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ABSTRACT

A Monte Carlo event generation method is presented that
intégratgs'multiperipheral models with good efficiency for all

-energies and all multiplicities up to 18.
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The r'nultiperi'phe:ral rnodel [i].has been the subject of consider- -
able theoretical investiga.tion inrecent year_s; In:order to :predict e>r—
perirhental results from th1s rnodei it is necessary to p,erfor'r_n
vplhase sPace integrals .of the fo,rm'R _=V ./; () .dn¢v,' where ¢ is a
point and dn¢ a volume elernent ,i‘n .the (3n-4') ] dimensional phase
space, and_v is vthe vtovta‘vl phase space volume accessible to the _
final state. The integrand, r(¢), is vt:he transirion matrix element
squared calculated from'the rnodel.v Because of the complexity of
these phase space integrals ,b. Monte Carlo techniques are often
‘employed for their evalnation.

| D.etaile'd'descript.ion.s of Monte Carlo event generation are
d1scussed elsewhere [2,3] and only some of the basm concepts are
d1scussed here The Monte Carlo method consists of generatmg
a sampe of N random events in the. phase space volume v accord-
ing to a normahzed frequency, f(d)), and averag1ng r(¢)/f(¢) for
these events ' Then |

R = (1/N) 2 r(6)/fe,), (1)
. i=1 R S o

. where b, is the phase space poivpt corresponding to the ith random _
event. The' stat.istical' nncertainty in this evaiuation is OR
= olr/f) N-i/z, ﬁvhere olr/f) is the root—rnean-'squar-e ciefr.ia"ci_on »
of r(4)/f() frvom its a’verage value, R. | |

There are se\reral variations of the xnultipe_riphe.ral model;
but they all have in c'ommonv the'property that the four-rnomenturn

transfers squared from the beam (or target) particle to certain
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final-state particle combinations are severely limited. This

property is summarized by the transition matrix element squared: -

‘n-1

- r(¢) = exp ( Z ,a.i_ti) o - (2)
. . -i=1 : _ ‘

where the t1 _‘a,re- the v(‘n‘-:i) 'foﬁr-momentum t'ra.nsfers', sqtiaréd -that
are limited by the mo&el_ g,nd the a, pa_rametrizg the degree 6f._
limitation, - The p_articulér 'ti. that .thé multiperipheral model limits
are most ,e"asily desc_ri“bed by the use of thé. multipefipheral dia- ‘
gram of Fig. 1. Thé i.:v’voi lines on the léft,trepre.seht the momenta

of the fWo incident pérticles; é.nd the lines dn fhe right represent
thé momenta of the n finéLl;st;ate particiles. The vertical liries V
linking thé Ifinal-state pé.rti?:ies 'répreseht the four ~-momentum
transféi; squared from incident p‘article a to the covmbina.t_ion of
particlés- above .eac1:1, link, These afe the féur 'jmomentum tran’sf_.'_ersv
squared that ap_?ea.r vin Eq (2). ‘Note that b:y momentum conser'-'
vation these t. are also the f_our-'rnorrientum.transfe'rs. squared from
incideht particle b to the particle combination below each link.

For a giveh numbef of Monte Carlo everts fhe statistical
uncertainty, 6R, of the integratioh dépehds critically ﬁpon’ the
phase space frequency distribution of the events, f{(¢). The more
closely f(?p) resembles r(¢) the‘hig‘her the accuracy for the sam_e;
number of Monte Carlo events, The accuracy bf a Mo‘nte’ Carlb'
integration is usually characterized by its efficiency, €, which is

defined as R2 divided by the averé.ge of [r(¢)/f(¢)]2.' This efficiency
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is equal to one for the case f($).5 r(4) and is s‘mallexj'the 1more-f()

[ 48

deviates from r($). :Initerms-of the effiéiency the fractional statistical

uncertainty in the Monte Carlo integration is given by

-8

(6R/R) = (/e - 2tz (3)

