
UC San Diego
Technical Reports

Title
The EarlyBird System for Real-time Detection of Unknown Worms

Permalink
https://escholarship.org/uc/item/0hr341w2

Authors
Singh, Sumeet
Estan, Cristian
Varghese, George
et al.

Publication Date
2003-08-04

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0hr341w2
https://escholarship.org/uc/item/0hr341w2#author
https://escholarship.org
http://www.cdlib.org/

SUBMITTED TO HOTNETS-II 1

The EarlyBird System for Real-time Detection of
Unknown Worms

Sumeet Singh, Cristian Estan, George Varghese, Stefan Savage

University of California, San Diego

fsusingh,cestan,varghese,savageg@cs.ucsd.edu

Abstract—Network worms are a major threat to the security of
today’s Internet-connected hosts and networks. The combination
of unmitigated connectivity and widespread software homogene-
ity allows worms to exploit tremendous parallelism in propaga-
tion. Modern worms spread so quickly that no human-mediated
reaction to the outbreak of a new worm can hope to prevent a
widespread epidemic. In this paper we propose an automated
method for detecting new worms based on traffic characteristics
common to most of them: highly repetitive packet content, an
increasing population of sources generating infections and an in-
creasing number of destinations being targeted. Our method gen-
erates content signatures for the worm without any human inter-
vention. Preliminary results on a small network show promising
results: we have identified three confirmed worms with a low per-
centage of false positives. This gives us reason to believe that our

method could form the core of an effective network-level worm de-
tection and countermeasure system capable of substantially slow-
ing down the spread of new worms.

I. INTRODUCTION

Current practice for worm response is retroactive and man-

ual: only after a new worm is first detected and analyzed by a

human who identifies a signature can the containment process

be initiated. This approach is exemplified by the Code Red and

Slammer outbreaks for which it took hours to days of human ef-

fort to identify the worms, followed by containment strategies

in the form of turning off ports, applying patches, and doing

signature based filtering in routers and intrusion detection sys-

tems [1], [2].

The difficulties with this current approach are:

1, Slow Response There is a proverb that talks about locking

the stable door after the horse has escaped. Current practice fits

this scenario because by the time the worm containment strate-

gies are initiated, the worm has already infected much of the

network. In fact, Moore et al. show that detection and con-

tainment must be initiated within minutes or seconds to prevent

wide-spread infection in a 24 hour period [3].

2, Constant Effort Every new worm requires a major amount

of human work to identify, post advisories, and finally take ac-

tion to contain the worm. Unfortunately, all evidence seems to

indicate that there is no shortage of new exploits and moreover

simple binary modifications of existing attacks, can evade the

signature-based detection employed in modern network intru-

sion detection systems (e.g., such as Snort).

There is a pressing need for a new worm detection and con-

tainment strategy that is real-time (and hence can contain the

worm before it can infect a significant fraction of the network)

and is able to deal with new worms with a minimum of human

intervention (some human intervention is probably unavoidable

to at least catalog detected worms, do forensics, and fine-tune

automatic mechanisms).

More precisely, we list the goals of a automatic worm detec-

tion and containment system below (roughly in order of impor-

tance):

� Real-time Detection: The detection system should detect

the worm in seconds, and potentially initiate some contain-

ment strategy in a similar time frame. Clearly, the reason

for this is to prevent widespread infection before it is too

late [3].

� Content Agnosticism: The detection system should not

rely on external, manually supplied input of worm sig-

natures. Instead, the system should automatically extract

worm signatures even for new worms that may arise in the

future. The reason for this is to reduce the constant human

and other overhead involved in detecting a new worm.

� Versatile Deployment: The generic method should be de-

ployable (with some modifications) at any point in the net-

work including routers (edge and core), Intrusion Detec-

tion systems running on local area networks and even on

end systems themselves. Wide deployment is necessary to

ensure effective action against the spreading of a worm.

� Scalability: To support versatile deployment, we be-

lieve that worm detection and containment must be im-

plementable in high-speed network devices – such as

core routers. Ideally, a worm detection and contain-

ment method should be scalable: it should use moderate

amounts of memory and in particular avoid any depen-

dence on per-flow state. Moreover, any per-packet pro-

cessing should be sufficiently small and parallizable to al-

low line-rate implementations at 1 and 10Gbps.

The following secondary goals may also be desirable:

� Resilience to Simple Worm changes: We can expect no

system to provide absolute safety, but one should be able to

argue that the worm detection strategy is resilient to simple

countermeasures adopted by worm authors.

