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Abstract 
 

Insights on Alzheimer’s disease etiology from network approaches in healthy aging 
 

by 
 

Katelyn Laurel Arnemann 
 

Doctor of Philosophy in Neuroscience 
 

University of California, Berkeley 
 

Professor William Jagust, Chair 
 
 
The etiology of Alzheimer’s disease involves the presymptomatic development and progression 
of amyloid-β and tau in healthy aging. Amyloid-β and tau are naturally occurring proteins that 
can form abnormal aggregates – amyloid-β plaques and neurofibrillary tangles – which constitute 
the pathological hallmarks of Alzheimer’s disease. The initial formation of these aggregates 
occurs decades before the onset of cognitive symptoms, in individuals otherwise considered to be 
healthy and unimpaired. This dissertation hinges on in-vivo PET imaging of amyloid-β and tau in 
humans using PIB-PET and AV1451-PET to explore this presymptomatic phase of Alzheimer’s 
disease – when pathology is present without detectable symptoms. I place particular emphasis on 
amyloid-β pathology – understanding the factors that underlie vulnerability to amyloid-β as well 
as identifying the initial sources and progressive spread of amyloid-β pathology in healthy aging. 
My focus on amyloid-β is consistent with the predominant framework for Alzheimer’s disease, 
the amyloid cascade hypothesis, which contends that amyloid-β initiates a slow and ultimately 
deadly chain of events that results, decades later, in deteriorating memory and breakdown of 
cognition. In recognition that Alzheimer’s disease does not reflect a focal disorder, but rather 
network failure of large-scale brain systems, I adapt a network-based framework to account for 
the role of the complex interdependencies between distributed brain regions – of glucose 
metabolism from FDG-PET, of brain activity from resting-state functional MRI, and of amyloid-
β from PIB-PET. Examining metabolic brain networks, I reveal widespread, highly systematic 
reorganization of glucose metabolism in old age – well beyond what has been revealed using 
other methods – that is more heterogeneous in those possessing both substantial amyloid-β and 
genetic risk for Alzheimer’s disease. Further, I demonstrate that the topology of early-life 
“metabolic inefficiency” – a novel metric that removes the potential association of glucose 
metabolism with highly connected hubs – explains the topology of amyloid-β in healthy aging. 
Finally, I provide evidence that very early amyloid-β accumulation, in those without substantial 
amyloid-β pathology, is multifocal and broadly distributed across brain networks – consistent 
with shared tissue vulnerability, not transneuronal spread, being the driving force of 
accumulation of amyloid-β pathology. These findings support the notion that shared tissue 
vulnerability of a metabolic origin drives widespread, systematic accumulation of amyloid-β in 
healthy aging. Future work should uncover the nature and origin of metabolic tissue vulnerability 
to amyloid-β, exploring the complex chain of events that drive widespread age-related 
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reorganization – especially of cerebral glucose metabolism – and its links other age-related 
changes and the onset of pathological accumulation of amyloid-β.
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Chapter 1 
 

Introduction 
 
 
Despite being the most prevalent form of dementia, the etiology of Alzheimer’s disease (AD) 
remains poorly understood. While a host of AD-related biomarkers have been characterized, 
including the hallmark pathologies of AD – amyloid-β plaques (Aβ) and neurofibrillary tangles 
(tau) – we still don’t fully understand why these pathologies form in the first place or how they 
come to spread throughout the brain. The difficultly of illuminating the etiology of AD 
pathology lies in its gradual progression, which occurs over the course of decades, resulting in a 
protracted pre-symptomatic phase during which there is substantial AD pathology in the absence 
of clinical symptoms (Sperling et al., 2011). Paradoxically, the necessity of characterizing the 
processes that initiate and carry forward the complex chain of events ending in profound memory 
loss and general decline that characterize AD, leads to the study of healthy aging in those with 
intact cognition. In seeking to delineate the early brain changes that ultimately lead to AD, 
including how and where AD pathology begins, this dissertation explores how brain structure 
and function in young adults and cognitively normal older adults can illuminate how AD begins 
and how it progresses in its pre-symptomatic phase.  
 The classic model of AD progression, the amyloid cascade hypothesis, posits that Aβ 
pathology initiates a complex chain of events that ultimately lead to cognitive decline (Jack et 
al., 2010). However, the factors that drive accumulation of Aβ pathology remain unclear. Aβ 
pathology exhibits a characteristic spatiotemporal pattern of progression across distributed brain 
areas, indicative of systematic differences in tissue susceptibility to Aβ pathology across the 
brain. The release of Aβ appears to be linked to neural activity (Bero et al., 2011), potentially 
explaining the overlapping topology of Aβ with brain areas that exhibit elevated cerebral glucose 
metabolism and aerobic glycolysis in early life (Vlassenko et al., 2010, Oh et al., 2016). 
However, the systematic progression of Aβ pathology across distributed brain areas may also 
indicate that Aβ pathology spreads through distributed brain networks. These two different 
hypotheses can be contrasted as pathology arising in a single vulnerable epicenter and spreading 
throughout the brain from that site, as opposed to multiple simultaneous epicenters that share 
some sort of particular vulnerability.  

The dissertation adapts network-based approaches to explore important unanswered 
questions about how Aβ pathology begins, spreads, and impacts distributed brain networks in 
normal aging. Chapter 2 explores the differential influences of Aβ pathology and genetic risk 
for AD on dependencies in cerebral glucose metabolism across distributed brain networks in 
healthy aging. Chapter 3 demonstrates the ability of a novel marker of metabolic inefficiency to 
explain the topology of Aβ pathology in normal aging, lending support to a role of metabolic 
processes in driving tissue vulnerability to Aβ.  Chapter 4 characterizes the progression of Aβ 
pathology in normal aging, identifying the initial source(s) of Aβ pathology and how Aβ 
progresses throughout the brain presymptomatically. Chapter 5 discusses how the insights 
described in Chapters 2, 3, and 4 come together to inform understanding of the etiology of AD. 
 
Alzheimer’s disease. 

Rates of AD are projected to nearly quadruple over the next 50 years, affecting 1 of every 45 
Americans, constituting a major and worsening national public health crisis (Brookmeyer et al., 
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2011). Patients with AD suffer from intractable memory loss, general cognitive decline, 
personality and behavior changes that all contribute to the devastating impact of AD. Currently, 
AD is irreversible with treatments only temporarily and marginally alleviating the symptoms of 
the disease. Approaches for the diagnosis of AD focus on its most prominent symptom – 
progressive and ultimately profound memory loss – however, efforts driven by scientific 
research have shifted the definition of the AD away from its symptoms and towards Aβ and tau, 
which constitute the characteristic pathology of AD (Jack et al., 2018a).  

The prominent role of Aβ in AD has been magnified, most notably due to the causal role 
of genetic mutations affecting the amyloid precursor protein (APP), presenilin 1 (PS1), and 
presenilin 2 (PS2) in determining autosomal dominant AD (Bertram et al., 2010). While Aβ is an 
undeniable component of AD, its counterpart tau is more closely linked to the neurodegeneration 
(LaPoint et al., 2017), hypometabolism (Hanseeuw et al., 2017, Adams et al., 2018), and even 
episodic memory decline (Maass et al., 2018) associated with AD. However, abnormal tau is not 
specific to AD, also characterizing frontotemporal dementia, chronic traumatic encephalopathy, 
and other tauopathies (Iqbal et al., 2005). The deposition and toxic impacts of tau in AD appear 
to act in concert with Aβ (Ittner and Götz, 2011), with more widespread tau being associated 
with higher antecedent Aβ deposition (Tosun et al., 2017, Leal et al., 2018).  

The amyloid cascade hypothesis contends that accumulation of Aβ initiates a slow but 
devastating cascade of events – aggregation of tau, synaptic dysfunction, neural death, and brain 
shrinkage – that ultimately lead to cognitive failure (Jack et al., 2010). Recently, the model has 
been updated to acknowledge that tau aggregation in the entorhinal cortex and medial temporal 
lobe can precede accumulation of Aβ later in life (Jack et al., 2013). In autosomal dominant AD, 
Aβ deposition occurs at least 15 years prior to the anticipated onset of AD (Bateman et al., 2012, 
Fleisher et al., 2012). AD slowly progresses over the course of decades, with a prolonged 
presymptomatic phase during which the pathological hallmarks, Aβ and tau, are present and 
progress without clinical symptoms of the disease (Sperling et al., 2011). Delineating the factors 
that initiate the accumulation of Aβ and tau – explored in Chapter 2 and Chapter 3 – and how 
they spread through the brain – explored in Chapter 4 – is central to understanding, treating, and 
preventing AD. 
 
The primary pathologies of AD: Aβ and tau. 
The normal function of Aβ is not well understood, however amyloid precursor protein (APP) 
serves a number of biological functions associated with synaptic formation and repair (Priller et 
al., 2006) and facilitation of axonal transport (Satpute-Krishnan et al., 2006). Aβ is formed 
through the cleavage of the amyloid precursor protein (APP) by alpha, beta, and gamma 
secretases. Differential cleavage of APP can produce multiple isoforms of Aβ, with the most 
common being Aβ40 and Aβ42. These isoforms influence the pathogenicity of Aβ, with the more 
insoluble form Aβ42 having a stronger propensity to self-aggregate and form extracellular Aβ 
oligomers, fibrils, and plaques (Haass and Selkoe, 2007). Synapses endure most of the toxic 
effects of Aβ, with Aβ application inducing loss of synapses and dendritic spines, long-term 
depression, and impairment of long term potentiation (Shankar et al., 2008). Further, Aβ may 
induce tau aggregation (Oddo et al., 2004) and results in a slew of biochemical changes 
including inflammation, oxidative stress, disrupted homeostasis, and excitotoxicity (Haass and 
Selkoe, 2007, Roberson et al., 2007). Soluble Aβ is more tightly correlated with cognitive 
decline than Aβ plaques (Naslund et al., 2000), although neurons surrounding Aβ plaques 
typically display signs of injury and dysfunction (Tsai et al., 2004). The concentration of Aβ 
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rises with neural activity (Cirrito et al., 2005, Bero et al., 2011), with AD reflecting elevated 
production and/or reduced clearance of Aβ. 

Tau is a microtubule association protein that promotes stability and flexibility of 
microtubules, particularly in the axonal cytoskeleton, and regulates axonal transport (Gotz et al., 
2006). Tau occurs in multiple isoforms, typically in a phosphorylated state. Hyper-
phosphorylation of tau destabilizes microtubules, causing them to unravel into paired helical 
filaments, which can subsequently lead to the formation of neurofibrillary tangles (Ballatore et 
al., 2007). Hyperphosphorylated tau disrupts the integrity of the cytoskeleton of neurons, driving 
neural dysfunction by interfering with axonal transport and mitochondrial respiration (Gotz et al., 
2006, Ittner et al., 2009). 

Aβ and tau exhibit distinct spatiotemporal patterns of progression. Staging of Aβ begins 
in neocortex, implicating frontal, parietal, temporal, and occipital cortex, before spreading to 
subcortical brain areas, the brainstem, and the cerebellum (Thal et al., 2002). Patients with AD 
already exhibit widespread Aβ throughout the neocortex, with a similar pattern of Aβ pathology 
typically observed in patients with mild cognitive impairment (MCI) and cognitively normal 
older adults with “positive” Aβ PET scans (Rowe et al., 2007). Chapter 4 uses in-vivo Aβ PET 
imaging in young and cognitively normal older adults to further explore the “spread” of Aβ 
across the spectrum of normal aging, identifying potential early sources of Aβ pathology. Tau 
exhibits more constrained systematic stages than Aβ, beginning in the transentorhinal cortex, 
spreading to limbic and association cortex, before finally reaching primary sensory cortex  
(Braak and Braak, 1991). Tau can occur in the locus coeruleus and transentorhinal cortex early in 
life (Braak et al., 2011), with the interval between the initial occurrence of tau and its widespread 
distribution throughout the neocortex potentially being as long as 50 years (Braak and Braak, 
1995). While the earliest markers of tau are more prevalent with advancing age and can appear 
much earlier than Aβ, unlike Aβ, tau is typically not widespread throughout the cortex in healthy 
aging (Scholl et al., 2016). 
 
In-vivo PET imaging of AD biomarkers. 

Positron emission tomography (PET) has revolutionized the study of AD by enabling in-vivo 
imaging of AD pathology and biomarkers in humans. PET is a highly sensitive imaging 
technique that detects pairs of gamma rays emitted by a radionucleotide undergoing positron 
emission decay. A cyclotron is used to produce the positron-emitting isotopes and form 
radionucleotides, by chemically incorporating the isotopes into a biologically active molecule. 
For example, the [F18] isotope is incorporated into a glucose molecule to form [F18]-
fluorodeoxyglucose (FDG), a radiotracer that enables imaging of glucose metabolism. Prior to 
PET imaging, the radionucleotide is typically introduced through intravenous injection, followed 
by a tracer-dependent waiting period to allow the radionucleotide to equilibrate in the brain 
before PET imaging commences. 
 PET images can be modeled to provide information about the spatial distribution of a 
radiotracer across the brain. 3D reconstruction is possible because positron-electron annihilation 
events can be localized due to emission of gamma photons at an ~180-degree angle from each 
other, and also because positrons typically travel < 1-mm before interacting with an electron. 
Attenuation correction is important, typically involving a transmission scan in the form of a 
computed tomography (CT) x-ray scan to account for differences in absorption of photons by 
tissue prior to detection by the sensors (e.g. in superficial versus deep bodily tissue).  
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To account for the dynamic processes of tracer uptake and decay, PET is modeled when 
the signal stabilizes, exhibiting steady state tracer uptake. In the absence of arterial blood 
sampling, models account for the amount of tracer in the blood by relying on signal from a 
reference region with little or no tracer binding sites. The standard uptake value ratio (SUVR) is 
computed by taking the ratio of the radioactivity concentration of a voxel or brain region relative 
to that of the reference region. For reversibly binding radiotracers, the distribution value ratio 
(DVR) is computed as the ratio of a linear function of a voxel or brain region relative to that of 
the reference region, referred to as “Logan graphical analysis” (Logan et al., 1996). Methods 
such as partial volume correction can be used to adjust for the PET signal from neighboring 
tissue, such as white matter or cerebral spinal fluid, bleeding into the measurement of a given 
voxel or brain region (Rousset et al., 1998). 
 
Aβ PET imaging. 
The topology of Aβ deposition has been imaged in-vivo for more than a decade (Klunk et al., 
2004), with the most prevalent radiotracers being [C11]-Pittsburgh Compound B (PIB) and [F18]-
florbetapir. Aβ PET helped reveal the characteristic topology of Aβ in patients with AD, 
implicating prefrontal, lateral temporal, parietal, and cingulate cortices (Klunk et al., 2004). 
However, a comparable amount and topology of Aβ is apparent in approximately 20-30% of 
cognitively normal adults aged 75 and up (Jansen et al., 2015). Identification of “positive” Aβ 
PET scans has transformed the study of AD, enabling the study of pre-symptomatic AD 
(Sperling et al., 2011) in Chapter 2, Chapter 3, and Chapter 4 and study of the complex 
interactions between Aβ and other biomarkers, as in Chapter 2 and Chapter 3, as well as 
cognition. So far, evidence suggests that Aβ pathology is only weakly related to atrophy 
(Chetelat et al., 2012, Dore et al., 2013, Villemagne et al., 2013), hypometabolism (Lowe et al., 
2014), and cognitive decline (Hedden et al., 2013, Jansen et al., 2018). Additionally, Aβ PET 
opens up the complex challenges of teasing apart brain changes driven by AD pathology from 
those driven by aging more generally, as demonstrated in Chapter 2.   
 
Tau PET imaging. 
More recently, the topology of tau has been imaged in-vivo, with a host of radiotracers being 
explored using multiple derivatives of [F18]-THK (including THK5117, THK5317, THK5351), 
[F18]-AV1451 (also known as T807 or flortaucipir), and [C11]-PBB3. Existing tau radiotracers 
have high affinity for tau, however their affinity varies for different domains and forms of tau 
and the tracers have imperfect specificity leading to off-target binding (Saint-Aubert et al., 
2017). In-vivo tau PET imaging can reproduce Braak stages of tau pathology in AD, originally 
established through postmortem examination of brain tissue (Schwarz et al., 2016, Scholl et al., 
2016). In normal aging, tau is more typically constrained to the medial temporal and sometimes 
the inferolateral temporal cortex, with widespread tau typically only observed in patients 
(Johnson et al., 2016, Scholl et al., 2016). The topology of tau PET closely tracks that of atrophy 
(Wang et al., 2016, LaPoint et al., 2017) and hypometabolism (Ossenkoppele et al., 2016), and 
demonstrates a stronger relationship with clinical symptoms than Aβ (Xia et al., 2017). However, 
Chapter 3 demonstrates that the topology of tau does not substantially overlap with cerebral 
glucose metabolism in early life. Tau PET may help distinguish between and explain the 
differing symptoms of different variants of AD (Scholl et al., 2017) and dementia (Bejanin et al., 
2017).  
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PET imaging of glucose metabolism. 
PET imaging using the [F18]-FDG radiotracer to detect glucose metabolism instigated the 
acceptance and expansion of PET imaging. Neural activity appears to be the dominant factor 
underlying cerebral glucose metabolism (Rocher et al., 2003, Goyal et al., 2014), however 
multiple metabolic processes certainly contribute (Zimmer et al., 2017). FDG-PET established 
the existence of a characteristic pattern of hypometabolism in AD, which can distinguish AD 
from healthy aging and other forms of dementia (Mosconi, 2005, Herholz et al., 2002). Cerebral 
hypometabolism is an important marker of neurodegeneration, which appears to mirror the 
topology of tau (Ossenkoppele et al., 2016), precede atrophy (Gordon et al., 2018), and track 
clinical progression more closely than Aβ or tau (Chiotis et al., 2017). Chapter 2 explores how 
interdependencies in glucose metabolism, in the form of metabolic brain networks, are 
differently reflected in aging, pre-symptomatic AD, and clinical AD. The topology of healthy 
cerebral glucose metabolism and aerobic glycolysis, established by FDG-PET, overlaps with the 
topology of Aβ in patients with AD, leading to speculation that metabolic tissue vulnerability 
may drive accumulation of Aβ – a hypothesis explored and expanded in Chapter 3.  
 
Etiology of AD pathology. 
Aβ and tau pathologies exhibit distinct, but potentially synergistic spatiotemporal progression 
(Ittner and Gotz, 2011). Widespread Aβ may drive the spread of tau (Lockhart et al., 2017), with 
tau pathology being more widespread and accumulating more rapidly in those with substantial 
deposition of Aβ (Tosun et al., 2017, Leal et al., 2018, Jack et al., 2018b). Although there is 
some overlap and interdependence of the topologies of Aβ and tau, they reflect distinct 
mechanisms and spatiotemporal progression in AD. The primary mechanisms driving the 
progressive accumulation Aβ and tau pathologies throughout the brain remain unclear, however 
numerous mechanisms have been proposed including transneural spread, shared tissue 
vulnerability, neuroplasticity failure, cascading network failure, and diffusion-based 
mechanisms. 
 
Spread of AD pathology 
Both Aβ and tau, as well as pathologies associated with other neurodegenerative disorders, 
demonstrate evidence of prion-like qualities (Frost and Diamond, 2010). Intra-cerebral 
inoculation of cells and/or animals with Aβ results in formation of Aβ aggregates (Eisele et al., 
2010, Moreno-Gonzalez and Soto, 2011) and, in the case of tau, spread to downstream brain 
areas (de Calignon et al., 2012). Alternately, spread of Aβ may occur through extracellular-based 
transmission via diffusion to spatially contiguous neighbors (Knowles et al., 2011) or 
transmission via the blood stream (Walker et al., 2012). However, with evidence restricted to cell 
and animal models, it remains unclear to what extent, if any, transneuronal transmission drives 
the spread of either Aβ or tau in humans. Unlike Aβ, tau exhibits a highly predictable and 
constrained sequence of progression (Braak and Braak, 1991) that is consistent with 
transneuronal spread. Chapter 4 demonstrates that Aβ is diffuse and multifocal, with even the 
earliest sources of Aβ broadly distributed and implicating multiple brain networks, making 
connectivity-based spread unlikely. Cascading network failure may provide an alternate 
framework of how pathology may “spread” to distal brain areas through propagation of 
dysfunction through the system as it slowly breaks down (Jones et al., 2016, Jones et al., 2017).  
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Vulnerability to AD pathology. 
The differential topologies of early Aβ and tau suggest that distinct, although potentially 
synergistic, mechanisms initially drive formation of Aβ and tau pathologies. The diffuse, 
multifocal accumulation of Aβ in its earliest stages demonstrated in Chapter 4 indicates that Aβ 
may be driven by shared tissue vulnerability across distributed brain areas. Metabolic tissue 
vulnerability may explain differential vulnerability to Aβ, as the topology of Aβ overlaps with 
that of aerobic glycolysis and glucose metabolism (Vlassenko et al., 2010, Oh et al., 2016). 
Synaptic activity, the primary driver of cerebral glucose metabolism (Rocher et al., 2003, Goyal 
et al., 2014), results in the secretion of Aβ (Cirrito et al., 2005, Bero et al., 2011). However, the 
topology of Aβ in patients with AD also overlaps with highly connected brain regions called 
“hubs” (Buckner et al., 2009), which in simulations exhibit heightened vulnerability to activity-
dependent degeneration (de Haan et al., 2012). Chapter 3 uses hubs to demonstrate that a novel 
marker of “metabolic inefficiency” explains the topology of Aβ, but not tau, in healthy aging. 
While the mechanism remains unclear, tau is thought to reflect neuroplasticity failure (Mesulam, 
1999). 
 