The computational fimé required to evaluate Monte Car'lé iﬁtégrals
grows linearly with tl;le ﬁurﬁbef of eVenté réquired._ Therefore,
to minimize this time, the ”effi'ciev.n_cy sﬁo@id be as large é.s possible.
Eaﬂy Monte Cé,rlo' event g_enefators [2, 4] generated events |
with nearly constant phase space frquéhcies. - These generé.tors
have good efficiexic;rv for integrating 5 consfant matrix element
squar'ed,'brv(cb) = 14, but fhey have a very low éf_ficiéncy_ fvor inte -
g.ratiﬁg the niultivpe.riv;::ohe.r'a_l model_._- ‘This is. b.ecauis,e the n\'iodél
severely limits the.ti in qu (2)., w.hvile.tl"xe.vgénerator prsduc‘és
| e_ventls whose t1 are ro‘ﬁghlj; é_venly dvistributed:‘in the entire :k‘ine—'
matic range. i |
Recently'theré h&_LVe_Bee.n several.r:nethods d’ével@ped that
-imprové-the efficiency of Monte Carl'ov_inté_gratio‘n‘s for models of
high-energy_ coilisiéﬁs [3,5,6,7]. | Notiﬁg that an experiménfa.l -
propei-ty lof high-enérgy. vcollisions is the limiting ofi the final -
state particles' momenta tré.nsve_rse to .the beam direéiibn, .P‘e_ne
and Krzywicki [6] as well as Kittel, Van Hové, and Wojcik [7]
have developed an event geﬁefator with a phase space frequé‘ncyv .

distribution that can be approximated by
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e =expl-b 2 pH) . (4
» o ci=t 7 . ‘
The pi. are tile co;npoﬁénfs of thé .finalfétate p;arti'c':les' ﬁlofnenta
tra.n_svel;se to the beam difection. 'This generator integratesb
‘s.éve ral mode1$ of hi'gh-—en’ergy .covllisi;on-s_- with good efficiency.
Howevef, mo st multiperiphgral models c_oncentrate the longitudi-
nal momentum of the final-St#te .ba;'YOnév at largé‘value s, whereas
this generator produces therﬁ with a rﬁore or less constant phase
space distribvutiior-l. 'I“his re.s.u'ltskin low efficiency for integrating
these multiperi’phe_ra'l model:s. o
Addreésing then:iselv'es s'pecific':allyr to multiperiphéfal

-models., Byckling and Kajé.nfie [5] _have developed a Monte Carlo

event generator that produces events with a phase space frequency

that can be approximated at high energy by

| et . v
fo) = TT 4 . .exp agi:_--[(ti "'t;r_)]j (%)

_ Pie”
i=1

Here the t, are the same as those appearing in Eq. (2). The t;
are the maximum values for each corresponding 1:1 These rmaxi-

mum values vary froin event to event and depend upon the values

assigned to the integration variables generated befOré the specific

t.. Each By is the invariant mass of the final-state particle com-

bination for which t. is the four -momentum transfer squared.
This generator integrates the multiperipheral model of Eq. (2)

with good efficiency as long as the energy is not too high or the
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multiplicity (number of final —'sfaté pa_i'ticles, n) is nbt too large.
Table:Ié, .sho§vs thvg effiéienéy of thi‘s ge‘neratbr fc;r vario’u.s,multi— o
plicities and laboratdry Abéa;r'n thy)r'nenta., .for the. rgactic;n N ..
PP — pp(n-Z)'rr,‘ where the a, in boﬁi Eq. (2) and Eq. (5) ‘ar'.é all
taken. to be 4.0. | | o
This .re.port Iijre:s‘"ent_s a ‘M'ontev Carlo event generation rh_ethod
that int_égratés mu.lti-pve.ri.phéral models with gobd e_fficiéncy foi- all
eﬁergies.é.na all mul.tiplicities.up to v'1‘8.' Table Ib shows the effi-
ciencies achieved with this.génerator fo_r_.the sa.rne..c'o.nditions dis-
cussed above for Ta_ble’ Ia." Oth'ef ‘rﬁdltiﬁéripheral models can be
integratekd with similiar efficiencies. |
In 6:der to uhdersfaﬁd this >gener'a;.tion.method it is necessary
to understand the reasons why the frequency distribution of Eq. (5)
loses efficiency with ihéreaéing 'ener_g‘.yv.' and ﬁultiplicity. This is
most easil.;.r done by first considering the special case in whic h all’
of the particies in the reaction have zero rest mass, - For this
" case one has. | |

- I o
ti f,-_ti+4(“i/“i+1) | (e

with tn = 0. Inserting this into Eq.:Z(S); one has

a1
o) =TT .

