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ABSTRACT 

A Monte Carlo event generation :method is presented that 

integrates :multiperipheral models with good efficiency for all 

energies and all :multiplicities up to 18. 
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The multiperipheral model [1] has been the subject of consider-

able tl1.eoretical investigation in recent years. In order to predict ex-

perimental results from this model it is necessary to perform 

phase space integrals of the form R '= L r(<\» dD.<\>, where <\> is a 

point and d
n 

<\> a volume element in the (3n-4) - dimensional phase 

space, and v is the total phase space volume accessible to the 

final state. The integrand, r(<\», is the transition matrix element 

squared calculated from the model. Because of the complexity of 

these phase space integrals, Monte Carlo techniques are often 

employed for their evaluation. 

Detailed descriptions of Monte Carlo event generation are 

discussed elsewhere [2,3] and only some of the basic concepts are 

discussed here. The Monte Carlo method consists of generating 

a sampe of N randomeventl3 in the phase space volume v accord-

ing to a normalized frequency, f(<\», and averaging r(<\>)/f(<\>) for 

these events. Then 

.. 

N 

R = (1/N) k 
i=1 

r(<\>. )/f(<\>.) 
1 . 1 

( 1) 

where <\>i is the phase space point corresponding to the ith random 

event. The statistical uncertainty in this evaluation is i5R 

= a(r/f) N-
1

/ 2 , where a(r/f) is the root-mean-square deviation 

of r(<\»/f(<\» from its average value, R. 

There are several variations of the multiperipheral model, 

but they all have in common the property that the four -momentum 

transfers squared from the beam (or target) particle to certain 

• 

•• 
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final-state particle combinations are severely limited. This 

property is summarized by the transition matrix element squared: 

r(cp) 

n-1 

= exp ( E 
i=1 

a. t.) , 
1 1 

( 2) 

where the \ are the (n-1) four-momentum transfers squared that 

are limited by the model and the a
i 

parametrize the degree of 

limitation. The particular t. that the multiperipheral model limits 
. 1 

are most easily described by the use of the multiperipheral dia..., 

gram of Fig. 1. The two lines on the left represent the momenta 

of the two incident particles, and the lines on the right represent 

th~ momenta of the n final-state particles. The vertical lines 

linking the final-state particles represent the four -momentum 

transfeit, squared from incident particle a to the combination of 

particles above each link. These are the four '-momentum transfers 

squared that appear in Eq. (2). Note that by momentum conser-

vation these t. are also the four -momentum transfers squared from 
1 

incident particle .£ to the particle combination below each link. 

For a given number of Monte Carlo events the statistical 

uncertainty, OR, of the integration depends critically upon the 

phase space frequency distribution of the events, f(cp). The more 

closely f(cp) resembles r(cp) the higher the accuracy for the same. 

number of Monte Carlo events. The accuracy of a Monte. Carlo· 

integration is usually characterized by its efficiency, E, which is 

defined as R2 divided by the average of [r(cp)/f(cp)] 2. This efficiency 
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is e,CJ.u;;t1 to one for th~ case f(cj».:;: r(cj» and is smaller the rnore f(cj» 

deviates from r(cj».::In-i-terms'ofthe efficiency the fractional statistical 

uncertainty in the Monte Carlo integration is given by 

(3) 

The computational time required to evaluate Monte Carlo integrals 

grows linearly with the number of events required. Therefore, 

to minimize this time, the efficiency should be as ·large as possible. 

Early Monte Carlo event generators [2,4] generated events 

with nearly constant phase space frequencies. These generators 

have good efficiency for integrating a constant matrix element 

squared, r(cj» = 1, but they have a very low efficiency for inte-

grating the multiperipheral model. This is because the model 

severely limits the t. in Eq. (2), while the generator produce s 
1 

events whose ti are roughly evenly distributed in the entire kine-

matic range. 

