide which general categories (encompassing the 

redundant terms and genes) or more specific categories do not introduce 

additional novel biological information, prior to removal. 
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While the GO-Elite method can only be applied to data from hierarchically 

organized ontology data, the gene redundancy annotations can be applied to 

non-ontology data, such as GenMAPP pathway associations, also computed by 

GO-Elite-ORA. This approach can be useful when a set of genes are regulated 

that correspond to core biological processes (e.g., apoptosis, cell cycle, integrin-

mediated signaling), which are often described among in several cell-type or cell 

response specific versions of those pathways (see http:/www.wikipathways.org). 

In addition to providing pre-packaged GenMAPP pathway gene association data, 

GO-Elite has a simple format for adding or replacing the existing non-GO 

pathway content for ORA and gene redundancy analysis. Thus, this method is a 

general multipurpose approach for assessing GO term or pathway gene-content 

redundancy. 

 

4.4.4 Extended Annotation and Data Summarization of GO-Elite Level 

Terms 

A common limitation of pathway/ontology analysis tools is efficient gene 

annotation and interpretation of user data after ORA. For example, MAPPFinder 

allows users to export lists of associated user input IDs associated with a 

particular biological term or view color criterion for associated genes in the 

context of a GO list or GenMAPP pathway.  However, to access the set of 

associated genes (as opposed to an array ID) along with annotations and 

associated data (e.g., gene expression statistics and annotations), complex 

queries are required against the ORA results and the input data. A second 
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challenge is how to summarize these gene annotations and associated 

quantitative data in an efficient format for direct publication or downstream 

analyses (e.g., clustering of mean pathway expression values at different time-

points). 

After automatic GO-Elite pruning, three methods of gene summarization 

are provided with the GO-Elite output: (1) associated gene symbol column in the 

GO and pathway summary files, (2) specific gene associations, annotations and 

data for each GO term and pathway (gene-association file), and (3) gene ranking 

for over-representation among GO terms and pathways (gene-ranking file).  

Gene symbols provided in the annotation file provide a simple means to 

summarize associated data. Detailed gene associations allow the user to not 

only see which input IDs link to primary gene IDs for each biological category, but 

also allows access to detailed gene annotations (symbol and description) in 

addition to any user data provided in the input ID file. Since these are pruned list 

of terms, there should be minimal overlap in gene content between distinct terms. 

Nonetheless, to better assess if certain genes are over-represented among 

certain GO-Elite categories, the user can view the gene-ranking files which show 

which genes tend to be most represented among GO-Elite terms, providing a 

low-level means of eliminating GO terms and pathways with redundant content. 

This method not only highlights promiscuous genes that tend to be associated 

with several GO-Elite biological categories, but also provides a gene-centric view 

of associated GO-Elite terms. 
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In addition to summarizing gene annotations, GO-Elite can summarize 

numerical data for pruned GO terms and pathways. This method is similar to GO-

Quant (Yu et al. 2006), which links prior MAPPFinder ORA biological terms to 

gene IDs in a GenMAPP data file to calculate mean expression values for each 

biological term, for any given number of time-points/conditions. The analogous 

option in GO-Elite allows any column of numerical data present with the input 

gene IDs (e.g., array IDs) to be averaged first at the level of primary gene IDs 

(e.g., Ensembl, EntrezGene) and next at the level of GO-Elite terms for inclusion 

in the GO-Elite summary results file. An example of this process is illustrated with 

log2 fold changes for all differentially regulated genes for the different time-points 

of uterine gestation compared to baseline, non-pregnant mouse uterus (Figure 

4.2).  Here, GenMAPP pathway MAPP results generated by GO-Elite’s basic 

ORA algorithm are clustered for all uterine time-point mean pathway fold 

changes relative to baseline non-pregnant uterine mRNA profiles. This method of 

analysis allows for a global view of gene expression changes directly linked to 

biological processes.  While we have used the mean of fold changes for 

summarization, this could easily be applied to any other values linked to the input 

gene ID data. 

 

4.5 Conclusions 

A critical challenge in the analysis of large-scale genomic datasets has been 

proper description and summarization of gene-associated changes in the context 

of known biology.  Given the rate at which such data are produced and 
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commonly utilized in publications, researchers require tools capable of 

highlighting the most relevant biological associations.  In addition to GO 

categories, this includes over-representation of pathways, efficient 

summarization of gene content and associated gene data, and customizable 

tools that can be easily updated and optimized for new species/gene analyses.  

Here, we describe a new stand-alone software package called GO-Elite 

for the analysis of user genomic data that quickly identifies a minimal set of non-

redundant GO terms, pathways, and associated gene data.  While the method 

itself is not entirely novel (Barriot et al. 2007), it is the only available application 

we are aware of that is currently capable of performing such integrated analyses.  

GO-Elite was specifically written with the needs of the genomics community in 

mind, providing flexibility in the type of input gene IDs, species and types of 

applications required. In addition to pruning of existing ontology and pathway 

data, GO-Elite can perform batch ORA analyses of user gene data, with superior 

speed and performance than our previous application, MAPPFinder. 
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Figure 4.2. Pathway-level Analysis of Numerical Gene Data. The mean 

pathway fold change (log2) at multiple time-points of mouse uterine 

gestations are shown for Affymetrix probe sets linked to GO-Elite selected 
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GenMAPP MAPPs. These fold changes are relative to non-pregnant (NP) 

mouse uterus, for days post fertilization (14.5, 16.5, 17.5 and 18.5 days) in 

addition to postpartum (PP) time-points (6 and 24hrs). This data was 

clustered using the program HOPACH, where red indicates up-regulation 

and green, down-regulated mean expression changes for all regulated 

gene linked probe sets, for a given pathway. 

 

Application of this method to both mouse and human expression data 

dramatically reduced the results produced by conventional ORA, with a reduction 

of up to 90% of the original GO categories (when including gene content 

redundancy pruning), while preserving both descriptive categories and 

associated gene content.  While this method of ORA is relatively basic as 

compared to more recent methods, such as GSEA (Khatri et al. 2007) or 

pathway topology analysis (Pathway-Express(Draghici et al. 2007), it is 

compatible with nearly any ORA data, given the proper input (see associated 

documentation). However, this method does not attempt to select the most 

statistically significant term relative to other related terms, but rather provides 

different options for users to rank terms using different ORA statistics. 

In addition to these methods, GO-Elite includes multiple levels of gene 

annotation GO-Elite terms and support for pathway-level gene data 

summarization. We anticipate this approach will be an important addition to the 

tool kit used by biologists for large-scale, genome-level ORA in the years to 

come.  
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5.1 Abstract 

Background: Although several of the essential core transcriptional control 

elements in human and mouse embryonic stem cells (ESCs) have been 

identified, the specific protein isoforms that enable ESCs to maintain self-renewal 

and pluripotency or promote tissue lineage specification are still largely unknown. 

To better define these crucial regulatory cues, we require new tools to interrogate 

ESCs and lineage-restricted cells as homogenous populations at both the level of 

transcription and alternative splicing (AS). 

Results: To assess the transcriptional and splicing profile of human ESCs and 

ESC derived cardiac cells, we modified the H9 ESC line to allow for drug 

selection of mouse pluriptotent ESCs and alpha myosin heavy chain expressing 

cardiac spheroids (CSs).  Exon-level microarray expression data from 

undifferentiated ESCs, day 40 CSs, and other lineage-restricted cells and tissues 

were used to identify splice isoforms with cardiac-restricted or common 
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differentiation expression patterns.  A new, open-source application called 

AltAnalyze was developed to identify hundreds of splice events for each of these 

two pattern groups corresponding to the pathways of cell death, serine-threonine 

kinase activity, muscle specification, and cytoskeletal-remodeling. Integration of 

these data with protein level annotations and predicted microRNA binding sites 

highlighted novel changes in domain and binding site architecture that have 

profound implications for the biology of AS proteins. 

Summary: By combining robust, genome-wide AS predictions with new 

functional annotations, we have uncovered potential mechanisms hypothesized 

to influence lineage commitment and ESC maintenance at the level of specific 

splice isoforms and microRNA regulation.  

 

5.2 Introduction 

Embryonic stem cell (ESC) differentiation is a powerful system for dissecting out 

developmental cues required for lineage commitment in vitro.  Similar to their in 

vivo counterpart, the cells of the inner cell mass of the blastocyst, ESCs self-

renew and direct differentiation to all three adult germ layers.  The maintenance 

of pluripotency and self-renewal are dependent on the expression of a core set of 

transcription factors, including Oct4, Sox2, and Nanog.  Whole-genome 

expression (Ivanova et al. 2006), microRNA (miRNA) (Mitschischek 1991) and 

epigenetic analyses (Boyer et al. 2005; Loh et al. 2006) of ESC differentiation 

have led to the discovery of additional factors with similar expression patterns 

that interact with this core set of transcription factors to regulate pluripotency.  
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While these studies are informative, there is still a large gap in our understanding 

of the mechanisms that regulate ESC maintenance up-stream and down-stream 

of these core regulatory components and the steps required for proper cell fate 

commitment. These challenges exist, to a large extent, due to a difficulty in 

obtaining pure populations of fully differentiated cells and lack of detailed 

transcript expression profiles that allow for the prediction of alternative splicing 

(AS).  

As many as 80% of all human genes undergo AS to produce multiple 

mRNA transcripts with the differential inclusion of exons and introns (Lee et al. 

2005). This mechanism results in considerable variation in transcripts and 

proteins among distinct cell types.  This variation often results in unique proteins 

with biologically distinct composition and function. The functional impact of 

splicing includes altered domain composition and cellular localization, both of 

which can lead to distinct signaling properties of the resulting protein, while AS in 

untranslated mRNA regions can impact RNA stability and localization (Cooper 

2005).  Disruption of AS for a single gene can have profound effects on cellular 

development, ranging from improper neonatal cardiac adaptation (Xu et al. 2005) 

to sex-determination (Hammes et al. 2001) and synaptogenesis (Burgess et al. 

1999).  

Since ESCs can differentiate into all lineages of cells, characterizing 

isoform expression along specific lineage paths requires efficient methods to 

obtain pure populations of cells. A step toward this goal was recently made with 

the profiling of multiple human ESC (hESC) lines differentiated to neural 
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precursors, isolated using an effective neural differentiation protocol, with whole-

genome exon-arrays (Yeo et al. 2007). This analysis highlights coordinate AS of 

serine/threonine kinases and helicases, suggesting that coordinated programs 

may exist in ESCs to direct both cell-type-specific and general differentiation 

programs. 

To identify AS occurring with the differentiation to cardiac progenitors, we 

have performed exon-level genome profiling of homogenous populations of 

human undifferentiated ESCs and cardiac spheroids (CSs) obtained using a new 

selectable marker strategy (Kita-Matsuo, Barcova et al. submitted).  To further 

identify AS events that are enriched in cardiac progenitor differentiation or 

common to multiple lineages, we have used an analysis of variance method 

(ANOVA) to compare these profiles to existing differentiation datasets and adult 

tissues.  Alignment of alternatively regulated exons that match to two patterns 

(common to neural and cardiac differentiation or enriched just in cardiac), 

identifies unique proteins and functional elements with novel domain-level 

changes that could significantly alter protein function.  Analysis of mRNA 

sequences corresponding to known and predicted miRNA binding sites revealed 

the gain and loss of such sequences as a direct result of alternative exon 

inclusion, suggesting an additional mechanism for regulation of translation 

inhibition.  

 

5.3 Results and Discussion 
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5.3.1 Characterization of hESC-derived cardiac spheroids 

To isolate a homogenous population of both undifferentiated hESCs and derived 

cardiac progenitors, the H9 ESC line was modified to stably express two drug 

selection markers driven by the pluripotent-specific REX-1 and cardiac-specific 

myosin heavy chain a (MHC  or MHY6) promoters.  This strategy allowed for the 

selection for REX-1 positive (Rex+) pluripotent ESCs.  To isolate cardiac 

progenitors, embryoid bodies were selected for using the cardiac marker MHC  

and cultured for an additional 27 days (day 40 of differentiation). Day 40 CSs 

possessed action potentials and axial force measurements equivocal to normal 

fetal cardiomyocytes (Kita-Matsuo, Barcova et al. submitted). RNA harvested 

from selected hESCs and CSs were processed and hybridized to Affymetrix 

human exon 1.0 arrays.  The resulting data were combined with a dataset of 

neural progenitor (NP) differentiation previously described (Yeo et al. 2007) and 

a dataset of 11 adult human tissues, analyzed using the same microarray 

platform (see materials and methods). Un-biased comparison of gene expression 

profiles derived from exon-level probe sets using hierarchical clustering (Eisen et 

al. 1998) demonstrated that Rex+ hESCs and two independent hESC lines, 

Cythera and HUES6 hESCs, co-segregate from differentiated hESC-derived cells 

(CSs and NP) (Figure 5.1 A).  These data demonstrate that distinct hESC lines 

are more similar to each other than respectively derived differentiated lineage-

restricted cells.  Not surprisingly, all cell culture conditions had greater overall 

expression similarity to each other than to adult tissues, with the exception of 

cerebellum. Similar results were also obtained using an independent clustering 



 121 

method, HOPACH (Salomonis et al. 2005) (data not shown).  Although the CSs 

were not closely correlated with samples from adult heart, both of these 

conditions possessed highly similar gene expression levels for all established 

cardiac markers examined (Figure 5.1 B). 

 

5.3.2 Segregation of putative pluripotent and cardiac-specific gene 

expression changes occurs along predicted pathways  

The primary aim of our analysis was to identify differential transcription and AS 

events that specifically correspond to either cardiac-specification or 

inhibition/promotion of differentiation.  To accomplish this, we set out to design a 

similar strategy for analysis of both biological paradigms that utilizes multiple 

ESC differentiation datasets.  

Using conventional gene expression filters (>2 fold, t-test p<0.05), 3,044 

genes were found to be differentially expressed out of the 29,151 Ensembl genes 

examined in the day 40 CSs relative to Rex+ hESCs.  Since this comparison only 

considers two conditions (hESCs and CSs), the differentially expressed genes 

will include transcripts that are (1) selectively regulated in the transition to cardiac 

precursors, (2) specifically associated with an ESC or differentiated cells, and (3) 

common to multiple but not all cell lineages.  By directly comparing our cardiac 

differentiation profiles to non-cardiac differentiation profiles (NP differentiation), 

we can begin to segregate these gene expression changes into these more 

discrete categories and gain insight into the molecular mechanisms that 

contribute to these different programs.  
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Figure 5.1. Cardiac precursors and hESCs have consistent 

expression profiles with in vitro and in vivo analogues. (A) Human 

Affymetrix exon array data are compared for Rex+ hESCs and derived 

CSs, Cythera, and HUES6 lines differentiated to NPs and 11 adult tissues, 

normalized together and clustered by array.  All stem cells or stem cell-

derived data, clusters into a distinct node of the dendrogram, with a high 

degree of correlation between hESCs from distinct cell lines. (B) Gene 

expression profiles for this combined dataset, for specific markers of 

cardiac-specification and pluripotency. 
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To implement this comparison, we used a two-way ANOVA strategy, 

comparing the day 40 CS samples to NP samples along with their respective 

pluripotent ESC controls using the LIMMA package in Bioconductor (Dudoit et al. 

2003). Since the in vitro differentiation data clusters into distinct sub-groups, all 

statistical comparisons were performed only using this data (separate 

normalization and background correction) and the combined in vitro and in vivo 

data used only for gene expression clustering and down-stream comparisons.  

For these comparisons, the Cythera hESC line data was used to examine NP 

differentiation, since this dataset had small sample-to-sample variability than the 

HUES6 hESC line data, when analyzed with RMA (data not shown).  Each of the 

differentiated conditions was normalized to the mean of its appropriate hESC 

reference set for this comparison and used to calculate a p-value to assess 

whether both the neural precursor and cardiac cell profiles have a common or 

opposite pattern (differentiation or interaction effect, respectively).  Of 3,030 

differentially expressed day 40 CS genes, 1,962 had a common expression 

pattern between cardiac and neural differentiation (differentiation p<0.05) and 

951 of these were preferentially regulated in the differentiation to CSs (interaction 

p<0.05). 

 Among the genes with the lowest ANOVA differentiation p-value were the 

pluripotency inducing factors LIN28 (p=3.45E-11) and OCT3/4 (p=1.61E-09). 

Clustering of these genes across the examined conditions reveals that the 

majority of the genes are consistently up- or down-regulated relative to hESCs 

(Figure 5.2 A), leading to the hypothesis that these are hESC- or differentiation 
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specific-transcripts.  Both up- and down-regulated genes were significantly 

associated with the regulation of Wnt signaling by pathway over-representation 

analysis with the program GO-Elite (http://www.genmapp.org/go_elite). Down-

regulated genes were specifically enriched in pathways of DNA-replication, cell 

cycle control, and regulation of pluripotency, whereas up-regulated genes were 

over-represented among pathways of stem cell differentiation, organ system 

development (bone, brain, muscle, immune, fat and circulatory), TGF-  signaling, 

and focal adhesion formation (Figure 5.2 C).  

The top-ranked genes expressed with an ANOVA defined cardiac-specific 

expression pattern, largely consisted of well-described cardiac markers (TNNC1, 

TNNI1, TNNI3, MYH6, MYH7, PLN, GATA4, GATA6, NPPA) and signaling 

(CHRNA1, CHRM2) and developmental cardiac regulators (TBX5, TBX20) 

(Figure 5.2 B).  The up-regulated cardiac-specific genes were highly enriched in 

early cardiac developmental pathways, muscle proliferation, cardiac muscle 

contraction, adherens junction, and blood vessel and tube development, while 

down-regulated genes were associated with G1-to-S cell cycle control, chromatin 

remodeling, mRNA processing, and androgen receptor signaling (Figure 5.2 D).  

These results demonstrate that direct comparison of independent differentiation 

datasets using an ANOVA strategy is sufficient to segregate regulated genes into 

tissue-restricted categories that conform to the expect outcome. Therefore, this 

method was deemed sufficient to identify alternative exons, either in common 

among differentiation paradigms or that are specifically regulated in CSs. 



 125 

CS
A B

C D

NP Top Results Top ResultsCS NP
Cardiac GE ANOVACommon GE ANOVA

Symbol FDR p Rel. FoldSymbol FDR p Rel. Fold
MYL2 2.18E-07 7.99LIN28 3.45E-11 -5.87
SRD5A2L2 2.47E-07 7.11INDO 3.45E-11 -5.95
MYL7 2.60E-07 6.79DNMT3B 3.94E-10 -4.54
TNNC1 3.34E-07 5.98HESRG 1.35E-09 -5.93
CSRP3 3.95E-07 6.59POU5F1 1.61E-09 -5.87
TNNI1 4.33E-07 4.26MGP 2.31E-09 5.49
TBX20 5.43E-07 4.83KCNG3 5.70E-09 -3.84
C7 6.50E-07 4.92A2M 1.02E-08 5.24
PTX3 6.50E-07 -4.97SULF1 2.46E-08 3.77
MYL4 6.50E-07 5.89POU5F1P1 2.60E-08 -4.75
POPDC2 6.50E-07 6.08C9orf135 2.81E-08 -3.80
MYL3 6.50E-07 4.94ALPL 3.15E-08 -2.88
KRT8 6.72E-07 4.47SCNN1A 3.33E-08 -3.74
TNNT2 6.72E-07 3.57NANOGP8 3.77E-08 -4.92
MYOM1 1.36E-06 5.42PIM2 3.77E-08 -2.74
ACTC1 1.36E-06 4.75Q6ZUV3 3.77E-08 -4.48
MYOZ2 1.51E-06 6.72CYP2S1 3.77E-08 -2.75
SMYD1 1.60E-06 5.42SMARCD3 3.77E-08 2.72
IFI44L 1.78E-06 -5.03AP1M2 3.86E-08 -3.98
PKP2 1.81E-06 3.67PRDM14 3.97E-08 -5.45
C6orf142 2.35E-06 4.90KIF26B 4.41E-08 2.22
NPNT 3.38E-06 3.84NCAM1 6.13E-08 3.37
MYBPC3 4.04E-06 4.33FEZF1 7.34E-08 -4.75
GATA6 4.04E-06 3.34TRIM71 7.54E-08 -2.82
ACTN2 4.57E-06 5.18hsa-mir-302b 7.54E-08 -5.46
TRIM55 3.50E+00 0.02hsa-mir-302a 7.54E-08 -7.42
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Figure 5.2. Segregation of transcriptional profiles using comparison 

of neural and cardiac differentiation.  Patterns of gene expression are 

shown for the extracted pattern groups, (A) common to neural and cardiac 

differentiation or (B) specific to CSs.  Adjacent to each heatmap are the 

top-ranked genes based on the ANOVA score for each specific pattern; 

genes highlighted in blue are associated with ESCs or self-renewal, and 

genes in red with cardiac-specification. Gene Ontology (GO) terms and 

pathways enriched in the (C) common or (D) CS pattern groups are 
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displayed as compared to the number of associated gene changes in the 

alternate pattern group. Asterisks indicate significant GO-Elite scores 

(permute p<0.05) in the alternate pattern group. 

 

5.3.3 Alternative splicing significantly contributes to transcript variation in 

hESC-derived cardiac cells 

A custom application, called AltAnalyze, was created to identify alternative exons 

for day 40 CSs compared to Rex+ hESCs and link to these results to predicted 

functional outcomes (see details in methods and supplemental data).  For exon 

array analysis, AltAnalyze uses the previously described splicing index approach 

to calculate a gene expression corrected probe set fold change and t-test.  For 

this analysis, AltAnalyze was parameterized to include only probe sets with a 

relative fold change > 2, t-test p < 0.05, and to exclude probe sets with a MiDAS 

p > 0.05 and constitutive fold change > 3.  Only regulated probe sets linked to 

exons or introns previously observed in mRNAs (Ensembl or UCSC) were used 

for further analyses.  Of the 13,576 genes with evidence of expression, 15.1% 

(2,045) were predicted to have at least one alternative exon or intron regulated in 

the day 40 CSs (Table 5.1 A).  Of these alternatively regulated genes, 58.6% 

(1,198) were connected to splicing events, intron retention, or alternative 

promoters (supported by mRNA evidence); whereas the remainder were probe 

sets linking to constitutive regions of the mRNAs.  The majority of these exon-

level changes (57.8%) can be attributed to AS (cassette-exon inclusion or 

exclusion or alternative 5’ or 3’ splice site selection), 26.9% to alternative 

promoter use (alternative N-terminal exon), 18.8% to intron retention, and the 
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remainder to other splicing events classified by either UCSC (e.g., exon 

bleeding) or our algorithm (alternative C-terminally spliced exons).  We therefore 

estimate that ~18% of all genes regulated in the differentiation of hESCs to CSs 

can be attributed to AS. 

As a next step in AltAnalyze, probe sets aligned to mRNAs and proteins 

were analyzed for the gain or absence of known sequence elements (protein 

domains, modified residues, and miRNA binding sites).  This method is 

conceptually similar to several described approaches (Xu et al. 2002; Taneri et 

al. 2004), but can easily be applied to any exon-level dataset with AltAnalyze.  

Since most human AS events produce large variations in mRNA and protein 

sequences or absence of translation, such analysis has the potential to provide 

greater insight into the functional consequences of altered exon expression.  For 

all alternatively regulated probe sets, 93.9% aligned to at least one mRNA and 

specifically did not align to at least one other mRNA for that gene.  For protein 

sequences aligning to these mRNAs, 83.1% of these comparisons yielded 

modification or an absence of one or more predicted functional elements (e.g., 

protein domains).  In our analysis of all alternatively regulated probe sets, the 

typical exon-inclusion event produced a 530-residue increase or decrease in 

overall predicted protein sequence length (including predictions that would 

severely truncate protein sequence). Considering probe sets that only aligned to 

annotated protein sequences (as opposed to predicted based the mRNA 

sequences) produced a similar result (514 residues). Dozens of protein domains 

and functional residues were enriched among alternatively regulated genes, 
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using an over-representation z-score, chief among them were spectrin and 

plectin repeats, asymmetric dimethylarginine, phosphoserine- and 

phosphothreonine-modified residues, spectrin-actin, DNA binding and START 

lipid binding domains, and SH, PH, CH, RRM, FERM, laminin, collagen, kinesin, 

RhoGEF, and protein kinase domains.  When compared to the analysis of 

Cythera hESC neural precursor differentiation, several of the same enriched 

functional protein sequences were shared with the CS comparison, including 

spectrin, SH, PH, RhoGEF, and protein kinase domains (supplemental datasets).  

In addition to these protein level changes, 13.1% of alternatively regulated 

genes (272 of 2,045) resulted in the inclusion or exclusion of at least one 

predicted miRNA binding site (supplemental datasets).  Among genes with 

regulation of these binding sites, one-third occurred in an exon with evidence of 

AS or an alternative C-terminus, whereas the remainder occurred within a 

constitutive exon.  To determine whether miRNA binding site inclusion occurred 

preferentially in hESCs as opposed to CSs, we compared the percentage of 

genes containing up- or down-regulated exons with these predicted binding sites. 

Interestingly, ~75% of genes with alternative inclusion of these binding sites were 

down-regulated in hESCs or up-regulated in CSs, compared to 62% of genes 

with probe sets down-regulated relative to the gene’s constitutive expression 

levels.  This data suggests that miRNA binding site inclusion is substantially 

decreased in self-renewing hESCs.
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A  gene count out of 

Differentially Expressed Genes 3,030 30,473 

Alternative Exons 2,045 13,576 

     mRNA evidence 1,198   

          alternative splicing 693   

          alternative promoter 322   

          intron retention 225   

      

Alternative Splicing Events gene count   

          alternative 5' splice sites 116   

          alternative 3' splice sites 115   

          alternative cassette exons 575   

 

B  gene count out of 

Differentially Expressed miRNAs 26 210 

Alternatively Regulated miRNA Binding Sites 272 11,079 

     Evidence of AS 90 1,009 

          up-regulated in hESCs 18 313 

          down-regulated in hESCs 73 729 

     No Evidence of AS 188 1,400 

          up-regulated in hESCs 57 666 

          down-regulated in hESCs 135 860 

 

Table 5.1. Alternative Gene Regulation with hESC to CS 

Differentiation. (A) Transcriptional regulated genes (mean of constitutive 

gene features) and genes linked to alternative regulated features 

highlighted by AltAnalyze analysis.  Gene expression values were 

calculated for 30,473 Ensembl gene identifiers, of which only 13,576 

contained features expressed in both undifferentiated H9 ESCs and 

derived CSs.  Alternative splicing, intron retention, and alternative 

promoter predicted events are shown for unique genes linked to the 

respective annotations. (B) Transcriptional regulated miRNAs and unique 

genes associated with alternatively regulated probe sets that contain 

predicted miRNA binding sites were calculated in AltAnalyze.  Of the 

13,576 expressed genes, 11,079 had features containing predicted 
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miRNA binding sites.  The pattern of probe set regulation is indicated for 

hESC relative to CSs. 

 

5.3.4 Confirmation and novel predictions for splice variants with previously 

established functional differences 

Several of the identified splicing events in this experiment have been previously 

verified during hESC differentiation.  These included SLK, SORBS1 (Yeo et al. 

2007) and NFYA (Grskovic et al. 2007), all observed in differentiation to NPs.  