i=1 i+1 exp { al[ti - t1+1(}-ll/|,.1,1+1) ]} (73.)
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or (neglecting constant factors)

L L ; _ : 2. .
f(¢) - "» exp(a_ti- t'l) _ 11€ P-i exp {[ai - vai4'1( I‘Li_:]_/}l'i)'. ] tl} . (7b)
The n_-:Z"invar'.iant masses are generated first witbh'frequencyv
o “n-1 . : '
. f(P') = 7 IJ'i ‘ (8)
- . 1i=2 ‘ .
~and then, using these invariant masses, the n-1 four-moméntum
transfers squaréd_are gehera_ted with 'fhe frequency
n-1

f(t) = eXP(ai v.ti‘). 17___7; egp{[ai - ai-’l( *“1-1/P‘1)2]t1} . | (9)

Generation of the invariant masses with the freque_ncy of Eq. (8)’

yvields

Ly _y/w)°2 = 1=/ . (10)
Replacing (p,i_i/p.i)z by this average value in the.éxponent of Eq.
(9) and letting all of the a, havé the §arhe value, a, one has

: . n-1 ‘
~ f(¢) = expla t1)- 7‘7'2 M, eXp [(z/i)a't] . - (11).
. o 1= ' . . . .
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By cofhpa.ring. fhis :'fr.equ‘ency -distribuﬁon with the int_e'grand{
r(¢), of Eq. (2), the re_‘a'son_s for its Ios's'of‘e‘:ffici‘encir with increas- .
ing mul_tiplicity bec;)rﬁes Fapparentv; The‘bless dramatic ll_os‘_s cvo‘f'
efficiency with inc i'eas'ir.ig' e..n‘e'rgy.is not illustrated because of the *
a.pproxirha'tionsﬁ emplbyed in_obtaining Eq. ‘(.'11).2 _Corﬁpared Qith
the n‘mltiperipheral. mo‘cviel.ovf Eq."(Z),v the frequency f(¢) of Eqs_..
(7) and (11) ove’rpopuilate‘s l‘ar.g'e values of inva_riant. rﬁas ses, .,
while underpopulating the reéiéns of iow¥four-momentum transfer
squared, ti' Frdm_ Eq. (11) it 1s c'le_avr'that this trend is enhanced
with inéreasin_g multipﬂlic':ify.'.v | |

The Monte Carlo event gene.rat'or presented here overcomes
these difficulties bf cc‘Jnvcell;xtr‘a‘-ting the invariant masses, Hi,' at
low values and then genérating éa;ch.df the four-n‘lo'mentur'nvtfans -
fers squared, ti’ 80 ‘th.a;‘t they lrno:re‘clovsely lrese.rrible the distri- |
butions bpredicted by.’vthte.r.nultipéripheral mdde‘l. | B

The invariant ma.;s.s:é.s are generated firsf, in order, starting

with thé:two-particle system,pz.' That-is,
by T (E-Seyts,. o (1)

wher_e. .E is the cente,f-of‘Qmass energy of the vr.ea_,ictioni, S, the sum
of the fi_nalf-state particles’ fest masses, and S2 the sum of the

rest rné.é_ses of the particles that compose Ky The dir_nensionlevss o
quanity‘,' P is a random va;‘iable generated in the interval 0 to 1;

The other invariant masses are obtained by
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Here m, is the mass of the ith particle and S, = £ m.. Equations

( 12) va.nd; (13) ervlsurev en‘érgy consefvé.tion. The frequency_ distri-
bﬁtions of the ’generéted' randorr’.l"s}ariablbesv, hi( p'i), are varbitrarylr,
but the choice determines t.hé frequency dbi:stribution of tﬁev generated -
invariaﬁt masses and‘thus_ e"ff‘ec’ts. the efficiency of"thervi‘htég‘ravtion
vof a ?afticular.model, .r(dﬁ).. . The methéds émpioyed by previ'ous

Monte Carlo generators [2, 3,4,5,6] for generating the invariant

masses, Ky are equivalent to

o n-i=1 f
ho(py) = (1-p" 7, o

As ’ilvlustrated above for the'zefo;rgst-maés .cas‘e,. ‘this leads to
an.oire:rpop‘ulati‘on of iargé values fdr these iﬁva_fiant masses when
integratiﬁg the multiperipheral model, |