� Ability to Handle Asymmetric Routing: While in many

places (e.g., end systems) one can observe both directions

of a traffic flow, this is not the case at most core routers

due to asymmetric routing. (50% of Internet routes in

1999 were asymmetrical.) Since it is be desirable to have

a system that could be deployed at core routers we prefer

methods that work even if they can see only one direction

of certain flows.

� No use of active probing: Ideally, the containment system

SUBMITTED TO HOTNETS-II 2

should passively monitor the traffic (at least for detection

purposes) as opposed to doing active probing of addresses.

However, a small amount of traffic between cooperating

agents of the IDS may be reasonable.

The rest of this paper describes a method that attempts to

meet these goals, and a preliminary implementation of what we

call the EarlyBird system. In 2 we describe the abstract char-

acteristics of a worm our method relies on. In 3 we describe

our generic method for detecting unknown worms that produces

signatures, and 4 briefly describes possible actions the system

might take in response. In 5, we discuss countermeasures that a

worm author can riposte with. 6 describes the current EarlyBird

prototype, and 7 describes the results of a preliminary evalua-

tion. Finally in 8 we discuss related work and in 9 we conclude

with future directions.

II. ABSTRACT CHARACTERIZATION OF A WORM

For the purposes of this paper, we define a worm based on

two abstract features common to all current worms, from Code

Red (multi-packet, TCP-based, targets widely-used HTTP port)

to MS SQL Slammer (single-packet payload, UDP-based, tar-

gets rarely-used MS SQL port).1

F1, Substantial Volume of Identical Traffic: These worms

have the property that at least at an intermediate stage (after

an initial priming period but before full infection) the volume

of traffic (aggregated across all sources and destinations) gener-

ated by attempts to infect further victims is a noticeable fraction

of the network bandwidth.

F2, Rising Infection Levels: The number of sources and des-

tinations involved steadily increases.

In addition, current worms also have the following property

that can provide, along with the first two features, a stronger

indication of guilt.

F3, Random Probing: An infected source spreads infection

by attempting to communicate to random IP addresses at a fixed

port to probe for vulnerable services, thereby often contacting

unused portions of the address space.

This characteristic is commonly used in today’s worm de-

tection tools and analysis [1], [2]. Unfortunately, it seems

possible for worm writers to modify their propagation strate-

gies to use pre-generated hit lists [4] instead of random probing

or permutation scanning [4] which contact unused addresses.

Thus we use feature F3 only as an additional sign of guilt.

Feature F3 is also useful for distinguishing a worm from

more benign traffic patterns such as Flash Crowds, Spam, and

popular content in a P2P network that may exhibit features

F1 (high volume of repetitive content) and F2 and (increasing

number of sources and destinations). Unfortunately, if Early-

Bird is to deal with simple alternative spreading strategies it

may be best to use F3 only to prioritize the list of suspicious

traffic patterns. One can argue that these other “false posi-

tives” are indeed interesting traffic patterns that network opera-

tors would like to understand; thus flagging such patterns based

on F1 and F2 only may provide benefits beyond the control of

worm epidemics.

1We recognize that this characterization is vulnerable to opportunistic en-
cryption and dynamic polymorphism, but we do not address those issues here.

III. A METHOD FOR DETECTING UNKNOWN WORMS

We outline below our basic strategy that automatically de-

tects each of these abstract features of worms with low mem-

ory, small amounts of processing, even at vantage points that

see only one direction of certain flows, and without using ac-

tive probing. The mechanisms2 we use to detect each of these

features are:

M1, Identifying large flows in real time with small amounts

of memory : [5], [6] describe mechanisms to identify flows

(aggregates) with large traffic volumes for any definition of a

flow (e.g., source address, destination network). By modify-

ing this definition to use the content of a packet (or more effi-

ciently, a hash of the content) as a flow identifier, we can iden-

tify in real-time and with low memory the packets that repeat

very often. We show later how we can make this method more

robust to simple countermeasures by worm authors by detect-

ing not entire packets that repeat often but frequently occurring

fixed length strings that occur in many packets. An even more

specific idea (that distinguished worms from valid traffic such

as peer-to peer) is to compute a hash based on the content as

well as the destination port (that remains invariant for a worm).

While simple, we believe this notion (of using a content signa-

ture as a flow identifier or key on which to maintain counters)

is an important contribution.

