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Abstract 

Attentional selection mechanisms in visual cortex involve changes in oscillatory 

activity in the EEG alpha band (8 to 12 Hz) – decreased alpha indicating focal cortical 

enhancement and increased alpha indicating suppression. This has been observed for 

spatial selective attention and attention to stimulus features such as color and motion. 

Theoretical work suggests that the control of oscillatory neural activity may be a crucial 

component of the mechanisms of attentional signal propagation through cortex, and in 

particular, the modulation of alpha band activity might constitute an information routing 

mechanism across all of visual cortex. This hypothesis leads to the prediction that alpha 

band modulation should also accompany attention to high-level visual features, such as 

object categories. To test this prediction, we investigated whether attention to objects 

involves alpha-mediated changes in focal cortical excitability. We conducted three 

experiments to look for systematic differences in the pattern of EEG alpha power across 

the scalp, and assess whether any such systematic differences were driven by the 

engagement of object-based attention to different object categories. In Experiment 1, 

twenty volunteers (8 males; 12 females) were cued (80% predictive) on a trial-by-trial 

basis to different objects (faces, scenes, or tools). Support vector machine decoding of 

alpha power patterns revealed that late (>500 msec latency) in the cue-to-target 

foreperiod, only EEG alpha differed with the to-be-attended object category. In 

Experiment 2, to eliminate the possibility that decoding of physical features of the cues 

led to our results, twenty-five participants (9 males; 16 females) performed a similar task 

where cues were non-predictive of the object category. Alpha decoding was now only 
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significant in the early (<200 msec) foreperiod. In Experiment 3, to eliminate the 

possibility that task set differences between the different object categories led to our 

Experiment 1 results, twenty participants (9 males; 11 females) performed a predictive 

cuing task where the discrimination task for different objects was identical across object 

categories. The results replicated Experiment 1. Together, these findings support the 

hypothesis that the neural mechanisms of visual selective attention involve focal cortical 

changes in alpha power for not only simple spatial and feature attention, but also high-

level object attention in humans. These findings support the Specificity of Control model 

of attention, according to which a top-down source of attentional control signals issues 

instructions over individualized channels to sensory sites according to the particular 

receptive properties of those sites, and an identical mechanism to elaborate information 

processing operates at the sensory sites. We followed up the planned analyses with a 

series of ERP decoding analyses to corroborate our theoretical interpretation, and to 

provide evidence that alpha band modulation is directly related to an immediate 

perceptual benefit afforded by attention. Altogether, our findings suggest that the 

modulation of oscillatory neural activity in the alpha frequency band is an essential 

component of the enhancement mechanism of attention, operating throughout visual 

cortex.  
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Foreword 

The weather turned clear so I decided to take Phoebe for a walk. Nearly 

bulldozing herself through the front door, Phoebe was exuberant, as she often is when I 

awaken her from one of her long naps with an invitation to tow me into the forest. On 

this particular day she had already been sleeping for the entire morning and the first few 

hours of the afternoon, which for a dog isn’t that unusual, but for this reason her energy 

reserves were full to bursting. And so we took the longer route, up into the wooded hills.  

That afternoon the very atmosphere was practically narcotic. Billows of Autumn 

clouds were breaking and rolling upward at the seams, revealing expanding fissures of 

limpid blue sky. The air was warm, and wafting on a gentle breeze were the redolent 

butterscotch and vanilla perfumes of Jeffrey pines and Ponderosas. Insects stridulated 

softly in panorama, chipmunks squeaked as they bounced alongside us, and 

chickadees punctuated the soundscape with their miniature chirps. The alpine bucolia 

was in full display. 

Phoebe and I ascended the steepest part of the hill and when the paved trail 

ended abruptly we continued onto a compacted dirt path and traipsed into the 

wilderness. We plodded carefully over big rocks here and there, and did our best to 

sidestep the prickly Ceanothus shrubs that became larger and more unavoidable as we 

pushed deeper into the forest. Here I say “we” as if Phoebe was an equally contributing 

partner in the effort not to snag the leash on a protruding branch, sprain an ankle, or 

suffer multiple puncture wounds inflicted by a mass of bristling thorns, but that’s too 

generous. Phoebe was pulling me mercilessly with the full strength of her athletic 60-
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pound frame, darting chaotically from side to side, with no heed for any hazard. She 

was ecstatic, as she generally is on these long walks in nature, but made even more so 

by dint of her overflowing energy stores. And despite the unremitting force from her 

leash and the challenge of keeping pace with her, I found myself slipping into a relaxed 

and genial mood. The weather was just that good. That, and being immersed in the 

natural splendor of a forest cradled amidst rolling slopes and jagged outcrops of granite, 

set me at perfect ease.  

Then, in the thick of the forest, I heard the unmistakable sounds of a pack of 

coyotes. They weren’t close: somewhere at least 100 feet away, somewhere deep in 

the woods and beyond the endpoints of all my lines of sight that radiated into the dense 

vegetal growth. The coyotes were yipping and yelling in their disconsonant manner that 

never fails to unnerve me completely. I paused and stilled my breath, bracing Phoebe’s 

leash with two clenched fists. Up here in the mountains, coyotes are something that 

need to be worried about. Lone coyotes will occasionally snag little dogs, and I’ve heard 

stories from neighbors and friends about packs of coyotes taking down huskies, labs, 

things that size. For this reason we diligently avoid walking in the hours around dawn 

and dusk, when the coyotes are thought to be most active. I was surprised, and scared, 

to find myself in their presence on this afternoon walk.  

And yet, that fear was tinged with excitement, for a reason that hopefully will 

clarify why I have chosen to open my dissertation with this anecdote. My fear was 

tinged with excitement because the sudden nearness of the coyotes caused my 

attention to come online, fully engaged, in a way that I, an aspiring attention researcher, 
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couldn’t help but observe gleefully, like a naturalist catching sight of a rare animal 

stepping into a clearing.  

As a student of the cognitive neuroscience of attention I have spent nearly the 

last decade absorbing as much knowledge as I could on the subject. From attention’s 

early and basic folk psychological definitions to the multifaceted modern construct 

formed in parallel across the disparate yet interconnected fields of cognitive psychology, 

neuroscience, neurology, philosophy, even computer science, I had delved deeply into 

any and all scientific characterization of attention that I could find, in order to better 

understand this vital but mysterious aspect of human mental experience. Over the 

course of my graduate study I participated in innumerable discussions about attention’s 

properties, its functions, its reason for existing, and whether it even existed at all. And 

yet, for all these academic examinations of the concept of attention, I had scarcely ever 

really understood it intimately, and I didn’t appreciate how clearly it could manifest. 

Encountering the coyotes in the woods that day, startling me to a full alertness and 

attentiveness projected in stark contrast against the background of my relaxed montane 

stroll, showed me vividly and undeniably all the properties of attention that I had learned 

about academically yet only experienced faintly in my everyday life.  

Because of my years of narrow focus on the topic, I was keenly attuned to 

attention’s many qualities, and now watched them all unfold in my mind. I recognized 

them, like species out of a field guide, in their natural habitat: orienting both endogenous 

and exogenous, distractor suppression, guided visual search, template formation and 

matching, and feature enhancement.  
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The coyote pack, by their sounds, could be generally localized, and my eyes 

were locked toward that direction. With steady intent, and no lapse or discontinuity, I 

scanned the forest scene laid out before me. Someone could have snuck up behind me 

and pickpocketed my underwear right through my pants, and I wouldn’t have noticed. 

As I scanned my field of view, seeking out any visual sign that the coyotes might be 

padding towards us, both the motive force guiding my eyes and my perceptual 

impression of the scene were tuned away from shapes and colors that couldn’t plausibly 

signal coyotes. Tangled red brambles, black-scorched columns of bark, deep green 

leaves, and brittle stems splotched with verdigris lichen all disappeared from my 

awareness, while any form that might tenably be a stalking coyote was clarified and 

highlighted in the field of my awareness – every coarse dun patch, every curved line 

evoking a hunched ridgeline of feral canine shoulders, every miniscule movement that 

could have been a trotting leg or a swishing tail intercepted my eyes in their darting 

flight and was subjected to rapid and discriminating analysis. And in the realm of sound: 

My hearing sensitized to the noises of the coyotes, reflexively casting aside auditory 

input that could be categorically distinguished from any sound a coyote might make – all 

bird calls, all gurgling creeks lapsed out of my mind. A brush of needles against a 

mossy log carried with it a possibility of panting breath. A snapping twig was deafening 

and all-consuming. In that moment I was a machine with the singular purpose of finding 

coyotes, a sieve to isolate their presence from out of the tumultuous and ambiguous 

world of sensation.  
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Slowly Phoebe and I backed down the hilly forest path we had carved and safely 

got away from the coyote pack. We never faced any real danger, but the episode stayed 

with me. Experiencing attention’s full force, imposed on me by something urgent, deep 

and instinctual, and simultaneously being able to catalog its features, renewed my 

appreciation for the power and central importance of attention in the mind’s operation. 

Moreover, it reaffirmed my opinion that attention can be used like a wedge to breach 

some of the most seemingly impossible scientific questions concerning the relationship 

between the objective physicality of the brain and the subjective phenomenology of the 

mind, an opinion that I hope to expound over the course of my dissertation.  

The specific topic that my dissertation research addresses is object-based 

attention. Object-based attention is a subtype of attention writ large, one among several 

taxonomically distinct variants that include spatial attention, feature-based attention, 

temporal attention, etc., but I believe that this object-based subtype is actually 

categorically distinct from other forms of visual attention in the context of laboratory 

research only. I believe that in the laboratory, methods of operationalization set limits on 

psychological phenomena – granted, these limits are necessary to put empirical pins in 

fundamentally subjective entities and occurrences – and our scientific terminology 

emerges from those operational limits. I’m interested in object-based attention because 

I think it hints at a much broader range of mental phenomena and neurophysiological 

processes than its laboratory treatment suggests, and at various points in course of this 

dissertation, I will explain my reasoning for this opinion in fuller detail.  
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 The research recorded in this dissertation is a close examination of a specific 

hypothesis concerning the neural mechanisms underlying selective visual attention. I 

carried out this work over the course of about three experiments and several different 

analysis methods. The chapter immediately after this Foreword is an Introduction, 

providing general background on the scientific history of attention in psychology and 

cognitive neuroscience, a similarly high-level discussion on the topic of visual objects, 

and a more speculative and theoretical account of object-based attention that attempts 

to merge our understandings of attention and object perception into a coherent 

framework. The three chapters following the Introduction document the original research 

that I conducted over the course of my graduate study. The next chapter after those 

ones is a discussion of my original research results and a placement of those results 

into the larger theoretical context that I lay out in the Introduction. The short and final 

chapter is the Conclusion, where I summarize the research and theory-crafting I 

performed and reiterate the ideas that I most hope will be taken away from this body of 

work. 

I hope that the narrow question posed by my experiments will be answered over 

the course of the relevant chapters to a satisfying degree. I also intend, in the wide-

ranging discussions that precede and follow the chapters devoted more singularly to my 

experiments, to make the case for how the results of my research can be interpreted 

within a broader theory of attention. I hope that this argument will be compelling.



 1 

Chapter 1: Introduction 

What is Attention? 

In 1890, in his treatise The Principles of Psychology, William James opened a 

chapter on attention by writing that “every one knows what attention is.” Although this 

notoriously blithe assertion is sometimes challenged or rebuked (Brigard, 2012; 

Hommel et al., 2019; Buzsáki, 2020), it is striking how much of James’s chronicle of 

foundational attention research and exposition of attention’s qualities can be related to 

the scientific investigation of attention today.  

Whether or not one agrees with James’s claim that everyone knows what 

attention is, his description of attention couches the phenomenon in familiar language. 

He defines attention as: 

 “…the taking possession of the mind, in clear and vivid form, of one out 

of what seem several simultaneously possible objects or trains of 

thought. Focalization, concentration, of consciousness are of its 

essence. It implies withdrawal from some things in order to deal 

effectively with others.” 

James laid out several distinct qualities of attention: its immediacy to experience, 

its limited capacity, its exclusivity, and its ability to facilitate effective goal-oriented 

behavior. Over the course of the chapter, James identified that attention enhances or 

enables our sensory perceptions, internal conceptions, ability to discriminate between 

perceptions or ideations, entry into memory, and reaction times. The spirit of his 
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statement that attention is familiar to everyone directly follows from how he 

conceptualized attention: Everyone knows what attention is because attention is how 

people know anything at all. Attention is the mental process by which ideas or 

perceptions are brought to conscious awareness. By merely experiencing a sensory 

impression of external objects or events, or forming a coherent train of thought, one is 

engaging attention. Thus, everyone knows what attention is because if one even 

pauses to consider whether one knows what attention is, one is using attention. 

James was writing at a time when modern Psychology was in its early stages. 

His writings on attention were largely introspective and speculative, albeit with some 

references to empirical work such as the foundational efforts of Wilhelm Wundt on 

reaction time, codifying early notions of psychology into a formal science. Nevertheless, 

the collection of attention’s qualities laid out by James closely resembles more formal 

and refined operational definitions of attention that are used in research settings today.  

In contemporary lay usage, attention has multiple meanings. It is generally 

thought of as the ability to stay task oriented, as in cases when somebody is told to pay 

attention to their work, or when somebody is reprimanded for not dedicating sufficient 

attention to an important responsibility. This usage overlaps with the various psychiatric 

constructs of attention deficit disorder (ADD), according to which an inability to stay task 

oriented and the susceptibility to distraction by task-irrelevant stimuli is sufficiently 

harmful and interruptive to everyday life so as to be diagnosable as a mental illness. 

The public’s widespread familiarity with ADD understandably reinforces the general 
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understanding of attention as something primarily relegated to continuous task 

performance and task orientation. 

But task orientation is not the primary quality of attention that cognitive 

neuroscience seeks to understand, although it does fall under the umbrella of the 

different ways that attention is studied in a formal scientific setting. Alongside the ability 

to be task oriented, researchers today define attention in a number of ways. One 

modern way of conceptualizing attention is as a psychological function that restricts 

cognitive operations to a subset of the information that could potentially be engaged at a 

given time, to elaborate or enhance the processing of that information with the purpose 

of improving the efficacy, accuracy, or speed of behavioral responses (Luck and 

Vecera, 2002). A corollary of this definition is that attention is needed because the 

capacity of mental processes is limited and unable to accommodate all available 

information at one time. Attention, as just defined, is the function that selectively 

engages with a subset of available and mutually-competing information to control and 

facilitate effective behavior (Desimone and Duncan, 1995).  

The quality of improving processing of selected information has been subdivided 

into two components: the control processes that guide enhancement mechanisms 

toward the selected information, and the enhancement mechanisms themselves (Luck 

and Gold, 2008). This distinction is analogous to the operation of a spotlight to 

illuminate a targeted physical object: the process of aiming the spotlight is necessary for 

the illumination of the target, but conceptually and mechanistically distinct from the way 
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that the target is made more visible by the light falling on it. These distinct processes 

are sometimes referred to as orienting and detecting, respectively (Posner, 1980). 

The definition just given describes attention at the level of cognitive psychology. 

Attention researchers in cognitive neuroscience aim to link attention’s mental qualities to 

underlying neural processes. Examining attention at the neural level typically begins 

with broad definitions such as one given by Buschman and Kastner: “Attention is the 

selective prioritization of the neural representations that are most relevant to one’s 

current behavioral goals” (Buschman and Kastner, 2016). This definition introduces an 

essential quality of attention as being able to selectively operate over neural 

representations. This perspective emphasizes the selective nature of attention, and 

posits a mapping between the selective mental quality of attention, what James 

described as “taking possession of the mind, in clear and vivid form, of one out of what 

seem several simultaneously possible objects or trains of thought,” and a selective 

process over discrete neural representations. Notably, this line of thinking, which may 

seem more contemporary because of its appeal to neural systems, is also rooted in 

Jamesian thinking. In his chapter on attention, James speculated that attention operates 

at the neural level by activating neurons that receive sensory inputs pertaining to the 

attended stimulus in advance of their preferred stimulus. He wrote: 

“The natural way of conceiving all this is under the symbolic form of a 

brain-cell played upon from two directions. Whilst the object excites it 

from without, other brain-cells, or perhaps spiritual forces, arouse it 

from within. The latter influence is the ‘adaptation of attention.’ The 
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plenary energy of the brain-cell demands the co-operation of both 

factors: not when merely present, but when both present and attended 

to, is the object fully perceived.”  

Thus, the contemporary definitions of attention just described cover many of the 

qualities described by James in 1890. This correspondence suggests that 19th-Century 

thinking about attention has guided more than a hundred years of research, and that 

even though with decades of ever-increasing effort we may have achieved better 

understanding of attention’s neural mechanisms through refined research methods and 

improved technology, our theoretical understanding of attention nevertheless remains 

unchanged at some fundamental level. That is partially true, but contemporary thinking 

about attention is more nuanced. 

Increasingly, psychologists and cognitive neuroscientists are espousing the 

argument that “attention” is a folk psychological concept that in fact might cover multiple 

distinct cognitive and neural phenomena, and using one term to refer to all of these 

phenomena is scientifically imprecise.  

One strong form of this argument is that in philosophical terms, attention is not a 

natural kind, in the sense that it may not reflect a pattern or grouping of physical 

structures and processes that genuinely occurs in the natural world without reference to 

human actions or interests (Bird and Tobin, 2018). In other words, if attention is not a 

natural kind, we would not be able to find neural correlates of attention per se (Brigard, 

2012). Attention would not exist independently of psychological theory. Instead, for 

example, it may be possible that what we consider to be attention might really be a 
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mode of sensory processing that is distinct within each sensory domain – in that case 

attention would not be a common neural phenomenon that can be identified in both 

listening attentively and looking attentively. Therefore, it would be inaccurate to classify 

any one thing as “attention.” This is a strong argument because it disputes the existence 

of attention as a real entity.  

A weaker (in the philosophical sense) and more widely accepted notion is simply 

that “attention” refers to numerous distinct cognitive and neural processes that may not 

all be co-occurrent. Some proponents of this idea suggest that a number of the neural 

processes and cognitive functions contained inside the “attention” label should be split 

off into their own categories, thus refining the definition of attention without jettisoning it 

altogether. Furthermore, the term “attention” has multiple usages in everyday language 

(Brigard, 2012), some of which are broad enough in what they refer to that it is unlikely 

those usages of the term map onto a single psychological process (Luck and Vecera, 

2002).  

Given the numerous arguments against the conventional classification of 

attention, why should we continue to use the term “attention” in cognitive neuroscience 

and psychology? Why should we not instead be focusing our efforts on delineating and 

substantiating the neural processes that constitute “attention,” and thereby make 

scientific progress on more solid theoretical grounds? 

One reason is that although we are refining our understanding of the various 

neural processes that unfold as organisms perform attentive behaviors, there is no 

consensus about how to subdivide these various “attentional” processes into distinct 
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constituent categories that are closer to natural kinds in a strict sense. In keeping with 

the weak argument that “attention” encapsulates numerous distinct cognitive 

phenomena, it would indeed be useful to reclassify previously-“attentional” phenomena 

that are better situated within a different category, so that the label “attention” can be 

reserved for a more unitary phenomenon and its scientific pursuit can be more precise. 

However, performing even this kind of weak response would require a firm 

understanding of why the phenomena to be reclassified should be excluded from the 

“attention” label, and this kind of understanding has not yet been achieved. A response 

to the strong argument that attention is not a real entity requires overcoming an even 

greater obstacle: In order to divide attention into its constituent natural kinds, those 

kinds would have to be categorically distinct from one another, a stringent criterion that 

would require clear demarcations between categories such that no smooth transition 

between categories or overlap between categories would be permitted (Bird and Tobin, 

2018).  

Another reason that we continue to study attention despite criticism of the term is 

that even if attention is not a natural kind, it is still a useful construct. Investigations into 

the neural mechanisms of attention are still yielding new information that is contributing 

to a firmer understanding of how the nervous system performs attentive behaviors, and 

no paradoxical results have yet arisen that would force the progression of theory 

towards new foundational definitions. Instead, often times the contrary seems to be true: 

The findings of many lines of inquiry have indicated that there are neural processes that 

subserve multiple kinds of attentive behavior, strengthening the notion that attention is a 
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unitary phenomenon. Some of this evidence will be described in the following sections 

of this paper.  

A third reason that the use of the term “attention” is still valuable in research 

settings is that the folk psychological nature of attention, the thing makes the concept of 

attention relatable to “everyone,” is itself motivational. The overarching mission of 

cognitive neuroscience is to uncover the neural mechanisms that underlie human 

mental experience, and so if attention is a key contributor to our mental experience, it 

merits investigation within our scientific discipline. This last argument sidesteps the 

criticism that “attention” may not refer to a natural kind by admitting that it is precisely 

because the definition of attention relates to human actions and interests that it should 

be investigated within the scientific field of cognitive neuroscience. 

With the overarching mission of cognitive neuroscience firmly in view, the goal of 

the present chapter is to discuss the latest understanding of how the brain performs 

object-based visual attention, specifically in reference to natural objects. As I will argue 

in the following sections, object-based attention is a form of attention that is essential for 

effective behavior in natural environments. In other words, much of our quotidian mental 

experience involves not just attention, but object-based attention. I will start from the 

concept of attention, rooted in folk psychology and James-like thinking but nuanced with 

appreciation for more contemporary criticisms about the heterogeneity of processes 

under the “attention” label. Then I will move toward a review of object-recognition 

research, covering early models of how the visual system can recognize objects and 

neural evidence that refines and adds new details to these theories. Then, I will define 
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object-based attention, review research on this topic, and draw upon findings from the 

object-recognition work to describe how object-recognition processes are linked to 

object-based attention. I will explain how object representations in the brain can act as 

substrates for the kinds of object-based attention that we commonly deploy in our 

everyday lives, and I will propose new research questions that build from this synthesis 

and can advance us toward a better understanding of the neural activity that generates 

and supports human experience. Finally, I will merge my speculative framework for 

object-based attention with a more formalized and well-established theoretical model of 

attention’s neural mechanisms, the Specificity of Control (SPoC) Model, introduce a 

testable hypothesis that arises from this synthesis, and lay the groundwork for 

understanding the theoretical significance of empirical work along that line. 

 

How is Attention Operationalized and Studied? 

 The concept of attention as described in the previous section suggests that 

attention is an essential component of all imaginable goal-oriented behaviors. It is hard 

to conceive of any behavior that does not require the selection of certain sensory or 

cognitive, internal or external information to the exclusion of other possibly targetable 

information, or the “focalization [and] concentration of consciousness,” as William 

James put it. Even behaviors that are often associated with mind wandering and neglect 

for the task at hand, such as the commonly experienced phenomenon of driving a 

familiar road and arriving at one’s destination without any recollection of the details of 

the trip (because one’s mind was engaged in unrelated trains of thought), involve 
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attention. We might say that task-oriented attention was absent or diminished in various 

aspects of the act of driving, but process-oriented attention was certainly involved in 

maintaining and following internal trains of thought (Luck and Vecera, 2002).  

The fact that attention seems impossible to disentangle from waking behavior, 

and moreover the fact that attention is required to execute any task or follow any 

instructions, makes it seem that attention is not a suitable phenomenon for scientific 

study by experimental manipulation. Or at the very least, because attention is inherent 

in all behavior, attention as such is too broad to isolate and make any definitive 

empirical claims about.  

 However, researchers have devised ways to study attention despite these 

intrinsic difficulties. The key to studying attention empirically is to design experimental 

paradigms that necessitate attention’s formally defined qualities. Attention can be 

operationalized by making empirical measurements that hinge upon its core qualities: 

the ability to elaborate or enhance information processing with the purpose of improving 

the efficacy, accuracy, or speed of behavioral responses. For example, a task that 

requires the discrimination of visual stimuli that are extremely difficult to distinguish, but 

can be discriminated under some behavioral conditions, implies that attention to the 

stimuli is operating more strongly or only operating in the conditions in which the stimuli 

can be discriminated, because one of attention’s defining qualities is its ability to 

enhance sensory information processing. Thus, it could be said that attention was 

manipulated across the conditions of the task. Upon this logical foundation, attention 

becomes a natural phenomenon that can be studied directly. Its effects, its dynamics, 
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and its underlying neural mechanisms are all available to empirical observation once it 

is operationalized.  

Luck and Vecera group attention-manipulating experimental paradigms into four 

categories: cuing paradigms, search paradigms, filtering paradigms, and dual-task 

paradigms (Luck and Vecera, 2002). Each of these paradigms operationalizes attention 

by way of one or more of the defining qualities described previously.  

Cuing paradigms involve instructing participants that they should guide their 

attention toward a specific target source of information. For example, in a spatial 

attention context, a cuing paradigm might involve instructing a participant to attend to 

either the left or right side of their visual field in anticipation of a target stimulus. These 

shifts of attention can be overt, following shifts of the eyes, or covert, in which the focus 

of attention is shifted without any concomitant eye movement. Using a cuing paradigm, 

attention’s effects on information processing are observable by contrasting responses to 

the cued and uncued sources of information (e.g., Posner, 1980). A crucial aspect of the 

cuing paradigm is that the cue instructs the participant to attend to a specific source of 

information, whether it be a region of visual space, an audio channel, a somatosensory 

region of the body or some other information source. This directedness necessitates the 

selective aspect of attention. Cuing paradigms are thus distinguished from alerting 

paradigms, which are similar in that they generally precede a target event with a 

warning signal, but without the strict requirement that the warning signal specifically 

direct a participant’s attention to a target information source to the exclusion of other 

potential information sources. Alerting paradigms are used to study general arousal and 
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alerting systems, which are sometimes considered to be aspects of attention, especially 

in vernacular usage of term “attention” (Petersen and Posner, 2012). But the more 

common definition of attention in cognitive neuroscience excludes this phenomenon 

because it is weakly- or non-selective.  

Search paradigms require participants to localize a target stimulus within an 

array of multiple nontarget stimuli. These paradigms engage a recognizable form of 

attention because they mimic natural, ecologically valid conditions of cluttered visual 

environments, albeit in an extremely simplified form. Natural environments are often 

crowded with abundant and highly variable visual information. Any given scene we 

encounter on a daily basis can include numerous moving or static objects arranged in 

countless ways that can be seen from multiple perspectives under different lighting 

conditions. In these natural environments ample with potential targets we often need to 

find specific objects in order to accomplish everyday tasks. Researchers bring a 

simplified, experimentally controllable version of this mundane – but complex – behavior 

into the laboratory in the form of a search paradigm. In a typical conjunction search 

paradigm, for example, the task might be to identify a lone green letter T from amongst 

a randomly arranged group of blue Ts and green Ls. Using classical designs such as 

this, researchers have found that search difficulty depends on the factors such as the 

number of items presented, the number of variable feature dimensions, the similarity of 

the target to the distractors, and the similarity of the distractors to each other (Duncan 

and Humphreys, 1989). However, recently attention researchers have found that 

characterizations of attention and search behavior made under classical search 
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paradigms do not translate to more naturalistic forms of search (Peelen and Kastner, 

2014). This issue will be discussed at length in subsequent sections. 

Filtering paradigms invoke behavior that is associated with attention’s ability to 

select targeted information to the exclusion of irrelevant or distracting information. 

These studies usually blend together target and distractor information at one source, so 

that performing the task and responding to target information requires suppressing 

interference from distractor information. For example, in a dichotomous listening task, 

two streams of speech may be presented at once, and only one stream of speech must 

be attended. In this case, speech is the singular information source, because distracting 

and target information are both included within that source. 

Dual-task paradigms require participants to perform two independent tasks 

simultaneously, allowing researchers to observe how competition between the two tasks 

affects task performance. These studies evoke common real-world situations in which 

multiple tasks are vying for our attention at the same time, or when we are trying to 

multitask. Dual-task paradigms thus capture an aspect of attention that is not engaged 

in any of the previous three paradigm types.  

Cuing, search, filtering, and dual-task paradigms are the canonical experimental 

designs that researchers use to isolate and manipulate attention, so that attention can 

be approached as an empirical entity. Most attention studies that are encountered in 

cognitive neuroscience and psychology research can be categorized into one of these 

paradigm types, but often a particular study design will incorporate elements of multiple 

of these types of paradigms. For example, an experiment may use instructional cues to 
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inform participants about an upcoming target stimulus to be identified, following a cuing 

design, but the target may then also be embedded within noise or have other distracting 

features to be ignored, as in a filtering paradigm.  

Regardless of the design details of an attention experiment, or which of the four 

types of paradigms an experiment could most easily be classified as, all attention 

experiments share the common fact that they operationalize attention by leveraging 

attention’s postulated psychological traits into measures of behavioral performance. For 

researchers who are skeptical of the existence of attention as a real entity that should 

be scientifically investigated as such, the logic underlying this strategy might seem 

circular and unsound: Attention is defined as possessing certain qualities, and these 

qualities are then utilized to yield observable measurements that are taken as evidence 

of the details of attention’s operation, and by implication, as evidence of attention’s very 

existence. If it were true that the conventional notion of attention did not accurately 

reflect the true cognitive and neural substrates of attention-like phenomena, we might 

expect that as researchers continue to examine attention with ever finer methodological 

and technological precision, and test new predictions born from previous findings, 

inexplicable results would emerge to challenge the standard model of attention. No 

crisis like this has occurred yet, which is not to say that it never will, but the 

preponderance of available evidence makes a strong case that the psychological 

qualities of attention such as the ones explicated by James in 1890 have neural 

substrates that can be identified. The next section will review important work that has 

begun to reveal these neural substrates.    
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Attention is Linked to Changes in Neural Activity 

Operationalizing attention with designs involving cuing, search, filtering, or dual-

tasks allows attention to be examined empirically. Cognitive neuroscientists aim to 

uncover the neural mechanisms of attention, and so by manipulating attention under the 

operational conditions described in the previous section, and concurrently recording 

neural data, researchers can link patterns of neural activity to the cognitive attentional 

processes being manipulated. In this section I will review findings from ERP, cell 

electrophysiology, and neuroimaging studies that have revealed how attention may be 

instantiated at the neural level. Then, I will review theories of how a top-down attentional 

control system might be influencing sensory neural activity to give rise to attention’s 

effects. 

 

Evidence from ERP studies 

 The first investigations of attention’s neural correlates in humans used the 

electroencephalography (EEG) method. In EEG studies, an array of electrodes is 

affixed to the scalp to record a time series of voltage values that reflect summated 

electrical activity from neurons in the brain. These voltages do not reflect action 

potentials directly, but instead are attributed to post-synaptic potentials, primarily in 

cortical pyramidal neurons (Luck, 2014). EEG data taken from many trials from one 

condition of one experiment can be aligned to a common reference time point, such as 

the time at which a target stimulus onsets on each trial. Aligned data can then be 
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averaged over trials, reducing inter-trial variability attributable to experimental noise and 

fluctuations in mental state, to yield event-related potential (ERP) waveforms that reflect 

neural processes that are common to the experimental condition in question.  

The comparison of ERP waveforms between conditions is a valuable tool for 

examining the neural correlates of cognitive phenomena such as attention. Components 

of ERP waveforms cannot be precisely localized to brain areas for numerous reasons, 

including the smearing of electrical fields that occurs as the fields emanate from dipole 

sources in cortex through tissue layers and skull before they are captured by recording 

electrodes on the scalp. However, the temporal precision of EEG is extremely high, and 

with a high enough sampling rate one can track electrical potential changes arbitrarily 

closely to their origin in post-synaptic potential changes. This allows for fine-grained 

analysis of the time courses of various neural processes and how these time courses 

may differ between experimental conditions. Furthermore, amplitudes of ERP 

components can be compared between conditions, in order to make distinctions 

between various conditions in terms of the degree of neural activity at a certain 

processing stage that accompanies each condition. Researchers have made use of 

both of these advantages of the ERP method to address questions about the neural 

correlates of attention. 