Splice events observed in the specification to cardiac/muscle lineage were also 

observed in our dataset (ATP2A2 (Misquitta et al. 2002; Periasamy et al. 2007), 

NF1 (Gutman et al. 1993), PKM2 (Imamura et al. 1986) and ANXA7 (Magendzo 

et al. 1991)) all with the predicted pattern of expression.  Interestingly, AS of 

exons for CALD1, VCL, and ACTN1 in the CS comparison were also observed 

and verified in a large-scale colon cancer analysis using the same microarray 

platform, where the pattern of exon inclusion in the Rex+ hESCs is mimicked in 

proliferating tumor cells as opposed to normal colon.  In our analysis, SLK and 

ANXA7 had two of the largest splicing index scores, for exon inclusion in hESCs 

and inclusion in CSs respectively.  Analysis of six of these splice variants 

(ANXA7, ATP2A2, NF1, PKM2, SLK, and VCL) by RT-PCR verified clear shifts in 

isoform expression for each (Figure 5.3 A, B). 
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Figure 5.3. Analysis of verified splicing changes identifies novel 

functional associations. (A) Expression of splice isoforms validated by 

RT-PCR analysis of genes with prior evidence of AS, identified by 

AltAnalyze. These include ANXA7, SLK, NF1, and VCL validated using a 

flanking primers, and PKM2 and ATP2A2, validated using isoform-specific 

primers. DNA agarose gel images, with Rex+ hESCs RNA on the left side 

of the gel and CSs on the right.  The notation miR indicates the presence 

of putative miRNA binding sites in the isoform, while excl indicates the 

exon-exclusion isoform. (B) Exon structure and expression profiles for two 

previously verified AS events in the genes ANXA7 and ATP2A2. Probe set 

exon-level expression data (log2) is displayed for both Rex+ hESCs and 

CSs (top graphs) and NP differentiation (bottom graph), both output from 

MS-Excel, with probe sets ranked in order of genomic position on the X-

axis. Changes in probe set expression (relative to gene expression) are 

shown for probe sets aligning to exons and introns in the Cytoscape plugin 
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SubgeneViewer. Red boxes indicate up-regulation, blue down-regulation 

and gray not significant. (C) Protein functional regions aligning to only a 

single predicted variant are shown for the gene PKM2, predicted to 

encode for two 531 amino acid proteins with distinct, mutually exclusive 

exons. The two mutually exclusive isoforms produce proteins differing in 

the predicted inclusion of an FBP (fructose-1,6-bisphosphate) binding 

region and intersubunit contact (ISC) sequence as defined by UniProt. 

Yellow and green mutually exclusive exons are shown according their 

relative translated positions in resulting proteins. (D) AS of the ATP2A2 

gene in the most distal 3’ exon (inverse of intron retention), yields two 

isoforms with and without coding and UTR sequence, overlapping with 

miRNA binding sites predicted by at least two independent algorithms. 

Exons are displayed 5’ to 3’ (forward strand) along with aligning probe 

sets, down-regulated in this dataset (blue boxes). 

 

For at least three of the previously verified events, AS modifies the 

functional properties of the resulting proteins, producing differences in cell 

metabolism (PKM2), signaling (VCL), or mRNA stability (ATP2A2).  The PKM2 or 

pyruvate kinase gene can encode two isoforms M1 and M2 through mutually-

exclusive splicing of two 167 base pair (bp) exons (Imamura et al. 1986).  

Although the alternatively spliced exons are the same length and have 60% 

protein sequence identify to each other, they differ in their tissue developmental 

expression patterns, domain composition, and in vivo functions. In particular, the 

M1 isoform is largely present in normal adult heart, skeletal muscle, and brain 

and is not allosterically regulated by fructose-1,6-bisphosphate (FBP), whereas 

the M2 isoform is present only during embryonic development and in tumors, is 

regulated by FBP, and promotes proliferation  (Dombrauckas et al. 2005; Lee et 
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al. 2008).  Isoform expression levels and protein level predictions from the 

present study confirm the existing data and in addition suggest negative 

alteration of the FBP binding region and intersubunit contact (as described by 

UniProt) with up-regulation in CSs of the M1 exon by our software (Figure 5.3 C).  

In the case of vinculin (VCL), expression of a 204bp exon in the C-terminal 

region produces a 68 amino acids (aa) insert that is enriched in muscle. 

Compared to the shorter variant, this longer isoform, metavinculin that is 

increased in CSs and appropriately predicted by AltAnalyze, has altered ligand 

binding properties (Witt et al. 2004), which correspond to the gain of a 

vinculin/alpha-catenin sequence (InterProt). For ATP2A2 (cardiac 

sarco/endoplasmic reticulum calcium ATPase), the alternative exclusion of 

mRNA sequence in the 3’ terminal exon (4068bp) is predicted by AltAnalyze to 

preferentially remove a section of the cytoplasmic topological domain (45aa) and 

3’ UTR.  Expression of the long C-terminal form of ATP2A2 (hESC-enriched) 

results in increased mRNA degradation of this transcript in vitro (Misquitta et al. 

2002). In addition to the protein prediction, our tool also reported the loss of 

several predicted miRNA binding sites in this 3’UTR (hsa-miRNA-429, 200b and 

182), each one supported by evidence from multiple miRNA binding site 

prediction algorithms (Figure 5.3 D).  Interestingly, miRNA-microarray analysis 

has shown two of these miRNAs, miRNA-200b and miRNA-182 are highly 

enriched in cardiac cells derived from mouse ESCs (Ivey et al. 2008). These 

predictions therefore provide a new possible mechanism for increased 

degradation of the long 3’UTR form. Thus, for each of these splicing events, 
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AltAnalyze sequence and domain/motif-level prediction complements the in vitro 

functional data and provides additional predictive insight into functional 

differences between isoforms. 

 

5.3.5 Regulation of distinct pathways for cardiac and differentiation 

associated splicing events 

To identify AS events in common to cardiac and neural differentiation or specific 

to cardiac differentiation, we applied our segregation ANOVA strategy to 

alternatively regulated probe sets. This analysis identified 565 alternatively 

regulated genes with a common splicing pattern during hESC differentiation to 

either CSs or neural precursors and 414 genes with a distinct pattern of 

alternative exon regulation in CSs (Figure 5.4 A, B).  In both groups, we 

considered only probe sets for which there was previous evidence of AS. 

Similar to previous results for NP differentiation, pathway analysis of all 

probe sets with evidence of AS showed that serine/threonine protein kinases 

(e.g., SLK, FER, FYN, MARK3, CDC42BPA, CLK1, WNK2) were highly enriched 

with the differentiation to CSs.  When applied to genes with a common 

differentiation-splicing pattern, the most enriched ontology categories/pathways 

included water binding, RNA and chromatin binding, integrin-mediated signaling, 

microtubule binding, extracellular matrix and lipid transport (Figure 5.4 C).  In 

contrast, alternatively spliced genes with a CS-specific pattern were enriched in 

pathways for phosphatidylinositol binding, sarcoplasmic reticulum, negative 

regulation of neurogenesis, regulation of heart contraction, ubiquination, Wnt 
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receptor signaling, and regulation of cyclin-dependent protein kinase activity. 

Both sets were enriched in actin cytoskeletal, cell-matrix adhesion, RNA splicing, 

and cell cycle arrest genes (Figure 5.4 D).  These results imply that the loss of 

pluripotency corresponds to AS of genes that regulate cell-cell contact formation 

and signaling, while cardiac-enriched events favor contractile pathways, inhibition 

of neurogenesis, and extracellular matrix signaling in addition to regulation of 

distinct metabolic pathways (full results provided as supplemental data).  

Likewise, over-representation analysis of protein domain-level annotations in 

these two pattern groups highlight distinct functional sequences present among 

alternatively spliced genes (supplemental Figure 5.1).  Thus, both sets are 

largely distinct but complementary from those biological processes regulated at 

the level of gene expression in the analogous pattern groups.  

 When the same data are viewed in the context of adult tissue exon 

expression by clustering (supplemental data), we find that the common 

differentiation group largely had consistent splicing changes in all samples 

(relative to Rex+ hESCs), while the NP exon-level folds were largely in 

disagreement with the in vivo neural data (hCNS stem cells and cerebellum). 

Similar disagreements were also seen in comparison of CS regulated exons with 

adult heart for the cardiac-enriched group.  These results suggest that the NPs 

derived by Yeo and colleagues (Yeo et al. 2007) and the CSs analyzed in this 

study have distinct features from their in vivo analogues.  Thus, these precursor 

cells may be at a distinct developmental stage, but for our studies, suitable for 

examining early differences between early cardiac and neural differentiation. 
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Figure 5.4. AS genes associate with novel pathways for common or 

cardiac-enriched patterns. AS AltAnalyze predictions with evidence of 

either (A) a common neural/cardiac or (B) a CS-specific expression 

pattern, relative to undifferentiated hESCs.  Adjacent to each heatmap are 

the top ANOVA scoring genes, similar to Figure 5.2.  Gene names in blue 

have prior AS evidence with non-cardiac differentiation and genes in red 

have prior AS evidence with cardiac differentiation.  Genes associated 

with GO terms and pathways are graphed that are over-represented in the 

AS (C) common or (D) CS-specific pattern group. 
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5.3.6 RT-PCR analysis of predicted AS show robust changes in isoform 

expression 

In order to reliably focus in on a set of splicing predictions from this analysis, we 

conducted RT-PCR to examine shifts in the expression of alternate isoforms 

linked to regulated probe sets in the two pattern groups. As a pre-selection 

method, we largely restricted confirmation to events with the following criteria: (1) 

prior evidence of AS or intron retention OR presence of predicted miRNA binding 

sites, and (2) readily observable splicing patterns when data is viewed in the 

context of exon structures, and/or (3) predicted changes in protein domain 

structure or other functional sequence elements.  To assess the second criterion, 

we viewed the raw log2 intensities of individual probe sets for Rex+ ESCs and 

CSc as a graph (Figure 5.3 A) and visualized AltAnalyze scores within a custom 

program called SubgeneViewer. SubgeneViewer is implemented as a plug-in for 

the network visualization software Cytoscape (Cline et al. 2007), that allows color 

criteria to be mapped onto exon and splicing structures. These results can be 

dynamically viewed from any gene/protein level interaction network/pathway 

(examples shown in Figure 5.3 C).  

Using the described selection criteria, 53 predicted alternative events were 

selected for confirmation with both a differentiation and CS-specific expression 

pattern.  Upon confirmation, a significant shift in isoform expression was 

observed for 37 of these target events, in line with our microarray analysis; an 

additional 10 events were verified to a much smaller extent (Figure 5.5 A). Only 6 

of the 53 primer sets produced either inconclusive results or missing PCR 
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products.  Genes in the differentiation group that had large isoform expression 

changes were associated with a diverse range of biological categories, including 

serine/threonine kinases (SLK, FER, FYN, WNK2, MARK3), spectrin-actin 

binding (SPTBN1, ADD3), and cell-cell communication (TJP1).  For CS-restricted 

splicing events, changes of similar magnitude were observed for proteins 

involved in calcium signaling (ASPH, ANXA7, ATP2A2) and cell metabolism 

(PKM2, OGDH); genes associated with ubiquitin protein degradation (UBE4B, 

NEDD4), double-stranded RNA binding (LRRFIP1, STAU1) and development 

(NUMB, TCF3, NAV2) were associated with both patterns. Exon-level array data 

are shown for two verified exons in the genes CAPZB, exon 12 and KIF13A, 

exon 41 (Figure 5.5 B), along with cross-tissue exon expression levels as 

compared to gene expression levels for the two respective exons. Overall, we 

conclude that the large majority of examined alternatively spliced and regulated 

exons/introns examined have consistent patterns with those predicted 

computationally with the AltAnalyze software.  
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Figure 5.5. Validation of AS with distinct lineage commitment 

patterns. (A) Highlighted RT-PCR results for a panel of AltAnalyze 

predictions with multiple lines of evidence (overall exon expression 

patterns, specificity of splicing event, AltAnalyze score), with both a 

common and cardiac-enriched ANOVA pattern.  Isoform-specific 

amplicons (incl) or constitutive probed exon-exon junction flanking 

amplicons (const) are indicated. (B) Log2 expression values for exon 

aligning probe sets for the genes KIF13A and CAPZB; probe sets ranked 
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in order of genomic position on the x-axis.  For each gene, the mean gene 

expression value is plotted against the expression of the interrogated AS 

exon, for all tissues examined. This exon for CAPZB is E12 and E41 for 

KIF13A. h9 = Rex+ hESC, Cy = Cythera hESCs, Mus  = muscle, Hrt = 

heart, and CS = cardiac spheroid. 

 

5.3.7 Specificity of Domain-Level Protein Predictions 

Examination of confirmed splicing events reveals distinct domain-level changes 

due to alternative exon expression.  For such predictions, AltAnalyze links 

regulated probe sets to the longest transcripts containing the probe set sequence 

and missing that sequence (alternate isoform sequence).  The majority of verified 

splicing events (35 of 47) had predicted changes that corresponded to altered 

protein sequence and annotated functional elements.  However, several 

alternative exons and introns that did not align to known functional protein 

elements significantly altered protein sequence (NUMB, SAPS2, MADD, CSDE1, 

DERP6, TRAF6, and SEPT6).   

To determine the validity of these domain-level changes, we performed a 

detailed analysis of the protein predictions using manual curation. This analysis 

verified predicted functional changes for 30 of the 35 splicing events; the 

remaining 5 events were specifically the result of secondary protein differences 

that were not directly associated with the splicing event (TJP1, OGDH, 

HISPPD2A, CDC42BPA, and NAV2).  Of these 30 alternative exon and intron 

events, 17 were specifically associated with the splicing event (no additional 

regions of the protein affected); for the remaining 13, the regulation of an internal 

or C-terminal exon also segregated with a predicted change in N-terminal 
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sequence (HIF3A, EWSR1, NEDD4, SPTBN1, NF1, CLK1, LRRFIP1, HDAC9, 

WNK2, VCL, CAPZB, ASPH, DNM1L)(UCSC genome browser).  While five of 

these splicing events consistently were linked to an alternative promoter 

(EWSR1, SPTBN1, WNK2, VCL, LRRFIP1), the remainder did not.  Although 

these alternative N-terminal predictions typically occurred because our algorithm 

chose the longest associated proteins, as opposed to those with the least overall 

differences, they none-the-less reflected possible outcomes.  

 

5.3.8 Alteration of Kinase and DNA-binding Domains During Cardiac 

Differentiation 

For validation, we preferentially selected genes with domain-level changes 

predicted to alter the function of the resulting proteins, chiefly kinase and DNA-

binding domains. Such alterations could significantly alter the activity of 

transcriptional and signaling networks in the cell and contribute to altered cell 

physiology.  Furthermore, both domain classes were highly over-represented 

among regulated domain predictions by AltAnalyze.  Among the splicing events 

verified, six corresponded to genes with AS impacting kinase (FYN, FER, CLK1, 

WNK2) or kinase-like (SLK, MARK3) and four to predicted DNA-binding domains 

(TCF3, HIF3A, EWSR1, LRRFP1).  These domain-level differences are the result 

of either the direct (HIF3A, FER, WNK2) or indirect (EWSR1, LRRFIP1, CLK1) 

introduction of a premature stop codon, the mutual exchange of exons with 

alternative domain sequences (TCF3, FYN), or cassette exon-exclusion (SLK, 

MARK3) (Figure 5.6 A, B).  In each of these cases, the predictions by AltAnalyze 
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were confirmed to accurately reflect the protein level changes that correspond to 

the regulated exons or introns when compared to reference protein sequences 

(UniProt/Ensembl). 

To identify potential splice variants with the introduction of a premature 

stop codons, we searched for protein predictions that suggest either an absence 

of translation (e.g., EWSR1) or a markedly shorter protein product.  In the 

instance of hypoxia-inducible factor-3  (HIF3A), selection of an alternative 5’ 

splice site (CS-restricted pattern) is predicted by AltAnalyze to significantly alter 

protein domain composition in hESCs, including predicted loss/disruption of its 

DNA-binding, PAS and oxygen-dependent degradation domain (ODD) as well as 

its helix-loop-helix motif.  This prediction matches the previously described 

domain composition differences of this variant (HIF3 6) (Maynard et al. 2003) 

compared to the full-length proteins.  While the precise function of this variant is 

unclear, it has splicing and domain features similar to a mouse variant of this 

gene known inhibitory PAS domain protein (IPAS), which functions as a 

dominant-negative regulator HIF transcription factors induced under hypoxic 

conditions (Makino et al. 2002). 
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Figure 5.6. Altered composition of critical protein sequences by 

validated AS genes. RT-PCR of splice variants for genes with predicted 

disruption or alteration of (A) kinase or (B) DNA-binding domains or (C) 

other regions critical for protein function.  Dashed boxes indicates genes 

with CS-restricted expression. All other genes have a common expression 

pattern. 
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Unlike the gain or loss of a critical protein domain (e.g., by protein 

truncation), assessing the precise functional impact on a domain with altered 

sequence is less clear.  This was the case for the E2A immunoglobulin 

enhancer-binding factor TCF3 and for the serine/threonine and protein-tyrosine 

kinase FYN, in which a DNA-binding or kinase domain is specifically altered by 

the mutual-exclusive exchange of a cassette exon of similar lengths. For both of 

these splicing events, Ensembl annotates the respective InterProt domain as 

present in both isoforms, with 76% and 46% protein sequence identity between 

the mutually exclusive TCF3 and FYN exons (pairwise BLAST).  Interestingly, 

both TCF3 and the FYN mutually exclusive isoforms have different biochemical 

properties (Davidson et al. 1994; Vitola et al. 1996), suggesting the domain level 

alterations predicted by AltAnalyze correlate with function. Our analysis of FYN 

detects the described T-lympohocyte isoform (FynT) as specifically expressed in 

undifferentiated hESCs while the brain form (FynB) appears to be expressed in 

both differentiated and undifferentiated cells (array data).  Functional comparison 

of these isoforms showned that FynT has greater oncogenic transformation 

activity when activated by point mutations than the FynB isoform activated by the 

same mutations.  Similarly, comparison of TCF3 isoforms has shown that the 

hESC-enriched isoform (E12) has less DNA-binding affinity than the 

differentiation-enriched form (E47).  In addition to a basic helix-loop-helix motif 

with altered sequence, our study and previous studies revealed the absence of 

an inhibitory domain in the E12 form, which has been linked to this functional 

difference.  Such forms of AS provide a potent means to modify specific residues 
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within a sequence block without significantly changing overall protein length.  

These data provide further evidence that sequence changes and or deletions in 

critical protein domains can significantly alter the function of associated proteins 

in differentiated versus undifferentiated cells. 

 

5.3.9 Altered Domain Expression Among Regulators of Proliferation and 

Cardiac Development 

In addition to DNA-binding and kinase domains, AS was predicted to alter the 

composition of several critical domains for a functionally diverse set of proteins. 

These included large-scale changes, such as the removal and critical disruption 

of entire putative protein domains, missing or inserted sequences into such 

domains, or differential inclusion of small functionally significant protein residues. 

Our AltAnalyze results predict significant changes to the domain 

composition of at least six genes with readily detected isoform expression 

changes (Figure 5.6 C).  Two genes had known differences in isoform function 

(ASPH, SPTBN1), but the remaining AS predictions appear to be relatively novel.  

For common differentiation splice events, novel observations include the removal 

of the C2 calcium-dependent membrane targeting domain in the NEDD4 protein 

with exclusion of a 72aa block of exons in CSs; intron retention in the PCBP4 

gene, which results in a shorter alternate N-terminus and disrupts a KH domain 

preferentially in hESCs and the exclusion of a 61aa encoding exon resulting in 

missing neutrophil cytosol factor domain and a proline-rich sequence in 

undifferentiated hESCs.  For CS-restricted splicing events, novel findings include 
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truncation of HDAC9 from a 1070 to 21aa protein specifically in CSs and the 

disruption of a phosphopantetheine attachment site in the UBE4B protein with 

the insertion of a 129AA encoding cassette exon.  Since these domains play 

crucial roles in the annotated functions of these genes, the predicted loss or 

disruption of these sequences could considerably affect their function.  An 

example is PCBP4, an RNA-binding protein characterized by presence of the KH 

domain.  While the characterized form of this protein can suppress cell 

proliferation by inducing apoptosis, the isoform containing the complete KH 

domain sequence is expressed at lower levels than alternative form in hESCs, 

possibly hindering its apoptotic effects in undifferentiated hESCs.  In 

cardiomyocytes, truncation or non-sense mediated decay (NMD) of the histone 

deacetylase HDAC9 should alleviate its repressive action on the expression of 

myocyte enhancer factor MEF2 transcription factors (Zhang et al. 2002).  

Therefore, de-repression of this protein through AS could present an important 

means for promoting cardiac development.  

The genes aspartyl beta-hydroxylase (ASPH) and spectrin, beta, non-

erythrocytic 1 (SPTBN1) both had similar changes and had prior evidence of 

functionally distinct splice variants, linked in this case to the regulation of cardiac 

physiology.  ASPH encodes multiple splice variants, including a cardiac/skeletal-

muscle specific form, junctin, which has a shorter N- and C-terminis and lacks 

enzymatic activity, a second short form with an alternate C-terminus (junctate); 

and the reference long form, which is ubiquitously expressed, has a distinct 

cellular localization and possesses hydroxylase enzymatic activity (Hong et al. 
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2007).  Our splicing analysis identified both up-regulated junctate and junctin 

exons in CSs and down-regulated of the alternative N-terminal long-form of 

ASPH.  RT-PCR verifies the up-regulation of junctin, which specifically 

complexes with cardiac contractile components (calsequenstrin, triadin, and the 

ryanodine receptor) (Fan et al. 2008) in the release of sarcoplasmic calcium, in 

CSs.  In addition, we found there was no change in the expression of a region 

common to the different long forms of ASPH, which do not appear to participate 

in cardiac contractile control but rather regulate growth factor activity and are 

highly expressed in neoplastic cells (de la Monte et al. 2006). Domain-level 

analysis predicts the loss of several functional elements with up-regulation of 

junctin, including the loss of an N-terminal cytoplasmic and C-terminal luminal 

topological domain (UniProt). 

Like ASPH, SPTBN1 was found to have both down-regulation of N-

terminal and up-regulation of an alternate C-terminal exon, with confirmation from 

multiple probe sets per exon (supplemental dataset).  Proteins for this gene can 

be found in the sarcomere along the muscle Z-line and likely contribute to 

structural stability (Hayes et al. 2000).  We verified the up-regulation of a 

bleeding (overlapping with intron sequences in other transcripts and missing a 5’ 

splice-site) C-terminal exon, linked to a shorter alternative N-terminus than the 

alternative isoform.  Loss of the pleckstrin homology domain in the shorter 

bleeding exon variant correlates with the loss of inositol-1,4,5 triphosphate 

binding (Chen et al. 2001), in addition to the presence of an additional kinase 

phosphorylation site (Bignone et al. 2007), both of which were consistent with our 
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predictions. The CS up-regulated short form is present in the sarcomere M-line 

and tetramers comprised of this short form are more stable than the long when 

associated with spectrin alpha 2 (Baines et al. 2005).  For both ASPH and 

SPTBN1, the expression patterns of the isoforms fit with a model that would 

promote contractile signaling in CS and oppose it in undifferentiated hESCs. 

In addition to domain-level changes predicted by our method, at least two 

other genes display functional isoform differences, both affecting pathways of 

proliferation and apoptosis that were not predicted (Figure 5.6 C).  These were 

splicing of the Drosophila orthologue NUMB, which is involved in early cell-fate 

decisions (Yan et al. 2008) and the MAP-kinase activating death domain protein 

(MADD), which is a membrane-bound cytoplasmic adaptor protein that interacts 

with the TNF-  receptor 1 to transduce apoptotic signals  (Mulherkar et al. 

2007)(Figure 5.6 C). While the CS-enriched isoform of NUMB is anti-proliferative, 

the hESC-enriched form (p71), with a longer proline-rich region (PRR), retains its 

proliferative properties (Verdi et al. 1999; Toriya et al. 2006).  Likewise, while the 

expression of the CS-enriched MADD isoform (IG20) can promote apoptosis, the 

hESC-enriched isoform (DENN) is anti-apoptotic and typically over-expressed in 

tumors.  Since the protein databases used to derive the domain-level annotations 

for NUMB had a PRR with a shorter sequence, the alternatively spliced variants 

had no predicted difference.  In the case of MADD, no predicted functional 

elements overlapped with the CS-enriched included exon.  Nonetheless, both 

cases provide tantalizing evidence for splicing events that could regulate the 
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proliferative or apoptotic properties of proteins in a developmentally specific 

manner. 

 

5.3.10 Subtle Changes to the Composition of Essential Functional Elements 

In addition to verified splicing events with domain prediction differences, 

several of the exons with the most apparent changes in isoform expression 

aligned to domains that were annotated in both isoforms (InterPro Ensembl 

associations).   These include the removal of 32aa in the C-terminal aldehyde 

ferredoxin oxidoreductase domain of the ADD3 protein, insertion of 13aa into the 

dynamin GTPase region of DNM1L and a change in C-terminal sequence at the 

end of the F-actin capping protein, beta subunit region of the CAPZB protein and 

removal of 11aa from the N-terminal Citron homology domain (CNH) of VPS39. 

In each case, except VSP39, altering the sequence has unknown consequences 

on protein function.  VPS39 is a putative adaptor protein that has decreased 

inclusion of a cassette exon in hESCs.  The CNH domain in this protein is 

required for the clustering and fusion of late endosomes and lysosomes (Caplan 

et al. 2001).  Interestingly, the isoform lacking this exon, called the TRAP-1 

homologue, does not mediate lysosomal clustering but rather it specifically 

associates with the TGF-beta signaling pathway, suggesting modification of the 

CNH domain is sufficient to alter is properties.  Other observed splicing events 

had more subtle function predictions, such as the microtubule-dependent motor 

protein KIF13A, in which removal of a 35aa coding exon results in the loss of one 

of three phosphoserine sites indicated by UniProt.  If modulated directly by a 
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protein kinase, however, such a change on its own could substantially alter the 

regulation of the resulting protein. 

 

5.3.11 Developmental Regulation of MicroRNA Binding Site inclusion 

A number of recent studies have demonstrated a critical connection between 

miRNA expression and the maintenance of pluripotency or the differentiation of 

cardiac cells from ESCs.  In our gene expression analysis we observed up- and 

down-regulation of 26 miRNAs during differentiation to cardiac and neural 

lineages (supplemental dataset).  Among these we find a number of previously 

implicated pluripotency (mir-302a, 302b) (Lakshmipathy et al. 2007) and cardiac 

(mir-133, 23b, 26a) (Ivey et al. 2008) regulated miRNAs, all appropriately 

segregated by the ANOVA pattern analysis strategy (Figure 5.7 A).  

Although much effort has been devoted to defining the expression 

patterns and novel targets of miRNAs, little is known about the potential role of 

alternative splicing in miRNA binding site inclusion in processed mRNA 

transcripts.  Traditional gene expression microarrays focus on the coding regions 

of transcripts and ignore the non-coding exons that can be alternatively spliced to 

produce different C-terminal exons or 3’UTRs of a gene.  In contrast, exon-tiling 

arrays provide data on non-coding exons and provide a means to assess these 

distinct mRNA features in tandem with existing predictions for miRNA binding site 

position on a global basis. 