Recently there have been several methods developed that 

improve the efficiency of Monte Carlo integrations for models of 

high-energy collisions [3, 5, 6, 7]. Noting that an experimental 

property of high-energy collisions is the limiting of the final-

state particles' momenta transverse to the beam direction, Pene 

and Krzy~icki [6] as well as Kittel, Van Hove, and Wojcik [7] 

have developed an event generator with a phase space frequency 

distribution that can be approximated by 

.t 
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n 

= exp( -b L p~} , 
i=1 ;t 

( 4) 

The p. are the components of the fiIial- state partic Ie s I momenta 
1 

transverse to the beam direction. This generator integrates 

several models of high-energy collisions with good efficiency, 

However, most multiperipheral models concentrate the longitudi-

nal momentum of the final-state baryons at large values, whereas 

this generator produces them with a more or less constant phase 

space distribution, This results in low efficiency for integrating 

these multiperipheral models. 

Addressing themselves speciflcally to multiperipheral 

models, Byckling and Kajantie [5] have developed a Monte Carlo 

event generator that produces events with a phase space frequency 

that can be approximated at high energy by 

n-1 

f( <I>} 

Here the t. are the same as those appearing in Eq. (2). 
1 

(5 ) 

+ The t. 
1 

are the maximum values for each corresponding t., These rnaxi-
1 

mum value s vary from event to event and depend upon the value s 

assigned to the integration variables generated before the specific 

ti' Each iJ.i is the invariant mass of the final-state particle com­

bination for which t. is the four -momentum transfer squared. 
1 . 

This generator integrates the multiperipheral model of Eq. (2) 

with good effiCiency as long as the energy is not too high or the 
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multiplicity (number of final-state particles, n) is not too large. 

Table Iashows the efficiency of this generator for various multi­

plicities and laboratory beam momenta, for the reaction 

pp - pp( n-2}Tr, where the .a. in both Eq. (2) and Eq. (5) are all 
1 

taken, to be 4. o. 

This report presents a Monte Carlo event generation method 

that integrates multiperipheral models with good efficiency for all 

energies and all multiplicities up to 18. Table Ib shows the effi-

ciencies achieved with this generator for the same conditions dis-

cussed above for Table Ia. Other multiperipheral models can be 

integrated with similiar efficiencies. 

In order to understand this generation method it is necessary 

to understand the reasonS why the frequency distribution of Eq. (5) 

loses efficiency with increasing energy and multiplicity. This is 

most easily done by first considering the special case in which all 

of the particles in the reaction have zero rest mass. For this 

case one has 

with t = O. Inserting· thiS' fnto Eq.::( 5), one has' 
n 

f( q,) 

(6 ) 

( 7a) 
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or (neglecting constant factors) 

f( <I> 1 
n-1 . . 2 

= exp(a1 t t ) TT 1-1. exp{[a. -a. 1(1-1' 1/ jJ..) ]t.}. (7b) 
i=2 1 1 1- 1- . 1 . 1 

The n-2invadant lTlasses are generated first with frequency 

n-1 
f( jJ.) = TT 

i=2 
1-1. 

1 
( 8) 

and then, using these invariant masses, the n-t four-momentum 

transfers squared are generated with the frequency 

n-1 
f( t) = exp(a 1 t 1) Tf {[ (I )2] } . 2 exp a. - a. 1· II. 1· II.· t.. 

1 = 1 1 - '-1 -'-1 1 
(9) 

Generation of the invariant masses with the frequency of Eq. (8) 

yields 

.1 -(2/i). ( 10) 

Replacing (jJ.. 1/ 1-1.) 2 by this average value in the. exponent of Eq. 
1- 1 

( 9) and letting all of thea
i 

have the same value, !!.> one ha s 

n-1 
7T jJ.. exp [( 2/i) at}. 
i=2 1 

( 11) 
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By comparing this frequency distribution with the integrand, 

r( cf», of Eq. (2), the reasons for its ioes of efficiency with inc reas­

ing multiplicity becomes apparent. The less dramatic loss of 

efficiency with inc reasing energy is not illustrated because of the 

approximations employed in obtaining Eq. (11). Compared with 

the multiperipheral model of Eq, (2), the frequency f(cf» of Eqs, 

(7) and (11) over populates large values of invariant masses,. !J.i' 

while underpopulating the regions of low-four -momentum transfer 

squared, t., From Eq. (11) it is clear that this trend is enhanced 
1 

with increasing multiplicity. 

The Monte Carlo event generator presented here overcomes 

these difficulties by concentrating the invariant masses, !J.i' at 

low value s and then generating each 0 f the four -momentum. trans-
. .' . 

fers squared, t., so that they more closely resemble the distri-
1 

butions predicted by the multiperiphera1 model. 