At the time that the initial electrophysiological studies of attention were being 

conducted, there was a significant debate over whether attention operated over early 

sensory input processes or only at later post-perceptual stages. In the early selection 

theory, attention was thought to exert effects on early neural responses to incoming 
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sensory signals, enhancing the representations or influence of attended stimuli in 

sensory systems so that those representations could be more efficiently integrated into 

later task-execution computations. According to the late selection theory, stimulus 

processing and identification happened in parallel and with equal efficacy across the 

whole visual field, and cognitive capacity limitations only occurred later in decision 

making stages. By this theory, attention was thought to operate over later-stage 

decision making or memory processes (Luck et al., 1994).  

Behavioral results favored the early selection theory. For example, Luck and 

colleagues investigated whether the behavioral effects of attention on reaction time 

between valid and invalidly cued targets could be attributable to memory or decision-

related factors (Luck et al., 1994). The researchers ruled out several interpretations of 

previous studies’ findings that had been proposed in light of the late selection model. In 

one experiment, Luck and colleagues tested whether reduced sensitivity to target stimuli 

at uncued locations could be due to memory limitations, as late selection advocates 

argued, by adjusting the cue period duration. The researchers found that cue duration 

did not change the observed attention effects. In a second experiment, Luck and 

colleagues tested whether cue validity effects could be attributable to decision 

processes and not sensory processes by inserting an abrupt onset post-cue stimulus 

that would be expected to override cued attentional state and hinder the transfer of 

sensory information to decision making stages under the late selection model. The 

researchers found that cuing effects were not diminished by salient post-cues, 

strengthening the early selection interpretation of previous findings. 
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Because of its high temporal resolution, ERP was ideally situated to address the 

early/late selection debate neuroscientifically. ERP studies of visual attention found that 

attention operates at an early stage of sensory processing. Numerous studies suggest 

that cuing attention toward a location in space affects early sensory processing of target 

stimuli when they appear in the attended region of space (Mangun, 1995; Hillyard et al., 

1998). In these studies, the amplitudes of ERP components found most strongly over 

occipital scalp in the range of 50 – 250 msec after target onset differed depending on 

whether the target appeared at the attended location or at an unattended location. 

These components, known as P1 (80 – 130 msec) and N1 (170 – 210 msec), are 

thought to reflect neural activity in early stages of visual processing. Thus, when the 

amplitudes of these components are shown to increase with attention to the ERP-

eliciting visual stimulus, it is taken as evidence that attention voluntarily allocated by the 

instructional cue modulates the processing of stimulus inputs in early visual cortex. This 

finding fits with the early selection theory’s proposal that attention enhances sensory 

perceptibility of stimuli by directly increasing the early neural response to those stimuli, 

or by increasing the signal to noise ratio of the neural representation of those stimuli.  

To clarify the picture of how attention alters early sensory processing, Luck and 

colleagues investigated the enhancement of neural responses to attended stimuli and 

the suppression of neural responses to unattended stimuli, showing that these two 

sensory response modulations are attributable to independent mechanisms (Luck et al., 

1994). The researchers were able to dissociate the effects of cued attention on the P1 

and N1 ERP components: P1 amplitudes were increased to attended targets, and N1 
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amplitudes were decreased to unattended targets. This finding suggests that multiple 

attentional mechanisms operate at early sensory processing stages, both to increase 

the neural response to attended stimuli, and to decrease the response to unattended 

stimuli. This dissociation reflects attention’s psychological property of selecting targeted 

information to the exclusion of other potentially targetable information, and adds the 

new detail that exclusion of task-irrelevant information does not happen passively by 

relation to enhanced task-relevant information, but rather that task-irrelevant sensory 

inputs are subjected to an actively suppressive influence. 

These findings exemplify how the body of ERP studies on attention supports an 

early selection model. By the early selection model, attention exerts modulatory control 

over sensory representations as they enter sensory cortex and not only at higher-level 

decision making and task execution stages of cognition. ERP studies therefore also 

support a gain control model of attention, by which attention’s cognitive and behavioral 

effects result from a strengthened neural representation of task-relevant stimuli (Hillyard 

et al., 1998). These studies utilized the ERP method’s temporal precision to address 

questions about the timing of attention’s modulatory influences on neural activity. 

Another benefit of the ERP method is that it is non-invasive, allowing direct measures of 

neural activity to be taken from human participants. However, the non-invasiveness of 

EEG recording is also a limitation. The ERP method is limited in its ability to localize 

effects to brain areas, and in its ability to more closely examine the effects of attention 

at the level of individual neurons, where neural computations take place.  
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Evidence from cell electrophysiology studies 

 Because EEG electrodes record electrical activity at the scalp, they reflect 

summated activity of millions of neurons over a widespread cortical patch. To gain a 

better understanding of attention’s effects on neural activity at the level of individual 

cells, researchers perform electrophysiological studies on brain cells of animal models. 

Numerous cell electrophysiological studies have revealed details of how attention 

modulates the magnitudes of neural responses to attended and unattended stimuli at 

the level of single neurons, corroborating findings from ERP studies, and suggesting a 

more fine-grained picture of how many individual neurons’ modulated responses result 

in ERP component amplitude changes.  

 Moran and Desimone recorded from single cells in rhesus monkey visual cortex, 

and found that in order to enhance processing of attended visual stimuli and suppress 

processing of irrelevant stimuli, attention modified visual neurons’ receptive field 

properties (Moran and Desimone, 1985). For their recordings, the researchers identified 

V4 neurons that had receptive fields large enough to encompass two different stimuli 

presented on a display simultaneously. At the V4 stage of visual processing, neurons 

are responsive over large spatial receptive fields but are selective for other visual 

features such as orientation and color. Therefore, one of the displayed stimuli could be 

designed to be effective in driving action potential activity in the recorded neuron, and 

one of the stimuli was not. This differential response elicitation profile of the two visual 

stimuli allowed Moran and Desimone to observe how attention modulated the action 

potential trains from the recorded neuron, purely as a function of which stimulus the 
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monkey was attending. The monkey was trained to covertly attend to one stimulus for a 

block of trials and then covertly attend to the other stimulus for a subsequent block of 

trials, maintaining its fixation the entire time. This way, visual input was identical 

between blocks. The researchers found that when the monkey attended to the effective 

stimulus, the cell responded well, but when the monkey attended to the ineffective 

stimulus, the cell’s response was greatly reduced, even though the effective stimulus 

was still inside the receptive field of the recorded neuron. The contrast in the cell’s 

response between attention conditions suggested that attention can attenuate the 

response of neurons that represent unattended, task-irrelevant information. 

Furthermore, Moran and Desimone observed that there was no effect of attention on the 

recorded spike rate when one of the two stimuli was located outside of the recorded 

cell’s receptive field. The researchers interpreted this result to mean that attention 

serves to bias competitive interactions between stimuli contained within a cell’s 

receptive field, so that the cell propagates information about the attended stimulus and 

not about task-irrelevant stimuli. 

 The idea that attention can modulate neural responses to different stimuli within a 

single receptive field received more support from a study by Luck, Chelazzi, Hillyard, 

and Desimone (Luck et al., 1997). In their study, Luck and colleagues recorded from 

neurons of a macaque monkey in visual areas V1, V2, and V4 as the monkey 

performed a covert spatial attention task, shifting its attention between stimuli at two 

locations. For recordings made in areas V2 and V4, the researchers found that when 

the two stimuli were both within the recorded neuron’s receptive field, the neuron’s 
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response varied according to which stimulus was attended, just as in the study by 

Moran and Desimone. Furthermore, baseline firing rates of the recorded cells before 

stimulus onset were found to be increased when the monkey’s attention was directed 

into the receptive field of recorded cell. This baseline firing rate increase can be 

construed as preparatory biasing of upcoming sensory inputs from the attended 

location. No baseline firing rate increases or stimulus evoked activity modulations were 

observed in area V1, in line with previous studies that suggested that attention’s effects 

on visual neural activity occurred in extrastriate cortex. 

 Human ERP studies showed that attention amplifies the neural responses to 

attended stimuli. Single unit recordings showed similar response enhancement in cells 

that were receptive to input from attended stimuli, suggesting a neuron-level basis for 

the ERP findings obtained from human participants. But other forms of neural activity 

modulation could also correlate with attention. Neural response amplification findings 

support gain control models of attention, however, gain control models cannot fully 

account for the important role that attention plays in shaping the flow of information 

through sensory processing areas and toward task-oriented behavioral execution areas. 

The single unit recording studies of Moran and Desimone and Luck and colleagues 

suggest that attention may be performing more than just an amplification on stimulus 

response at the individual neuron level, but may also be biasing attended stimulus 

representation relative to the representations of competing stimuli. Building upon gain 

control results, numerous cell electrophysiological studies suggest ways that attention 

alters the functional connectivity of brain areas in sensory processing hierarchies.  
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 Fries, Reynolds, Rorie, and Desimone recorded spikes and local field potentials 

from clusters of multiple V4 neurons in a macaque monkey performing a covert spatial 

attention task, and found increased gamma frequency synchronization across neurons 

responsive to attended stimuli, compared to the coherence across neurons responsive 

to unattended stimuli (Fries et al., 2001). Fries and colleagues postulated that gamma 

frequency coherence among neurons reflects an open channel for neural 

communication (Fries, 2005), so the observation that gamma band synchrony among 

cells responsive to an attended stimulus suggests that one of the neural mechanisms of 

attention is regulating the functional communication pathways in cortical networks. 

 Thus, regulating the functional connectivity between cortical areas may be one of 

the neural mechanisms of attention. With attention controlling the flow of sensory 

information through cortical processing stages, task-relevant information can be 

processed preferentially or propagated efficiently toward higher order areas. Exactly 

how functional connectivity between cortical areas is controlled is unknown, however, 

there is some evidence that subcortical structures in the thalamus, such as the pulvinar 

nucleus, may be involved (Saalmann et al., 2012). 

 Although recording activity from single cells in attentive animals may not translate 

entirely to understanding the neural mechanisms of attention in humans, the findings 

just described were taken from primate animal models, and there is reason to believe 

that the operation of primate visual systems is highly conserved. Thus, cell 

electrophysiology in non-human primate models is an important method for elucidating 
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the underlying neural mechanisms of attention in humans, when the dynamics of 

individual neurons in the human brain are not amenable to observation. 

 

Evidence from neuroimaging 

 Human neuroimaging is a useful method for localizing brain activity to specific 

anatomical areas. Unlike EEG, which is anatomically imprecise but high-resolution in 

time, neuroimaging methods allow for identification of active brain areas down to cubic 

millimeter resolution, but temporally smear activity over seconds, precluding any 

observation of how localized neural activity evolves at time scales most relevant to 

neural computation. Like EEG, the major advantage of neuroimaging is that it can be 

performed in human participants, in non-invasive ways involving functional magnetic 

resonance imaging (fMRI) or only mildly invasive ways involving positron emission 

tomography (PET).  

Despite its limitations, neuroimaging is well-suited to studies of attention’s neural 

correlates. Neuroimaging’s poor temporal resolution is less problematic within 

experimental designs that invoke sustained, top-down activity, such as the anticipatory 

attention elicited by cuing paradigms. Because findings from cell electrophysiology 

studies have shown that attention increases the baseline firing rate of neurons 

responsive to attended stimulus attributes (Moran and Desimone, 1985; Luck et al., 

1997), overall brain activity in regions containing those responsive neurons would be 

predicted to increase during a period of sustained top-down attention. Furthermore, the 

spatial resolution of neuroimaging methods is sufficient for analysis of brain activity in 
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regions of interest and at scales that are hypothesized to be relevant for attention’s 

operation. Visual areas selectively responsive to different visual information can be 

circumscribed and observed within the spatial limits of fMRI (Grill-Spector and Malach, 

2004). 

 Corbetta and colleagues used PET to show that activity in areas of the visual 

system specialized for different types of visual information was selectively modulated by 

attention (Corbetta et al., 1990). The researchers used a PET method that measures 

changes in cerebral blood flow. Therefore, the signal they acquired was used a proxy 

for underlying neural activity, and changes detected in the PET scans were considered 

to represent concomitant changes in neural activity across the entire cortical area where 

the signal was detected. The task that the researchers designed required that 

participants engage top-down attention toward different visual feature dimensions – 

shape, color, and velocity of stimuli – so that neural activity could be assessed in the 

visual areas that have been identified as selectively responsive to those features. The 

researchers’ finding that brain activity increased in visual areas that encode attended 

feature dimensions matches findings from fMRI studies. 

 Functional MRI measures blood oxygen level dependent (BOLD) activity. 

Increased blood flow to a brain area is thought to reflect greater metabolic activity due 

to greater neural activity in that area, and so the BOLD signal is used as a proxy for 

neural activity (Logothetis and Wandell, 2004). Thus inference about neural activity on 

the basis of fMRI is similar to that of PET, but fMRI research is generally less invasive 

than PET and so it is more widely used in cognitive neuroscience.  
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Numerous fMRI studies have examined the neural correlates of top-down 

attention on sensory activity. Tootell and colleagues, using a covert spatial attention 

design, showed that BOLD activity was increased over visual areas that receive input 

from the attended visual field quadrant (Tootell et al., 1998). The degree of signal 

change was found to increase along the hierarchy of visual processing areas, which 

may reflect the enlargement of receptive fields with successive visual areas, and 

corresponds to previous findings of attentional modulation primarily in extrastriate areas. 

Notably, though, Tootell and colleagues did observe modulated BOLD activity in primary 

visual cortex. A similar finding was later reported by Martínez and colleagues (Martínez 

et al., 1999). However, Martínez and colleagues hypothesized that the modulation of 

BOLD activity in striate cortex reflected re-entrant processing that may occur as 

feedback from higher visual areas, because they did not observe any ERP changes in 

the time ranges that correspond to the initial sweep of sensory input through V1. 

Kastner and colleagues tested a prediction in humans based on the finding from 

single-unit recordings in monkeys that when multiple stimuli are simultaneously present 

within a neuron’s receptive field, they mutually compete for representation by the 

neuron, and attention can influence the neuron’s responsivity (Moran and Desimone, 

1985). Kastner and colleagues conducted an experiment in which participants’ spatial 

attention was directed to a region of space containing four different visual stimuli, with 

instructions to attend to only one stimulus. The researchers observed that when the 

target stimulus was covertly attended, suppressive influence attributable to the other 
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simultaneously presented stimuli was reduced, in line with the finding from monkey 

single-unit work (Kastner et al., 1998). 

The studies reviewed here show how neuroimaging has been used to uncover 

attention’s neural correlates in humans. The finding that top-down anticipatory attention 

correlates with an increase in activity in visual areas that selectively respond to the 

attended visual information resembles findings from single-unit studies that show an 

increase in baseline firing rates of individual neurons responsive to the attended 

information. Converging evidence from these two methods strengthens the idea that in 

part, attention acts as a gain control mechanism at the level of neural computation over 

sensory input. Despite its limitations, neuroimaging studies extend findings from cell 

electrophysiology: The human visual system responds in a way that is predicted from 

single-unit recordings in animal models, and baseline activity increases can be 

observed over an entire cortical area when that area is functionally selective for an 

attended source of visual information. 

In addition to its applicability in humans, another advantage of neuroimaging not 

afforded by single-unit recording is that activity in the whole brain can be observed 

simultaneously. Thus, neuroimaging data can be analyzed to look for brain areas 

functionally linked to the baseline increases in sensory areas that attention induces. For 

example, the degree of attention-related change in activity in the lateral geniculate 

nucleus (LGN), the thalamic nucleus that receives afferent optic nerve signals and 

relays these signals to visual cortex, has been found to correlate with that of visual 

cortex, suggesting that attention might exert a gating influence subcortically (O’Connor 
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et al., 2002). Concomitant activity has also been hypothesized to exist in higher-order 

brain areas associated with cognitive control, because top-down attentional modulation 

of sensory processing theoretically is implemented from a directive source. The next 

section will review human neuroimaging studies that have sought to reveal sources of 

attentional sensory modulation that constitute a theoretical attention control system.  

 

Evidence of a top-down control system 

 Three ideas motivate the hypothesis that attentional modulation of sensory 

activity is a result of activity from a higher-order attention control source system. First, 

without any top-down or feedback influence, inputs to early sensory areas are unbiased 

and contain all sensory information available to subsequent analysis. Abstract 

representations such as features and meaning are developed as sensory input 

progresses through increasingly higher-order stages of processing. In that sense, the 

earliest sensory representation can be thought of as a blank slate or a pluripotent map 

of the sensory environment. Therefore, attentional modulation of sensory input, which 

has been shown to selectively emphasize representations of some sensory information 

to the exclusion of other information, cannot occur without top-down influence. 

Second, higher-order brain areas have been associated with cognitive control, 

broadly defined as the cognitive function that enables the control of behavior and 

internal cognitive operations that support a goal or task. Within this conceptual 

framework, endogenous attention, the form of attention engendered by voluntarily 

orienting attention toward a source of task-relevant information, can be linked to 
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cognitive control. Thus, the orienting of endogenous attention is thought to originate 

from higher-order brain areas.  

Third, in clinical studies, patients with lesions in frontal and parietal areas often 

show specific deficits in their ability to attend. Corbetta and Shulman have reviewed 

how damage in the right temporoparietal cortical junction (TPJ) often leads to spatial 

neglect of the contralateral hemifield – a syndrome that has been construed as a 

specific deficit in the ability to direct attention to the contralesional visual field or 

contralesional half of objects (Corbetta and Shulman, 2002). Neuropsychology findings 

thus provide causal evidence that areas in the parietal lobe are involved in the orienting 

of attention.   

On the basis of these three motivational arguments for the existence of a higher-

order attention control system, researchers have sought to uncover the brain areas that 

may constitute such a system, what the respective role of each area is, and how their 

cooperation mechanistically modulates sensory processing. Crucially, these efforts have 

separated brain activity attributable to attentional orientation from attentionally 

modulated sensory activity, in order to examine the control processes themselves. 

Numerous early studies identified a collection of areas that are involved in the 

orienting of attention, without experimentally evaluating what the differential role of each 

area might be. Using PET, Nobre and colleagues observed that areas including the right 

anterior cingulate gyrus, the intraparietal sulcus of right posterior parietal cortex, and the 

medial and lateral premotor cortices were involved in both exogenous and 

endogenously cued covert spatial attention (Nobre et al., 1997). The researchers 
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designed a covert attention task with peripheral cues. In one condition, participants 

were instructed that the peripheral cue appears on the side where the subsequent 

target will occur. This condition engendered exogenous attention, because the 

peripheral cue was a salient stimulus that captured attention and caused its reflexive 

orientation toward the cued side. In a second condition, participants were instructed that 

the target would appear on the opposite side of where the peripheral cue appears. This 

condition was designed to engender endogenous attention, because participants would 

have to orient attention voluntarily in accordance with the task instructions, rather than 

rely on the reflexive orienting that occurs with the peripheral cue. In comparing PET 

results between the endogenous and exogenous attention tasks, Nobre and colleagues 

observed that the activity in frontal and parietal areas seemed to be equivalent across 

conditions. 

From the results of Nobre and colleagues, it is unclear whether identical network 

activity generates both endogenous and exogenous shifts of attention. These two forms 

of attentional orienting seem conceptually distinct, and therefore it is unlikely that they 

are attributable to identical network mechanisms. Corbetta and colleagues used event-

related fMRI to examine attention-related parietal activation, such as that observed by 

Nobre’s group, to closely inspect whether different regions within parietal cortex were 

differentially active depending on whether attention was voluntarily oriented in an 

endogenous manner or reflexively oriented exogenously (Corbetta et al., 2000). The 

researchers found that the intraparietal sulcus was preferentially involved in 
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endogenous attention, and the right temporoparietal junction was more involved during 

exogenous orientation. 

Hopfinger, Buonocore, and Mangun used event-related fMRI and a cued 

attention task to dissociate cue-related neural activity from target-related neural activity 

(Hopfinger et al., 2000). Cue-related activity was thought to reflect voluntary orienting 

processes, and localized to a network of cortical areas including superior frontal, inferior 

parietal and superior temporal brain regions. The researchers also found greater BOLD 

activations in extrastriate areas evoked by the cue, in line with previous findings that 

endogenous attention increases baseline activity in sensory areas that encode attended 

information, and strengthening the interpretation that the network of active areas in 

frontal, parietal, and temporal cortex influenced the receptivity of visual areas to 

attended inputs. 

 Beyond just identifying the brain areas that constitute the attention control 

network, understanding the computational or mechanistic contributions of each of the 

areas is a key goal of research into the neural mechanisms of attention. Several groups 

have examined the role of individual areas in this network and the interaction between 

components of the network in order to better understand the respective contributions of 

each area. 

  For example, Szczepanski and colleagues used diffusion-weighted and 

functional MRI to investigate how different combinations of the constituent areas of the 

dorsal frontoparietal attention network differentially contribute to attentional control 

(Szczepanski et al., 2013). The researchers found that different functional pathways 
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between areas in the dorsal attention network were linked to different spatial 

representations of attentional priorities. Egocentric spatial reference frames, in which 

positions in space are derived relative to the observer’s viewpoint, are different from 

allocentric reference frames, in which spatial coordinates are defined relative to an 

external object. Szczepanski and colleagues found that spatial attention operating within 

these two reference frames depended on different functional pathways between nodes 

of the dorsal attention network. Furthermore, the researchers found that these different 

functional pathways may be subserved by different anatomical pathways. The 

researchers compared activity between two groups of nodes in the dorsal network: the 

frontal eye field (FEF) and intraparietal sulcus (IPS) group, and the supplementary eye 

field (SEF) and superior parietal lobule (SPL) group. The researchers concluded that 

unlike FEF and IPS, which preferentially represented space egocentrically, SEF and 

SPL could flexibly represent space either egocentrically or allocentrically, depending on 

the task demands. Thus, these findings lead to a better understanding of the respective 

roles of the different areas in the dorsal attention network. 

 Popov, Kastner, and Jensen recorded magnetoencephalography (MEG) from 

human participants performing a visuospatial attention task, and observed that of all the 

areas in the dorsal attention network, the right FEF was preferentially involved in the 

control of gamma-band frequency activity in visual cortex via alpha-band activity (Popov 

et al., 2017). The gamma band, defined as oscillatory neural activity in the range of 40 – 

100 Hz, is thought to reflect local neural activity associated with the feedforward flow of 

sensory information, whereas the alpha band, defined as 8 – 13 Hz oscillatory activity, 
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reflects feedback from control regions onto sensory areas. Thus, the researchers 

concluded that within the conceptual framework that distinct bands of oscillatory activity 

reflect separate channels for information transmission, the right FEF plays a critical role 

in relaying attentional control signals generated in the entire dorsal attention network to 

the sensory sites of attentional modulation. Whether this finding reflects a unique role 

for the right FEF is debatable, because the right FEF is not known to possess a 

retinotopic map of the complete visual field (Silver and Kastner, 2009). Instead, the 

finding of Popov and colleagues may only partially reflect a more complete bilateral FEF 

mechanism due to methodological limitations. 

In summary, a dorsal frontoparietal attention control network has been identified 

using human neuroimaging. The brain areas that constitute the dorsal attention network 

include IPS, SPL, FEF, and SEF of both hemispheres (Szczepanski et al., 2013). This 

network has been implicated in endogenous attentional orienting, and its activity has 

been linked to modulations of neural activity in sensory areas (Liu et al., 2016; Popov et 

al., 2017), but future studies are necessary for better understanding of the precise 

mechanisms by which activity in the dorsal attention network modulates sensory 

representations of attended information.  

One possible mechanism involves channeling control signals to sensory cortex 

through retinotopic maps of space. Both the IPS and the FEF exhibit retinotopically 

organized maps of visual space (Silver and Kastner, 2009). These spatial maps may be 

involved in directing covert and overt attention, and thus activity in these areas might 

give rise to the network activity observed during endogenous spatial attention (Scolari et 
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al., 2015). Activity in this network has also been involved in feature-based attention and 

object-based attention, suggesting that visual feature locations can be identified and 

attended through the retinotopic maps encoded in IPS and FEF (Scolari et al., 2015).   

The dorsal attention network is hypothesized to be the primary control network 

involved in endogenous attention. However, in controlling attention to execute goals and 

implement task-relevant behavior, the dorsal attention network does not operate in 

isolation. The dorsal attention network is thought to closely interact with a separate 

ventral frontoparietal attention network (Vossel et al., 2014). The ventral frontoparietal 

network, comprising the temporoparietal junction (TPJ) and ventral frontal cortex (VFC), 

has been identified as a source of exogenous orienting (Corbetta and Shulman, 2002), 

potentially acting on sensory cortex via connections to the dorsal network (Corbetta et 

al., 2008; Geng and Mangun, 2011). A commonly proposed mechanistic role of this 

ventral network in attentional reorienting is that it may act like a circuit breaker for the 

dorsal network, triggering shifts of attention when highly salient stimuli reach a critical 

threshold. However, there is debate over this claim, in part because there is little direct 

evidence that the network plays this circuit breaker role, and because other evidence 

suggests that it may instead primarily integrate contextual information into attentional 

orienting (Geng and Vossel, 2013). The ventral frontoparietal attention network is 

conventionally defined as a right hemisphere network because of clinical findings from 

hemispatial neglect syndrome patients (Corbetta and Shulman, 2002), however, 

neuroimaging experiments have revealed that corresponding left hemisphere areas may 
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also play an important role in orienting attention on the basis of contextual information 

(DiQuattro and Geng, 2011; Geng and Vossel, 2013).  

Indeed, the finding that a network of higher-order brain areas seems to control 

exogenous attention is surprising. A prediction that higher-order areas control 

exogenous attention does not follow directly from theory in the same way that 

endogenous attention was predicted to originate from sources in higher-order areas. 

Mutually competitive interactions mediated by inhibitory interneurons exist throughout 

the cortex, and such inhibitory architecture can be used as a mechanism to emphasize 

and strengthen highly salient inputs to the exclusion of less salient inputs (Coultrip et al., 

1992). Thus, on the basis of these winner-take-all models, exogenous orienting of 

attention could be predicted to operate entirely from bottom-up mechanisms, without 

any involvement from higher-order orienting networks. Future work will be necessary to 

better understand the role of the ventral frontoparietal attention network, and integrate 

early interpretations of the network as a reorienting controller with more recent findings 

about its representations of contextual information.  

 

How are Objects Represented in the Brain? 

 Higher-order attention networks have been shown to be involved in the orienting 

of attention. Neuroimaging studies in humans have revealed that dorsal and ventral 

frontoparietal networks are active when people orient their attention toward task-

relevant or salient sources of sensory information. These networks, particularly the 

dorsal attention network, are considered to be the source of directive signals that 
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influence the responsivity and computational efficacy of selected sensory areas that 

represent the kind of sensory information necessary to efficiently perform a task or 

execute a goal. It is unknown exactly how functional connections from the dorsal 

attention network onto sensory sites lead to the attention-mediated changes in neural 

activity that have been observed using ERP, cell electrophysiology, and neuroimaging 

methods, and moreover, it is unclear exactly how control signals are channeled to 

sensory areas. Regarding the latter point, researchers have identified that the IPS and 

FEF contain topographic spatial maps (Silver and Kastner, 2009), suggesting that 

control signals generated by activity in the dorsal attention network are channeled 

through these areas in order to target selected visual sites (Scolari et al., 2015). In 

support of this idea, researchers have observed that of all the components of the dorsal 

attention network, the FEF is most clearly functionally linked to attention-related visual 

modulation (Popov et al., 2017). 

 But the number of anatomical connections necessary to support attention to 

every possible spatial location, spatial scale, visual feature, and object category 

undermines the possibility that the dorsal attention network operates via a one-to-one 

mapping of task demand to sensory modulation. Alternatively, attention may operate 

primarily over object representations, reducing the complexity of the signal transmission 

problem. The aim of the present manuscript is to describe how attention may operate in 

this manner, and in order to contextualize that topic for more detailed discussion later, in 

this section I will describe the current understanding of how visual objects are 

represented in the brain. First, I will describe early models of how the visual system 
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recognizes objects, and provide an overview of the development of object recognition 

theory to its current state. Then, I will review work from cell electrophysiology and 

human cognitive neuroscience that examine how the brain instantiates models of object 

recognition. 

 

Early models and behavior 

In his book Vision, David Marr defined vision as “knowing what is where by 

looking” (Marr, 1982). Marr’s quip refers to an essential quality of vision – recognizing 

the objects that we see. In the vast majority of cases throughout our lives, when we look 

at something, we immediately know what it is. But importantly, Marr’s satirically facile 

definition of vision hints at a complex problem under the surface: What is an object? It 

seems trivial, because intuitively we know what objects are. We interact with the world 

primarily on the basis of the objects that fill our environments. Typical scenes are 

cluttered with many objects. In almost all cases, we recognize objects immediately from 

normal visual input, and we have little trouble recognizing objects even as our 

perspective on them, their relative size, their positions relative to other objects, and their 

lighting conditions change. We easily and naturally generalize our learned object 

categories to new exemplars that exhibit combinations of visual features that we have 

never encountered before and never consciously anticipated. As Marr implied, our easy 

everyday experience with objects belies the difficult and complex computational 

problems that our visual systems overcome to generate and sustain our object 

perceptions.  
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One major problem is reconciling selectivity with invariance: our visual system 

needs to be able to immediately recognize an object with a high degree of certainty, 

selecting one identity over all other possible identities, but it also needs to be able to 

perform this selective identification invariantly over a wide range of visual appearances 

(Gauthier and Tarr, 2016; Tong, 2018). Another major problem the visual system faces 

is extracting three-dimensional object information from two dimensional projections of 

light onto our retinas, when an infinite number of possible arrangements of entities in 

the real world could give rise to the single two dimensional retinal projection each eye 

receives (Tarr and Bülthoff, 1998). 

Evidently, the visual system can overcome these computational challenges, and 

a key component of its solution, or the solution itself, is the formation and utilization of 

object representations. Thus understanding how objects are represented in the brain is 

fundamental to a cognitive neuroscience of vision. The first step toward reaching that 

understanding is defining what objects are.  

We can define an object as a collection of visual features, none of which are 

individually necessary or sufficient for categorization of the collection as an object, but 

that together are perceived as a bound, discrete perceptual unit. Objects have 

affordances, meaning that our perception of an object incorporates the ways that we 

can interact with it, manipulate it, and use it. Objects often have verbal labels, but the 

binding of visual features into an object can still occur without invoking a verbal label. 

When an object has a verbal label, we say that it belongs to a category. We can make a 

distinction between an object category and subordinate members of a category. Objects 
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are thought to reflect, imperfectly but closely, the natural category structure of the world, 

according to which object categories maximize the similarity of members of the category 

while also maximizing the separation between categories. In line with this idea, 

researchers have found behavioral evidence that people are faster at identifying objects 

at the basic category level than they are at the subordinate level, suggesting that more 

cognitive effort and neural computation is required to discriminate subordinate-level 

categories (Mervis and Rosch, 1981; Palmeri and Gauthier, 2004).  

Research into the neural representation of objects seemingly can be 

differentiated according to two broad questions: How does the brain extract perceptual 

features and bind them together into a coherent, discrete object representation? And: 

What is the neural basis of object category classification? These two seemingly 

disparate processes involving objects are actually interconnected. Grill-Spector and 

Kanwisher conducted a behavioral experiment to test whether object segmentation, the 

process of identifying the location and extent of an object within a visual scene, occurs 

before object categorization. The researchers presented participants with object images 

for brief durations and followed by a visual mask, in order to limit the processing time 

that the images could bestow on the visual system, and then asked participants to 

report on the presence, category, or the subordinate-level identity of the presented 

object. If object segmentation occurs before categorization and subordinate-level 

identification in the visual processing hierarchy, participants should more easily report 

the presence of an object than the category of an object. Grill-Spector and Kanwisher 

found nearly identical response profiles for detection and categorization, with 
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identification lagging behind, and interpreted their findings to mean that object 

segmentation – the binding of visual features into a discrete visual representation – 

occurs contemporaneously with object categorization (Grill-Spector and Kanwisher, 

2005). Thus, the process of forming coherent object representations in the visual 

system may be identical with the process of categorizing objects, or at least, models of 

object recognition are constrained to those that do not require separate processes for 

object segmentation and categorization. 