Lifespan perspective on vulnerability. 
The processes associated with typical brain aging play a critical role in rendering the aging brain 
vulnerable to AD, with the markers of AD appearing at higher and higher rates with advancing 
age. The prevalence of substantial levels of Aβ, comparable to that of patients with AD, 
increases from approximately 10% of cognitively normal older adults at age 50 to 44% at age 90 
(Jansen et al., 2015). Tau in the transentorhinal cortex can be observed in some young adults, 
becoming increasingly frequent with advanced aging, to the point of being nearly universal by 
age 90 (Braak and Braak, 1997). As with other age-related conditions, understanding the 
contributions of the entire lifespan of brain function is central to understanding why AD 
develops (Jagust and Mormino, 2011).  

There are a wide variety of age-related changes to brain structure and function that may 
contribute to the vulnerability of the aging brain to AD. The neural systems impacted by aging – 
the medial temporal lobe memory and the frontostriatal executive systems – overlap with those 
impacted by AD (Jagust, 2013). Aging is associated with widespread reorganization of brain 
function, both of spontaneous brain function at rest (Tomasi and Volkow, 2012, Geerligs et al., 
2015) and as well as reorganized activation during cognitive tasks (Park et al., 2004, Prakash et 
al., 2012). Impaired structural integrity of white matter pathways in old-age (Andrews-Hanna et 
al., 2007, Saenger et al., 2017) may underlie reorganization of functional connectivity and task-
related brain activation (Sala-Llonch et al., 2015). However, there is also evidence of age-related 
synaptic reduction (Masliah et al., 1993) as well as reduction of glucose metabolism and aerobic 
glycolysis (Chetelat et al., 2013, Goyal et al., 2017). In Chapter 2, metabolic brain networks 
reveal widespread, systematic changes in glucose metabolism in older compared to younger 
adults. Further work is necessary to demonstrate how these changes reflect and confer 
vulnerability to the aging brain to drive it to begin the cascade of events that lead to AD. 
 
Network-based approaches to aging and AD. 

Network-based approaches stemming from graph theory provide a framework for modeling 
pairwise structural and functional interdependence across the brain (Bullmore and Sporns, 2009). 
While there is some utility in considering modules or units – whether they are voxels, brain 
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regions, or brain networks – as independent entities, ultimately most aspects of behavior and 
disease are the products of interdependent complex distributed systems. Graphs (i.e. networks) 
use edges to represent dependencies between the units of the graph, called nodes or vertices. 
Network-based approaches can provide a unifying framework for understanding the 
interdependence between Aβ, tau, and neurodegeneration and their links to healthy brain 
function, reorganization, behavior, and cognitive decline. 

AD leads to profound disruption of large-scale brain networks. Modularity, a 
fundamental principle of brain organization that characterizes the segregation of the brain into 
modules underlying distinct cognitive functions, shows signs of disruption in old-age (Chen et 
al., 2011, Geerligs et al., 2015), which more pronounced in AD, showing step-wise reductions 
with AD severity (Brier et al., 2014a). Reorganization of brain connectivity over the course of 
AD may begin with reduced posterior connectivity in initial stages followed by increased 
anterior connectivity with further disease progression (Jones et al., 2016), and Aβ further alters 
functional connectivity of distributed brain networks, including the default mode network, in 
cognitively normal older adults (Sperling et al., 2009).  
 A foundational study by Seeley and colleagues (2009) demonstrates the power and utility 
of a network-based framework for explaining the distinct patterns of atrophy observed across 
subtypes of dementia. Cast in a network framework, we can suddenly understand that distributed 
patterns of atrophy track the functional and structural independencies of the healthy brain. Each 
form of dementia may reflect failure of a different brain system, with AD reflecting network 
failure of the predominant brain system (Raj et al., 2012). These patterns may reflect prion-like 
spreading of pathological proteins, like tau, through neural connections in neurodegenerative 
diseases (Frost and Diamond, 2010). However, systematic patterns could also reflect cascading 
network failure over the course of decades (Jones et al., 2016). Even in the absence of 
transneuronal spread through neural connections, network-based approaches can be used to 
model and predict the accumulation of pathology and neurodegeneration through the brain, as 
demonstrated in Chapter 4. 

Where and how different brain regions are embedded in the topology of brain networks 
may provide insights into their vulnerability. Across brain disorders, lesions appear to be more 
common in densely connected brain regions called “hubs” (Crossley et al., 2014), with Aβ 
pathology being more concentrated in hubs in patients with AD (Buckner et al., 2009). Network-
based simulations suggest that activity-dependent degeneration may explain hub vulnerability in 
AD (de Haan et al., 2012) and that attacks on hubs produce greater disruption of brain function 
(Crossley et al., 2014). The topological embedding of brain areas within a network could explain 
differences in regional vulnerability due to many factors, including trophic failure, nodal stress, 
and transneuronal spread (Zhou et al., 2012). 
 By investigating pairwise dependencies across the brain, network approaches extract a 
shared pattern of covariation over time within subjects in the case of fMRI (Salvador et al., 2005) 
and electrophysiological methods (Bassett et al., 2006, Stam et al., 2007) or across subjects in 
cross-sectional studies of PET (Horwitz et al., 1986, Sepulcre et al., 2013), structural MRI (He et 
al., 2007), and gene expression (Richiardi et al., 2015). Network methods have revealed a wide 
variety of insights about aging and AD. This dissertation examines information from metabolic 
brain networks using FDG-PET in Chapter 2, functional brain networks using resting-stage 
functional MRI in Chapter 3, and directed progression networks of Aβ using PIB-PET in 
Chapter 4. 
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Chapter 2 
 

Metabolic brain networks in aging and preclinical Alzheimer’s disease 
 
* This chapter is based on the following publication: 
Arnemann, K.L., Stober, F., Narayan, S. Rabinovici, G. D., Jagust, W. J., (2017). Metabolic 
brain networks in aging and preclinical Alzheimer’s disease. NeuroImage Clin, 17, 987-999. 
 
 
Abstract 
 
Metabolic brain networks can provide insight into the network processes underlying progression 
from healthy aging to Alzheimer’s disease. We explore the effect of two Alzheimer’s disease 
risk factors, amyloid-β and ApoE ε4 genotype, on metabolic brain networks in cognitively 
normal older adults (N=64, ages 69-89) compared to young adults (N=17, ages 20-30) and 
patients with Alzheimer’s disease (N=22, ages 69-89). Subjects underwent MRI and PET 
imaging of metabolism (FDG) and amyloid-β (PIB). Normal older adults were divided into four 
subgroups based on amyloid-β and ApoE genotype. Metabolic brain networks were constructed 
cross-sectionally by computing pairwise correlations of metabolism across subjects within each 
group for 80 regions of interest. We found widespread elevated metabolic correlations and 
desegregation of metabolic brain networks in normal aging compared to youth and Alzheimer’s 
disease, suggesting that normal aging leads to widespread loss of independent metabolic function 
across the brain. Amyloid-β and the combination of ApoE ε4 led to less extensive elevated 
metabolic correlations compared to other normal older adults, as well as a metabolic brain 
network more similar to youth and Alzheimer’s disease. This could reflect early progression 
towards Alzheimer’s disease in these individuals. Altered metabolic brain networks of older 
adults and those at the highest risk for progression to Alzheimer’s disease open up novel lines of 
inquiry into the metabolic and network processes that underlie normal aging and Alzheimer’s 
disease. 
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Introduction 
 
Distinct patterns of change in brain and cognitive functions dissociate the processes of healthy 
aging and Alzheimer’s disease. Beyond the brain changes and gradual cognitive decline 
characteristic of normal aging (Park and Reuter-Lorenz, 2009), the hallmark of Alzheimer’s 
disease is a stereotyped spatial pattern of neuritic plaques (amyloid-β or Aβ) and neurofibrillary 
tangles (tau), alongside loss of episodic memory and cognitive decline. Early identification of 
vulnerability to Alzheimer’s disease – prior to the onset of clinical symptoms – is a central 
problem for the study of aging. PET imaging has revealed that some cognitively normal older 
adults harbor substantial Aβ (Sperling et al., 2011) and/or tau (Scholl et al., 2016) pathology, and 
are thought to be in a “preclinical” stage of Alzheimer’s disease. Examining older adults with 
and without evident Alzheimer’s disease pathology is necessary to dissociate brain changes of 
aging from the earliest stages of Alzheimer’s disease. 

Aging and Alzheimer’s disease are associated with distinct changes in cerebral 
metabolism. Alzheimer’s disease is associated with a characteristic pattern of cerebral 
hypometabolism in angular gyrus, posterior cingulate, precuneus, temporal, and parietal regions 
(de Leon et al., 1983, Minoshima et al., 1997). This pattern is distinct from that seen in normal 
aging, which is associated with hypometabolism in prefrontal, precentral, perisylvian, and 
anterior cingulate cortices (Chetelat et al., 2013). The spatial pattern of hypometabolism is a 
reasonably sensitive biomarker for predicting future progression to Alzheimer’s disease and can 
discriminate between normal aging, Alzheimer’s disease, and other neurodegenerative diseases 
(Mosconi, 2005, Herholz et al., 2002). However, there is no consensus on changes in cerebral 
metabolism specific to preclinical Alzheimer’s disease – while some studies detect 
hypometabolism (Drzezga et al., 2011, Lowe et al., 2014), other studies find hypermetabolism 
(Cohen et al., 2009, Oh et al., 2014), and others still find no differences in metabolism (Cohen et 
al., 2009, Altmann et al., 2015) associated with Aβ in normal aging and mild cognitive 
impairment (MCI). 

Cerebral metabolism may not only be useful as a biomarker – it could play a causal role 
in the development of Alzheimer’s disease pathology (Bero et al., 2011, Jagust and Mormino, 
2011, Mosconi, 2013). Although the spatial pattern of atrophy and hypometabolism largely 
overlap in Alzheimer’s disease, there is marked regional variability in their interrelationship, 
which suggests that hypometabolism may precede atrophy and possibly even pathology (Chetelat 
et al., 2008). Sustaining high levels of metabolism may come at a cost (Bullmore and Sporns, 
2012, Tomasi et al., 2013), the effects of which may be compounded across the lifetime (Jagust 
and Mormino, 2011) and induce vulnerability to Aβ deposition (Vlassenko et al., 2010, Oh et al., 
2016). Highly metabolically active areas of the brain tend to be more highly connected (Tomasi 
et al., 2013) and exhibit a distinct pattern of gene expression (Goyal et al., 2014) compared to 
areas of the brain with lower metabolic demand. Further study of cerebral metabolism across the 
lifespan and prior to the onset of clinical symptoms is necessary to understand the role of 
metabolic processes in aging and the development of Alzheimer’s disease.  

However, these approaches are restricted to investigating univariate increases or 
decreases in metabolism between groups, whereas multivariate approaches may be more 
sensitive for investigating the relationship between Aβ and metabolism in the earliest stages of 
Alzheimer’s disease. Researchers began looking at pairwise regional dependencies of glucose 
metabolism (Horwitz et al., 1984) near the advent of the use of [18F] fluorodeoxyglucose (FDG) 
to measure cerebral metabolic rate (Phelps et al., 1979). This approach has recently reemerged 
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and grown in popularity, reconsidered in a network framework that allows for the application of 
the mathematical tools of graph theory (Bullmore and Sporns, 2009). By investigating pairwise 
dependencies across the brain, network approaches extract a shared pattern of covariation over 
time in the case of fMRI (Salvador et al., 2005) and electrophysiological methods (Bassett et al., 
2006, Stam et al., 2007) or across subjects in the case of PET (Horwitz et al., 1986, Sepulcre et 
al., 2013), structural MRI (He et al., 2007), and gene expression (Richiardi et al., 2015). Studies 
of brain networks have revealed important insights into the phenomena of healthy aging and 
progression to Alzheimer’s disease, including reduced connectivity affecting the main intrinsic 
brain networks (ICNs) in healthy aging (Sala-Llonch et al., 2015), profound reductions 
particularly to the default mode network in Alzheimer’s disease (Dennis and Thompson, 2014), 
and accelerated desegregation of brain networks from healthy aging to Alzheimer’s disease 
(Brier et al., 2014a). However, potential reorganization of metabolic brain networks in aging and 
Alzheimer’s disease progression remain poorly characterized. 

Studies of metabolic brain networks, which measure co-variation in metabolism across 
individuals, complement univariate analyses of metabolism and other analyses of functional and 
structural brain networks. Metabolic brain networks are closely related to cortical thickness 
networks in that they estimate pairwise dependence of brain regions by examining correlations 
across individuals – just of metabolism measured by FDG PET, rather than cortical thickness 
measured by MRI (Alexander-Bloch et al., 2013). Early work on metabolic brain networks 
demonstrated age-related reductions of frontal-parietal metabolic correlations (Horwitz et al., 
1986, Azari et al., 1992) and Alzheimer’s-related reductions of metabolic correlation in frontal-
parietal and homologous brain regions (Horwitz et al., 1987). More recent studies of MCI and 
Alzheimer’s disease reported discrepant effects of ApoE genotype (Yao et al 2015, Carbonell et 
al., 2014) and reduced metabolic correlation associated with Aβ in MCI (Carbonell et al., 2014). 
However, no studies have examined either (1) the joint effects of Alzheimer’s disease risk 
factors (Aβ and ApoE ε4) in cognitively normal older adults, which have confounded studies of 
network function during resting state fMRI in normal aging (Brier et al., 2014b), or (2) metabolic 
connectivity within- and between- canonical ICNs and graph theoretic properties of metabolic 
brain networks in cognitively normal aging. These gaps in knowledge obfuscate the link between 
metabolic brain networks and inquiries into aging, Alzheimer’s disease progression, and brain 
network function in general.  

It remains unclear whether Alzheimer’s disease risk factors in cognitively normal older 
people will reflect a transitional stage between normal aging and Alzheimer’s disease, if they 
will be indistinguishable from normal aging, or if they will demonstrate a unique profile of 
metabolic correlation. Using [11C] Pittsburgh compound B (PIB) -PET to divide cognitively 
normal subjects into groups based on Aβ (PIB- for low and PIB+ for high Aβ load) as well as 
ApoE genotype (ApoE ε4- and ApoE ε4+), we explore differences in properties of group 
metabolic brain networks using FDG-PET for young adults, subgroups of cognitively normal 
older adults, and patients with Alzheimer’s disease. 
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Materials and methods 
 
Participants. 
The study examined 17 young adults, 64 cognitively normal older adults, and 22 patients with 
Alzheimer’s disease. All participants completed MR and PET imaging, as well as genetic testing 
for ApoE ε4 carrier status using previously published methods (Agosta et al., 2009). Because the 
ε4 polymorphism of the apolipoprotein E gene (ApoE) is a major genetic risk factor for 
Alzheimer’s disease (Corder et al., 1993, Schellenberg, 1995), we stratified subjects based upon 
the presence of this allele as well as their Aβ status. Prior to participation all subjects provided 
informed consent in accordance with the Institutional Review Boards at UC Berkeley, UC San 
Francisco, and Lawrence Berkeley National Laboratory. 

Young adults and cognitively normal older adults were recruited from the community via 
newspaper advertisements as part of the Berkeley Aging Cohort (BAC) at UC Berkeley. Subjects 
were required to live in the community independently, without any major medical, neurological, 
and psychiatric illnesses that could influence cognition; young adults were 18 to 30 years old and 
old adults were at least 60 years old. All subjects had scores on the Mini Mental State 
Examination ≥ 26 and performance on memory tests within 1.5 standard deviations of age-
adjusted norms. The study included all eligible young adults who underwent both MR and FDG-
PET imaging and were Aβ negative on PIB-PET scanning. From the population of cognitively 

Group Demographics 

 
Young Alzheimer’s 

disease 

Old PIB- 
ApoE4- 

Old PIB- 
ApoE4+ 

Old PIB+ 
ApoE4- 

Old PIB+ 
ApoE4+ 

# Subjects 17 22 16 16 16 16 

Gender 
(Female / 
Male) 

10 / 7 12 / 10 7 / 9 7 / 9 9 / 7 11 / 5 

Age a 23.59±2.79 
(20-30) 

74.82±4.98 
(69-89) 

75.19±3.68 
(71-84) 

74.81±3.76 
(71-83) 

76.31±3.23 
(70-80) 

75.23±4.57 
(69-89) 

PIB Index b 0.98±0.04 
(0.92-1.05) 

1.62±0.25 
(1.11-2.09) 

1.01±0.03 
(0.96-1.06) 

1.00±0.08 
(0.72-1.07) 

1.26±0.14 
(1.09-1.54) 

1.37±0.24 
(1.08-1.76) 

# ApoE 
Carriers c  
(ε4+ / ε4-) 

6 / 11 14 / 7 0 / 16 16 / 0 0 / 16 16 / 0 

Years of 
Education 

15.59±1.68 
(12-20) 

16.27±2.72 
(12-22) 

16.88±2.23 
(12-20) 

16.88±2.42 
(12-20) 

16.63±1.36 
(14-20) 

16.75±2.22 
(12-20) 

Scanner  
 # ECAT / 
BIOGRAPH 

13 / 4 15 / 7 11 / 5 8 / 7 8 / 8 7 / 9 

Table 1. Participant demographics. 
a Young group < Old groups and Alzheimer’s disease group 
b Young group and Old PIB- groups < Old PIB+ groups < Alzheimer’s disease group 
c Young group < Old ApoE ε4+ groups; Old ApoE ε4- groups < Old ApoE ε4+ groups and Alzheimer’s disease group 
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normal older BAC participants meeting our criteria (N=141), we formed four subpopulations 
based on PIB status (PIB- or PIB+, see section 2.2.3) and ApoE ε4 carrier status (ApoE ε4- or 
ApoE ε4+), then identified the subgroup which included the fewest number of participants: those 
who were PIB- and ApoE ε4+ (N=16). Three other subgroups (PIB- ApoE ε4-, PIB+ ApoE ε4-, 
and PIB+ ApoE ε4+) were then each formed by individually selecting 16 participants  
that best matched the demographic characteristics of participants in the PIB- ApoE ε4+ group 
based on age, gender, and years of education.  

Alzheimer’s disease patients were recruited at the University of California San Francisco 
Memory and Aging Center. Alzheimer’s disease diagnosis was based on a comprehensive multi-
disciplinary evaluation (Kramer et al., 2003); patients met criteria for probable Alzheimer’s 
disease (McKhann et al., 2011), were Aβ positive on PIB-PET scanning, and were without any 
major comorbid medical, neurological, and psychiatric illnesses.  

A single set of Alzheimer’s disease and young controls were examined throughout the 
study; older control subjects were initially separated only by PIB status. For the remainder of 
analyses, the cognitively normal older adults were divided into four subgroups (N=16) based on 
both PIB status and ApoE ε4 carrier status: Old PIB- ApoE ε4-, Old PIB- ApoE ε4+, Old PIB+ 
ApoE ε4-, and Old PIB+ ApoE ε4+ groups.  

Table 1 shows the expected differences between groups in age, PIB index, and ApoE 
genotype based on group definitions. Two of the Alzheimer’s disease participants were missing 
information – one did not undergo ApoE genotyping and another had an incomplete PIB scan 
and thus the PIB index could not be calculated but their Aβ positivity was confirmed through 
visual inspection by a clinician. We found no differences in gender and years of education 
between any of the groups, consistent with our sampling protocol.  
 