M2, Counting the number of sources and destinations: [7],

[8] describe mechanisms using simple bitmaps of small size to

estimate the number of sources and destinations on a link with

small amounts of memory and processing. These mechanisms

can be used easily to count the number of sources, destinations

or source-destination pairs corresponding to signatures that ac-

count for high traffic volumes identified by the previous mech-

anism. While one could simply count source-destination pairs

for a popular piece of content with a single counter, we believe

that maintaining separate counters is more useful because it can

reveal an increase in both sources and destinations, which is

likely for a worm but less likely for Spam or a Flash Crowd.

Additionally, we can watch for random or permutation scan-

ning as follows using a well known technique:

M3, Determining scanning by counting the number of con-

nections attempts to unused portions of the IP address : We

can use a small variant of Moore’s “network telescope” idea [9],

[10] by paying special attention to a portion of the address space

we know to be unused. Worms spreading through UDP packets

might not need a reply from the victim thus the exploit itself can

be in the first packet they send to an address[11]. Thus assign-

ing a larger “guilt score” to popular content that is sent to the

telescope addresses will help us catch such worms. The exploit

of TCP based worms will not be sent to these addresses because

a connection cannot be initiated without an answer from the

victim. However we can “blacklist” IP sources that send many

packets to the telescope address space and assign a larger score

to popular content if sent by these sources. Note that reserving

such a large telescope address space for every IDS is clearly

impractical. However, the telescope space can be shared by the

IDS system within a network.

2Each of these mechanisms needs to be tuned to handle some special cases,
but we prefer to present the main idea untarnished with extraneous details.

SUBMITTED TO HOTNETS-II 3

We note again that each of the mechanisms M1, M2 and M3

can be implemented at high speeds with low amounts of mem-

ory. Essentially this is because M1 only keeps state for popular

content signatures, and M2 and M3 require only a small amount

of state for each piece of popular content. Notice also that the

base method makes no assumptions about the point of deploy-

ment, whether at the endpoint, edge, or core.

IV. ACTING ON THE ANOMALOUS PACKETS

While our current system only reports the anomalous pack-

ets, the final system will also take adequate action. Because the

system cannot always tell with high certainty whether a given

packet belongs to a worm or not, it is appropriate to have more

than one type of countermeasure in order to limit the amount

of collateral damage caused by the system. First of all when

the system suspects the appearance of a new worm it alarms the

network administrator and provides forensic data to let human

experts analyze and classify it. For traffic that looks like a worm

but there is still a chance of misclassification the system takes

less drastic action such as rate limiting it. For traffic identified

with high confidence as worm traffic the system resorts to more

drastic measures such as dropping the packets or resetting the

TCP connections.

V. WORM COUNTERMEASURES

At this point the serious security enthusiast might wonder

about the countermeasures worm authors might use to evade

detection.

C1, Adding Random Filler: The worm could be simply mod-

ified to add a random filler before and after the actual payload

that exploits the vulnerability, thus making a simple hash of the

entire packet payload useless.

C2, Syntactic Polymorphism: The worm could spread across

multiple links and the exploit could be fragmented differently

across different links in the network.

C3, Semantic Polymorphism: The worm writer could use bi-

nary rewriting and other devices to completely rewrite the ex-

ploit at each infection point.

C4, Slow Contagion: Staniford et al [4] describe a technique

called contagion where a worm spreads very slowly initially

foiling mechanism M1.

To handle the limited polymorphism exhibited by C1 and C2

we use sampled Rabin fingerprints over portions of a packet (as

was first used by Manber in spotting similarities in files [12])

instead of simpler hashes (SHA, MD5, CRC32) over entire

packet contents. This is equivalent to detecting not frequently

occurring packet contents but fixed length strings that occur fre-

quently. C3 and C4 are effective against our worm detection

method (and many others) but forcing worm authors to resort

to such complex techniques raises the bar, thus helping us in

the constant arms race with worm authors.

VI. EARLYBIRD SYSTEM DESCRIPTION

We have built the system based on the method described in

section 3. Our system is hardened against countermeasures C1

and C2 by using Rabin fingerprints of selected portions of a

packet. The system can be deployed at a vantage point in the

network to scrutinize every packet that passes through it, and

provide various levels of alerts to the user.

First, a 64-bit signature (or a representative set of signa-

tures) is computed by using a combination of the contents of

the packet payload and the destination port number for every

packet passing through the vantage point the system is deployed

at. Section 6.1 describes in detail the signature computation

process.

If the signature is found to occur more than o

uran
eRate

(threshold) number of times, then we instantiate counters to

count the number of distinct sources, distinct destinations, and

distinct source-destination pairs for the signature under consid-

eration. The parameter o

uran
eRate can be tuned to limit

the number of signatures the counters are maintained for at any

point of time.