In order to increase the populatioh of low invariant rf;aés

events this generator employs the frequency
| hl(pl) = exp(-?:)i ) FEE ) ‘115). _

The n-2 parameters bi' are chosen so that the resulting invariant
mass distributions resemble-as closely as possible those predicted
by r(¢), the model to be integrated. For the multiperipheral

model, Eq. (2), it can be shown [1] ‘that

(i-1/n-1)

( F*i) " E b(.ié)
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Néglecting the rest masses of the final-state particles and as sum-
ing most of the invariant masses have small values, one has = - )

approximately p, = Ep1’ so that- v
' o

hilpy) = expl-bw/E), (7

" for whi.cv:h
v"(i*i):'v:E/lb'i." | | | L ‘(~18)  
Compa?ing Eqs. (16) anci (18), or‘1e‘ figds .
| .'bi. . | £/( .};i) . E1 - (11-1/711'.1}' -N‘}E‘(n-i/ﬁ-i)' | (‘19')_ |
Using thié result as a hint, we éé;ramefr'i_ie

o (nei/m-1) ©,
by = b (B/EQ TR -4 (20)

The' valﬁes of ‘the:two'parametér's,: b0 a.nd EO’ aré c;-hbseh
so that the resulting '_n—ZIil.nvariant'ma.sses are géner‘ated.as'closely'
as pos sible to those predicted by the '.multiperipheral model. This
can be conveniently accomplished by generating a saniple of N
events and choosing those values of'.E0 and bd that minimize_v the
fracti.o:nval stativs'tica..l unce-rtaihty in the Monte C_arlp integrvatio'n
of r(). From Eq. (3) it is seeh. that this is eqﬁivalent to maxi -
mizing”the efficiency, €, for the integration. |

;I‘his ﬁaximization can be@ﬁarried out by perfdrming a search

in the two-dimensional space for the maximum of the function -
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€ (by, Eg) =,[Z (¢, Y 1o, )] N 2 [rle))/ )] L 20)

o i=1 i=1 ' . =

Here r(.cp ) is the value' Of-the-vmatr'i‘x element sdnared predicted by -

the model for the ith event and 1/ f(¢ ) is the we1ght as S1gned by

the event generator for the 1th event The search for the Optlmum

values of EO and b can be performed by us1ng one of the many

computer codes that opt1m1ze a funct1on of several variables.

Using MINF68 [8] acceptable values for the parameters are usually

_ ob‘tained‘.after four or five iterations. S1nce only relative values

of e.(bo,' EO) are ‘impo'r'tant in the search, the random number

generator employed by the event generator should be initialized

to the sarne starting p.‘oin‘:t -for each veva'luationv of €.

The optimum number of Monte Carlo ‘events N, used for the
evaluatmn of € in the search depends uoon several factors The
larger N, the more accurately the solut1on to the search will
represent the best efficiency., and the solution values of the param;-
eters vvill be the best ones for the Monte Carlointegration.‘ Hovv;
ever, the'computational time requiiréd for the search increases
1inearly with increasing N. Thus the time required for the search
must be balanced with th_e computational tirnev required for the
ultimate generation of events for the integratton of r(¢). This latter
time increases linearly With‘decreasing ef_ficienéy. Empirically
it has been found that the choosing of N such that Ne 2 100 gives

an adequate estimation of the best values for the parameters,
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-After generating the invariant masses, the _fOur-moi’nentum

transfers squared, t., are generated with the fre'q.u_éncy - . c >
f(t) = exp[z a. (¢, - ti)] Lo 2y ~

i=1
The n-1 di:ar_e chos’eﬂ so as to populate the ti"_as _c;lpselvy?é’,s_'po:s-,
sible to those predicted by the multipéri'pheral model, Eq. (2). .
The Monte Carlo everit generators described in Refs, 3 and 5 used
di = ai‘ for all values of i. - For the zero-rest-mass éase‘ Eqs. (9)

and (10) indicate that B

4 = %/U_;“ﬁd/aﬁ(1-2ﬁﬂ : K diéé1_(?$

would be a better choice. In general Eq. (9) suggests that

L J | 2 o v
4 = a/ M-(ay /e (e /) )] 0 4=y (29)
is a good prescription,. where the average ( (;.;i_-i/pi)z_) is evaluated
for the frequenéy distributibn of the generated invariant masses. »
For the invariant mass distributions implied by Eqs. (12),‘ (13),
(‘_15), and (20) this 'avefage value is difficult to evéluate. There-