MR Imaging acquisition and processing. 

MR imaging of control subjects was performed at LBNL on a 1.5T Magnetom Avanto (Siemens 
Medical Systems) scanner using a 12 channel head coil. Structural scans were acquired axially 
using a high-resolution T1 MP-RAGE sequence (TR = 2110 ms; TE = 3.58 ms; TI = 1100 ms; 
flip angle = 15°; voxel dimension = 1.00 mm3; slice thickness = 1.00 mm with 50% gap). 

MR imaging for Alzheimer’s disease patients was performed at the Memory and Aging 
Center at UCSF on either a 1.5 T Siemens VISION System (N = 9) or 3 T Siemens Tim Trio (N 
= 13) scanner. Structural scans were acquired using high-resolution T1 MP-RAGE sequences, 
respectively acquired coronally with a quadracore head coil (TR = 10 ms; TE = 7 ms; TI = 300 
ms; flip angle = 15°; voxel dimension = 1.00 mm3; slice thickness = 1.40 mm with no gap) and 
axially with a 12-channel head coil (TR = 2300 ms; TE = 2.98 ms; TI = 900 ms; flip angle = 9°; 
voxel dimension =1.00 mm3). 

The T1 MRI data underwent anatomical tissue segmentation using Freesurfer v5.3 
(http://surfer.nmr.mgh.harvard.edu/) to produce 80 cortical and subcortical regions of interest 
(ROIs) in each subject’s native space based on the Desikan-Killiany atlas. The segmentation was 
coregistered to PET using an inverted transformation of the affine mapping between the mean 
PET image and the skull-stripped brain in Anatomical Normalization Tools (ANTs; 
http://picsl.upenn.edu/software/ants/).  
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PET Imaging acquisition and processing. 
PIB- and FDG-PET imaging were performed at LBNL (ECAT EXACT HR or BIOGRAPH 
Truepoint 6 PET scanners in 3D acquisition mode), enabling in vivo measurements of Aβ and 
metabolism respectively. Imaging began with injection for 15-mCi of [11C] PIB, followed by 6 to 
10-mCi of [18F] FDG at least 2-hours later and included a 10-minute transmission scan or an X-
ray CT for attenuation correction. PIB-PET scanning began immediately upon injection, with 
dynamic acquisition frames obtained over 90-minutes (4 x 15 s, 8 x 30 s, 9 x 60 s, 2 x 180 s, 10 x 
300 s, and 2 x 600 s). FDG-PET scanning began after 30-minutes of eyes-open quiet rest, with 6 
x 5 minutes emission frames. Distribution volume ratio (DVR) images of PIB were produced by 
Logan graphical analysis with a cerebellar grey reference region. Standardized uptake value ratio 
(SUVR) images of FDG were produced with the pons as a reference region. Compared to other 
proposed FDG-PET reference regions, the pons has stable FDG tracer uptake across the aging 
and Alzheimer’s disease spectrums (Minoshima et al., 1995). (For further details on PET 
acquisition and processing, see Wirth et al., 2013). 
 
PIB index. 

A PIB index was computed for each subject as the mean DVR across prefrontal, lateral temporal, 
parietal, and cingulate cortices, and was then used to separate the cognitively normal older 
subjects into Old PIB- (PIB index < 1.08) or Old PIB+ (PIB index ≥ 1.08) groups (Mormino et 
al., 2012). This threshold has previously been validated versus post-mortem Aβ burden 
(Villeneuve et al., 2015). 
 
Metabolic brain network generation. 
Group metabolic brain networks were constructed for each group by computing Pearson’s 
correlations of the FDG SUVR values across subjects between all pairs of ROIs. These 
correlations reflect relationships between brain regions across subjects, and are not based on 
canonical resting state networks but rather an approach used in graph theory in which the 
network reflects the interdependencies of all regions across the brain. FDG SUVR values were 
computed for each ROI by finding the mean SUVR value across all voxels within the ROI. This 
resulted in a fully weighted, symmetric 80 x 80 adjacency matrix for each group. The adjacency 
matrix was then converted to a fully weighted network, composed of 80 nodes (one for each 
ROI) and 3,240 undirected weighted edges (one for each pairwise correlation between two ROIs, 
i.e. the values in the adjacency matrix). See Appendix Table 1 for information about ROIs. 
 
Metabolic correlation strength. 
To summarize the metabolic correlation strength for each group, we computed the average 
correlation between all ROIs in the metabolic brain network. Metabolic correlation strength was 
computed on Fisher’s Z-transformed correlation data, which was then inverse transformed back 
to correlation values with a possible range from -1 to 1. We also computed metabolic correlation 
strength at the region level by averaging the strength of the correlations of each individual ROI 
with all other ROIs (Carbonell et al., 2014). 
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Statistical testing. 
All descriptive statistics and statistical testing were performed on Fisher’s Z-transformed data. 
We conducted ANOVA with a family-wise error rate of 0.05 to test for group differences in 
analyses of demographic data and metabolic brain networks, followed by Tukey’s HSD post-hoc 
test to examine pairwise differences between groups. We conducted chi-squared tests to test for 
group differences of dichotomous demographic data followed by pairwise differences between 
groups, adjusting the p-value using Bonferroni correction. 
 
Permutation testing of regional differences in correlation strength. 
The statistical significance of differences in mean regional correlation strength between groups 
was estimated using permutation testing. We pooled subjects in the two groups under 
comparison, and then randomly assigned N subjects to the first group and the remaining subjects 
to the second group, extracting their FDG SUVR data to generate group metabolic brain 
networks. We then computed differences in mean regional correlation strength between the 
groups. Differences were computed on Fisher’s Z-transformed data before being transformed 
back into correlations with a possible range from -1 to 1. We repeated this procedure 100,000 
times, with the results used to estimate a 95% confidence interval of group differences. If the 
empirical value of the difference between groups lay outside the 95% confidence interval of 
differences produced by this random assignment procedure, then we rejected the null hypothesis 
and the empirical difference between the groups was deemed significant. 
 
Control for spatial proximity based on anatomical distance. 

We computed the Chebyshev distance (the number of grey matter voxels that must be traversed 
to connect 2 points) between the centers of mass for each pair of ROIs using the Freesurfer 
average brain parcellation in MNI152 space. We computed the center of mass for each ROI 
using Chebyshev distance in a similar manner, by finding the voxel within each ROI that 
minimized the number of grey matter voxels that must be traversed to connect the voxel and all 
other voxels within the ROI. We deemed connections long-distance if the Chebyshev distance 
was above the median of all pairwise distances. We then employed statistical testing, as 
described in section 2.4.2 to compare group differences in metabolic correlation strength for only 
long-distance connections. 
 
Intrinsic connectivity network analysis. 
Using the functional atlas proposed by Shirer and colleagues (2012), composed of 84 ROIs 
associated with 14 intrinsic connectivity networks (ICNs), we sought to compare features of 
metabolic correlations within- and between-ICNs derived from resting-state fMRI. The ICNs are 
composed of ROIs that functionally coordinate in the absence of evoked activity, i.e. during a 
“resting” scenario similar to that in which the participants engaged during the FDG-PET scan. 
To examine the metabolic correlations within- and between-ICNs, we used the approach 
described in section 2.3. to generate metabolic brain networks from the 84 ROIs in the functional 
atlas. We then computed the metabolic correlation strength within each ICN and between each 
pair of ICNs.  We computed within-ICN correlation strength for a given ICN by calculating the 
average correlation strength of the connections between all ROIs within an ICN. Given two 
ICNs, we computed between-ICN correlation strength by calculating the average correlation 
strength of the connections between all ROIs in one ICN and all ROIs in the other ICN. As 
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described in section 2.4.1, metabolic correlation strengths were calculated by averaging Fisher’s 
Z-transformed data, before inverse-transforming the data to correlation values between with a 
possible range of -1 to 1. 
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Results 
 
Group differences in metabolic brain networks when normal older groups dichotomized by Aβ. 
 
Qualitative differences in metabolic brain network correlation matrices. 
Adjacency matrices of the metabolic brain networks are shown in Fig. 1, revealing qualitative 
differences in the pattern of metabolic correlation strengths in the young, Alzheimer’s disease, 
Old PIB-, and Old PIB+ groups, prior to splitting the cognitively normal older adults into four 
subgroups. The Young group exhibits the most heterogeneous pattern of correlations, with the 
strength of the correlations ranging from moderate negative correlations to strong positive 
correlations, and a combination of strong local (i.e. within-lobe) and distant (i.e. between-lobe) 

Fig. 1: Group metabolic adjacency matrices. Adjacency matrices are composed of pairwise correlation strength between all ROIs 
shown for young, Alzheimer’s disease, Old PIB, and Old PIB+ groups. Regions of interest are numbered with label color 
corresponding to lobe membership: red=cingulate, orange=frontal, yellow=insula, green=occipital, blue=parietal, 
purple=subcortical, magenta=temporal. 
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associations. Although the Alzheimer’s disease group also exhibits a relatively heterogeneous 
pattern of correlation strengths, a notable characteristic of the Alzheimer’s disease group is 
reduction in correlation strength of homologous brain regions and between hemispheres  
(respectively the diagonal and off-diagonal of the upper right quadrant of the adjacency matrix in 
Fig. 1). Both the Old PIB- and Old PIB+ groups exhibit a homogenous increase in correlation 
strength across cortical (and to a lesser extent subcortical) ROIs relative to young adults and 
patients with Alzheimer’s disease, with smaller increases in correlation strength in the Old PIB+ 
group. 
 
Mean metabolic correlation strength. 

The ANOVA examining group differences in mean metabolic correlation strength revealed a 
significant difference between the groups (F=1,159.01, p<<1.00e-10, df=12,636). The highest 
mean correlation strengths were seen in the Old PIB- group, followed by the Old PIB+, the 
young, and the Alzheimer’s disease groups (Tukey’s HSD post-hoc test FWE = 0.05).  
 
Group differences in metabolic brain networks when normal older groups dichotomized by both 
Aβ and ApoE 4 genotype. 
 
Qualitative differences in metabolic brain network correlation matrices. 
Adjacency matrices of the metabolic brain networks for older subjects defined by Aβ and ApoE 
genotype are shown in Fig. 3. The Old PIB- ApoE ε4-, Old PIB- ApoE ε4+, and Old PIB+ ApoE 
ε4- groups all exhibit a similar homogeneous pattern of increased correlation strength between 
most cortical ROIs compared to the young and Alzheimer’s disease groups in Fig. 1. This 
indicates that across subjects, the metabolic relationships between region-pairs are relatively 
consistent. However, the Old PIB+ ApoE ε4+ group exhibits a distinct, more heterogeneous 
pattern of correlation than other cognitively normal older adult subgroups, indicating that across 
all subjects, metabolism in one region inconsistently predicts metabolism in another region 
compared to other cognitively normal older adults. While the overall pattern of correlation 
strength may be dampened for the Old 
PIB+ ApoE ε4+ group relative to other 
subgroups of cognitively normal older 
adults, the reduced correlation strength of 
the Old PIB+ ApoE ε4+ group is 
particularly prominent in cingulate and 
temporal lobe ROIs.  
 
Mean metabolic correlation strength. 
The ANOVA examining group differences 
in mean metabolic correlation strength 
revealed a significant difference between 
the groups (F=1151.30, p<<1.00e-10, 
df=18954, Fig. 2). The highest mean 
correlation strengths were seen in the Old 
PIB- ApoE ε4 -, Old PIB- ApoE ε4+, and 
PIB+  ApoE ε4- groups, which were not 

Fig. 2: Group differences in metabolic correlation strength. Error bars 
show the simultaneous confidence intervals from Tukey’s HSD post-
hoc test. * p ≤ 0.05 
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significantly different from one another, while all other groups  differed (Tukey’s HSD post-hoc 
test FWE = 0.05) (Fig. 3). The Old PIB+ ApoE ε4+ group was intermediate in correlation 
strength between the young subjects and the other old subjects. 
 

Mean regional metabolic correlation strength. 
We examined the mean regional metabolic correlation strengths of each group’s metabolic brain 
network by computing the average correlation strength of each ROI with all other ROIs. All 
groups exhibited relatively high correlation strengths in frontal, parietal, and lateral and superior 
temporal ROIs and relatively low strengths observed in medial temporal lobe, temporal pole, 
cingulate, and subcortical ROIs (Fig. 4). Young adults and Alzheimer’s patients show distinct 

Fig. 2: Older subgroup metabolic adjacency matrices based on Aβ and ApoE genotype. Adjacency matrices are composed of 
pairwise correlation strength between all ROIs shown for Old PIB- ApoE ε4-, Old PIB- ApoE ε4+, PIB+ ApoE ε4-, and Old 
PIB+ ApoE ε4+ groups. Regions of interest are numbered with label color corresponding to lobe membership: red=cingulate, 
orange=frontal, yellow=insula, green=occipital, blue=parietal, purple=subcortical, magenta=temporal. 
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patterns of regional metabolic correlation strength. Similar patterns of relative correlation 
strength emerged across the subgroups of older adults, although the PIB+ ApoE ε4+ subgroup 
appeared to be in an intermediary stage between normal aging and Alzheimer’s disease. 

 

 

Fig. 4: Mean regional metabolic correlation strength for each group. (A) Young, (B) Alzheimer’s disease, (C) PIB- ApoE ε4-, 
(D) PIB- ApoE ε4+ E. PIB+ ApoE ε4- F. PIB+ ApoE ε4+. Regions with high metabolic correlation strength are metabolic brain 
networks “hubs”. 
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Fig. 5: Group differences in regional metabolic correlation strength. (A) Young > Alzheimer’s disease (warm) and Young < 
Alzheimer’s disease (cool) (B) Young > Other Old (warm) and Young < Other Old (cool) (C) Young > Old PIB+ ApoE ε4+ 
(warm) and Young < Old PIB+ ApoE ε4+ (cool) (D) Alzheimer’s disease > Other Old (warm) and Alzheimer’s disease < Other 
Old (cool) (E) Alzheimer’s disease > Old PIB+ ApoE ε4+ (warm) and Alzheimer’s disease < Old PIB+ ApoE ε4+ (cool) (F) 
Other Old > Old PIB+ ApoE ε4+  (warm) and Other Old<> Old PIB+ ApoE ε4+  (cool). The significance of the difference 
between groups is indicated by the region’s color as the logit of the uncorrected p-value obtained via permutation testing. 
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Group differences in mean regional metabolic correlation strength. 
We examined the topography of group differences in mean regional metabolic correlation 
strength using permutation testing (Fig. 5). Permutation testing revealed minimal differences 
between the Old PIB- ApoE ε4-, Old PIB- ApoE ε4+, and Old PIB+ ApoE ε4- groups. For this 
reason, we combined the results from these groups to simplify the analysis. This resulted in a 
comparison between the young, Alzheimer’s disease, Old PIB+ ApoE 4ε+, and all other 
cognitively normal older subjects (i.e. “Other Old group”, N=48).  
 The Young group differed profoundly from the Other Old group (Fig. 5 B) showing 
widespread reductions in correlation strength, but exhibited less extensive differences with the 
Alzheimer’s disease group (Fig. 5 A) and the Old PIB+ ApoE ε4+ group (Fig. 5 C). Of interest, 
the Old PIB+ ApoE ε4+ group exhibited significant reductions relative to the Young group in 
right entorhinal cortex, and increases relative to the Young group in ROIs in the left pars 
orbitalis, right rostral middle frontal, and bilateral inferior parietal cortex. The Old PIB+ ApoE 
ε4+ showed relatively few differences with the Alzheimer’s disease group (Fig. 5 E), but 
exhibited moderate differences with the Other Old group (Fig. 5 F). A notable commonality 
between the Old PIB+ ApoE ε4+ and the Alzheimer’s disease groups is the low metabolic 
correlation strength in ROIs in the entorhinal cortex and medial temporal lobe compared to 
young and other old subjects.  
 
Control for spatial proximity. 

Because partial volume effects of age- and disease-related atrophy may artificially inflate the 
metabolic correlation between spatially proximal regions (i.e. regions with short anatomical 
distance), we: (1) examined the relationship between the spatial proximity and correlation 
strength for all pairs of regions and (2) performed statistical testing for group differences in mean 
metabolic correlation strength on only long-distance connections that eliminate any shared effect 
of spatial proximity on correlation strength. 

The Alzheimer’s disease group demonstrated substantial decay in correlation strength 
with increasing anatomical distance (R=-0.52, p<<1.00e-10), and a small but significant negative 
relationship was also found in the Young (R=-0.07, p=3.45e-5), Old PIB- ApoE ε4- (R=-0.09, 
p=4.38e-7), and Old PIB+ ApoE ε4- (R=-0.11, p=8.51e-10) groups. No relationship was found in 
the Old PIB+ ApoE ε4+ group and a small but significant positive relationship was found in the  

Old PIB+ ApoE ε4- group (R=0.05, p=0.007). Group differences in mean correlation 
strength persisted even after examining only long-distance connections (F=927.24, p<<1.00e-10, 
df= 9348), where Tukey’s HSD post-hoc test revealed significant differences between all groups 
except the Old PIB- ApoE ε4- with the Old PIB- ApoE ε4+ and Old PIB+ ApoE ε4- groups. The 
overall pattern of relative metabolic correlation strengths was identical to those reported in 
section 3.2.2. 
 
Intrinsic connectivity network connectivity. 
For each group we examined the relationships within (diagonal) and between (off-diagonal) 
ICNs (Fig. 6). Unlike the previously presented graphical whole brain approach, this approach 
was designed to specifically test the expectation that the dependency of metabolic rate between 
regions should be greater for regions within the same ICN compared with regions outside of the 
ICN. 
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Examination of mean correlation within and between ICNs revealed clear qualitative 
distinction between the metabolic brain networks of young and Alzheimer’s disease groups; high 
correlations for the Alzheimer’s disease group were largely restricted to within-ICN associations, 
whereas the young group exhibited high correlations within most ICNs as well as a rich pattern 
of high and low correlations between ICNs. Both of the older PIB+ subgroups also exhibited 

Fig. 6: Intrinsic connectivity networks metabolic correlation strengths for each subgroup. Metabolic correlation strengths shown 
within- (diagonal) and between- (off-diagonal) intrinsic connectivity networks. dDMN=dorsal Default Mode Network, 
vDMN=ventral Default Mode Network, Prec=Precuneus, lECN=left Executive Control Network, rECN=right Executive Control 
Network, aSal=anterior Salience, pSal=posterior Salience, SM=sensorimotor, VS=Visuospatial, hVis=high Visual, pVis=primary 
Visual, Lang=Language, Aud=Auditory, BG=Basal Ganglia 
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high correlations within most ICNs and a diverse pattern of correlations between ICNs, which 
generally showed more between-ICN correlations than seen in the young or Alzheimer’s disease 
patients and fewer between-ICN correlations than the PIB- subgroups. The PIB+ ApoE4+  
between-ICN metabolic correlations were weaker than seen in the PIB+ ApoE4- group. The Old 
PIB- subgroups exhibited a homogeneous pattern of widespread high correlations both within 
and between most ICNs. Interestingly, some of the most striking differences between the older 
subgroups were lower between-ICN metabolic correlation strengths between the dorsal DMN 
and the other ICNS in the older PIB+ subgroups compared with the older PIB- subgroups. 
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Discussion 
 
We examined metabolic brain networks of young adults, patients with Alzheimer’s disease, and 
four subgroups of cognitively normal older adults based on the presence or absence of two 
Alzheimer’s risk factors: Aβ deposition and the ApoE ε4 allele. Cognitively normal older adults 
exhibited widespread high metabolic correlation strength compared to young and Alzheimer’s 
disease subjects. The extent of elevated metabolic correlation was reduced in the subgroup with 
both Aβ and ApoE ε4 genotype (Fig. 2) and in PIB+ older subgroups generally (Fig. 1). By 
comparison, young adults and patients with Alzheimer’s disease both had lower mean metabolic 
correlation strength than cognitively normal older adults, with the metabolic correlation strength 
of Alzheimer’s patients being somewhat lower than that of young adults. The pattern of 
metabolic dependencies across the brain differed between young adults, Alzheimer’s patients, 
older adults with both Aβ and ApoE ε4 genotype, and other older adults.  

