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Abstract

Collective cell behavior contributes to all stages of cancer progression. Understanding how 

collective behavior emerges through cell-cell interactions and decision-making will advance our 

understanding of cancer biology and provide new therapeutic approaches. Here, we summarize an 

interdisciplinary discussion on multicellular behavior in cancer, draw lessons from other scientific 

disciplines, and identify future directions.

Introduction

Efforts to understand cancer have traditionally examined how a single cell acquires, through 

a series of stepwise mutations, the ability to survive, grow, and move when it otherwise 

should not. The focus on individual cells has led to important discoveries about the functions 

of oncogenes and tumor suppressors, cell-cycle checkpoints, control of cell growth, repair of 

DNA damage, and mechanisms of cell death; however, it has fallen far short of illuminating 

a more integrated and systemic understanding of cancer development. More recently, there 

has been a shift away from the “one rogue cell” view of cancer, with more and more cancer 

biologists and engineers beginning to view this disease as a complex system, in which the 

acquired abilities of cancer cells are critically tied to their interactions with other cell types, 

both mutated and not, and firmly rooted in cellular behaviors beyond cell survival, growth, 

division, and movement (e.g., invasion, quiescence, spatial patterning, and remodeling the 

environment).

Collective cell behavior, which is strongly influenced by context, contributes to distinct 

stages of tumor progression, including initiation, metastasis, recurrence, and response to 

treatment. For example, when teratocarcinoma cells are taken from a mouse tumor and 

injected into a developing embryo, the pup develops normally. If these cells are then 

isolated and injected into an environment that supports tumors, teratomas are again obtained, 

demonstrating the importance of the surrounding environment in suppressing tumor 

formation.1 Cells frequently act collectively to escape the primary tumor and invade the 

surrounding stroma, and metastasis can be more efficient when cells traverse the vasculature 

together rather than alone.2 Similarly, treatment response may depend on intercellular 

interactions. For example, tumor cells evade BRAF mutant therapies by modulating growth 

factor signaling through hepatocyte growth factor from stromal fibroblasts.3 Finally, a 

dynamic interplay between tumor cells and the immune system contributes critically to 

the acquisition of malignancy and response to treatment.4 Despite this, we currently lack 

quantitative and conceptual models that consider the diversity of cell-cell interactions that 
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occur across multiple spatial and temporal scales. Such models are required to explain the 

spectrum of collective behavior that is associated with cancer.

A group of researchers from diverse biological and quantitative fields recently gathered for a 

5-day innovation lab facilitated by the National Cancer Institute titled “Modeling Emergent 

Cellular Behavior in Cancer” (February 25–26 and March 1–2, 5, 2021) to consider the 

processes by which the behavior of individual cells and their interactions generate the 

collective behavior of cancerous tissues, and to draw lessons from other scientific disciplines 

that have met similar challenges. Here, we summarize the major themes of this conversation.

Collective behavior emerges from interactions among different cells.

It is increasingly clear that distinct types of collective behavior in cancer are rooted in the 

relationship among cells. Cancer cells can interact with each other or with non-malignant 

cells. Non-malignant cells, such as macrophages and fibroblasts, can also interact with each 

other. Interactions can be short lived (e.g., diffusible, electrical signals, or active stresses) 

or long lived (e.g., secreted components such as the extracellular matrix [ECM] that can 

alter tissue stiffness, ligand availability, etc.). In turn, these interactions are embedded within 

the context of the surrounding tissue, the immune system, and the chemical and physical 

microenvironment. By learning how cells interact to give rise to tumor behavior, we can 

then manipulate these interactions to prevent tumor progression and improve the design 

of future drugs targeting these interactions. At a minimum, this understanding requires 

identifying the cellular partners involved, the direction of interaction(s), the nature of the 

intercellular signal (e.g., mechanical, electrical, or chemical), and how these properties 

are interpreted by the cell. Spatial molecular atlases of tumor microenvironments provide 

informative measurements on these key components of collective behavior; however, further 

development of experimental and computational approaches is needed to understand how 

these dynamic systems generate collective outcomes.

What is a state?