Our analysis strategy highlighted 287 putative miRNA binding sites 

overlapping with exon-array probe sets that were alternatively expressed, 
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including probe sets that did not align to alternatively spliced regions.  We tested 

and validated 9 out of 10 of these alternatively included mRNA regions by RT-

PCR, counting the SPTBN1 and ASPH variants described earlier.  Putative 

miRNA binding sites were alternatively included as a result of the regulation of an 

alternative cassette (ASPH, SEPT6) or C-terminal exon (CDC42, C6orf134), 

bleeding-exon (SPTBN1), exon-region-exclusion (opposite of intron-retention) 

(ATP2A2), or 3’UTR with a longer or shorter sequence (LEFTY1, MAFB, CDK6) 

(Figure 5.7 B-D).  At least one of these alternatively regulated genes (MAFB), 

with predicted regulation of a mir-130a binding site, is a known target of this 

miRNA (Garzon et al. 2006) (Figure 5.7 C).  We were unable to find any other 

validated interactions from the literature. However, several of the predictions from 

our algorithm also contain overlapping predictions from multiple miRNA binding 

site algorithms (ATP2A2, C6orf134, CDC42, CDK6, LEFTY1, and MAFB), 

although some overlapping predictions were not originally found due to different 

miRNA names given by the different resources (e.g., MAFB). 
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Figure 5.7. Regulation of miRNAs and miRNA binding sites within 

alterative exons. (A) The expression profile of two previously 

characterized microRNAs, mir-302a and mir-133-1, from combined tissue 

gene expression data. (B) RT-PCR isoform expression of genes with 

putative miRNA binding sites within the regulated probe set.  The 

presence of one or more putative miRNAs is indicated by notation miR. 

(C-E) The 3’ region of genes corresponding to three genes are shown, 

where the regulated isoforms are displayed from the UCSC genome 

browser along with regulated probe sets and putative microRNA binding 

site locations.  UTR regions are indicated by thinner lines than coding 

regions.  Each gene (MAFB, SEPT6, and CDC42) represents distinct 

possible modes of exon regulation leading to altered microRNA binding 
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site inclusion: shorter 3’UTR, alternate cassette-exon inclusion, and 

alternate C-terminal exon, respectively.  Both MAFB and SETP6 are on 

the reverse genomic strand, where orientation is 3’ to 5’. 

 

Examination of miRNAs with previously established ESC or cardiac 

differentiation expression patterns highlighted the presence of mir-302a, 302c 

(ESC) and mir-26a (cardiac) binding sites, in the alternative bleeding exon of 

SPTBN1, in addition to the presence of mir-1 (cardiac) binding sites in CDK6.  

One of the most interesting cases is the presence of putative miRNA binding 

sites in the 3’UTR of the ATP2A2 gene, where this region promotes mRNA 

degradation.  These data suggests a tantalizing new mechanism for miRNA 

regulation of such genes, largely dependent on AS.  Since miRNAs can promote 

and inhibit the translation of targets dependent on cell-cycle stage (Vasudevan et 

al. 2008), there is the opportunity for complex modes of regulation by these 

predicted targets in vivo. 

 

5.4 Conclusions 

A necessary step in understanding the control of ESC pluripotency and lineage 

specification is to elucidate not only transcriptional events that occur with these 

transitions, but the secondary processing steps that can lead to fundamental 

changes in the amount and composition of proteins in these cells.  We have 

implemented a new strategy for segregating whole-genome mRNA tiling data into 

distinct lineage expression pattern groups.  Application of this method to gene 

expression changes results in the successful classification of known markers of 
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both pluripotency and cardiac-specification.  When applied to alternative splicing 

profiles for hESC differentiation in to cardiac and neural precursors, AltAnalyze 

highlights previously documented as well as novel predictions with large shifts in 

isoform expression that were readily confirmed by RT-PCR.  Functional 

predictions from AltAnalyze, based on both protein sequence annotations and 

predicted miRNA binding sites for alternatively spliced genes, identifies clear 

functional changes along cardiac, differentiation, and pluripotency pathways for 

specific splice isoforms.  These data provide new hypotheses that can readily be 

tested.  

Among the most prominent predictions produced by AltAnalyze were the 

modification or disruption of DNA-binding and protein kinase domains, each 

enriched among all annotated protein regions regulated.  Several of our 

predictions have been previously validated, suggesting this method is a useful 

prediction tool for identifying novel functional differences.  Some of the most 

interesting genes tested were involved in apoptosis and proliferation pathways, 

enriched among AS events common to neural and cardiac differentiation. 

Isoforms encoded by the apoptosis genes PCBP4 and MADD both produce 

forms that do not activate apoptosis in undifferentiated hESCs.  Conversely, the 

gene NUMB encodes an isoform in hESCs that activates proliferation and 

switches entirely to an isoform which inhibits proliferation in cardiomyocytes. 

These results suggest the intriguing possibility that splicing may act to 

coordinately alter the functional repertoire of distinct members of the same 

pathway to elicit a biological effect.  We also observed AS for the apoptotic 
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regulators CSDE1 and UBE4B along with previously demonstrated tumor 

suppressor genes ANXA7, EWSR1, and PKM2.  Since both PKM2 and the proto-

oncogene EWSR1 directly interact with the pluripotency transcription factor 

OCT3/4 to promote OCT3/4 activity (Lee et al. 2005) (Lee et al. 2008), specific 

isoforms of these genes may be critical in the regulation of ESC maintenance.  

For AS events selectively enriched with differentiation to CSs, we observe 

the splicing of the cardiac contractile regulator ASPH, where the cardiac-enriched 

isoform-specifically functions to promote contraction.  Likewise, AS of the cardiac 

inhibitor HDAC9 produced a highly truncated form specifically in CSs.  This data 

further supports a role for AS in the direct specification of cardiac precursors.  

Finally, exploration of the overlap between predicted miRNA binding sites 

and alternatively regulated probe sets has revealed a new potential mechanism 

by which specific cell types may regulate miRNA activity independently of miRNA 

expression.  Such events were observed with both AS exons as well as the 

differential expression of distal terminal exons, where the mechanism regulating 

exon length is unclear.  Two recent analyses have further demonstrated the 

interaction between miRNAs and alternatively spliced isoforms (Duursma et al. 

2008) or UTRs of different length (Sandberg et al. 2008).  Given that miRNA 

expression is thought to fine-tune protein expression, downstream of 

transcription, alternative exon inclusion may be a parallel means of regulating 

miRNA binding site selection, while still retaining full-length protein expression.  

Future application and refinement of these analyses to additional cell 

lineages and time-points may yield greater resolution of AS events that will likely 
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provide new insights into important mechanisms for cell fate commitment and 

maintenance of ESC pluripotency. 

 

5.5 Materials and Methods 

5.5.1 Isolation of hESCs and Cardiac Spheroids 

The engineered ESC lines and cardiac electrophysiology are described in detail 

in an accompanying report (Kita-Matsuo, Barcova et al. submitted).  In brief, H9 

ESCs were infected by lentivirus with two drug selection cassettes, a neomycin 

resistance gene under the control of the REX-1 promoter (Rex-Neor) and a 

puromycin resistance under the control of the MHC promoter (aMHC-Puror). 

Clonal stable lines were selected to allow for drug selection of a homogenous 

population of undifferentiated hESCs and CSs. Total RNA for biological triplicates 

of the Rex-Neor hESCs and Rex-Neor, aMHC-Puror day 40 CSs were extracted 

and prepared for hybridization to human 1.0 ST GeneChip arrays as previously 

described (Yeo et al. 2007). As starting material, ~1ug of total RNA was purified 

with the RiboMinus human Transcriptome Isolation it (Invitrogen), cDNA for 

hybridization generated using the GeneChip  WT cDNA Synthesis and WT 

Terminal Labeling kits (Affymetrix), by the Gladstone Institutes Genomics Core.  

The resulting fragmented and labeled cDNA was hybridized to individual 

GeneChip arrays and scanned as per the manufacturer’s instructions.  Human 

exon array CEL files for the Cythera neuronal precursor differentiation datasets 

(Cy-ESCs and Cy-NPs), HUES6 cell line experiment (HUES6-ESCs and HUES6-

NPs), and fetal human CNS stem cells (hCNS-SCs) were provided by the Gage 
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laboratory (http://www.snl.salk.edu/~geneyeo/stuff/papers/supplementary/ES-NP) 

(Yeo et al. 2007). Eleven different adult human tissues, corresponding to 33 

array CEL files, were obtained from the Affymetrix website 

(http://www.affymetrix.com/support/technical/sample_data/exon_array_data.affx). 

 

5.5.2 Gene expression analysis 

Probe set RMA (Irizarry et al. 2003) expression values and detection p-values 

were obtained for all probe sets using the Affymetrix program ExpressionConsole 

(http://www.affymetrix.com/products/software/specific/expression_console_softw

are.affx). To calculate gene expression values from this exon-level data, we 

wrote a Python program (ExpressionBuilder - see following section for additional 

functions) that uses existing probe set to transcript associations from the 

Affymetrix probe set annotation file (HuEx-1_0-st-v2.na23.hg18.probe set.csv) 

and predicted splicing event information to identify exons most common 

(constitutive) to all transcripts.  Predicted splicing event information was obtained 

directly from the knownAlt table provided by the UCSC genome bioinformatics 

website (http://www.genome.ucsc.edu) or predicted by comparing the structure of 

Ensembl transcripts (BioMART) (Spudich et al. 2007) and GenBank mRNA 

transcripts (UCSC) for all Ensembl annotated genes. Constitutive probe sets for 

each gene that were not associated with alternatively regulated transcripts are 

used by this program to calculate constitutive gene expression values using the 

mean of the probe set log2 intensity values. If no constitutive probe sets are 
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present, gene expression is calculated by using the mean of all exon-associated 

gene linked probe set intensities. 

 

5.5.3 Alternative exon analysis with AltAnalyze 

To perform our alternative exon analyses, we created a custom application called 

AltAnalyze, composed of multiple modules written in Python.  A detailed 

description of this software is available as supplemental materials. Briefly, 

AltAnalyze consists of three main modules: (1) LinkEST, (2) ExpressionBuilder, 

and (3) AltAnalyze. The program LinkEST builds relationship files used to 

connect probe sets to aligning proteins and microRNA binding sites (see 

following section), used by the AltAnalyze program. The LinkEST program is run 

only once with each new release of Ensembl. The ExpressionBuilder program is 

used to both assemble splicing annotations for exon-level microarrays and then 

process array expression datasets prior to splicing analyses.  Like LinkEST, the 

annotation process (see previous section) is run only once with each build of 

Ensembl. The program AltAnalyze, imports ExpressionBuilder processed array 

datasets, calculates splicing scores, links this data to protein and microRNA 

binding site annotations and performs an over-representation analysis on both 

protein functional elements or miRNA binding sites, gained or lost among unique 

genes.  

 The ExpressionBuilder program, in addition to calculating gene expression 

values, organizes exon-level data for each experimental sample into biological 

groups, and then filters these probe sets based on detection above background 
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(DABG) p-values (obtained from a separate file generated by 

ExpressionConsole).  The relationships between samples and groups and which 

groups in the expression dataset should be compared, can be indicated by the 

user, within two input text files. For non-constitutive probe sets, if either biological 

group has a mean DABG p <0.05 that probe set is retained.  For constitutive 

probe sets, however, if either biological group has a mean DABG p >0.05, then 

the probe set is filtered out of the resulting expression file.  This expression file is 

stored as input for the AltAnalyze module. 

 In the AltAnalyze program, the likelihood and extent of alternative splicing 

are calculated using the splicing index method (Srinivasan et al. 2005) (Gardina 

et al. 2006) for all Ensembl genes with one or more constitutive probe sets.  

Probe sets considered for this analysis consist of the Affymetrix ‘core’ set, probe 

sets associated with an alternatively regulated exon (associated with an 

alternative promoter, N-terminus, C-terminus, cassette exon, alternative 3’ or 5’ 

splice site, retained intron or exon-region exclusion region), and probe sets 

aligning to an analyzed mRNAs (data from ExpressionBuilder). The splicing 

index is a constitutive corrected exon-level fold change.  Constitutive gene 

expression values are calculated as described in the previous section, for probe 

sets contained within the ExpressionBuilder filtered dataset files. Two probability 

estimates for alternative exon regulation are calculated based on a 1-way 

analysis of variance model, MiDAS (Gardina et al. 2006), using the Affymetrix 

Power Tools software (version 1.4.0) 

(http://www.affymetrix.com/support/developer/powertools/index.affx) software, 
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and t-test of constitutive adjusted exon expression values for both comparison 

groups (AltAnalyze). These constitutive adjusted exon expression values are 

then used to calculate a splicing index fold value for each probe set (Gardina et 

al. 2006).  Exon or intron representing probe sets with a MiDAS and adjusted 

expression t-test p<0.05 and splicing index value > 1 were reported as 

alternatively regulated. Splicing events confirmed from the literature were 

obtained by manually comparing the sequence of the alternatively spliced exons 

from the array and the previous report or matching up Affymetrix probe set IDs 

and verifying that the directionality of the splicing event is in common. Such 

events were initially identified by both manual and automated literature searches 

(LitSearch- http://www.agilent.com/labs/research/litsearch.html). 

 

5.5.4 Identifying functional sequence elements with AltAnalyze 

For all alternative exon and intron linked probe sets, multiple types of functional 

consequences were assessed using the AltAnalyze application (supplemental 

methods).  In short, AltAnalyze uses two tables built using custom modules 

(LinkEST), relating microarray probe sets to matching and non-matching protein 

sequences or predicted miRNA binding sites. These scripts identified perfect or 

partial probe set consensus sequence matches to mRNAs and expressed 

sequence tags (ESTs) from Unigene and Ensembl. For the longest, high-quality 

matches and non-matches, corresponding protein sequences were identified or 

derived via in silico translation and stored for further analysis.  Likewise, putative 

miRNA binding sites (PicTar (Krek et al. 2005), miRanda 
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(http://www.microrna.org), miRbase  (Griffiths-Jones et al. 2008) and TargetScan 

(http://www.targetscan.org)) contained within probe set consensus sequences 

were stored in a second table for import by AltAnalyze. In AltAnalyze, the 

predicted consequences of splicing on protein domains and functional regions 

was assessed by identifying the gain or loss of annotated protein regions and 

domains in the UniProt (http://www.pir.uniprot.org/) and Ensembl protein 

databases, by comparing the ‘best’ matching and non-matching proteins linked to 

an individual probe set.  Over-representation of functional regions, domains, and 

miRNA binding sites was further evaluated with an over-representation z-score.  

Open-source code for AltAnalyze is provided under the Apache open source 

license along with an executable version compatible with multiple operating 

systems (see: http://www.genmapp.org/AltAnalyze). 

 

5.5.5 Validation of Alternative Exon Expression 

Alternatively regulated genes were selected for validation after bioinformatics 

filtering of genes and probe sets using AltAnalyze, SubgeneViewer, and 

visualization of probe set genomic location in the UCSC genome browser.  Probe 

sets were largely selected for validation based on the prediction that the 

associated exon or intron occurred in a previously annotated full-length mRNA 

that was predicted to undergo alternative regulation, and also contained 

functionally informative sequence level changes.  Based on these filters, we 

selected 52 alternative exon/intron sequences for validation.  Exons for RT-PCR 

were manually selected by examination of exon structure at the UCSC and 
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Ensembl genome browsers and optimal flanking, isoform-specific, or constitutive 

primers designed using a custom implementation of primer 3 called AltPrimer 

(http://conklinwolf.ucsf.edu/tools/picoprimer.html).  For RT-PCR, total RNA was 

diluted to ~10ng/μl and RT-PCR was amplified with the OneStep Superscript III 

RT-PCR kit (Invitrogen) for 28, 35, or 40 cycles with annealing temperatures of 

55 or 58°C using isoform-specific or constitutive flanking primers and analyzed 

on a 2-2.5% DNA-agarose gel using ethidium bromide staining. 

 

5.6 Supplemental Data 

Supplemental datasets and figures are available at: 

http://www.genmapp.org/supplemental/Salomonis_2008/hESC_exon/ 
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6.1 Abstract 

Background: Two major goals for regenerative medicine are to reproducibly 

transform adult somatic cells to a pluripotent state and control their differentiation 

into specific cell-fates.  These goals could be furthered by obtaining a complete 

picture of the RNA isoforms produced by these cells due to alternative splicing 

(AS) and alternative promoter selection (APS). 

Results: To investigate the role of AS and APS, reciprocal exon-exon junctions 

were interrogated on a genome-wide scale in differentiating mouse embryonic 

stem cells (ESCs) with a prototype Affymetrix microarray.  Using a custom 

analysis package name AltAnalyze, we identified 171 putative isoform variants 

for 143 genes, the majority of which were predicted to alter protein sequence and 

domain composition.  Among the most robust verified isoform changes was a 

novel ESC enriched isoform of the pluripotency transcription factor Tcf3, 

encoding a protein with a gain of 14 amino acids. This longer form of Tcf3 was 
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able to repress the transcription of Nanog and -catenin reporters similar to the 

shorter reference isoform.  Knockdown (KD) with short-hairpin RNAs (shRNAs) 

directed against Tcf3-short, long, or all isoforms had delayed differentiation upon 

removal of LIF.  With differentiation to embryoid bodies (EBs), Tcf3-short and 

Tcf3-all KD blocked induction of early and late lineage markers, while Tcf3-long 

KD specifically blocked induction of late lineage markers.  Although teratomas 

derived from wild-type and Tcf3-long KD ESCs produced all three primordial 

germ layers, Tcf3-short and Tcf3-all did not. 

Conclusions: Analysis of exon-exon junction microarray data revealed AS of 

Tcf3 isoforms, which have distinct functions in the differentiation of pluripotent 

stem cells. 

 

6.2 Introduction 

ESCs are a vital tool for studying the events that regulate early embryonic 

propagation and cell-fate decisions. Research in this area has lead to the 

development of new technologies for adult somatic cell reprogramming and 

insights into the steps required for lineage commitment (Yamanaka 2008). 

Despite these significant advances, considerable challenges remain in 

elucidating the precise mechanisms that mediate these biological transitions. 

Several factors critical for maintaining pluripotency have been identified 

using both conventional biochemical screens and whole-genome gene 

expression studies of ESCs.  These include the transcription factors Oct4, Sox2, 

and Nanog, which interact with a common set of promoters to promote self-
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renewal and pluripotency (Boyer et al. 2005).  Recently Tcf3, a -catenin 

responsive transcription factor, was implicated in this core transcriptional network 

as a direct transcriptional repressor of both Oct4 and Nanog (Pereira et al. 2006; 

Tam et al. 2008) and is itself a target of these factors (Cole et al. 2008).  While 

ESCs with little or no Tcf3 expression can be maintained in LIF-independent 

conditions for extended periods, these cells have delayed or hindered 

differentiation (Tam et al. 2008; Yi et al. 2008). Inhibition of other Wnt signaling 

components, including the protein phosphatase PPP3R2 (Miyabayashi et al. 

2007) and GSK3  (Sato et al. 2006), also result in increased propensity of ESCs 

to self-renew in the absence of LIF.  Similar effects can be elicited by exogenous 

administration of Wnt3a or expression of an activated form of -catenin (Takao et 

al. 2007), further demonstrating a role for Wnt signaling in ESC maintenance. 

AS and APS are potentially potent ways to regulate transcript diversity in 

undifferentiated ESCs and differentiation to distinct cell lineages (Pritsker et al. 

2005; Yeo et al. 2007; Kunarso et al. 2008). In higher eukaryotes, AS and APS 

are prominent features that contribute to proteomic diversity by increasing the 

number of compositionally distinct mRNAs from a single primary transcript.  In 

distinct tissues and cellular states, transcript variation can alter protein interaction 

networks by removing or inserting protein domains, alter localization in the cell or 

regulate gene expression (Cooper 2005).  In at least one documented case, AS 

can also alter the inclusion of binding sites for translational repression by 

microRNAs (Duursma et al. 2008).  A better understanding of how AS and APS 
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regulate proteomic diversity and translational repression during ESCs 

differentiation may provide critical insights into this process. 

To determine the extent of AS and APS, we measured the expression of 

competitive exon-exon junctions for over 7,500 genes upon mouse ESC 

differentiation. This analysis led to the identification transcripts with profound 

predicted functional changes, including differences in protein domain and 

microRNA binding site architecture.  Among the most intriguing verified transcript 

changes was an unexplored variant of the transcription factor Tcf3, specifically 

enriched in ESCs (Tcf3-long).  To study the contribution of Tcf3-long and short 

isoforms in the regulation of pluripotency and differentiation, we have selectively 

expressed or inhibited expression of these isoforms in mouse ESCs using 

parallel approaches.  Both long and short isoforms caused similar effects on 

known target gene activity and self renewal in undifferentiated ESC, however, the 

short isoform was uniquely required for differentiated cell types after induction of 

lineage commitment in embryoid body and teratoma induction assays. These 

results reveal multiple functions of Tcf3 isoforms for self-renewal and 

differentiation processes and suggest that Tcf3 isoform-specific 

properties/activities differentially control cell fate decisions 

 

6.3 Results 

 

6.3.1 AS and ASP are prominent features with ESC differentiation 

ESCs and derived EBs were profiled with a prototype Affymetrix exon-exon 
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junction microarray, which interrogates ~7,500 genes and over 40,000 putative 

mRNA transcripts.  As in previous studies using this array platform, we identified 

competing exon-exon junctions that indicate the alternative inclusion of cassette-

exons, alternative 3’ or 5’ splice sites or alternative promoters using a linear 

regression based method (Sugnet et al. 2006). This algorithm has been 

incorporated into a free open source stand-alone analysis package named 

AltAnalyze, specifically designed to analyze exon-exon junction or exon level 

high-throughput expression data. In addition to scoring for alternative exon 

events (AEEs), this software can assess the likelihood of a regulated AEE score 

occurring by chance, assign protein associations to regulated probe sets, and 

identify functional sequence elements differing between aligning alternate 

mRNAs and proteins (Figure 6.1 A).   

Analysis of ESC differentiation using AltAnalyze identified 144 genes 

corresponding to 171 unique AEE (see methods) out of 4,269 genes with 

evidence of isoform expression.  Pathway analysis of these genes show 

enrichment in Wnt and TGF-beta receptor signaling pathways, actin-binding, lipid 

transport, muscle contraction, chromatin remodeling, and embryonic 

development among others (Table 6.1). These data suggest that AS and APS 

regulated genes aligning to processes commonly associated with the regulation 

of ESC pluripotency and differentiation. 
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Figure 6.1. Unique alternative exon profiles with ESC differentiation. 

(A) AltAnalyze was used to process array intensities after normalization 

(ExpressionBuilder program), calculate alternative exon scores for 

reciprocal exon-junction probe sets, annotate these events based on 

existing mRNA structure annotations (e.g., alternative splicing events), 

and align probe sets to mRNA, protein, and function annotations 

(AltAnalyze program).  These predictions were used for primer design 

(AltPrimer), RT-PCR validation, and subsequently to re-optimize filtering 

parameters. (B) Resulting data for unique genes associated with AEEs 

were compared for datasets indicative of AS.  These comparisons include 

adult tissue conditions from previous studies (asterisks) or collected in 

parallel with array data for ESC differentiation. (C) Comparison of these 

profiles for AEEs unique to ESC differentiation. Black indicates the 

absence of the predicted AEE event for a comparison (no scoring 

thresholds), red indicates exon inclusion and green indicates exon 

exclusion for the numerator of the comparison (e.g., EB/ESCs). 
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Of these AEEs, 94 had clear evidence of AS and 17 had evidence of APS, 

with the majority aligning to predicted cassette-exons (83%).  When APS and AS 

events were linked to protein sequences (through alignment of competitive 

junctions to mRNAs), 77 of the 109 AEEs showed predicted differences in protein 

domain or functional region composition between the alternatively regulated 

isoforms (InterPro/UniProt).  For four AEEs with evidence of AS, multiple putative 

microRNA binding sites were identified within retained or excluded exons 

(Atp2a2, Pdlim7, Rbm35a, Eomes) (supplemental dataset), indicating that AS 

may selectively alter the ability of microRNAs to regulate these proteins. Thus an 

analysis of AEEs in the context of protein sequence and putative microRNA 

binding sites highlights a diverse set of putative functional differences. 
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Name Type 
Changed/
Measured 

Z 
Score 

Permute 
P 

positive regulation of myeloid cell differentiation P 3/6 8.06 0 

TGF-  receptor signaling pathway P 4/24 4.90 0.0005 

actin binding F 10/122 4.63 0 

lipid transport P 5/39 4.59 0.001 

in utero embryonic development P 6/55 4.48 0.002 

bone remodeling P 5/47 4.01 0.0025 

chromatin remodeling P 3/21 3.83 0.0085 

smooth muscle contraction WP 7/76 3.70 0.0005 

protein amino acid phosphorylation P 15/286 3.67 0 

cell matrix adhesion PP 3/26 3.29 0.0165 

calcium regulation in cardiac cells WP 6/68 3.29 0.0015 

protein kinase activity F 13/265 3.14 0.001 

Mesoderm development PP 8/126 2.73 0.0035 

Wnt receptor signaling pathway P 4/57 2.53 0.021 

 

Table 6.1. Pathway analysis of AEEs during ESC differentiation.  

Highest-scoring pathways and Gene Ontology (GO) terms identified using 

GO-Elite analysis for genes with AEEs in mouse EBs versus to ESCs. The 

number of genes associated with AEEs relative to the number of genes 

measured in each category is reported.  The permutation p-value 

(Permute P) is calculated from 2,000 random permutations of the input 

gene identifiers.  Non-GO term pathways were obtained from 

http://www.wikipathways.org (WP) or www.pantherdb.org/pathway (PP). 
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Figure 6.2. Validated alternative exons show diverse expression and 

protein structure variation. Exon and protein structures are shown for 

genes with large differences in isoform expression between ESCs and 

EBs.  For each gene, the detected alternative exon is indicated as a black 

box in the exon structure graph of each panel. Surrounding dashed and 

solid lines indicate alternative events (AS or APS).  Below each graph are 

protein segments corresponding to each exon (not to scale) for both 

aligning protein isoforms.  Functional protein sequences (e.g., domains) 

are annotated above the two protein representations. Predicted changes 

in protein length are indicated for the down-regulated (ESC enriched) and 

up-regulated (EB enriched) isoforms (ES->EB). ESC, EB, and cross-tissue 

expression profiles from select adult mouse tissues are shown adjacent to 

the gene structures for each of the probed mRNA isoforms. PS, 

phosphoserine; PT, phosphotyrosine (UniProt). 

 

To determine the relative extent and overall diversity in alternative exon usage, 

AEEs from ESCs during differentiation were compared to a panel of tissue and 

cell remodeling paradigms, from public and in-house collected data.  Datasets 

with previous evidence of large-scale AEEs include cardiac versus brain or 

skeletal muscle (Sugnet et al. 2006), atria versus ventricle (Sato et al. 2003; Chu 

et al. 2004) and Nova2-/- versus wild-type brain (Ule et al. 2005). Since AS and 

APS have also been implicated in distinct cell remodeling paradigms we also 

analyzed a time-course of myometrial gestational and cardiomyopathy 

remodeling (Biesiadecki et al. 2002; Curley et al. 2004; Dabertrand et al. 2007; 

Tyson-Capper 2007). Combined analysis of these datasets using the same 

AltAnalyze analysis parameters shows a wide range in the number of 

alternatively regulated genes predicted (Figure 6.1 B and supplemental data).  
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Although only a modest number of predicted AEEs were found with ESC 

differentiation as compared to other datasets, these events were mainly 

restricted to this dataset (Figure 6.1 C). 