We also examined metabolic brain network correlations within- and between- canonical 
resting state ICNs identified using resting-state fMRI by Shirer and colleagues (2012). These 
ICNs reflect sub-networks of ROIs that functionally couple at rest and underlie subject-driven 
cognitive states. Young adults showed relatively high metabolic correlation strength within ICNs 
and a rich pattern of varied metabolic correlation strengths between ICNs. In contrast, 
Alzheimer’s patients showed a dramatic reduction in correlation strength between ICNs. PIB- 
older adults showed homogeneous high metabolic correlation strength both within and betweeen 
ICNs. PIB+ older adults appeared to be intermediary to Alzheimer’s patients and PIB- older 
adults, exhibiting similar within- and between-network correlation patterns to the young subjects. 
These findings identified previously undescribed alterations in metabolic networks in aging, 
Alzheimer’s disease, and those at the highest Alzheimer’s disease risk. 

Metabolic brain networks, which reflect the co-variation in metabolism across 
individuals, should be interpreted differently than previously reported univariate analyses of 
metabolism and other analyses of functional brain networks. For example, while Alzheimer’s 
patients may be hypometabolic in two ROIs compared to young adults (Fig. 7 A), the relative 
metabolism in one ROI compared to the other may be preserved (Fig. 7 B and C) – 
demonstrating the presence of a univariate group difference, but not a bivariate difference 
between groups in these ROIs. Alternately, while the metabolic rate may be indistinguishable 
across subgroups of older adults in two ROIs (Fig. 7 D), the groups may demonstrate different 
patterns of linear dependence between the two ROIs (Fig. 7 E and F) – demonstrating the 
presence of a bivariate group difference, but not a univariate difference between groups. Thus, 
significant univariate results do not imply significant bivariate results, and vice versa. Moreover, 
unlike functional brain networks, which utilize fluctuations in brain activity over time, metabolic 
brain networks utilize fluctuations in metabolism across individuals to infer dependence of 
metabolism in ROIs (Fig. 7 C and F). High metabolic correlations are consistent with low 
individual variability in the relative metabolism between brain regions (i.e. “metabolic 
homogeneity” across individuals), such that metabolism in one region can be used to infer 
metabolism in another region due to a consistent linear relationship in relative metabolism across 
individuals. Low metabolic correlations are consistent with high individual variability in the 
dependency of metabolism between brain regions (i.e. “metabolic heterogeneity” across 
individuals), such that metabolism in one region cannot be used to infer metabolism in another 
region due a lack of a consistent linear relationship across individuals. These separate ways of 
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exploring group differences provide distinct insights into the underlying processes of aging and 
Alzheimer’s disease in the brain.  

Metabolic brain networks share commonalities with cortical thickness networks, both of 
which examine covariance between brain regions across subjects. In such networks positive 
correlations indicate that both ROIs are either increasing or decreasing consistently across 
subjects, negative correlations indicate that one ROI is increasing and the other is decreasing 
consistently across subjects, and near-zero correlations indicate inconsistency in the relative rates 
of the ROIs across subjects. Decreased structural covariance within the DMN has been reported 

Fig. 7: A closer look at univariate versus bivariate relationships.* (A) Boxplots of the distribution of FDG SUVR values for 
young adults and patients with Alzheimer’s disease in two ROIs (lmOrFr = left medial orbitofrontal, rEntr = right entorhinal) 
reveals univariate differences in FDG SUVR between groups (Young > Alzheimer’s disease) and between ROIs (left medial 
orbitofrontal > right entorhinal). (B) Difference in FDG SUVR values between ROIs for individual participants. Each line 
segment represents one young adult (blue) or patient with Alzheimer’s disease (red). This demonstrates a similar bivariate 
metabolic relationship between the two ROIs across participants. (C) Scatter plot of the relationship between FDG SUVR values 
for two ROIs. Each point represents one participant. A regression line shows the relationship of FDG SUVR between the ROIs 
for each group. The linear relationship of FDG SUVR between the ROIs suggests that metabolism from one ROI predicts 
metabolism in the other ROI across all of the subjects in the analysis; there is a linear dependence of metabolism between these 
ROIs across subjects, and both young adults and patients with Alzheimer’s disease demonstrate this similarly. Young R2 = 0.54, 
Alzheimer’s disease R2 = 0.55 (D) Boxplots of the distribution of FDG SUVR values for Old PIB+ ApoE ε4- and Old PIB+ 
ApoE ε4+ in two ROIs. This reveals no univariate differences in FDG SUVR for either ROI between groups. (E) Difference in 
FDG SUVR values between ROIs. Each line segment represents one older adult. This demonstrates group differences in the 
bivariate metabolic relationship between the two ROIs. (F) Scatter plot of the relationship between FDG SUVR values for two 
ROIs. Each point represents one participant. Regression line shows the relationship of FDG SUVR between the ROIs for each 
group. The linear relationships differ between groups; metabolism from one ROI predicts metabolism from the other ROI for the 
PIB+ ApoE ε4- group, but not for the PIB+ ApoE ε4+ group since that group does not demonstrate a consistent dependence in 
metabolism between the ROIs. Old PIB+ ApoE ε4- R2 = 0.67, Old PIB+ ApoE ε4+ R2 = 0.13. * This example was specifically 
selected to explain how univariate and bivariate results can differ within the same data, and is not necessarily representative of 
the dataset as a whole. 
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in older adults and patients with MCI and Alzheimer’s disease (Spreng and Turner, 2013, 
Montembeault et al., 2016), however other brain networks were also disrupted and reflected an 
inverted-U pattern consistent with maximal segregation of functional networks in young adults 
followed by dedifferentiation in old age (DuPre and Spreng, 2017). Disruption is more 
exaggerated in patients with Alzheimer’s disease (Montembeault et al., 2016) and in ApoE ε4 
carriers (Spreng and Turner, 2013). Patients with Alzheimer’s disease further exhibited increased 
local interregional correlations and disrupted long distance correlations (Yao et al., 2010), and 
altered graph theoretic properties (He et al., 2008, Yao et al., 2010). Our findings in metabolic 
brain networks of Alzheimer’s patients mirror those reported in cortical thickness networks, 
however the widespread elevation of correlation strength, as we found in metabolic brain 
networks of older adults, was a divergent finding from previous reports of reductions in 
correlation strength for cortical thickness networks of older adults. Thus, metabolism may 
undergo a more homogenous pattern of change in older adults, compared to a more 
heterogeneous pattern of atrophy across individuals. Importantly, studies of cortical thickness 
networks in older adults have not accounted for the effects of Aβ. Exploration of preclinical 
Alzheimer’s pathology on cortical thickness networks in old age would further clarify the 
relationship between the processes of atrophy and metabolic change, which have shown evidence 
of divergence in univariate studies (Ibanez et al., 1998, Chetelat et al., 2008, La Joie et al., 2012, 
Grothe et al., 2016, Kljajevic et al., 2014). 

Widespread elevations in correlation strength of metabolic brain networks observed in 
cognitively normal older adults suggest a novel phenomenon in aging – metabolic homogeneity. 
Previous work posited that weaker metabolic correlation strength in Alzheimer’s disease reflects 
“metabolic heterogeneity” due to variability in compensatory and/or degenerative process that 
lead to inter-individual variability in metabolism (Carbonell et al., 2014, Sanabria-Diaz et al., 
2013). We found the opposite effect – very strong metabolic correlation strength – in cognitively 
normal older adults, which would be consistent with “metabolic homogeneity”. Interestingly, this 
homogeneity must be occurring despite the presence of age-related compensatory and 
degenerative processes. As white matter integrity typically decreases in old age, the pervasive 
metabolic “hyper-connectivity” observed in the present study does not reflect increased 
structural connectivity between brain regions. Rather, this phenomenon may reflect 
dedifferentiation that occurs with age-related loss of aerobic glycolysis (Goyal et al., 2017), 
functional connectivity (Geerligs et al., 2015), white matter integrity (Andrews-Hanna et al., 
2007, Saenger et al., 2017), and BOLD variability (Garrett et al., 2011) that negatively affect 
dynamic exploration of functional brain states (McIntosh et al., 2010, Deco et al., 2011). Our 
finding that reduction of correlations was related to further anatomical distance in two of the 
normal older groups (section 3.4) may be consistent with white matter alterations leading to 
metabolic homogeneity. Further work is needed to explore age-related metabolic homogeneity, 
including its potential relationship with aerobic glycolysis, functional connectivity, white matter 
alterations, and other measures of brain structure and function, as well as the effects of deviation 
from this old age-related metabolic correlation profile on brain function and degeneration. 

Metabolic homogeneity may be a form of “dedifferentiation”, an age-related process 
previously posited in light of reductions in hemispheric asymmetry (Dolcos et al., 2002), loss of 
functional specialization (Park et al., 2004), and reduced task-related deactivation (Prakash et al., 
2012).  Age-related dedifferentiation was further confirmed by our ICN analysis, which revealed 
widespread high between-ICN metabolic correlation strength in cognitively normal older adults, 
indicative of desegregation. This was true across all subgroups of older adults, regardless of Aβ 
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and ApoE status, although desegregation was greater in older subgroups without Aβ compared to 
those with Aβ which may be indicative of divergent process of aging and Alzheimer’s disease. 
Segregation of the brain into functionally specialized subnetworks is a key organizational feature 
of structural and functional brain networks that supports differentiation of brain function (Chen 
et al., 2008, He et al., 2009). Studies in other modalities have also demonstrated age-related 
desegregation of brain networks (Chen et al., 2011, Geerligs et al., 2015), as well as step-wise 
decreases in segregation with Alzheimer’s disease severity (Brier et al., 2014a). Overall, 
widespread elevated metabolic correlation was consistent with a profound loss of independence 
in metabolism across brain systems in normal aging, leading to dedifferentiation and 
desegregation of metabolism. 

Individuals possessing both Aβ and the ApoE ε4 genotype appeared to be on an altered 
metabolic trajectory compared to other cognitively normal older adults without both risk factors. 
Because the network correlation pattern of this group was intermediate between young and 
Alzheimer’s disease patients, and quite different from their normal old-aged peers, the altered 
trajectory could represent either preservation of youth-like function or the start of decline 
towards Alzheimer’s disease. While the latter seems more likely, increased neural activity that 
might be associated with persistence of youth-like metabolic function has been proposed as an 
underlying mechanism linking ApoE genotype, Aβ, and aging (Jagust and Mormino, 2011, Oh et 
al., 2016). However, the relatively low metabolic correlation strength in the entorhinal cortex and 
temporal lobe – regions that exhibit marked neurodegeneration in Alzheimer’s disease (Du et al., 
2001) as well as neurodevelopmental differences in early life (Shaw et al., 2007) – bore 
intriguing similarity to the Alzheimer’s group (Fig. 3 and Fig. 4). Moreover, prior work 
demonstrating an interaction of Aβ and ApoE ε4 genotype in healthy older adults reported lower 
cognitive performance (Kantarci et al., 2012) and faster rates of cognitive decline (Mormino et 
al., 2014) only in subjects with both risk factors. Various mechanisms may make ApoE ε4 
carriers more vulnerable to the toxic effects of Aβ, including alterations in tau phosphorylation, 
neuroinflammation, mitochondrial function, synaptic function, and/or neurodevelopmental 
differences in cortical thickness and connectivity (Wolf et al., 2013, Brown et al., 2009). 
However, another possibility is that individuals with both risk factors were further along the 
Alzheimer’s disease continuum, given the younger age of onset of Alzheimer’s disease in 
patients with ApoE ε4 genotype (Corder et al., 1993).  

Due to the plurality and diversity of age-related processes, the study of aging is rife with 
confounding variables and ultimately it is beyond the scope of any single study to address all of 
these challenges. The major limiting factor of the present study was the small number of 
subjects. We attempted to control for spurious results by confirming consistency using 
permutation testing, which helped protect against individual subject or a subset of subjects 
having undue influence on the results, and conducted some analyses on a larger group (i.e. Other 
Old, N=48) composed of all older adults except those in the PIB+ ApoE ε4+ group (which 
remained lower powered at N=16). The limited number of subjects precluded the use of partial 
correlations to control for additional variables. However, we were able to match subgroups for 
sex, years of education, and, when appropriate, age. While brain atrophy and partial volume 
effects consequent to the relatively low resolution of PET will increase regional metabolic 
covariance, this did not seem likely to explain the pattern of results (see section 3.4). Moreover, 
atrophy was unlikely to explain opposite effects on metabolic correlation strength: elevated 
metabolic correlation strength in cognitively normal older adults, but reduced metabolic 
correlation strength in Alzheimer’s patients. We conducted the analysis using fully-connected 
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weighted graphs for each group, and thus our results should not be directly compared with 
studies using binary graphs or partially-connected (i.e. thresholded) graphs, as well as graphs 
generated from other neuroimaging modalities. However, our results suggested that there may be 
significant differences in the appropriate “connection density” (i.e. number of edges in a graph) 
between groups, providing a strong case against the use of binary graphs or graphs thresholded 
based on connection density when examining age- and disease-related differences in metabolic 
brain networks (and possibly other neuroimaging modalities as well). We recognize that glucose 
metabolism is a complex phenomenon reflecting multiple metabolic processes (Zimmer et al., 
2017). Nevertheless, it is clearly related to synapse structure and function as well as measures of 
brain function and connectivity using multiple modalities (Riedl et al., 2014, Tomasi et al., 2013, 
Rocher et al., 2003, Goyal et al., 2014). 
 
Conclusion. 
Metabolic brain networks revealed distinct effects of aging and Alzheimer’s disease risk on 
metabolic processes in cognitively normal older adults. We identified a previously undescribed 
process of widespread elevated metabolic correlation in aging, which disrupted the segregation 
of ICNs across the brain. Moreover, we demonstrated that the metabolic brain network of normal 
older adults with both Aβ and ApoE ε4 genotype differed substantially from that of their normal 
old-aged peers without both risk factors, possessing a pattern of metabolic correlations that is 
more similar to that of young adults and Alzheimer’s disease patients. Analysis based on ICNs 
further distinguished PIB+ from PIB- older adults, showing greater dedifferentiation in PIB- 
subgroups and a profile more similar to Alzheimer’s patients in PIB+ subgroups. The effect of 
dual Alzheimer’s risk factors appeared to be much more prominent when examining metabolic 
brain networks than the weak and inconsistent effects identified using other approaches, 
suggesting that the alterations captured by metabolic brain networks may be especially important 
for understanding cognitive decline and progression to Alzheimer’s disease. While the clinical 
applications of these results are unclear, the findings of alterations in metabolic networks that 
differ significantly in aging and those at high risk of Alzheimer’s disease may motivate the 
exploration of these effects in the further search for biomarkers and mechanisms important in the 
earliest stages of Alzheimer’s disease.  
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Chapter 3 
 

Early-life metabolic inefficiency predicts late-life amyloid-β topology 
 
 
Abstract 
 
Alzheimer’s disease exhibits a characteristic spatiotemporal pattern of amyloid-β plaques (Aβ) 
and neurofibrillary tangles (tau); the reasons for their varied concentrations across the brain 
remain unknown. To focus on the topologies of Aβ and tau before they are widely distributed 
throughout the brain, we examined PIB-PET (N=138) and AV1451-PET (N=59) in cognitively 
normal older adults (ages 65-93). To examine the effects of lifespan brain activity on 
vulnerability to Alzheimer’s disease pathology, we used measures of brain function in young 
adults (ages 20-41) – specifically brain regions showing high connectivity (hubs) estimated from 
rs-fMRI (N=100), glucose metabolism from FDG-PET (N=42), and a novel metric “metabolic 
inefficiency” – to predict the topologies of Aβ and tau in healthy aging. We found that hubs did 
not explain the topology of Aβ or tau pathologies in healthy aging. However, metabolic 
inefficiency strongly predicted the topology of Aβ (R=0.525, p<<e-100), with metabolically 
inefficient brain areas harboring 10 % more Aβ than efficient regions. Although metabolic 
inefficiency significantly predicted the topology of tau (R=0.255, p<<e-100), we demonstrated 
that this relationship was driven by correlation of tau with Aβ, failing to explain tau pathology in 
the medial and inferior temporal lobe. While the exact cause of vulnerability of metabolically 
inefficient brain areas to Aβ remains to be determined, we provide evidence that tissue metabolic 
factors, unrelated the role of glucose in sustaining brain connectivity, explains the topology of 
Aβ in healthy aging. 
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Introduction 
 
Alzheimer’s disease (AD) pathology exhibits a stereotyped spatiotemporal pattern across the 
brain. Tau initially appears in entorhinal and other medial temporal areas before spreading to 
association cortex (Braak and Braak, 1995), whereas Aβ predominantly accumulates in 
prefrontal, lateral temporal, parietal, and cingulate cortices (Klunk et al., 2004). It remains 
unclear whether tau and Aβ spread transynaptically from epicenters, or whether specific aspects 
of regional vulnerability drive the distribution of each pathology in a multifocal manner (Thal et 
al., 2002, Grothe et al., 2017, de Calignon et al., 2012, Lowe et al., 2018). While there is ongoing 
work characterizing the spatiotemporal topology of AD pathology, we have little understanding 
of the etiology of Aβ and tau – specifically, why particular brain areas are more or less 
susceptible to Aβ and tau early in the course of the disease. Differences in the topology of Aβ 
and tau in the initial stages of AD suggest that distinct factors contribute to their susceptibility. 

Prior work suggests that patterns of regional connectivity or “hubness” (Buckner et al., 
2009), glucose metabolism (Oh et al., 2016), and aerobic glycolysis (Vlassenko et al., 2010) 
across the healthy young brain closely overlap with the topology of Aβ deposition in AD. Each 
of these factors implicates a different aspect of regional tissue bioenergetics. However, 
unraveling the relative contributions of these physiologic properties to AD pathology is 
challenging due to their complex interdependencies: aerobic glycolysis contributes to 
measurements of glucose metabolism (Fox and Raichle, 1986) and hubs experience elevated 
glucose metabolism and aerobic glycolysis (Bullmore and Sporns, 2012). Furthermore, 
metabolism and hubs share other physiologic properties (Newberg et al., 2005, Vaishnavi et al., 
2010, Liang et al., 2013). The relationship of these measures to synaptic activity, which has been 
shown to release Aβ in animal models (Bero et al., 2011), may drive the link between 
metabolism and hubs – a theory backed by computational models of “activity-dependent 
degeneration” (de Haan et al., 2012). However, this does not explain the link between early-life 
aerobic glycolysis and Aβ, since aerobic glycolysis does not appear to support neural activity 
(Lin et al., 2010, Goyal et al, 2014) and is diminished in normal aging (Goyal et al., 2017). 
 While our ability to measure tau deposition in vivo is a relatively recent development, 
correlates of tau topology in the human brain remain elusive. The extent to which tau pathology 
overlaps with hubness, cerebral metabolism, aerobic glycolysis, and other sources of 
vulnerability linked to Aβ remain unexplored. However, because of their different patterns of 
deposition across the brain, it seems likely that distinct mechanisms lead to Aβ and tau 
pathologies. Theories about the origins of tau pathology differ from those suggested for Aβ; 
rather than metabolic features of tissue, tau deposition is proposed to reflect neuroplasticity 
failure (Mesulam, 1999) or high information processing load fueled by cascading network failure 
(Jones et al., 2017). 