In developing an understanding of collective behavior, it is important to define the 

concept of a cell state. Different fields use the term in unique ways. In cellular and 

molecular biology, an individual cell’s state is defined as the configuration of its molecular 

components. At the coarse-grained level, we can define cell state S t  at a given time by the 

amount xi of each molecule i in the cell. S t  is a state vector; S t = x1 t , x2 t …xN t  for a 

cell of N components. Single-cell RNA sequencing measurements yield a state vector that 

includes thousands of transcript types. A more complete description might also incorporate 

the intracellular location and movement of molecules over time and properties that emerge 

from the molecules such as a cell’s mechanical, morphometric, and electrical descriptors. 

Cells and groups of cells are dynamical systems with state variables that change over time 

autonomously (e.g., through mutation and biological noise) or due to microenvironmental 

factors and cell-cell interactions. Therefore, we need to look beyond a catalog of cell states 

to understand how interactions shape this system to generate population-level outcomes in 

cancer.
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Interactions and the study of collective behavior in cancer

Interactions are required for collective behavior.

The collective behavior of communities of cells arises from their cellular interactions. 

Quantitatively, “interaction” means that the state of one cell depends on the state of another, 

without regard to mechanism. Interactions can be as simple as attraction or repulsion. 

The outcome of even the simplest interactions on communities of cells can be non-

intuitive. For example, simple systems involving motile “cells” that only repel and lacking 

feedback are capable of collectively organizing into domains of high and low density.5 

Adding feedback to these simple interactions can result in far more surprising collective 

behaviors. Such systems are described as “self-organizing” because their collective behavior 

emerges from the interactions among the cells and the feedback these interactions have 

on cell state. The properties of a self-organizing system depend on interactions: cells 

communicate information and alter their state in a manner that depends on their location 

(which determines the strength of the interaction) and current state (which determines the 

outcome of the feedback). These systems therefore exhibit the ability to perform information 

processing or regulated response to changing conditions. Because regulation keeps the 

system within some bounds, it requires that information about deviations from those bounds 

feeds back into the system. Cancers can be challenging to treat because cells block, short 

circuit, or modulate the layers of interactions and feedback controls that regulate healthy 

tissues.3

Interactions are also impacted by stochastic processes acting at both the molecular and 

tissue scale. For example, during the development of tumors, not all carcinoma cells will 

contribute to tumor growth, invasion, or metastasis. The growth of clinically detectable 

carcinomas can be an all-or-none process, with a fraction of nascent lesions switching to a 

proliferative state while many others remain indolent. Moreover, evolutionary processes like 

neutral drift can allow small numbers of clones to become dominant within a population 

without having a measurable selective advantage. Tumor growth, therefore, is driven by the 

“forces” of cell-cell interactions, but it is also influenced by rare events and tipping points 

that may themselves be a consequence of interactions within the tumor microenvironment. 

Unfortunately, studies of tumor growth often do not capture this phenomenon. Preclinical 

tumor models are frequently designed to be deterministic and fully penetrant. When using 

these models, researchers typically measure tumor growth; however, models that capture 

the intrinsic stochasticity of cancers could measure the probability of events associated 

with tumor progression, thereby better revealing the mechanisms that allow tumors to move 

through key bottlenecks in their evolution and spread.

New study designs are attempting to address this issue by studying bifurcations in outcome 

that occur in natural systems as the number and composition of tumors are altered 

systematically. For example, in a Lewis lung carcinoma model, implantation of 106 cells 

produces tumors in 100% of the animals, while implantation of 103 cells produces dormant, 

non-proliferative lesions in 100% of animals. However, when 104 cells are implanted, ~50% 

of the lesions remain dormant while ~50% proliferate to yield invasive tumors, with growth 

rates that match the tumors generated from 106 cells.6 This is an example of a tipping 
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point in the system, where a small change in an input signal or underlying parameter can 

cause the system to evolve toward a completely new state. Here, the surrounding tissue 

presumably loses its ability to maintain homeostasis because of interactions with tumor 

cells. Such feedback generated through cell-cell interactions can lead to many different and 

non-intuitive outcomes in these complex systems.

What are the important interactions to observe and manipulate?

To learn how feedback is operating, the first step is to identify which cells are involved. The 

next step is to learn how interactions among cells generate feedback. Finally, it is important 

to identify the range of parameters for which feedback can maintain the system within a 

particular state. Feedback can take many different forms (Figure 1).