 

6.3.2 Verified alternative exons align to pathways of Wnt signaling and cell 

cycle control 

To verify AEE predictions from AltAnalyze, we analyzed 24 AS and 4 APS 

predicted ESC differentiation events using RT-PCR.  Twenty-two RT-PCR 

reactions produced amplicons from which 15 AS and 3 APS events had the 

predicted pattern of isoform expression (supplemental data). To further 

characterize these verified isoform changes, we examined protein-associated 

functional changes along with isoform expression across multiple adult tissues 

(Figure 6.2).  Several of these verified AEEs were specifically found to alter the 

domain/functional residue composition of proteins (e.g., Tcf3, Mxi1, Epb4.1), 

suggesting that alternative exon inclusion may alter protein function.  Although 

most isoforms enriched in ESCs were also expressed in other tissues, 

expression was highest in ESCs for Tcf3, Smarcb1, Map3k7, and Cttnd1 for one 

of the two regulated isoforms.  Analysis of these genes in the context of 

previously demonstrated interactions reveals a putative signaling network that 

connects many of these genes to the regulation of self-renewal and 

differentiation pathways (Figure 6.3) (Ishitani et al. 1999; Bachmann et al. 2004; 

Huang et al. 2005; Imbalzano et al. 2005; Spring et al. 2005; Pereira et al. 2006; 

Dugast-Darzacq et al. 2007; Katoh et al. 2007). These include the regulation of 
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the Wnt signaling components Tcf3, Ctnnd1, and Map3k7 and the cell cycle 

regulators Mark3, Smarcb1, Mxi1, and Epb4.1.  

 

6.3.3 Tcf3-long is enriched in ESCs and retains Tcf3-short transcriptional 

repression activity 

One of the most compelling findings from this dataset was the AS of the Wnt 

signaling transcription factor Tcf3.  Although Tcf3 regulates pluripotency through 

interactions with Nanog and Oct4, the characterized isoform is the non-ESC 

enriched form (short form).  Tcf3 or transcription factor 3 (TCF7L1 in human) is a 

member of the Tcf/Lef family of transcription factors that mainly represses 

transcription of downstream target genes.  Genome-wide analyses suggest that 

Tcf3 regulates the transcription of many crucial pluripotency and developmental 

regulators (Cole et al. 2008; Tam et al. 2008; Yi et al. 2008).  Specifically, 

repression of Nanog and Oct4 transcription by Tcf3-short has been hypothesized 

to be essential for ESCs to balance lineage-commitment and pluripotency 

(Pereira et al. 2006).  
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Figure 6.3. AS and APS proteins intersect with pathways of 

pluripotency and differentiation. Proposed model of interaction between 

Wnt signaling, cell cycle control, and the regulation of differentiation and 

pluripotency for validated AS and APS genes (red boxes).  Arrows indicate 

promotion and T-bars indicate inhibition. 
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The two Tcf3 isoforms detected by our microarray analysis differ in the 

inclusion of a 42 base pair (bp) cassette exon, which encodes an additional 14 

amino acids that overlap with the described Groucho binding domain (Cavallo et 

al. 1998; Roose et al. 1998). Tcf3-long is up-regulated 2 fold in mouse ESCs 

relative to EBs while the short form is expressed at roughly equivalent levels, as 

shown by quantitative PCR (qPCR) and RT-PCR (supplemental data).  To 

determine if both isoforms encode for translated proteins, we expressed cDNAs 

encoding each Tcf3 isoform in a Tcf3-null ESC line (G4). Using an antibody 

directed against the carboxy terminal region by both isoforms, we found that both 

cDNAs encode proteins of similar size, with wild-type ESCs expressing both 

isoforms (Figure 6.4 A).  

To assess the ability of Tcf3 isoforms to repress the transcription of known 

targets, both isoforms were transiently expressed in Tcf3-/- ESCs and assayed 

for expression of -catenin transcriptional (TOPFlash) (Veeman et al. 2003) or 

Nanog promoter luciferase reporters (Pereira et al. 2006).  Both isoforms 

produced equivalent repression of the TOPFlash and Nanog promoter reporters 

with transfection of increasing amounts of cDNA (Figure 6.4 C, D).  Therefore, 

the ESC-enriched long isoform of Tcf3 retains transcription repression activity for 

-catenin targets and Nanog.  Although this data suggests both Tcf3 isoforms 

have identical transcriptional activities, these in vitro effects may not be 

recapitulated on endogenous promoters. 

 

6.3.4 Delayed differentiation of Tcf3 knockdown lines 
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Given that both Tcf3 isoforms are expressed in ESCs and EBs and show 

functional activity, we utilized RNA interference (RNAi) to explore the specific 

relationships of each isoform in pluripotent ESCs and upon differentiation to 

multiple cell lineages. Stable clonal mouse E14 ESCs expressing a Tcf3-short 

shRNA construct targeting the exon 3-4 junction, a Tcf3-long shRNA construct 

targeting the 42bp inclusion exon, or both isoforms were obtained through 

lentiviral infection and puromyocin antibody resistance selection (Figure 6.5 A).  

This strategy yielded up to 90% KD of the targeted isoforms, with minimal or no 

reduction in the non-targeted isoform in ESCs and EBs (Figure 6.5 B).  Tcf3 

protein could not be detected with Tcf3-all KD by Western blot in undifferentiated 

ESCs (data not shown). 

 Isoform-specific Tcf3 KD lines displayed unique cell colony morphology in 

the presence and absence of LIF. In the presence of LIF, constitutive Tcf3 KD 

(Tcf3-all KD) ESCs had a highly clustered, round colony morphology, whereas 

wild-type E14 ESCs were predominantly distributed in a monolayer on 

gelatinized culture plates (typical for this cell line). Tcf3-short KD had a similar 

clustered appearance to Tcf3-all KD, whereas Tcf3-long KD formed very small 

clusters. By day 3 of LIF removal, wild-type ESCs had a differentiated 

morphology and could not be passaged further, while Tcf3-all and Tcf3-short KD 

lines flattened out by day 3 or day 6 with a more E14-like morphology.  All Tcf3-

KD lines could be further passaged to day 6 and did not have a predominantly 

differentiated morphology. These results agree well with recent reports that 
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complete Tcf3 knock-out and KD cells can be maintained under LIF-independent 

conditions for extended periods in culture (Tam et al. 2008; Yi et al. 2008). 

 

6.3.5 Preferential regulation of Nanog and Oct4 by Tcf3-long isoform 

knockdown 

Since Nanog transcriptional repression by Tcf3 isoforms was assessed using an 

artificial Nanog reporter and cDNA was expressed at non physiological levels, we 

examined the expression of both Nanog and Oct4 using the isoform-specific 

shRNAs. Comparison of Nanog expression levels in ESCs by qPCR for each 

Tcf3 shRNA revealed maximal up-regulation with Tcf3-all KD (4.0-fold), followed 

by Tcf3-long (3.5-fold), and Tcf3-short (1.8-fold) KD.  Interestingly, while Oct4 

was up-regulated with Tcf3-long KD (2.0-fold), Oct4 expression levels were not 

significantly changed with either Tcf3-short or Tcf3-all KD relative to wild-type 

ESCs (t-test p<0.05).  Although Tcf3-long KD produced preferential up-regulation 

of both Oct4 and Nanog compared to Tcf3-short KD, this effect could be due to 

the higher expression of Tcf3-long in undifferentiated ESCs. 
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Figure 6.4. Both Tcf3 isoforms are expressed in mouse ESCs and 

repress reporter transcription. (A) Tcf3-/- ESCs were transfected with 

full-length cDNAs for both isoforms expressed under the control of a 

cytomegalovirus promoter and compared to wild-type ESCs. Expression of 

Tcf3-short and long isoforms resulted in a shift in the detection of Tcf3 

protein on a polyacrylamide gel using a Tcf3 antibody common to both 

isoforms. To assess activity of these isoforms, Tcf3-/- ESCs were 

transfected with (B) a -catenin transcriptional reporter construct 

(TOPFlash) or (C) Nanog promoter reporter, driving luciferase expression, 

in the presence or absence of increasing amounts of transfected cDNA for 

the Tcf3 isoforms. To assay for transcriptional repression in the TOPFlash 

reporter assay, cells were co-transfected with a stable form of -catenin 

( -cat). 
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Figure 6.5. Selective knockdown of Tcf3 isoforms in ESCs and 

differentiating EBs. (A) To achieve isoform-specific KD, Tcf3 regions 

unique to or in common to each isoform were targeted using short-hairpin 

RNAs directed against either exon-junctions (E3-E4 for all or E4-E5 for 

short) or exons (exon E4a for long). (B) KD efficiency for Tcf3-short, Tct3-

long, and Tcf3-all KD clonal lines by isoform-specific qPCR with ESC 

differentiation to EBs for 1, 3, 6 and 9 days. 
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Figure 6.6. Tcf3 knockdown cells fail to differentiate upon LIF 

removal. Cell morphology, clustering and differentiation were observed for 

wild-type, Tcf3-short, Tcf3-long, and Tcf3-all KD ESCs after removal of LIF 

(-LIF). 
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Figure 6.7. Oct4 and Nanog are preferentially up-regulated with 

knockdown of Tcf3-long. Quantitative expression levels for Oct4 and 

Nanog relative to the endogenous controls Ppia and Rpl7 are reported for 

undifferentiated wild-type (wt) and isoform specific Tcf3 KD lines cultured 

in the presence of LIF.  Fold induction is relative to wild-type ESCs. 

Tcf3(a), Tcf3-all; Tcf3(s), Tcf3-short; Tcf3(l), Tcf3-long. Values are mean ± 

SEM of biological triplicates. An asterisk indicates t-test p<0.05. 
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6.3.6 Tcf3 isoform knockdowns differentially block differentiation pathways 

For wild-type and Tcf3 KD lines, EBs differentiated for 1, 3, 6, and 9 days were 

analyzed by qPCR for expression of tissue lineage markers for all three early 

germ layers (mesoderm, endoderm and ectoderm) and late adult cell markers 

(cardiac and neural). Normal induction of gene expression was observed for all 

lineage markers examined in wild-type E14 ESCs; induction of early ectoderm 

markers (Fgf5 and Nestin) was maximal at 6 days while induction of all other 

markers was maximal at 9 days (Figure 6.6).  Surprisingly, Tcf3-short KD blocked  

the expression of nearly all markers examined, with the greatest repression of 

markers for early mesoderm (Vegfr2, Gata4 and Gata6), followed by endoderm 

(FoxA2, Afp), and to a far lesser extent ectoderm (Fgf5 and Nestin). The only 

marker that was induced at levels similar to or higher than wild-type was the early 

mesoderm marker Brachyury (Bry), which is only induced ~2-fold by day 6 in 

wild-type cells, with similar induction in Tcf3-short KD at day 3.  Since Bry is 

transiently induced at day 4 of E14 ESC differentiation, it was likely missed by 

our analysis (Ivey et al. 2008). The least repressed marker, other than Bry, was 

Sox1, a late neural marker, followed by Nestin and Fgf5, both markers of 

ectoderm. This effect was not due to a global decrease in gene induction, since 

expression of cell cycle and self-renewal regulators show similar or increased 

expression relative to wild-type ESCs throughout EB differentiation 

(supplemental data).  Thus, expression of mesoderm and endoderm markers are 
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blocked throughout EB differentiation, while early and late ectoderm markers are 

far less diminished. 

 In contrast to Tcf3-short KD, Tcf3-long KD resulted in only small changes 

in early lineage marker expression compared to wild-type ESCs, but blocked 

expression of later markers.  Among the early markers examined, only Gata6 

and Vegfr2 expression at day 9 of EB differentiation were down-regulated, while 

Vegfr2 expression was nearly 2-fold higher in Tcf3-long EBs at day 6 relative to 

wild-type ESCs.  For the ectoderm markers Fgf5 and Nestin, Tcf3-long KD 

produced a sustained increase in gene expression through day 9, whereas in 

wild-type EBs, expression was lower on day than day 6.  These differences may 

account for the absence of late lineage marker induction. 

 Interestingly, although KD of both Tcf3 isoforms produced gene 

expression changes similar to those induced by Tcf3-short KD, Tcf3-all KD had 

far less severe consequences on lineage marker expression, even though similar 

or greater KD of both short and long isoforms was achieved.  Tcf3-all KD shows 

delayed and diminished expression of the endoderm/mesoderm markers Gata4 

and Gata6, mesoderm marker Vegfr2, and endoderm marker Afp, but not 

ectoderm markers Fgf5 or Nestin. Furthermore, both FoxA2 and Bry expression 

was up-regulated compared to wild-type.  Consistent with this observation, both 

Bry and FoxA2 tissue expression was increased in Tcf3-/- mice, mainly due to 

axial duplication (Merrill et al. 2004). Thus, KD of Tcf3-long was able to restore 

FoxA2 expression in differentiating EBs, as compared to Tcf3-short KD. 
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Figure 6.8. Distinct patterns of lineage marker expression for all Tcf3 

knockdown lines. qPCR was performed on RNA extracted from multiple 

days of EB differentiation (days 1-9) for wild-type and Tcf3 isoform KD 

lines. Expression for each gene is determined relative to two endogenous 

control genes (Ppia and Rpl7) and relative gene expression changes for 

all cell lines and time-points are compared to gene expression at day 9 of 

differentiation, where gene expression was typically most highly induced. 

The lineages for which each marker is associated with are listed in red 

under the gene name for each. Values are mean ± SEM of technical 

triplicates of pooled EB plates (n=96 EBs or greater). 
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 To confirm these results, we derived teratomas by injection of wild-type 

and shRNA ESCs under the skin of Severe Combined Immunodeficiency (SCID) 

mice.  After 4 weeks of growth, wild-type ESC teratomas developed into cells of 

all 3 primordial germ layers (e.g., muscle, neural rosettes, cartilage, adipose and 

epithelial cells), as shown by morphological examination of hematoxylin and 

eosin stain (H&E) stained sections (Figure 6.9 A).  Examination of Tcf3-long KD 

ESC-derived tumors revealed similar cell structures to wild-type ESCs with a 

similar predominance in cell types.  However, in Tcf3-short and Tcf3-all KD ESC 

derived-tumors there is an absence in cell structures characteristic of 

endodermal and mesodermal tissues, but a predominance of cells with neural 

rosette morphology and organization. These data appear to agree with lineage 

marker expression with differentiation, supporting the hypothesis that Tcf3-short 

is essential for mesoderm and endoderm differentiation, while Tcf3-long appears 

to be dispensable for early lineage commitment.  Future immunohistochemical 

analysis of specific cell types in these teratomas will be important to verify these 

observations.   
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Figure 6.9. Absence of differentiated mesodermal and endodermal 
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structures with Tcf3-short and complete knockdown. (A) H&E staining 

of tumors derived by injection of ESCs in to SCID mice for each of the 

Tcf3 KD and wild-type lines. (B) Proposed model for Tcf3 isoform function 

in the context of pluripotency and differentiation. 

 

6.4 Discussion 

AS and APS have been increasingly recognized as critical mechanisms during 

development to increase proteomic diversity and resulting signaling complexity.  

This has been elegantly demonstrated for the AS of genes involved in neonatal 

to adult cardiac adaptation, synaptogenesis and sex determination (Burgess et 

al. 1999; Hammes et al. 2001; Xu et al. 2005).  With new methods to interrogate 

alternative exons on a whole-genome scale, we have the opportunity to fully 

appreciate the contribution and specificity to which these AS and APS contribute 

to biological complexity.  

 In this analysis, examination of exon-exon junction profiles using 

AltAnalyze, led to the identification of 91 putative AS and 15 APS events during 

the transition of mouse ESCs to differentiated EBs. While the number of AEEs 

detected for ESC differentiation is far less than distinct cell type comparisons 

examined (e.g., brain and heart), this effect is likely due to the heterogeneity of 

EBs, which provides greater specificity for identifying isoforms specifically 

enriched in undifferentiated cells. This is evidenced by comparison of AEEs for 

the different AS paradigms, revealing that isoforms regulated during ESC 

differentiation are relatively restricted to this dataset (Figure 6.1 C). 
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 Isoforms with the most extreme changes detected by RT-PCR 

corresponded to either pathways of Wnt signaling (Tcf3, Ctnnd1, Map3k7) or cell 

cycle progression (Smarcb1, Epb4.1, Mark3 and Mxi1).  Many of these AEEs 

altered the composition of the annotated protein domains and functionally 

important sequences.  These data suggest that AS and APS genes may encode 

unique functional protein products during differentiation that may contribute to 

alternate pluripotency or differentiation outcomes. To test this hypothesis, we 

examined the contribution of splice isoforms for the transcription factor Tcf3, a 

critical component of the pluripotency core transcriptional network that was 

highlighted by our alternative exon analysis.   

 Both Tcf3 isoforms were found to produce full-length proteins in ESCs as 

well as repress expression of Nanog and Tcf- -catenin reporters. Using isoform-

specific RNA inactivation, we found that both isoforms have distinct functional 

outcomes during the differentiation of ESCs.  The ESC-enriched, long Tcf3 

isoform appeared to be dispensable for early lineage specification, but the Tcf3-

short form was required for the expression of both early (e.g., Nestin, Vegfr2, and 

Afp) and late tissue lineage markers (e.g., Sox2, Islet1, and Nkx2.5).  Similarly, 

analysis of teratomas derived from KD ESCs showed that Tcf3-short and Tcf3-all 

KD appeared to suppress endodermal and mesodermal cell structures.  Given 

that these Tcf3 isoforms likely retain their endogenous tissue specificities, these 

effects might be due to cellular distribution differences in differentiating cells.   

These results indicate that Tcf3 isoforms fulfill distinct roles during the 

transition from pluripotency to differentiation, with Tcf3-short being indispensable 
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for normal differentiation (Figure 6.9 B).  While the precise function of Tcf3-long, 

what co-factors it requires, and its transcriptional targets has not been clearly 

elucidated in these studies, evidence that it negatively regulates expression of 

both Nanog and Oct4 in ESCs suggests that its function is critical in these cells.  

Interestingly, KD of either isoform was sufficient to inhibit differentiation of ESCs 

in the absence of LIF and further suggests that Tcf3 isoforms inhibit self-renewal 

in a dose-dependent manner.  The different effects of the Tcf3 isoforms could 

thus be mediated by cell-type specific expression or alternatively through 

interactions with distinct binding partners.  Although we could not identify an 

equivalent Tcf3-long isoform in human ESCs (supplemental data), the role of 

Tcf/Lef proteins has not been clearly defined in human ESCs as of yet.  

Ultimately, this study provides further evidence that Tcf3 is a critical component 

of pluripotent cells and demonstrates that its post-transcriptional regulation is a 

significant determinant of mouse ESC differentiation.  These results will enable 

further studies necessary to delinate how precise activities of alternatively spliced 

gene products shape the processes of self renewal and lineage commitment 

  

6.5 Materials and Methods 

 

6.5.1 Tissue isolation and sample preparation 

Developmental conditions examined were mouse ESCs differentiated in to 

embryoid bodies (EBs) and myometrium from adult virgin mice, mice at 14.5 

days (quiescent), 18.5 days (term) of pregnancy, and mice 6hr post-partum. 
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Disease conditions consisted of mouse adult cardiac ventricles from a model of 

dilated cardiomyopathy (Redfern et al. 2000) compared to MH-tTA littermate 

ventricles. Tissue comparisons consisted of data obtained from a previous 

analysis of AS (Sugnet et al. 2006) and from mouse cardiac atria and ventricles 

harvested from wild-type FVBN mice. Mouse E14 ESCs were grown in a 

monolayer on gelatin-coated culture plates, maintained in medium supplemented 

with 10% FBS, pyruvate, non-essential amino-acids, -mercaptoethanol, LIF, and 

passaged with trypsin.  EBs were derived using the hanging-drop method as 

described (Ivey et al. 2008) in 20% FBS to enrich for the mesoderm lineage. The 

dilated cardiomyopathy model was created using double transgenic mice 

harboring the tetracycline transactivator (tTA) driven in the heart by a myosin 

alpha-heavy chain promoter (MH).  When expressed, tTA promotes the 

expression of a modified version of the kappa-opioid receptor driven by tTA-

responsive promoter, in the absence of doxycycline (Redfern et al. 2000).  

Cardiac ventricle was harvested at 8 weeks after doxycycline was withdrawal 

(inducible expression). Total RNA was isolated from snap-frozen cell 

cultures/tissues using Trizol extraction and purified with the Qiagen RNA 

purification kit.  For microarray sample preparation, the purified total RNA was 

converted to cDNA using random hexamer primers and Superscript III RNA 

polymerase (Invitrogen), fragmented by DNase I digestion (Amersham 

Pharmacia Biotech), and end-labelled with Terminal Transferase, recombinant 

with DLR-1a (Roche).  This cocktail was hybridized to the Affymetrix prototype 

AltMouse A array (containing only perfect-match probe sets) (Ule et al. 2005), 
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(Sugnet et al. 2006) according to the manufacturer’s instructions. CEL files 

produced from the resulting Affymetrix DAT image files with MAS5 were used for 

all downstream analyses.  For nearly all-downstream bioinformatics analyses, we 

wrote a freely available software package named AltAnalyze (figure 6.1 A).  This 

software performs probe set filtering (downstream of normalization and detection 

probability calculation), calculates AEE scores and probabilities, and performs 

functional motif analysis. 

 

6.5.2 Normalization and probe set filtering 

CEL files for each set of comparisons (limited to two groups) were used to 

calculate normalized and background-corrected probe set expression values 

using Robust Multi-Chip Analsyis (RMA)(Irizarry et al. 2003) from Bioconductor 

(http://bioconductor.org/CRAN/).  In parallel, to eliminate probe sets which are 

expressed at background levels and thus may contribute to false alternative exon 

predictions, detection p-values for each probe set were calculated similar to 

Absent-Present calls for microarrays containing both perfect-match and 

mismatch probes (Sugnet et al. 2006) directly from the CEL files using a custom 

Python script.  These probe set expression values and detection probabilities 

were used as input for the ExpressionBuilder module of the program AltAnalyze. 

In ExpressionBuilder, probe sets corresponding to alternative exons or exon-

junctions were excluded that did not have an average detection p-value less than 

75% in at least one experimental condition. Likewise, for inclusion of probe sets 

corresponding to constitutive transcript regions, both experimental groups were 
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required to have the same mean detection p-value thresholds. 

 

6.5.3 Alternative exon analysis 

Two previously described algorithms, analysis of splicing by isoform reciprocity or 

ASPIRE (Ule et al. 2005) and a linear regression based method (Sugnet et al. 

2006) were adapted and used to generate scores for exon inclusion in the 

AltAnalyze module (supplemental methods).  However, for these studies, only 

results obtained with the linear regression method are reported.  Each putative 

AEE can consist of two differentially regulated exon-exon junctions or an exon 

and an exon-exon junction that suggest reciprocal splicing or transcription based 

on the position of these exons in the transcript sequences (Affymetrix).  For each 

AEE, a permutation-based p-value was calculated by permuting the original 

probe set data for each gene to recalculate a score for all possible permutations 

of the samples in the two groups. The p-value is based on the rank of the 

unpermuted score in the distribution of permutation-based scores. AEE scores 

with a permutation p-value < 0.05, linear regression fold > 2, and constitutive 

gene expression difference less than 3-fold were selected for downstream 

analysis.  Additional algorithm details are provided with the source code and 

executable documentation. 

 

6.5.4 Protein inference and functional motif comparison 

Prior to exon-exon junction analysis, protein alignments to all reciprocal 

microarray probe sets were derived using a custom Python script named 
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LinkEST.  LinkEST aligns each probe set sequence to any mRNAs present in the 

Unigene or Ensembl databases to find the longest matching and non-matching 

mRNA sequences (or proteins for Ensembl) for corresponding genes. When 

choosing the longest mRNA sequence, precedence is given to sequences with 

full-length annotations (e.g., mRNA versus EST). For selected mRNAs matching 

to a probe set without a recorded protein translation, in silico translations were 

derived.  These relationships are used by AltAnalyze to identify protein 

sequences associated with each reciprocal exon-exon junction probe set.  If 

protein information is missing for one of the two reciprocal probe sets, the longest 

non-matching protein association (from the probe set with associated protein 

information) is used as the reciprocals protein association.  

 Protein domains and functional region sequences, for one or more 

residues, were obtained from the UniProt and Ensembl databases. These 

functional annotations were compared between the two probe set aligned protein 

sequences. If the complete domain-level sequence was present in one but not 

the other protein sequence, this functional annotation (e.g., kinase domain) was 

reported for the AEE.  For experimentally confirmed AEEs, literature searches 

were used to identify additional domain-level annotations.  

 To identify alternative exons containing putative microRNA binding sites, 

such binding site sequences were extracted from existing resources (PicTar 

(Krek et al. 2005), miRanda (http://www.microrna.org), miRbase (Griffiths-Jones 

et al. 2008), and TargetScan (http://www.targetscan.org)), and searched for in all 

possible alternative exon sequences. These alternative exons are associated 
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with AEEs identified by AltAnalyze.  For unique genes containing regulated 

functional regions or predicted microRNA binding sites, an over-representation z-

score was calculated and reported by AltAnalyze. 

 

6.5.5 Quantitative and Semi-Quantitative AEE Confirmation 

For many of the AEEs with the largest linear regression fold changes, RT-PCR 

was used to confirm isoform expression changes.  Reverse transcription and 

gene/isoform-specific PCR was carried out using One-Step RT-PCR with 

Superscript III reverse transcriptase (Invitrogen) amplified for 30-40 cycles and 

resolved on a 2% or 2.5% agarose gel in Tris-acetate-EDTA.  Flanking PCR 

primers to amplify both isoforms in a single reaction or two isoform specific 

primer sets were designed using a custom implementation of Primer 3 called 

AltPrimer (http://conklinwolf.ucsf.edu/tools/picoprimer.html). Quantitative PCR 

using the SyBR green method was used to measure Tcf3 isoform expression for 

RNAi knockdown cells.  Analysis of differential gene expression in ESCs and 

EBs was conducted using TaqMan analysis (AppliedBiosystems, Foster City, 

CA). Rpl7 and Ppia were selected as stable reference genes for TaqMan 

analysis based on predictions made by GeNorm algorithm after examining six 

genes (Actnb1, Gapdh, Pgk1, Ubb, Rpl7 and Ppia) (Vandesompele et al. 2002). 