The invariant masses are generated first, in order, starting 

with the two-particle system !J.2' That is, 

( 12) 

where E is the center-oI-mass energy of the reaction, 5 n the sum 

of the final-state particles' rest masses, and 52 the sum of the 

rest masses of the particles that compose !J.2' The dimensionless 

quanity, p 2' is a random variable generated in the interval 0 to 1. 

The other invariant masses are obtained by 
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- fJ.. 1) p . + fJ.. 1 + rrl. . 
1- 1 . 1- 1 

(13) 

i 
Here rrl. is the rrlass of the ith particle .and S. = ~ rrl.. Equations 

1 - 1 J j=1 
(12) and (13) ensure en.~rgy conservation. The frequency distri-

butions of the generated randorrl variables, h.(p .), are arbitrary, 
1 1 

but the choice deterrrlines the frequency distribution of the generated 

invariant rrlasses and thus effects the effiCiency of'the integration 

of a particular rrlodel, r(<\». The rrlethods errlployed by previous 

Monte Carlo generators [2,3,4,5,6] for generating the invariant 

rrlasses, fJ.., are equivalent to 
1 

h. (p.). = (1 _ p .)n-i-1 
111 

( 14) 

As illustrated above for the zero-rest-rrlass case,this leads to 

an overpopulation of large values for these invariant rrlasses when 

integrating the rrlultiperipheral rrlodel. 

In order to increase the population of low invariant rrlas s 

events this generator errlploys the frequency 

h. (.p.) = exp( -b. p.) • 
1 1 1 1 

(15) 

The n-2 pararrleters b. are chosen so that the resulting invariant 
1 

rrlass di,stributions reserrlble'as closely as possible those predicted 

by r(<\», the rrlodel to be integrated. For the rrlultiperipheral 

rrlodel, Eq. (2), it can be shown [1 ] that 

E
(i-1/n-1) 

( fJ.i) .., (16) 
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Neglecting the rest masses of the final-state particles and as sum-

ing most of the invariant masses have small values, one has 

approximately (.1. = Ep. ~ so that 
1 1 

h.( p .) = exp( -b. 1-1. IE) , 
1 1 11 

( 17) 

for which 

( 18) 

Comparing Eqs. (16) and (18), one finds 

b. - E/«(.1.) _E1 - (i-1/n-1) "" E(n- i /n-1). (19) 
1 1 

Using this result as a hint, we parametrize 

. . . . 

The values of the two param~ters, b O and EO' are chosen 

so that the resulting ri-2 invariant masses are generated as closely 

as possible to those predicted by themultiperipheral model. This 

can be conveniently accomplished by generating a sample of N 

events and choosing those values of EO and b O that minimize the 

fractional statistical uncertainty in the Monte Carlo integration 

of r(q,). From Eq. (3) it is seen that this is equivalent to maxi-

mizingthe efficiency, €, for the integration. 

This maximization can be carried out by performing a search 

in the two -dimensional space for the maximum of the function 

.. 
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Here r(cj>.} is the value of the matri:x: element squared predicted by 
1 . 

the model for the ith event and 1/ f(cj>i} is the weight as signed by 

the event generator for the ith event. The search for the optimum 

values of EO and b O can be performed by using one of the many 

computer codes that optimize a function of several variables. 

Using MINF68 [8], acceptable values for th~ parameters are usually 

obtained after four or five iterations. Since only relative values 

of €( b O' EO) are important in the search, the random number 

generator employed by the event generator should be initialized 

to the same starting point for each evaluation of E. 

The optimum number of Monte Carlo events, N, used for the 

evaluation of E in the search depends upon several factors. The 

larger N, the more accurately the solution to the search will 

represent the best efficiency., and the solution values of the param-

eters will be the best ones for the Monte Carlo integration. How-

ever, the computational time required for the search increases 

linearly with increasing N. Thus the time required for the search 

must be balanced with the computational time required for the 

ultimate generation of events for the integration of r(cj». This latter 

time increases linearly with'decreasing efficiency. Empirically 

it has been found that the choosing of N such that Nt ~ 100 gives 

an adequate estimation of the best values for the parameters. 
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. After generating the invariant masses, the four-momentum 

transfers squared, t., are generated with the frequency 
1 

. [n-1 . ] . ,. 
f( t) = exp 1: d. (t. - t~). • 

i=1 1 1· 1. 
(22) 

The n-1 d
i 

are chosen so as to populate the ti as closely as pos-
. . 

sible to those predicted by the multiperipheral model, Eq. (2). 