With the concept of an object defined along the lines described above, 

researchers have sought to model how the visual system extracts object information 

from visual input. Early models of how the brain represents and recognizes objects 

emphasized that the brain extracts three-dimensional structure from two-dimensional 

retinal projections. These models are broadly classified as structural description models 

(Tarr and Bülthoff, 1998). For example, Marr proposed a “2.5-D sketch” process, by 

which the brain constructs a three-dimensional model of an object in an allocentric 

reference frame from the two-dimensional retinal projections we receive in an 

egocentric reference frame (Marr, 1982). According to Marr’s model, the visual system 

builds from lines to contours to surfaces to three-dimensional object representations, to 

reconstruct the external source of input to our retinas. In a similar vein, Biederman 

developed a “recognition-by-components” or “geon” model, according to which every 

object is represented primarily as a combination of a small number of elementary three-

dimensional shapes (Biederman, 1987). Support for structural description models has 

been gleaned from behavioral studies showing that object recognition can be primed by 
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presenting participants with pictures of the target objects but from different perspectives 

(Biederman and Gerhardstein, 1993). These models are plausible, because they 

propose that by extracting a three-dimensional object structure from visual input, the 

visual system circumvents the need to hold a representation of every classifiable object 

from every viewpoint from which the object might observed. But criticism of both Marr’s 

model and Biederman’s model includes the assertion that neither model explains the 

actual computational processes underlying three-dimensional structure extraction, and 

the mystery of that process is the critical gap in our understanding of object recognition 

(Tong, 2018). Furthermore, Biederman’s geon model cannot be easily applied to the 

recognition of natural objects, particularly when the geon deconstruction of two 

completely different objects is identical.  

In contrast with structural description models, a different wave of object 

recognition study has been based on the idea that objects are represented as a 

collection of viewpoint-specific features. These models are classified as image-based 

models (Tarr and Bülthoff, 1998). Image-based models are inherently dubious because 

they suggest that the visual system does encode separate images for all or many of the 

possible viewpoints that every recognizable object can inhabit. But researchers in the 

late 1980s and 1990s suggested that the visual system only needs to encode a smaller 

number of viewpoint representations, and then can rely on mechanisms such as mental 

rotation and view interpolation to accommodate the reality that an object can be 

recognizable from an infinite number of perspectives (Tarr and Bülthoff, 1998). 
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Ultimately, neuroscientific studies that took place in the late 1990s and first two 

decades of the 21st Century have rendered moot the debate between proponents of the 

image-based and structural description models (Gauthier and Tarr, 2016). A new class 

of models – convolutional neural networks – has eclipsed previous theoretical accounts 

of object recognition. The next section will describe this newly dominant theoretical 

framework. 

 

Convolutional neural network models 

 Artificial deep convolutional neural networks (CNNs) are currently the most 

plausible and accurate models of how the human visual system performs object 

recognition (Kriegeskorte, 2015; Gauthier and Tarr, 2016; Tong, 2018). Although CNNs 

were not invented with the explicit intention of replicating the brain’s visual system, the 

design of CNNs is inspired by the biological architecture of the visual system, and 

resembles particularly closely the ventral visual pathway (Kriegeskorte, 2015). In a 

typical CNN architecture, interconnected layers of nodes perform simple computations, 

passing an incoming visual representation forward through successive layers of 

computation until it reaches an output layer. Activation of one out of an arbitrary number 

of nodes in the output layer signifies the class of object depicted in the visual 

information given to the CNN as input. In this kind of architecture, individual nodes are 

the basic computational units, and the overall computation is instantiated in the network 

interactions between the nodes. CNNs are defined as deep when they comprise many 

hidden layers – in current practice, typically at least five – between the input layer and 
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the output layer. These networks are convolutional in the sense that the early layers 

have small spatial receptive fields, and because each node in these early layers 

performs a feature extraction over its receptive field. Hence, the cumulative effect of all 

nodes’ operation is a convolved feature extraction over the input image space.  

The CNN design is thought to resemble the way that biological neural networks 

perform computations over sensory input, but artificial neural networks generally do not 

incorporate many of the theorized operational mechanisms of biological neurons, such 

as dendritic computations, differential excitatory efficacy along the membrane, and the 

multiplicity of computational roles played by different types of neurons.  

Nevertheless, remarkably, CNNs perform many high-level object classification 

tasks as well as humans in some respects. For example, Rajalingham and colleagues 

collected a large scale dataset of object recognition behavior from monkeys and 

humans and compared it to feedforward CNN performance, finding that CNNs, 

monkeys, and humans all shared a highly similar pattern of object-level confusion – 

showing a nearly identical tendency to mistakenly classify an object category as a 

different category – indicating similar underlying object classification mechanisms 

(Rajalingham et al., 2018). However, notably, Rajalingham and colleagues observed 

that the CNN did not perform similarly to monkeys or humans at the individual image 

level. That is, for each individual image tested, the CNN’s classification performance did 

not correlate strongly with that of the monkeys or the humans. The researchers’ finding 

highlighted a limitation in drawing an exact comparison between feedforward CNNs and 

primate object recognition networks. A strong claim that artificial neural networks 
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replicate primate object recognition behavior would require a close correspondence 

between model and primate performance on all available metrics. 

Despite the limitations observed by Rajalingham and colleagues, the 

correspondences in design and performance that have been observed between the 

human visual system and CNNs suggest that understanding how CNNs perform object 

classification is at least relevant to understanding how the human visual system 

represents and recognizes objects, if not fully explanatory. To that end, researchers 

have shown close correspondences between internal object recognition processes in 

CNNs and in biological visual systems. Khaligh-Razavi & Kriegeskorte, using 

representational similarity analysis (Kriegeskorte et al., 2008), showed that the way that 

early CNN layers represent visual inputs match the early stages in the biological visual 

hierarchy, whereas the representational geometry of later layers of CNNs more closely 

match that of inferotemporal cortex (Khaligh-Razavi and Kriegeskorte, 2014).   

 Many high-performing CNNs are exclusively feed-forward, meaning that once the 

network has been trained, the processing of representations at one layer is not 

influenced by the activity in any of the subsequent layers. However, the ventral visual 

pathway of the human brain contains many lateral and feedback connections (Felleman 

and Van Essen, 1991), which are thought to be crucial to the image processing 

computations occurring therein. Neural network architectures in which the activity in a 

node can feed back and influence activity in a previously active node are called 

recurrent. Whereas feedforward CNNs are universal function approximators, recurrent 

CNNs are universal dynamical system approximators, able to represent the dynamic 
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evolution of a system, utilizing its internal network state as a form of memory that allows 

it to detect temporal as well as spatial patterns in its input and capture those patterns in 

its output (Kriegeskorte, 2015). This dynamical system-representing ability of recurrent 

CNNs evokes both the anatomical architecture and dynamical function of biological 

neural networks. Furthermore, the lateral and feedback connections of recurrent neural 

networks are thought to play an important role in noise reduction and occlusion 

compensation in object images degraded by noise or clutter (Spoerer et al., 2017).  

Spoerer, McClure, and Kriegeskorte tested several CNN architectures on a 

variety of visual object recognition tasks to assess potential performance improvements 

afforded by top-down and lateral connections (Spoerer et al., 2017). The researchers 

compared the performance of four types of CNN architectures: exclusively feedforward, 

feedforward with lateral connections, feedforward with feedback connections, and 

feedforward with lateral and feedback connections. The two perceptual tasks the 

researchers pitted against the CNNs were digit discrimination tasks that occluded target 

digits in two different ways: with other digits and with digit fragments. These forms of 

occlusion were designed to mimic how occlusion of an object in a natural image results 

in degraded visual input for the object. In natural scenes, task-relevant objects are often 

partially occluded by different task-irrelevant objects that co-occur with the target object, 

or by textures that resemble parts of the target object because of similar visual features. 

For example, trying to find a corkscrew buried somewhere in a messy kitchen drawer is 

difficult because of the mess of random twist ties, chip clips, batteries, and rubber bands 

in which the target corkscrew is partially submerged. Being able to infer the presence of 
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the corkscrew by a combination of its visible features, extrapolating its full structure 

behind occluding distractors, is an essential function of the human visual object 

recognition system. Spoerer and colleagues found that in their two occlusion tasks, the 

best performing model was the recurrent CNN with both feedback and lateral 

connections, suggesting that this recurrent architecture is essential for ecological object 

recognition performance. 

In summary, deep CNNs represent the best current understanding of how the 

human visual system represents and recognizes objects. The CNN is considered the 

best available model both because its instantiation in computer vision applications 

achieves human levels of performance, and because based on our knowledge of the 

anatomy of the visual system and the biophysical properties of neurons, the 

computations performed by CNN nodes could be instantiated in biological neurons, and 

the algorithms embodied in the network architecture of CNNs reflects known 

connectivity of biological neural networks. Based on what is known about how CNNs 

represent and classify objects, we can infer that the human visual system builds 

representations of objects from initially simple to progressively more complex feature 

representations over successive stages of processing. The basic idea that simple 

features can be combined into more complex features at subsequent processing stages 

has been known to vision research since the early characterizations of the receptive 

fields of simple and complex cells, but CNNs provide a proof of concept that 

successively complex representations can culminate in highly specific object 

representations for thousands of categories, robust to widely variable physical 
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appearances. In particular, recurrent CNNs are the best CNN models of biological visual 

object processing, because their network architecture closely resembles the neural 

networks in ventral visual cortex, and because they have been demonstrated to be 

robust to degraded inputs, such as occlusion, that commonly occur in natural 

environments (Spoerer et al., 2017). In line with that idea, recent work has revealed 

limitations in applicability of purely feedforward CNNs to primate object recognition 

systems (Rajalingham et al., 2018), so future work should evaluate the extent of the 

similarities between recurrent CNNs and primate visual networks in order to solidify 

recurrent CNNs as the most veridical mechanistic models of human object recognition.  

 

Evidence from cognitive neuroscience 

 In the human brain, two major visual processing pathways show object 

selectivity: The ventral stream visual pathway – comprising areas V1, V2, V4, temporo-

occipital (TEO), and inferotemporal (IT, or TE), and the dorsal stream, comprising V1, 

V2, MT, and MST (Perry and Fallah, 2014). Whereas the dorsal stream is thought to be 

mostly involved in the visuospatial attributes of objects that guide motor control and 

interaction, the ventral stream is thought to represent object form and to underlie 

semantic representations (Kravitz et al., 2013). Thus, ventral stream object 

representations are thought to integrate into cognitive control functions such as 

reasoning, problem solving, and planning.  

That said, there is evidence that some dorsal stream areas not only possess 

object selectivity, but are also hierarchically organized in a manner similar to the ventral 
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stream, with high-level dorsal stream areas responsive to object images invariant of 

size, position, and viewpoint, raising questions about the extent to which dorsal stream 

object representations are truly restricted to visuospatial operations such as grasping 

and tool manipulation (Konen and Kastner, 2008). Thus the function and role of the 

dorsal stream is a matter of ongoing concern (Mruczek et al., 2013), but the role of the 

ventral stream in object recognition is well-established. To that end, the object 

representations in the ventral stream are considered to be more elaborate than those of 

the dorsal stream, largely because of the recurrent neural architecture ubiquitous in 

ventral stream areas, strengthening the interpretation that the ventral stream is the 

visual system’s “what” pathway (Kravitz et al., 2013; Lehky and Tanaka, 2016).  

 Cell electrophysiology studies in monkeys provide evidence for a functional 

hierarchy instantiated along the monkey ventral visual pathway. Anterior IT cortical 

cells, at the top layer of the hierarchy, are tuned to complex visual features, and are 

invariant to two-dimensional rotation, position, and size (Tanaka, 1997). Tanaka and 

colleagues’ recording studies found that cells in anterior IT are tuned for partial-object 

features, rather than whole objects, so Lehky and Tanaka have proposed that object 

representations comprise activation of groups of complex feature-selective cells in 

anterior IT (Lehky and Tanaka, 2016). According to this interpretation, successively 

more complex features are extracted along the ventral visual hierarchy, but ultimately 

objects are not represented by category-tuned neurons, but rather are represented in a 

distributed fashion in IT cortex with a population code.  
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 Non-human primate object recognition behavior is similar to human object 

recognition, as shown in a large-scale evaluation of object-level and image-level 

categorization behavior (Rajalingham et al., 2018), and representational similarity 

analysis over IT response patterns to object exemplar images (Kriegeskorte et al., 

2008). Moreover, the dorsal visual pathway areas studied in monkey single-unit 

recording studies are thought to have homologous partners in the human visual stream 

(Lehky and Tanaka, 2016). The commonalities among humans and monkeys suggest 

that object recognition mechanisms in the ventral visual pathway are conserved within 

primates, and so the findings that anterior IT cells are tuned to complex partial-object 

features and that populations of IT cells code object identities likely apply in humans. 

However, the same neural recording methods cannot be applied in healthy human 

participants, so neuroscientific study of human object recognition mechanisms has been 

restricted to non-invasive methods such as fMRI and EEG. 

 Some of the first significant neuroimaging studies of the function of human IT 

cortex revealed relatively large cortical areas selectively responsive to commonly 

encountered images, such as faces, places, and words. Findings of large clusters of 

category-selective neurons complicate the picture of object representations as 

distributed and population-encoded. Nevertheless, the findings are striking and have 

had a significant impact on the field. Kanwisher, McDermott, and Chun used fMRI to 

localize an area of IT cortex in the fusiform gyrus that is selectively responsive to 

images of faces (Kanwisher et al., 1997). Kanwisher and colleagues specifically 

designed their study to rule out several alternative possibilities that could lead to the 
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observation of greater face image-eliciting activity in the fusiform region: attention-

related factors due to the attention-drawing nature of face images, selective low-level 

feature processing attributable to the difference in feature composition between face 

images and other images, and activation due to an animacy/inanimacy distinction 

between faces and other images. The researchers named the face-responsive region 

the fusiform face area (FFA) because of its apparent selectivity for face images. 

The interpretation of Kanwisher and colleagues that the FFA is a selective face 

image processing module has been contended. Some researchers have suggested that 

the area may actually function more broadly as a subordinate-level identification 

system. For example, Tarr and Gauthier have posited that because faces are ubiquitous 

in human life and are a crucial part of communication and social behavior, they need to 

be efficiently represented at the level of individual faces rather than at the basic-level 

category. The researchers contend that this automatic subordinate level category 

representation may be performed in the fusiform gyrus, and most human participants 

show selective activation to face images in the fusiform area simply because faces are 

the object category that disproportionately utilizes this subordinate-level identification 

system (Tarr and Gauthier, 2000). According to this logic, expertise in a subject matter 

that requires efficient discrimination of category exemplars, such as bird watching, 

should also be accompanied by fusiform area activation in response to images from the 

category of expertise, and Tarr and Gauthier presented evidence to support this 

prediction. Kanwisher and colleagues have refuted the interpretation of Tarr and 

Gauthier (Kanwisher and Yovel, 2006).  
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Despite varied interpretations of the functional reason that the fusiform face area 

selectively responds to images of faces, neuroimaging methods similar to those that 

localize face-selective activation have been successfully employed in the identification 

of other visual category-selective areas, such as the parahippocampal place area 

(PPA). Epstein and Kanwisher identified the PPA, a bilateral area in temporal cortex 

near the hippocampus, as selectively responsive to images containing information about 

the layout and context of local scenes, regardless of the number or identity of specific 

objects contained within the scene (Epstein and Kanwisher, 1998). In further 

examination of the PPA, Epstein, Harris, Stanley and Kanwisher found that activation in 

the PPA is not associated with place recognition, movement through places, or more 

general memory mechanisms, but instead is highly specific to coherent scene layouts 

and encoding of novel place information (Epstein et al., 1999). In more recent work, the 

evidence for category selectivity in FFA and PPA has been supported by Mur and 

colleagues, who analyzed single-image fMRI responses in these areas to demonstrate 

category selectivity independent of category-averaged BOLD signals (Mur et al., 2012). 

Henriksson, Mur, and Kriegeskorte have further refined our understanding of the PPA’s 

selectivity – Henriksson and colleagues’ work suggests that PPA is more selective for 

scene texture and semantic meaning, whereas the nearby occipital place area (OPA) is 

selectively responsive for the geometry and spatial layout of scenes (Henriksson et al., 

2019).   

Findings from human neuroimaging studies suggest ways that human IT cortex 

represents basic level object categories. Faces and places may not seem like objects 
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according to the vernacular usage of the term “object,” which usually connotes a solid, 

three-dimensional entity. Indeed, researchers studying the properties of human IT 

cortex sometimes make a distinction between “face” and “object” recognition (e.g., 

Kanwisher et al., 1997). But as discussed in an earlier section of this paper, we can 

define a visual object to be a collection of bound visual features whose representation is 

robust to changes in its low-level visual properties such as size, position, and feature 

set. Faces and places can therefore be considered objects within this framework.  

IT cortex has also been implicated in object representations for categories other 

than faces and places. Unlike these special categories, selective cortical activation 

evoked by extraneous object images cannot be localized to highly specific areas for 

most object categories. Haxby and colleagues analyzed multi-voxel patterns elicited in 

IT cortex by various categories of objects including faces, cats, and human-made items 

like shoes, tools, and chairs, and found that voxels reliably activated by non-face 

objects covered a large swath of IT cortex, rather than being clustered into focal areas 

(Haxby et al., 2001). This finding suggests that the population code for object 

representations generally is instantiated in a distribution across a large cortical region, 

and that object category-selective areas are not all focal cortical modules.  

In further support of this interpretation, Kriegeskorte and colleagues have 

investigated the categorical structure of IT cortex response patterns using 

representational similarity analysis (RSA) (Kriegeskorte et al., 2008). Kriegeskorte and 

colleagues compared patterns of IT activation in response to individual object images 

including faces, body parts, animals, and inanimate objects, and found that unlike in 
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early visual cortex, IT response patterns showed broadly similar response patterns 

within object category. These results were maintained even when FFA and PPA were 

excluded from the analysis region of interest, implying that face and place selectivity 

was not driving this category formation. Further work in this vein revealed that the 

category boundaries evinced by the RSA analysis correlated with decision boundaries 

when participants were asked to make explicit category distinctions for individual object 

images, underscoring the behavioral relevance of the object category representations 

instantiated in IT cortex (Carlson et al., 2014). 

Thus, from neuroimaging studies that revealed visual areas selective for faces, 

words, and body parts, and areas that seemed to be commonly selective for many other 

types of objects, with different multi-voxel patterns of activation associated with different 

object categories, one interpretation is that IT cortex is divided into modules for domain-

specific processing of visually important and commonly encountered objects, such as 

faces, and modules for general processing that represented all other categories of 

objects with a population code of partial-object features (Grill-Spector, 2003; Grill-

Spector and Weiner, 2014).  

One prediction that could be made upon this conceptual foundation is that 

because object representations are distributed and encoded with population-level 

activity patterns, recognition and discrimination of two objects that share similar 

representational activity patterns should be more difficult than for two objects whose 

activity patterns do not overlap. Indeed, researchers have found that this is the case 

(Cohen et al., 2014). Furthermore, Cohen and colleagues have shown that the similarity 
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of underlying IT patterns for two objects affects whether the two objects will be able to 

access observer awareness at all (Cohen et al., 2015).  

Intriguingly, these findings suggest a possible reason that behaviorally critical 

objects such as faces and words are bestowed with highly selective and focal cortical 

areas for their representation: The developmental pressure to be able to recognize and 

process face information in cluttered natural scenes could form representational 

hardware that infrequently gets co-opted for constructing representations of other, 

lower-priority objects. For example, because faces are frequently behaviorally relevant 

in human behavior – representing a critical interpersonal communication channel, 

supporting theory of mind processes, displaying threat signals, and serving many other 

crucial functions – if a large portion of the distributed population code that represented 

faces was shared with the representative population for something equally 

commonplace but relatively irrelevant to human behavior like pigeons, then whenever a 

pigeon and a face were present in the same scene, the visual system might exclusively 

represent the pigeon, precluding the face information from being computed for important 

behavioral cues and even from reaching conscious awareness. Having a population of 

partial-object feature detectors that are solely dedicated to the partial-object features 

used to construct face representations would prevent this maladaptive outcome from 

occurring. And it can be hypothesized that these dedicated feature-encoding neurons 

cluster together into large, focal cortical areas, such as seen in the FFA, because such 

clustering is the optimal metabolic arrangement when their activity and network 

properties are relatively isolated from the rest of object-selective cortex. 
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The notion of a population code for object representation has thus been firmly 

established, prompting researchers to investigate its spatial dimensions in 

occipitotemporal cortex. In other words, researchers have sought to understand how the 

large swaths of object-responsive cortex are organized.  

Konkle and Oliva found evidence that object representations in occipitotemporal 

cortex are organized according to their real-world size (Konkle and Oliva, 2012). The 

researchers showed that while both small and large objects activated voxels throughout 

the functionally defined region of interest in occipitotemporal cortex, small objects 

preferentially activated more lateral sites in occipitotemporal cortex while large objects 

activated more medial sites. These results occurred irrespective of the retinal size of the 

object image and even whether the object was physically presented or only present in 

mental imagery, suggesting that this differential size representation reflects object 

concepts and not feedforward visual information. In further work along these lines, 

Konkle and Oliva found that real-world size is not differentially represented in 

occipitotemporal cortex for animals, suggesting an orthogonal dimension of animacy 

(Konkle and Caramazza, 2013). Konkle and Oliva concluded that real-world object size 

and animacy reflect fundamental dimensions along which object representations are 

encoded, although the reason that such arrangements of object representations are 

instantiated in the brain is an open question. For example, the differential preference for 

real-world size may not reflect a fundamental importance of size itself, but rather 

geometrical properties or visual features that covary with objects of different sizes. In 

support of this idea, Long, Yu and Konkle have shown that the real-world size and 
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animacy preferences in object-selective cortex could be replicated even when object 

identities were obscured but mid-level visual features belonging to those objects were 

preserved (Long et al., 2018). 

In summary, evidence from cognitive neuroscience depicts human object 

recognition as occurring mainly in the ventral visual pathway, and as instantiated with a 

population code covering large cortical areas rather than being built in a purely 

feedforward fashion along successive steps in a ventral caudal-to-rostral hierarchy that 

culminates in a singular object-tuned abstraction (Haxby et al., 2001; Konkle and 

Caramazza, 2013). Recurrent neural architecture, comprising feedforward, feedback, 

and lateral connections between ventral visual areas, are essential to the formation of 

object representations in the ventral visual pathway, and undermine the simpler, early 

model of ventral stream object representation that describes a chain of visual 

processing in which successively more complex features are extracted from visual input 

at each stage (Kravitz et al., 2013). Nevertheless, category representations have been 

shown to be hierarchically constructed (Carlson et al., 2013; Cichy et al., 2014), 

suggesting that mechanisms of object representation incorporate both distributed 

encoding and hierarchical processing. Thus, evidence from cognitive neuroscience 

supports the recurrent convolutional neural network model of object recognition 

(Spoerer et al., 2017).   
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Object-Based Attention 

 Attention is predominantly studied in a visuospatial context. The beginnings of 

the cognitive neuroscience of attention operationalized attention in terms of a cued 

spatial attention design (Posner, 1980; Posner et al., 1980), and since then, cued 

spatial attention has been a dominant experimental paradigm. But implications of the 

construct of attention, theoretical concerns about how attention may be implemented, 

and neuroscientific evidence of attentional mechanisms all suggest that attention should 

be able to operate over objects, or even primarily act on object representations. 

 The construct of attention is based on the functions that attention is thought to 

serve for organisms enacting adaptive behaviors in natural environments. One of these 

functions is facilitating the identification of behaviorally relevant objects in the 

environment. For instance, in a rainforest abundant with shimmering dewy fronds, 

swaying vines, and light beams spilling through overgrown canopies, being drawn 

towards any momentarily salient stimulus would be an ineffective way to find a delicious 

ripe avocado. A top-down system that selects avocado-related stimulus information for 

preferential processing would be critical for survival in this kind of world. Moreover, 

because any given object could display an infinite variety of low-level visual features, 

such as its position in space, its size, and its appearance under variable and dynamic 

lighting conditions, it would theoretically be most efficient for a natural object-search 

system to be able to act on high-level object representations that are invariant to the 

low-level visual features, rather than having to activate all possible low-level visual 

feature representations that might be associated with the target object in the present 
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scene. This latter scenario would be especially maladaptive, because it would lead to 

the selective enhancement of non-target objects that inhabit a similar area of low-level 

visual feature space as the target object, for all possible appearances of the target 

object. The resulting effect would hardly resemble the kind of sensory filtering 

associated with attention. 

 As discussed previously, top-down attention control signals are thought to 

influence the processing of visual areas that receive input from different information 

sources, whether those information sources are spatial locations, sizes, specific or 

visual features. If all possible control signals were transmitted to their respective sites of 

action over dedicated anatomical channels, the number of necessary anatomical 

connections would be exceedingly large. Therefore, this kind of architecture seems 

unlikely to be implemented in the brain (Buschman and Kastner, 2016). To severely 

constrain the number of necessary anatomical links, attention control signals may 

primarily target object representations, because object representations contain 

information about the object’s lower-level visual features. Thus object-based attention 

may be fundamental mechanism of action for the top-down attention control system, 

and object representations may be the primary units over which attention operates. 

  Findings from neuroscientific studies of attention’s mechanisms also suggest that 

attention may be able to directly target high-level object representations. For example, 

the finding that the pulvinar may be critically involved in the attentional regulation of 

communication between cortical areas (Saalmann et al., 2012) could be applied to an 

object-selective attention mechanism, because the pulvinar is highly connected with the 
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cortex – directly connected cortical areas are also indirectly connected via the pulvinar. 

Thus, information transmission along specific circuits in the ventral visual pathway that 

subserve targeted object representations could in theory be selectively enhanced 

through the pulvinar.  

 I will now turn to the topic of object-based attention in greater detail. In this 

section, I will describe findings from cognitive neuroscience that have begun to 

elucidate the neural mechanisms of object-based attention, and propose a synthesis of 

object recognition research and object-based attention research. I aim to answer the 

question of how object representations serve as substrates for attention, based on the 

current understandings of how attention operates at a neural level and of how the visual 

system represents objects. Then I will propose a novel hypothesis that the factors 

thought to guide attention via top-down control, such as goals and task, may instead be 

conceptualized as an extension of object recognition mechanisms into increasingly 

more abstract realms. This hypothesis synthesizes object-based attention and top-down 

attention control into a singular phenomenon. I call this hypothesis the Natural Object 

Attention Hypothesis. But first, I will provide a more detailed description of what is 

meant by the term “object-based attention.”  

 

What is object-based attention? 

The concept of object-based attention builds on the concept and operational 

definition of attention more broadly construed. Attention is defined as a selective 

enhancement of task-relevant information sources to the exclusion of other, potentially 
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targetable information sources (Luck and Vecera, 2002). In the same way that visual, 

auditory, somatosensory, spatial, feature-based, and other narrow forms of attention 

can be understood as refinements of this broad definition, object-based attention can 

also be accommodated: Object-based attention is a selective enhancement of task-

relevant object information to the exclusion of other, potentially targetable objects. What 

differentiates object-based attention from other forms of visual attention is that rather 

than selectively enhancing information from the region of space containing the target 

object or the specific visual features constituting the object, object-based attention 

specifically acts over high-level object-representations themselves. Thus, for example, 

there is a conceptual distinction between the act of covertly attending to a region of 

space and attending to the object that is situated in that region of space, even if the 

qualitative experience is difficult to distinguish between these two scenarios – the 

heightened awareness of the object in that region of space and its visual appearance 

may be experienced identically even if the control mechanisms that guided attention to 

produce those enhanced perceptions were different. Thus the conceptual distinction is 

primarily made on the basis of the putative top-down control and selective mechanisms 

operating in the brain. In comparison with spatial attention, object-based attention 

invokes a targeted enhancement of object representations directly, instead of an 

indiscriminate enhancement of all visual input coming from a region of the visual field.  

Object-based attention can be operationalized and studied within the same 

framework as attention more broadly construed. For example, a cuing paradigm has 

been used to study object-based attention (Noah et al., 2020). In this study, predictive 
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cues indicated the upcoming appearance of an object image from one of three 

categories, and participants were instructed to discriminate the subordinate-level 

category of the object image – for example, if it was a face image, participants would 

have to indicate whether it was a male or female face. On a fraction of invalid trials, the 

target object image would belong to an uncued category, and by analogy with the cued 

covert spatial attention paradigm, an attentional reorienting would occur from the cued 

object category to the presented object category, so that the behavioral task could be 

performed. Just as in cued spatial attention experiments, this reorienting would have a 

reaction time or accuracy cost that could be measured, providing empirical access to 

object-based attention. In a similar manner, search, dual-task, and filtering paradigms 

(Luck and Vecera, 2002) could all be constructed for object-based attention tasks. 

 

Cognitive neuroscience of object-based attention 

 From the definition of object-based attention provided above, a prediction that 

immediately follows is that attention directed to an object spreads readily over that 

object, enhancing all its perceptual attributes. Behaviorally, this means that if two 

perceptually distinct objects are concurrently presented, and a location on one of the 

objects is cued, then response times and discrimination accuracies should be faster 

when a subsequent target appears on the object that contains the cued location 

compared to when the target appears outside the cued object. This prediction has been 

borne out in several influential early studies of object-based attention, and has been 

strengthened by important recent work.  
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Egly, Driver, and Rafal showed that target detection is faster when the target 

appeared on the cued object than when it appeared on an uncued object or elsewhere, 

even when the distances between the cue and the targets in the two conditions were 

held constant (Egly et al., 1994). Moore, Yantis, and Vaughan extended this finding by 

showing that the “same-object advantage” was also active even when the two objects 

were partially occluded by a third object, such that the cue and same-object target were 

separated by the occluding object in the same-object condition (Moore et al., 1998). 

Thus Moore and colleagues inferred that the mechanism that enabled attention to 

spread within perceptually defined units was not entirely driven by low-level properties 

like line continuity and contour detection, but rather occurred over a more abstract 

object representation that formed after early visual features were parsed.  

These studies from Egly and colleagues and Moore and colleagues were 

conducted with impoverished stimuli. In other words, the objects that the researchers 

used to demonstrate their same-object advantage were not very natural looking. The 

objects presented were plain rectangles on blank backgrounds. This type of 

impoverished visual stimulus is commonplace in cognitive neuroscience and psychology 

research for good reason – stripping psychological phenomena to their minimally 

necessary and sufficient components provides experimental control, a basis for sound 

logical inference, and a descriptive understanding of the phenomenon that can 

potentially be modeled mathematically. But in the case of object-based attention, a 

construct that is partially motivated by its applicability in real-world scenarios, plain line 

figures isolated against blank backgrounds hardly seem to capture the essential 
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character of the natural phenomena under investigation. Hence the initial findings from 

Egly and colleagues and Moore and colleagues that attention spreads throughout 

perceptually defined objects could arguably not be considered ecological. However, 

recent work has extended the minimal form of the same-object advantage effect to 

veridical visual stimuli. Malcolm and Shomstein have shown the same pattern of same-

object advantage effects from images of natural scenes containing multiple discrete 

objects (Malcolm and Shomstein, 2015). This study links early theories that attention 

spreads within perceptually-defined discrete units to a more categorical and semantic 

context. 