 

6.5.6 Isoform-specific expression/RNAi in mouse ESCs 

Stable isoform-specific knockdown of Tcf3 alternatively spliced isoforms were 

obtained in E14 ESCs using sequence specific shRNAs, delivered by lentiviral 
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infection. Three 19 mer shRNAs were designed to target the long, exon inclusion 

isoform (GGATGGTGCCTCCCACATT), the short exon exclusion isoform 

(CCAGCACACTTGTCCAACA), and constitutive region of Tcf3 

(GCACCTACCTACAGATGAA) using overlapping predictions from the program 

PSICOLIGOMAKER 1.5 (http://web.mit.edu/jacks-lab/protocols/pSico.html) and 

the Broad Institute mouse hairpin library 

(http://www.broad.mit.edu/genome_bio/trc/rnai.html).  The pSicoR construct (gifts 

from Tyler Jacks and Miguel Ramolos-Santos labs) was re-engineered to drive 

expression of mCherry protein using the Ef1  promoter and a puromycin-

resistance gene to allow for stable colony selection. Isoform-specific shRNAs 

were ligated into the pSicoR-Ef1 -mCh-puro construct and cotransfected with 

viral the packaging plasmids pMDLgpRRE, pRSV_Rev (D. Trono), and pVSV-G 

(Clontech) (gifts from the Miguel Ramalho-Santos lab) into HEK293 cells using 

FuGENE6 (Roche) as previously described (Grskovic et al. 2007).  

Harvested supernatant from viral producing HEK293 cells was filtered through a 

0.45um filter, and 100μl incubated with 200,000 mESCs on rotator for 3 hours. 

Cells were plated onto gelatinized tissue culture plates, grown under feeder-free 

conditions in the presence of LIF and selected for puromycin-resistant colonies 

for at least 5 days.  Clonal populations of mCherry-expressing mESCs were 

screened with isoform-specific qPCR primers to select for clones with optimal 

isoform-specific KD.  cDNAs for both the two Tcf3 isoforms were also expressed 

in Tcf3-/- ESCs on 129/Sv background (GS1) by electroporation or transfection of 

a linearized pCDNA3-Tcf3 short (pBM58) form (Pereira et al. 2006) or long-form 
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construct. The Tcf3-long form cDNA was obtained by removal of a 670 bp 

fragment by Kpn1-Pml1 (NEB) digestion of pBM58 and insertion of the 

corresponding 712 bp ESC RT-PCR fragment (sequence verified) from the long 

Tcf3 isoform. 

 

6.5.7 Transcription reporter assays 

For Tcf3 cDNA transcriptional reporter assays, TCF3 -/- GS1 ESCs (30,000/well) 

were plated on gelatin-coated 24-well plates and grown in the presence of LIF for 

24 hr. The expression constructs pCDNA3-Tcf3-short and pCDNA3-Tcf3-long 

were transfected into ESCs with Lipofectamine 2000 (Invitrogen) according to the 

manufacturer’s instructions.  To detect -catenin activated transcription, the 

TOPFlash assay was used.  DNA (1.5μg/well) was prepared in duplicate, using 

the reporter mix (Topflash:pRLCMV, 0.4 μg/well), Renilla as a transfection 

efficiency control, -catenin (0.05 μg/well) and TCF3 cDNA (0.1, 0.3, 0.6, and 1 

μg/well).  To assess Nanog promoter activity, DNA (1.4μg/well) was prepared in 

duplicate, consisting of the reporter mix (Nanog 4828 promoter:pRLCMV, 0.4 

μg/well), and TCF3 cDNA (0.2, 0.4, 0.6, and 1 μg/well). To achieve the same 

DNA transfection concentrations per well, empty pcDNA3 was added as 

appropriate. 

 

6.5.8 Western blot analysis 

Tcf3 isoform expression was assessed with a Tcf3-specific antibody common to 

both isoforms.  Analyzed proteins consisted of TCF3-/- GS1 ESCs expressing 



 203 

Tcf3-short or Tcf3-long non-epitope tagged cDNAs, Tcf3 KD cell lines, and wild-

type ESCs.  Cells were plated and transfected as described above. Cell extracts 

were lysed with a buffer containing 20 mM Hepes pH 7.4, 1% Tx-100, 150 mM 

NaCl, 1 mM EDTA, 1 mM EGTA, 10mM sodium pyrophosphate, and protease 

inhibitors. Since Tcf3 expression is dependent on the efficiently of transfection, 

lysates were initially run on a small gel to adjust for expression and then run on a 

large 8% polyacrylamide gel, transferred to a nitrocellulose  

membrane, and probed with a rabbit anti-TCF3 antibody overnight at 4°C. 

 

6.5.9 Teratoma assays 

Adult SCID mice were injected with ~1x106 E14 wild-type or Tcf3-shRNA isoform 

ESC line at two adjacent sites on the lower mid-section (n=10 sites per line). 

Teratomas were observed for all cell lines and were harvested 4 weeks after 

injection. 
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Supplemental Figure 6.1. Conservation of mouse splicing events to 

human. Several verified splicing events found in mouse (Mm) ESC 

differentiation by our microarray analysis were examined using 

orthologous primer sequences in human (Hs) H9 ESCs (ES) and derived 

EBs. Human RT-PCR products were verified by direct sequencing for 

Tcf3, Smarcb1, and Mark3. 
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Supplemental Figure 6.2. Cross-tissue expression levels of Tcf3 

isoforms. qPCR analysis of both Tcf3 isoforms relative to -actin as an 

endogenous control in mouse E14 ESCs and EBs and adult mouse 

tissues harvested from adult FVBN mice.  
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Supplemental Figure 6.3. Morphology and growth of Tcf3 knockdown 

and wild-type cells in LIF containing conditions. See Figure 6.6. 
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Supplemental Figure 6.4. Oct4 and Nanog expression levels with 

Tcf3 isoform specific expression in Tcf3 null ESCs. Stable transfected 

GS1 ESCs with different Tcf3 isoform cDNAs on a Tcf3-/- background 

were generated and assessed for regulation of Nanog and Oct4 

expression. 
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Supplemental Figure 6.5. Expression of Tcf3 putative transcriptional 

targets and markers of ESC maintenance with ESC differentiation. 

Multiple ESC marker genes and putative transcriptional targets of Tcf/Lef 

proteins were analyzed by qPCR for each for the KD cell lines and wild-

type ESCs. See Figure 6.8. 
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6.6 Supplemental Datasets 

Microarray CEL files will be deposited at GEO with acceptance of the 

corresponding manuscript.  Additional analyzed dataset files, indicated as 

supplemental can be found at: 

http://www.genmapp.org/supplemental/Salomonis_2008/mESC_junction/ 
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Chapter 7 

Consequences of Alternative Splicing in the Myometrium Throughout 

Gestation 

 

 
7.1 Introduction 

In the previous chapter we examined the alternative regulation of transcripts in 

multiple systems, including embryonic stem cell (ESC) differentiation, 

cardiomyopathy, and gestational induced remodeling of the myometrium. From 

these analyses, we found that the myometrium throughout gestation was 

predicted to undergo substantial alternative transcript regulation and thus may be 

an interesting model system to explore the role of alternative splicing (AS) in the 

regulation of uterine contractile responses of during gestation.  

A number of recent studies have shown that distinct protein isoforms are 

expressed in the myometrium at the interface between contractile quiescence 

and the induction of labor.  These proteins are largely associated with contractile 

regulation and include the calcium-activated potassium channel Kcnma1, the 

adenylyl-cyclase activating G-protein Gnas, the cyclic-AMP dependent 

transcription factor CREM and the transient receptor potential cation channel 4 

(Europe-Finner et al. 1997; Bailey et al. 2000; Benkusky et al. 2000; Yang et al. 

2002). In addition to these proteins, altered expression of the antagonistic 

splicing factors hnRNP A1 and ASF-SF2 have also been observed in concert 

with regulation of these myometrial AS events (Pollard et al. 2000). Gene 
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expression studies by myself and other members of the Conklin laboratory, 

suggest that a number of additional mRNA processing regulators may be 

regulated throughout pregnancy, such as the ASF-SF2 kinase and Clk1, which 

are down-regulated with uterine quiescence, but not at term pregnancy 

(Salomonis et al. 2005). 

In this supplemental analysis, I have performed a relatively detailed study 

of bioinformatics predictions at the level of AS, downstream functional 

predictions, and confirmation of AS in the mouse myometrium throughout 

gestation and postpartum. These results highlight both global and gene level 

changes by AS predicted to have functional consequences on the transition from 

uterine quiescence to activation at term. 

 

7.2 Results 

 

7.2.1 Patterns of myometrial AS are similar to those for transcription 

To assess the relative extent of alternative exon regulation in the myometrium 

throughout gestation and postpartum, each of the examined time-points (14.5 

and 18.5 days gestation or 6 hr postpartum) were individually compared to non-

pregnant mouse myometrium samples in AltAnalyze.  This analysis identified 735 

unique AEEs corresponding to these comparisons. More than half of these 

unique exon-exclusion junctions (356) were associated with annotated AS 

events.  Clustering of linear regression folds for these comparisons produced 

several clusters corresponding to AS events with quiescence, term, and 
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postpartum specific patterns (Figure 7.1).  These patterns match those identified 

in a similar time-course analysis of gene expression in the myometrium 

throughout gestation, corresponding to “quiescence”, “activation” and “involution” 

regulated events (Figure 3.1). 

 

7.2.2 Global protein and microRNA functional predictions of “activation” 

regulated AEEs 

A large set of the clustered AS predictions correspond to the activation phase of 

gestation (regulated selectively at term).  Since evidence exists linking AS to 

transcript and splicing factor regulation with the transition from quiescence to 

term, we focused on AS predictions from this direct comparison for the remainder 

of this analysis.   

436 unique exon-exclusion junctions were regulated when comparing 

myometrium at 18.5 days of gestation to 14.5 days of gestation, with the 

previously established thresholds and algorithms (chapter 6). These results were 

initially not filtered based on external AS or APS annotations. Examination of 

functional predictions from the AltAnalyze program (chapter 6) revealed that a 

large fraction of these AEEs corresponded to predicted changes in protein length 

(84.4%) and a small fraction that result in altered inclusion of predicted 

microRNA binding sites (5.5%). Only 40% of these AEEs, however, linked to 

annotated splicing events (162 AEEs).  
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Figure 7.1. Expression clustering of myometrial AS events.  Linear 

regression fold changes for each myometrium time-point relative to non-

pregnant animals were clustered using the program HOPACH (chapter 3). 

All linear regression folds are displayed for 735 unique exclusion-junctions 

that had evidence of AS and at least a two-fold change in reciprocal 

isoform expression for any of the comparisons.  Three clusters were 

formed by HOPACH (1-3). 
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To determine if there are global differences in protein size among 

alternatively regulated genes, AltAnalyze calculates a mean, median, and 

standard deviation in protein length for all AEEs, comparing the protein isoforms 

that are up- and down-regulated in a given comparison. Applying this analysis to 

all comparisons studied (myometrium and non-myometrium) reveals that 

isoforms up-regulated in term myometrium have a greater tendency to be longer 

than those that are down-regulated. This result was true when term myometrium 

was compared to virgin or 14.5 days of gestation, resulting in a median fold 

change difference of > 4, mean fold change > 2 and a t-test p= 1.1x10-16 in both 

of these term comparisons, when comparing all up- versus down-regulated 

isoform protein lengths (Figure 7.2).  We next checked to see whether this 

pattern held up when only analyzing AEEs linked to AS events for term vs. 

quiescence. Although up-regulated isoforms were still longer on average than 

down-regulated isoforms, with an equivalent p-value (p=7.9x10-11), the fold 

difference was diminished, with a mean fold ~ 1.6 fold and median fold ~ 1.7. 

Thus, the large observed difference in predicted protein lengths may not be due 

to AS. 
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Figure 7.2. Overall differences in protein length between up- and 

down-regulated isoforms.  Inferred proteins from AltAnalyze for the 

reciprocal up- and down-regulated isoforms were stored in separate lists 

within this program to determine a mean, standard deviation, and median 

protein length for all AEEs analyzed.  From these data, relative fold 

changes and t-test p values were derived by comparing the up- and down-

regulated lists. Values are mean ± SEM, where the population is the 

number of unique AEE associated genes. 
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When protein functional elements (e.g., protein domains) that are over-

represented according to AltAnalyze were examined among these AS genes, 4 

elements were highlighted: ERM and RNA recognition regions and zinc binding 

and modified phosphoserine residues, each of which were alternatively regulated 

in at least 3 unique genes with a z score > 1.96 (Table 7.1).  These data suggest 

that a common set of pathways may be impacted by AS for specific protein/RNA 

interactions. 

 

7.2.3 Regulation of cytoskeletal/cell-matrix interactions, contraction, and 

splicing control by AS 

To identify biological processes that are impacted by AS in the myometrium with 

the switch to term gestation, we performed Gene Ontology over-representation 

analysis with the program GO-Elite (chapter 4). Genes predicted to be regulated 

by AS for the term-activation comparison corresponded to a number of pathways, 

including developmental (osteoblast differentiation, synaptogenesis, and 

embryonic morphogenesis), cell interaction (integrin-mediated signaling, actin-

binding, cell-cell junction, and cell matrix adhesion), muscle development and the 

regulation of splicing (Table 7.2).  Interestingly, several of these pathways 

overlap with those identified from gene expression analyses of these same time-

points, suggesting that AS may complement gene expression by regulating 

distinct components of the same pathways by alternative mechanisms. 
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Functional Element 
Z 

Score 

Unique 
Gene 
Count 

Unique 
Denominator 
Gene Count Gene Symbols 

Ez/rad/moesin-
IPR000798 

5.90 3 18 Epb4.1l2, Epb4.1l3, Rdx 

METAL-Zinc 3.89 4 58 Dnpep, Ppp3ca, Ide, Mobk1b 

RRM_1-IPR003954 2.99 3 51 Hnrpc, Raly, Tial1 

MOD_RES-
Phosphoserine 

2.20 29 1613 

Epb4.1l2, Catnb, Cnot2, Snx3, Eprs, Tmpo, 
AA536749, Cbx1, Hnrpc, Atp5a1, Oxr1, Ehf, 
2610024N24Rik, Ddb1, Epb4.1l3, Tpd52l2, 

Pex2, Sorbs1, Mef2d, Ptpn1, Ppfibp1, 
Zfp162, Mlf2, Pde3a, Hnrpa2b1, Rad18, 

Bcl7b, Arhgap17, Atp13a 

 
Table 7.1. Over-represented functional elements associated with 

“activation” AS.  Protein function elements highlighted by AltAnalyze for 

myometrium term versus mid-pregnancy AS genes.  Only regulated 

functional elements with 3 or more unique associated genes and an over-

representation z score > 1.96 are reported. 
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GO Name 

GO 
Type 

Changed/
Measured 

Z 
Score 

Permute 
P Gene Symbols 

osteoblast differentiation P 4/13 7.04 0 Cbfb|Ctnnb1|Gnas|Mef2d 

synaptogenesis P 3/9 6.38 0 Agrn|Cadm1|Nrg1 

integrin binding F 3/10 6.01 0.001 Mfge8|Npnt|Spp1 

cell-cell adherens junction C 4/20 5.44 0.0015 Ctnnb1|Dlg1|Dlg5|Sorbs1 

microvillus C 3/12 5.40 0.0035 Ctnnb1|Dcxr|Rdx 

chondrocyte differentiation P 3/13 5.14 0.0025 Ctnnb1|Fgfr1|Mef2d 

cell-matrix adhesion P 4/26 4.60 0.0015 Ctnnb1|Npnt|Sorbs1|Spp1 

extrinsic to membrane C 5/39 4.54 0.0015 
Epb4.1l2|Epb4.1l3|Gnas|Mfge8| 

Rdx 

regulation of myeloid cell 
differentiation 

P 3/17 4.35 0.005 Ctnnb1|Gnas|Spp1 

apical part of cell C 4/36 3.66 0.0035 Ctnnb1|Inadl|Rdx|Spp1 

spliceosome C 5/56 3.46 0.0045 
Hnrpa2b1|Hnrpc|Raly|Sf1| 

Srrm1 

muscle fiber development P 3/25 3.35 0.013 Agrn|Myocd|Ppp3ca 

regulation of membrane 
potential 

P 3/25 3.35 0.013 Dlg1|Pex2|Ppp3ca 

actin binding F 8/122 3.32 0.004 
AA536749|Cald1|Epb4.1l2| 

Epb4.1l3| Myo1d|Phactr4|Rdx|Scin 

basolateral plasma membrane C 4/42 3.25 0.0095 Cadm1|Ctnnb1|Dlg1|Sorbs1 

embryonic appendage 
morphogenesis 

P 3/27 3.17 0.0215 Ctnnb1|Fgfr1|Gnas 

branching morphogenesis of a 
tube 

P 3/29 3.00 0.022 Ctnnb1|Fgfr1|Npnt 

transcription cofactor activity F 5/68 2.92 0.0165 
Cbfb|Cited2|Ctnnb1|Myocd| 

Nrg1 

translation factor activity, 
nucleic acid binding 

F 4/48 2.91 0.0185 Eif3h|Eif3k|Eif4a2|Tcea1 

 

 

Table 7.2. Pathway analysis of AS with myometrial “activation”.  

Gene Ontology (GO) terms highlighted by analysis with the program GO-

Elite that were predicted to undergo AS in term vs. quiescent myometrium.  

GO terms are ranked according to z score and genes with predicted AS 

are listed under “Gene Symbols”. 

 



 221 

7.2.4 Confirmation of predicted myometrial “activation” AS events 

To verify AS events regulated with term-activation, we used the RT-PCR based 

strategy described for confirmation of ESC differentiation AEEs in chapter 6.  Of 

12 predicted AS events, five genes were considered confirmed by this method 

(Vldlr, Cald1, Pde3a, Hnrpa2b1, and 5730555F13Rik (Modulator of estrogen 

induced transcription)), whereas three produced bands that did not match the 

predicted sizes, two produced only one of the two predicted bands and two 

produced the predicted bands but did not display a clear isoform shift (Figure 7.3 

A).  Thus, more than half (5 out of 9) of the predicted AS events were confirmed 

within this set. 

 Among the confirmed AS events, two new predictions represent novel 

findings with potential implications for uterine activation at term: Cald1 and Vldlr.  

Cald1 or caldesmon, is an actin-binding protein that encodes for isoforms with 

either a smooth muscle (h) or non-muscle (l) expression pattern.  The l isoform is 

shorter with a premature splice site in exon 3 that results in a loss of 234 amino 

acids, corresponding to a spacer sequence of unknown function (Guo et al. 

2005).  Cald1 inhibits the binding of actin to myosin and thus reversibly inhibits 

contraction.  While functional differences between these two isoforms have not 

been clearly elucidated, we observe down-regulation of the smooth-muscle 

isoform in term myometrium. This result is intriguing given that up-regulation of h-

Cald1 in the gestational myometrium has been associated with suppression of 

coordinated contractions (Li et al. 2003). Although the spliced-out Cald1 region is 

not annotated as such in the literature, AltAnalyze predicts removal of the 
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Ensembl annotated tropomyosin domain, which is only present in the h-Cald1 

form (Figure 7.3 B). 

 One of the highest scoring AltAnalyze AEEs from our analysis and most 

robust verified changes was the AS of Vldlr.  Vldlr or very-low-density lipoprotein 

receptor is a liproprotein receptor that binds to and internalizes triacylglycerol-rich 

apo-E containing lipoproteins, such as VLDL (Oka et al. 1994).  AS was 

predicted by AltAnalyze to down-regulate the longer isoform of Vldlr at term, 

associated with a protein that gains a cassette-exon and as a result, 28 amino 

acids, compared to the alternative shorter isoform.  Similar to Cald1, the term 

down-regulated form of Vldlr is the muscle enriched form of the protein (Iijima et 

al. 1998) and was highly enriched during quiescence, but is expressed at similar 

expression levels to the shorter isoform at term.  The spliced-out exon is 

associated with elimination of a UniProt annotated clustered O-linked 

oligosaccharide region, according to AltAnalyze, which has been functionally 

verified from biochemical studies in vitro (Iijima et al. 1998).  Compared to the 

quiescence enriched longer isoform, the short isoform of Vldlr also undergoes 

rapid degradation and proteolytic cleavage in vitro.  Interestingly, the C-terminal 

regulated cassette-exon contained several microRNA binding site predictions by 

the algorithm miRNADA (chapter 6), raising the possibility that AS may decrease 

the likelihood of translational inhibition of this protein at term (Figure 7.3 C).   
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Figure 7.3. Functional analysis of validated “activation” AS.  (A) 

Isoforms with verified AS expression patterns with readily observable and 

subtle (weak) shifts in isoform expression. (B) AS of the Cald1 gene for 

exons oriented 5’ to 3’ (not to scale).  Below this exon-structure are 

depictions of the corresponding proteins derived from AS, where each 

segment corresponds to an exon in the exon-structure. Above the 

translated protein diagrams are AltAnalyze predicted protein functional 

elements as determine by Ensembl and UniProt.  To the right of this graph 

is an RT-PCR image of biological triplicates for quiescence (14.5 days) or 
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term (18.5 days) myometrial products. (C) UCSC genome browser display 

of Vldlr isoforms (UCSC gene predictions), down-regulated AltMouse 

exons, and predicted microRNA binding sites. 

 

7.3 Discussion 

The mechanisms regulating the remodeling of uterus prior to the onset of labor 

still remain largely unknown.  Whole-genome microarray studies profiling gene 

expression changes within the myometrium throughput gestation and postpartum 

have provided improved insights into possible mechanisms that contribute to 

both quiescence and term activation.  One of the primary results from such 

studies has been the coordinate regulation of splicing factors throughout 

gestation (chapter 3).  These results complement other studies that demonstrate 

AS of signaling and transcriptional components with this physiological transition, 

such as Kcnma1 and Crem. 

 In the current study, we find that AS is regulated on a large scale in the 

myometrium throughout gestation and postpartum, impacting over 300 predicted 

proteins with temporal patterns mimicking those found by conventional 

microarray studies.  Focused analysis of variants regulated with the switch from 

mid-gestation to term, highlights many of the same pathways identified from 

these conventional microarray studies, including interactions between 

extracellular matrix and smooth muscle and cell-cell junction signaling. 

Interestingly, genes predicted to undergo AS tended to produce longer protein 

associated variants at term relative to mid-pregnancy.  If valid, such changes 

might impact the expression of such transcripts (if targeted by non-sense 
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mediated decay) or composition in ways that will significantly modify the 

functional capacity of associated signaling pathways and cellular structural 

components. 

 Analysis of a small set of predicted splice variants by RT-PCR indicated 

that 50% or greater of the predicted variants could be readily confirmed by this 

method.  Two of the most interesting results, splicing of Cald1 and Vldlr, were 

uncovered from this analysis, each with potential roles in the regulation of uterine 

contraction. Cald1 acts to suppress coordinate contractions while Vldlr regulates 

the uptake of Vldl triglycerides and thus impacts lipid metabolism. At term, the 

secretion of hormones such as oxytocin and prostaglandins stimulates the uterus 

through activation of down-stream G-protein coupled receptor signaling 

pathways.  Prostaglandins are bioactive lipids produced from arachadonic acid in 

the cell.  Although the role of Vldlr on the regulation of myometrial lipid 

metabolism has not been studied, our analysis shows that two distinct isoforms 

of this gene are highly regulated with the transition to term pregnancy. 

Interestingly, the term down-regulated variant of Vldlr has decreased recycling 

and secretion kinetics and binds to clustered O-linked oligosaccharides as 

compared to the down-regulated isoform (Iijima et al. 1998). Furthermore, we 

found a number of predicted microRNA binding sites in the mid-pregnancy 

enriched form, which may alter the ability of this protein to be regulated by 

microRNAs. 

 While both Cald1 and Vldlr genes participate in pathways important for 

term activation (contractile regulation or lipid metabolism), further study is 
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required to determine whether these splicing changes contribute to the 

physiology of the uterus or are secondary changes due to splicing factor 

regulation. Furthermore, more extensive validation of AS events in these 

myometrial comparisons is required to determine our accuracy of these 

bioinformatics predictions and thus the functional significance of verified 

changes.  However, such studies provide a useful starting point to understand 

the global contribution of AS on protein content in the remodeling uterus. 
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Chapter 8 

Summary and Discussion 

 

 

8.1 Using a systems biology approach to address fundamental biological 

questions 

In this dissertation, I have utilized new genomic technologies as a means to 

assess two discrete biological questions:  (1) identifying the role of global 

coordinated transcriptional effects with muscle transformation; and (2) building 

functional correlations to secondary processing events regulating lineage 

commitment in embryonic stem cells (ESCs).   On the surface, these are very 

broad questions that may seem to have little relevance to each other.  However, 

when the data obtained from these whole genome experiments is integrated with 

existing biological knowledge bases (pathways, protein domains, microRNA 

binding sites, and chromosomal co-localization), we can begin to assess both 

molecular as well as systems level similarities and differences.   

By interrogating multiple time-points, each with physiologically distinct 

profiles in the myometrium as it transitions through gestation, we can gauge 

changes in the regulation of specific pathway components over time.  This 

approach is more informative than assessing a single “snap-shot”, which would 

only include gene expression changes critical to a specific moment (chapter 3). 

Likewise, analysis of secondary regulatory transcript mechanisms, such as 
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alternative splicing (AS), within the same computational framework, allows us to 

consider multiple variables that can contribute to gene expression and ultimately 

protein composition.  

Examination of splicing changes that were either unique to differentiating 

cardiac precursors or shared between distinct developmental programs, led to 

the identification of a host of factors expressed along pathways critical to these 

developmental programs.  Combining these microarray predictions with 

additional datasets, including protein domain-level changes and microRNA 

binding site occurrence, allowed us to gauge novel functional roles for these AS-

regulated genes.  

 To further demonstrate that such predictions could provide new insights 

into developmental processes, we carried out a detailed study of a single factor, 

Tcf3, highlighted by the analysis of mouse ESC differentiation AS microarray 

data.  As a result, we find that distinct splice isoforms can have diverse functional 

roles, with crucial consequences for development.  

 

8.2 Correlating signaling and physiology to genome-wide transcriptional 

and splicing profiles 

The myometrium, as it transitions through gestation to labor and then to 

postpartum, represents a valuable model system to assess changes in the 

composition and signaling of a tissue over time.  In our analysis of myometrial 

transcription throughout gestation, we identified coordinated transcriptional 

events that correspond to each of the major signaling phases during gestation:  
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quiescence, activation, and involution (Figure 8.1).  Gene expression changes 

localized to these different phases correspond to distinct biological pathways, 

each providing novel insights into molecular events that are critical to regulate 

contractile signaling throughout pregnancy as well as transform, maintain, and 

ultimately digest components in and around uterine myocytes. 

During the quiescence phase of gestation, we observe the coordinated up-

regulation of serine proteases (granzymes B-G), hypothesized to mediate 

extracellular matrix (ECM)/cell interactions, focal adhesion/integrin-mediated 

signaling, and cell growth pathways (Figure 8.2 A).  Also observed is the up-

regulation of hormone signaling components (GPCRs, GPCR ligands, 

transcription factors), which participate in contractile relaxation pathways in 

uterine myocytes (e.g., G s or cAMP stimulatory signaling).  These changes are 

accompanied by the up-regulation of regulators of metabolic signaling, such as 

glucocorticoid metabolism and prostaglandin signaling, highlighting both 

previously established (Cyp11a, Hsd11b2) as well as relatively novel 

components (phospholipase A2 inhibitors).   
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Figure 8.1.  Phases of uterine gestation.  An illustration of the phases of 

mouse uterine gestation with intrinsic and extrinsic regulatory factors. 