AD develops over the course of decades (Price et al., 1999); by the time clinical 
symptoms of the disease appear, AD pathology is already widespread throughout the brain 
(Braak and Braak, 1991). To provide insight into the etiology of Aβ and tau pathologies we 
focused on the earliest stages of AD progression by examining the topologies of Aβ and tau in 
cognitively normal, healthy older adults. To gain insight into the features of typical, healthy 
brain function that induce vulnerability to AD pathology, we compared the topologies of features 
of brain function in early-life with the topologies of AD pathology in late-life. Our approach of 
examining brain function in early-life was consistent with examining the effects of lifespan brain 
activity on vulnerability to AD pathologies (Jagust and Mormino, 2011, Jagust, 2013). By 
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examining the topologies of hubs and glucose metabolism in younger adults, we avoid the 
chicken-and-egg problem created by concurrent changes in brain structure and function and 
accumulation of AD pathology in late life (Sheline and Raichle, 2013). We specifically focused 
on comparing the predictive power of the early life topologies of hubs, glucose metabolism, and 
a novel metric “metabolic inefficiency” (which reflects metabolism exceeding that predicted by 
degree centrality) in explaining the topologies of Aβ and tau in late-life.  
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Materials and methods 
 
Participants. 
We utilized MRI and PET data from the Berkeley Aging Cohort Study (BACS), the IMAP study 
(Imagerie Multimodale de la maladie d’Alzheimer á un stade Précoce, Caen, France) and the 
Human Connectome Project (HCP). Cerebral glucose metabolism was measured using FDG-
PET in young and middle-aged adults (20 to 41 years old) that participated in BACS (N=13) and 
IMAP (N=29). Resting-state fMRI was measured in similarly aged adults (22 to 36 years old) 
from HCP (N=100). Aβ was measured in older adults (65 to 91 years old) using PIB-PET from 
BACS (N=138). Tau was measured in a subset of the older adults (71 to 93 years old) from 
BACS (N=59) using AV1451-PET. All participants across facilities underwent structural MRI. 
Genotype (N=8) and education (N=6) information were missing for a small subset of BACS 
subjects. See Table 1 for participant demographics. 
 

 rs-fMRI 
(HCP) 
(N=100) 

FDG-PET 
(BACS/IMAP) 
(N=42) 

PIB-PET 
(BACS) 
(N=138) 

AV1451-PET 
(BACS) 
(N=59) 

Age 29 
(22-36) 

28 
(20-41) 

76 
(65-91) 

79 
(70-93) 

Sex (% 
female) 

54% 45% 57% 56% 

Education 
(years) 

14 
(11-17) 

14 
(9-20) 

17  
(12-20) 

17 
(12-20) 

Apoe ε4 
Carriers 

n/a 25% (N=40) 30% (N=131) 37% 

PIB Index n/a n/a 1.10 
(0.71-1.76) 

1.17 
(0.95-1.85) 

Braak 
Stage 

n/a n/a n/a Stage 0: N=13; Stage 
1: N=38; Stage 2: N=8 

PET 
Scanner 

n/a ECAT (N=10); 
Biograph (N=3); 
Discovery (N=29) 

ECAT (N=89); 
Biograph (N=49) 

Biograph (N=59) 

Table 1: Participant demographics. Values represent means and (range). 
 
BACS PET and MR imaging acquisition. 

For all BACS participants, PET and MR imaging were performed at Lawrence Berkeley 
National Laboratory.  
 
PET. 

PET imaging was performed on either an ECAT EXACT HR or BIOGRAPH Truepoint 6 
scanner in 3D acquisition mode. For each PET scan a 10-min transmission scan or X-ray CT was 
obtained for attenuation correction.  

PET data were reconstructed using an ordered subset expectation maximization algorithm 
with a 4mm Gaussian smoothing kernel, weighted attenuation correction, and scatter correction.  
The resulting resolution of the image was 6.5 x 6.5 x 7.25 mm3. 

 [11C]PIB was synthesized at LBNL Biomedical Isotope facility using a previously 
published protocol (Mathis et al., 2003); approximately 15-mCi of [11C]PIB was injected into an 
antecubital vein. PIB-PET scanning began immediately upon injection, with dynamic acquisition 
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frames obtained over 90-minutes as follows: 4 x 15 s, 8 x 30 s, 9 x 60 s, 2 x 180 s, 10 x 300 s, 
and 2 x 600 s.  

[18F]AV1451 was synthesized at LBNL Biomedical Isotope facility; approximately 10-
mCi of [18F]AV1451 was injected. Data from 80-100 min post injection were used to construct 
tissue ratios (SUVRs) using an inferior cerebellar gray matter reference region (Baker et al., 
2017). 

[18F]FDG was purchased from a commercial vendor (IBA Molecular, Morgan Hill, CA); 
6 to 10-mCi of [18F]FDG was injected. During [18F]FDG tracer uptake, subjects rested quietly in 
a dimly lit room. FDG-PET scanning began 30-minutes following injection, consisting of six 5-
min emission frames. 
 
MRI. 

To aid preprocessing and tissue segmentation of the PET data, anatomical MR imaging was 
performed on a 1.5T Magnetom Avanto (Siemens Medical Systems) scanner using a 12-channel 
head coil. Anatomical MRI scans were acquired axially using a high-resolution T1 MP-RAGE 
sequence (TR = 2110 ms; TE = 3.58 ms; TI = 1100 ms; flip angle = 15°; voxel dimension = 1.00 
mm3; slice thickness = 1.00 mm with 50% gap). 
 
IMAP PET and MR imaging acquisition. 
For all IMAP participants, PET and MR imaging were performed at the Cyceron Center (Caen, 
France).  
 
PET. 
PET imaging was performed on a Discovery RX VCT 64 PET-CT scanner. For each PET scan a 
transmission scan was acquired for attenuation correction. The PET scanner had an image 
resolution of 5.22 x 5.22 x 5.78 mm (measured using the Nema Nu2-2001 standard) and images 
were reconstructed without smoothing with a voxel size of 1.95 x 1.95 x 3.2 mm. Approximately 
180-MBq of [18F]FDG was injected. During [18F]FDG tracer uptake, subjects rested quietly in a 
dark environment. At 50-min post-injection a 10-min FDG-PET acquisition scan was acquired. 
 
MRI. 
To aid preprocessing and tissue segmentation of the PET data, MR imaging was performed on a 
Philips Achieva 3T MRI scanner using an 8-channel head coil. Anatomical MRI scans were 
acquired sagittally using a high-resolution 3D T1 fast field echo sequence (TR = 20 ms; TE = 4.6 
ms; flip angle = 20°; voxel dimension 1.00 mm3; slice thickness = 1.00 mm with no gap). 
 
HCP MR imaging acquisition. 
For all HCP participants, MR imaging was acquired as part of the Washington University-
Minnesota Consortium HCP (Van Essen et al., 2013) and accessed using the ConnectomeDB 
database (Marcus et al., 2011). Participants were selected from the “100 Unrelated Subjects” 
subset of the “500 Subjects” HCP release. MR imaging was performed on a modified Siemens 
Skyra 3T MRI scanner using a 32-channel head coil. Resting-state fMRI scans were acquired 
over 14-minutes and 30-seconds with a multiband gradient-EPI sequence (TR = 720ms, TE = 
33.1 ms, multiband factor = 8; flip angle = 52°; voxel dimension = 2 mm3, number of slices = 72, 
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multiband acceleration factor = 8, see Ugurbil et al., 2013). Data were collected over 2 d. 
Detailed description of the resting-state fMRI data collection can be found elsewhere (Smith et 
al., 2013). 
 
IMAP and BACS anatomical MRI processing. 
All anatomical MRIs were collected a maximum of 426 days (median: 14 days) from the PET 
scan. Anatomical MRIs were linearly coregistered to a template to straighten or, for non-baseline 
MRIs, were coregistered to the baseline MRI. Each anatomical MRI underwent tissue 
segmentation using Freesurfer v5.3 (http://surfer.nmr.mgh.harvard.edu/) to produce regions of 
interest (ROIs) in each subject’s native space based on the Desikan-Killiany atlas. The 
segmentation was coregistered to the PET data using an inverted transformation of the affine 
mapping between the mean PET image and the skull-stripped brain in Anatomical Normalization 
Tools (ANTs; http://picsl.upenn.edu/software/ants/). The Freesurfer segmentation was used for 
PET processing. 
 
IMAP and BACS PET processing. 

Frames within the first 5 minutes of PIB-PET data were summed, and all frames including the 
summed image were realigned to the middle frame. The cerebellar grey matter ROI from 
Freesurfer was used as a reference region for Logan graphical analysis on frames corresponding 
to 35- to 90-minutes post-injection, which produced PIB distribution volume ratio (DVR) 
images. 

All frames of FDG-PET data were realigned to the first frame for each subject. We 
computed the sum of the frames, and then intensity normalized the data by the mean value of the 
pons to produce standardized uptake value (SUVR) images. We manually extracted the pons 
based on the brainstem ROI from Freesurfer. Images with incomplete coverage of the pons were 
excluded from the study. To achieve the same image resolution across PET imaging centers of 
6.5 x 6.5 x 7.25 mm3, the SUVR data from Caen were smoothed with a 3.873 x 3.873 x 4.377 
mm3 Gaussian kernel using SPM12. 

The AV1451 frames were realigned to the first frame for each subject. We computed the 
mean uptake 80-100 minutes post-injection, and then intensity normalized the data by mean 
inferior cerebellar grey matter uptake to obtain SUVR images (Baker et al., 2017). We created 
the inferior cerebellar grey ROI using the reverse-normalized SUIT template (see Baker et al., 
2017 for more detail). 

We warped the DVR/SUVR images to the MNI 152 2-mm template using ANTS and 
downsampled to 4-mm voxels using FSL. To obtain group brainmaps of the average topology of 
each tracer (FDG, PIB, and AV1451) for use in the analyses, we computed the average SUVR or 
DVR value for each voxel across subjects. We used the fsaverage from Freesurfer, downsampled 
to 4mm voxels from MNI 152 2 mm space, to restrict analyses to cortical voxels. Restriction to 
cortex should minimize the effects of off-target binding of AV1451 to subcortical brain areas. 
 
HCP rs-fMRI processing. 
The rs-fMRI scans underwent the HCP minimal processing pipeline (Glasser et al., 2013) with 
global signal regression. We warped the rs-fMRI scan to the MNI 152 2 mm template using 
ANTS and then downsampled to 4 mm voxels using FSL. We used the fsaverage from 
Freesurfer, downsampled to 4mm voxels from MNI 152 2 mm, space, to restrict analyses to 
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cortical voxels. Restriction to cortex should maximize signal-to-noise in the HCP multiband 
sequence (Barch et al., 2013). 
 
Graph construction. 

Using the rs-fMRI data for each HCP participant, we computed the Pearson’s correlation over 
time between each pair of voxels. This resulted in an adjacency matrix of 15,970 x 15,970 
voxels, equivalent to a fully connected weighted graph with 15,970 nodes. To create binary 
graphs consistent with those generated by Buckner and colleagues (2009), we thresholded each 
adjacency matrix at a cost of 0.25 to preserve the top 25% of edges. 
 
Node centrality. 
For each individual subject, we computed degree centrality for each node (i.e. voxel) by 
summing the number of edges of each node with all other nodes using the subject’s binary graph. 
We then z-scored the degree centrality values for each subject. To ensure consistency of results, 
the analyses were repeated for fully weighted graphs, for which we estimated correlation strength 
by computing the average Fischer-transformed correlation of each node with all other nodes and 
then inverse transforming back to ensure range of -1 to 1. 
 
Consensus maps. 
We created consensus maps to represent the average topologies of our measures. For the PET 
data, we used the SUVR and DVR maps for each subject to compute the average SUVR and 
DVR maps in the sample. We created a metabolism consensus map, representing the average 
FDG SUVR of each voxel in the young BACS and IMAP samples. We created an Aβ consensus 
map and a tau consensus map, respectively representing the average PIB DVR and the average 
AV1451 SUVR of each voxel in the older BACS samples. We also created a hub consensus map, 
representing the average z-scored degree centrality of each voxel in the young HCP sample.  

To improve the generalizability of our results, we validated the analyses using the 
Buckner hub consensus map of degree centrality in 127 young subjects, provided to us by 
Buckner and colleagues (2009). The data were downsampled to 4mm voxels using FSL. 
Analyses were restricted to cortical voxels in fsaverage from Freesurfer. 
 
Linear regression model of centrality on metabolism. 

To model the relationship between the hub consensus map and the metabolism consensus map, 
we used the topology of degree centrality to predict the topology of metabolism via linear 
regression (using the sklearn function linear_model.LinearRegression in Python): 

𝑦 =   β! + β!𝑥 + ε 
Where 𝑦 is a vector [FDG SUVR1,.., FDG SUVRn] representing the average metabolism in 
young adults for each voxel, 𝑥 is a vector [degree1, …, degreen] representing voxels average 
degree centrality in young adults for each voxel, ε is a vector of the errors [ε1, …, εn], with n total 
voxels representing a different point in 3D space on the brain, not a different individual. 

To obtain an unbiased estimate of each voxel’s metabolism, given the topology of 
metabolism and degree centrality in the rest of the brain, for each voxel we removed the voxel 
and its neighbors from 𝑥 and 𝑦 before performing the linear regression. We used this approach, 
which is conceptually similar to leave-on-out cross validation from machine learning (Norman et 
al., 2006, Haynes et al., 2015, Cole et al., 2016) to reduce the influence of spatial 
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autocorrelations on the predictions (Kiebel et al., 1999). Then, we computed the predicted 
metabolism (𝑦!) for each voxel 𝑖: 

𝑦! =   𝑏! + 𝑏!𝑥! 
Where 𝑏0 and 𝑏1 are the fitted values of β! and β! and 𝑥! is the degree centrality of the voxel 
from the hub consensus map. 

To measure what we call the “metabolic inefficiency” of each voxel, we subtracted the 
metabolism predicted by the model for each voxel (𝑦!) from the observed metabolism (y) of the 
voxel from the metabolism consensus map. This is equivalent to the residual error (ε!) of the 
model. 
 
Removing shared variance of Aβ and tau. 
In addition to naïve examination of the distributions of Aβ and tau in healthy older adults, we 
sought to determine whether any associations with Aβ and with tau were driven by their shared 
variance. To examine independent features of the topologies of Aβ and tau, we removed their 
shared variance. To estimate Aβ independent from tau, we use the residual Aβ after performing a 
linear regression of tau on Aβ using their consensus maps. Residual Aβ is equivalent to the error 
of the model and represents independent Aβ decorrelated from tau. We performed the 
complementary procedure to estimate tau independent from Aβ. 
 
Statistical analysis. 

We examined differences in AD pathology between metabolically efficient and inefficient voxels 
as well as between hubs (> mean degree centrality) and non-hubs (≤ mean degree centrality). We 
conducted a t-test to assess statistical significance between the two sets of voxels. We employed 
a bootstrap procedure to estimate the mean and confidence interval of differences in AD 
pathology. For the bootstrapping procedure, with each iteration we selected N random subjects 
(Aβ: N=138; tau: N=59) with replacement and created a bootstrapped consensus map of AD 
pathology and calculated the percent difference in AD pathology: 

𝐴𝐷  𝑝𝑎𝑡ℎ𝑜𝑙𝑜𝑔𝑦!!∈!"#! −    𝐴𝐷  𝑝𝑎𝑡ℎ𝑜𝑙𝑜𝑔𝑦!!∉!"#!
𝐴𝐷  𝑝𝑎𝑡ℎ𝑜𝑙𝑜𝑔𝑦!!∈!"#! +    𝐴𝐷  𝑝𝑎𝑡ℎ𝑜𝑙𝑜𝑔𝑦!!∉!"#!

2

∗ 100 

Where set1 is a set of nodes (e.g. set of all metabolically efficient voxels or set of all hubs), N is 
the number of elements in set 1, and 15,970 is the total number of voxels. We repeated this 
procedure 500 times, and than calculated the mean and the 95% confidence interval from the 
bootstrapped values. 

To provide a continuous estimate, we compared the topologies of the early-life predictors 
with late-life AD pathology by calculating the Pearson’s correlation of the consensus maps: 

𝑅 =
(𝑥! − 𝑥)(𝑦! − 𝑦)!",!"#

!!!

(𝑥! − 𝑥)!!",!"#
!!! (𝑦! − 𝑦)!!",!"#

!!!

 

Where X is the early-life predictor (e.g. the hub consensus map or metabolic inefficiency), Y is 
late-life AD pathology (e.g. Aβ or tau consensus map), and i is a voxel in the consensus map (not 
an individual). 
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Results 
 
Linear regression of degree centrality on metabolism. 
The results of the linear regression of degree centrality on metabolism using the hub and the 
metabolism consensus maps in the younger adults are shown in Fig. 1 A and B. Consistent with 
previously published work, we found a significant dependence of metabolism on degree 
centrality (R2=0.284±0.0007, p<<e-100), with voxels with higher degree centrality tending to have 
higher metabolic rate. This supports the intuition that it is energetically demanding to sustain 
high levels of connectivity with the rest of the brain. 
 
Metabolic inefficiency associated with elevated AD pathology in healthy aging. 
We hypothesized that areas of the brain that are metabolically inefficient in early-life are more 
susceptible to Aβ deposition in late-life. To examine this, we dichotomized all voxels according 
to whether or not they were metabolically efficient or metabolically inefficient. In the linear 
model of degree centrality on metabolism, the regression line (Fig. 1 B) represents the predicted 
metabolism given degree centrality.  We used predicted metabolism to calculate the residual 
error (i.e. the difference between actual and predicted metabolism), which we call “metabolic 
inefficiency”. We designated “metabolically efficient” any voxels that were less metabolic than 
predicted by the model (i.e. with a negative residual, below the regression line in Fig. 1 B). We 
designated “metabolically inefficient” any voxels that were more metabolic than predicted by the 
model (i.e. with a positive residual, above the regression line in Fig. 1 B). To test the hypothesis 
that areas of the brain that are metabolically inefficient in early-life are more susceptible to AD 
pathology in late-life, we compared the amount of AD pathology in metabolically inefficient 
versus efficient brain areas.  

We calculated the average PIB DVR in the older adults for voxels that were 
metabolically inefficient versus voxels that were metabolically efficient. Using a t-test, we found 
significantly higher PIB DVR in areas of the brain that were metabolically inefficient in early-
life compared to those areas that were metabolically efficient (t=44.627; p<<e-100, Fig. 1 C). 
Bootstrapping revealed that inefficient brain areas had an average PIB DVR 10.847% [10.186%, 
11.558%] higher than efficient brain areas. This suggests that brain areas with higher metabolic 
rate than predicted by their degree centrality in early-life are more susceptible to Aβ deposition 
in late-life. This effect of metabolic efficiency was seen regardless of the voxel’s degree 
centrality – even a brain area with low degree centrality was likely to be associated with higher 
Aβ if it was metabolically inefficient, whereas a brain area with high degree centrality was likely 
to be associated with lower Aβ if it was metabolically efficient.  

We ran a parallel analysis to examine whether areas of the brain that are metabolically 
inefficient in early-life are also more susceptible to tau deposition in late-life, effectively 
allowing us to compare how specific early-life predictors are for Aβ deposition versus tau. Using 
a t-test, we found significantly higher AV1451 SUVR in areas of the brain that are metabolically 
inefficient in early-life (t=16.531; p<e-61, Fig. 1 D). Bootstrapping revealed that inefficient brain 
areas had an AV1451 SUVR approximately 2.937% [2.308%, 3.633%] higher than efficient 
brain areas. This suggests that brain areas with higher metabolic rate than predicted by their 
degree centrality in early-life are more susceptible to tau in preclinical AD, a similar pattern as 
we observed for Aβ. However, it is notable that the effect for tau was much smaller than that 
found for Aβ. 
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AD pathology in not elevated in hubs in healthy aging. 
We hypothesized that areas of the brain that are hubs in early-life are more susceptible to Aβ 
deposition in late-life. To examine this, we dichotomized all voxels according to whether or not 
they were hubs (i.e. degree centrality > mean degree centrality). Then we calculated the average 
PIB DVR in the older adults for hubs versus non-hubs. Using a t-test, we found significantly 
lower PIB DVR in hubs compared to non-hubs (t=-14. 505; p<e-47, Fig. 2 A). Bootstrapping 
revealed that hubs had an average PIB DVR 3.711% [3.212%, 4.245%] lower than non-hubs. 
This suggests that hubs are not more susceptible to Aβ deposition in healthy aging.  

We ran a parallel analysis to examine whether hubs in early-life were more susceptible to 
tau deposition in late-life. We calculated the average AV1451 SUVR in the older adults for  

Fig. 1: Linear regression of degree centrality on metabolism. (A) Linear regression model of degree centrality on glucose 
metabolism from the hub consensus map and the metabolism consensus map of the average younger adult. (B) Scatter plot 
showing the degree centrality (x-axis) and FDG SUVR (y-axis), respectively from the hub consensus map and the metabolism 
consensus map. Each point is a different voxel, with a total of 15,970 voxels. To show the relationship between metabolic 
inefficiency and Aβ, the color of each point corresponds to the PIB DVR from the Aβ consensus map of the average older adult. 
Points above the regression line are considered metabolically inefficient (i.e. more metabolic than predicted by degree centrality). 
Points below the regression line are considered metabolically efficient (i.e. less metabolic than predicted by degree centrality). 
Selecting the voxels that were metabolically efficient or inefficient in the average young adult, we then examine whether AD 
pathology in the average older adult differs between voxels that were efficient or inefficient in early-life. Violin plots with an 
embedded box plot showing the distribution of (C) Aβ pathology (PIB DVR)* and (D) tau pathology (AV1451 SUVR)** in 
voxels that were inefficient (orange) or efficient (teal) in early-life. * (p<<e-100) ** (p<e-61) 
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voxels that were hubs versus non-
hubs. Using a t-test, we found 
significantly lower AV1451 SUVR 
in hubs compared to non-hubs (t=-
33.672; p<<e-100, Fig. 2 B). 
Bootstrapping revealed that hubs 
had an average AV1451 SUVR 
5.865% [4.923%, 6.768%] lower 
than non-hubs. This suggests that 
hubs are not more susceptible to 
tau deposition in healthy aging.  
 