Critically, in the studies of Egly and colleagues, Moore and colleagues, and 

Malcolm and Shomstein, participants were not explicitly instructed that the appearance 

of the cue indicates that the entire object containing the cue should be attended. Rather, 

the cue was designed to capture attention exogenously and not be instructional, thus 

providing a logical basis for the claim that attention spreads automatically throughout 

the visible perceptual features of the cue-exhibiting object. Alternatively, rather than 

spreading throughout the visible boundaries of the cue-exhibiting object like water filling 

a container, attention may be thought to fundamentally operate over the cue-exhibiting 

object, and objects in general. In support of this hypothesis, O’Craven, Downing, and 

Kanwisher used fMRI to show that attention to a behaviorally relevant visual feature, 

such as movement, concomitantly increased activity in both the visual area selective for 

the relevant feature and also the area selective for the category of the object that 

exhibited that feature in the experimental stimulus (O’Craven et al., 1999). In their 
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experiment, participants were presented with stimuli that were composed of two overlaid 

semi-transparent object images – a face and a house – and instructed to attend to 

motion. Only one of the two object images in the overlay would show the motion. BOLD 

signal increases were detected in the motion-responsive area MT as predicted by 

previous work on attention’s neural effects, but BOLD signal increases were also seen 

in either PPA or FFA, depending on which image moved. This finding is 

incommensurable with models of attention requiring that attention uniformly enhances 

processing of all information at an attended location, because the stimulus images were 

overlaid and thus spatially coextensive. If attention enhanced all the visual information 

present at the attended location, BOLD signals in PPA and FFA would have changed to 

the same degree. Instead, attention to the low-level visual feature of motion seemed to 

be inextricable from the object displaying that visual feature. Thus the finding of 

O’Craven and colleagues is supportive of an object-based model of attention, according 

to which all attributes of an object are selected by attention simultaneously.  

ERP work from Woodman, Arita, and Luck supports the idea that attention 

fundamentally operates over objects (Woodman et al., 2009). In their study, the 

researchers showed that the N2pc ERP component, thought to index lateralized shifts 

of attention, was only observable when shifts of attention were directed to regions of 

space that contained placeholder objects, rather than being empty and structureless. 

The researchers interpreted this to mean that anticipatory shifts of attention to cued 

locations could occur when objects in the cued location were present to serve as 

anchors, and that when this was the case, the behavioral effects of attention could 
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indeed be attributed to neural processing occurring in advance of target presentation, 

rather than only upon target presentation. Woodman and colleagues’ study utilized what 

might be considered impoverished objects, so future work to replicate their findings with 

natural objects would be beneficial for an account of the primacy of object-based 

attention. 

Indeed, recent work has emphasized that understanding the way attention 

operates in the real world must center on object-based mechanisms and natural object 

images. For example, humans can rapidly detect objects in natural scenes, suggesting 

that the visual system possesses a selection mechanism for objects that can operate 

independently of spatial attention. This rapid object detection behavior contrasts with 

predictions that may be made on the basis of foundational visual search research 

involving impoverished stimuli. Early attention research showed that in a visual search 

array of simple objects such as letter Ts, participants can immediately find a target T if it 

is a different color than the other Ts in the array. The item displaying the singleton 

feature pops out from the entire scene (Treisman and Gelade, 1980). This is taken to 

mean that one-feature search can be conducted in parallel over the entire search array. 

However, as soon as the conjunction of two features, such as shape and color, are 

necessary for identification of the target, search times scale linearly with the number of 

distractors in the array. For instance, detection of a green letter T among green and red 

Ts and Ls cannot be achieved instantaneously, but rather the amount of time taken to 

find the target feature conjunction scales linearly with the number of search items, 

suggesting that in order to perform this search, each item must be inspected 
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individually, requiring attention to move serially across the visual display. From this 

foundational research, one might predict that in a search task involving the detection of 

a natural object in a natural scene, such as a car on a typical street scene, search 

would be extremely slow, because the target is a conjunction of a multitude of feature 

dimensions, and each of those feature dimensions have to encompass more specific 

features than will be displayed by the target object. Searching for a car in a crowded 

naturalistic scene will not involve searching for a particular assembly of oriented lines, 

colors, textures, sizes, and motions, but many such possible combinations that can be 

produced within these dimensional constraints: a red hatchback, a blue minivan, a white 

convertible, etc., driving, stationary, on blocks, etc. Counterintuitively in the light of these 

prerequisites, but somewhat obviously given that such forms of visual search are 

common occurrences in everyday life, participants engaging in such tasks can detect 

the natural image targets as if they were conducting parallel search across the whole 

scene, generally detecting their targets within 100 msec after image onset (Peelen et 

al., 2009; Peelen and Kastner, 2011, 2014). 

Peelen, Li, and Kastner used fMRI to investigate the neural processes underlying 

this rapid object detection behavior that seems to contrast with foundational research on 

simple stimuli (Peelen et al., 2009). In their experiment, the researchers instructed 

participants to search for either people or cars in a large set of natural outdoor scene 

images. The researchers analyzed multi-voxel patterns, from functionally localized 

object-selective cortex, evoked by scene images. These patterns were compared 

against similar patterns obtained from a separate task in which isolated objects were 
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presented at the center of fixation. In comparing object cortex patterns between the 

natural scene search task and the passive object viewing task, the researchers found 

greater correlations for within-category multivoxel patterns than between-category 

patterns, suggesting that the body and car information was only extracted from natural 

scenes and represented in high-level object-selective cortex when these objects were 

being actively searched for. Furthermore, the researchers were able to show that these 

high-level object representations were formed even when the target objects were only 

present in scene images outside spatially cued regions. The researchers interpreted 

their results as reflecting an attentional pre-activation of object category representations 

that biases the processing of subsequent visual scene input. 

In further related work, Peelen and Kastner found that when participants 

anticipated a natural scene containing an object from an attended category, the multi-

voxel patterns elicited in object-selective cortex closely resembled the patterns evoked 

by the actual presentation of object images from that category (Peelen and Kastner, 

2011). This finding provides evidence that attentively anticipating an upcoming object 

image, as in the context of a visual search, increases baseline activity in the population 

of cells that encode and represent that object category. This inference extends work on 

the mechanisms of visuospatial attention to the domain of objects. Furthermore, Peelen 

and Kastner observed that multi-voxel patterns in medial prefrontal cortex also were 

distinguishable and correlated with attended object category, suggesting the 

involvement of this area in the selective enhancement of object representations in 

occipitotemporal cortex. 
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In addition to the work of Peelen and Kastner (Peelen and Kastner, 2011), other 

studies investigating the sources of attentional control over objects have revealed the 

involvement of frontal areas similar to those involved in spatial and feature-based 

attention. For instance, Serences and colleagues used fMRI to look for the sources of 

top-down control over object-based attention in an experimental design that required 

participants to switch attention between a face and a house in a series of overlaid face-

house images (Serences et al., 2004). The researchers found that activity in FFA and 

PPA was modulated according to the attended object category, in line with previous 

findings showing heightened neural activity in areas selective for attended objects 

(O’Craven et al., 1999). Furthermore, the researchers observed that switches in 

attention between object categories corresponded to transiently heightened activity in 

parts of the dorsal frontal cortex and posterior parietal cortex that have also been 

implicated as sources of top-down attentional signals in other domains (Corbetta and 

Shulman, 2002). Thus the researchers concluded that the dorsal attention control 

network was involved in the effortful switches between attending to different object 

categories, just as it has shown to be involved in attention to low level features. 

Baldauf and Desimone used MEG and fMRI to show that the inferior frontal 

junction (IFJ) was involved in the top-down maintenance of attention to one of two 

categories of objects (Baldauf and Desimone, 2014). In Baldauf and Desimone’s 

experiment, participants were presented with a continuous stream of face and house 

images, with each object category image presented at one of two flicker frequencies. 

The two object categories’ flickering image streams were interleaved and out of phase, 
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so the two object categories could be presented at the same spatial location. 

Participants were instructed to attend to one of the two object categories. MEG data 

collected while participants performed this task could thus localize frequency-tagged 

activity belonging to each object category, and as expected, from the MEG data face-

related frequency activity could be localized to the FFA and house-related activity to the 

PPA. In IFJ, the researchers observed MEG signals at the frequency of the attended 

object category’s presentation rate, indicating that the IFJ was functionally linked to the 

activity in the object-selective areas and supported object-based attention in this task. 

Baldauf and Desimone concluded that the frontal control areas involved in object-based 

attention were similar to those involved in spatial attention, but whereas the FEF issues 

spatial biasing signals, the IFJ issues object biasing signals.  

In summary, evidence of a behavioral same-object advantage in visual 

information processing (Egly et al., 1994; Moore et al., 1998; Malcolm and Shomstein, 

2015), and neuroimaging evidence that attention enhances all attributes of an attended 

object even when those attributes are not task-relevant (O’Craven et al., 1999) supports 

the idea that the primary units of attention are objects. Object-based attention 

mechanisms may be fundamental to how attention operates in natural environments 

(Peelen and Kastner, 2014). Neuroimaging studies have revealed that the same 

networks involved in top-down control of spatial and feature-based attention are also 

involved in attention to objects (Serences et al., 2004; Baldauf and Desimone, 2014), 

raising new questions about whether attention to regions of space or low level features 

are directly attributable to activity in the dorsal attention network, or whether instead 
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attentional modulations of low-level features occur via their interaction with object 

representations. 

 

How attention operates on object representations 

The recurrent neural architecture of the ventral visual pathway (Kravitz et al., 

2013) supports the implementation of object-based attention. And from this 

implementation can be extrapolated the properties and behaviors observed by the 

psychological and neuroscientific studies heretofore described.  

Object-based attention processes begin in the dorsal attention network 

(Serences et al., 2004; Baldauf and Desimone, 2014). This network translates task 

instructions, or behavioral goals, into signals that descend the processing hierarchy into 

object-selective cortex, and activate the distributed population of neurons that jointly 

encode the targeted object category. Crucially, because of the recurrent architecture of 

this visual processing system, it may be hypothesized that attention control signals do 

not need to transmit simultaneously to all nodes in the target object-representative 

network. Rather, activation of any node or subset of the target network will spread to the 

connected nodes. This property of the object representation system, supported by 

recurrent connections, potentially answers the question of how the anatomical 

limitations of the dorsal attention network could possibly allow connection to all 

targetable sensory sites. The space of objects that can be selectively attended is 

certainly enormous, but when multiplied by the number of spatial positions, sizes, and 

feature compositions that could be combined with any object, the number of precise 
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anatomical connections that would be required to support a one-to-one mapping would 

be prohibitively large for cortical instantiation. Rather, by limiting the structural 

connections between the dorsal attention network and visual cortex to just the number 

of objects that can be selectively attended, and then relying on the recurrent 

architecture of the ventral visual pathway to bias activation of low-level visual features 

that constitute the attended object, all forms of attention can realistically be 

accommodated within limited anatomical real estate.  

Buschman and Kastner have proposed a theory of attention that aligns with this 

object-based picture. According to their theory, higher-order attention control areas 

issue broad, non-specific signals to sensory sites, and the local circuitry of those sites 

works in concert with the top-down signals to enhance processing of selected sensory 

information (Buschman and Kastner, 2016). Buschman and Kastner propose that broad 

top-down signals lead to enhancements of precise object representations by their 

stimulation of local sensory area circuits that have a pattern completion functionality. 

Pattern completion ability is thought to emerge from the ability of the visual system to 

encode natural image statistics from incoming visual input (Simoncelli and Olshausen, 

2001).  

A model of object-based attention in which object representations are selectively 

activated, combined with the current understanding of how objects are represented in 

the ventral visual pathway as distributed, population-encoded activation patterns, leads 

to some predictions about neural data that should be obtainable under different 

experimental conditions. For instance, because the population code for object 
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representations is distributed over large swaths of visual cortex, including low level 

visual occipital areas, top-down attention to a specific object category might be 

expected to activate not just the multi-voxel patterns in object-selective cortex but also 

in early visual cortex that extracts the low-level features associated with that object. 

Thus differences in activation patterns in these low-level areas between object attention 

conditions should be apparent when the object categories being contrasted possess 

dissimilar features. Faces and houses are composed of highly dissimilar low-level visual 

features: Faces contain predominantly rounded shapes whereas houses exhibit strong 

linear features with many vertical and horizontal edges. Thus comparing object-based 

attention between these two object categories should yield observable multi-voxel 

pattern differences in early visual cortex. Cohen and Tong tested this prediction, 

examining the effects of object-based attention on lower-level visual areas V1 – V4, and 

found that indeed, multi-voxel activity patterns in V1 – V4 were discernable between two 

object attention conditions involving faces and houses (Cohen and Tong, 2015). Future 

work should test the prediction that the degree of decodability in V1 – V4 correlates with 

the dissimilarity in low-level visual feature composition for the classes of objects being 

attended. 

An account of attention control signals that lead to the selective enhancement of 

processing of object-specific visual input, by a mechanism such as an increase in 

baseline firing rates of a population of IT neurons that encode the targeted object 

(Peelen and Kastner, 2011), squares with scenarios in which object-based attention is 

deployed in anticipation of an object that is not yet in view. However, can this model 
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account for cases of object-based attention when the objects in question are already 

visible, but attention spreads over the object after an event such as an exogenous cue? 

Early studies of object-based attention emphasized that findings such as the ones of 

Egly, Driver, and Rafal (Egly et al., 1994) suggest a visual processing stream in which 

the continuous, undifferentiated field of visual input is parcellated preattentively into 

discrete objects, on the basis of Gestalt grouping principles (Behrmann et al., 1998). But 

does this interpretation hold up in light of a more contemporary understanding of object 

representations in the brain, and attention’s neural mechanisms? This question is open 

to future investigation, but one explanation is plausible within the framework described 

here. In a scenario such as the one designed by Malcolm and Shomstein (Malcolm and 

Shomstein, 2015), a natural visual scene containing multiple discrete objects, such as a 

grassy lawn with chairs, is presented to an observer. Without any instruction to attend to 

a particular object, attention may be drawn to the most salient or meaningful object 

visible in the scene. But when an exogenous cue, such as a transient luminance 

increase, occurs on one of the chairs, one of the low-level features of that chair, such as 

a particular spatial location, is suddenly made more salient. This is reflected 

physiologically by a transient increase in neural activity in a visual feature detector that 

is bound to other feature detectors, both low-level and high-level, partial-object feature 

detectors. Thus the transient activation spreads throughout the distributed network that 

jointly represents the chair in that particular image, leading to an enhanced activation of 

the entire chair representation. This enhanced activation is observed as exogenously 

cued attention to the chair, and supports subsequent target presentation when it occurs 
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on the same chair, but not when it occurs on a different object, even if the location of the 

target on that object is equidistant from the cue location, because that object’s 

distributed representation has not been exogenously activated by the cue. 

 

The Natural Object Attention Hypothesis 

An insurmountable theoretical problem in the cognitive neuroscience of attention 

is the infinite regress invoked by the notion of voluntary, top-down attention control. 

Classically, top-down attention is subdivided into two major conceptual components. 

One component is the effect of attention on the sensory processing sites. The second 

component is the origination and transmission of attention control signals from top-down 

sources. As the present chapter described earlier, this site-source distinction has been 

the basis of fruitful research into attention’s neural mechanisms, providing a framework 

for understanding the processes that unfold in the brain when behavioral goals or task 

instructions require specific enhancements of sensory input. However, an intractable 

conundrum follows from this classical model. Namely, if voluntary attention is attributed 

to a putative source of attention control signals, such as the dorsal attention network, 

what is the proximal cause of activity in the source site? Activity in the source site of 

attention control signals would have to be localized to a new area – the source of 

attention-control-signal control signals. Attribution of voluntary exertion of attention 

would then shift to this newly identified second-order source, but the same problem 

would recur: What third-order source transmits signals to the second-order source? 

Hypothetically, a researcher could follow this logical train on an infinite path. Thus the 
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source-site distinction ultimately is a barrier towards understanding attention in the 

brain. 

The Natural Object Attention Hypothesis is a novel conceptual framework that 

sheds the source-site distinction. In place of the classical dichotomous framework, top-

down attention is reconceptualized as an aspect of how behavioral goals are 

fundamentally extensions of sensory processing. The Natural Object Attention 

Hypothesis might solve several longstanding yet understated puzzles in cognitive 

neuroscience, including the infinite regress of voluntary attention control sources, the 

problem of object ontology, and the Resource Question in attention research. Because 

the present paper has reviewed work from visual attention research, I will focus the 

following discussion of the Natural Object Attention Hypothesis on the domain of vision, 

but the hypothesis does not make any strong claims that exclude sensory processing 

from other domains.  

Object recognition research has revealed that objects are represented in the 

ventral visual pathway as activation patterns over a distributed population of neurons. 

This population code is built up over successive stages of visual processing, in which 

different visual information at different levels of abstraction are extracted. Crucially, 

there is no “final layer” at which a hierarchical process of abstraction and feature 

extraction culminates in a singular object representation. Rather, object representations 

are embedded in the network connections of a distributed population of neurons, and 

thus the population code relies on resources that belong to a shared pool, as 

demonstrated by research showing that successful representation of multiple 
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concurrently presented objects depends on the dissimilarity of the underlying neural 

patterns supporting those objects (Cohen et al., 2014, 2015). Moreover, evidence is 

accumulating from the cognitive neuroscience of attention that suggests that attention 

primarily operates over object representations (O’Craven et al., 1999; Peelen and 

Kastner, 2014; Buschman and Kastner, 2016).  

This object recognition system can thus be thought of as just a part of a larger 

system whose elemental function is to compute abstract information from sensory input. 

This system could support task set and behavioral goals in the same way that it 

represents visual objects. If we consider that after objects have been successfully 

recognized in the ventral visual pathway, there are yet further layers in the recurrent 

convolutional neural network that continue to perform the same basic computations, and 

that these layers extend throughout the brain, including into dorsal frontal and posterior 

parietal cortex, we may see how activation patterns in the dorsal attention network could 

actually be population-encoded representations of abstract properties of visual objects, 

such as their relevance to the task at hand.  

But how does reconsidering the formerly designated “source” of attentional 

control signals as part and parcel of visual object recognition systems account for the 

empirical evidence that it transmits signals to sensory processing “sites” that modulate 

activity therein? According to the model of the brain’s object recognition system as a 

recurrent CNN, activation and computation occurring at any layer has the ability to 

influence both upstream and downstream computations. Although research into the 

viability of recurrent CNNs as models of biological object recognition is still in early 
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stages, recurrent architecture is thought to be necessary for human-like object detection 

performance (Spoerer et al., 2017; Rajalingham et al., 2018). Thus the architecture of a 

deeply interconnected CNN, in which high-level layers freely influence lower-level 

layers, could capture the network properties and the time-varying directional influences 

of the dorsal-attention-network-visual-system complex.  

 This new conceptual framework for attention motivates broadening the concept 

of an object. As described earlier in the present chapter, objects in vision science are 

generally considered to be discrete, bound collections of visual features, none of which 

are individually necessary or sufficient for objecthood; as such, objecthood is a property 

that is invariant over a large space of feature combinations. Defining an object in this 

way is an attempt to formalize the folk-psychological and vernacular term “object.” But 

there is no strong reason to believe that vernacular terms map onto neural processes, 

and actually, in this case trying to do so spawns a philosophical puzzle about object 

ontology. David Marr grappled with this puzzle in his book Vision (Marr, 1982): 

“Is a nose an object? Is a head one? Is it still one if it is attached to a 

body? What about a man on horseback? These questions show that 

the difficulties in trying to formulate what should be recovered as a 

region from an image are so great as to amount almost to philosophical 

problems. There is really no answer to them – all these things can be 

an object if you want to think of them that way, or they can be part of a 

larger object.”  
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Because language and meaning are emergent properties of behavioral 

interactions within large human populations, it is extremely unlikely that any particular 

word isomorphically links to a real phenomenon occurring inside an individual person’s 

brain. In light of this pessimism about the utility of vernacular terms for neuroscience, 

we can reconfigure the classically defined object into what I propose to call a Natural 

Object. A Natural Object is defined by all the same qualities as an object, but includes 

not just visual features but also more abstract qualities such as affordance and 

momentary behavioral relevance. Crucially, a Natural Object does not refer to anything 

like a Platonic “ideal” object. In fact, the Natural Object conjecture as a philosophical 

stance precludes the possibility that ideal objects exist in any meaningful way, and thus, 

a brain’s internal object representation is not a reflection of an objective, external state 

of affairs. Instead, Natural Objects only exist by virtue of their momentary behavioral 

relevance and their relationship to the observer.  

The Natural Object concept and the Natural Object Attention Hypothesis is 

motivated by an emerging understanding of the fundamental function of the visual 

system as an approximator of natural image statistics. New lines of thinking propose 

that the essential function of the visual system is to extract the statistics of natural 

images (Simoncelli and Olshausen, 2001). The term “natural images” often refers to 

static images, cross sections of the unremitting stream of visual input from the 

environments in which our brains develop, but an important component of the actual 

natural visual input that our brain receives is its dynamic and continuous character, 

especially as we move through the world and interact with our environment. Statistics 
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from this dynamic visual input are efficiently captured in the visual system as object 

representations. Under the Natural Object Attention Hypothesis, behavioral relevance 

and momentary task goals are also considered to emerge from environmental statistics, 

and so the binding of task into visual features to form Natural Object representations 

reflects the fundamental unsupervised learning procedure implemented by the brain.  

 Thus the infinite regress problem implicit in the source-site model and an object 

ontology question arising from the mapping of the brain’s object representations onto 

external states of affairs can both be addressed within the Natural Object Attention 

Hypothesis. Another difficult issue related to attention research that is tractable within 

the framework of the Natural Object Attention Hypothesis is what I refer to as the 

Resource Question. In short, attention is often construed as capacity-limited: The sheer 

amount of incoming sensory input is thought to exceed the processing bandwidth and 

computational resource limits of our sensory systems. Such a line of thinking implies 

that evolution has yielded the brain – an extremely complex, highly-effective, goal-

forming, strategy-executing, abstract thought-generating, survival-oriented device – and 

yet has implemented attention as a solution to an accidental evolutionary byproduct: 

that the body’s sense organs send more afferent signals to the brain than it can handle. 

The dubiousness of this scenario is compounded by its appeal to an unspecified 

computational resource that must be limited such that the sensory information allowed 

into the brain exceeds its capacity. No current models of attention or sensory 

processing more generally have put forth a plausible account of what this limited 

resource precisely is. This Resource Question is understated in the field of attention 
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research, but problematic because it undercuts an often-cited conceptual motivation for 

attention as a real phenomenon worthy of scientific inquiry. If the hypothetical limited 

resource is fictional, is attention, as the putative function that exists solely to manage 

that resource, also a fiction? A related puzzle that likewise falls under the label of the 

Resource Question concerns the singular nature of attention. Namely, why is attention 

only able to operate over one thing at a time? Why is the brain unable to devote the 

same level of enhanced processing afforded by attention to multiple signals or 

information sources simultaneously, or to all of them? If attention improves the efficacy 

of information processing in the brain, it seems that it would behoove an organism for 

attention to operate over all neural processing simultaneously. The conventional 

framework presumes that attention is singular and not omnipotent because of the 

limited computational resources that it manages. However, this explanation is 

unsatisfying because it again invokes the unspecified resource. 

A more parsimonious explanation for the singular nature of attention that does 

not appeal to an unspecified resource comes from the Natural Object Attention 

Hypothesis. According to the Natural Object Attention Hypothesis, task goals and the 

behavioral relevance are bound together with visual features as Natural Object 

representations. The task goals represented in frontal and parietal areas such as the 

dorsal attention network are part of the same representational system as the object-

selective areas in occipitotemporal cortex. And just as the simultaneous activation and 

representation of multiple objects has been shown to depend on the dissimilarity of 

those objects’ population encodings (Cohen et al., 2014, 2015), the representation of 
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multiple task goals and thus top-down attentional modulation may also be vulnerable to 

overlapping task-encoding populations. Thus phenomenologically, attention may be 

experienced as a singular point because the simultaneous representation of two 

mutually exclusive tasks in a population code, such as attention to two restricted spatial 

locations on opposite sides of the visual field, or attention to a face and attention to a 

house, is impossible. 

 

The Specificity of Control (SpOC) Model of Attention 

 The Natural Object Attention Hypothesis speculates that attention is not 

implemented in the brain by a dichotomous site-source mode of operation. However, 

The Natural Object Attention Hypothesis and its corollaries are not testable with 

currently available neuroscience methods. Artificial recurrent convolutional neural 

networks are at the forefront of computational neuroscience, but are in their infancy, and 

not yet widely available for cognitive neuroscience researchers to access and test 

hypotheses about the functional behavior of such networks. Therefore, although in the 

future a novel framework such as the Natural Object Attention Hypothesis might prove 

fruitful, the site-source distinction remains useful as a method for conducting empirical 

research and framing the essential mysteries of how attention operates in the brain. 

These mysteries include questions such as: How does selectivity arise, how is selective 

control oriented, and what does it mean on a neural level for selected sensory 

representations to be enhanced or suppressed? In parsing of the neural activity 

accompanying attentional behavior, it is useful to think in terms of sites of attentional 
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enhancement and sources of attentional control because of the prevailing metaphor that 

attention is a control system that operates over parallel streams of information 

processing in the sensory brain – a metaphor that is reinforced by how attention is 

operationalized in a laboratory setting. 

The site-source distinction in conventional thinking about attention can be 

formalized in a framework called the Specificity of Control (SpOC; pronounced like 

“spoke”) model. The SpOC model seeks to explain how the pattern of activity in sources 

of attentional control such as the DAN represents different to-be-attended stimulus 

attributes (such as spatial locations, low-level visual features, and whole objects), how 

this information about to-be-attended stimulus attributes is transformed into or conveyed 

as top-down control signals, and how the functional and anatomical connectivity – both 

within the DAN and between the DAN and sensory cortex – enables the selection of 

targeted stimulus attributes or information streams.  

According to the SpOC model, the DAN (the site at which attentional control 

signals originate) sends its modulatory signals to lower-level sensory areas via 

individual channels specific to the target of the modulation. This hypothetical 

organization contrasts with a different potential organization in which all modulatory 

signals are sent over a single channel – such a contrasting framework can be described 

as unimodal. The SpOC model postulates that the channels that carry attentional 

control signals are like individual spokes of a wheel radiating outward from a central 

hub. Each individual channel – each spoke – originates in a unique location on the hub 

and terminates on a specific site at the periphery of the wheel. This picture stands in for 
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the idea that the dorsal attention network, and potentially other control areas that it 

complexes with, constitute a fine structure of distinguishable subnetworks – anatomical 

or functional – whose individual activation is the physical manifestation of an instruction 

to enhance a specific neural representation or sensory area (Greenberg et al., 2010; Liu 

and Hou, 2013). Activation of a subnetwork within the DAN is equivalent to a selective 

projection from the DAN to defined neural populations in visual cortex that code 

locations, features, and objects. If the dorsal attention network was instead domain-

general (Wojciulik and Kanwisher, 1999; Fedorenko et al., 2013; Spagna et al., 2015) 

and/or supramodal (Shomstein and Yantis, 2004; Green et al., 2011; Wang et al., 2016; 

Betti et al., 2018; Salmela et al., 2018), and its activity could not be subdivided into 

distinct patterns that map onto specific attentional demands, then in the model 

illustration all the radiating lines would converge to a single point, instead of terminating 

on unique locations along the outside of the central hub. 
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Figure 1. Cartoon illustration of SpOC model of selective attention, in which specific channels connect control 

network to sensory areas, resembling the spokes of a wheel. Control signals are sent selectively over these channels 

in order to modulate individual sensory features or representations. 

 

 

Figure 2. Reproduced with permission from G.R. Mangun. SpOC Model of attentional control as implemented in the 

brain, compared with alternative site-source models of attentional control. A fine structure of subnetworks in the DAN 

guide modulatory control of sensory areas. (a, b) SpOC model posits that within the DAN, different fine structures of 

control (translucent fuchsia circles) support different forms of attention (spatial, feature, object), and that this fine 

structure makes specific connections (black or red lines) with regions of visual cortex as a function of the to-be-

attended visual target. (c) Univariate imaging has tended to support an alternative model in which the DAN 

represents a domain-general and supramodal attentional control system. (d) Recent findings in the literature raise the 

possibility that the DAN works together with regions outside the classical DAN (DAN+), such as the inferior frontal 

junction, to enable feature and object attention. 
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Object-based attention is an important component of the SpOC model, and 

moreover, the SpOC model makes several predictions about how object-based 

attention might manifest in neural data recording. The SpOC model postulates that an 

individual control channel – an individual spoke – exists for every possible form or 

potential target of attention. Attention to a region of space would be physically 

implemented as a channel originating in the attentional control areas and terminating on 

the early visual areas that receive their input from that region of the visual field.  

How exactly activity in this control channel serves to enhance the processing or 

boost the representation of the visual information present in its targeted visual area 

remains an important unanswered question in the neuroscience of attention. One 

possible answer is that neural activity in the hub region mapping onto the target visual 

area simply increases the excitability of neurons in the target sensory site, boosting their 

signal gain. If a control channel exists for every form of attention and every attentional 

target, then an important implication is that there are individual channels terminating on 

visual areas that are primarily responsible for the processing of object categories. Thus, 

object-based attention, just like spatial attention and feature-based attention, is a 

distinct form of attention because the targets of its attentional modulation are object 

category-specific visual areas. Object-based attention should therefore be detectable in 

neural data as a distinct active subnetwork in the DAN. In a pure version of the SpOC 

model, object attention control signals are issued from the same central hub as those 

targeting other forms of visual information, and the channels over which the signals are 



 

 86 

conveyed and the mechanism of signal enhancement at the sensory sites are 

fundamentally the same in all those cases.  

Whether this simple model accurately reflects how attention to different forms of 

visual information is carried out in the brain is a matter for further study – it is also 

conceivable that the channels over which control signals are sent are essentially 

different from each other and that the modes of enhancement differ across different 

attentional targets. Alternatively, the DAN might be exclusively a control system for 

modulating visual spatial inputs, with separate control networks involved in the 

modulation of sensory signals coding other visual attributes. In either case, the SpOC 

model would need to be modified. But the SpOC model in its simplest form, detailed 

above, generates testable predictions. For example, the same neural signatures of 

attention’s effects in sensory areas should be observable in multiple types of attention 

tasks, when attention is directed toward different types of visual information. 

Specifically, some of the hallmarks of attentional gating in visual cortex during spatial 

attention tasks should also be observable during an object-based attention task.  

 

Dynamic Gating by Controlled Neural Oscillations 

As detailed in previous sections, a recurrent convolutional neural network is the 

anatomical architecture that supports the dynamic selectivity of sensory signals and 

abstract visual representations. Agnostic as to the ongoing validity of a source-site 

framework versus the potential merits of a new way of thinking (e.g., the Natural Object 

Attention Hypothesis), what remains is the question of how exactly sensory data is 

selected at early and mid-level processing stages, within the constraints of the recurrent 
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neural network architecture. In the language of the SPoC model, the question is: What 

is the neural instantiation of the individual channels that connect source control areas, 

such as the dorsal attention network, to the sensory sites? And how does a signal from 

control areas, once it is issued over its specific channel, effect a modulatory change 

over its designated target neural representation? These mysteries boil down to a 

question of what the mechanism is that allows activity at high-level representations to 

interact with low-level representations. Because of the putative architecture of a 

recurrent neural network, direct activation over feedback connections in itself is not a 

sufficient explanation, because all upstream, low-level nodes connected to the high-

level node would be simultaneously activated over recurrent channels in proportion to 

the strength of their connections. In a model architecture these connection strengths are 

numeric weights that are adjusted during learning, allowing the network to perform the 

task that it is trained for. But their direct equivalent in a real brain, synapses and the 

strength of synaptic connections, mediated by vesicle release, are anatomical and 

therefore not amenable to dynamic modulation on a time scale necessary for attention 

or adaptive behavior more generally.  

One school of thought that has gained traction recently is that dynamic control of 

communication channels in brain networks is managed via the establishment, 

maintenance, and dispersal of oscillatory firing regimes. Neural oscillations can 

potentially solve the mystery of how dynamic patterns of activity can operate over neural 

architecture that is anatomically fixed, relative to the time scale of behavior and the 

ever-changing structure of the world around us.  
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What are neural oscillations? 

In the early days of human EEG research, Hans Berger discovered that neural 

activity recorded at the scalp readily displays oscillatory behavior in the range of 8 – 13 

Hz (Berger, 1929). These signals that Berger observed would appear most prominently 

as short-lived bursts of cyclical voltage changes over occipital scalp, especially when 

the subject of his recording held their eyes closed but remained awake. The sinusoidal 

waveforms were easily visible amidst the background EEG activity, even in live traces, 

because of their low frequency and high amplitude, relative to the rest of the EEG. 