 



 232 

 

Mfap56.9
Eln3.1
Col11a13.0
Fmod2.4
Fbn12.3
Col5a22.2
Lamc12.2
Col1a22.2

ECM Structural
Constituent

Serine-Type Proteases
Gzmg71.4
Gzmd45.7
Gzmf40.2
Gzme19.8
Gzmc10.7
2210021K23Rik2.9
Ctsg2.2
Prss112.2
Gzmb2.1

Fold at 14.5 days (term) gestation shown

17.3 Spp1
12.4 Igfbp2
5.0 Il1r2
3.8 Gilz
3.3 Tnfaip2
3.2 Figf
3.0 Rras2
2.9 Crip2
2.8 Ctgf

2.6 Morf4l2
2.5 Emp1
2.5 Cav
2.4 Arha
2.3 Slim1
2.3 S100a6
2.1 Igfbp6
2.0 Tgfb2

Regulators of Cell Growth

associated with cardiac hypertrophy

7.8 Krt1-19
4.6 Krt2-7
4.5 Krt2-8
4.5 Krt1-18
3.4 Sftpd

Kinesin Complex

Intermediate 
FilamentsGap junctions

2.8 Ocln

2.8 Gja1

1.9 Cldn3

1.7 Gjb2

1.7 Cldn4

Tight junctions

Cell Junctions

Fold at 18.5 days (term) gestation shown

4.3 C3

2.8 Expi
1.9 Serpina1a
1.8 Serpina1e

2.9 Wfdc2

Serine-Protease 
Inhibitors

2.8 Dsp
1.5 Dsg2

Desmosome 
junctions

1.5 Itgb4
1.4 Lamb3

A

B

C

Spot Desmosome Junctions

Plasma
Membrane

Intracellular Space

Plasma
Membrane

Cytoplasmic plaque
[plakoglobin, desmoplakins]]

Desmoglein and 
Desmocollin 
(transmembrane linker 
proteins)

Keratin Intermediate 
Filaments 

Hemidesmosome Junctions

Anchoring laminin fibrils

Collagen

Basal Lamina

β4α6

Integrins

 

Figure 8.2.  Regulation of distinct remodeling pathways by gene 

transcription during uterine gestation.  Up-regulated genes are shown 

for separate remodeling and cell structural components, corresponding to 

(A) quiescence and (B) term gestation. (C) The interaction of several of 

these term-regulated cell structural components in the context of cell-cell 

junctions and cell-ECM contacts. 
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With initiation of contractile activation at term, we observe distinct changes 

along several of these same pathways that act to specifically counteract 

quiescence-induced expression changes. These include the up-regulation of 

serine-protease inhibitors, contractile activators of the G q calcium stimulating 

pathway, and up-regulation of prostaglandin signaling regulators (Figure 8.2 B). 

Surprisingly, we also observe the up-regulation of several non-myocyte 

cytoskeletal structural and signaling regulators including keratins and 

tight/desmosome junction components, suggesting these interactions may also 

mediate labor along with an increase in gap junctions between cells (Figure 8.2 

C).  Similar pathways were also regulated at the level of AS, when term and mid-

gestation myometrium were analyzed using splicing sensitive microarrays 

(chapter 7).  These data suggest that both gene expression and AS may act in 

concert to regulate distinct components of the same pathways.  

Pathway analyses of genes with an involution-restricted expression 

pattern indicate an overwhelming shift towards pathways of protein degradation 

(proteosome), apoptosis, Wnt signaling, and matrix metalloproteinase activation 

(http://www.genmapp.org/supplemental/MAPPs/pathways.html).  While protein 

degradation and apoptosis are processes clearly associated with uterine 

involution, the specific regulators have not been carefully elucidated by either 

gene-by-gene analyses or through single time-point microarray strategies.  

Interestingly, by using a custom program named GEMFinder (Gene Expression 

Module Finder) we identified coordinate regulation of both postpartum matrix 

metalloproteinases and quiescence serine proteases at the level of both 
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expression and genomic localization (Figure 3.4).  For each of these examples, 

pathway analysis coupled with gene expression clustering and multiple 

visualization strategies was essential for identifying meaningful biological 

interactions. 

 

8.3 Linking whole genome alternative splicing profiles to functional 

predictions 

Not unlike the myometrium throughout gestation, totipotent cells of the blastocyst 

inner cell mass must alter their signaling properties and composition during 

differentiation.  Unlike the myometrium, these cells are non-reversibly committed 

to any one of hundreds of possible cell fates.  While many studies have 

examined the temporal regulation of gene expression during ESC differentiation 

(Hailesellasse Sene et al. 2007), such data is often limited by a lack of 

differentiation time-points, homogenous derived adult cell precursors, and 

ultimately a lack of specific hypotheses to test once gene lists have been 

generated.  While such gene expression datasets can ultimately provide valuable 

information, mining such data can be arduous given the fact that there are often 

hundreds to thousands of changes with no clear way to segregate these changes 

beyond separation by biological category or specific bias of the investigator. 

Thus, methods that exploit additional genomic information, distinct from 

data collected only by the microarray experiment, can often lead to more 

informative results and testable hypotheses.  Examples include searching for the 

co-occurrence of specific transcription binding sites among regulated genes 
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(Grskovic et al. 2007) and integration with epigenetic data (Boyer et al. 2005), 

(Loh et al. 2006) as useful methods to examine and ultimately test specific 

hypotheses. 

AS provides a critical means to increase proteomic diversity, often 

independent of the gene expression changes.  Given that the AS profiles of 

distinct cell lineages are quite different from one another (Yeo et al. 2004), AS 

may largely define functional changes within distinct cell types during 

differentiation and thus should be carefully considered when performing genome-

wide experiments.  To assess the contribution of AS in human and mouse ESCs 

as they differentiate, we interrogated splicing events using newly developed 

software in both mixed (mouse) and lineage restricted (human) analyses, with 

the aim of elucidating functionally relevant isoforms which regulate 

developmental pathways in differentiating cells as well the maintenance of ESCs. 

By using a simple pattern segregation method (ANOVA), we were highly 

successful in delineating both gene expression and AS events specific to cardiac 

precursor differentiation or in common to both human neural and cardiac 

specification.  This computational approach identified AS events that could be 

readily validated (up to 90%).  The splicing events identified showed remarkable 

specificity for either ESCs or cardiac precursors, with often a single isoform 

showing expression in each cell type.  When compared to adult tissue profiles, 

several of these genes showed restricted patterns to those predicted by our 

segregation analysis strategy.  Functional analysis at the level of protein domains 

and microRNA binding sites identified several novel functional correlations 
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between developmentally regulated isoforms predicted to impact protein function 

and/or translational inhibition.  Intriguingly, this data suggests that isoforms 

enriched in ESCs tend to favor pathways that oppose apoptosis and proliferation, 

while isoforms specifically enriched in cardiac precursors act to modify the 

composition and expression of proteins to either blunt cardiac inhibitors (HDAC9) 

or promote contractile signaling (ASPH, SPTBN1).  

 In addition to these findings, we present new software for the integrated 

analysis of AS and transcriptional changes. This includes software for:  (1) 

determining gene expression values from whole genome exon, exon-exon 

junction or conventional array data (ExpressionBuilder); (2) further calculating 

statistics between biological groups and filtering out probe sets based on 

detection calls (ExpressionBuilder), (3) calculating splicing scores and aligning 

results to multiple functional predictions  (AltAnalyze) and (4) visualization of the 

resulting data in the context of known gene structures and splicing events 

(SubgeneViewer). These applications are being made freely available and open-

source to encourage community use and contribution. 

 

8.4 Functional dissection of splice variants for a critical pluripotency and 

differentiation factor, Tcf3, in mouse ESCs 

An independent analysis of mouse ESC differentiation yielded similar pathways 

regulated by AS, as compared to human ESC differentiation. These included 

factors involved in the regulation pluripotency (Tcf3, Map3k7), cell cycle control 

(Smarcb1, Mark3 and Epb4.1), and cardiac physiology (Atp2a2).  In the case of 
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Tcf3, a factor critical for regulating ESC maintenance and differentiation, 

expression of a novel form of this transcript was highly enriched ESCs, with 

insertion of 14AA into a critical co-factor binding domain of the protein (Groucho).  

Given the nature of this splicing event and the fact that most studies of Tcf3 in 

mouse ESCs utilize the non-ESC enriched form, we chose to explore the 

relationships of these two isoforms during pluripotency and with differentiation to 

multiple cell lineages. 

 To achieve this goal, we utilized isoform-specific RNA targeting and 

isoform-specific expression in ESCs devoid of endogenous Tcf3, in order to 

characterize ESCs with expression of one, two, or no isoforms. This analysis 

strategy, while largely novel, was highly effective in elucidating the role of 

individual Tcf3 isoforms, suggesting that the ESC-enriched Tcf3 isoform is a 

potent transcriptional repressor of Nanog and Oct4 in pluripotent ESCs and is not 

required for early cell fate decisions.  Alternatively, the embryoid body (EB) 

enriched Tcf3 isoform (short form) was required for both early and late lineage 

commitment steps as determined by quantitative mRNA analysis in differentiating 

EBs and derived teratomas.  This data shows that AS provides a critical switch, 

which is likely required for early developmental stem cell differentiation.  

 

8.5 Conservation of AS during ESC differentiation  

Although distinct microarray technologies were used to assess AS in human and 

mouse ESCs, several conserved AS events were verified in our analyses (Figure 

8.3).  Both mouse and human ESCs share a number of properties, including 
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expression of the same core transcription factors (Oct4, Sox2 and Nanog), 

regulation by Wnt signaling factors and defined factors necessary for 

reprogramming of adult somatic cells (chapter 6).  However, there are also clear 

differences in the pluripotency pathways in these cells, given that neither the 

Stat3 nor BMP signaling pathway contribute to pluripotency in hESCs, but do so 

in mouse (Vallier et al. 2005).  In our analysis, we verified human and mouse AS 

events that are predicted to be either common to differentiation (MADD, MARK3, 

KIF13), specific for cardiac spheroid differentiation (relative to neural precursor 

differentiation) (ATP2A2, DNML1) or that have un-examined precursor 

differentiation patterns (Smarcb1).  Thus, more detailed exploration of these AS 

events with ESC differentiation or cardiac specification may yield conserved 

mechanisms, important for ESC differentiation. 

 



 239 

 

211:315236:298 215:253

Atp2a2 Dnm1lKif13aMadd
miR

const.

287:358

MARK3 DNM1L
miR

excl

ATP2A2

223:327

MADD

242:307

KIF13A

Mark3

287:358

228:254

SMARCB1

Smarcb1

228:254

256:294

A

B

Common Differentiation Cardiac

 

 

Figure 8.3.  Conservation of AS in human and mouse ESCs.  (A) 

Mouse genes examined for AS based common microarray predictions 

(Mark3, Atp2a2, Dnm1l) or human confirmation (Madd, Kif3a).  Genes in 

the left hand panel are predicted to have a common cardiac/neural 

differentiation pattern in hESCs, whereas genes in the right panel had a 

cardiac enriched pattern. (B) Corresponding AS events found from hESC 

exon-array analyses (MADD, MARK3, KIF13A, ATP2A2, DNM1L) or 

identified based on mouse exon-exon junction array studies (SMARCB1 – 

not probed on exon-array). Human validation was in Rex+ hESCs and 

derived CSs (chapter 5) or H9 ESCs and derived EBs (SMARCB1). 
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8.6 Common pathways regulating muscle remodeling and lineage 

commitment 

When AS and gene expression profiles are compared for mouse ESC 

differentiation and myometrial gestational remodeling, we find very little overlap 

in individual genes regulated (Figure 6.1 and unpublished comparisons).  Similar 

results are also obtained when comparing myometrial expression profiles to 

human cardiac and neural differentiation datasets (data not shown), with only a 

small percentage of AS events predicted between human and mouse ESC 

differentiation datasets (Figure 8.3).  While the same genes and splice variants 

do not appear to be largely regulated in common, ORA analysis indicates that for 

multiple modes of gene regulation (transcription and splicing), a core set of 

biological processes is regulated with these developmental and remodeling 

paradigms.  Most significant are tight junction, cytoskeletal and ECM remodeling 

components along with cell cycle progression and cell growth and contractile 

signaling pathways.  In the myometrium these pathways are regulated at multiple 

levels (transcription and AS, chapter 6-7), by distinct regulators at different 

phases of gestation.  With AS in hESCs, these same pathways were over-

represented among both verified and AS regulated genes.  An interesting 

example is integrin-mediated signaling which was over-represented in both the 

myometrium at term and among alternative spliced genes with ESC 

differentiation (mouse and human) (Figure 8.4).  Although distinct components 

were regulated by transcription or splicing, both appear to regulate components 
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that participate in interactions with the ECM and cell-cell contact formation (e.g., 

tight junctions).  Given that both systems are promoting contractile remodeling, 

these changes may represent distinct modes of achieving this goal.  Interestingly, 

integrin-mediated/focal-adhesion signaling has been implicated as a critical 

process in both the stretch induced regulation of the myometrium at term to 

promote contraction and in the specification of ESCs to cardiomyocytes (Hakuno 

et al. 2005; Li et al. 2007).  Thus, a systems level approach to assess such 

changes is able to highlight mechanistic similarities that likely require distinct yet 

complimentary interactions. 
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Figure 8.4.  Regulation of common signaling pathways in distinct 

model systems.  Integrin-mediated signaling (Wikipathways.org) is 

shown with data for (A) human genes undergoing AS with differentiation to 

distinct lineages or (B) mouse genes up or down-regulated at term 

gestation in the myometrium.  In the human pathway, probe sets with 

evidence of AS having either a common cardiac/neural (blue), cardiac 

enriched (red) or exons with both patterns (gold) are displayed.  In the 

myometrium with gestation, genes with a red box indicate up-regulation, 

whereas those with a blue box indicate down-regulation. 



 243 

 

 

 

Software Packages 
Deveoped  

Development 
Team Distribution User-base 

GenMAPP GenMAPP open-source >10,000 

MAPPFinder GenMAPP open-source >5,000 

SubGeneViewer GenMAPP free TBA 

GO-Elite NS free >50 

AltAnalyze NS free TBA 

ExpressionBuilder NS free TBA 

LinkEST NS in-house NA 

GEMFinder NS in-house NA 

Onco-Split NS free <10  
 

Table 8.1.  Contributed software development projects.  Software 

packages developed as apart of this doctoral thesis.  Programs include 

GenMAPP and MAPPFinder, originally developed by NS with other 

members of the GenMAPP team, with a current user base of over 10,000.  

Additional packages include the Gene Ontology and pathway ORA 

application GO-Elite, AltAnalyze, ExpressionBuilder, and OncoSplit, all of 

which can be downloaded at 

(http://conklinwolf.ucsf.edu/informatics/nsalomonis.html).  Packages with a 

user-base indication of TBA were in the process of being posted with the 

submission of this dissertation.  In-house packages were not publicly 

distributed at the time of this report. 
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8.7 Why the need for open source software for whole genome analyses 

A major component and focus of this thesis has been the development of freely 

available open-source bioinformatics tools for the analysis of complex, high 

throughput genomic datasets. These include the tools GenMAPP and 

MAPPFinder (chapter 2), GO-Elite (chapter 4), AltAnalyze, ExpressionBuilder, 

LinkEST and SubGeneViewer (chapters 5-7), GEMFinder (chapter 3), and 

OncoSplit (unpublished collaboration with the Barry Gusterson laboratory in 

Glasgow Scotland) (Table 8.1). 

In each of these cases, myself and other developers have focused on 

creating novel tools that are free and easy to use by the research community.  

While it seems fairly obvious to make such tools available to the public, it is not 

uncommon for researchers to keep such applications entirely in house, requiring 

interested parties to directly collaborate with that laboratory. As a result, the 

research community ends up spending more time, money, and energy to re-

develop tools that have already been described.  This was the case for several 

AS methods described herein, including the algorithms ASPIRE (Ule et al. 2005), 

LinRegress (Sugnet et al. 2006) and the splicing index method (Gardina et al. 

2006) all re-implemented in AltAnalyze.  In addition to being useful for the 

community, openly providing this software promotes scientific evaluation of the 

methods, independent of the published report.  Open-source software further 

allows for improvement or update of the original source code and associated 

databases by the user community directly.  Thus, development and maintenance 
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of open-source software projects are crucial to increase the longevity of these 

resources and encourage community development from within. 

 

8.8 Next steps – Integrative approaches for software development and 

genomic technologies 

A central theme of the work presented here has been the integration of 

complementary genomic resources, datasets, and new technologies to obtain 

novel insights into discrete biological transitions.  To achieve these goals I have 

had to develop new applications and computational methods as well as integrate 

data from multiple resources.  Given that the complexity, amount of data 

collected, and the diversity in biological assays will only increase over time, the 

necessity for integrative approaches is becoming even more important. By using 

multiple time-points or conditions in our study design, we have been able to 

address specific questions that would otherwise be obscured in a sea of data.  

By combining our data with external bioinformatics resources (mRNA/protein 

sequence, protein domain, microRNA binding site, and genomic location), we 

have been successful in identifying new biological mechanisms that regulate 

gene activity and resulting protein function.  At the level of experimental 

hypothesis testing, we have shown that informatics predictions derived from this 

strategy can represent critical in vivo developmental regulatory mechanisms that 

can be reasonably validated in living cells.  In the coming years, such integrative 

bioinformatics strategies will be critical in defining new biology from complex 

cellular processes. 
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Section 1 - Introduction 

1.1 Program Description 

AltAnalyze is a freely available, cross-platform application that allows you to take 

relatively raw microarray data and assess alternative splicing or alternative 

promoter usage and then view how these changes may affect protein sequence, 

domain composition, and microRNA targeting.  This software requires no 

advanced knowledge of bioinformatics programs or scripting.  All you need are 

your microarray files along with some simple descriptions of the conditions that 

you’re analyzing. 

 AltAnalyze is composed of a set of programs designed to (A) organize, 

filter, and summarize transcript tiling data; (B) calculate scores for alternative 

splicing (AS), alternative promoter selection (APS) or transcript elongation; (C) 

annotate regulated alternative exon events; and (D) assess downstream 

predicted functional consequences at the level of protein functional regions and 

microRNA (miRNA) binding sites. The resulting data will be a series of text files 

(results and over-representation analyses) that you can directly open in a 

computer spreadsheet program for analysis and filtering. 

 This software is currently compatible with the Affymetrix exon 1.0 ST array 

and the custom Affymetrix AltMouse A array, however, it may be adapted to 

support other platforms on a per example basis (contact author) or by other 

developers.  
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1.2 Implementation 

AltAnalyze is composed of a set of distinct modules written in the programming 

language Python.  Python is a cross-platform compatible language, therefore, 

AltAnalyze can be run on any operating system that has Python installed or on 

Windows without Python.  Python is bundled with most current Mac and Linux 

operating systems.  For the Windows operating system, a stand-alone 

executable file is available which does not require installation of any additional 

software, including Python.  The AltAnalyze interface is an interactive graphic 

user interface and command prompt with easy to use options. 

1.3 Requirements 

The basic installation of AltAnalyze requires a minimum of 1GB of hard-drive 

space for all required databases and components.  This includes support for all 

species and currently supported arrays.  Future versions will include an option for 

automated download of databases specific to the user specified array analyses.  

A minimum of 1GB of RAM and Intel Pentium III processor speed are further 

recommended. At least an additional 1GB of free hard-drive space is 

recommended for building the required output files. 

1.4 Before Using AltAnalyze 

This software requires that the user obtain normalized expression values prior to 

use, as opposed to raw microarray image files (CEL files).  Example methods for 

obtaining such data include: 

1) ExpressionConsole and RMA analysis (Windows only) 
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2) Affymetrix Power Tools (APT) and RMA analysis 

3) Bioconductor and RMA analysis  

 We recommend using a method that can produce both the expression file 

(containing probe set and expression values for each array in your study) and a 

detection above background (DABG) p-value file (containing corresponding 

detection p-values for each probe set).  ExpressionConsole, is a free application 

from Affymetrix that outputs both of these file types when normalizing array files 

(http://www.affymetrix.com/products/software/specific/expression_console_softw

are.affx).  This application has an easy to use graphic user interface (GUI) and 

excellent documentation.  For non-Windows operating systems, the program 

APT is also available to perform RMA and DABG using a command line 

interface. For APT download and documentation, see: 

http://www.affymetrix.com/support/developer/powertools/index.affx.  

 In additional to expression analysis, users can optionally install the 

programs APT and R (http://www.cran.org).  APT is necessary if the user wished 

to include MiDAS statistics when performing an exon-array analysis.  APT for 

different operating systems and configurations can be found at: 

http://www.affymetrix.com/support/developer/powertools/changelog/PLATFORM

S.html.  R is optional when performing an exon-junction array analysis using the 

algorithm Linear Regression with the rlm method (not needed for basic Linear 

Regression). Further directions are provided to interface MiDAS and R with 

AltAnalyze under the respective algorithm descriptions. 
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1.5 Help with AltAnalyze 

Additional documentation, help, and user questions are available at the 

AltAnalyze website or at the AltAnalyze Google Groups user forum: 

http://groups.google.com/group/alt_predictions 
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Section 2 – Running AltAnalyze 

2.1 Preparing your data for the first time 

After downloading and extracting AltAnalyze to your computer, prepare the 

following four tab-delimited text files: 

1) Experiment file (required)  - Expression dataset with all probe sets and 

expression values analyzed (prefix = “exp.”) 

2) Statistics file - DABG p-value dataset with all probe sets and p-values 

analyzed (prefix = “stats.”) 

3) Groups file (required)  - Table of array sample names (in files 1 and 2), 

arbitrary ordered group numbers (1, 2, 3 and so on), and group names 

(e.g., control = 1, stimulated = 2, cancer = 3) (prefix = “groups.”) 

4) Comparisons file (required) - Table of group comparisons (2, 1 and 3,1) 

(prefix = “comps.”) 

 

Expression and Statistics files 

The first two files (experiment and statistics) are automatically produced when 

analyzing exon-array data from Affymetrix’s ExpressionConsole.  If using this 

software, it is recommended that you analyze all probe sets (full) as opposed to a 

subset of probe sets (e.g., core).  These two files will need to be renamed 

“exp.experiment.txt” and “stats.experiment.txt”, where “experiment” is the name 

of your dataset (e.g., brain-tumor_comparisons).  These files can include any 

number of different experimental conditions and samples.  Although the 

statistics file is not required, it is highly recommended in order for the 

program to help eliminate false positive predictions. 
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Group file 

The third file (groups) assigns each sample or column in the first two files to a 

biological group. This file is organized as such:   

array_file_name Group_number group_name 

wt1.CEL 1 normal 

wt2.CEL 1 normal 

cancer1.CEL 2 cancer 

cancer2.CEL 2 cancer 

drug1.CEL 3 drug 

drug2.CEL 3 drug 

 

 The group number should start with 1 and follow sequentially. The group 

name should be something meaningful for you (no spaces in the name). This file 

should be named “groups.experiment.txt”. 

 

Comparison file 

Finally, the last is the comparison file that tells AltAnalyze which pair-wise 

comparisons to compute on.  This simple file contains two columns, your 

numerator group number and your denominator group number. For example, if 

you only have three groups and two comparisons then the file would have two 

rows for each comparison: 

2  1  

3 2  

 

 Here, 2 corresponds to your experimental group (e.g., cancer) ,1 your 

control group (e.g., normal), 3 is another experimental group (e.g., drug).  You 

can have as many comparisons as you like, as long as the group numbers 
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appropriately correspond to those in the Group file.  This file should be named 

“comps.experiment.txt”. 

 

Where to save these files 

These files should all be saved to the directory named “ExpressionInput” under 

the appropriate array type directory (e.g., exon). 

2.2 Running Analyses 

 

PC Directions: 

Once the input files have been saved to the appropriate directory, open the 

executable file named “AltAnalyze.exe” in the AltAnalyze program directory.  This 

will open a set of user interface windows where you will be presented with a 

series of program options (see next set of direction). 

 

Mac or Linux Directions: 

Once the input files have been saved to the appropriate directory, open a new 

terminal window.  On a Mac, the program “Terminal” is accessible from 

“Applications/Utilities”.  To run the program, change directories until you are in 

AltAnalyze folder (e.g., cd Desktop/AltAnalyze) and then run AltAnalyze with the 

command “python AltAnalyze.py”.  This will open the AltAnalyze user interface 

where you will be presented with a series of program options (see next set of 

direction).  If any GUI support files are missing on that computer, command line 

options will available presented instead through the terminal. 
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Program Options: 

1) Select species and array-type - After starting AltAnalyze, the user will be 

prompted to select the species analyzing.  Compatible species are read 

from the file “Config/species.txt”. After selecting a species, select the 

microarray platform used (e.g., Affymetrix 1.0 ST exon array).  Only arrays 

listed as compatible for those species in the file “Config/arrays.txt” are 

shown.  Additional species and array types can be added to these 

configuration files if the appropriate support files are included. 

  

 

Figure 1.1. AltAnalyze Main Dataset Parameters Menu. A) Options for 

selecting species and restricting analyses based on compatible arrays. B) 

Options for data analysis and possible arrays for the selected species. 

 

2) Select input file type – If the user is analyzing their data for the first time in 

AltAnalyze select the option “raw input”.  This option will create a gene-

expression summary file and filtered probe set expression files.  If 

AltAnalyze has previously built these files, select the “pre-processed data”, 

tab.  Selecting this option will substantially reduce run-time.  Select 

“Update DBs” to build or update a new set of databases by automatically 

downloading files from the AltAnalyze website. 

3) Select expression analysis parameters - Next, the user will be prompted to 

use a set of default parameters or customize these options. The first 

window will provide options for gene expression summarization. In 

addition to exon and exon-junction expression inputs, conventional, 3’ 
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arrays can be analyzed with these options. Selecting “expression” for the 

option “Analyze alternative exon/or expression data” will only perform 

these expression analyses and will skip any alternative exon analyses (if 

compatible with the array type). Defaults are stored as files in the “Config” 

folder with the prefix “default-”. All displayed options, including those found 

in the default files, are read from the file “Config/options.txt”. The user can 

modify these defaults by editing these files. 

 

 

 

Figure 1.2. Expression Analysis Parameters. Statistical thresholds and 

analysis options for performing gene expression summarization and probe 

set filtering prior to alternative exon analysis. 

 

 

4) Select alternative exon analysis parameters  – If using an exon-level 

microarray (e.g., Human Affymetrix 1.0 ST exon array), the user will be 

presented with specific options for that microarray (see two possible 

interfaces below). These options include alternative exon analysis 

methods, statistical thresholds, and options for additional analyses (e.g, 

MiDAS).  If the option “Export transit results for MiDAS” is selected, 

AltAnalyze will export input files for the program APT (“AltResults/MiDAS”) 

along with commands to build the MiDAS output files.  When APT analysis 

is complete (outside of AltAnalyze), the user can select “continue” in 

AltAnalyze to incorporate these statistics into the analysis. 
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Figure 1.3. Alternative Exon Analysis Parameters.  Different options for 

the selected microarray, (A) for 1.0 ST exon array and (B) for AltMouseA, 

when analyzing alternative exon-level data. Options include alternative 

analysis methods (e.g., splicing-index, ASPIRE, linearregress) and filtering 

probe sets based on annotation type or other optional statistics (e.g., 

MiDAS or permutation analysis). Default options are selected. 