1. Is it activating or inhibiting? Cells can signal to promote or inhibit a neighbor’s 

activity. For example, growth factors can promote proliferation, while cell-cell 

contact and adhesion can inhibit proliferation. Note that judging what is 

activating or inhibiting is not always easy, because the same feedback may 

function differently depending on context.

2. Is the interaction reciprocal? Cells can engage in bidirectional signaling, 

mutually altering each other’s behavior. For example, mutual activation leads 

to a growth-promoting positive feedback, and mutual inhibition to the potential 

for a biological switch.

3. Is the degree of interaction modified by the presence of absence of another 

signal? For example, some cells only respond to mitogenic signals in the 

presence of other permissive signals.

Except in special cases, the dynamical consequences of these interactions cannot be derived 

intuitively just by looking at the signs on these diagrams (e.g., positive or negative) because 

multiple signals can interact through feedback to generate nonlinear effects. For example, 

the 3-way interaction shown in Figure 1 illustrates one case of context dependence that leads 

to a nonlinear outcome, an interaction modification that could alter an existing interaction. 

The dynamics further complicate the outcome of interactions due to variability in the 

time required for information to pass through signal processing networks and manifest as 

transcriptional or translational changes, as well as the distance that molecules or cells need 

to diffuse. Computational modeling provides a powerful approach to resolve this complexity 

and predict the outcome of interactions. Further, experimental approaches to test these 

predictions are critical.

Questions of scale, or identifying the right size to understand cancer.

We aim to study the cellular interactions that contribute to tumor progression in the most 

relevant context: the body of a human being. However, the complexity of the human body 

makes many such studies impractical, and the ethical and financial challenges associated 

with human trials are frequently insurmountable. We therefore need to examine the dynamic 

interactions that are important for disease progression in other contexts, such as animal 

and in vitro models. Defining a minimal model and the appropriate scale to probe and 

understand tumor biology presents several important conceptual and experimental questions. 
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At the conceptual level, we must ask at what level of abstraction we should measure and 

analyze the progression of a tumor. For example, do we care about the state of actin in 

a tumor cell as it moves, or do we care about the active mechanics (which emerge from 

the dynamics of actin) among groups of cells as they push, pull, and guide themselves 

within and ultimately out of a tumor? Both are essential to tumor progression, but studying 

one often prevents the detailed analysis of the other because they operate at different 

time and length scales. At the experimental level, we must ask how many cell types are 

sufficient to model a tumor, and how many can be removed while retaining the relevant 

interactions and phenotypes? We must consider whether it is even possible to know when an 

important cellular interaction is missing given how little we know about the impact of these 

interactions on tumor progression. Defining the right scale to study the collective behaviors 

of cancer cells, and the challenges of reductionism, is not trivial.

Lessons from other fields

What lessons can we learn about cancer biology from behavioral ecology?

Investigation of collective behavior in animals provides a blueprint for how to study 

collective behavior in cells. The field asks how interactions among individuals have 

collective outcomes that adjust to changing conditions. For example, simple olfactory 

interactions among ants allow colonies to respond to changes in food availability, although 

no leader directs them, and no ant makes any global assessments.

Ecological studies use perturbation experiments to provide clues to understanding the 

diverse outcomes of collective behavior in different environments. For example, ants are 

extremely diverse, with each of about 14,000 species having its own forms of collective 

behavior that are frequently regulated by olfactory interactions.7 By changing conditions 

in a perturbation experiment, it is possible to learn how interactions are used to respond 

to conditions. For example, to understand how changes in food availability or a rupture in 

a trail network alter interactions, we can offer food or remove it, or change the course 

of the trail network to understand the logic underlying the chemical interactions that 

produce recruitment trails. Perturbation experiments have also been used to show how ants 

use encounter rate to regulate foraging activity. Note that, because the environment and 

interactions are not independent of each other, experiments will be most informative if the 

perturbation occurs within the normal range of environmental conditions.