Because of the prominence, consistency, and reliability of its oscillatory patterns, the 8 – 

13 Hz range was named the alpha band. The 13 – 30 Hz range, also prominent but not 

to the same extent as the alpha band, was named the beta band. To this day, alpha 

band oscillatory waveforms remain the strongest electrophysiological signals 

measurable in the waking human brain (Jensen and Mazaheri, 2010), and the 

underlying physiology and functional role of this type of signal are matters of ongoing 

theory and investigation.  

 Oscillatory neural activity such as that seen in the alpha band is thought to reflect 

coordinated firing and cyclical patterns of excitability change across a widespread 

population of cortical neurons. The electrical activity recorded at the scalp with EEG 

almost always reflects moment-to-moment voltage changes arising from postsynaptic 

potentials in cortical pyramidal neurons, summated across large populations (Luck, 

2014). For oscillations such as those in the alpha band to be visible in the recorded 

waveform of a scalp electrode, a vast population of spatially contiguous pyramidal 
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neurons must be receiving synaptic input from upstream action potentials 

synchronously, so that their postsynaptic potentials, and their membrane excitability, are 

simultaneously and uniformly altered. The size of the neural population required to be 

acting synchronously for a typical alpha-band oscillatory pattern to appear at a scalp 

recording site is sufficient to potentially qualify the population as a computational 

module – an assembly of millions of neurons positioned in a larger neural network such 

that they play a discrete computational role.  

Generally, slower oscillations reflect widespread synchronous membrane 

potential changes and faster oscillations reflect more spatially restricted synchronization 

(Buzsáki et al., 2013). The period of oscillation is a function of numerous biophysical 

and architectural properties of the generating neural network, including the limited 

speed of neural signal propagation due to conduction along the axon, the size of the 

neuronal pool engaged in a given cycle, the transmission length, the integration time for 

multiple upstream sources, and the membrane time constant of cortical pyramidal cells 

(Buzsaki and Draguhn, 2004; Buzśaki and Wang, 2012). Regardless of the size and 

spread of the neural population generating oscillatory activity, the interpretation that 

EEG oscillations reflect a precise underlying spatiotemporal consistency of spiking 

activity in neural assemblies hints to the functional significance of the underlying neural 

behavior. 

 Because of its prominence at occipital scalp sites in human EEG subjects during 

periods of drowsiness, mind-wandering, and closed eyes, alpha band activity has long 

been thought to reflect “cortical idling.” According to this interpretation, alpha band 
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activity might arise from deactivated cortical regions, occurring in visual areas when 

they are not receiving any input or not engaged in processing sensory information 

(Pfurtscheller et al., 1996). More recently though, a positive functional role of alpha 

band activity has been suggested by experimental work and asserted by researchers: 

Instead of reflecting a cortical idling state that follows upstream cortical deactivation 

mechanisms, alpha band activity might be deliberately induced in cortex and thereby 

play a specific functional role (Klimesch et al., 2007; Jensen and Mazaheri, 2010). Thus, 

the frequency of activity belonging to the alpha signal might not just be an 

inconsequential emergent property or byproduct of cortical architecture and network 

electrophysiology when the network is disengaged from a larger information processing 

routine. Instead, it might reflect a specific computational mechanism and therefore an 

essential role in computation. Possible functional roles of alpha band activity will be 

discussed below. 

 Along with the alpha and beta bands, numerous other frequency bands of neural 

activity have been identified, named, and assigned conjectural roles in the brain’s 

operation. The delta band refers to activity in the 1.5–4 Hz range; the theta band refers 

to activity in the 4–10 Hz range; the gamma band refers to activity in the 30–80 Hz 

range; the high gamma band refers to activity above 80 Hz; and various other slower 

and faster regimes have also been stratified and studied as discrete bands (Buzsáki et 

al., 2013). Altogether, oscillatory bands that have been identified cover five orders of 

magnitude in frequency.  
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Criticism of the explanatory invocation of neural oscillations 

 

 

 

Figure 3. Screenshot of tweet by Dr. Gregory Hickock of University of California, Irvine, from August 12, 2020, 

suggesting that neural oscillations should not credited for as much of the brain’s functioning as they seem to be 

nowadays. Accessed on January 19, 2021 at: https://twitter.com/GregoryHickok/status/1293607742054084608 
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 As interest in the potential mechanistic roles of neural oscillations has 

accumulated, criticism has also mounted. There are two especially salient and related 

points of criticism.  

The first point of criticism is that the range of cognitive and behavioral 

phenomena for which neural oscillations are invoked as an essential mechanism is 

implausibly large. For example, Buzsáki has pointed out that since the early 

observations of murine hippocampal theta oscillations in the 1930s, more than 50 

different behavioral correlates have been proposed (Buzsáki, 2020). These behaviors 

include arousal, orienting, attention, volition, mismatch detection, movement, REM 

sleep, whisking, instrumental response, operant learning, voluntary movement, decision 

making, information processing, olfaction, anxiety, aggression, habituation, avoidance, 

play, hypnosis, working memory, plasticity, mapping, and navigation. If so many 

disparate behaviors are attributed to a specific form of neural activity – hippocampal 

theta oscillations – then either a large fraction of the research referred to is inaccurate in 

its interpretations, or an underlying cognitive or behavioral function is the true correlate 

of these oscillations, and it is scientifically imprecise to assert that the oscillatory activity 

is causally directly related to the behavior. Along with those linked to theta oscillations, 

similarly large lists of behavioral and cognitive correlates can be upturned for all the rest 

of the named frequency bands. The sheer number of cognitive and behavioral 

phenomena attributed to each named frequency band dilutes the sense of explanatory 

satisfaction accompanying the potential mechanistic role performed by each frequency 

band. In other words, the more putative distinct behavioral or cognitive correlates of a 
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given form of oscillatory neural activity, the less likely it seems that any given one of 

those correlates is truly causally linked to the underlying neural activity in question. 

The second point of criticism is that neural oscillations should not be used as an 

explanatory endpoint in studies of the neural activity underlying cognition and behavior. 

This second criticism is related to the first one in that one possible reason that so many 

disparate cognitive and behavioral phenomena are assigned mechanistic explanations 

that invoke the same type of neural oscillation is that the precise computational role that 

oscillatory neural activity, and how that role fits into a larger computational scheme, is 

not fully understood. Neural oscillations are readily detectable signals both at the level 

of single unit recording and in the summed electrical activity that can be recorded 

extracortically, but just because they are easy signals to identify with our current 

scientific methods does not make them fundamentally more important for the brain’s 

functioning.  

 

Rebuttal to criticism and proposed mechanisms 

In summary, the major criticisms of neural oscillation science discussed above 

are that specific frequency bands of neural oscillations are invoked in explanations for 

an implausibly wide range of behaviors and computational processes, and that neural 

oscillations are too often relied upon as an explanatory recourse for numerous cognitive 

phenomena without sufficient understanding of how or why neural oscillations might 

play an important role therein. To the first criticism, proponents of the study of neural 

oscillations respond that because the field is nascent, the taxonomy of oscillatory 
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behavior in the brain is poorly developed: Although the existing system of terminology 

assigns labels according to the frequency of neural activity, when a better 

understanding of the computational and mechanistic role of neural oscillations in various 

domains is attained, proper terminology will emerge that prioritizes role over frequency 

(Buzśaki and Wang, 2012; Buzsáki et al., 2013). The second point of criticism 

accurately describes the state of the art in the field of neural oscillations, but this 

criticism likely will lose its potency over time, because numerous lines of theory are 

being developed to attempt to explain why neural oscillations might be functionally 

significant, and evidence is accumulating to support those theories. 

Neural oscillations exist both as rhythmic patterns of spiking activity that can be 

recorded in single units and as periodic voltage waveforms that reflect cyclically 

changing membrane excitability and are observable even extracortically. But if these 

oscillations are not epiphenomenal, the urgent question remains: What’s special about 

neural oscillations? Why are neural oscillations considered potential components of the 

brain’s computational processes?  

One mathematical property of oscillators that may make them useful for neural 

computation is that synchrony between two oscillators can be easily achieved and 

sustained even if the connection between them is weak, and even if their intrinsic 

frequencies do not match precisely (Mirollo and Strogatz, 1990). In the brain, the 

oscillators in question might be neural assemblies or individual neurons. The 

connections between them would be synaptic, and the strength of the connection would 

be the magnitude of excitatory or inhibitory input onto the postsynaptic neuron and its 
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likelihood of triggering an action potential. This mathematical property of coupled 

oscillators – the easy ability to form synchronous pairs – indicates how a dynamic 

system of linked neural populations can transiently induce synchronized cell assemblies 

among its constituents. Furthermore, because the dynamic system behavior in the brain 

naturally supports oscillatory behavior, it makes sense, evolutionarily, for the brain to 

take advantage of that behavior and utilize it in its computational processes. Neural 

oscillations are transiently stable regimes of excitability and spiking that can be easily 

and reliably established by small amounts of parameter tweaking. This property makes 

them less metabolically expensive and therefore more theoretically appealing than 

modulation of vesicle release kinetics as a means of dynamically altering computational 

networks to suit task demands.  

 One plausible reason that neural oscillations occur in the brain is that they are 

necessary for the transient binding of functional cell assemblies. According to this 

conjecture, distributed networks of neurons and neural groups are transiently brought 

into cooperation by oscillatory synchrony (Buzsaki and Draguhn, 2004). As detailed 

above, oscillatory synchrony is a metabolically cheap way to form temporary neuronal 

coalitions, compared to the energy-intensive biochemical steps involved in modulating 

vesicle release potentials at synapses according to transient computational demands. 

Once a temporary coalition of neurons is formed via oscillatory synchrony, a unique 

downstream population of neurons can be activated via the anatomical connections of 

the cooperating neural groups. Thus, in a sense, the distributed population brought into 

cooperation by oscillatory synchrony codes for the downstream target population in an 
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activation pathway. And the computational complexity of the brain increases 

dramatically, because a different set of downstream activation targets maps onto every 

possible combination of neural groups that can participate in transient, synchronized 

coalitions. This theory of transient neural assembly binding suggests that neural 

oscillations play an indispensable functional role in the brain’s operation, and that 

without the hierarchical system of oscillations, even the most rudimentary adaptive 

behaviors and cognitive functions would be impossible within the existing structure of 

the brain. Corroborating this line of thinking is the observation that the hierarchical 

system of oscillations is highly phylogenetically conserved across species with widely 

ranging brain volumes, lifespans, ecological niches, and other biological characteristics 

(Buzsáki et al., 2013). 

As detailed above, theoretically, neural oscillations play an elemental role in the 

computational processes in the brain. But apart from theories about the plausibility of 

synchronous oscillators in the brain and their potential mechanistic role in the formation 

of transient networks, what further reason is there to believe that neural oscillations play 

a role in neural computation and cognition more broadly? Several theories about the 

mechanistic role of neural oscillations in cognition will be presented here. These 

theories are not mutually exclusive, and are each supported by empirical evidence. 

Modulation of alpha band oscillatory activity is closely associated with selective 

attention, and is therefore thought to be a crucial component of the neural mechanisms 

underlying selective attention. When covert attention is directed to a location on one 

side of the visual field, alpha is more strongly suppressed over the visual hemisphere 
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contralateral to the attended hemifield (Worden et al., 2000; Sauseng et al., 2005; Thut 

et al., 2006). This lateralized reduction of alpha activity observed in hemispatial covert 

attention tasks is thought to reflect an increase in cortical excitability in task-relevant 

sensory neurons: the early visual areas that receive their input from the regions of the 

visual field that are targeted by attention. It is speculated that oscillatory activity in the 

alpha band is deliberately reduced as a mechanism of attentional control, in order to 

facilitate the processing of upcoming stimulus inputs (Romei et al., 2008). Therefore, 

influential neural models of attention propose that top-down control signals from the 

DAN selectively modulate cortical excitability during attention via changes in alpha 

power. Although the findings that alpha band power decreases over brain areas that 

receive their input from attended spatial locations is correlational in nature, causal 

evidence in favor of this claim has also been observed. Repetitive transcranial magnetic 

stimulation (rTMS) showed disruptions in alpha lateralization after selectively disrupting 

processing in FEF and IPS (Capotosto et al., 2009, 2017), substantiating the 

hypothetical functional link between activity in the frontoparietal network and modulation 

of posterior alpha activity. And in a similar vein, single-pulse transcranial magnetic 

stimulation delivered to FEF, emulating attentional control signals endogenous to that 

region, has been shown to reset oscillatory phase in the beta frequency range over 

occipital sites, with accompanying perceptual modulation (Veniero et al., 2021).  

 One theory that seeks to explain why alpha band modulations are associated 

with shifts in selective attention is the Gating By Inhibition model. According to this 

model, the transmission of information through the brain is gated by systematic 



 

 98 

modulation of oscillatory activity in the alpha band (Jensen and Mazaheri, 2010). The 

membrane excitability of task-engaged brain areas is maintained through a process of 

lowering the power of activity in the alpha band, relative to disengaged areas. Gamma 

band activity, which is thought to reflect local neural processing, is inversely related to 

alpha band activity, such that an increase in local alpha band activity will result in a 

decrease in local gamma band activity, and hence a lowered capacity for neural 

computation or signal propagation within that local region. Thus the alpha band might 

represent a means of functionally inhibiting selected brain areas.  

 A related model, the Communication Through Coherence model (Fries, 2005), 

seeks to explain empirical findings that associate information processing and task 

engagement with coordinated local neural activity in the gamma range (Fries et al., 

2007; Jensen et al., 2007). According to this model, the phase of the ongoing gamma 

rhythm in local neural activity reflects recurring temporal windows for optimal 

communication, and by synchronizing these windows of excitability, two neural 

populations will be able to communicate effectively and thereby propagate information. 

Neurons’ intrinsic oscillations in the high frequency range associated with the gamma 

band represent periodic changes in membrane potential, and at the peaks of membrane 

excitability, a neuron is both more likely to initiate a spike, propagating a signal 

downstream, and to receive a signal by having its internal electrochemical state 

changed by upstream spikes. Thus, according to the Communication Through 

Coherence model, synchronized oscillatory activity between two neurons or between 

two neural populations effectively opens a channel for communication between them. 
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By extension, a top-down system that is able to selectively adjust the oscillatory power 

and phase of individual neural groups would be able to dynamically alter the pathways 

along which information is propagated through networks of brain areas.  

The Gating By Inhibition model and the Communication Through Coherence 

model are linked by the observation that alpha band activity is inversely related to 

gamma band activity. In Gating By Inhibition, transient increases in alpha band activity 

causally suppress gamma band activity, thereby suppressing local information 

transmission, representation, and computation. The nature of the causal link between 

alpha band activity and gamma band activity has not been established and is a matter 

of ongoing investigation. However, there is another possible explanation for why top-

down control over alpha band activity would affect the information capacity of a neural 

population and its ability to transmit information in its network that does not necessitate 

a causal relationship between alpha band activity and gamma band activity in order to 

support the theoretical involvement of alpha band modulation in attention.  

Oscillatory neural activity, synchronized across a neural population, may reduce 

the information capacity of that population simply because of its periodic nature. From 

the perspective of information theory, information entropy is reduced as uncertainty is 

diminished, and thus the information conveyed by a time-varying signal is reduced in 

proportion to that signal’s periodicity. The behavior of dynamical (time-varying) systems 

can be characterized along a spectrum from periodicity to chaos. Whereas periodic 

systems are predictable, systems with chaotic dynamics are exponentially sensitive to 

small perturbations. Theorists have proposed that computational capacity of dynamical 
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systems is greatest when the system is near the phase transition between periodic and 

chaotic regimes. In this state of phase transition, known as criticality, the elementary 

components of computation – information representation, transmission, and 

modification – are thought to be maximally available, and modeling work has borne out 

this idea (Langton, 1990; Bertschinger and Natschläger, 2004; Boedecker et al., 2012). 

Altogether, this line of theoretical work suggests that the top-down induction of alpha 

band activity, which reflects widespread synchronized and periodic activity in a large 

neural population, might functionally inhibit the computational involvement of that neural 

population through periodicity itself. This possibility suggests a modification to Gating By 

Inhibition in which the gating of information processing effected by alpha band activity is 

not mediated through a causal connection to gamma band activity. The observation that 

gamma band activity is inversely related to alpha band activity may be only corollary, 

reflecting two separate underlying processes: top-down induction of alpha band 

synchronization to reduce computational capacity, and network routing via transient 

gamma band coalitions at the scale of local circuits.  
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Object-based attention and neural oscillations 

 

Figure 4. Illustration of the general tenets of a model of attention that describes the controlled flow of signal 

propagation by modulation of oscillatory neural activity. 

 

 Models of the brain’s functional organization that highlight the role of oscillatory 

neural activity, such as the Gating By Inhibition model and the Communication Through 

Coherence model, propose that the pathways that guide the flow of information through 

the brain are fundamentally dynamic and gated by synchronized, oscillatory spiking 

activity and membrane excitability. By extension, these models indicate that signal 

propagation and information processing in the brain can be directed in a top-down 

manner by control signals that alter oscillatory firing patterns in different brain areas. 

 Because attention is generally conceived as a top-down control process whose 

function is to selectively enhance or suppress the information processing activity in 
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targeted brain regions, such that targeted forms of sensory or internal information are 

elaborated or expedited toward higher level cognitive and behavioral domains, the 

dynamic gating of neural computation by controlled neural oscillations is an appealing 

hypothetical mechanism. The theory goes that top-down control areas, such as the 

DAN, can exert selective control over the activity of modular brain areas by altering the 

oscillatory firing patterns in those brain areas in a way that favors receptivity to 

upstream signals and conductance of signals downstream, while performing the 

converse function in task-irrelevant areas.  

In terms of the Communication By Coherence model, top-down attentional 

control areas might synchronize the gamma band firing activity between an upstream 

region and a downstream region when that downstream region is necessary for 

computing the task-relevant properties of the sensory input. In line with prediction, this 

phenomenon has been observed in a study of top-down attention in monkeys, using 

intracranial LFP recordings (Bosman et al., 2012). Bosman and colleagues showed that 

when a monkey was instructed to attend selectively to the color of a visual display, 

gamma band activity synchronized between primary visual cortex and area V4, and did 

not synchronize between V1 and other visual areas that are thought to code for task-

irrelevant visual information. 

The Gating By Inhibition model suggests that top-down attention signals would 

increase alpha activity in task-irrelevant visual areas, relative to task-relevant visual 

areas. In visual attention research, this prediction has been supported in spatial 

attention tasks (Worden et al., 2000) and feature-based attention tasks (Snyder and 
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Foxe, 2010a), which have found relative focal alpha power decrements in task-relevant 

visual areas. Furthermore, a study by Liu and colleagues utilizing the simultaneous 

recording of EEG and fMRI has directly linked activity in the DAN to focal alpha 

modulation in visual areas during a cued spatial attention task in which on a trial by trial 

basis, covert attention was directed either to the left or right of a central fixation (Liu et 

al., 2016). The researchers correlated single-trial EEG alpha power in the post-cue 

period, from either hemisphere individually, with BOLD activity across the entire brain, 

to identify brain areas that covaried with alpha. To do this, they slightly modified the 

standard general linear model analysis method for fMRI BOLD activity. The standard 

method is essentially a test, at each voxel in the fMRI image, of how well the BOLD time 

course fits to a predicted function; that predicted function is a convolution of a canonical 

hemodynamic response function with a boxcar function that describes the timing of 

different stimulus events. But to test for coupling between single-trial alpha power and 

BOLD, the researchers modulated the height of the boxcars corresponding to the cue 

periods from individual trials, according to the relative degree of alpha band modulation 

in each trial. The results of the regression then specifically identified voxels in the fMRI 

data whose activity correlated closely with the degree of alpha band modulation that 

occurred on each trial. The most important result from this study was an inverse 

correlation between alpha power over the visual hemisphere contralateral to the cued 

visual hemifield and BOLD in the intraparietal sulcus, left, middle frontal gyrus, and 

inferior and middle temporal gyri. These areas have previously been identified as some 
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of the areas in the dorsal attention network that is involved in top-down selective 

attention. 

Within the conceptual framework laid out here, object-based attention is 

implemented by the same mechanism: Top-down control signals from regions like the 

DAN selectively modulate alpha band power to enhance the receptivity and conductivity 

of neural populations whose networked activity codes for an attended object category. 

Further chapters of this dissertation elborate an empirical exploration of this prediction.  

 

Conclusion and Future Directions 

 In the present chapter, I aimed to provide an overview of an exciting frontier in 

the cognitive neuroscience of attention: how attention operates in real world settings. 

This question is vital to the progress of cognitive neuroscience, because attention is 

primarily conceptualized by virtue of its role in natural behavior. I used the 

operationalized phenomenon of object-based attention as a way to broach the topic of 

real-world attention. 

I began this chapter by describing early thinking about attention that emphasized 

the role of attention in natural settings. I provided a general overview of attention 

research in cognitive neuroscience, including the ways that it has been operationalized 

for empirical study, and foundational findings that point to its neural mechanisms in the 

brain. I then shifted to the topic of how the brain represents objects, to contextualize the 

topic of object-based attention. I reviewed a new school of thought that object-based 

attention may be the natural mode of attention in the brain, and described studies that 
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investigated how object-based attention may be instantiated in the visual system, 

especially in light of the latest understanding of how objects are represented.  

 My synthesis of object recognition theory and object-based attention theory 

included a proposal for a new view of attention control in the brain that is based 

primarily on the findings that objects may be the primary units of attention, and that 

objects are represented with a distributed population code embedded in a deep, 

recurrent, convolutional neural network whose essential function is to extract 

successively abstract information about visual input and embed statistical regularities of 

the environment into its network structure. This new conceptualization of selective 

attention presents an alternative framework to the conventional site-source dichotomy of 

attention, epitomized by the SpOC model, which was also presented in this chapter. I 

called the new proposal about attention’s neural organization the Natural Object 

Attention Hypothesis in order to convey the intimate relationship between object 

representation and attention in the brain, and to emphasize that by embedding the 

statistical properties of natural sensory input, the brain may not only be encoding 

representations of statistical regularities that we refer to as objects, but that momentary 

task demands that selectively activate object representations, a phenomenon that we 

call attention, might actually be a further abstract statistical property of sensory input.  

 The Natural Object Attention Hypothesis is dependent on the understanding that 

the visual system, perhaps complexed with frontal and parietal areas constituting the 

dorsal attention network, is a recurrent deep convolutional network. Thus artificial 

recurrent deep CNNs can be used as a test bed for research into this hypothesis, and 
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object-based attention more generally. Hypothesized attentional mechanisms, such as 

those of the Buschman-Kastner theory (Buschman and Kastner, 2016), can be tested in 

artificial CNNs to better understand how broadly distributed attentional control signals 

can be refined into selective modulation of sensory information via recurrent 

connections. Furthermore, artificial recurrent CNNs can be used to test predictions of 

the Natural Object Attention Hypothesis. If we trained recurrent CNNs to classify tasks 

involving object images rather than classify object images, would we find similar 

patterns of object category-specific activation in both higher layers and lower layers, as 

might be predicted on the basis of human studies (Peelen and Kastner, 2011)? 

Another question that deserves future research to strengthen the object-based 

attention school of thought pertains to the dramatic discrepancy between simple 

conjunction search and object search in natural scenes. As described in a previous 

section of this manuscript, on the basis of results from classical search paradigms, it 

may be predicted that real world search would take an extremely long time. The number 

of items in the “search array” of a real-world scene is extremely large and varied. The 

target is conceptually distinct from the distractor items but in terms of image properties, 

the target and distractors may be very similar and distractors are as dissimilar from 

each other as they are from the target. We intuitively know that real-world search is not 

as difficult as might be predicted from classical search findings, and laboratory findings 

using more ecologically valid search designs confirm that ecological search can appear 

to be almost parallel in its performance. So how can we make sense of classical search 
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paradigms? Are the designs of classical attention paradigms just special cases of more 

ecologically valid, real-world attention?  

The question of whether the findings and models of classical attention theory can 

be subsumed by a more general understanding, and with it the implicit question of what 

the value is of the classical way of thinking about attention, hints at a much larger 

question about the nature of science. All scientific models are simplifications of the real 

phenomena that they depict, and so necessarily they have limited applicability. 

Generally, the best model is not the one that contains the most detail about its subject, 

because by that criterion the only good model of the brain would be the brain itself. 

Instead, a model is good simply when it is clearly stated, descriptive, and predictive. Its 

essential character can be captured in explicitly defined factors and variables that may 

lend themselves to mathematical formulation. Its factors are useful in that they describe 

the character of the phenomenon in question, such that the phenomenon can be 

recognized from the description, and any other detail would be superfluous. And 

application of the model makes predictions that can be empirically tested to judge its 

explanatory value. According to these criteria, parceling the function of the brain into 

discrete cognitive functions, including attention and object recognition, makes sense. 

Predictions made about the behavior of the brain within the frameworks modeling these 

discrete phenomena should be expected to have gaps and inaccuracies when extended 

into new domains. But when the inaccuracy of models and the limits of their explanatory 

power hinder the progress of a scientific field, it should be taken as a sign that the level 

of explanation entailed by those models is inappropriate for that field’s overarching task. 
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In cognitive neuroscience, the overarching task is to draw the biology of the brain closer 

to the subjective phenomena of psychology. Attention is a fundamental explanandum of 

psychology, so the explanatory limitations imposed by classical attention research 

suggest that a new level of description is necessary. In this chapter, I have proposed 

the Natural Object Attention Hypothesis as a step towards a new model of brain function 

that accommodates the useful terminology of attention and object recognition, but does 

not entangle theory with paradox. Future work to develop and test predictions of this 

new framework, and absorb previous theory into the new model, will advance the field 

of cognitive neuroscience toward its goal of merging mechanistic biological processes 

with the intangible subjective qualities of human nature. Until those days when such 

work is possible, the SpOC model, and other frameworks for understanding attention 

that utilize a site-source dichotomy, will continue to advance our understanding of 

attention’s neural mechanisms, and drive the empirical wedge further into the profound 

mysteries of human psychology. 
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Chapter 2: Experiment 1 

Introduction 

Selective attention is a fundamental cognitive ability that facilitates the 

processing of task-relevant perceptual information and suppresses distracting signals. 

The influence of attention on perception has been demonstrated in improvements in 

behavioral performance (Posner, 1980) and changes in psychophysical tuning curves 

(Carrasco and Barbot, 2019). In humans, these perceptual benefits for attended stimuli 

co-occur with enhanced sensory evoked potentials (Van Voorhis and Hillyard, 1977; 

Eason, 1981; Mangun and Hillyard, 1991; Eimer, 1996; Luck et al., 2000) and increased 

hemodynamic responses (Corbetta et al., 1990; Heinze et al., 1994; Mangun et al., 

1998; Tootell et al., 1998; Martínez et al., 1999; Hopfinger et al., 2000; Giesbrecht et al., 

2003). In animals, electrophysiological recordings indicate that sensory neurons 

responsive to attended stimuli have higher firing rates than those of unattended stimuli 

(Moran and Desimone, 1985; Luck et al., 1997), improved signal-to-noise in information 

transmission (Mitchell et al., 2009; Briggs et al., 2013), and increased oscillatory 

responses (Fries et al., 2001) that support higher interareal functional connectivity 

(Bosman et al., 2012). 

Most models of selective attention posit that top-down attentional control signals 

arising in higher level cortical networks bias processing in sensory systems (Nobre et 

al., 1997; Kastner et al., 1999; Corbetta et al., 2000; Hopfinger et al., 2000; Corbetta 

and Shulman, 2002; Petersen and Posner, 2012). However, precisely how top-down 

signals influence sensory processing within sensory cortex remains unclear. One 
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possible mechanism involves the modulation of EEG alpha oscillations (8 – 12 Hz). 

When covert attention is directed to one side of the visual field, alpha is more strongly 

suppressed over the contralateral hemisphere (Worden et al., 2000; Sauseng et al., 

2005; Thut et al., 2006; Rajagovindan and Ding, 2011). This lateralized alpha reduction 

is thought to reflect an increase in cortical excitability in task-relevant sensory neurons 

in order to facilitate the processing of upcoming stimuli (Romei et al., 2008; Jensen and 

Mazaheri, 2010; Klimesch, 2012). A link between top-down activity in the frontal-parietal 

attentional control system and alpha in sensory cortex has been suggested by studies 

using transcranial magnetic stimulation to control regions (Capotosto et al., 2009, 2017), 

simultaneous EEG-fMRI studies (Zumer et al., 2014; Liu et al., 2016) and 

magnetoencephalography (Popov et al., 2017).  

Although the majority of studies of the role of alpha in selective visual attention 

have focused on spatial attention, alpha mechanisms may be more general (Jensen 

and Mazaheri, 2010). Selective attention to low level visual features – motion versus 

color – has also been shown to modulate alpha that was localized to areas MT and V4 

using EEG modeling in humans (Snyder and Foxe, 2010a). Therefore, it appears that 

attention-related alpha modulation can occur at multiple early sensory processing levels 

in the visual system, with the locus of alpha modulation functionally corresponding to 

the type of visual information being targeted by attention. It is unknown whether the 

alpha mechanism is also involved in attentional control over higher levels of cortical 

visual processing, such as attention to objects. In the present study, we tested the 

hypothesis that alpha modulation is a mechanism for selective attention to objects by 
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recording EEG from participants performing an anticipatory object attention task using 

three categories of objects: faces, scenes, and tools. Using EEG decoding methods we 

provide support for this hypothesis by revealing object-specific modulations of alpha 

during anticipatory attention to different object categories. 

 

Materials and Method 

Participants 

EEG data were recorded from 22 healthy undergraduate volunteers at the 

University of California, Davis. All participants had normal or corrected-to-normal vision, 

gave informed consent, and received course credit for their participation. Two 

volunteers opted to discontinue their participation midway through the experiment; data 

from the remaining 20 participants were used for all analyses. 

 

Apparatus and stimuli 

Participants were comfortably seated in an electrically-shielded, sound-attenuating 

room (ETS-Lindgren, USA). Stimuli were presented on a VIEWPixx/EEG LED monitor, 

model VPX-VPX-2006A (VPixx Technologies Inc., Quebec Canada), at a viewing 

distance of 85 cm, vertically centered at eye level. The display measured 23.6 inches 

diagonally, with a native resolution of 1920 by 1080 pixels and a refresh rate of 120Hz. 

The recording room and objects in the room were painted black to avoid reflected light, 

and it was dimly illuminated using DC lights. 
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Figure 1. A. Example trial sequence for the attention task. Each trial began with the presentation of a 

symbolic cue that the subjects were taught predicted (80%) a specific object category. Following an anticipation 

period (cue-to-target) varying from 1.0 to 2.5 s, a picture of an object (face, scene or tool) was presented. On 20% of 

the trials one of the two uncued targets pictures were presented. Subjects were required to make a rapid-accurate 

discrimination of aspects of the pictures in both the expected and unexpected conditions (see text for details). B. 

Examples of target images presented in the attention task. Face, scene and tool pictures were selected from 

online databases. 

 

Each trial began with the pseudorandomly selected presentation of one of three 

possible cue types for 200 msec (1° x 1° triangle, square, or circle, using PsychToolbox; 
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Brainard, 1997; Figure 1A). Valid cues informed participants which target object 

category (face, scene, or tool, respectively) was likely to subsequently appear (80% 

probability). Cues were presented 1° above the central fixation point. Following 

pseudorandomly selected SOAs (1000 – 2500 msec) from cue onset, target stimuli (5° x 

5° square image) were presented at fixation for 100 msec. On a random 20% of trials, 

the cues were invalid, incorrectly informing participants about the upcoming target 

object category. For these invalid trials, the target image was drawn with equal 

probability from either of the two non-cued object categories. All stimuli were presented 

against a gray background. A white fixation dot was continuously present in the center 

of the display. 