 

 After selecting “continue” in this last window, the GUI will close and 

AltAnalyze will begin performing the selected analyses.  While the AltAnalyze 

program is running, several intermediate results files will be created.  The 
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terminal window (see below) will indicate the progress of each analysis as it is 

running. When finished, AltAnalyze will prompt the user that the analysis is 

finished. A report is exported with each run containing a summary of overall 

statistics and analysis progress to 

“AltResults/AlternativeOutput/summary_report.txt”. 

 

 

 

Figure 1.4. AltAnalyze Terminal Status. Initial parameters set by the user after 

choosing to continue the analysis. This status window (shown for Windows 

machines) displays the progress of the analyses for the duration of AltAnalyze 

processes. 

 

2.3 Overview of Analysis Results 

AltAnalyze will output two classes of files: 

1) Gene expression (GE) summary 

2) Exon level summary 
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Gene expression summary data 

The GE summary is a single file that contains all computed constitutive gene 

expression values from your dataset.  The values are derived from probe sets 

that align to regions of a gene that are common to all transcripts (constitutive) 

and thus are informative for transcription (unless all probe sets are selected – 

see “Select expression analysis parameters”, above).  Along with the raw gene 

expression values, statistics for each indicated comparison (mean expression, 

folds, t-test p-values) will be included along with gene annotations for that array.  

This file is analogous to the results file you would have with a typical, non-exon 

microarray experiment and is saved to the folder “ExpressionOutput”. 

 

Exon-level summary data 

These results are produced from all probe sets that may suggest alternative 

splicing, alterative promoter regulation, or any other variation relative to the 

constitutive gene expression for that gene (derived from comparisons file).  Each 

set of results correspond to a single pair-wise comparison (e.g., cancer vs. 

normal) and will be named with the group names you assigned (groups file). Four 

sets of results files are produced in the end: 

1) Probe-level - Probe set/exon-level statistics, AS/APS annotations, and 

functional feature predictions (protein, miRNA binding site). 

2) Gene-level – Summary of probe-level data file. 

3) Domain-level – Over-representation analysis of gene-level domain/residue 

modifications due alternative regulation. 
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4) miRNA binding sites - Over-representation analysis of gene-level. 

predicted miRNA binding sites present in alternatively regulation exons.  

5) Summary statistics file – Number of genes alternatively regulated 

compared to differentially expressed and summary protein association 

information (e.g., mean regulated protein length). 

 

 Each file is a tab delimited text file that can be opened, sorted and filtered 

in a spreadsheet program.  These files are saved to the folder 

“AltResults/AlternativeOutput”, all with the same prefix (pair-wise group 

comparisons).  AltAnalyze will analyze all pair-wise comparisons in succession 

and combine the probe-level and gene-level results into two additional separate 

files (named based on the splicing algorithm chosen).  

Probe- and Gene-Level Result Files 

The probe-level file contains alternative exon data for either one probe set (exon-

array) or reciprocal probe sets (junction array). This includes: 

• Gene and probe set annotations (e.g., description, symbol, probe set ID, 

probe set exon ID, transcript clusters, associated Ensembl/UCSC exons, 

ordered exon-region IDs). 

• Raw expression data for the regulated probe set. 

• Constitutive gene expression changes and baseline expression. 

• Statistical results (e.g., splicing-index score and p-value, MiDAS p-values, 

probe set p-value). 

• Alternative exon annotations (e.g., splicing-events, alternative promoters, 

alternative annotation confidence score). 

• Protein- and miRNA-level associations (e.g., associated IDs, sequence, 

pattern of regulation, regulated domains/miRNA binding sites). 
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The gene-level file contains a summary of the data at the gene level, with each 

row representing a unique gene.  This file also includes: 

• Gene-ontology and pathway information for each gene extracted from any 

Affymetrix CSV annotation files for that species present in the directory 

“AltDatabase/Affymetrix/*species*”. 

 

Protein Feature and miRNA Binding Site Result Files 

Over-representation analyses, (files 3 and 4) have the same structure: 

• Column A is the name of the protein feature or domain. 

• Column B is the over-representation z-score (see Section 3 - Algorithms) 

for all unique genes aligning to the feature that are alternative regulated by 

the analysis. 

• Column C is the z-score for just those unique genes aligning to the 

feature, where that feature is considered up-regulated or included in the 

numerator of the biological comparison (e.g., cancer). 

• Column D is the z-score for just those unique genes aligning to the 

feature, where that feature is considered down-regulated or excluded in 

the denominator of the biological comparison (e.g., normal). 

• Columns E-G have the number of unique genes regulated corresponding 

to columns B-D. 

• Columns H-J have the gene symbols corresponding to the unique genes 

listed in columns E-G. 

• Column K has the total number of unique genes measured on the array 

aligning to the feature. 
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Section 3 – Algorithms 

Multiple algorithms are available in AltAnalyze to identify individual probe sets 

(for exon arrays (EA)) or reciprocal probe sets (exon-exon junction array (JA)) 

that are differentially regulated relative to constitutive gene expression changes. 

These include the splicing index method (EA and JA), MiDAS (EA and JA), 

ASPIRE (JA) and Linear Regression (JA).  

 

3.1 Default Methods 

Because some optional algorithms require installation of outside tools (APT and 

R), these algorithms are not selected as AltAnalyze default options.  As 

mentioned in early sections, the default options are listed in the folder “Config” as 

“defaults-expr.txt”, “defaults-alt_exon.txt”, and “defaults-funct.txt”.  

defaults-expr.txt Default expression analysis options (Figure 1.2) 

defaults-alt_exon.txt Default alternative exon analysis options (Figure 1.3) 

defaults-funct.txt Default functional analysis options (Figure 1.3) 

 

 These options correspond to those found in the configuration file 

“options.txt”. The user is welcome to modify the defaults and theoretically even 

the options in the “options.txt” file, however, care is required to ensure that these 

options are supported the by the program.  Since AltAnalyze is an open-source 

program, it is feasible for the user to add new species and array support or to do 

so with the AltAnalyze support team. A basic modification is the addition of new 

species to the “species.txt” file and conventional 3’ Affymetrix microarrays for 

expression analyses. These only require the addition of an Affymetrix CSV 
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annotation file to the appropriate species “Affymetrix” directory, in the folder 

“AltDatabase”. 

 

The default algorithms for the currently supported arrays are as follows: 

Exon splicing-index (score > 2 and t-test p<0.05), no MiDAS 

AltMouse ASPIRE (score > 0.2 and permute p<0.05) 

3’ array NA 

 

3.2 Algorithm Descriptions 

Splicing Index Method 

This algorithm is described in detail in the following publications: 

(Srinivasan et al. 2005) (Gardina et al. 2006).  In brief, the expression value of 

each probe set for each array is converted to log space (if necessary).  For each 

probe sets examined, its expression (log2) is subtracted from mean expression 

of all constitutive aligning probe sets for that array and to calculate a constitutive 

corrected log expression ratio (subtract instead of divide when these values are 

in log space).  This ratio is calculated for each microarray sample, using only 

data from that sample.  To derive the splicing-index value, the group mean ratio 

of the control is subtracted from the experimental.  This value is the change in 

exon-inclusion (delta I or I).  A t-test p-value is calculated (two tailed, assuming 

unequal variance) by comparing these ratios for all samples between the two 

experimental groups.  A negative I score of -1 indicates a two-fold increase in 

the adjusted expression of a probe set in the experimental versus control group. 
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MiDAS 

The MiDAS statistic is described in detail in the white paper: 

www.affymetrix.com/support/technical/whitepapers/exon_alt_transcript_analysis_

whitepaper.pdf.  This analysis method is available from the computer program 

APT, mentioned previously.  APT uses a series of text files to examine the 

expression values of each probe set compared to the calculated constitutive 

expression for that gene, based on multiple probe sets.   Since AltAnalyze 

derives constitutive probe sets different than other methods (which often just look 

at all probe sets for that gene), AltAnalyze creates it’s own unique gene 

identifiers (different than the Affymetrix transcript clusters) that correspond to 

each Ensembl gene ID. These relationships are stored in the following files along 

with the probe set expression values: 

 

meta-Hs_Exon_cancer_vs_normal.txt Relates probe set to gene 

gene-Hs_Exon_cancer_vs_normal.txt Gene expression values (non-log) 

exon-Hs_Exon_cancer_vs_normal.txt Probe set expression values (non-log) 

Celfiles-Hs_Exon_cancer_vs_normal.txt Relates sample to group 

commands-Hs_Exon_cancer_vs_normal.txt Contains user commands for APT 

probeset-conversion -Hs_Exon_cancer_vs_normal.txt Relates arbitrary gene IDs back to Ensembl 

 

 When the user selects the option “Export transit results for MiDAS”, 

AltAnalyze first exports data for all probe sets (not just indicated by “Select probe 

sets to include” – Figure 1.3) to these files for all pair-wise comparisons, in 

succession.  Once exported, AltAnalyze will try to open APT (command prompt) 

and prompts the user to follow the necessary steps to export MiDAS p-values. 

These include, opening the file “commands-dataset.txt” in the “AltResults/MIDAS” 
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for each pair-wise comparison and pasting the two lines of generated code into 

APT.  These contain instructions to change the directory to the one containing 

these files, “AltResults/MIDAS”, and analyzing these files using the MiDAS 

algorithm. MiDAS will create a folder with the pair-wise comparison dataset name 

and a file with MiDAS p-values that will be automatically read by AltAnalyze and 

used for statistical filtering.  To continue AltAnalyze once building these files 

(takes approximately 30 seconds per dataset), simply hit return in AltAnalyze to 

run the full analysis on you’re pair-wise comparisons using the user specified 

parameters. The MiDAS statistics will be clearly labeled in the results file for each 

probe set.  Note: this statistic will be used to filter splicing-index results based on 

the user defined “minimum constitutive corrected probe set p-value” (Figure 1.3). 

ASPIRE 

For exon-exon junction microarray data (e.g., AltMouseA), the algorithm “analysis 

of splicing by isoform reciprocity” or ASPIRE was adapted from the original report 

(Ule et al. 2005) for inclusion into AltAnalyze.  This algorithm uses the expression 

of probe sets aligning to two competitive exon-exon junctions, or one exon-exon 

junction and an exon along with constitutive expression values calculated as 

described with the splicing-index method.  These probe set relationships were 

derived using the Affymetrix exon or exon-exon junction names (e.g., E1-E3 and 

E2-E3 or E1-E3 and E2), obtained by the Affymetrix AltMerge transcript 

assembly program (Wheeler 2002). For exon-exon junctions and exons aligning 

to the same gene, recipricol probe set pairs were extracted using the 

ExonAnnotate_module.py program in AltAnalyze using the 
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identifyPutativeSpliceEvents() function. Such splicing events are further classified 

as mutually-exclusive (mx-mx) or exon-inclusion/exon-exclusion (ei-ex). Mutually-

exclusive splicing events represent an exchange of one exon for another (e.g., 

E2-E4 and E1-E3). Similar to the splicing-index method, for each reciprocal 

probe set, a ratio was calculated for expression of the probeset (non-log) divided 

by the mean of all constitutive aligning probe sets (non-log), for the baseline and 

experimental groups.  The ASPIRE I was then calculated for the inclusion 

(ratio1) and exclusion (ratio2) probe sets, as such: 

 

                 Rin = baseline_ratio1/experimental_ratio1 

                 Rex = baseline_ratio2/experimental_ratio2 

                 I1=baseline_ratio1/(baseline_ratio1+baseline_ratio2) 

                 I2=experimental_ratio1/(experimental_ratio1+experimental_ratio2) 

 

                 in1= ((Rex-1.0)*Rin)/(Rex-Rin) 

                 in2= (Rex-1.0)/(Rex-Rin) 

                 I = ((in2-in1)+(I2-I1))/2.0 

 

 If (Rin>1 and Rex<1) or (Rin<1 and Rex>1) and the absolute I score is 

greater than the user supplied threshold (default is 0.2), then the I is retained for 

the next step in the analysis.  If designated by the user, this next step will be a 

permutation analysis of the raw input data to determine the likelihood of each 

ASPIRE score occurring by chance alone. This permutation p-value is calculated 

by first storing all possible combinations of the two group comparisons. For 

example, if there are 4 samples (A-D) corresponding to the control group and 5 

(E-H) samples in the experimental group, then all possible combinations of 4 and 
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5 samples would be stored (e.g, [B, C, G, H] and [A, D, E, F]).  For each 

permutation set, ASPIRE scores were re-calculated and stored for all of these 

combinations. The permutation p-value is the number of times that the absolute 

value of a permutation ASPIRE score is greater than or equal to the absolute 

value of the original ASPIRE score (count) divided by the number of possible 

permutations that produced a valid ASPIRE score ((Rin>1 and Rex<1) or (Rin<1 

and Rex>1)).  If this p-value is less than user defined threshold, or count<2 (since 

some datasets have a small number of samples and thus little power for this 

analysis), the reciprocal probe sets are reported in the results file. 

Linear Regression  

When working with the same type of reciprocal probe set data as ASPIRE, a 

linear regression based approach can be used to produce similar results. This 

method is based on a previously described approach (Sugnet et al. 2006). This 

algorithm uses the same input as ASPIRE (junction comparisons, constitutive 

adjusted expression ratios).  To derive the slope for each of the two biological 

conditions (control and experimental) the constitutive corrected expression of all 

samples for both reciprocal junctions is plotted against each other to calculate a 

slope for all samples belonging to the same biological group (e.g., control) using 

the least squared method. In each case, the slope was forced through the origin 

of the graph (model = y ~ x – 1 as opposed to y ~ x).  The final linear regression 

score is the log2 ratio of the slope of the experimental group divided by the slope 

of the baseline group.  The same permutation analysis used for ASPIRE is also 

available for this algorithm. 
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Note: For previous published analyses (Sugnet et al. 2006 and Salomonis et al. in 

preparation), linear regression was implemented using the algorithm rlm, which is apart 

of the R mass package from bioconductor. The Python R interpreter rpy, was used to 

run these analyses (which requires installation of R). To use this option, select 

“linearregres-rlm” under “select the alternative exon algorithm” (Figure 1.3). 

 

Over-Representation Statistics 

A z-score is calculated to assess over-representation of specific protein features 

and miRNA binding sites found to overlap with probe sets that are alternatively 

regulated according to the AltAnalyze user analysis. This z-score is calculated by 

subtracting the expected number of genes with a specific protein feature or 

miRNA binding site meeting the criterion (e.g., alternatively regulated with the 

user supplied thresholds) from the observed number of genes, and dividing by 

the standard deviation of the observed number of genes (Doniger et al. 2003). 

This z-score is a normal approximation to the hypergeometric distribution. This 

equation is expressed as: 

               

 

n = All genes associated with a given element 

r = Alternatively regulated genes associated with a given element 

N = All genes examined 

R = All alternatively regulated genes 
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Section 4 – Using External Programs with AltAnalyze 

 

While AltAnalyze is a largely a stand-alone program, some statistical analyses 

can be included that depend on external applications. These require prior 

installation of these tools using operating system specific binaries or installers 

and properly interfacing them with AltAnalyze. 

 

4.1 Using APT to Perform MiDAS 

Affymetrix Power Tools can be used to normalize user expression data and 

perform statistical analyses for alternative exon analysis. Here we discuss how to 

perform the MiDAS statistical analysis and incorporate these results into 

AltAnalyze.  

Installing APT 

Go to the APT download site to find the proper installation and instructions for 

your operating system at: 

http://www.affymetrix.com/support/developer/powertools/changelog/PLATFORM

S.html.  An example default directory to install APT on Windows is “C:/Program 

Files/Affymetrix Power Tools/”. Once installed you can test to see that the APT 

installation worked by opening the APT Command Prompt, available on Windows 

from “Start>All Programs>Affymetrix Power Tools>APT Command Prompt”. This 

will open a command prompt window that you can enter APT designated 
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commands (see APT Help).  Once verified, open the “Affymetrix Power Tools” 

folder on your hard-drive and find the versioned folder (e.g., “apt-1.4.0”), then the 

folder “bin” and find the file named “apt-vars.bat”.  Now, open the file “Config/ 

default-files.csv” and see if the location listed next to the entry “APT”, under the 

column header “Location” is the same as the location of the “apt-vars.bat” file on 

your hard-drive. If not, change it to the new location.  This will allow AltAnalyze to 

automatically open the APT command prompt when finished generating the 

MiDAS output files. 

 

Running APT 

In the initial GUI window “Alternative Exon Analysis Parameters”, if you select the 

option “Export transit results for MiDAS”, AltAnalyze will adjust its initial 

parameters such that it exports a series of input files for MiDAS analysis (see 

Section 3 – Algorithms). One of these files, has the prefix “commands-“ and has 

the command line for running MiDAS on these exported files to.  These p-values 

will be stored in a new folder in the “AltResults/MIDAS” directory, with the name 

of the selected dataset.  Once created and AltAnalzye is prompted to continue 

the analysis, these p-values will be included in that analysis for filtering. 

 If the default “apt-vars.bat” file location has been properly saved in the 

“default-files.csv” configuration file, the APT command prompt will automatically 

open when all of the MiDAS input files have been written. The first step is to 

change the directory that APT is looking in to the  “AltResults/MIDAS” directory. 

This can be most easily accomplished by opening the “commands-“ file for any of 
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the exported comparisons, copying the first line, which has the command for 

changing the APT directory to the “AltResults” folder, and pasting this into the 

APT prompt window.  In Windows, this is accomplished by right-clicking on the 

APT window and selecting paste and then hitting the return key.  If APT does not 

raise any issues with this command, you can proceed to create the MiDAS p-

value file by pasting the second line in the file that begins with “apt-midas -c 

celfiles-“. This line instructs APT to use the files created by AltAnalyze to 

calculate MiDAS p-values.  This can be repeated (no need to change the 

directory again) using other pair-comparison files.  More information on this 

calculation can be found on the APT website. 

Configuring R 

Although installation of R is not required for any of the standard AltAnalyze 

analyses, for users who wish to use more advanced statistics, it will be 

necessary.  Currently, the only statistic that requires installation of R is the linear 

regression method rlm. rlm is a regression statistical method apart of the R 

package MASS. This method is preferred by some users over the alternative 

linear regression method provided by default in AltAnalyze.  Both methods 

produce very similar statistics, with only a few probe sets differing between 

threshold parameters out of hundreds of results.  However, since the rlm 

method was used in the published linear regression analyses and some users 

may wish to replicate these results, this algorithm is available. 

 To run the option “linearegress-rlm” from the “Alternative Exon Analysis 

Parameters” window, you will need to install a compatible version R (only version 
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2.1 has been extensively tested).  Along with R, the user may need to install the 

R statistical package MASS from within the R environment. R is interpreted by 

Python using the Python program Rpy, which should be packaged with the 

compiled versions of AltAnalyze but not the source code 

(http://rpy.sourceforge.net/download.html).  Whether dealing with a compiled or 

source version of AltAnalzye, if Python reports that it cannot find the current 

version of R, the user may need to update the computers Environment Variables 

setting Path (Windows only). This is accessed by opening “Control 

Pannels>System Properties>Advanced>Environment Variables” and selecting 

the Variable “Path” and entering the path location of R (for example, 

“;C:\Program Files\R\rw2010;” – No spaces before or after ;) at the end of this 

list.  Contact AltAnalyze support if problems persist. 
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Section 5 - Software Infrastructure  

5.1 Overview 

The core of AltAnalyze consists of two programs, ExpressionBuilder and 

AltAnalyze, which can be used in tandem or separately. The ExpressionBuilder 

component builds constitutive gene expression summary files as well as filters 

the probe set expression data prior to alternative-exon analysis. The AltAnalyze 

module performs all of the alternative-exon analyses, minus MiDAS p-value 

calculations. 
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Figure 5.1. AltAnalyze Analysis Pipeline. Pictorial overview of the 

processing flow for AltAnalyze is depicted. The transparent green box 

highlights functions performed by the ExpressionBuilder function of 

AltAnalyze whereas the transparent red box highlights the AltAnalyze 

function.  (A) User microarray data (probe set expression values and 

detection p-values) are imported into AltAnalyze via the ExpressionBuilder 

module, which separates data for different biological array groups into 

user designated pair-wise comparisons (e.g., cancer vs. normal). For each 

pair-wise comparison, probe set expression values and detection p-values 

are exported to separate files, and then analyzed by the module 

FilterDABG to exclude probe sets with poor detection parameters. The 

resulting files are stable inputs for alternative exon analysis. In parallel, a 

gene expression summary file is produced with Ensembl gene level 

expression (based on constitutive probe set expression) for each gene 

and array along with summary statistics (average, fold, and t-test p-value 

for all pair-wise comparisons) and annotations. (B) Using the 

ExpressionBuilder pair-wise comparison files, AltAnalyze re-calculates 

constitutive expression values for all probe sets linked to transcripts, 

evaluates changes in probe set expression relative to constitutive 

(Statistics module), and links probe sets with “significant” changes to 

aligning alternative protein sequence and predicted changes in protein 

and microRNA binding site architecture (ExonAnalyze and 

FeatureAlignment modules). The result is a series of probe set and gene 

summary files along with over-representation statistics for the regulation of 

protein and microRNA binding site features.  Optionally, probe set and 

constitutive expression values can be exported to the external application 

Affymetrix Power Tools to calculate additional alternative exon statistics to 

be included in the AltAnalzye analysis. 
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5.2 ExpressionBuilder 

The ExpressionBuilder program is principally designed to perform the following 

tasks:  

1) Import user expression data from tab-delimited files. 

2) Compare the imported probe set level expression data to provided 

expression detection probabilities (only when applicable). 

3) Organize your data according to biological groups and comparisons 

(specified by the user from custom text files). 

4) Calculate gene transcription levels for all Ensembl genes from exon or 

exon-exon junction array data. 

5) Export raw transcription values along with folds, t-test p-values, and gene 

annotations for all genes and all user indicated comparisons. 

6) Export the exon- or junction-level data for all pair-wise comparisons (exon 

array analyses are restricted to two conditions). 

7) Filter the resulting exon or junction data using expression probabilities 

specific for the two pair-wise comparisons and user-defined thresholds 

(Figure 1.2). 

 

 Tasks 1-7 are all performed in order when beginning an AltAnalyze 

analysis.  This set of processes is performed by the ExpressionBuilder program. 

You will notice that detection probabilities are assessed in two distinct steps (2 

and 7).  In step 2, import of detection p-values are for the purpose of calculating 

a transcription intensity value only for those constitutive probe sets (present in all 

or most transcripts) that show detection above background (DABG), since some 

probe sets will not work as well as others.  If no probe sets have a DABG p-value 

less than the default or user supplied threshold (for at least one sample in your 

dataset), all selected probe sets will be used to calculate expression.  If the user 
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species to use all probe sets to determine gene expression, then all probe sets 

meating the filtering thresholds will be averaged to obtain this value. 

 In step 7, the probe set DABG p-values are examined to determine if 

probe sets should be included or excluded alternative splicing analysis.  This 

step is important in minimizing false positive splicing calls.  False positive splicing 

calls occur when an exon or junction probe set is not differentially expressed 

when transcription is not detected and thus can result in a transcription-corrected 

exon value that appears to be alternatively regulated.  When ExpressionBuilder 

outputs the initial file containing the pair-wise comparisons of expression values, 

it does the same thing for DABG p-values. ExpressionBuilder uses these files to 

determine to determine if for a constitutive aligning probe set, both groups have a 

mean DABG p<0.05 or for a non-constitutive probe set, if one group has a DABG 

p<0.05 (default options), using the FilterDABG module. The probe sets passing 

the user-defined filters are exported to a new file that is ready to use for splicing 

analyses (“AltExpression/*array_type*/”). 

 Runtime of ExpressionBuilder is dependent on the number of conditions 

and array type being analyzed (>10 minutes for Affymetrix exon 1.0 ST arrays). If 

multiple comparisons are present in a single expression file, input files for 

AltAnalyze will all be generated at once and thus runtimes will take longer.  You 

can skip this option if re-running an alternative-exon analysis on previously 

filtered ExpressionBuilder results (Figure 1.1 B), as long as the expression 

filtering parameters are the same. 
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Note 1: While this pipeline is mainly for use with exon or junction arrays, it is also compatible with 

a standard 3’ Affymetrix microarray dataset to calculate folds, t-test p-value, and assign 

annotations to this data.  This is useful when you have many comparisons in your dataset and 

you don’t wish to manually calculate these values. 

 

Note 2: You do not need to run ExpressionBuilder if you have an alternative way of building 

AltAnalyze input files. To do so, your file headers for each array must have the name 

“group:sample_name”, where your group names are different for each group and the denominator 

group is listed first and the numerator is listed second. Below the header line should only be 

probe set IDs and log2 expression values. 

 

5.3 AltAnalyze 

The AltAnalyze program is the central module in the AltAnalyze pipeline. This 

software imports the filtered expression data and performs all statistical and 

functional analyses.  This program will analyze any number of input comparison 

files that are in the “AltExpression” directory for that array type. The main 

analysis steps in this program are: 

1) Import exon or junction annotations, to determine which probe sets to 

analyze and which correspond to known AS or APS events. 

2) Import probe set-protein and probe set-miRNA associations. 

3) Import protein functional annotations and corresponding sequence from 

Ensembl and UniProt domain-level annotation files (built outside of 

AltAnalyze – see the section LinkEST). 

4) (junction array only) Identify which reciprocal junction-junction or exon-

junction pairs to analyze. 

5) Import the user expression data for the pair-wise comparison. 

6) Store data for all probe sets corresponding to either a constitutive exon or 

selected annotations (e.g., associated with a splicing event), along with 

the group membership of each value (e.g., cancer vs. normal). 
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7) Calculate a constitutive expression value for each gene and each sample 

(used for splicing score later on). OPTIONAL: If the user selected a cut-off 

for constitutive fold change, then genes with an absolute fold change 

greater than this threshold will be removed from the analysis. 

8) Calculate a splicing score and t-test p-value from the probe set and 

constitutive expression values. This calculation requires that splicing ratios 

are calculate for each sample (exon/constitutive expression) and then 

compared between groups. For exon arrays, the splicing index (SI) 

method is calculated for each probe set. For junction arrays, ASPIRE, 

Linear Regression can be used with the pre-determined reciprocal 

junctions or alternatively are calculated for individual probe sets using the 

SI method. 

9) (junction array only) OPTIONAL: Performs a permutation analysis of the 

sample ASPIRE input values or Linear Regression values to calculate a 

likelihood p-value for all possible sample combinations. 

10) OPTIONAL: Exports input for the Affymetrix Power Tools (APT) program 

to calculate a MiDAS p-value for each probe set. If using this option, 

AltAnalyze will pause while you follow the simple directions to get APT to 

generate this file (see details under MiDAS analysis). 

11) OPTIONAL: Exports constitutive adjusted probe set expression values for 

external applications (e.g., clustering). 

12) Retain only probe sets that meet the scoring thresholds for these statistics 

(splicing score, splicing t-test p, permutation p, and MiDAS p). 