Aβ and tau topologies in healthy aging. 
We compared the distributions of Aβ and tau from consensus maps in the average older adult 
(Fig. 3 A and B), observing substantial correlation of Aβ and tau (R2=0.522). Some of the 
similarities in the topologies of Aβ and tau included spared primary sensory cortices and 
elevations in prefrontal cortex, precuneus, and aspects of the parietal and superior lateral 
temporal lobes. Notably, many of these elevations were more pronounced for Aβ and would be 
considered relatively low for tau (Maass et al., 2017). However, there are also critical points of 
discrepancy in the topologies of Aβ and tau, including the orbitofrontal cortex and 
medial/inferior temporal lobe, which exhibited high tau and low Aβ, as well as the anterior 
cingulate, which exhibited high Aβ and low tau. 

Given the substantial overlap of the topologies of Aβ and tau in older adults, we sought to 
examine the independent relationship of Aβ and of tau with early-life brain activity by regressing 
out their shared variance (Fig. 3 C and D, see “Removing shared variance of Aβ and tau” in 
Materials and Methods). This approach allowed us to examine whether or not the observed 
associations of Aβ or tau with features of early-life brain activity were driven by their shared 
variance. 

Comparing topologies of early-life predictors with AD pathology in healthy aging.  
To gain a qualitative sense of the differences in overlap of the early-life predictors with late-life 
AD pathology, we visually compared the topologies of consensus maps of degree centrality and 
metabolic inefficiency in early-life (Fig. 3 E and F) with the topologies of consensus maps of Aβ 
and tau in healthy aging (Fig. 3 A and B). We found that the topology of metabolic inefficiency 
compared to degree centrality better tracked Aβ in a number of brain areas: lateral and especially 
medial prefrontal cortex as well as precuneus/posterior cingulate. Only in occipital cortex, which 
was not especially vulnerable to Aβ, and lateral parietal cortex did the topology of degree 
centrality better track Aβ. The topology of degree centrality better tracked tau in the parietal 
lobe. Notably, tau in the inferior and medial temporal cortex was poorly predicted by both degree 
centrality and metabolic inefficiency.  

We found a strong positive correlation of early-life metabolic inefficiency (R=0.525, 
p<<e-100) with late-life Aβ deposition and a positive correlation of early-life metabolic 
inefficiency (R=0.255, p<<e-100) with late-life tau. We found a weak, negative correlation of 
early-life degree centrality (R=-0.09, p<e-30) with late-life Aβ deposition and a negative 
correlation of degree centrality (R=-0.282, p<<e-100) with late-life tau. We validated these 
findings using the hub consensus map from Buckner and colleagues (2009), which confirmed 

Fig. 2: Comparison of AD pathology in hubs vs non-hubs. Violin plots with an 
embedded box plot showing the distribution of (A) Aβ pathology (PIB DVR) 
for the Aβ consensus map * and (B) tau pathology (AV1451 SUVR) from the 
tau consensus map** in hubs (blue) versus non-hubs (pink).  * (p<<e-47) ** 
(p<<e-100) 
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that while Aβ may be elevated in hubs in patients with AD, this relationship did not extend to Aβ 
(R=-0.18, p<<e-100) or tau (R=-0.21, p<<e-100) in healthy aging. 

Due to the substantial overlap of Aβ and tau, we also examined the relationship of degree 
centrality after decorrelating Aβ and tau. This allowed us to examine whether the relationship of 

 
Fig. 3: Topologies of AD pathology in healthy aging and early-life predictors of AD pathology. Topologies of the consensus 
maps from average older adults representing (A) Aβ pathology (PIB DVR), (B) tau pathology (AV1451 SUVR), (C) Aβ 
pathology decorrelated from tau, and (D) tau pathology decorrelated from Aβ. Topologies of the consensus maps from average 
young adults representing (E) hubs (z-scored degree centrality) and (F) metabolic inefficiency. 
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degree centrality with Aβ or tau was driven by the shared variance of Aβ and tau, rather than Aβ 
or tau itself. We found a strong positive correlation of early-life metabolic inefficiency (R=0.493, 
p<<e-100) with late-life Aβ deposition (decorrelated from tau) and a negative correlation of early-
life metabolic inefficiency (R=-0.18, p<e-100) with late-life tau (decorrelated from Aβ). This 
suggests that the correlation of tau with metabolic inefficiency was driven by the shared variance 
of tau with Aβ, rather than tau itself. This is consistent with our qualitative observation that key 
areas affected by tau – the medial temporal lobe and orbitofrontal cortex – were not 
metabolically inefficient in early life.  
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Discussion 
 
To explore factors that may drive differences across the brain in susceptibility to Aβ and tau 
pathologies, we examined the overlap of measures of brain function in early-life with AD 
pathology in late-life. We investigated the extent to which the topology of hubs and a novel 
metric “metabolic inefficiency” in young adults overlapped with the topology of Aβ and tau in 
cognitively normal older adults. To examine the earliest stages of AD progression, we focused 
on Aβ and tau in cognitively normal older adults. To avoid confounding age- and disease-related 
changes and to gain a lifespan view of brain function, we focused on measures of metabolism 
and hubs in a separate group of young adults. We found that hubs explained 29% of the variance 
of metabolism across the brain of the average young adult. However, the topology of “metabolic 
inefficiency”, or unexplained variance in metabolism indicative of metabolic demand unrelated 
to brain connectivity, was strongly predictive of the topology of Aβ in late-life. The strong 
positive relationship of early-life metabolic inefficiency with late-life Aβ stood in contrast to its 
weaker positive relationship with late-life tau, as well as the weaker negative relationships of 
early-life hubs with late-life Aβ and tau. Intriguingly, the relationship of metabolic inefficiency 
with Aβ pathology suggests that, given a particular metabolic rate, more highly connected areas 
are less – not more – susceptible to Aβ pathology. These findings support a shift away from the 
focus of the role of hubs in initial vulnerability to AD pathology, and towards a focus instead on 
the susceptibility of alternate aspects of tissue metabolic characteristics to Aβ pathology. 
 
The physiological underpinning of vulnerability to Aβ in healthy aging. 

We sought to examine the physiological underpinning of AD pathology in healthy aging by 
examining two prominent aspects of brain physiology – functional connectivity and glucose 
metabolism. While elevated metabolism (Oh et al, 2016) and hubs (Buckner et al., 2009) have 
both been linked to Aβ pathology, increased brain connectivity entails higher metabolic demand 
(Liang et al., 2013, Bullmore and Sporns, 2012, Riedl et al., 2014) and its relationship to Aβ has 
only been established in patients with AD with pervasive, and presumably longstanding 
widespread Aβ deposition (Buckner et al., 2009). We aimed to differentiate between 
contributions of hubs versus glucose metabolism to susceptibility to Aβ across brain tissue in 
healthy aging, distinguishing metabolic demands related to sustaining brain connectivity from 
other brain processes that contribute to metabolic demand. We show that the metabolic demands 
for non-connectivity-related brain processes in early-life, which we call “metabolic inefficiency”, 
explain the topology of Aβ in late-life. 
  The brain has differential demands for non-oxidative and oxidative metabolic processes. 
Brain areas with high levels of aerobic glycolysis exhibit increased genetic expression for 
synapse formation and growth, whereas areas with high levels of oxidative glucose metabolism 
exhibit increased expression for metabolic processes (Goyal et al., 2014). Aerobic glycolysis 
undergoes profound age-related reduction in late-life that may underlie the vulnerability of areas 
with high aerobic glycolysis to AD pathology (Goyal et al., 2017, Sheline and Raichle, 2013). 
Glucose metabolism also undergoes age-related changes (Chetelat et al., 2013), although, 
interestingly, brain areas with age-invariant metabolism and hypermetabolism may be more – not 
less – vulnerable in AD (Oh et al., 2016). It is possible that the brain processes captured by 
metabolic inefficiency, like aerobic glycolysis, support neuroprotective mechanisms that are 
depleted in aging and lead to vulnerability to Aβ pathology through synaptic depression, loss of 
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dendritic spines, excitotoxicity, and/or oxidative stress (Goyal et al., 2017, Sheline and Raichle, 
2013).  

Alternately, metabolic inefficiency may reflect and/or overlap with non-metabolic 
mechanisms that drive vulnerability to AD pathology. Metabolically inefficient brain areas may 
reflect developmental differences between brain regions in properties like redundancy (e.g. of 
synapses) or differential pruning during development. The default mode and executive control 
networks, which are vulnerable to AD pathology and the effects of aging generally (Jagust, 
2013), demonstrate persistent plasticity into late childhood and early adulthood (Reisberg et al., 
2002). Moreover, these systems also reflect areas of high cortical expansion in humans relative 
to other primates (Hill et al., 2010, Fjell et al., 2015). Further work is necessary to delineate the 
source of vulnerability of metabolically inefficient brain areas to Aβ pathology. 
 
Hubs don’t explain topology of AD pathology in healthy aging. 
Theoretical work suggests that hubs may be vulnerable in AD through activity-dependent 
degeneration (de Haan et al., 2012), which may be a prolonged process that occurs over the 
lifespan (Jagust, 2013). In mouse models of AD, Aβ has been linked to synaptic activity 
resulting in the secretion of Aβ and associated with the formation of Aβ plaques (Bero et al., 
2011). The functional synchrony that underlies functional connectivity takes the form of high-
gamma oscillations, generated through the inhibitory action of GABA-ergic interneurons, and 
drive resting glucose metabolism (Lord et al., 2013). Previous work has demonstrated that the 
topology of Aβ in patients with AD was reflected by the topology of hubs (Buckner et al., 2009). 
In light of these observations, we sought to see if hubs were also associated with vulnerability to 
Aβ pathology in healthy aging. 

When examining the earliest stages of AD pathology, before the widespread and dramatic 
accumulation associated with AD, we did not find a correspondence between hubs and Aβ 
deposition. Thus our findings in cognitively normal older adults diverge from a prior study 
relating hubs to Aβ deposition in patients with AD (Buckner et al., 2009). Besides the different 
populations used to examine Aβ, these studies differed in that our study excluded subcortical 
brain areas. However, we confirmed our results – a weak negative correlation of Aβ with hubs – 
using the consensus hub map used in the study by Buckner and colleagues (2009).  Our study 
indicates that Aβ may not preferentially accumulate in hubs in the earliest stages of AD. Rather, 
hubs may be vulnerable as the disease progresses, which would be consistent with AD models of 
cascading network failure (Jones et al., 2016). 
 
Metabolic inefficiency explains topology of Aβ, not tau. 
We observed substantial overlap of Aβ and tau in cognitively normal older adults, which we 
posit to have driven the association between metabolic inefficiency and tau. When Aβ was 
decorrelated with tau, we observed a consistent strong positive relationship of Aβ with metabolic 
inefficiency. In contrast, when tau was decorrelated with Aβ we instead observed a negative 
relationship of tau with metabolic inefficiency. Moreover, the preferential overlap of metabolic 
inefficiency with Aβ – but not tau – became apparent when focusing on the brain areas uniquely 
susceptible to Aβ or to tau.  The medial temporal lobe – which exhibits the earliest susceptibility 
to tau and typically only accumulates Aβ only with more advanced AD progression – was 
metabolically efficient in young adults. These discrepancies make it unlikely that early life 
metabolic inefficiency contributes initially to vulnerability of the brain to tau. Instead, the areas 
of overlap of metabolic inefficiency, Aβ, and tau are consistent with interdependence of Aβ and 



	
   44	
  

tau pathologies, which has been reported using various manipulations in cell and animal models 
(Ittner and Gotz, 2011) and observations of widespread local correlations of Aβ and tau from in-
vivo PET imaging of humans (Sepulcre et al., 2016). Therefore, due to the overlapping 
distributions of Aβ and tau, we concluded that metabolic inefficiency was associated 
vulnerability to Aβ (including brain areas with joint Aβ and tau pathology), but not brain areas 
specifically vulnerable to tau early in AD. 
 
Implications for the mechanism of accumulation of AD pathology. 

If Aβ and/or tau pathology spread transynaptically, the focus should be on identifying the 
earliest-affected area(s) to determine the initial source of introduction of AD pathology. Early Aβ 
deposition has been reported in the precuneus, medial orbitofrontal, and posterior cingulate 
cortices (Palmqvist et al., 2017), without consensus on a single initial source. The diffuse pattern 
of Aβ accumulation even in initial stages of presentation of Aβ pathology (Braak and Braak, 
1991) seems to support the shared vulnerability hypothesis. However these regions form core 
areas of the default mode network (Palmqvist et al., 2017), so it is possible that they reflect trans-
synaptic spread through a large and highly connected network. The identification of shared 
physiological features in early life that mirror the topology of Aβ, including metabolic 
inefficiency, also support the shared-vulnerability framework of Aβ. In contrast, the lack of a 
clear physiological explanation for the topology of tau – particularly in transentorhinal cortex, 
widely considered to be the initial locus of tau (Braak and Braak, 1991) – suggest that the 
topology of tau may largely reflect trans-synaptic spread (Jacobs et al., 2018). Further work is 
necessary to understand the etiology of tau pathology and its coevolution with Aβ, which may be 
linked through neuroplasticity failure (Mesulam, 1999, Styr and Slutsky, 2018) and/or cascading 
network failure (Jones et al., 2017).  
 
Limitations. 

There are some notable limitations to this study. We used three separate groups of subjects, 
which could introduce noise and error into measurements, however this would be expected to 
attenuate any effects, thus the persistence of our findings increases the likelihood that these 
results generalize to a larger population. Due to the large number of voxels that went into this 
comparison, the level of significance of the statistics across voxels is of lesser importance than 
the effect size (e.g. R and % changes). It would be informative to examine other measures of 
brain load and neural activity, besides measures of connectivity derived from spontaneous 
activity during “resting state” and glucose metabolism from FDG-PET. However, it has been 
suggested that task-related brain activity accounts for a small – though potentially informative – 
portion of metabolic activity (Liang et al., 2013) and dependencies in spontaneous brain activity 
predict the majority of task-related activity (Cole et al., 2016). However, brain state even during 
“resting state” can alter functional connectivity (Patriat et al., 2013, Kawagoe et al, 2018). 
Moreover, this study does not take into account age-related changes to functional connectivity 
and metabolism across the lifespan, and it is unclear to what extent these predictions would hold 
up if we drew upon functional data from older subjects. However, the use of measure of brain 
function in young adults to predict markers of AD in older adults allows us to examine healthy 
brain function in a state unperturbed by age- and AD-related changes, avoiding any confounding 
influence of pathology on brain function. 
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Conclusion. 
This work refines the narrative surrounding the roles of hubs and metabolism in AD pathology. 
The explanatory power of metabolic inefficiency in predicting Aβ topology suggests that glucose 
metabolism – beyond its role in supporting brain connectivity – is associated with Aβ. 
Furthermore, hubs do not play a predominant role in early vulnerability to Aβ or tau in healthy 
older adults. In light of previous work linking hubs to Aβ pathology, this suggests that hubs 
become vulnerable to Aβ pathology with more advanced progression of AD pathology (e.g. in 
patients with MCI or AD). We also found a relationship of tau with metabolic inefficiency, 
however we provide evidence that this relationship was driven by covariance in the topologies of 
Aβ and tau in the healthy older adults. Further work into the processes underling metabolic 
demand and alternate features that may be driving vulnerability to Aβ and tau pathology is 
necessary to fully understand the etiology of AD pathology. 
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Chapter 4 
 

Amyloid-β spreads from multiple sources in healthy aging 
 
 
Abstract 
 
The hallmark pathology of Alzheimer’s disease, amyloid-β plaques (Aβ), typically exhibits 
advanced progression throughout cortex by the time cognitive symptoms manifest. Despite a 
characteristic spatiotemporal progression of Aβ pathology in the pre-symptomatic phase, there is 
no consensus on the earliest brain areas that accumulate Aβ. We developed a novel cross-
sectional approach to examine regional accumulation relative to the total amount of Aβ 
pathology in the brain within different stages of Aβ progression in healthy aging – PIB-, Early 
PIB+, and Late PIB+ – by examining PIB-PET from 147 cognitively normal older adults as well 
as from 16 young adults. We modeled the cross-sectional rates of accumulation to generate 
directed progression networks, which measure progression from earlier to a later Aβ stages by 
drawing connections emanating from regions with accelerated accumulation in earlier Aβ stages 
and emanating to regions with accelerated accumulation in later Aβ stages. We identified 
potential sources of Aβ pathology in the PIB- stage, relays in the Early PIB+ stage, and targets in 
the Late PIB+ stage. The sources, relays, and targets of Aβ pathology were distributed across the 
brain, comprising multiple brain networks. The largest number of sources and relays were in the 
default mode network, however all regions of the memory network were impacted. Relays, and 
to a lesser extent sources, additionally impacted the other higher order brain networks whereas 
the targets of advanced Aβ pathology primarily impacted sensory networks. This framework 
suggests that distributed brain areas across multiple networks may serve as sources of Aβ even 
before substantial Aβ pathology is detected in healthy aging. While specific brain networks such 
as the default mode and memory networks may be particularly impacted, especially as Aβ 
pathology progresses, accumulation of Aβ pathology is diffuse, multifocal, and does not appear 
to emanate from any single source or brain network. 
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Introduction 
 
Alzheimer’s disease (AD) is characterized by a systematic spatiotemporal progression of 
amyloid-β plaques (Aβ) and neurofibrillary tangles (tau). Central to understanding and treating 
AD, we must delineate the pathways through which the major pathological hallmarks of AD 
propagate. Tau progression is fairly well characterized in cross-sectional autopsy studies, 
occurring in progressive stages that initiate in the transentorhinal cortex, spread to medial and 
inferior temporal brain areas, and then to association cortex (Braak and Braak, 1995). However, 
characterizing stages of Aβ progression has been more challenging – in the “initial” stage of AD, 
Aβ neuropathology is already widely distributed across frontal, parietal, occipital, and temporal 
neocortex (Thal et al., 2002). However, AD develops over the course of decades with a 
prolonged preclinical phase (Sperling et al., 2011); to achieve a complete understanding we must 
explore the temporal progression of AD in the pre-symptomatic phase. 

The primary mechanism(s) and pathway(s) through which Aβ typically spreads remain 
unclear. Numerous mechanisms have been proposed, including spread of Aβ through 
extracellular-based transmission via diffusion to spatially contiguous neighbors (Knowles et al., 
2011), transneuronal-based transmission through neural connections (de Calignon et al., 2012, 
Eisele et al., 2010, Moreno-Gonzalez and Soto, 2011), and other mechanisms including via the 
blood stream (Walker et al., 2012). Increasing evidence suggests that Aβ may be multifocal – 
emanating from multiple sources or “epicenters” (Palmqvist et al., 2017, Cho et al., 2016, Grothe 
et al., 2017). However, there is no consensus on which brain areas initiate the spread of Aβ 
throughout the brain and through which pathways, if any, Aβ typically spreads. 
 Approaches from graph theory, which focus on the interdependencies of structure and 
function between distributed brain areas, have illuminated many aspects of neurological disease. 
Patterns of atrophy suggest that large-scale brain networks may shape neurodegeneration in 
dementia (Seeley et al., 2009). Atrophy patterns have been examined cross-sectionally to 
construct cortical thickness networks (He et al., 2007) – an approach extended to examine cross-
sectional Aβ and tau covariance networks (Sepulcre et al., 2013, Sepulcre et al., 2016). However, 
amyloid covariance networks reveal widespread elevated correlations of Aβ across the brain – 
leading to little insight on Aβ propagation besides that when Aβ is elevated in one brain area, Aβ 
is elevated throughout the brain (Sepulcre et al., 2016, Lockhart et al., 2017). Network structure 
may be exploited to gain insights into the mechanisms and pathways at play (Zhou et el., 2012, 
Sepulcre et al., 2013), although few applications directly model the temporal progression of Aβ 
pathology. Examination of how Aβ pathology spreads in humans is limited, facing the 
experimental hurdle of measuring the spatiotemporal changes of pathology that slowly 
progresses over the course of decades, as well as the challenge of modeling and drawing 
meaningful conclusions about a dynamic process. One promising approach, developed to 
characterize longitudinal dependencies in atrophy, is directed progression networks (Freidman et 
al., 2014).  