 Target images (Figure 1B) were selected from 60 possible images for each 

object category. All target images were gathered from the Internet. Face images were 

front-face, neutral-expression, white-ethnicity faces, cropped and placed against a white 

background (Righi et al., 2012). Full-frame scene images were drawn from the 

University of Texas at Austin’s natural scene collection (Geisler and Perry, 2011) and 

campus scene collection (Burge and Geisler, 2011). Tool images, cropped, and placed 

against a white background, were drawn from the Bank of Standardized Stimuli 

(Brodeur, Mathieu B.; Guerard, Katherine; Bouras, 2014). A pseudorandomly distributed 

inter-trial-interval (ITI; 1500 – 2500 msec) separated target offset from the cue onset of 

the next trial. Each set of 60 object images comprised 30 images of two different 

subcategories: male/female faces, urban/natural scenes, and powered/non-powered 

tools. 
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Procedure 

Participants were instructed to maintain fixation on the center of the screen during 

each trial, and to anticipate the cued object category until the target image appeared. 

They were further instructed to indicate the target image object subcategory (e.g., 

male/female) with a button press as quickly and accurately as possible upon target 

presentation, using the index finger button for male (face), nature (scene), and powered 

(tool), and to press the middle finger button for female (face), urban (scene), and non-

powered (tool). Responses were only recorded during the ITI between target onset and 

the next trial. Trials were classified as correct when the recorded response matched the 

target image subcategory, and incorrect when the response did not match, or when 

there was no recorded response. Each experiment block included 42 trials, lasting 

approximately 3 mins. Each participant completed 10 blocks of the experiment. 

 

EEG recording 

Raw EEG data were acquired with a 64-channel Brain Products actiCAP active 

electrode system (Brain Products GmbH), and digitized using a Neuroscan SynAmps2 

input board and amplifier (Compumedics USA, Inc.). Signals were recorded with Scan 

4.5 acquisition software (Compumedics USA, Inc.) at a sampling rate of 1000 Hz and a 

DC to 200 Hz online band pass. Sixty-four Ag/AgCl active electrodes were placed in 

fitted elastic caps using the following montage, in accordance with the international 10-

10 system (Jurcak et al., 2007): FP1, FP2, AF7, AF3, AFz, AF4, AF8, F7, F5, F3, F1, 

Fz, F2, F4, F6, F8, FT9, FT7, FC5, FC3, FC1, FCz, FC2, FC4, FC6, FT8, FT10, T7, C5, 
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C3, C1, Cz, C2, C4, C6, T8, TP9, TP7, CP5, CP3, CP1, CPz, CP2, CP4, CP6, TP8, 

TP10, P7, P5, P3, P1, Pz, P2, P4, P6, P8, PO7, PO3, POz, PO4, PO8, PO9, O1, Oz, 

O2, PO10; with channels AFz and FCz assigned as ground and online reference 

respectively. Additionally, electrodes at sites TP9 and TP10 were placed directly on the 

left and right mastoids. The Cz electrode was oriented to the vertex of each participant’s 

head by measuring anterior to posterior from nasion to inion, and right to left between 

preauricular points. High viscosity electrolyte gel was administered at each electrode 

site to facilitate conduction between electrode and scalp, and impedance values were 

kept below 25 kΩ. Continuous data were saved in individual files corresponding to each 

trial block of the stimulus paradigm. 

 

EEG preprocessing 

All data preprocessing procedures were completed with the EEGLAB Matlab 

toolbox (Delorme and Makeig, 2004). For each participant, all EEG data files were 

merged into a single dataset before data processing. Each dataset was visually 

inspected for the presence of bad channels, but no such channels were observed. The 

data were Hamming window sinc FIR filtered (1 – 83 Hz), and then down sampled to 

250 Hz. Data were algebraically re-referenced to the average of all electrodes, and then 

further low-pass filtered to 40 Hz. Data were epoched from 500 msec before cue onset 

to 1000 msec after cue onset, so that anticipatory data from all trials could be examined 

together. Data were visually inspected to flag and reject trials with muscle tension 

artifact and eye movement artifacts that occurred during cue presentation. Independent 
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component analysis (ICA) decomposition was then used to remove artifacts associated 

with blinks and eye movements. 

 

EEG analysis 

 We used a power spectral density procedure, with the Matlab periodogram() 

function (window length 500 msec, step length 40 msec), to extract alpha band power 

for each electrode, for each participant and cue condition. Within each participant and 

cue condition, power spectral density results were averaged across trials. Averaged 

power spectral density results were used to visually examine alpha band power 

topographies across cue conditions. 

 We implemented a decoding analysis to quantitatively assess whether object 

attention was systematically associated with changes in phase-independent alpha band 

power topography across conditions. This analysis routine was adapted from a routine 

to decode working memory representations from scalp EEG (Bae and Luck, 2018).  

Decoding was performed independently at each time point within the epochs. We 

implemented our decoding model with the Matlab fitecoc() function to use the 

combination of a support vector machine (SVM) and error-correcting output coding 

(ECOC) algorithms. A separate binary classifier was trained for each cue condition, 

using a one-versus-one approach, with classifier performance combined under the 

ECOC approach. Thus, decoding was considered correct when the classifier correctly 

determined the cue condition from among the three possible cue conditions, and 

chance performance was set at 33.33% (one-third).  
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 The decoding for each time point followed a six-fold cross-validation procedure. 

Data from five-sixths of the trials, randomly selected, were used to train the classifier 

with the correct labeling. The remaining one-sixth of the trials were used to test the 

classifier, using the Matlab predict() function. This entire training and testing procedure 

was iterated 10 times, with new training and testing data assigned randomly in each 

iteration. For each cue condition, each participant, and each time point, decoding 

accuracy was calculated by summing the number of correct labelings across trials and 

iterations, and dividing by the total number of labelings.  

 We averaged together the decoding results for all 10 iterations to examine 

decoding accuracy across participants, at every time point in the epoch. At any given 

time point, above-chance decoding accuracy suggests that alpha topography contains 

information about the attended object category. However, a comparison of decoding 

accuracy to chance, by itself, is not sufficient for assessing whether an inference made 

on the basis of decoding accuracy is reliable. Although a one-way t-test of decoding 

accuracies across subjects against chance would provide a t-value and a statistical 

significance result for the time point in question, conducting the same test at each of the 

375 time points included in our epoch would require a correction for multiple corrections 

that would result in overly conservative statistical tests. Therefore, following Bae and 

Luck (2018), we utilized a Monte Carlo simulation-based significance assessment to 

reveal statistically significant clusters of decoding accuracies. 

 By the Monte Carlo statistical method, decoding accuracy was assessed against 

a randomly chosen integer (1, 2, or 3), representing an experimental condition, for each 
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time point. A t-test of classification accuracy across participants against chance was 

performed at each time point for the shuffled data. Clusters of consecutive time points 

with decoding accuracies determined to be statistically significant by t-test were 

identified, and a cluster t-mass was calculated for each cluster by summing the t-values 

given by each constituent t-test. Each cluster t-mass was saved. This procedure was 

iterated 1000 times, to generate a distribution of t masses to represent the null 

hypothesis that a given cluster of t-masses from our decoding analysis was likely to 

have been found by random chance. The 95% cutoff t-mass value was determined from 

the permutation-based null distribution and used as the cutoff against which cluster t-

masses calculated from our original decoding data could be compared. Clusters of 

consecutive time points in the original decoding results with t-masses exceeding the 

permutation-based threshold were deemed statistically significant.  

 We performed the same decoding routine on phase-independent EEG oscillatory 

activity in the theta range (4 – 7 Hz), beta range (16 – 31 Hz), and the gamma range (32 

– 40 Hz) to test the hypothesis that object attention-based modulations of EEG activity 

are specific to the alpha range. For filtering EEG data to the beta and gamma band, we 

set the minimum filter order to be three times the number of samples in the 

experimental epoch. For filtering to the theta band, we set the minimum filter order to be 

two times the number of samples, because the duration of the epoch was not long 

enough to allow a filter order three times the number of samples. 
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Results 

Behavioral results 

 

Figure 2. Behavioral Measures of Attention in Experiment 1. A. Box plots of reaction time data for invalid and 

valid trials for 20 subjects, averaged across attention (object) conditions. Thick horizontal lines inside boxes represent 

median values. First and third quartiles are shown as lower and upper box edges. Vertical lines extend to most 

extreme data points excluding outliers. Dots above plots represent outliers, defined as any value greater than the 

third quartile plus 1.5 times the interquartile range. Subjects were significantly faster overall for cued (valid) objects 

than uncued (invalid) objects. B. Reaction times for valid and invalid trials separately for each attention condition. 

Subjects were significantly faster for cued (valid) objects than uncued (invalid) objects for each object category. 
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Observed response accuracies were high and uniform across all object conditions 

and validity conditions (Invalid Face 96.6%, Invalid Scene 97.1%, Valid Face 96.8%, 

Valid Scene 96.7%, Valid Tool 93.1%) with the exception of the invalid attend-tool 

condition (87.5%), which we address below. 

 To determine whether our task elicited a behavioral attention effect, we 

compared reaction time (RT) for target discriminations between validly and invalidly 

cued trials. We observed faster mean RTs for valid trials than for invalid trials, averaging 

across conditions (Figure 2A) and for each condition separately (Figure 2B).  

 To quantitatively assess the effect of cue validity on RT, we fit a gamma-

distributed generalized linear mixed model to the RT data (Lo and Andrews, 2015). We 

found a significant effect of Validity (valid vs. invalid; p < 0.001), with an estimated 

difference between valid and invalid trials of 68 msec. The model also revealed a 

significant main effect of object category (p < 0.001), due to the slower overall reaction 

times in the tool category. Thus, subjects were less accurate and slower in their 

responses to the tool category. Despite these slight performance decrements for the 

tool category, there was nonetheless a significant behavioral attention effect for the tool 

category, providing evidence that the subjects utilized all three cues types to prepare to 

discriminate and respond to the upcoming objects. 
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Alpha topography results 

 

Figure 3. Topographic Difference Maps for Alpha Power in Experiment 1. A. Difference Maps for Anticipatory 

Attention to Faces minus Scenes. Alpha topography difference plot for attend-face minus attend-scene condition, 

averaged over participants, for four time windows relative to cue onset. The topographic difference maps are only 

shown until 1000 msec after cue onset, when the shortest latency targets could appear. The view of these difference 

maps if from behind the head. See text for description. B. Difference Maps for Anticipatory Attention to Faces minus 

Tools. Alpha topography difference plot for attend-face minus attend-tool condition, averaged over participants. C. 

Difference Maps for Anticipatory Attention to Tools minus Scenes. Alpha topography difference plot for attend-tool 

minus attend-scene condition, averaged over participants. 

 

To qualitatively assess whether the pattern of alpha power across electrodes was 

different for anticipatory attention to the three cued categories of objects, we inspected 
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topographic plots of alpha power for each object condition at different time periods 

following the cues, but prior to the onset of the target stimuli. In order to highlight 

differences between the alpha topographies between conditions, and to control for non-

specific effects of behavioral arousal, we created pairwise alpha topography difference 

maps of one object attention condition subtracted from another object attention 

condition.  

We observed that differences in alpha topography between object conditions 

emerged and evolved over the anticipatory (cue-to-target) period (Figure 3). In the 

attend-face minus attend-scene topographies (Figure 3A), we observed increased alpha 

power over the left posterior scalp, and decreased over the right posterior scalp during 

the course of the anticipatory period, with the lateralization becoming most prominent at 

longer post-cue latencies. In the attend-face minus attend-tool topographies (Figure 

3B), the pattern was similar at the longest latencies, but more variable in intermediate 

periods of time. In the attend-tool minus attend-scene topographies (Figure 3C), the 

pattern of alpha differences was distinctive from those involving attend-face conditions; 

at the longest post-cue latencies the pattern of alpha power over the scalp was reversed 

from that in the other difference maps, with alpha power being higher over the left than 

the right posterior scalp. Overall, the presence of these difference among conditions is 

consistent with variations in the underlying patterns of cortical alpha power during 

anticipatory attention to faces, scenes, and tools. However, given the variability across 

subjects, and the inherent difficulty in quantifying difference maps between subjects 

across attention conditions, we turned to the method of EEG decoding to quantify the 
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differences in alpha power across the conditions that are qualitatively described in the 

foregoing. 

 

SVM decoding results 

 

Figure 4. Alpha Band Decoding Accuracy for Experiment 1. Decoding accuracy of alpha band activity over the 

epoch, across participants. The horizontal red line represents chance decoding accuracy. The solid time-varying line 

is the across-subject mean decoding accuracy at each time point, and the shaded area around this line is the 

standard error of the mean. The grey shading denotes the pre-cue period, and the orange shaded segment 

represents the anticipatory period between cue onset (0 msec) and the earliest target onset (1000 msec). The 

turquoise dots denote time points that belong to statistically significant clusters of decoding accuracy, as determined 

by Monte Carlo assessment.  
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 SVM decoding results (Figure 4) revealed statistically significant decoding 

accuracies in two clusters of time points around the range of 500 – 800 msec post-cue 

and pre-target (turquoise dots in Figure 4). Decoding accuracies in the range of -100 to 

+200 msec around the onset of the cue did not reach the threshold for statistical 

significance.  

SVM decoding results for beta and gamma band oscillatory EEG activity revealed 

no statistically significant decoding in the anticipatory period (Figure 5). This result was 

in line with previous SVM decoding of alpha power topography in selective attention 

tasks. 
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Figure 5. Decoding for Different EEG Frequency Bands in Experiment 1. A. The same SVM decoding 

procedure and Monte Carlo statistical procedure that was used for analyzing the alpha band data was applied to the 

theta band (4 – 7 Hz). B. The same decoding pipeline was applied to the beta band (16 – 31 Hz), revealing no 

statistically significant clusters of above-chance decoding accuracy in the preparatory period. C. The same decoding 

pipeline was also applied to the gamma band (32 – 40 Hz), and similarly revealed no statistically significant clusters 

of above-chance decoding accuracy in the preparatory period. 
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Chapter 3: Control Experiments 

The results of Experiment 1 suggested that alpha power topographies 

systematically varied across the three object attention conditions. Behavioral results 

indicated that the participants of Experiment 1 were engaging a form of anticipatory 

attention that targeted object categories, guided by symbolic shape cues with learned 

meanings. On the basis of the finding that alpha power topographies differed 

systematically across the object attention conditions, we concluded that alpha band 

modulation occurs differentially within the cortex depending on the object category 

being attended, supporting a hypothesis that alpha band modulation is an essential 

component of the neural mechanisms of selective visual attention throughout the visual 

system. However, the design of Experiment 1 was imperfect in several ways, limiting 

the extent of our confidence in our theoretical interpretation. In order to address these 

limitations, we executed control experiments that were designed specifically to correct 

imperfections in the design of Experiment 1 and support our conclusions. 

 

Pilot Experiment 

The experiment that we designed immediately after completing Experiment 1 

never made it past the pilot stage, but for the sake of comprehensiveness the details of 

its design and limited behavioral results will be presented in this section. Because we 

terminated data collection for this experiment after finishing the first round of pilot data 

collection and subsequently moved onto a new control experiment design, this aborted 
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pilot experiment will be referred to throughout this manuscript as the Pilot Experiment, 

rather than designating it as a full experiment with an ordinal number.  

The rationale for the Pilot Experiment was to address the possibility that attention 

was not necessary for the successful execution of the task in Experiment 1. Despite the 

behavioral results we obtained indicating that Experiment 1 was successfully inducing 

an object-based attention effect, following the logic of operationalizing anticipatory 

attention by using an instructional cue and a valid/invalid trial design, we sought to 

strengthen the credibility of our claim by replicating the results of Experiment 1 with a 

new design in which attention is more clearly necessary to perform the task. In 

Experiment 1, the participants potentially could have largely ignored the instructional 

cue and waited until target presentation to engage task performance. To give a concrete 

example: A participant could have ignored the instructional cue at the beginning of a 

trial, not prepared any kind of task set or engaged anticipatory object-based attention to 

the cued object category during the cue-target interval, waited for the target image to 

appear, and when it appeared, quickly identify the object category, recall the button-

mapping instructions for that object category, identified the subcategory and respond 

with a button press accordingly. This alternative method of task performance would be 

possible because the participants were trained in advance of the data collection period 

about the three object categories, their subcategories, and the button mapping for each 

object category.  

In theory, if participants were utilizing this alternative task execution strategy, we 

would not have observed any difference between validly cued and invalidly cued trials, 
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because the cues would have been completely ignored by the participants and thus 

there would be no systematic difference between those conditions. In Experiment 1 we 

did observe a statistically significant difference in behavioral measures between validly 

cued and invalidly cued trials, and moreover, the direction of the effect was as 

expected: Invalidly cued trials begot longer reaction times and lower accuracies than 

validly cued trials, in accordance with the standard pattern observed when attention is 

operationalized with a cuing paradigm. However, it remained a possibility that some 

participants performed the task without invoking object-based attention, or that 

participants sometimes utilized the instructional cues as intended but sometimes 

ignored them, and that the alpha power results were contaminated by trials or 

participants failing to comply with the task instructions. In order to preclude this 

possibility from invalidating our interpretation of the results from Experiment 1, we 

designed the Pilot Experiment in a way that would require object-based attention in 

order to be performed at all. 

In Experiment 1, all target images were displayed on screen for 100 msec. 

Stimulus duration of this length is sufficient for easy perception. In the Pilot Experiment, 

we sought to reduce the duration of the target stimulus below the perceptual threshold 

for each individual participant. Shortening the target stimulus duration in this way would 

require the allocation of anticipatory attention to the target to improve target perception 

enough for the task to be performed. According to our design, without attention to the 

target, the image would not be perceptible, and thus the task would be impossible to 

perform. This scenario would be invoked on invalidly cued trials, when participants were 
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cued to expect an object category different from the one that eventually appeared in the 

target stimulus. Our behavioral measures would be indistinguishable from chance 

across these invalid trials, whereas across trials where the object category was validly 

cued, perception would be improved enough for performance to be significantly greater 

than chance. Therefore, we still operationalized attention with a cued attention design 

and an invalid/valid trial dichotomy, but unlike Experiment 1, our criterion for the 

presence of attention would not simply be a difference in reaction time and accuracy in 

the expected direction, but a significant difference between observed behavioral 

measures and chance level in the valid trials, and no such significant difference in the 

invalid trials. 

In order to make the target stimuli difficult to perceive and necessitate object-

based attention, in addition to shortening the stimulus duration time to perceptual 

threshold on an individual participant basis, we overlaid each image with a random 

noise pattern. Moreover, after target stimulus offset, a checkerboard mask immediately 

was displayed, so that the identification task could not be performed on the basis of 

after image or iconic memory. The perceptual threshold target stimulus duration was 

found for each participant by adjusting it manually during the training phase of the 

experiment, before data collection, until a classification accuracy of 50% was reached.  
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Figure 1. In the Pilot Experiment, the target image was displayed on screen for an amount of time that was found to 

correspond to the perceptual threshold of the image, and immediately followed by a checkerboard mask. 

 

 

 The Pilot Experiment also allowed us to remediate several limitations of the 

design of Experiment 1 that were unrelated to the central concern just discussed. We 

excluded the scene and tool object categories from the stimulus design and included 

letters as a new object category. Letters were chosen as the new object category 

because in the brain, letter representation is thought to be the contra-hemispheric 

complement of face representation in the visual cortex. This hemispheric lateralization 

of object representation in our task would grant us the greatest chance of localizing any 

differential and systematic object category-specific oscillatory modulation to cortical 

areas, despite the poor spatial resolution of EEG and the impossibility of localizing the 

cortical generators of scalp electrical activity with perfect confidence.  

Another experimental design choice we made in the Pilot Experiment was to crop 

all target stimulus images and place them entirely within a uniform oval presented at the 

center of the image, against a black background. This design choice was intended to 

address the possibility that in Experiment 1, spatial attention, rather than object-based 
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attention, was driving the systematic differences in alpha topographies that we 

observed. In Experiment 1, face image targets and tool image target were centrally 

presented and did not extend to the edges of the image boundary, whereas scene 

image targets were full-frame. Therefore, it is possible that when cued for faces or tools, 

participants would engage spatial attention in anticipation of the target and selectively 

process visual input from the center of the presentation area, where the cued stimulus 

would appear, whereas when instructed to anticipate scenes, participants’ spatial 

attention would be oriented to a larger and more diffuse spatial region, spreading 

uniformly over the entire target presentation area. Because spatial attention is known to 

systematically modulate alpha band activity (Worden et al., 2000),  

Finally, in Experiment 1, all face images were white-ethnicity, and so in 

Experiment 2 we drew our face stimuli from a face image database that was more 

comprehensive in its inclusion of multi-ethnic faces, because there was no experimental 

design consideration that required us to use face image stimuli representing only a 

single ethnic group.  
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Figure 2. Examples of the face and letter target images used in the Pilot Experiment. 

 

 

 

Figure 3. Table summarizing changes in design from Experiment 1 to the Pilot Experiment. 
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 We recorded behavioral data from five participants in order to test whether the 

design of this Pilot Experiment was successfully invoking object-based attention. All 

participants were healthy undergraduate volunteers from the University of California, 

Davis, had normal or corrected-to-normal vision, gave informed consent, and received 

course credit or monetary compensation for their time. We set an a priori stopping point 

of collecting data from five participants in order to assess whether the design of this 

experiment was achieving our goals. We found that of the five participants, only one 

exhibited behavioral results in the valid and invalid trials that differed in the predicted 

direction, with invalid trial performance indistinguishable from chance. On the basis of 

these preliminary behavioral results, we decided to redesign the experiment before 

collecting a full dataset with EEG. The design of subsequent experiments (Experiment 2 

and Experiment 3) did not follow directly from the design of this Pilot Experiment, 

although in the case of Experiment 3, some of the same design considerations came 

into effect, as will be discussed below. 

 

Table 1. Behavioral accuracy results from all five participants of the Pilot Experiment. Only one participant exhibited a 

pattern of results that accorded with our expectations for how object-based attention was operationalized in our 

design. 
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Experiment 2 

In Experiments 2 and 3, we tested two alternative interpretations of our results 

from Experiment 1. However, these alternative interpretations were not exactly the 

same ones as we sought to address in the Pilot Experiment: After inspecting the results 

of the Pilot Experiment, we pivoted our strategy for conducting control experiment that 

would support Experiment 1, partially because the design of the Pilot Experiment did not 

elicit the kind of object-based attention behavioral results that we sought, and partially 

because after collecting the Pilot data, we realized that there were other potential 

confounds and considerations that we should methodically inspect and exclude from our 

interpretation of Experiment 1’s results.  

The Pilot Experiment was primarily designed to control for the possibility that in 

Experiment 1, selective anticipatory attention was not engaged at all. This possibility 

was addressed in the design of Experiment 3, which will be discussed below. 

Experiment 2 was designed to address a confound in the design of Experiment 1 that 

we realized would be extremely important to rule out as the primary driver of our 

decoding results. Namely, in Experiment 2, we tested whether decoding accuracy in the 

preparatory period between the cue onset and the target onset found in Experiment 1 

might have been based on differences in the sensory processes evoked in the visual 

system by the different cue stimuli. In Experiment 1, the physical stimulus properties of 

the cues for the three different object attention conditions differed from one another 

(triangle vs. square vs. circle). It is reasonable to expect that the different physical 

stimulus properties of these shapes would lead to different patterns of activity in the 
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visual system, and therefore contribute to the decoding results. In Experiment 2, we 

sought to investigate the temporal extent of this decoding confound. 

 

Participants 

All participants were healthy undergraduate volunteers from the University of 

California, Davis, had normal or corrected-to-normal vision, gave informed consent, and 

received course credit or monetary compensation for their time. EEG data were 

recorded from 29 undergraduates; datasets from four participants were rejected on the 

basis of irreconcilable noise in the data or subject non-compliance, yielding a final 

dataset from 25 participants (9 males and 16 females) that was used for further 

decoding analysis.  

 

Experimental design 

The study used a within-subjects design. We investigated the distributions of 

EEG alpha power at the scalp during the post-cue period when the three object 

categories were not attended in advance. Details of the task and the statistical analyses 

are presented in the following.  

 

Statistical analysis 

Behavioral response data were analyzed with a gamma-distributed generalized 

linear mixed model (Lo and Andrews, 2015) with random effect of subject and fixed 
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effects of object category and cue validity to quantitatively assess the effect of cue 

validity on RT. 

Differences in EEG alpha power scalp topographies as a function of cue condition were 

statistically analyzed using a SVM decoding approach and a non-parametric cluster-

based permutation test and Monte Carlo simulation. A cluster-based statistical test was 

used in order to control for multiple comparisons issues that arise when t-tests are 

performed at all time points over the epoch (Bae and Luck, 2018). The details of the 

statistical test for EEG alpha power are described in the following. 

 

Figure 4. Example trial sequence for the second experiment. Each trial began with the presentation of a symbolic 

cue that was not predictive of the upcoming object category. Following an anticipation period (cue-to-target) varying 

from 1.0 to 2.5 s, a picture of an object (face, scene or tool) was presented. Participants were required to make a 

rapid-accurate discrimination of aspects of the target pictures.  
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Procedure 

The recording and analysis protocols were identical to those of Experiment 1. 

Given that the purpose of this experiment was to test whether decoding accuracy in the 

preparatory period between the cue onset and the target onset might have been based 

on differences in the sensory processes evoked in the visual system by the different cue 

stimuli, we modified Experiment 1 by making the cues non-predictive of the upcoming 

target category. In keeping with this modification, we instructed participants that the cue 

shape was not informative, and the cue presentation was simply to alert them that the 

target stimulus would soon appear. Participants were not explicitly instructed to ignore 

the cue shape. While the time course of differences in sensory responses in scalp EEG 

filtered to alpha band frequencies is difficult to gauge, on the basis of the previous 

literature (Bae and Luck, 2018), we predicted that even for alpha, any differentiable 

stimulus-evoked sensory activity would be restricted to a window of time within 200 

msec after the cue onset. Each participant completed 10 blocks of the experiment, with 

each block comprising 42 trials. 
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SVM decoding results 

 

Figure 5. Alpha Band Decoding Accuracy for Experiment 2. The same SVM decoding procedure and Monte 

Carlo statistical procedure that was used for analyzing the data from Experiment 1 was applied to alpha band EEG 

from Experiment 2, revealing a cluster of statistically significant time points close to the onset of the cue, but not later 

in the preparatory period. 
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Figure 6. Theta, Beta, and Gamma Band Decoding Accuracy for Experiment 2. The same SVM decoding 

procedure and Monte Carlo statistical procedure that was used for analyzing the data from Experiment 1 was applied 

to the alternative frequency band EEG from Experiment 2, revealing no clusters of statistically significant time points. 
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We observed a statistically significant cluster of above-chance decoding 

accuracy timepoints in the cue presentation window only. No further clusters of 

significantly above-chance decoding occurred anywhere from 200 msec to 1000 msec 

(Figure 5). We also observed that there were no statistically significant clusters of 

above-chance decoding accuracy timepoints for theta band, beta band, and gamma 

band filtered data (Figure 6). 

The results of this control experiment argue against the possibility that the late-

period alpha band decoding we observed in our original experiment was simply a result 

of differential bottom-up sensory processes across the three cue conditions. Because 

the paradigm for Experiment 2 was identical to the paradigm of Experiment 1 in every 

respect other than the cue validity, and because we ran the same SVM decoding 

pipeline on the alpha band EEG data from Experiment 2 as we did in Experiment 1, we 

could directly assess whether the pattern of decoding results we obtained from the 

original experiment was attributable to bottom-up sensory processes.  

 We collected data from more participants for Experiment 2 than we did for our 

original experiment so that we could have more power in assessing the magnitude and 

the temporal extent of the decoding that could be achieved purely on the basis of 

stimulus-evoked activity. Our results support the idea that the long-latency above-

chance decoding in Experiment 1 is not attributable to purely sensory activity driven by 

physical stimulus differences, because we found that in Experiment 2, statistically 

significant above-chance decoding occurred only in a cluster of time points at short 

post-cue latency (< 200 msec after cue onset; Figure 5). 
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Experiment 3  

In Experiments 2 and 3, we tested two alternative interpretations of our results 

from Experiment 1. In Experiment 3, we investigated whether differences in alpha 

topography across object attention conditions in Experiment 1 may have been the result 

of different task sets across the three object attention conditions, rather than reflecting 

object-based attention mechanisms in visual cortex. 

 

Participants 

All participants were healthy undergraduate volunteers from the University of 

California, Davis, had normal or corrected-to-normal vision, gave informed consent, and 

received course credit or monetary compensation for their time. EEG data were 

recorded from 23 healthy undergraduate volunteers (5 males and 7 females). Datasets 

from three participants were rejected on the basis of irreconcilable noise in the EEG 

data or subject noncompliance, yielding a final dataset of EEG data from 20 participants 

(9 males and 11 females) that was used for further decoding analysis. 

 

Experimental design 

The study used a within-subjects design. We investigated the distributions of 

EEG alpha power at the scalp, as a function of attended object category, in an 

anticipatory cued attention task with three categories of objects (faces, scenes and 

tools). Details of the cued object-based attention task are presented in the following.  
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The recording and analysis protocols were identical to those of Experiment 1. 

The purpose of this experiment was to investigate whether differences in alpha 

topography across object attention conditions in Experiment 1 may have been the result 

of different task sets across the three object attention conditions, rather than reflecting 

object-based attention mechanisms in visual cortex. Specifically, in the attend-face 

condition of Experiment 1, participants were instructed to discriminate whether the 

presented face was male or female, and indicate their choice using a button box with 

two buttons under the index finger and middle finger. In the attend-scene condition, the 

task was to discriminate urban from natural scenes using the same two buttons, and in 

the attend-tool condition, the task was to discriminate powered from non-powered tools 

using the same two buttons. Because the categories being discriminated were different 

across the different cue conditions (male/female, urban/natural, power tool/hand tool), it 

is possible that participants were preparing different task sets across the different cue 

conditions during the preparatory period. After being presented with a triangle cue, for 

example, a participant would need to cognitively map their index finger response to the 

identification of a male face and their middle finger response to the identification of a 

female face, whereas this mapping would be different if the participant were presented 

with a square cue. These different task sets and mappings from visual cortex to motor 

response preparation could possibly have been driving the different alpha scalp 

topographies over the preparatory period.  

This explanation is not mutually exclusive of our interpretation that alpha scalp 

topographies reflect differential preparatory attentional biasing in object category-
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selective visual areas, but given the design of Experiment 1, there is no way to know 

whether one, the other or both are reflected in the differing alpha patterns. Therefore, 

we conducted an experiment that equated the task across all object attention 

conditions, in order to eliminate any task set differences that were present in the original 

experiment. Based our model that alpha is a mechanism for selective attention to 

objects in visual cortex, in this new design we should still observe different patterns of 

alpha for preparatory attention to object categories, which should be revealed in 

successful decoding late in the cue-to-target period. 

 

Apparatus and stimuli 

 

Figure 7. Example stimulus images in the attention task for Experiment 3. In the set of example valid trial stimuli 

shown, Face is the target object category to be identified as in-focus or blurry, and the overlaid tool or scene images 

are the distractor images. For each stimulus image, both the target and distractor can be blurry or in-focus, 

independently of each other. Example invalid trial stimuli are also provided to illustrate that both the uncued target 
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image and the overlaid checkerboard can be blurry or not-blurry, independently of one another. In the invalid trial 

condition, participants were still trained to respond to the uncued target image with the same blurry/not-blurry 

distinction, using the same response buttons as for valid trials. 

 

The general structure of the paradigm for Experiment 3 followed the paradigm of 

the Experiment 1. On each trial, a cue shape appeared, indicating the object category to 

attend. Cue shapes were identical to those in Experiment 1. As before, a preparatory 

period followed the cue, and then a stimulus image appeared. An ITI separated the 

stimulus image and the onset of the next trial. Behavioral responses were collected 

during this ITI. SOA and ITI ranges were kept the same as in Experiment 1. 

The behavioral task for this experiment was to determine, on each trial, whether 

the briefly presented target image belonging to the cued object category (faces, scenes, 

or tools) was in-focus or blurry. Unlike Experiments 1 and 2, the stimuli to be 

discriminated were composites of an image belonging to the target category 

superimposed with an image belonging to a non-cued, distractor category. Crucially, 

both the target image and the distractor image in the blend could be in-focus or blurry 

independently of each other, therefore, the task could not be performed solely on the 

basis of attending to and responding to the presence or absence of blur (Figure 7).   