13) For remaining probe set link these identifiers to matching protein 

sequences. For exon arrays, probe sets are matched to the best matching 

protein (derived from an mRNA containing the probe set sequence) and 

the best non-matching (derived from an mRNA NOT containing the probe 

set sequence but corresponding to the same gene). For junction arrays, 

this same method is used if only one of the reciprocal probe sets aligns to 

an mRNA otherwise, the best matching proteins for both reciprocal probe 
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sets are used.  If a probe set or reciprocal junctions align to two reciprocal 

proteins, the following steps are performed by the module ExonAnalyze: 

a) Identify all protein functional region annotations corresponding to all 

protein IDs for that gene (e.g. kinase domain or serine 

phosphoserine). 

b) For each functional annotation and the sequence that corresponds 

to it, search for the sequence within the two reciprocal protein 

sequences. If a functional sequence is found in one but not the 

other protein sequence, store this functional annotation along with 

which protein ID it is missing from.  Note: functional annotations 

consist of one or more amino acids that comprise a functional 

sequence. If this sequence is less than 6AA, it is expanded to 6AA 

using flanking sequence. 

c) Next, the two reciprocal protein sequences are compared to 

regionally where they are different (N-terminal, C-terminal, or 

middle). If the change is restricted to the middle of the protein (not 

within 12AA of either terminus) then this difference is referred to as 

Alt-coding. If the N-terminal sequences of both proteins are the 

same but the overall protein length one is half or less of the other, 

this change is annotated as truncation. 

d) Store the functional annotations, protein sequences, and IDs 

differencing between reciprocal proteins. 

e) Next, determine if any probe sets regulated are among those 

containing putative miRNA binding sites. Probe set to miRNA 

binding site annotations are pre-determined using the programs 

MatchTargetPredictions.py and ExonSeqSearch.py and 

stored in a local file for AltAnalyze to access.  

f) Store the miRNA binding site names, sequences, and source of the 

prediction. These predictions are also stored with the direction of 

the fold change/alignment of the probe set. 
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14) Determine which unique genes contain regulated protein functional 

annotations or miRNA binding sites.  Perform over-representation analysis 

for unique genes with a common regulated protein functional annotation or 

miRNA binding site, compared to all annotations examined. 

15) Export over-representation statistics (miRNA binding site and protein 

feature) to the “AlternativeOutput” folder of “AltResults”. 

16) (junction array only) Import splicing and exon annotations for regulated 

exons corresponding to each set of reciprocal probe sets (e.g., for E1-E3 

compared to E1-E2, E2 is the regulated exon). 

17) For ExonAnalyze annotations, reformat the direction/inclusion status of the 

annotation.  For example, if a kinase domain is only found in a protein that 

aligns to a probe set, but was down-regulated, then the annotation is listed 

as (-)Kinase-domain, but if up-regulated is listed as (+)Kinase-domain. 

18) Export the results from this analysis. 

19) Summarize the probe set or reciprocal junction data at the level of genes 

and export these results (along with Gene Ontology/Pathway annotations). 

20) Export overall statistics from this run (e.g., number of genes regulated, 

splicing events). 

21) (junction array only) Combine and export the saved probe set and gene 

files for each comparison analyzed, to compare and contrast differences.  

 

When finished AltAnalyze will have generated four primary files. 

1) name-scoringmethod-exon-inclusion-results.txt 

2) name-scoringmethod-exon-inclusion-GENE-results.txt 

3) name-scoringmethod-ft-domain-zscores.txt 

4) name-scoringmethod-miRNA-zscores 

 

 Here, “name” indicates the comparison file name from ExpressionBuilder, 

composed of the species + array_type + comparison_name (e.g. 
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Hs_Exon_cancer_vs_normal), scoringmethod indicates the alternative exon 

analysis method used (e.g., SI) and the suffix indicates the type of file. 

 The annotation files used by AltAnalyze are pre-built using other modules 

with this application or through external software not included (e.g., Ensembl API 

perl scripts, and SQL).  Although the user should not need to re-build these files 

on their own, advanced users may wish to modify these tables manually or with 

programs provided (see Section 6 - Building AltAnalyze Annotation Files for more 

details). 

 For protein-level functional annotations, this software assumes that if an 

exon is up-regulated in a certain conditions that the functional region (e.g., 

protein domain) is also up-regulated and indicates it as such.   For example, for 

exon array data, if a probe set is up-regulated (relative to gene constitutive 

expression) in an experimental group and this domain is found in the protein 

aligning to this probe set, in the results file this will be annotated as (+) domain. If 

the probe set were down-regulated (and aligns as indicated), this would be 

annotated as (-) domain.  The opposite is true if a protein feature aligns to the 

non-matching protein. 
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Section 6 –Building AltAnalyze Annotation Files 

6.1 Splicing Annotations and Protein Associations 

A number of annotation files are built prior to running AltAnalyze that are 

necessary for: 

1) Organizing exons and introns from discrete transcripts into consistently 

ordered sequence blocks (UCSCImport.py and EnsemblImport.py). 

2) Identifying which exons and introns align to alternative annotations 

(alignToKnownAlt.py and EnsemblImport.py). 

3) Identifying probe sets with likely constitutive annotations 

(ExonArrayAffyRules.py). 

4) Identifying which probe sets align to which exons and introns 

(ExonArrayEnsemblRules.py). 

5) Extracting out protein sequences with functional annotations 

(ExtractUniProtFunctAnnot.py, EnsemblAPI_script.perl). 

6) Identifying miRNA binding sites (MatchTargetPredictions.py) 

7) Matching miRNA binding site sequence to probe set sequence 

(ExonSeqSearch.py). 

8) Matching probe set sequence to cDNA and EST sequences 

(LinkESTSeq.py). 

9) Identify the longest matching and non-matching mRNA for each probe set 

and associated/predicted protein sequences (LinkESTSeq.py). 

 

These annotation files are necessary for all exon and junction array analyses.  

Junction array analyses further require: 

10) Matching reciprocal junction probe sets to annotated exons or introns 

(JunctionArray.py, EnsemblImport.py and 
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JunctionArrayEnsemblRules.py), creating a file analogous to (4) 

above. 

11) Matching reciprocal junction probe sets to miRNA binding sites 

(JunctionSeqSearch.py), creating a file analogous to (7) above. 

 

 All of the associated Python programs were written specifically for 

AltAnalyze.  With the creation/update of these files, the user is ready perform 

alternative exon analyses for the selected species and array type.  Since many of 

these analyses utilize genomic coordinate alignment as opposed to direct 

sequence comparison, it is import to ensure that all files were derived from the 

same genomic assembly.  

 

Note: Although all necessary files are available with the AltAnalyze program at 

installation and such files can be updated automatically from the AltAnalyze server, 

users can use these programs to adjust the content of these files, use the output for 

alternative analyses, or create custom databases for currently unsupported species. 

6.2 Building Ensembl-Probe Set Associations 

Exon Arrays 

Affymetrix exon 1.0 ST arrays are provided with probe set sequence, transcript 

cluster, genomic location, and mRNA count annotations.  Each of these 

annotations is used by AltAnalyze to provide detailed sub-gene associations. 

Although transcript clusters represent putative genes, the AltAnalyze pipeline 

derives new gene associations to Ensembl genes, so that each probe set aligns 

to a single gene from a single gene database. This annotation schema further 



 284 

allows AltAnalyze to determine which probe sets align defined exons regions 

(with external exon annotations), introns, and untranslated regions (UTR). 

 To begin this process, Ensembl exons (each with a unique ID), their 

genomic location, and transcript associations are downloaded for the most recent 

genomic assembly using the BioMart server (http://www.ensembl.org/index.html).  

This file is saved to the directory “AltDatabase/ensembl/*species*/” with the 

filename “*species*_Ensembl_transcript-annotations.txt".  Since Ensembl 

transcript associations are typically conservative, transcript associations are 

further augmented with exon-transcript structure data from the UCSC genome 

database (http://www.genome.ucsc.edu), from the file “all_mrna.txt” 

(Downloads>*species*>Annotation database>all_mrna.txt.gz). This file encodes 

genomic coordinates for exons in each transcript similar to Ensembl.  Transcript 

genomic coordinates and genomic strand data from UCSC is matched to 

Ensembl gene coordinates to identify genes that specifically associate with 

Ensembl genes with the Python program UCSCImport.py.  Unique transcripts, 

with distinct exon structures from Ensembl, are exported to the folder 

“AltDatabase/ucsc/*species*” to the file 

“*species*_UCSC_transcript_structure_filtered_mrna.txt”, with the same structure 

as the Ensembl_transcript-annotations file.  

 Once both transcript-structure files have been saved to the appropriate 

directory, ExonArrayAffyRules.py calls the program EnsemblImport.py 

to perform the following steps:  

1) Imports these two files, stores exon-transcript associations, identifies exon 

regions to exclude from further annotations. These excluded exons signify 
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intron retention (overlapping with two adjacent spliced exons) and thus are 

no longer stored exons but as retained introns regions. 

2) Assembles exons from all transcripts for a gene into discrete exon 

clusters.  If an exon cluster contains multiple exons with distinct 

boundaries, the exon cluster is divided into regions, which represent 

putative alternative splice sites (e.g., region 1, 2, 3). These splice sites are 

explicitly annotated downstream.  Each exon cluster is ordered and 

number from the first to the last exon cluster (e.g, E1, E2, E3, E4, E5), 

composed of one or more regions. These exon cluster and region 

coordinates and annotations are stored in memory for downstream probe 

set alignment in the module ExonArrayAffyRules.py (e.g, E1-1, E1-2, 

E2-1, E3-1). 

3) Identifies alternative splicing events (cassette-exon inclusion, alternative 3’ 

or 5’ splice sites, alternative N-terminal and C-terminal exons, and 

combinations there of), for all Ensembl and UCSC transcripts by 

comparing exon cluster and region numbers for all pairs of exons in each 

transcript.  Alternative exons/exon-regions and corresponding exon-

junctions are stored in memory for later probe set annotation and exported 

to summary files for creation of databases for the Cytoscape exon 

structure viewer, SubgeneViewer. 

 

Upon completion, ExonArrayAffyRules.py: 

1) Imports Affymetrix exon 1.0 ST probe sets genomic locations, transcript 

cluster, and mRNA counts from the Affymetrix probeset.csv annotation file 

(e.g., HuEx-1_0-st-v2.na23.hg18.probeset.csv) for all probe sets.  

Although transcript clusters will not be used as primary gene IDs, these 

are used initially to group probe sets. 

2) Transcript cluster genomic locations are matched to Ensembl genes 

genomic locations (gene start and stop) to identify single transcript 

clusters that align to only one Ensembl gene for the respective genomic 

strand.  For transcript clusters aligning to more than one Ensembl gene, 
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coordinates for each individual probe set are matched to aligning Ensembl 

genes, to identify unique matches.  If multiple transcript clusters align to a 

single Ensembl gene, only probe sets with an Affymetrix annotated 

annotation corresponding to that Ensembl gene, from the transcript.csv file 

(e.g., HuEx-1_0-st-v2.na23.hg18.transcript.csv) are stored as proper 

relationships.  This ensures that if other genes, not annotated by Ensembl 

exist in the same genomic interval, that they will not be inaccurately 

combined with a nearby Ensembl gene.  If multiple associations or other 

inconsistencies are found, match probe set coordinates directly to the 

exon cluster locations derived in EnsemblImport.py. 

3) Once unique probe set to Ensembl genes associations have been defined, 

constitutive probe sets are identified using the Affymetrix mRNA counts 

provided in the program ExonArrayEnsemblRules.py.  The mRNA 

counts are distributed based on the types of mRNAs they align to (full-

length, Ensembl, and EST), where the probe sets with the largest number 

of high quality mRNA associations are chosen as constitutive. Probe sets 

for a given gene are ranked based on the number of: A) Ensembl; B) full-

length; and C) EST transcripts associated associated with the probe set, 

in that order, where multiple associations are required for each annotation 

type.  If all probe sets have the same number of Ensembl and full-length 

transcript associations, then the number of EST aligning are compared.  If 

no difference in these mRNA assignments exists, no constitutive probe 

sets for that gene are annotated (and thus not analyzed at the level of 

alternative exons). 

4) Each probe sets is then aligned to exon clusters, regions, retained introns, 

and splicing/exon annotations for that gene.  In addition to splicing 

annotations from EnsemblImport.py, splicing annotations from the 

UCSC genome annotation file “knownAlt.txt” (found in the same server 

directory at UCSC as “all_mRNA.txt”) are obtained using the program 

alignToKnownAlt.py.  If a probe set does not align to an 

Ensemblmport.py defined exon or intron and is upstream of the first 
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exon and is downstream of the last exon, the probe set is assigned a UTR 

annotation.  All aligning probe sets are annotated based on the exon 

cluster number and the relative position of that probe set in the exon, 

based on relative 5’ genomic start (e.g., E2-1). This can mean that probe 

set E2-1 actually aligns to the second exon cluster in that gene in any of 

the exon regions, if it is the most 5’ aligning.  

5) These probe set annotations are exported to the directory 

“AltDatabase/*species*/exon” with the filename “*species* 

_Ensembl_probesets.txt” (typically less than half of all probe sets from the 

array). 

Junction Arrays 

For the exon-junction array AltMouse, the same process is applied to the 

highlighted exon(s) from all pre-determined reciprocal probe sets, exported by 

the program ExonAnnotate_module.py.  A highlighted exon is an exon that is 

considered to be regulated as the result of two alternative junctions.  For 

example, if examining the exon-junctions E1-E2 and E1-E3, E2 would be the 

highlighted exon. Alternatively, for the mutually-exclusive splicing event E2-E4 

and E1-E3, E2 and E3 would be considered to be the highlighted exons (actual 

exons spliced in or out). To obtain the genomic locations of these exons, 

sequences for each are obtained from a static build of the mouse AltMerge 

program (March 2002) (ExonAnalyze_module.py) and searched for in fasta 

formatted sequence obtained from BioMart for all Ensembl genes with an 

additional 2 kb upstream and downstream sequence (JunctionArray.py and 

EnsemblImport.py).  This allows for the export of an exon-coordinate file 

analogous to the exon probeset.csv file.  The main difference in this file is that 
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AltMouse gene to Ensembl ID associations are obtained by comparing gene 

symbol names and external GenBank accession numbers in common, as 

opposed to coordinate comparisons, and constitutive exon annotations are 

directly lifted from the “Mm_Ensembl_transcript-annotations.txt” file, obtained 

from BioMart.  Unlike the exon array, these constitutive exon annotations are not 

used to determine which probe sets are most likely constitutive, since specific 

probe sets have been designed for this array to probe predicted constitutive 

features, each aligning to multiple exons.  The resulting highlighted exon file is 

named “Mm_Ensembl_AltMouse_probesets.txt” and is saved to 

“AltDatabase/Mm/AltMouse”, with the same structure as its exon array analogue.  

 

6.3 Extracting UniProt Protein Domain Annotations 

The UniProt protein database is a highly curated protein database that provides 

annotations for whole proteins as well as protein segments (protein features). 

These protein feature annotations correspond to specific amino acid (AA) 

sequences that are annotated using a common vocabulary, including a class 

(feature key) and detailed description field.  An example is the TCF7L1 protein 

(http://www.uniprot.org/uniprot/Q9HCS4), which has five annotated feature 

regions, ranging in size from 7 to 210 AA.  One of these regions has the feature 

key annotation “DNA binding” and the description “HMG box”.  To utilize these 

annotations in AltAnalyze, these functional tags are extracted along with full 

protein sequence, and external annotations for each protein (e.g., Ensembl gene) 

from the “uniprot_sprot_*taxonomy*.dat” file using the 
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ExtractUniProtFunctAnnot.py program.  This program produces two files 

(“uniprot_feature_file.txt” and “uniprot_trembl_sequence.txt”) that are saved to 

the appropriate “AltDatabase/uniprot” species directory.  FTP file locations for the 

UniProt database file can be found in the file “Config/Default-file.csv” for each 

supported species.  To improve Ensembl-UniProt annotations, these 

relationships are also downloaded from BioMart and stored in the folder 

“AltDatabase/uniprot/*species*” as “*species*_Ensembl-UniProt.txt”, which are 

gathered by ExtractUniProtFunctAnnot.py at runtime to include in the 

UniProt sequence annotation file. These files are saved to 

“AltDatabase/uniprot/*species*” as “uniprot_feature_file.txt” and 

“uniprot_sequence.txt”.  Runtime is approximately 5 minutes (not including 

downloads). 

 

6.4 Extracting Ensembl Protein Domain Annotations 

In addition to protein features extracted from UniProt, protein features associated 

with specific Ensembl transcripts are extracted from the Ensembl database.  One 

advantage of these annotations over UniProt, is that alternative exon changes 

that alter the sequence of a feature, but not its inclusion will be reported as a gain 

and loss of the same feature, as opposed to just one with UniProt.  This is 

because protein feature annotations in UniProt only typically exist for one isoform 

of a gene and thus, alternation of this feature in any way will result in this feature 

being called regulated. Although an Ensembl annotated feature with a reported 

gain and loss can be considered not changed at all, functional differences can 
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exist do to a minor feature sequence change that would not be predicted if the 

gain and loss of the feature were not reported. 

 Three separate annotation files are built to provide feature sequences and 

descriptions, “Ensembl_Protein”, “Protein”, and “ProteinFeatures” files 

(“AltDatabase/ensembl/*species*”).  The “ProteinFeatures” contains relative AA 

positions for protein features for all Ensembl protein IDs along with feature 

annotations and source.  The “Protein” file contains AA sequences for each 

Ensembl protein as well as transcript start and stop (base pairs – not used by 

AltAnalyze).  The “Ensembl_Protein " provides Ensembl gene, transcript, and 

protein ID associations.  Data for these files is extracted using a custom Perl 

script that interfaces with the Ensembl Perl application programmer interface 

(API).  The main feature annotation sources in these files are Prosite and Pfam, 

which provides a description similar to UniProt.  As an example, see: 

http://ensembl.genomics.org.cn/Homo_sapiens/protview?db=core;peptide=ENSP

00000282111, which has similar feature descriptions to UniProt for the same 

gene, TCF7L1.  In AltAnalyze, protein features, descriptions, and amino acid 

locations are used to store the amino sequences associated with the particular 

feature.  Features with a size less than 6AA are expanded to 6AA using flanking 

sequence and are stored in memory so they can be queried against full-length 

protein sequences corresponding to the different isoforms predicted to be 

regulated based on the array data.  Future versions of AltAnalyze may contain 

methods for directly extracting this information via Python modules, however, in 

the interim, updates of these files can be obtained using the update feature in 
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AltAnalyze, which downloads current builds of these files for new genomic 

assemblies.  Runtime is approximately 2 days (entries are grabbed one by one 

over the internet), but will be extracted by alternative methods in the future (e.g., 

local Ensembl SQL database or static release data dump files). 

 

6.5 Extracting miRNA Binding Annotations 

To examine the potential gain or loss of miRNA bindings sites as the direct result 

of exon-inclusion or exclusion, AltAnalyze uses putative miRNA sequences from 

multiple prediction algorithms. These binding site annotations are extracted from 

the following flat files: 

• TargetScan conserved predicted targets (http://www.targetscan.org/cgi-

bin/targetscan/data_download.cgi?db=vert_42). Gene symbol and putative 

miRNA associations are extracted (no sequence). The primary gene ID, 

gene-symbol, is linked to Ensembl based on BioMart downloaded gene-

symbol to Ensembl gene annotations.  A sequence file is available at this 

site, but only designates putative seed sequence location. 

• Miranda human centric predictions with multi-species alignment 

information is obtained from target predictions organized by Ensembl gene 

ID 

(http://cbio.mskcc.org/research/sander/data/miRNA2003/mammalian/inde

x.html).  A larger set of associations is also pulled from species-specific 

files (http://www.miRNA.org/miRNA/getDownloads.do), where gene 

symbol is related to Ensembl gene ID.  Both files provide target miRNA 

sequence. 

• Sanger center (miRBase) sequence is provided as a custom (requested) 

dump of their version 5 target predictions 

(http://miRNA.sanger.ac.uk/targets/v5/), containing Ensembl gene IDs, 
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miRNA names, and putative target sequences specific for either mouse or 

human.  

• PicTar conserved predicted targets were provided as supplementary data 

(Supplementary Table 3) at 

http://www.nature.com/ng/journal/v37/n5/suppinfo/ng1536_S1.html, with 

conservation in human, chimp, mouse, rat, and dog for a set of 168 

miRNAs.  For mouse, human gene symbols were searched for in the 

BioMart derived “Mm_ Ensembl_annotation.txt” table after converting 

these IDs to a mouse compatible format (e.g., TCF7L1 to Tcf7l1). 

 

 Ensembl gene to miRNA name and sequence are stored for all prediction 

algorithm flat files and directly compared to find genes with one or more lines of 

miRNA binding site evidence using the program 

MatchTargetPredictions.py.  The flat file produced from this program 

(“combined_gene-target-sequences.txt”) is used by the program 

ExonSeqSearch.py to search for these putative miRNA binding site sequences 

among all probe sets from the “*species*_Ensembl_probeset.txt” file built by 

ExonArrayEnsemblRules.py and probe set sequence from the Affymetrix 1.0 

ST probe set fasta sequence file (Affymetrix) or the reciprocal junction 

highlighted exon sequence file (see section 6.2).  Two resulting files, one with 

any binding site predictions and another required to have evidence from at least 

two algorithms, are saved to “AltDatabase/*species*/*array_type*/” as 

“*species*_probeset_miRNAs_any.txt” and 

“*species*_probeset_miRNAs_multiple.txt”, respectively. 
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6.6 Inferring Protein-Probe Set Associations 

To obtain associations between specific probe sets and proteins, the program 

LinkESTSeq.py was written.  This program takes the consensus probe set 

sequence for all probe sets examined by AltAnalyze 

(“*species*_Ensembl_probeset.txt” file), similar to ExonSeqSearch.py, and 

searches for a match among Ensembl mRNA transcript fasta formatted 

sequences (BioMart) and Unigene mRNAs and ESTs 

(ftp://ftp.ncbi.nih.gov/repository/UniGene/Homo_sapiens/Hs.seq.all). To link 

Unigene IDs to Ensembl, Ensembl-Unigene relationships are from downloaded 

from BioMart.  For junction array probe sets, only a 100% sequence match is 

allowed, (matches may not occur do to polymorphisms between sequence 

sources and genomic assemblies).  For exon arrays, two types of matches are 

acceptable; A) complete probe set match or B) last 25 or first 25 base-pair match 

of the probe set to the mRNA.  All matches and non-matches are stored along 

with all mRNA transcript sequences for each accession number (built files are 

typically up-to 4GB in size!), to the “AltDabase/*species*” directories.   

 

 Once all sequence searches are complete, this program will search 

through all probe set-mRNA matches to find the mRNA with the longest 

sequence match and non-match for each probe-set, for different types of 

sequences (Ensembl, cDNA, or EST).  The non-match is any mRNA for the gene 

associated with a probe set that doesn’t contain a match to that sequence.  
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When complete, the longest matching and non-matching mRNAs are stored for 

all three sequence types.  Ensembl associations are considered the highest 

quality sequence match, followed by cDNAs, and lastly ESTs.  Although this 

process should ideally find the longest matching protein sequence, that search is 

too time-intensive, requiring determination of protein sequence length for each 

mRNA, for millions of mRNA sequences.  However, since Ensembl is a smaller 

database (<100,000 mRNAs/species) and protein associations are pre-

computed, protein length is also considered for choosing the longest probe set 

matches for probe sets linked to Ensembl proteins.  At this point, most probe sets 

should have sequence matching data.  However, to augment these associations, 

for probe sets without matches, mRNA associations predicted from 

ExonArrayEnsemblRules.py, are searched for and verified among UCSC 

mRNA transcript sequences from the file “mrna.fa” (found in the same server 

directory at UCSC as “all_mRNA.txt”), since these transcripts can be missing 

from the other sequence files.  Finally, the “best”, longest mRNA-probe set 

associations are written to the interim file “*species*_probeset-

mRNA_relationships.txt”, by determining if these associations first exist in 

Ensembl, next in any cDNAs and finally any ESTs.  A lower-quality mRNA will be 

selected, only if it is 20% longer than a higher-quality mRNA.  A goal for future 

versions of this program is take into account protein sequence of the longest 

mRNAs and try to identify matching and non-matching isoforms with the smallest 

number of amino acid changes between them (most specific, conservative 

prediction). 
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 At this point, only two mRNAs are matched to each probe set (matching 

and non-matching).  To align these mRNAs to proteins, the following is 

performed: 

• Link mRNA to existing protein IDs based on relationships from Ensembl 

(*species*_EnsProt-Annotations.txt), RefSeq (*species*.protein.gpff), 

UniProt (uniprot_sequence.txt), or EntrezGene (“gene2accession.txt”). 

• Link protein IDs to protein sequence using Ensembl 

(*species*_EnsProt_sequence.txt), UniProt (uniprot_sequence.txt), 

RefSeq (*species*.protein.gpff), and NCBI (rel*version*.fsa_aa.txt) 

sequence files. 

• Predict protein sequence for mRNAs without protein annotations or protein 

sequence, using mRNA sequence from the Ensembl, Unigene sequence, 

and UCSC (mrna.fa) sequence match analysis. 

• Save all valid protein-probe set associations where both a match and non-

match exist to the files “probeset-protein-dbase.txt” and “SEQUENCE-

protein-dbase.txt” in the directory “AltDatabase/*species*/*array_type*/”. 

 

 Putative protein sequences are derived using the function 

“BuildInSilicoTranslations()”, which uses the BioPython module to translate an 

mRNA based on all possible start and stop sites.  This data is used to identify the 

longest putative translation that also shares either the first or last 5 AA of its 

sequence with the N-terminus or C-terminus (respectfully) of a UniProt protein. 

The N-terminal and C-terminal comparisons are only performed if there multiple 

protein predictions for a single mRNA with similar predicted protein lengths 

(within a 30% difference) that have evidence of a frame-shift. The choosen 

putative protein ID is named “*mRNA accession*-PEP”.  The resulting files needs 
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to be built for every new array analyzed and with every new genomic assembly 

(do to annotation and sequence changes at the respective databases). 

 

6.7 Required Files for Manual Update 

Below is a list of all external files referenced in the above build strategies, that 

are required when either building annotations for a new array or manually 

updating the existing annotations.  To have the automated download pull down 

all specified files, choose the option “Update DBs” when beginning AltAnalyze. 

From there on, you will be presented with several options in the standard 

command prompt/terminal.  To find or change the download location of any 

automated downloads, see the file “Config/Default-file.csv”.  

 

BioMart (Manual) Downloads 

Exon and Junction Array 

 *species*_Ensembl-Unigene 

 *species*_Ensembl-annotations 

 *species*_Ensembl_transcript-annotations.txt 

 *species*_Ensembl-UniProt.txt 

 *species*_EnsProt_sequence.txt 

 *species*_EnsProt-Annotations.txt 

 *species*_ensembl_cDNA.fasta.txt 

 

Junction Array 

 Mm_gene-seq-2000_flank 

 

NCBI (Automated) Downloads 
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Exon and Junction Array 

 *species*.seq.all 

 *species*.protein.gpff 

 gene2accession.txt 

 rel*version*.fsa_aa.txt  

 

UCSC (Automated) Downloads 

Exon and Junction Array 

 *species*.seq.all 

 Ensembl-annotations 

 all_mrna.txt 

 mrna.fa 

 EnsProt_sequence 

 EnsProt-Annotations 

 ensembl_cDNA.fasta 

 

UniProt (Automated) Downloads 

Exon and Junction Array 

 uniprot_sprot_*species/class*.dat.gz 

 uniprot_trembl_*species/class*.dat.gz 

 

To see example file structures for any BioMart files, you can download the 

existing files manually at: 

http://conklinwolf.ucsf.edu/informatics/AltAnalyze/AltDatabase/.  
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