The Monte Carlo event generators described in Refs. 3 and 5 used 

d. = a. for all values of i •. For the zero-rest-rnass case Eqs. (9) 
11' 

and (10) indicate that 

d. = a.1 [1 :... (a. 11 a.) (1 - 2/i)] 
1 1 1-·' 1 

(23 ) 

would be a better choice. In general Eq. (9) suggests that 

d. = a./ [1 - (.A.. 11 a.) « po. 11 IJ..) 2) ] 
1 1 1- 1 1- 1 

( 24) 

is a good prescription, where the average «f.Li_1 / IJ.i)2) is evaluated 

for the frequency distribution of the generated invariant masses. 

For the invariant mass distributions implied by Eqs. (12), (13), 

(15), and (20) this average value is difficult to evaluate. Ther.e-

fore we simply take 

d i = d 1 + d' (i - 1). (25 ) 

The best values of d
1 

arid d' can be obtained by searching 

for the maximum of the efficiency, Eq. (21), in the space of the se 

parameters. Since the best values of these parameters depend 

upon the generation frequencies of the invariant masses, they will 

~) 
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depend upon the values used for b
O 

and EO' Eq.(20). Therefore, 

the optiInization for b
O 

and EO should be perforIned before the 

optiInization for d
1 

and d t. Another procedure is to search for 

the InaxiInuIn of the efficiency in the space of all four paraIneters 

siInultaneously. 

To the extent that the approxiInations leading to Eq S. (20) 

and (25) are satisfied, the four paraIneters b O' EO' d 1 , and d t 

should be independent of energy and Inultiplicity. Table II gives 

the solution values of these paraIneters for the same conditions 

described for Table 1. Inspection of Table II shows that each of 

the paraIneters has a slow dependence on energy and a bit Inore 

rapid dependence on Inultiplicity. 

The procedures and parametrization discussed above are 

not limited to a specific Inultiperiphera.l model [for exaInple, 

Eq. (2)]. Any Inodel with siInilar characteristic s can be integrated 

with GOInparable efficiency. The best values of the paraIneters 

b O' EO' d
1

, and d' can be found for any r(cp) by inserting it into 

Eq. (21) and solving for the InaxiniUIn of the efficiency in the space 

of the paraIneters. Also, one can alter the paraInetrization itself 

for sufficiently different Inodels. 

, ' 
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Table 1. Efficiency 'of Monte Carlo integration for the 
. n-1 

matrix element squared r(<\» = exp(4.~ til as a func-
. ~1 

tion of the laboratory beam momentum, P, and final 

• 
state multiplicity, n, in the reaction pp - pp (ri-2)'Jf, 

a) for the generation method of Refs. 3 and 5. 

b) for the generation method of this report. 

P- 50 GeV Ic 200 GeV/c 1000 GeV/c 

n 

4 a 0.20 0.14 ~:\ .O.OS 
b 0.S3 0.S6 O.SO 

S a 0.002 0.0007 0.0002 
b 0.41 0.43 0.43 

16 a .... ,0~OOOO5 < 0.00002 < 0.00002 
b 0.06 0.07 0.09 
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Table II. Values. of the param.eters b
O

' EO'· d 1,and 
Iv 

d' (see text) that yielded the efficiencies of Table lb. 

• 
p- 50 GeV Ic 200 GeV/c 1000 GeV Ic 

·n 

b O 2.4 2.2 1.8 

4 EO 1.1 1.3 1.8 

d 1 3.4 3 .. 7 3.7 

d' 0.62 0.39 0.34 

b O ~.~ 2.9 2.4 

8 EO 0.58 0.67 0.82 

d 1 4.7 4.8 4.7 

d' 0.72 0.44 0.30 

b O 6.0 6.0 3.7 

16 EO 0.34 0.48 0.41 

d 1 8.6 8.7 7.9 

d' ·0.63 0.29 0.25 

\ ' 
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. FIGURE CAPTION 

Fig. : L A multiperiph~ral graph for an n-particie final state 

(see text) . 

I 
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