Twenty percent of trials were invalidly cued, allowing us to assess the effect of 

cue validity on behavioral performance. For the invalid trials, the stimulus image was a 

composite of an image from a randomly chosen non-cued object category, 

superimposed with a black and white checkerboard. The checkerboard could also be 

blurry or in-focus independently of the object image. Participants were instructed that 
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whenever they encountered a trial where the blended stimulus didn’t include an image 

belonging to the cued object category, but instead contained only one object image and 

a checkerboard overlay, then they had to indicate whether the non-cued object image in 

the stimulus was blurry or in-focus. We predicted that participants would be slower to 

respond on invalidly cued trials, analogously to the behavioral effect of validity observed 

in cued spatial attention paradigms. 

The stimulus images spanned a square 5° x 5° of visual angle. To create blurred 

images, Gaussian blur with a standard deviation of 2 was applied to the images. 

All three object categories included 40 different individual images. On each trial, random 

images were drawn to produce the composite stimulus image. Scene and tool images 

were drawn from the same image sets as those for the original experiment. However, 

face images were drawn from a different image set (Ma et al., 2015) because the face 

images used in the original experiment were not high enough resolution to yield reliably 

noticeable differences in blurred vs. non-blurred conditions. All face images were 

cropped to ovals centered on the face and placed against a white background.  

Unlike scene images, which contained visual details spanning the entire 5° x 5° 

square, face and tool images were set against white backgrounds and so did not 

contain visual information up to all the image boundaries. Therefore, to eliminate the 

possibility that participants could use cue information to focus spatial attention instead 

of object-based attention to perform the blurry/in-focus discrimination, on any trial where 

a face or tool image was included in the composite stimulus, the position of that face or 

tool image was randomly jittered from the center. 
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Procedure  

Participants were instructed to respond as quickly as they could to the target 

stimulus, making it vital that the participants engaged preparatory attention toward the 

cued object category during the preparatory period. All participants were trained with at 

least 42 trials of the task, and were able to achieve at least 60% response accuracy 

before performing it under EEG data collection; to achieve this, stimulus duration was 

adjusted on an individual participant basis during the initial training phase. Experiment 3 

was conducted in the same laboratory environment as the original experiment, and 

environmental setup variables were equated to those of the original experiment. 

Each participant completed 15 blocks of the experiment, with each block comprising 42 

trials, which represented, on average, 210 more trials per subject than Experiment 1. 

 

Figure 8. Example trial sequence in Experiment 3. Each trial began with the presentation of a symbolic cue that 

was predictive of the upcoming object category (75%). Following an anticipation period (cue-to-target) varying from 
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1.0 to 2.5 s, a composite stimulus image was presented. Participants were required to make a rapid-accurate 

discrimination of whether the cued object image was blurry or not-blurry (valid trials), or whether the uncued object 

image was blurry or not-blurry (invalid trials). 

Behavioral results 

 

Figure 9. Behavioral Measures of Attention in Experiment 3. A. Box plots of reaction time data for invalid and 

valid trials, collapsed across 20 subjects, averaged across attention (object) conditions. Thick horizontal lines inside 

boxes represent median values. First and third quartiles are shown as lower and upper box edges. Vertical lines 

extend to most extreme data points excluding outliers. Dots above plots represent outliers, defined as any value 

greater than the third quartile plus 1.5 times the interquartile range. Subjects were significantly faster overall for cued 

(valid) objects than uncued (invalid) objects. B. Reaction times for valid and invalid trials separately for each attention 

condition. Subjects were significantly faster for cued (valid) objects than uncued (invalid) objects for each object 

category. 
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We observed differences in RT between valid and invalid trials, for all object 

categories, such that validly cued trials elicited faster responses than invalidly cued 

trials (Figure 9). In fitting a gamma-distributed generalized linear mixed model to the RT 

data, we found a significant effect of validity (p < 0.001). 

 

SVM decoding results 

 

Figure 10. Alpha Band Decoding Accuracy for Experiment 3. The same support vector machine decoding 

procedure and Monte Carlo statistical procedure that was used for analyzing the data from Experiment 1 was applied 

to alpha band EEG from Experiment 3, revealing a cluster of statistically significant time points in the second half of 

the preparatory period. 
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Figure 11. Theta, Beta, and Gamma Band Decoding Accuracy for Experiment 2. The same SVM decoding 

procedure and Monte Carlo statistical procedure that was used for analyzing the data from Experiment 1 was applied 

to the alternative frequency band EEG from Experiment 3, revealing no clusters of statistically significant time points 

in any other frequency band. 
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Using the same EEG analysis and SVM decoding pipeline as for Experiment 1, 

we found statistically significant clusters of timepoints exhibiting above-chance decoding 

accuracy (Figure 10). Just as in Experiment 1, these statistically significant clusters 

were observed in the second half of the preparatory period, more than 500 msec after 

the cue onset. Notably, there also appears to be a group of above-chance time points in 

the cue presentation window of 0 – 200 msec, in the same period where we observed 

statistically significant decoding in Experiment 2 that was attributable to the cue-evoked 

sensory activity. However, in the results of Experiment 3, like Experiment 1, decoding in 

this cue presentation time period (< 200 msec latency) did not reach the level of 

statistical significance (whereas with the higher number of participants in Experiment 2, 

it could be revealed). 

The behavioral results of Experiment 3 suggest that participants were engaging 

object-based attention during the preparatory period. Participants were faster to 

discriminate object images as blurry or in-focus when their category was cued. 

Analogously to cued spatial attention paradigms, on invalidly cued trials, participants 

were attending to one object category during the preparatory period, but then upon 

stimulus presentation, reoriented their attention to be able to discriminate whether an 

image from an uncued object category was blurry or in-focus.  

 With the behavioral effect between valid and invalid trials in line with that from 

our original experiment, we are confident that the experimental design in Experiment 3 

was engendering the same form of top-down object-based attention as was captured by 

Experiment 1. Therefore, in observing statistically significant above-chance decoding in 
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the same general window of time after cue onset for Experiments 1 and 3, we interpret 

this finding as evidence that object-based attention, and not task set or motor response 

preparation differences, is driving the longer-latency decoding result prior to onset of the 

targets.  

 The decoding results for the theta, beta, and gamma bands did not reveal any 

statistically significant time points, suggesting that activity in these frequency bands is 

not systematically modulated by the conditions of the experiment (Figure 11).  

 

SVM Decoding of Random Data 

From the alpha power SVM decoding figures, it can be observed that there are 

periods of time where decoding appears to be considerably below theoretical chance 

(33%). For example, this dip below chance can be seen in the decoding figures for 

Experiment 1 and Experiment 3 during the baseline period before the onset of the 

instructional cue. Our interpretation of these below-chance decoding accuracy periods 

is that they arise entirely by chance. Indeed, previous SVM decoding studies have 

asserted that there is no logical way to interpret below-chance decoding accuracy (Bae 

and Luck, 2018).  

Equally puzzling are the periods of above-chance decoding accuracy in the 

baseline period before the onset of the instructional cue. Before the cue, there is not 

any information available to the participants about the identity of the upcoming cue, 

because the order of trials is completely randomized. Therefore, decoding accuracy 

during this baseline period should be equal to chance in theory, because there should 
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be no systematic information about the object condition of each trial available to the 

brain during this time. Because of the apparent discrepancies from theoretical decoding 

behavior observed in our various decoding results, we wanted to carefully assess 

whether there was any aspect of the decoding pipeline that might be biasing the 

analysis and distorting our decoding accuracy results.  

The most straightforward way to check for bias in the SVM pipeline is to replace 

the actual EEG data with random noise and run this pure-noise simulated data through 

the same decoding pipeline and cluster-based permutation test for statistical 

significance as was used for our experimental data. If when operating over random data 

decoding accuracy values are centered on theoretical chance, and no clusters of 

statistically significant time points emerge from the statistical test, then it can be 

assumed that there is no systematic bias in the analysis, because random data by 

definition and in implementation contains no information about the condition labels that 

are arbitrarily assigned to it at any point in the decoding epoch. A further useful outcome 

would be that testing the decoding method on random noise would allow us to gauge 

the extent of deviation from theoretical chance that might be expected under a null 

hypothesis that there was no meaningful experimental condition information in the data 

that was submitted to the analysis.  

We therefore re-ran the exact SVM decoding analysis and statistical analysis 

used in Experiment 1, Experiment 2, and Experiment 3, but for each participant 

replaced real EEG data with randomly generated data. The result of this control analysis 

is provided below in Figure 12.  
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Figure 12. Decoding accuracy time series for SVM analysis of random noise. We ran the SVM decoding pipeline 

again, replacing EEG data for each subject with random noise, to test for bias in the analysis. Because the resulting 

decoding accuracy is centered on theoretical chance (33%), we can rule out the possibility that there is bias in the 

analysis pipeline, strengthening our interpretation of the decoding results from Experiments 1–3. 

 

We found that the decoding accuracy time series for this random data centered on 

theoretical chance, validating our expectation that there was no systematic bias in the 

SVM decoding pipeline or in the cluster-based permutation test for statistical 

significance, and strengthening our confidence in the decoding results for Experiments 

1, 2, and 3. Furthermore, the random decoding accuracy tended to oscillate between 

peaks about 5% above and below chance. From this behavior we have a shorthand 

measure of how much decoding accuracy might be expected to deflect from the 

theoretical chance level of exactly 33% under the null hypothesis. 
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Experiment 3 Behavioral Control Experiment 

 In Experiment 3, object-based attention was operationalized with a cueing 

paradigm, in which on each trial the appearance of one of three possible object 

categories (faces, scenes, or tools) was indicated ahead of time with an 80% predictive 

cue. For the 80% of trials that were validly cued, an image from the cued object 

category appeared superimposed with an image from an uncued object category. For 

the 20% of trials that were invalidly cued, an image from an uncued object category 

appeared superimposed with a checkerboard pattern instead of another object image 

(Figure 7; Figure 8). The invalid trial stimuli were designed such that only one object 

image was present, to preclude any ambiguity about what object image was the 

intended target of the discrimination task in the absence of an image from the cued 

object category. The checkerboard pattern was displayed overlaid with the invalidly 

cued object image to provide distracting visual information comparable to that from an 

overlaid uncued object image in the valid trials.  

 This paradigm was designed so that the effect of cued, anticipatory object-based 

attention would manifest as a difference in reaction time between valid and invalid trials. 

We predicted that invalid trials would display longer reaction times than valid trials, 

because the beneficial effects of anticipatory attention would only apply when the 

anticipated object category was present in the target stimulus.  

However, the systematic difference in visual stimulus characteristics between the 

valid and invalid trials, with valid trial stimuli composed of two object images and invalid 

trial stimuli composed of a checkerboard pattern and one object image, could lead to 
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the question of whether the observed behavioral decrement on the invalid trials was 

truly the result of anticipatory object-based attention to a different object category, or if 

instead the invalid trial design was simply more difficult to visually parse. It is 

reasonable to wonder whether the checkerboard pattern overlaid on the uncued object 

image targets made discrimination of those targets more difficult than discrimination of 

an object image in superimposition with another object image.  

We conducted an experiment to address this concern and to support our 

interpretation that the difference in reaction times between valid and invalid trials 

reflects the behavioral benefit of object-based attention. We collected behavioral data 

from ten participants (4 females, 5 males, 1 non-binary). All participants were healthy 

undergraduate and graduate volunteers from the University of California, Davis 

community, had normal or corrected-to-normal vision, gave informed consent, and 

received monetary compensation for their time.  

The design and procedure of this experiment were identical with those of 

Experiment 3, with one crucial modification: Twenty percent of the trials were validly 

cued, but the stimulus was composed of an object image from the cued object category 

superimposed with the same checkerboard pattern present in invalid trial stimuli. We 

designate these new trials as valid checkerboard trials. Thus 60% of trials were the 

same validly cued trials from Experiment 3, 20% of trials were the same invalidly cued 

trials from Experiment 3, and 20% of trials belonged to the new valid checkerboard 

condition.  
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Figure 13. Example trial sequence in behavioral control experiment. Each trial began with the presentation of a 

symbolic cue that was predictive of the upcoming object category (75%). Following an anticipation period (cue-to-

target) varying from 1.0 to 2.5 s, a composite stimulus image was presented. Participants were required to make a 

rapid-accurate discrimination of whether the cued object image was blurry or not-blurry (valid and valid checkerboard 

trials), or whether the uncued object image was blurry or not-blurry (invalid trials). 

 The introduction of valid checkerboard trials in this experiment allows us to 

examine whether the Invalid trials in Experiment 3 elicited longer reaction times than 

valid trials simply because of the presence of the checkerboard in the stimuli. If the 

presence of the checkerboard pattern is driving the longer reaction times in the invalid 

trials of Experiment 3, then in the present experiment, the valid checkerboard condition 

will also elicit longer reaction times than the valid condition.  

 The results of this experiment are displayed in Figure 14 and Figure 15 below. 

Invalid trials display longer reaction times than both valid and valid checkerboard trials 

(Figure 14). This result was consistent regardless of which of the three object categories 
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was the target on a given trial (Figure 15). Furthermore, the valid checkerboard reaction 

times were not significantly faster than valid reaction times. Welch’s two-sample t-test 

between: 1. Invalid and valid RTs indicates a significant difference (p < 0.01); 2. Invalid 

and valid checkerboard RTs indicates a significant difference (p < 0.01); 3. Valid and 

valid checkerboard RTs indicates no significant difference (p = 0.4). Together, these 

results indicate that the checkerboard pattern by itself did not hamper the behavioral 

performance of the participants in Experiment 3, and thus the relatively faster reaction 

times observed in valid trials can be attributed to the beneficial effects of anticipatory 

object-based attention. 

 

Figure 14. Box plots of reaction time data for invalid, valid, and valid checkerboard trials, collapsed across 10 

subjects, averaged across attention (object) conditions. Thick horizontal lines inside boxes represent median values. 
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First and third quartiles are shown as lower and upper box edges. Vertical lines extend to most extreme data points 

excluding outliers. Dots above or below plots represent outliers, defined as any value greater than the third quartile 

plus 1.5 times the interquartile range. Subjects were significantly faster overall for cued (valid) objects than uncued 

(invalid) objects.  

 

 

 

Figure 15. Box plots of reaction time data for invalid, valid, and valid checkerboard trials, collapsed across 10 

subjects, displayed separately for each object condition. Thick horizontal lines inside boxes represent median values. 

First and third quartiles are shown as lower and upper box edges. Vertical lines extend to most extreme data points 

excluding outliers. Dots above or below plots represent outliers, defined as any value greater than the third quartile 

plus 1.5 times the interquartile range. Subjects were significantly faster overall for cued (valid) objects than uncued 

(invalid) objects, for each object category. 
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Chapter 4: ERP Decoding Analyses 

 Experiment 1 was designed specifically to test the hypothesis that object-based 

attention modulates alpha band oscillatory neural activity throughout the visual system, 

and that these systematic patterns of alpha band modulation are visible at the level of 

the scalp with EEG recording. Therefore, the primary method utilized in the analysis of 

the data from Experiment 1 was SVM decoding of alpha power topography, to measure 

the extent to which alpha patterns are reliably distinct as a function of the object 

category being selectively attended. Experiment 2 and Experiment 3 were designed to 

rule out several alternative interpretations of the results from Experiment 1, and also 

both utilized SVM decoding of EEG alpha power topography as their primary analysis 

method.  

 The present chapter will describe the execution and results of ERP decoding 

analyses that we performed after our primary scientific question had been answered. 

The theoretical interpretation of the results of these ERP decoding analyses will be 

elaborated in the following General Discussion chapter.  

 

Experiment 1 

ERP decoding of the cue period 

The first ERP decoding analysis that we conducted was an SVM decoding of the 

object attention cue condition over phase-locked ERP voltage, instead of alpha power 

data. The data used for the ERP decoding was restricted to signals below 6 Hz in 

frequency, to minimize the overlap in information with the alpha band data that was 
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subjected to SVM decoding in our primary analyses. This rationale was adopted from 

the SVM decoding analysis of Bae and Luck (Bae and Luck, 2018), in which the filtering 

was performed to avoid contamination from alpha band activity, which may appear as 

sustained ERPs under some conditions (Mazaheri and Jensen, 2008; Van Dijk et al., 

2010). In order to restrict the ERP data signals to the 0 – 6 Hz frequency range, we 

performed a band pass filtering procedure over the preprocessed EEG data, using the 

eegfilt() function from the EEGLAB Matlab library.  

A further diversion from the data processing pipeline of our primary alpha band 

decoding analysis was that we did not subject the low pass filtered EEG data to a 

Hilbert transform. In our primary analysis, the Hilbert transform processing step, 

performed after filtering the preprocessed EEG data to the alpha band frequency range, 

had the effect of providing an estimate of instantaneous alpha power at each time point 

in the data. The Hilbert transform effectively computes the envelope of the waveform 

over which it operates. In the ERP decoding analysis of the ERP’s sensitivity to the 

cued attention conditions, we had no a priori interest in the distribution of power in the 0 

– 6 Hz frequency band at each time point in the epoch, but instead were interested in 

the raw ERP waveforms, and the extent to which the experimental conditions could be 

decoded from this EEG data time locked to the cue onset. 

Aside from these alterations made to the decoding procedure, the rest of the 

analysis exactly followed the SVM decoding analysis performed in our primary analysis. 

Decoding was performed independently at each time point in the epoch. Trial data from 

each condition were averaged together to improve the signal-to-noise-ratio, after low 
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passing the data to isolate the sustained ERP waveforms, and model training and 

testing were performed on the average EEG data. Model testing was scored as either 

correct or incorrect, depending on whether it labeled the experimental condition 

correctly – thus theoretical chance was set to one-third (33%). The test for statistical 

significance of decoding accuracy was the same cluster-based permutation test as used 

in the primary analysis: The test identified temporally contiguous clusters of decoding 

accuracy timepoints that were deemed significantly above chance, by comparison with 

an a priori 95% threshold on a null distribution of cluster t masses. The same Matlab 

fitecoc() function was used to perform SVM decoding according to the error-correcting 

output codes method of solving the multiclass categorization problem for a binary 

classification model. 

Just as the primary analysis of SVM decoding over alpha power scalp 

distributions was essentially an assessment of the information pertaining to the object-

based attention condition in the alpha band data, this SVM ERP analysis is an 

assessment of the information content in the ERP waveform. If the pattern of ERP 

waveforms across the scalp elicited by the instructional cue systematically varies as a 

function of the cue shape or the form of attention instructed by the cue, then the 

decoding should return statistically above-chance labeling of data not incorporated into 

the model’s training phase.  

As was the case in Experiment 1, it is likely that any above-chance decoding 

results observed during the very early part of the cue period, right after cue onset, will 

be confounded by the inescapable fact that the different cue shapes have different 



 

 162 

stimulus properties and likely elicited different visual activity just on the basis of their 

physical properties. Furthermore, at the cue offset time of 200 msec, it is possible that 

an additional ERP waveform will be elicited by the sensory response to the offset of the 

stimulus (Luck, 2014), and so the time period of above-chance decoding attributable to 

this sensory response might be expected to extend past 200 msec. As was the case for 

the primary analysis, this confound could not be circumvented with a counterbalancing 

procedure in which participants were assigned different mappings of cue shape to 

attentional instruction, because all SVM decoding was performed within subject.  

The results of the SVM decoding analysis of ERP waveforms are presented in 

Figure 1 below. The shading around the bold central line reflects standard error across 

subjects, and the bold line represents the mean decoding accuracy across subjects. 

Turquoise dots along the central line denote the statistically significant time points, 

where decoding accuracy across subjects was significantly greater than would be 

expected under a null scenario in which the ERP waveform contained no information 

about the cue condition. 
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Figure 1. Experiment 1 ERP decoding accuracy, time-locked to cue onset. 

 

 As can be observed in Figure 1, statistically significant decoding of the ERP 

waveform was achieved over the range 0 – 700 msec after cue onset. Notably, a small 

length of time before 0 msec also exhibits statistically significant above-chance 

decoding. It is most likely that this puzzling result is attributable to the temporal 

smearing of the low pass filter, by which the beginning of the data starting at 0 msec 

bled into the immediately preceding timepoints (Luck, 2014).  
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Experiment 2  

ERP decoding of the cue period 

The ERP decoding procedure that was applied to the EEG data from Experiment 

1, described above, was also applied to the data from Experiment 2. Because 

Experiment 2 was a control experiment to account for the amount of above-chance 

decoding accuracy that could be expected solely on the basis of the visual system’s 

sensory response to the physically different cue shapes, ERP decoding of the data from 

Experiment 2 provides analogous control over the results of the ERP decoding analysis 

of the data from Experiment 1. By comparing the decoding accuracy results of 

Experiment 2 with those from Experiment 1, the extent of the decoding accuracy purely 

attributable to the sensory responses to the cue shapes can be determined. Just as in 

the primary analysis, the a priori assumption is that information about the cue shape will 

have an impact early in the cue period, but any late-period EEG patterns will be 

dominated by cognitive processes, including attention.  
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Figure 2. Experiment 2 ERP decoding accuracy, time-locked to cue onset. 

  

From the decoding accuracy results displayed in Figure 2, it can be seen that the 

extent of the above-chance decoding accuracy is restricted to an early part of the cue 

period, rising sharply after the cue onset, rising again around the time that might be 

expected for the sensory response to the cue offset, and then ending before 500 msec 

after cue onset.  
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Experiment 3 

ERP decoding of the cue period 

 The ERP decoding procedure that was applied to the EEG data from Experiment 

1, described above, was also applied to the data from Experiment 3. Experiment 3 was 

a control experiment. In the primary analysis, the best case scenario for the decoding 

results of Experiment 3 were that they would replicate the decoding results of 

Experiment 1. In the case of the ERP decoding presented here, a similar logic applies. 

Theoretically, the SVM classifier should perform at chance level up until the cue onset 

time, because before the cue, there is no information available to the participants about 

the condition assignment for any given trial. After the cue, the same sensory response 

to the physical cue shape would be expected to drive decoding results in the early part 

of the cue period, and then later decoding accuracy would be attributable to cognitive 

processes and object-based attention. Because Experiment 3 controlled for the 

possibility that differences in task set across the three object conditions were driving the 

cognitive-period decoding results of Experiment 1, any above-chance decoding 

accuracy late in the cue period, after around 500 msec, would be attributable 

specifically to object-based attention. 
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Figure 3. Experiment 3 ERP decoding accuracy, time-locked to cue onset. 

 

As can be seen in the ERP decoding accuracy results for Experiment 3 

presented in Figure 3, clusters of timepoints associated with above-chance decoding 

accuracy extend from shortly after cue onset into the late cue period, ending around 800 

msec after cue onset. The results resemble those of the ERP decoding of Experiment 1 

in that both experiments resulted in statistically significant periods of decoding later than 

would be expected for a purely sensory-driven effect.  
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ERP decoding of the target period  

 A nearly identical version of the ERP decoding procedure that was applied to the 

cue period EEG data from Experiments 1 – 3, described above, was also applied to the 

target period data from Experiment 3.  

 The participants’ task in Experiment 3 was to press one button if the target object 

image, belonging to a cued object category, was blurry, and a second button if that 

target image was not blurry. On validly cued trials, target image stimuli were composite 

images, made of a randomly selected image from the cued object category overlaid with 

a randomly selected distractor image from one of the two uncued object categories. 

Both the target and the distractor object image could be blurry or not blurry, varying 

independently and randomly.  

 For the ERP decoding analysis presented here, the condition labels being 

decoded are blurry and not-blurry. The decoding routine is performed separately for the 

target and distractor objects in the stimuli, so that the effects of anticipatory object-

based attention on stimulus representation can be compared for the attended object 

image and the unattended distractor object image. Invalid trials, in which the 

instructional cue did not predict the subsequently presented object image, were 

excluded from this analysis, because on invalid trials only one object image was 

presented in the stimulus: This object image did not belong to the cued object category, 

meaning that for invalid trial data, there is no available comparison between visual 

processing for attended and unattended object image information.  
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Because the information being decoded in this analysis is whether the stimulus 

image (target or distractor, depending on the analysis) is blurry or not-blurry, the only 

difference between the ERP decoding procedure applied here and the one detailed 

above for the ERP decoding analysis for Experiment 1 was that two condition labels 

were trained and tested, rather than three. Theoretical chance was thus set to 50%, 

both in the visualizations of results in Figure 4 and Figure 5, and in the cluster-based 

test for statistical significance.  

 

 

Figure 4. Experiment 3 target image blurriness decoding accuracy from the ERP, time-locked to target onset. 
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 The ERP decoding results for the target object image are presented in Figure 4. 

Clusters of statistically significant time points persist from target stimulus onset to nearly 

the end of the decoding epoch. In the early sensory response period of roughly 0 – 200 

msec, average decoding accuracy across participants peaks at 75%. 

 

Figure 5. Experiment 3 distractor image blurriness decoding accuracy from the ERP, time-locked to target onset. 

 

The ERP decoding results for the distractor object image are presented in Figure 

5. Clusters of statistically significant time points begin at stimulus onset and decline 

after 250 msec, with small clusters of statistically significant decoding appearing later in 

the decoding epoch. In the early sensory response period of roughly 0 – 200 msec, 

average decoding accuracy across participants peaks at about 70%. Overall, compared 
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to the target image decoding result, the decoding accuracy is weaker throughout the 

stimulus period. 

The same ERP decoding analysis was also performed over Experiment 3 data 

segmented by whether the participants responded correctly or incorrectly. Responses 

were deemed correct when the blurriness or clarity of the cued object image in the 

target stimulus was indicated correctly by a button press during the interval between 

stimulus onset and cue onset of the subsequent trial. Responses were deemed 

incorrect when the response indicated by the button press during the response window 

did not match the blurriness of the cued object image – trials in which no response was 

recorded were excluded from this analysis.  
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Figure 6. Experiment 3 correct-response trial target image blurriness decoding accuracy from the ERP, time-locked 

to target onset. 
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Figure 7. Experiment 3 incorrect-response trial target image blurriness decoding accuracy from the ERP, time-locked 

to target onset. The number of participants whose data is included in this analysis is 19, rather than 20, because one 

participant did not produce enough incorrect responses to meet the minimum requirements of the SVM cross 

validation procedure. 
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Figure 8. Experiment 3 correct-response trial distractor image blurriness decoding accuracy from the ERP, time-

locked to target onset. 
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Figure 9. Experiment 3 incorrect-response trial distractor image blurriness decoding accuracy from the ERP, time-

locked to target onset. The number of participants whose data is included in this analysis is 19, rather than 20, 

because one participant did not produce enough incorrect responses to meet the minimum requirements of the SVM 

cross validation procedure. 

 

Comparison of cue period alpha decoding and target period ERP decoding  

The primary analyses of Experiments 1 – 3 have provided evidence that patterns 

of alpha band power over the scalp are systematically modulated as a function of the 

category of object being selectively attended. An intriguing question follows from that 

series of findings: Does object category-specific alpha band modulation increase the 

amount of sensory information represented in the visual system from subsequently 

presented object images belonging to the cued category?  
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A key aspect of attention theory is that attention enhances the perception of 

target stimuli. According to early selection models, attention operates in the early stages 

of sensory processing, rather than only acting once all sensory information has been 

parsed and a semantic interpretation of the scene is available to higher levels of 

cognition and behavior. The early selection school of thought has largely been validated 

by experimental findings (Mangun and Hillyard, 1991), and thus any enhanced 

perception of targeted visual information afforded by attention should be accompanied 

by clearer and more distinct stimulus-specific sensory representations in cortex, relative 

to the cortical representations of unattended information. Furthermore, if alpha band 

modulation is a mechanistic element of selective attention, then the degree of alpha 

modulation should be directly linked to the sensory processing benefits afforded by 

attention. The design of Experiment 3 and the method of EEG decoding using an SVM 

classifier allows this prediction to be tested. Because the stimuli designed for 

Experiment 3 are composite overlays of both an image belonging to an attended object 

category and an image belonging to an ignored object category, and the blurriness of 

each object image in the overlay varies independently, the visual system’s 

representation of visual information from each individual image can be directly 

compared. It is important to note, however, that this analysis is fundamentally 

exploratory in nature, because the hypothesis around which Experiments 1 – 3 were 

designed and executed did not pertain to this question of the direct relationship between 

alpha band oscillatory activity and visual perception. Nonetheless, the EEG data from 

Experiment 3 serendipitously allow for a test of this interesting question. 
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The analysis presented here allows us to examine whether anticipatory attention 

to an object category, mediated by alpha band modulation, increases the amount of 

visual information represented in neural activity elicited by a target object stimulus. 

Decoding accuracy can be interpreted as the minimum amount of information about the 

target contained in the decoded signal, so showing that object-based attention 

increases decoding accuracy of the blurriness of the attended object image but not of 

the blurriness of a simultaneously presented image from an unattended category would 

suggest that object-based attention acts at the level of a category representation to 

increase low-level sensory information pertaining to that category. A positive correlation 

of category-specific anticipatory alpha modulation with target representation 

enhancement would suggest that alpha activity plays a causal role in the perceptual 

benefit afforded by attention. Furthermore, a null or negative correlation between 

anticipatory period alpha band decoding and distractor decoding would also be 

expected. Whether the correlation between the alpha decoding measure and the 

distractor decoding measure is flat or negative implies one of two different theoretical 

interpretations, which will be elaborated in the following General Discussion chapter. 

We ran two correlation tests: a between-subjects correlation of cue-period alpha 

decoding accuracy and target-period target visual information, and a between-subjects 

correlation of cue-period alpha decoding accuracy and target-period distractor visual 

information. The measure of cue-period alpha decoding accuracy we used was the 

peak decoding accuracy across the whole cue period, for each subject. The measure of 

target-period ERP decoding we used, for target object and distractor object visual 
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information, was the peak decoding accuracy over the whole target-period, for the 

blurriness decoding of the respective image type, for each subject. 

 

 

Figure 10. Between-subjects correlation of a measure of Experiment 3 cue period alpha band decoding accuracy and 

a measure of target period target image decoding accuracy from the stimulus-evoked ERP. 
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Figure 11. Between-subjects correlation of a measure of Experiment 3 cue period alpha band decoding accuracy and 

a measure of target period distractor image decoding accuracy from the stimulus-evoked ERP. 

 

 As can be seen in Figure 10, there is a positive correlation between our measure 

of EEG alpha power decoding accuracy for the cue period and ERP decoding accuracy 

for target object visual information in the target period. Figure 11 shows no correlation 

between the measure of EEG alpha power decoding accuracy from the cue period and 

ERP decoding accuracy for distractor object visual information in the target period. 
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Comparison of target and distractor decoding accuracy  

 

Figure 12. Comparison of Target and Distractor decoding accuracy. Target image decoding accuracy during the 

stimulus period, across subjects, is represented by the blue line and shaded region. Distractor image decoding 

accuracy during the stimulus period, across subjects, is represented by the orange line and shaded region. The grey 

horizontal line represents the baseline of chance-level decoding accuracy. The green lines at the bottom of the plot 

indicate time points belonging to clusters of time during which the decoding accuracies between Target and Distractor 

are significantly different, as indicated by cluster-based permutation test. 