In the present work, we expanded the directed progression network approach, extending 
it to cross-sectional PIB-PET to explore the progression of Aβ pathology in normal aging across 
young adults and cognitively normal older adults. We defined a Young stage as well as three 
stages of Aβ progression in older adults: PIB-, Early PIB+, and Late PIB+. For each brain 
region, we used cross-sectional data to measure the slope of the relationship across subjects 
between local Aβ (i.e. regional PIB) and total PIB load – interpreting the slope as the cross-
sectional “rate of accumulation”. This approximation of cross-sectional rate of accumulation 
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differs from traditional measures – which are defined longitudinally within a given subject – 
using the total PIB load of each scan as a rough approximation of “time” in a theoretically 
systematic progression of Aβ across subjects. We conceptualized a lower total PIB load as 
representing an earlier point in the spectrum of Aβ progression in normal aging, with higher total 
PIB loads indicative of more advanced Aβ progression. We then constructed directed 
progression networks, comprised of connections that emanated from brain regions with cross-
sectional accumulation in an earlier Aβ stage (e.g. Young to PIB-; PIB- to Early PIB+) and went 
to brain regions with cross-sectional rates of accumulation that accelerated in a later Aβ stage 
(e.g. PIB- to Early PIB+; Early PIB+ to Late PIB+). By focusing on accelerations in the cross-
sectional rates of accumulation, we avoided over-interpreting positive cross-sectional rates of 
accumulation, which were observed even in young adults presumably free of Aβ pathology. We 
used directed progression networks to identify potential sources, relays, and targets of Aβ 
pathology in healthy aging.   
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Materials and methods 
 
Participants. 
The study examined 16 young adults and 147 cognitively normal older adults from the Berkeley 
Aging Cohort Study (BACS). Participants underwent PIB-PET to measure Aβ and structural 
MRI to aid processing and analysis of the PET data. Participants were recruited from the 
community via newspaper advertisements and were required to live in the community 
independently and to be without major medical, neurological, and psychiatric illnesses that could 
influence cognition. Normal cognition was established by scores on the Mini Mental State 
Examination ≥ 26 and performance on memory tests within 1.5 standard deviations of age-
adjusted norms. Genotype (N=15) and education (N=5) information were missing for a small 
subset of BACS subjects. See Table 1 for participant demographics. 
 

 Young 
(N=16) 

Old PIB- 
(N=93) 

Old Early PIB+ 
(N=40) 

Old Late PIB+ 
(N=14) 

Age 23.6 ± 2.5 
(21, 30) 

76.83 ± 6.01 
(61, 91) 

76.62 ± 5.77 
(65, 96) 

78.14 ± 4.91 
(71, 87) 

Sex (%F) 
 50% 54.84% 57.5% 78.57% 

Education (years)  15.4 ± 1.3 
(12, 18) 

17. ± 2.07 
(12, 20) 

16.08 ± 2.06 
(12, 20) 

16.36 ± 2.35 
(12, 20) 

Apoe ε4 Carrier 28.6% 19.05% 37.84% 76.92% 

PIB Index 0.98 ± 0.03 
(0.92, 1.05) 

0.99 ± 0.05 
(0.71, 1.06) 

1.18 ± 0.11 
(1.06, 1.4) 

1.57 ± 0.11 
(1.42, 1.76) 

 
 

MRI acquisition and processing. 
To aid preprocessing and tissue segmentation of the PET data, anatomical MR imaging was 
performed on a 1.5T Magnetom Avanto (Siemens Medical Systems) scanner using a 12-channel 
head coil at Lawrence Berkeley National Laboratory. Anatomical MRI scans were acquired 
axially using a high-resolution T1 MP-RAGE sequence (TR = 2110 ms; TE = 3.58 ms; TI = 
1100 ms; flip angle = 15°; voxel dimension = 1.00 mm3; slice thickness = 1.00 mm with 50% 
gap). 

Anatomical MRIs were linearly coregistered to a template to straighten or, for non-
baseline MRIs, were coregistered to the baseline MRI. Each anatomical MRI underwent tissue 
segmentation using Freesurfer v5.3 (http://surfer.nmr.mgh.harvard.edu/). The segmentation was 
coregistered to PET using an inverted transformation of the affine mapping between the mean 
PET image and the skull-stripped brain in Anatomical Normalization Tools (ANTs; 
http://picsl.upenn.edu/software/ants/). The cerebellar grey matter ROI from Freesurfer was used 
as a reference region for PIB-PET processing. 
 
PIB-PET acquisition and processing. 

PIB-PET imaging was performed on either an ECAT EXACT HR or BIOGRAPH Truepoint 6 
scanner in 3D acquisition mode at Lawrence Berkeley National Laboratory. For each PET scan a 
10-min transmission scan or an X-ray CT was obtained for attenuation correction. PET data were 
reconstructed using an ordered subset expectation maximization algorithm with a 4mm Gaussian 

Table 1: Participant demographics. 
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smoothing kernel, weighted attenuation correction, and scatter correction. The LBNL 
Biomedical Isotope Facility synthesized [11C]PIB using a previously published protocol (Mathis 
et al., 2003). PIB-PET scanning began immediately upon injection of approximately 15-mCi of 
[11C]PIB into an antecubital vein, with dynamic acquisition frames obtained over 90-minutes as 
follows: 4 x 15 s, 8 x 30 s, 9 x 60 s, 2 x 180 s, 10 x 300 s, and 2 x 600 s. 

Frames within the first 5 minutes of PIB-PET data were summed, and all frames 
including the summed image were realigned to the middle frame. The cerebellar grey matter ROI 
from Freesurfer was used as a reference region for Logan graphical analysis on frames 
corresponding to 35- to 90-minutes post-injection, which produced PIB distribution volume ratio 
(DVR) images. 
 
PIB index. 

The PIB index was computed for each PIB-PET scan as the mean PIB DVR across prefrontal, 
lateral temporal, parietal, and cingulate cortices (Mormino et al., 2012) to approximate the extent 
of Aβ pathological burden in the brain of each participant that underwent PIB PET. 
 
Definition of Aβ stages. 
We used PIB index as the basis to form 
subgroups of cognitively normal older 
subjects representative of progressive 
‘stages’ of Aβ accumulation in the pre-
symptomatic phase of Alzheimer’s disease 
(Fig. 1). We defined all scans with a PIB 
index ≥ 1.06 as “PIB+” and all scans with 
a PIB index < 1.06 as “PIB-”. We 
calculated the range of PIB index values of 
the PIB+ scans and split the subjects into 
two groups – representing the “Early 
PIB+” and “Late PIB+” stages of PIB 
progression – with similar ranges of PIB 
indexes.  The range of the PIB indexes of 
the PIB- scans (N = 93) was 0.344 (0.71 to 1.06). The range of the PIB indexes of the PIB+ 
scans (N = 54) was 0.701 (1.06 to 1.76). The PIB+ scans were divided into “Early PIB+” and 
“Late PIB+ stages representing a similar range of PIB indexes, such that the early PIB+ stage 
(N=40) had a range of 0.34 (1.06 to 1.4) and the late PIB+ stage (N=14) had a range of 0.345 
(1.42 to 1.76). Thus, the PIB-, Early PIB+, and Late PIB+ stages all represent a similar dynamic 
range in the spectrum of Aβ progression in healthy aging. This approach does not ensure that 
there is an equal number of subjects in each group, however it does ensure that each stage –  
PIB-, Early PIB+, and Late PIB+ – represents a similar dynamic range in the spectrum of PIB 
progression in preclinical AD. Given that this sample reflects healthy aging, we expect the 
largest number of subjects to be in the PIB- stage and the fewest number of subjects to be in the 
late PIB+ stage. We also defined the ‘Young’ stage, which we consider the baseline ‘stage’ prior 
to Aβ accumulation. 
 
 
 

Fig. 1: Histogram of PIB indexes for each Aβ stage in healthy aging. 
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ROI definition. 
After converting the MNI coordinates from the atlas from Power and colleagues (2011) to MNI 
152 2mm space, we defined the regions of interest (ROIs) by using fslmaths to delineate 10 mm 
spheres around each coordinate. This approach produced 264 ROIs across the brain of uniform 
size in MNI 152 2mm space. We used the assignments of each ROI into a canonical functional 
brain network defined by Power and colleagues (2011). We excluded subcortical and cerebellar 
ROIs from the analysis, focusing our analysis on the 246 cortical ROIs. 
 
Calculation of cross-sectional rates of accumulation. 
We computed the cross-sectional “rate of accumulation” (rv,s) of PIB for each ROI (v) at each 
stage (s). The calculation was performed across subjects within a given Aβ stage, using each 
subject’s total PIB load, calculated as the average DVR across cortical ROIs, as a proxy for the 
“time” point of Aβ progression. We 
conceptualize a lower total PIB load as an 
earlier point and a higher total PIB load as a 
later point across the spectrum of Aβ 
progression in healthy aging. We measure the 
rate of accumulation for a given ROI by 
computing the slope using Theil-Sen 
regression – a form of regression that is robust 
to outliers – of the ROI’s PIB on total PIB 
(where each point in the regression is a 
different subject). This resulted in an estimate 
of the rate of accumulation for each ROI at 
each ‘stage’, with a positive slope indicating 
the PIB DVR in the ROI was higher with 
increased total PIB load – consistent with 
cross-sectional “accumulation” of PIB in the ROI that should reflect a temporally driven process. 
See Fig. 2 for an example. 
 
Boostrap procedure for cross-sectional rates of accumulation. 
To restrict analysis to only those rates of accumulation that are positive, we used a bootstrap 
procedure to estimate the 95% confidence interval of each rate of accumulation estimate. We 
completed the bootstrap procedure for each ROI at each Aβ stage by randomly selecting N 
subjects from the Aβ stage with replacement, where N is the number of subjects in the Aβ stage, 
and calculating the cross-sectional rate of accumulation. This procedure was repeated 200 times. 
We defined the lower bound of the 95% confidence interval as the value for which 95% (N=190) 
of the bootstrapped rate of accumulation estimates were greater than the value. The rate of 
accumulation of the ROI was set to 0 if the lower bound of the 95% confidence interval was ≤ 0. 
 
Directed progression graph of PIB. 
We extended the directed progression graph approach (Friedman et al., 2014) to estimate 
progression of Aβ in healthy aging. We examined two stages of progression: from the PIB- to the 
Early PIB+ stage as well as from the Early PIB+ to the Late PIB+ stage. Using the cross-

Fig. 2: Cross-sectional rates of accumulation for an example 
node from the memory network. Scatter shows total PIB load by 
the ROI’s PIB DVR, where each point is a different subject. 
This node (v) is a source, possessing cross-sectional rates of 
accumulation that accelerate from the Young stage (rv,s-1) to the 
PIB- stage (rv,s). Green = Young, Blue = PIB- 
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sectional rates of accumulation (rv,s, described above), we computed the directed similarity 
between each pair of ROIs (v, w): 

if rv,s ≤ rv,s-1  à 0 
elif rw,s+1 ≤ rw,s à 0 
elif rv,s < rw,s à  0 
elif rw,s-1 ≤ rw,s à  0 
else   à 1  

Where r is the cross-sectional rate of accumulation, v is a potential source, w is a potential target, 
and s is the Aβ stage. For the directed progression network from PIB- to Early PIB+, the Aβ 
stages for s-1, s, and s+1 were respectively the Young, PIB-, and Early PIB+ stages. For the 
directed progression network from Early PIB+ to Late PIB+, the Aβ stages for s-1, s, and s+1 
were respectively PIB-, Early PIB+, and Late PIB+. The algorithm enforced that (1) sources had 
an accelerated rate of accumulation at stage s relative to the prior Aβ stage (i.e. s-1), (2) targets 
had an accelerated rate of accumulation at stage s+1 relative to the prior Aβ stage (i.e. s), (3) 
sources had a faster rate of accumulation than 
targets at stage s, (4) targets did not have an 
accelerated rate of accumulation at stage s 
relative to the prior Aβ stage (i.e. s-1). Rule (4) 
ensured that targets were not also sources within 
the same graph.  This produced a directed 
progression graph where directed edges 
emanated from sources with accumulation that 
accelerated from the baseline (i.e. s-1) to earlier 
stage (i.e. s) and went to targets with 
accumulation that began to accelerate from the 
earlier (i.e. s) to later stage (i.e. s+1) (see Table 
1). 
 
Node classification.  
For each node of a directed progression graph, we computed the out-degree, the number of 
directed edges emanating from the given node to all other nodes, and the in-degree, the number 
of directed edges emanating to the given node from all other nodes. We designated as “sources” 
all nodes with 1 or more outputs (i.e. out-degree > 0) in the PIB- to Early PIB+ directed 
progression graph, since these nodes are the initial loci of PIB pathology. We designated as 
“relays” all sources in the Early PIB+ to Late PIB+ directed progression graph, since these 
regions aren’t necessarily the initial loci of PIB pathology, but still “relay” PIB pathology to a 
more advanced stage of PIB progression.  We designated as “targets” all nodes with 1 or more 
inputs (i.e. in-degree > 0) in the Early PIB+ to Late PIB+ directed progression graph, since these 
nodes receive input in the most advanced stage of Aβ progression in healthy aging. 
 
  

  
Cross-sectional rates of 

accumulation (rv,s) 
Aβ Stage (s) s-1 s s+1 

Source (v) – or + ++ 
- or = or 
++ 

Target (w) – or + – or = ++ 
– : r

v,s
 ≤ 0       + : r

v,s
 > 0       = : r

v,s
 = r

s-1
      ++ : r

 v,s
 > r

 v,s-1
 

Table 1: Pattern of cross-sectional rates of accumulation 
across Aβ stages for sources (v) and targets (w) in directed 
progression networks. For the PIB- to Early PIB+ directed 
progression network, s-1 = Young, s = PIB-, s+1 = Early 
PIB+. For the Early PIB+ to Late PIB+ directed progression 
network, s-1= PIB-, s = Early PIB+, and s+1 = Late PIB+. 
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Results 
  
Cross-sectional rates of accumulation of PIB. 
For each ROI, we modeled the rates of accumulation of Aβ pathology using cross-sectional data 
within each Aβ stage. The rates of accumulation with each stage were centered around 1, with 
the PIB- stage possessing the most narrow range of values and the Young and Early PIB+ stages 
possessing the widest range of values, including the largest number of ROIs that were not 
accumulating  (Fig. 3 A). Although young subjects show many ROIs exhibiting “accumulation”, 
the narrow range of PIB DVRs across regions, along with the assumption that true Aβ 
accumulation in people of this age group is unlikely, suggests that within the young subjects 
these associations could reflect noise. Noise seems a less likely explanation for associations in 
other groups because the DVRs are generally much higher than one would expect to occur 
randomly. 

Across ROIs within each Aβ stage, we found that regional rate of accumulation 
correlated with mean regional PIB DVR (Fig. 3 B). This indicates that ROIs with a higher mean 
PIB DVR within each stage had an elevated rate of accumulation compared to ROIs with a lower 
mean PIB DVR. The maintenance of this relationship through the Late PIB+ suggests that PIB 
may continue to accumulate in ROIs with relatively high PIB DVR. 

We also compared the rates of accumulation of different canonical brain networks for 
each stage of Aβ progression. We examined the total rate of accumulation within each canonical 
brain network as well as the mean rate of accumulation to account for disparities in network size 
– the largest network, the DMN, had 58 ROIs (23.48% of total cortical ROIs) and the smallest 
network, the “memory/retrieval network” had 5 ROIs (2.02% of total cortical ROIs). The DMN 
had the highest total rate of accumulation across Aβ stages, however the networks with the 
highest mean rate of accumulation across ROIs varied by Aβ stage (Fig. 4).  

 

 

 

Fig. 3: Summary of rates of accumulation for each Aβ stage. A. Histograms of distribution of rates of accumulation across ROIs 
for each Aβ stage. B. Scatter plots showing relationship across ROIs between regional rate of accumulation and mean regional 
PIB DVR (average across subjects) for each Aβ stage. Each point in is a different ROI. Green = Young, Blue = PIB- stage, 
Orange = Early PIB+ stage,  Red = Late PIB+ stage 
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Directed progression graph of Aβ. 
We generated directed progression graphs of 
Aβ to represent transitions from earlier to later 
Aβ stages: from PIB- to Early PIB+ as well as 
from Early PIB+ to Late PIB+. Each directed 
edge indicated that accelerated rate 
accumulation of Aβ in the earlier stage in one 
node was associated with accelerated rate of 
accumulation of Aβ in the later stage in the 
other node. The total  number of edges in the 
PIB- to Early PIB+ directed progression 
network comprised 10.96% of the total 
possible number of edges. This increased to 
14.55% of edges in the Early PIB+ to Late 
PIB+ directed progression network. This is 
consistent with mo re diffuse spread of Aβ 
pathology in more advanced stages of Aβ 
progression. 
 
Sources of directed progression in the PIB- 
stage. 
ROIs with a positive out-degree in the PIB- to 
Early PIB+ directed progression network were 
sources of Aβ pathology (see Fig. 5 and Fig. 
6). Sources encompassed 46.56% of the 
nodes. The largest number of sources was in 
the DMN, with 48.28% of the DMN serving 

Fig. 4: Cross-sectional rates of accumulation of major canonical brain network. Green = Young, Blue = PIB-, Orange = Early 
PIB+, Red = Late PIB+, DAN = Dorsal Attention Network, FPN = Fronto-Parietal Network, DMN = Default Mode Network 

Fig. 5: Sources, relays and targets across canonical brain 
networks. Sources of Aβ progression in the PIB- stage, relays of 
Aβ progression in the Early PIB+ stage, and targets of Aβ 
progression in the Late PIB+ stage. (Top) The number of ROIs 
with each node role in each canonical brain networks. (Bottom) 
The percent of the canonical brain network comprised of each 
node role. CON = Cingulo-Opercular Network, DMN = Default 
Mode Network, DAN = Dorsal Attention Network, FPN = 
Fronto-Parietal Network, S/SM = Sensory/Sensorimotor, VAN 
= Ventral Attention Network 
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as sources for the transition from the PIB- to Early PIB+ Aβ stage. Additionally, all of the nodes 
in the memory network served as sources. Beyond the DMN and memory network, more than 
half of the nodes in the cingulo-opercular and the ventral attention networks were implicated as 
sources. The sources included brain regions broadly distributed across temporal, inferior and 
superior frontal, lateral and medial orbitofrontal, superior parietal, precentral, lateral occipital, 
lingual, insular, precuneus, and cingulate cortex. 
 
Relays of directed progression in the Early PIB+ stage. 

ROIs with a positive out-degree in the Early PIB+ to Late PIB+ directed progression network 
were relays of Aβ pathology (see Fig. 5 and Fig. 6). Relays encompassed 51.42% of the nodes. 
ROIs with an in-degree in the PIB- to Early PIB+ directed progression network comprised a 
subset of the relays (52.76% of relays). The rest of the relays were sources in the PIB- to Early 
PIB+ directed progression network, possessing rates of accumulation that accelerated in both the 
PIB- and Early PIB+ stages of Aβ pathology. The largest number of relays was in the DMN, 
with 84.48% of the DMN serving as relays. Additionally, all nodes in the memory network were 
relays. Beyond the DMN and memory network, relays were broadly distributed across the 
salience, dorsal attention, ventral attention, and frontoparietal networks. The relays primarily 
included brain regions in cingulate, temporal, frontal, insular, and parietal cortices. 
 
Targets of directed progression in the Late PIB+ stage. 

ROIs with a positive in-degree in the Early PIB+ to Late PIB+ directed progression network 
were considered targets of Aβ pathology (see Fig. 5 and Fig. 6). Targets of Aβ pathology in the 
Late PIB+ stage encompassed 33.2% of nodes and were primarily in the sensory and the cingulo-
opercular networks.  Targets in the late stages of Aβ progression in healthy aging predominantly 
implicated primary sensory cortices. 