In a similar way, cancer researchers might use perturbation experiments to alter the diverse 

interactions in the tumor microenvironment that determine collective cellular behavior in 

order to learn how tumor cells respond to local conditions. Such an approach reveals that the 

impact of these interactions can be profound. For example, Weaver and Bissell found that 

disruption of a single interaction between breast cancer cells and the ECM through blocking 

B1 integrin could correct tissue architecture in tumor organoids.8 In another example, 

disrupting a specific cell-cell interaction between tumor cells and macrophage through 

ablation of CSF-1 delayed the recruitment of macrophages to tumors and slowed metastasis, 

while overexpression of CSF-1 led to macrophage recruitment and accelerated metastasis.9 

Beyond examining pre-existing interactions within tumors, introduction of novel interactions 

into the tumor microenvironment can provide similarly novel mechanisms for tumor growth 
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and metastasis. For example, Polyak and colleagues overexpressed a library of secreted 

factors from individual tumor clones in vivo and found that CCL5 and IL11 could drive 

extensive tumor vascularization and growth.10

Emerging technologies will facilitate these types of experiments. Advanced systems for 

inducing mosaicism and tracking tumor clones in vivo allows researchers to monitor the 

effect of oncogenic mutations in single cells within the normal microenvironment.11,12 New 

engineered systems enable researchers to monitor and induce dynamic cell-cell interactions 

in complex environments in mouse.13 Microphysiological systems provide a reductionist 

approach for building mini cellular “ecosystems” that are more amenable to imaging, 

molecular analysis, and perturbation. Ongoing development and adoption of tools such as 

this is required to test and refine conceptual and computational models of multicellular 

processes in cancer.

Normal development and aging.

Collective behavior in cancer emerges through the repurposing of the same basic 

biomolecular components used to build or maintain the normal tissue from which they are 

derived. For example, cell-cell interactions that are critical during normal pre- and post-natal 

development are typically suppressed in most adult tissues but can become reactivated in 

tumors. One set of interactions act to suppress the immune microenvironment around the 

placenta during fetal development and are critical to prevent rejection of the fetus by the 

maternal immune system. Near parturition this process is reversed by proinflammatory 

factors, leading to physiologic rejection of the developed fetus. This natural immune 

suppression during pregnancy results in relief of the symptoms of autoimmune disorders 

in pregnant women.14 Conversely, tumors tolerated by pregnant mice are rejected after 

parturition. The reversible nature of maternal-fetal tolerance can help us understand how to 

harness the immune system to combat cancer.

On the other end of the developmental spectrum is aging, which is the best appreciated 

risk factor for cancer. Aging is associated with numerous genomic changes, but like cancer, 

these changes are not sufficient to explain aging without considering their impact on cell-cell 

interactions. One type of cell-cell interaction that is essential for developing and maintaining 

tissues is cell competition, where more fit cells actively remove or kill less fit cells.15 For 

example, normal tissues can respond to the altered behaviors or biophysical properties of 

neighboring neoplastic cells and extrude them, resulting in their apoptosis or invasion. This 

process depends on the existence of normal neighboring cells; as tissues age, increasing 

numbers of cells are damaged and the efficiency of cell purging decreases. Oncogenes 

such as myc can enable individual cells to induce the death of surrounding normal tissue, 

for example, Myc gain-of-function mutations allow mutant cells to outcompete and kill 

neighboring normal cells in Drosophila. Similarly, senescent cells secrete factors that can 

reprogram the behavior of nearby cells. It remains to be seen how these interactions 

contribute to the early and late stages of cancer progression.
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Conclusion

Identifying cancer cell behaviors and enumerating their genetic and molecular underpinnings 

has explained much about cancer progression; however, key steps in the process have 

resisted explanation, limiting our understanding of initiation, metastasis, recurrence, and 

response to treatment. Studying cancer as a multicellular process, involving a diversity 

of interaction and feedback mechanisms at the tissue level will be critical for advancing 

the field. This will require the development of new model system and measurement 

modalities, validated in vivo, that provide deep quantitative phenotypic and molecular data. 

Placing these measurements in the appropriate conceptual framework will require adapting 

concepts from adjacent fields and building new mathematical and computational models 

of multicellular phenomena. Testing these models will require new tools for perturbing 

tissues at the molecular, cellular, and tissue scales. Will developing these approaches 

finally facilitate understanding cancers as the complex systems that they are, and will this 

understanding have an impact in the clinic? We propose that because collective behaviors 

play important roles in cancer progression and resistance to treatment, untangling the 

network of cellular interaction that regulate collective behaviors will provide new strategies 

for slowing, halting, reversing, and even preventing cancer.
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Figure 1. 
Modes of interaction and feedback
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