 

 Using the same cluster t-mass permutation technique as described previously 

and utilized for all statistical significance tests of decoding accuracy against chance, 

statistically significantly greater decoding accuracy values were observed for Target 

decoding than for Distractor decoding. At each time point, the Target and Distractor 
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decoding accuracy timeseries were compared by right-tailed paired-sample t-test to test 

the null hypothesis that target decoding was not more accurate than distractor decoding 

to a greater degree than might be expected by chance. The results of this statistical test 

are displayed in Figure 12. This test revealed statistically significant clusters of time 

points close to 0 msec (stimulus onset), and occurring several times throughout the 

period before 1000 msec.  
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Chapter 5: General Discussion 

“The world is not so much made of stones as of fleeting sounds, or of 

waves moving through the sea.” – Carlo Rovelli, The Order of Time 

Object-based attention is a fundamental component of natural vision. This 

assertion can be supported by two complementary lines of reasoning. First: People 

navigate the world principally on the basis of interactions with objects, which abound in 

typical environments (O’Craven et al., 1999; Scholl, 2001). The primacy of objects 

means that adaptive interaction with the world requires high-level object representations 

that are separate and distinct from all constituent low-level visual features in the same 

region of space. Therefore, an effect of attention directly on object representations is a 

critical aspect of perception (Woodman et al., 2009). Attention has been shown to 

operate on object representations (Tipper and Behrmann, 1996; Behrmann et al., 1998), 

so identifying the neural mechanisms by which attention influences object 

representations is a key goal in cognitive neuroscience. Second: The fact that the brain 

parses visual input into a panoply of objects – when in reality objecthood is a fabrication 

imposed on the external world rather than emerging from it veridically, and the world is 

actually a continually evolving and indivisible roil of matter and energy (Robinson, 1987; 

Rovelli, 2018) – indicates that objects are valuable cognitive constructs for the 

execution of adaptive behavior and survival of our species. The fundamental importance 

of object-based attention can be derived from this premise. This second line of 

reasoning cannot be easily operationalized in a cognitive neuroscience laboratory 
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setting, so the first line of reasoning will be taken as the primary impetus for the 

experiments presently discussed. 

Object-based attention is taxonomically subordinate to attention more broadly 

construed (Chun et al., 2011), and so an investigation into object-based attention’s 

neural mechanisms should be situated within the larger construct of attention. 

Physiological studies show that attention’s performance benefits correlate with neural 

activity changes in perceptual systems. Cortical structures coding attended information 

show increased signal amplitude, synchrony and/or functional connectivity (Moore and 

Zirnsak, 2017). How the nervous system mechanistically controls this cortical excitability 

and processing efficiency remains incompletely understood, but most models suggest 

that top-down control signals from higher-order networks in frontal and parietal cortex, 

such as the DAN, alter processing in sensory/perceptual cortical regions coding 

attended and unattended information (Petersen and Posner, 2012). One hypothesized 

neural signature of top-down control at the level of sensory/perceptual cortex is focal 

alpha power (Jensen and Mazaheri, 2010). Changes in alpha power occur during 

spatial attention (Worden et al., 2000), and feature attention (Snyder and Foxe, 2010a). 

These observed changes are proposed to reflect a mechanism of dynamically 

controlling information flow through the brain that has been called the Gating By 

Inhibition model (Jensen and Mazaheri, 2010). According to this model, alpha band 

activity is directly modulated by attention control regions in order to dynamically route 

the flow of feedforward information through sensory systems. This model has been 

supported by a study using a cued covert spatial attention design (Liu et al., 2016), 
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which used simultaneous EEG-fMRI recording to link activity in the brain regions 

associated with the DAN. The Gating By Inhibition model is complementary to another 

model that ascribes functional importance to oscillatory neural activity: the 

Communication Through Coherence model (Fries, 2005). According to the 

Communication Through Coherence model, synchronization of spike firing in the 

gamma frequency band allows local neural populations to form an effective 

communication channel. Gating By Inhibition and Communication Through Coherence 

thus complement one another, because signal propagation by gamma band coherence 

can occur between the pulsed inhibitory phases of alpha band activity. Modulatory 

increases in alpha band power in a neural population thus shorten the windows of 

effective communication within and between that neural population and its upstream 

sources and downstream targets, and conversely, decreases in alpha band power 

enhance the population’s information processing capacity (Jensen and Mazaheri, 2010).  

Here we investigated alpha-based mechanisms mediating selective attention to 

objects by cuing attention to different objects and measuring changes in scalp-recorded 

EEG alpha power. This cued anticipatory object-based attention paradigm was 

designed to be analogous to the studies used to uncover alpha-based mechanisms in 

spatial and feature-based attention domains (Worden et al., 2000; Snyder and Foxe, 

2010b). Altogether, we examined behavioral measures, EEG topographic maps, and 

machine learning classification results to test the hypothesis that object attention 

involves selective alpha power modulations in object-specific cortex.  
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We controlled for several possible alternative interpretations of our results, and 

performed ERP decoding analyses to corroborate our main findings and support our 

theoretical interpretation. Finally, in an exploratory analysis, we demonstrated that 

object-based attention enhances the visual system’s representation of visual input 

specific to the targeted object category, and we identified a potential link between alpha 

band modulation and the amount of perceptual information represented in the visual 

system, further supporting the assertion that alpha band modulation is directly involved 

in the selective processing of sensory information. 

The work discussed here consisted of three main experiments and a pilot 

experiment. Experiment 1 is the main experiment in which we tested whether EEG 

alpha band topographies could be differentiated between object-based attention 

conditions. Analysis of EEG data included topographic power difference map 

construction and SVM decoding of alpha band power to quantitatively assess whether 

the EEG alpha band contained information about the object category being attended.  

The Pilot Experiment we initiated, but did not fully realize, was designed to 

control for the possibility that object-based attention was not necessitated by the design 

of Experiment 1. In the paradigm we designed for the Pilot Experiment, we sought to 

make engagement of object-based attention necessary for the perception of the target 

stimulus, which would be verifiable by chance-level performance on invalidly cued trials, 

in which the participant was instructed to engage anticipatory attention to a category of 

object that did not subsequently appear in the stimulus, and above-chance level 

performance on validly cued trials. However, the behavioral results we examined after 
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collecting a preliminary dataset under this pilot design indicated that we did not actually 

achieve the cognitive manipulation that we set out to isolate, and so we continued our 

control experiments with two separate designs. Both of these subsequent designs 

resulted in full datasets.  

In Experiments 2 and 3, we tested two alternative interpretations of our results 

from Experiment 1; one alternative interpretation was tested by each experiment.  

Experiment 2 was designed to test whether decoding accuracy in the preparatory 

period between the cue onset and the target onset found in Experiment 1 might have 

been driven entirely by differences in the sensory processes evoked in the visual 

system by the different cue stimuli. The physical stimulus properties of the cues for the 

three different object attention conditions differed from one another (triangle vs. square 

vs. circle), and therefore, generate three different sensory responses in the visual 

system. It was likely that at least part of the decoding results we obtained from 

Experiment one was attributable to this confound, and it was conceivable, although 

theoretically unlikely, that our entire decoding result was attributable to this confound, 

rather than to the higher-level cognitive process of object-based attention, as we 

intended it to be. It was theoretically unlikely that this would be the case, because any 

systematic differences in sensory response should be restricted to the early period after 

cue onset and cue offset (Bae and Luck, 2018), and our statistically significant decoding 

result and decoding time period of interest was situated late in the trial epoch. 

Nonetheless, we conducted Experiment 2 to be able to confidently rule out the 

possibility that the cue shapes were driving our result, in lieu of being able to adequately 
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counterbalance the cue shapes across participants and circumvent the potential 

confound in the design of Experiment 1.  

In Experiment 3, we investigated whether differences in alpha topography across 

object attention conditions in Experiment 1 may have been the result of different task 

sets across the three object attention conditions, rather than reflecting object-based 

attention mechanisms in visual cortex. In Experiment 1, participants were instructed to 

press one button if the target image they saw was a male face, a natural scene, or a 

powered tool, and press a different button if the target image they saw was a female 

face, an urban scene, or a non-powered tool. The cue shape that preceded each target 

image instructed participants what object category to selectively attend in anticipation of 

the target display. Thus, depending on which object category was cued, it can be 

argued that the task set engaged by the participants was different for each type of trial – 

attend face, attend scene, and attend tool trials would effectively become discriminate 

male/female faces, discriminate urban/rural scenes, and discriminate 

powered/nonpowered tool trials. Conceivably, any decoding results we obtained in the 

anticipatory epoch might then reflect the differing task sets rather than object-based 

attention to the different object categories, per se. Experiment 3 was designed to 

circumvent this possibility that different task sets were driving the decoding result by 

equating the task across all three object categories. Instead of performing a 

subcategory discrimination as was instructed in Experiment 1, Experiment 3 instructed 

participants to simply discriminate whether the image of the cued object category was 

blurry or not blurry. Thus, in theory, the cue shape instructed participants to selectively 
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attend to one of the three object categories, so that upon target presentation, the image 

belonging to the cued object category could be quickly and accurately parsed and the 

blurriness or clarity could be detected. So that participants were required to use object-

based attention to perform this task, and not simply perform the task on the basis of a 

blurry-not blurry distinction, and thus attend to blurriness in the anticipatory period 

instead of attending to the instructed object category, the Experiment 3 stimuli were 

designed as composites of overlaid target and distractor object images, each of which 

could be blurry or not blurry, independently of the other.  

We chose faces, scenes, and tools as attentional targets in Experiments 1 – 3 

because these types of objects have been shown to activate circumscribed areas in the 

visual cortex. The fusiform face area (FFA) is selectively responsive to images of 

upright faces (Allison et al., 1994; Kanwisher and Yovel, 2006): Faces can be 

considered objects because, for example, evidence from patients with prosopagnosia 

suggests that the similar mechanisms underlie face recognition and object recognition 

(Gauthler et al., 1999). The parahippocampal place area (PPA) is responsive to scenes 

(Epstein et al., 1999), and specifically to scene category (Henriksson et al., 2019). 

Areas responsive to tools have been identified in the ventral and dorsal visual pathways 

(Kersey et al., 2016). In line with the prediction that object-based attention modulates 

alpha in visual areas specialized for processing the attended object category, attention 

to faces should selectively decrease alpha band activity in face-selective visual areas 

like FFA, attention to scenes should decrease alpha band activity in place-selective 

areas like PPA, and attention to tools should decrease alpha band activity over tool-
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selective regions of the ventral and dorsal visual pathways. EEG is not a strong method 

for localizing the neural sources of brain activity, but given that the FFA, PPA, and 

postulated tool-specialized areas are located in different cortical regions, the patterns of 

alpha modulations with attention in these areas would be expected to produce 

differential EEG alpha patterns on the scalp. Given that such patterns might be 

expected to be only subtly different, and in ways difficult to predict, one avenue for 

assessing different patterns of alpha for attention to different objects is to incorporate 

machine learning to decode scalp EEG alpha patterns. Such differences should only be 

expected if focal modulation of alpha is also involved in selective object attention. 

Our reaction time results showed that participants engaged object-based 

attention to cued object categories, being faster to identify cued objects. Theoretically, 

when cued to anticipate a particular object category, participants would bias neural 

activity within the cortical area(s) specialized for that object type, and perhaps also bias 

activity within cortical areas processing all the lower-level visual features associated 

with that object (Cohen and Tong, 2015). When the target appears, its visual properties 

would thus be integrated, facilitating the required perceptual discrimination. When the 

object appearing is from an unanticipated (uncued) category, activity in object selective 

areas and associated visual feature areas for the uncued objects would be relatively 

suppressed, delaying the integration and semantic parsing of uncued target images, 

and slowing reaction times. This pattern of reaction time difference between valid and 

invalidly cued trials was observed in both Experiment 1 and Experiment 3. Because 

Experiment 2 was not designed to engage anticipatory object-based attention, there 
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was no operationalization of attention, and no difference between attention conditions to 

examine with behavioral measures. 

Topographic alpha power difference maps varied with the object category that 

was attended. Differing alpha power topographies were consistent with scalp EEG 

patterns that would be expected if the alpha modulations were occurring in different 

underlying cortical generators (cortical patches or areas) for the three object categories. 

The wealth of evidence about underlying neuroanatomical substrates of face, scene, 

and tool processing from imaging studies allows some predictions about our data with 

respect to the hypothesized nature of the focal cortical activity contributing to our 

topographic and decoding findings. The right hemisphere-emphasized FFA (Kanwisher 

et al., 1997), and the equally bilaterally distributed PPA (Epstein and Kanwisher, 1998), 

would, in principle, predict a differential scalp alpha distribution, and perhaps lower 

alpha power broadly over the right occipital when attending faces. Our attend-face 

minus attend-scene alpha topography was generally consistent with this prediction 

(Chapter 4; Figure 3A), and this pattern was different from that in the attend-face minus 

attend-tool difference plot (Chapter 4; Figure 3B). We hope to make exceptionally clear, 

however, that we are not proposing that we can localize the underlying cortical 

generators of scalp-recorded activity using the methods we employed here. 

Furthermore, the representation of objects over distributed networks of neural 

populations in IT cortex, detailed in the Introduction chapter of this dissertation, 

suggests that although there are relatively circumscribed visual areas that are 

responsive to images from specific object categories, there is also significant potential 
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cortical overlap between these object-specific networks, and any subtle differences in 

object category-respective network activity are far beyond the limit of what EEG can 

distinguish. For these reasons, we turned to SVM decoding for our principal measure of 

object-based attention’s effect on alpha power modulation. 

Our decoding analyses provide strong support for the claim that attention 

modulates alpha topographies in an object category-specific manner, and is in line with 

the time courses of the differences in alpha patterns observed in the scalp topographic 

difference plots. In our decoding analyses, statistically significant above-chance 

decoding accuracy provides straightforward evidence that alpha topography contains 

information about the selected object category, and therefore, that top-down object-

based attention modulates alpha topography according to the cued (attended) object 

category. We observed that statistically significant decoding occurred in the 500 – 800 

msec range post-cue/pre-target, indicating that patterns of alpha topography at the 

scalp were reliably modulated by our attention manipulation in this time range (Chapter 

4; Figure 4). Importantly, the 500 – 800 msec range corresponds to the periods in the 

alpha topographic difference plots where the patterns stabilized. 

In order to test whether our decoding results were specific for the alpha band, we 

performed the same SVM decoding routine on theta, beta, and gamma band power and 

found no significant above-chance decoding in the anticipatory period for those 

frequency bands (Chapter 4; Figure 5). This result is consistent with the hypothesis that 

oscillatory neural activity in the alpha band is mechanistically involved in anticipatory 
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attention, whereas activity in other EEG frequency bands is not modulated in target-

relevant visual areas in human EEG.  

In our two follow-up experiments, we directly assessed the two alternative 

interpretations of our decoding results from Experiment 1, described in more detail 

above. In brief, the first confound examined was whether differences in alpha scalp 

topography post-cue might reflect purely sensory processing associated with each cue 

(e.g., triangle vs. circle). This should be applicable only to the above-chance (although 

not significant by our tests) decoding observable in the early post-cue period (~ 0 – 200 

msec) of our decoding results, and not the significant longer-latency decoding. Indeed, 

we verified this in Experiment 2, in which participants performed the same task, and 

saw the same cues and targets as in Experiment 1, but the cue shape did not predict 

the upcoming object category. We observed statistically significant decoding in the post-

cue/pre-target period from 0 – 200 msec attributable to physical cue features (e.g., Bae 

and Luck, 2018), but no significant decoding later in the cue-to-target interval.  

The second alternative explanation of our decoding results from Experiment 1 is 

that they were driven by task set differences across cued object conditions. The task for 

faces, for example, was to discriminate gender, while for scenes it was to distinguish 

between urban scenes and natural scenes, leaving open the possibility that our 

decoding late in the post-cue period reflected task set differences (Hubbard et al., 2019) 

rather than attentional control over object selection as we propose. We can reject this 

alternative based on the results of Experiment 3, in which the cues predicted the 

relevant target object, but the discrimination task was the same for all object categories 
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– discriminate whether the cued object was in focus or blurred. We were thus able to 

replicate the longer-latency alpha-related preparatory attention effects reported in 

Experiment 1 while controlling task set factors. 

Our findings show that EEG alpha modulation is linked to object-based selective 

attention, extending previous findings that alpha modulation is associated with attention 

to spatial locations and low-level visual features. Using an SVM decoding approach we 

identified differences in the topographic patterns of alpha power during selective 

attention to different object categories. Further, we linked the time range during which 

statistically significant decoding was achieved to alpha power topographic maps, and 

observed that alpha modulation was consistent with the time course of preparatory 

attention observed in prior research. Overall these findings support the model that alpha 

band neural activity functions as an attentional modulator of sensory processing for both 

low level visual features and high-order neural representations such as those for 

objects. Our results add to the body of theoretical and experimental work suggesting 

that alpha band modulation is an elemental part of the neural mechanisms of attention. 

We can now demonstrate empirically that for at least three distinct levels of visual 

processing – spatial organization, feature organization, and object representations – 

alpha band modulation is associated with selective attention. This finding is consistent 

with the SpOC model of attentional control, to the extent that the model postulates an 

identical mechanism of attentional enhancement at any sensory site that can be the 

target of attentional modulation.  
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ERP decoding analyses conducted over the EEG datasets from Experiments 1 – 

3 support the basic assertions of our theoretical interpretation, and go even further in 

establishing a direct link between attentional alpha band modulation and the immediate 

visual information available to perception.  

First, we performed SVM decoding over ERP waveforms time locked to the cue 

onset. The results of these ERP decoding analyses corroborate the alpha power 

decoding results. Experiment 1 and Experiment 3 exhibit similar decoding results, with 

large above-chance peaks early in the cue epoch, and sustained levels of above-

chance decoding accuracy later into the cue period. That the results of these two 

experiments display similar patterns of ERP decoding strengthens our interpretation of 

the primary analyses of the experiments. We took the alpha band decoding results of 

Experiment 1 to mean that object-based attention, directed selectively to a single object 

category, altered the pattern of alpha band activity throughout the visual system as a 

function of the targeted object category. Because the alpha band decoding results of 

Experiment 3 resembled those of Experiment 1, we concluded that object-based 

attention, and not a different cognitive process, like task set or response mapping, or a 

set of different processes, was driving the systematic alpha power distributions. 

Because we replicated this basic decoding result with the ERP data, and because the 

ERP data that was fed into the SVM decoding analysis was filtered to the frequency 

band 0 – 6 Hz so that it would contain no overlapping information with the alpha 

frequency band used in the primary set of analyses, we have further evidence that the 

same cognitive process was engaged during the cue period in both Experiment 1 and 
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Experiment 3. If the ERP decoding results from Experiment 3 did not resemble those of 

Experiment 1, then we would be forced to call into question our interpretation that the 

similar patterns of alpha decoding results that we observed were caused by the same 

underlying cognitive processes. Instead, the replication provides corroborating evidence 

that the same engagement of object-based attention was induced across the two 

experiments. 

We then performed the same kind of ERP decoding analysis over the target-

period EEG data from Experiment 3. The stimulus design of Experiment 3 allowed for a 

test of the perceptual benefits afforded by object-based attention, using the decoding 

method to obtain an estimate of the image information represented in the EEG data, 

and thus in the underlying cortical activity elicited by the stimulus presentation and the 

cognitive context. Because the Experiment 3 stimuli were composite images made of an 

image from a target object category overlaid with an image from a distractor object 

category, the amount of perceptual information belonging separately to the target and 

the distractor object image in the same physical stimulus can be assessed. For the 

present decoding analysis, this perceptual information took the form of whether the 

object image was blurry or clear. We performed an SVM decoding analysis on the ERP 

waveforms elicited by stimulus images with two classification labels: blurry and not-

blurry. We performed the same decoding analysis twice: once with respect to the target 

(cued) object images in the composite stimuli, and once with respect to the distractor 

(uncued) object images in the composite stimuli. Invalidly cued stimuli were excluded 

from this analysis, because those stimuli only contained one object image (overlaid with 
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a distracting checkerboard pattern). The same physical stimuli were included in both the 

target decoding analysis and the distractor decoding analysis, and only the 

psychological condition of object-based anticipatory attention varied between the two 

analyses. Therefore, this analysis gains credence by adhering to the Hillyard Principle 

of experimental design (Luck, 2014).  

The analysis comparing target and distractor decoding revealed significant 

differences in the decoding accuracy at multiple times in the stimulus period (Chapter 4; 

Figure 12). Because the two decoding analyses were performed over the same stimuli, 

it can be inferred from the decoding results that object-based attention increases the 

amount of visual information belonging to the attended object image that is represented 

in cortex, even very early after stimulus onset. This inference is intriguing because it 

suggests that attention to a specific category of object, engaged in anticipation of the 

presentation of that object, causes preferential processing and representation of low-

level visual information consistent with that object category. The abstract form of the 

object is in some way instantiated prior to its eventual appearance, and this influences 

the low-level visual processing of features that fit into that abstract form. This 

interpretation illuminates the time course of the perceptual effects of object-based 

attention, and situates our object-based attention study within a larger literature on early 

selection models of attention.  

On its face, the difference in decoding performance later in the target period, with 

the target decoding outperforming the distractor decoding throughout most of the 

stimulus period, cannot safely be attributed to perceptual differences arising from 
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object-based attention, because the decoding analysis is confounded with the 

behavioral response instructions. The task in Experiment 3 was to press one button if 

the cued image was blurry and a different button if the cued image was not blurry. 

Therefore, it cannot be determined whether the decoding results in the target period 

past the initial perceptual phase are attributable to the maintenance of target image 

visual information, or response preparation and execution (index finger movement 

versus middle finger movement), or some combination of these two potential drivers.  

In order to strengthen the interpretation that the differences in decoding accuracy 

between attended and unattended object images over the stimulus period were driven 

by object-based attention and not motor response preparation, we repeated the 

decoding analysis after segmenting the data according to whether it belonged to a 

correct-response or an incorrect-response trial. We observed that for incorrect-response 

trials, decoding the blurriness of the target object image performed much worse than 

decoding the target object image blurriness for correct-response trials: The long tail of 

statistically significant above-chance decoding observable in the decoding accuracy for 

the correct-response trials is not present for the incorrect-response trials. This finding 

suggests that the persistent representation of information about the attended object 

image throughout the decoding epoch is driven by attention, and not response 

preparation. On incorrect-response trials, motor processes are still mapped to blurriness 

conditions (but the mapping is the reverse of the instructed mapping), and thus motor 

response is just as confounded with target blurriness as for correct-response trials, but 

the fact that the participants responded incorrectly indicates that they did not engage 
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object-based attention sufficiently strongly in the anticipatory period, and therefore were 

not able to perceive the targeted object image with enough fidelity to detect whether it 

was blurry or clear. The near-chance level performance of incorrect-response trial 

decoding thus places an upper limit on the decodable differences in EEG signals from 

index finger versus middle finger response preparation and execution, and makes 

attribution of correct-response decoding results to confounded motor response less 

plausible. This follow-up analysis, breaking down the Experiment 3 data by response 

accuracy, thus strengthens the case that object-based attention enhances the 

representation of visual information during stimulus duration and all the way through to 

behavioral response planning and execution.  

Lastly, we examined the relationship between cue-period alpha decoding and 

target-period ERP decoding. Theoretically, if the SpOC model is accurate in its 

depiction of a common attentional enhancement mechanism imposed on sensory sites 

via signals issuing from a top-down control hub, then the degree of differential alpha 

modulation induced by anticipatory object-based attention should correlate with the 

degree of attention’s benefit to perception. The degree of differential alpha modulation 

can be indexed with our SVM alpha power decoding method. If anticipatory attention 

targeting face images alters the visual system-wide pattern of alpha band activity such 

that areas selectively responsive to face information have less alpha power than other 

areas, and alters the pattern of alpha analogously for scene and tool attention, then 

there should be distinguishable patterns of alpha band power on the scalp. This 

conjecture is the logic underlying our use of alpha power topography SVM decoding. A 
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corollary inference that follows from this logic is that ineffective attentional inducement 

of systematic alpha band activity patterns, or lack of attention either by task 

noncompliance or individual attentional deficit, would result in similar or identical 

patterns of alpha power over the scalp across all object attention conditions. The more 

similar the alpha power topographies are by object condition, the less information the 

SVM learner has for classification, and therefore the worse its decoding performance. In 

this way, any individual participant’s alpha SVM decoding performance indicates the 

extent to which their anticipatory attention is selective for a particular object category.  

On the basis of this line of reasoning, we predicted that we would see a positive 

between-subjects correlation between cue-period alpha decoding and target-period 

ERP decoding for target object image blurriness, and we would see a negative or null 

correlation between cue-period alpha decoding and target-period distractor image ERP 

decoding. In other words, we predicted that the more precisely and effectively an 

individual participant could engage object-based attention in an anticipatory manner, the 

better their perception of the stimulus image belonging to that object category. Their 

perception of the distractor image category could be either worsened by focused 

attention away from that object category, which would be observable as a negative 

correlation between cue-period alpha decoding and target-period distractor decoding, or 

unaffected, which would be observable as a flat correlation between cue-period alpha 

decoding and target-period distractor decoding.  

In our between-subjects correlation analysis we observed the predicted outcome. 

We found a positive between-subjects correlation of the peak alpha decoding accuracy 
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in the cue period and the peak ERP decoding accuracy for target blurriness in the target 

period. The correlation did not reach statistical significance (p = 0.08), but this finding 

provides new evidence to suggest that alpha band modulation is a component of the 

neural mechanisms of object-based attention, and visual attention more broadly. 

Moreover, we found a null between-subjects correlation of cue period alpha decoding 

and distractor ERP decoding. This finding suggests that the effective anticipatory 

selection of a cued object categories may leave unaffected the representation of visual 

information from an uncued, distracting object category. Together, these findings 

provide evidence for a causal functional role of alpha band oscillatory activity in the 

implementation of selective object-based attention. Taken to their logical conclusion, it 

may then be hypothesized that top-down object-based attentional modulation might act 

via the local suppression of alpha band activity in cued object-selective neural 

populations, fitting with the observed positive correlation between cue-period alpha 

decoding and stimulus-period target decoding and null correlation between cue-period 

alpha decoding and stimulus-period distractor decoding. However, establishing this 

mechanism rigorously will require further study.  
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Chapter 6: Conclusion 

What are the most important points to take away from this dissertation? This 

concluding chapter will recapitulate the theoretical groundwork laid out in the 

Introduction chapter, and then will also summarize the original empirical results that are 

significant because of how they fit into the larger context of the cognitive neuroscience 

of attention. Finally, future directions indicated by this research will be described. 

The primary theoretical groundwork that supported the original research 

described in this dissertation is the conceptual development of a potential system for 

routing the flow of information through sensory cortex based on the dynamic control of 

oscillatory neural activity. Gating by oscillatory dynamics would represent a functional 

mechanism for dynamically routing information flow. This functional mechanism 

possesses an advantage over anatomical mechanisms, the speed of which is limited by 

the kinetics of vesicle release and synaptic plasticity, and thus not conducive for 

operation at the speed of cognition and behavior. In line with this theory, attentional 

selection mechanisms in visual cortex have been found to involve changes in oscillatory 

activity in the EEG alpha band (8 to 12 Hz) – with decreased alpha indicating focal 

cortical enhancement and increased alpha indicating suppression. This pattern has 

been observed for spatial selective attention and attention to stimulus features such as 

color versus motion.  

In three experiments, we investigated whether attention to objects involves 

similar alpha-mediated changes in focal cortical excitability. Our experiments utilized a 

cued object-based attention design, in which participants were instructed to engage 
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selective attention to one of three specific object categories at a time, in order to 

enhance their perception of subsequently presented object images. Support vector 

machine decoding of alpha power patterns obtained during the anticipatory period 

revealed that late (>500 msec latency) in the cue-to-target foreperiod, EEG alpha 

indeed differed as a function of the to-be-attended object category. In Experiment 2, to 

eliminate the possibility that decoding of physical features of the cues led to our results, 

we designed a similar task, with the crucial difference that cues were non-predictive of 

the object category. There was thus no engagement of object-based attention in this 

control experiment. Alpha decoding was now only significant in the early (<200 msec) 

foreperiod. In Experiment 3, to eliminate the possibility that task set differences between 

the different object categories led to our Experiment 1 results, we designed a predictive 

cuing task where the discrimination task for different objects was identical across object 

categories. The results replicated Experiment 1. Together, these findings support the 

hypothesis that the neural mechanisms of visual selective attention involve focal cortical 

changes in alpha power for not only simple spatial and feature-based attention, but also 

high-level object attention in humans, indicating a common mechanism of attention 

throughout the visual system. 

We followed up these primary analyses with ERP decoding analyses that 

strengthened our interpretation of the results from Experiments 1 – 3. Furthermore, by 

decoding target image properties from Experiment 3 EEG data, we observed that 

object-based attention directly increased the amount of information about the target 
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object image that is represented in cortical activity, relative to the amount of information 

represented from simultaneously visible stimuli.  

Ultimately, I hope that the question that motivated our experiments – whether 

oscillatory neural activity in the alpha band is modulated as a function of object-based 

attention – is sufficiently answered by the series of experiments described in this 

dissertation. I also hope that the larger significance that our experimental results point to 

– that alpha band modulation is a general mechanism of selective attention throughout 

the visual system – is made appreciable by the theoretical context expounded 

throughout this document. One final reason that this work is a significant piece of the 

encompassing scientific puzzle is that it seeds intriguing new questions for future 

experiments to answer, and thereby propagates the continuing scientific enterprise of 

understanding how attention is implemented in the brain. Looking forward, the original 

experiments described in this dissertation set the stage for future work to strengthen our 

theoretical interpretation and to further develop the SpOC model of attention control.  

One of the most obvious questions that remains to be answered is whether the 

modulation of alpha band activity can be localized to the visual areas that they should 

theoretically inhabit. Theoretically, the power of alpha band activity should be relatively 

lower in the visual areas that are selectively responsive to objects targeted by attention 

than visual areas responsive to other categories of objects. In the case of the object 

stimuli utilized in Experiments 1 – 3 of this dissertation, these areas include the fusiform 

face area, the parahippocampal place area, and areas of the ventral and dorsal visual 

pathways, for face, scene and tool stimuli respectively. Future work utilizing 
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simultaneous EEG-fMRI recording could be suited to answer the question of whether 

alpha band activity is focally modulated in these areas as would be predicted by theory, 

following the strategy of Liu and colleagues (Liu et al., 2016).  

Another important subject to investigate is the involvement of a central, top-down 

control area in object-based attention. According to the simplest version of the SpOC 

model, the same network of frontal and parietal areas issues control signals to sensory 

sites regardless of the type of attention deployed – spatial, feature-based, or object-

based. The SpOC model predicts that the fine structure of this network, or differentially 

activated subnetworks, contain the map of different sensory areas that can be 

selectively targeted. This prediction can be tested with an fMRI protocol that uses 

MVPA and decoding to measure how much information about attentional instructions 

can be represented within the DAN as a specified region of interest. 

Following from this future line of work would be the further question of how 

exactly signals issued from the attention control source in the DAN mechanistically 

modulate alpha band activity in sensory sites. This question might be addressed with a 

computational modeling study that explores the tolerances of different oscillatory firing 

regimes in biologically plausible neural network models of sensory cortex, and identifies 

perturbations that when paired with given initial conditions in the system can initiate 

synchronized oscillatory firing patterns or break the network out of these patterns. Any 

such perturbations might then be sought out biologically in the top-down signaling from 

the DAN or its relay connections to sensory cortex. 
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These prospective lines of inquiry are all made especially interesting in light of 

the results of the experiments described in this dissertation. That oscillatory neural 

activity in the alpha band is elemental to the implementation of attention uniformly 

throughout the visual system points the way to specific, testable questions that can 

drastically improve our understanding of attention in the brain.  

And understanding how biological organization and neural architecture support 

attention would represent a major step toward the overarching goal of explaining how 

the rote material processes of the physical universe are linked to the subjective 

interiority of the mind. Attention is a necessary component of conscious awareness 

(Noah and Mangun, 2020). Investigating the physical implementation of attention is thus 

a wedge into the empirically unbreachable problem of understanding the physical 

implementation of consciousness in itself. The hard problem of consciousness is both 

one of the most important and the most seemingly insurmountable problems faced by 

science (Chalmers, 2018), and so the possibility that consciousness can be effectively 

pinned down by its intrinsic link to the operationalizable phenomenon of attention hints 

at a tenable path toward scientific comprehension of this singularly vexing subject. 

Whether this path will lead to a satisfying theory of reality and our place in it is unknown, 

but the journey is enticing nonetheless. 

“Science cannot solve the ultimate mystery of nature. And that is 

because, in the last analysis, we ourselves are part of nature and 

therefore part of the mystery that we are trying to solve.” – Max 

Planck, Where is Science Going? 
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