fore we simply take

4 = arari-n. @

The best values of di and d' can be obtained by searching
for the maximum of the efficiency,. Eq. (21), in the space of these
parameters. Since the best values of these parameters depend

upon the generation frequencies of the invariant masses, they will
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dépéndu_.-po_'rithe Values_used for BO and IE' , | Eq .(2,0).v 'Ib‘he‘rvefox:'_ei,
the obtiﬁliZation for bolar.ld EO should be pef-fo;‘n&ed before. vthe
' optimiza‘ti.on for d.1 aﬂd d'. 'Anot’her pfocedure is tq search .fo.r
the.mva.Ximuiri_ ‘of fhe "évff‘i;iehcy ih the vs_pal_._c':é of all four parafnetérs
simulténeousiy. | | | | |

To‘ fhe ektent'that fhe "apprjoh)’cir'n.a,tio.nsile}ading to Eqs (..2'0)‘ v
and'(ZS) are 'sa.t'isfied,r. tlvué.'four éva.r"am_e_tevi's bo; E_O, d'i,- and d'» |
should; be indeber;dent of enieblll-gy.r énd, fﬁultipiicity; Table Ii g.ive"s
the solution values of th:_esé pé.ré.rhet;ers for the sarﬁe éonditiohs '
described for Table I, ‘Iri'spection of 'i’é.bie II shows that each of
- the parameters has a é'loﬁ de.pénde'rvlce. on energy-and a bi’t more
rapid dependence on multiplicity. |
| The procedufes and pa.‘ra',.nie_tri.z.a;tion_ di”scus s_éd,abové are v
not limited to a specific r’hultipé-ripher'al rnodel '[for example,‘
Eq. (2)]. Any model with similar characteristics cé;n be integrated
with comparable efficiency. The best.valués of. the par‘amet.ers
bo, EO'

'Eq. (21) and solving for the maximum of the efficiénc‘y in the é_pa‘ce

d1, and d' can be found for any r(¢) by_inéerting it into o

of the parameters. Also, one can alter the parametrization itself

for's_ufﬁciently diff‘ei"en_t’ models,
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Table I. Efﬁciehcy‘of"Mdnte Carlo integration for the -
matrix element squared r(¢) = exp(4 = ti) as a func-
' ' B Ci=1
tion of the laboratory beam momentum, P, and final -

~state multiplicity, n, in the reaction PP - PP (n-2)m,
a) for the generation method of Refs. 3 and 5.

b) for the géngration method of this report.

P -~ 50 GeV/c 200 GeV/c - 1000 GeV/c
) ) |
4 a S 0.20 0.4  90.08
b - 0.83 0.86 . 0.80
§ a 0.002 © 1 0.0007 - 0.0002
b 0.41 ©0.43 . 0.43
16 a ~0.00005 <0.00002 . - <0.00002
b 0.06 0.07  0.09
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Ta.ble.,» II. '~Va1ueé, of the parameters b , EO’ : di,» and

d! (see text) that yielded the efficiencies of Table Ib.

P~ 50 GeV/c 200 GeV/c = 1000 GeV/c
. n .

b, 2.4 22 1.8

4 - By L1 .3 18
o 3.4 3.7 3.7
o a 0.62 0.39 S 0.34
by 32 29 | 2.4
s B, 058 067 0.82

d, 47 4.8 4.7
4’ 0.72 0.44 0.30
by 60 60 3.7
w6 . Eg 034 o4 0.41
d, 8.6 8T - 7.9

' 0.63 0.29 0.25

-
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FIGURE CAPTION
Fig. 1. A multiperiphgral graph for an n-particle firia,_l."sta__t'e. 3

(see text).
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A. Makes any warranty or representation, expressed or implied, with
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fringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages
resulting from the use of any information, apparatus, method, or
process disclosed in this report.

As used in the above, "person acting on behalf of the Commission’
includes any employee or contractor of the Commission, or employee of
such contractor, to the extent that such employee or contractor of the
Commission, or employee of such contractor prepares, disseminates, or pro-
vides access to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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