 
Fig. 6: Sources, relays and targets of Aβ pathology. (A) Sources of Aβ pathology in the PIB- stage (green). (B) Relays of Aβ 
pathology in the Early PIB+ stage, colored based on relays that overlap with sources (light-orange) and unique relays (dark-
orange). (C) Targets of Aβ pathology in the Late PIB+ stage (blue). 
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Discussion 
 
We developed a novel method to examine the spread of Aβ pathology across the spectrum of 
healthy aging. We modeled the rate of accumulation of Aβ pathology using cross-sectional data 
in Young, PIB-, Early PIB+, and Late PIB+ stages of Aβ pathology, with the total PIB load in 
each subject serving as a proxy for the relative extent of Aβ progression. Utilizing data across 
subjects to model the rates of accumulation from each Aβ stage, we created directed progression 
networks that characterized when the cross-sectional rates of accumulation accelerated relative to 
the antecedent Aβ stage. We characterized the progression of Aβ pathology from sources to 
relays and finally to targets of Aβ pathology. We show that we can detect sources, the earliest 
brain areas impacted by Aβ pathology, prior to the deposition of substantial amounts of Aβ by 
detecting accelerated accumulation in PIB- older adults relative to the young adults. The largest 
number of sources and relays were in the default mode network, however all regions of the 
memory network were implicated. Relays, and to a lesser extent sources, additionally impacted 
the other higher order brain networks, leaving sensory networks for the final targets of Aβ 
progression in healthy aging. Our results suggest that accumulation of Aβ pathology is diffuse 
and multifocal in the earliest stages of Aβ pathology in healthy aging. 

Studies that focus on identifying the earliest location(s) of Aβ have divergent results. 
Longitudinal Aβ PET scans implicated precuneus, orbitofrontal, and posterior cingulate cortices 
in non-demented older adults in the initial phase of Aβ accumulation (Palmqvist et al., 2017) – 
mirroring results from a cross-sectional study of early Aβ in cognitively normal older adults 
(Villeneuve et al., 2015). A different longitudinal Aβ PET study identified the precuneus as the 
origin of Aβ in autosomal dominant AD (Gordon et al., 2018). Exactly which brain areas most 
frequently harbor substantial Aβ varies by study – one study implicated frontotemporal 
association cortex (Cho et al., 2016) and another inferior temporal, fusiform, anterior cingulate, 
and parietal operculum (Grothe et al., 2017). Moreover, age-related increases of Aβ in non-
elderly adults implicated middle temporal neocortex and angular gyrus, which exhibited steeper 
and earlier increase compared to neocortical Aβ (Gonneaud et al., 2017). By examining patterns 
of accumulation of Aβ pathology across the full spectrum of healthy aging, our study adds to this 
literature by detecting diffuse and multifocal early sources of Aβ pathology in PIB- older adults 
without substantial Aβ deposition.  

It is unclear whether the lack of consensus on initial sources of Aβ is driven by 
methodological differences and challenges or if it indicates that the progressive accumulation of 
Aβ is a heterogeneous and/or diffuse process. Widespread association between local Aβ and 
distributed Aβ throughout the brain (Sepulcre et al., 2016) may be indicative of a diffuse process 
(Mezias and Raj, 2017). In AD, the topology of Aβ is typically characterized as following the 
default mode network, however, even in its earliest stages, our study and others find that Aβ 
accumulates – albeit to a much lesser extent – in other canonical brain networks as well as the 
DMN (Palmqvist et al., 2017). Importantly, Aβ topology can also be explained by vulnerability 
of hubs (Buckner et al., 2009) and brain areas with high metabolic load (Vlassenko et al., 2010, 
Oh et al., 2016). Thus, while our results implicate the default mode and memory networks, the 
acceleration of Aβ pathology is not unique to these networks and may not be best explained in 
the framework of canonical brain networks and connectivity-based spread. Our results 
demonstrating numerous sources of Aβ that are broadly distributed across brain networks, 
alongside multiple studies demonstrating different “first” regions affected, point strongly away 
from connectivity-based spread driving distributed Aβ. A multifocal origin, or multiple 
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“epicenters”, is more consistent with a metabolic tissue characteristic driving Aβ accumulation 
concurrently across distributed brain areas. 

By focusing on cross-sectional rates of accumulation that accelerate with advancing Aβ 
pathology, we were able to detect progression of Aβ pathology unique to each stage of Aβ 
progression in normal aging. We detected “accumulation” of PIB even in the Young stage, when 
there is unlikely to be meaningful Aβ pathology. Autopsy studies indicate that Aβ pathology is 
rare in young adults less than 40 years old (Braak and Braak, 1997), although accumulation may 
begin in middle-aged adults (Gonneaud et al., 2017, Farrell et al., 2017).  We suspect that the 
measured accumulation predominantly reflects noise as well as systematic patterns in where the 
PIB tracer binds in the absence of Aβ pathology. To account for this, and to prevent over-
interpretation of “positive” rates of accumulation, we focus on accelerations in the cross-
sectional rates of accumulation relative to the antecedent Aβ stage. Thus, we restricted sources to 
be those brain regions with accelerated cross-sectional rates of accumulation in the PIB- stage 
relative to the Young stage, and so on for advancing stages of Aβ pathology. This not only 
yielded sources of Aβ pathology in the PIB- stage, but allowed us to identify changes specific to 
the most advanced stages of Aβ progression in healthy aging, which were targets of Aβ 
pathology in the Late PIB+ stage. Typical approaches examining advanced stages of Aβ 
progression would implicate most of the brain in late-stage Aβ pathology. However, our method 
clearly highlights the relative sparing of involvement of the sensorimotor and visual cortex until 
the most advanced stages of Aβ progression, demonstrating the ability of our method to highlight 
jumps in Aβ vulnerability in each progressive stage of Aβ pathology rather than linear 
continuation of the same progressive process. 

Any examination of how and if Aβ pathology “spreads” in humans is limited, facing a 
plethora of methodological limitations. The greatest hurdle is the protracted period over which 
Aβ accumulates – measurement of the full course of progression within an individual would 
require longitudinal PET imaging over the course of decades, facing uncertainty as to when and 
if any given individual will begin to develop Aβ pathology. Beyond experimental limitations, the 
statistical tools to model these processes are not fully developed, typically relying on 
implementation of arbitrary thresholds to form consensus maps based on group information (Cho 
et al., 2016, Grothe et al., 2017) and resulting in a considerable loss of information. Our current 
method explores how Aβ pathology accumulates across the spectrum of healthy aging, looking 
for accelerated accumulation relative to earlier stages of Aβ progression and therefore bypassing 
the need for thresholds.  

 The use of cross-sectional data constitutes a significant limitation due to variability of 
brain structure and tracer uptake across individuals, as well as the difficultly of approximating 
temporal progression. Ideally, the study would incorporate repeated longitudinal data across 
decades to measure rate of accumulation within individuals. An additional caveat of the study is 
that different numbers of subjects were assigned to each stage of Aβ progression, with a 
relatively small number in the “Young” (N=16) and “Late PIB+” (N=14) stages. While the use 
of cross-sectional data is not ideal, it allows examination of the full spectrum of Aβ progression 
in healthy aging. Most longitudinal PET studies consist of a single repeat scan 1 to 3 years after 
baseline (e.g. Palmqvist et al., 2017, Jack et al., 2018b) – a timeframe that is unlikely to exhibit 
substantial change in Aβ due to its slow progression. It remains unclear how, given the relatively 
small anticipated accumulation of Aβ in such a timeframe, the noise of such longitudinal PET 
studies would compare to the present approach that leverages a wide range of PIB progression 
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within each Aβ stage. Future studies incorporating longitudinal measures of Aβ accumulation 
would complement and validate the present framework.  
 Delineating the earliest epicenter(s) of Aβ pathology and the pathway(s) through which 
Aβ progresses is central to illuminating the etiology of AD. By extending directed progression 
networks to cross-sectional Aβ PET, we demonstrate that we can use the wide spectrum of Aβ 
pathology observed in healthy aging to illuminate how Aβ pathology progresses throughout the 
brain. We identified multiple sources of Aβ pathology, broadly distributed across the brain, 
indicating that Aβ pathology is already diffuse and multifocal before substantial Aβ deposition 
can be detected (i.e. prior to “positive” Aβ PET scans). We identified the targets of Aβ pathology 
in advanced stages of Aβ progression in healthy aging, demonstrating the ability of our method 
to highlight the late-stage of involvement of sensorimotor and visual brain areas relative to the 
rest of the brain. Our approach demonstrates the need to circumvent the use of arbitrary 
thresholds when detecting the earliest stages of Aβ pathology, providing an alternative based on 
the rates of accumulation of Aβ pathology (in our case defined using cross-sectional data) that 
improves sensitivity to early changes in Aβ pathology. However, it appears to be necessary to 
focus on accelerations in the rate of accumulation for cross-sectional data, but also possibly for 
longitudinal data. To further advance understanding of the etiology of AD, future studies must 
delve deeper into the progression of Aβ pathology in individuals typically considered to have 
negative Aβ PET scans. 
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Chapter 5 
 

Discussion 
 
 
This dissertation utilizes information from multiple neuroimaging modalities to explore 
fundamental questions about the etiology of Alzheimer’s disease (AD) in its presymptomatic 
phase. PIB-PET, AV1451-PET, FDG-PET, and resting-state fMRI – respectively measuring Aβ, 
tau, glucose metabolism, and functional activity in the brain – are examined in cognitively 
normal young and older adults. The approaches applied throughout are cast in a network 
framework, based on the viewpoint that AD reflects widespread, systemic failure of association 
cortex. There is a particular emphasis on the potential role of metabolic processes in the etiology 
of amyloid-β (Aβ) pathology. Chapter 2 examines metabolic brain networks in normal aging, 
characterizing distinct, widespread changes in the dependencies in glucose metabolism with old 
age that differ from those at high risk for progressing to Alzheimer’s disease. Chapter 3 defines 
a novel marker “metabolic inefficiency,” demonstrating a strong association of metabolic 
inefficiency – but not highly connected brain areas called “hubs” – with the topology of Aβ 
pathology in normal aging.  Chapter 4 models the progressive accumulation of Aβ pathology 
across the brain, demonstrating that Aβ is multifocal and widespread even in the earliest stages 
of Aβ accumulation in normal aging. While a network-based framework is applied throughout, 
the results across approaches converge to suggest that early Aβ accumulation is a widespread, 
multifocal process driven by tissue vulnerability to metabolic factors. 
 
Early Aβ pathology is diffuse and multifocal. 

The factors that drive accumulation of Aβ remain unclear, however there is a systematic 
spatiotemporal course of progression of Aβ pathology. It is well established that the widespread, 
distributed topology of Aβ pathology that characterizes AD is similar in cognitively normal older 
adults with substantial Aβ deposition (Jansen et al., 2015). Chapter 4 demonstrates that 
accumulation of Aβ pathology is multifocal and broadly distributed, even in older adults with 
low levels of Aβ deposition. Our observation of diffuse, multifocal early Aβ deposition is 
consistent with the lack of consensus on the ‘earliest’ area(s) of Aβ deposition across 
neuroimaging studies (Palmqvist et al., Villeneuve et al., 2015, Cho et al., 2016, Grothe et al., 
2017, Gordon et al., 2018, Gonneaud et al., 2017) and histological examination of postmortem 
brain tissue (Braak and Braak, 1991). Whether or not Aβ demonstrates prion-like qualities (Frost 
and Diamond, 2010), it is unlikely that trans-synaptic spread explains the pattern of 
accumulation of Aβ across distributed brain areas. 
 
Metabolic tissue vulnerability explains Aβ pathology. 

Although there is evidence that Aβ is released as a byproduct of synaptic activity (Cirrito et al., 
2005, Bero et al., 2011) – it is unclear whether or not this could explain the systematic pattern of 
accumulation of Aβ across the brain. However, the spatial topology of Aβ pathology in patients 
with AD is similar to the topologies of aerobic glycolysis (Vlassenko et al., 2010) and cerebral 
glucose metabolism (Oh et al., 2016), suggesting that systematic differences in metabolism 
across the brain may explain differences in vulnerability to Aβ pathology. However, the topology 
of Aβ pathology in patients with AD is also similar to the topology of hubs (Buckner et al., 
2009). This raises the possibility that susceptibility of highly metabolic brain areas could reflect 
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the process of activity-dependent degeneration – which exerts particularly damaging effects on 
hubs – rather than metabolic tissue vulnerability (de Haan et al., 2012) 

Based on observations that hubs typically have higher metabolic demands (Bullmore and 
Sporns, 2012), Chapter 3 characterizes the topology of metabolic inefficiency – glucose 
metabolism that exceeds metabolic demand predicted by hubs. Chapter 3 demonstrates that 
metabolic inefficiency in early life explains the topology of Aβ in normal aging, whereas hubs do 
not explain the topology of Aβ. Our findings suggest that hubs may be more vulnerable as AD 
pathology progresses, and may be relatively spared in healthy aging compared to patients with 
AD. The similarity of the topologies of Aβ and metabolic inefficiency indicates that metabolic 
tissue vulnerability explains the pattern of accumulation of Aβ across the brain in healthy aging. 
This finding is also consistent with the multifocal nature of Aβ deposition revealed in Chapter 4.  
 
Age and AD-related reorganization of metabolic processes in healthy aging. 
The potential link between metabolic tissue vulnerability and Aβ pathology motivates further 
work that can reveal the factors that contribute to cerebral glucose metabolism, explain what 
leads to differential metabolic demands across the brain, and identify age- and pathology-related 
changes in metabolic processes across the brain.  

While selective age-related changes in metabolism have been characterized, it remains 
unclear how and if Aβ pathology relates to reorganization of metabolism in healthy aging. There 
are contradictory findings as to whether or not glucose metabolism systematically changes in 
cognitively normal older adults with Aβ pathology (Drzezga et al., 2011, Lowe et al., 2014, 
Cohen et al., 2009, Oh et al., 2014, Altmann et al., 2015). However, cerebral glucose metabolism 
declines with age in prefrontal, precentral, perisylvian, and anterior cingulate cortices (Chetelat 
et al., 2013) – which may reflect age-related loss of aerobic glycolysis (Goyal et al., 2017). Our 
findings in Chapter 3 raise the intriguing possibility that our metric of metabolic inefficiency 
captures brain areas exhibiting aerobic glycolysis. Work on the genetics underlying aerobic 
glycolysis versus oxidative glucose metabolism (Goyal et al., 2014) – respectively linked to 
synaptic growth/remodeling and to mitochondrial/synaptic transmission – constitutes an 
important starting point for understanding the differential processes that contribute to metabolic 
demand across the brain. These observations raise the intriguing possibility that brain areas 
undergoing high levels of synaptic plasticity are metabolically inefficient, which may confer 
vulnerability to Aβ pathology in old age (Mesulam, 1999) 

By examining metabolic brain networks, Chapter 2 provides evidence of systematic 
changes in the dependencies of metabolism across the brain in old age. The old-age-related 
pattern differed in those with both substantial Aβ pathology and genetic risk for AD, but not in 
those with only Aβ pathology or only genetic risk. This suggests that there is a highly systematic 
profile of relative glucose metabolism in old age, from which only those at the highest risk for 
progression to AD depart. Further work is necessary to determine whether this highly vulnerable 
group departed from the profile typical of old age or if they are exhibiting maintenance of youth-
like metabolic function. Brain areas that maintain more youth-like metabolic function may be 
more vulnerable to Aβ pathology (Oh et al., 2016), suggesting that age-related metabolic 
reorganization may play a role in protecting the brain from AD pathology. Our observation of 
widespread elevated metabolic correlations across the brain in old age indicates that 
desegregation of metabolic processes is a pervasive feature of the aging brain – a metabolic form 
of the age-related phenomenon of “dedifferentiation” (Dolcos et al., 2002, Park et al., 2004, 
Prakash et al., 2012).  Metabolic dedifferentiation could reflect loss of aerobic glycolysis (Goyal 
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et al., 2017) in old age. Understanding the factors that drive reorganization of metabolism may 
advance insight into why the aging brain – especially highly metabolic brain tissue – is more 
vulnerable to Aβ pathology. 
 
Conclusion. 
This dissertation explores how AD pathology begins and progresses in its presymptomatic phase, 
revealing that – even in the earliest stages of accumulation – Aβ pathology is widespread and 
multifocal. The various approaches provide converging evidence that metabolic tissue 
vulnerability may underlie Aβ pathology in healthy aging. Understanding how and why glucose 
metabolism is systematically reorganized in old age may help reveal why the aging brain 
becomes susceptible to Aβ pathology. Further work is necessary to understand the earliest stages 
of AD; these studies will require long-term longitudinal observations to understand the evolution 
of the changes leading to Aβ deposition and AD. 
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Appendix 
 
 

# Freesurfer ROI Lobe # Freesurfer ROI Lobe 
1 ctx-lh-caudalanteriorcingulate Cingulate 41 ctx-rh-caudalanteriorcingulate Cingulate 
2 ctx-lh-isthmuscingulate Cingulate 42 ctx-rh-isthmuscingulate Cingulate 
3 ctx-lh-posteriorcingulate Cingulate 43 ctx-rh-posteriorcingulate Cingulate 
4 ctx-lh-rostralanteriorcingulate Cingulate 44 ctx-rh-rostralanteriorcingulate Cingulate 
5 ctx-lh-caudalmiddlefrontal Frontal 45 ctx-rh-caudalmiddlefrontal Frontal 
6 ctx-lh-frontalpole Frontal 46 ctx-rh-frontalpole Frontal 
7 ctx-lh-lateralorbitofrontal Frontal 47 ctx-rh-lateralorbitofrontal Frontal 
8 ctx-lh-medialorbitofrontal Frontal 48 ctx-rh-medialorbitofrontal Frontal 
9 ctx-lh-paracentral Frontal 49 ctx-rh-paracentral Frontal 
10 ctx-lh-parsopercularis Frontal 50 ctx-rh-parsopercularis Frontal 
11 ctx-lh-parsorbitalis Frontal 51 ctx-rh-parsorbitalis Frontal 
12 ctx-lh-parstriangularis Frontal 52 ctx-rh-parstriangularis Frontal 
13 ctx-lh-precentral Frontal 53 ctx-rh-precentral Frontal 
14 ctx-lh-rostralmiddlefrontal Frontal 54 ctx-rh-rostralmiddlefrontal Frontal 
15 ctx-lh-superiorfrontal Frontal 55 ctx-rh-superiorfrontal Frontal 
16 ctx-lh-insula Insula 56 ctx-rh-insula Insula 
17 ctx-lh-cuneus Occipital 57 ctx-rh-cuneus Occipital 
18 ctx-lh-lateraloccipital Occipital 58 ctx-rh-lateraloccipital Occipital 
19 ctx-lh-lingual Occipital 59 ctx-rh-lingual Occipital 
20 ctx-lh-pericalcarine Occipital 60 ctx-rh-pericalcarine Occipital 
21 ctx-lh-inferiorparietal Parietal 61 ctx-rh-inferiorparietal Parietal 
22 ctx-lh-postcentral Parietal 62 ctx-rh-postcentral Parietal 
23 ctx-lh-precuneus Parietal 63 ctx-rh-precuneus Parietal 
24 ctx-lh-superiorparietal Parietal 64 ctx-rh-superiorparietal Parietal 
25 ctx-lh-supramarginal Parietal 65 ctx-rh-supramarginal Parietal 
26 Left-Amygdala Subcortical 66 Right-Amygdala Subcortical 
27 Left-Caudate Subcortical 67 Right-Caudate Subcortical 
28 Left-Cerebellum-Cortex Subcortical 68 Right-Cerebellum-Cortex Subcortical 
29 Left-Hippocampus Subcortical 69 Right-Hippocampus Subcortical 
30 Left-Pallidum Subcortical 70 Right-Pallidum Subcortical 
31 Left-Putamen Subcortical 71 Right-Putamen Subcortical 
32 Left-Thalamus-Proper Subcortical 72 Right-Thalamus-Proper Subcortical 
33 ctx-lh-entorhinal Temporal 73 ctx-rh-entorhinal Temporal 
34 ctx-lh-fusiform Temporal 74 ctx-rh-fusiform Temporal 
35 ctx-lh-inferiortemporal Temporal 75 ctx-rh-inferiortemporal Temporal 
36 ctx-lh-middletemporal Temporal 76 ctx-rh-middletemporal Temporal 
37 ctx-lh-parahippocampal Temporal 77 ctx-rh-parahippocampal Temporal 
38 ctx-lh-superiortemporal Temporal 78 ctx-rh-superiortemporal Temporal 
39 ctx-lh-temporalpole Temporal 79 ctx-rh-temporalpole Temporal 
40 ctx-lh-transversetemporal Temporal 80 ctx-rh-transversetemporal Temporal 

Table 1: Numerical labels and lobe membership for all regions from the Freesurfer Desikan-Killiany atlas. 
 