As each packet may generate multiple signatures, we com-

pute a ratio mat
hP
t which counts the percentage of match-

ing signatures (substrings we saw before) for the particular

packet. The decision to flag a packet as anomalous takes into

account the mat
hP
t and the values of the counters across all

the matching signatures for the packet.

The higher the mat
hP
t and the counts for the number of

sources and destinations, for the packet under consideration, the

more likely it is that the payload of the packet is anomalous.

As a general rule, the system generates alerts when:

1) Packets with similar content are being sent to a number

of hosts (destination IP addresses).

2) Packets with similar content are being sent from a large

number of hosts (source IP addresses).

3) Packets with similar content are being sent from a number

of hosts to a large number of hosts (source-destination IP

address pairs).

The number of alerts generated by the system can be throt-

tled by requiring for the mat
hP
t and the number of hosts

(sources and destinations) involved to be above minimum

threshold levels which can be tuned by the user. We have done

preliminary experiments by setting the value of the thresholds

statically. We are now in the process of developing heuristics

to adaptively determine these thresholds, we however elide the

discussion from this paper due to space limitations.

A. Generating the Content based Signatures

For the purpose of generating signatures from the packet pay-

load, we use a method similar to the one proposed by Man-

ber [12] for finding similar files in a large file system. We com-

pute Rabin fingerprints [13] for all possible sub-strings of a cer-

tain length. As these fingerprints are polynomials they can be

computed incrementally while retaining the property that two

equal sub-strings will generate the same fingerprint, no matter

where they are in the string. Note that while Rabin signatures

at all offsets may appear to greatly increase the amount of state,

the use of sample-and-hold [6] will result only in maintaining

state for popular signatures.

Let us consider that we have a string represented by a se-

quence of bytes t

1

; t

2

: : : t

n

. The Rabin fingerprint F
1

for a

sequence of bytes t

1

; t

2

; t

3

; : : : ; t

�

of length � is given by:

SUBMITTED TO HOTNETS-II 4

Redhat 8Redhat 8Mandrake 7Redhat 7.0Win XP Win 2K RedHat 6.2
Linux

IDS

Switch

Internet
Router

TCPDump

Linux Linux Linux Linux

Fig. 1. Network configuration of the Local Area Network used for the evalua-
tions in this paper

F

1

= (t

1

� p

��1

+ t

2

� p

��2

+ � � � + t

�

) mod M where p

and M are constants. If we now want to compute the next fin-

gerprint F
2

for the sequence of bytes t
2

; t

3

: : : ; t

�+1

, then we

need only to add the last coefficient and remove the first one:

F

2

= (p �F

1

+ t

�+1

� t

1

�p

��1

)modM For efficient computa-

tion we pre-compute a table of all possible values of (t
i

� p

��1

)

for fast execution of the algorithm.

The length of the sub-string for which the fingerprints are

computed has a direct impact on the frequency of occurrence of

the fingerprint. The longer sub-strings we use the fewer repe-

titions we see. Based on a preliminary evaluation of the effec-

tiveness of various lengths for the sub-string, we use 39 byte

sub-strings for the experiments in this paper. Also we augment

the incrementally computed Rabin fingerprints with the desti-

nation port number because the repetitive worm traffic always

goes to the same ports while other repetitive content such as

popular web pages or peer to peer traffic often goes to ports

randomly chosen for each transfer.

VII. PRELIMINARY EVALUATION

A. Setup Description

The evaluation version of the system is positioned to look at

all traffic flowing in and out of our Local Area Network (LAN)

as shown in figure 1. The LAN is comprised of a total of 7 hosts

(5 Linux, 1 Win XP, and 1 Win 2K). Because of the presence of

the switch the IDS is unable to eavesdrop on any of the traffic

between the hosts in the LAN. Alternatively the system can also

analyze TCPDump traces.

In this paper we only present an evaluation of the mecha-

nisms (discussed in section 3) and not a detailed evaluation

of the complete system. We also did not implement sample-

and-hold of Rabin signatures in the current prototype because

memory was not an issue, and we also wanted to catch dormant

worms (more likely to be seen in a random snapshot of traffic)

whose traffic rates are too small to be caught by sample-and-

hold.

B. Evaluation Results

The following evaluation results are based on a TCPDump

trace collected at the vantage point shown in figure 1 over a 9

day period between May 2nd and May 10th 2003. The trace file

has a total of 4 million packet (with payload) records.

Our primary goal in this evaluation was to detect anomalous

packets (and the associated signatures) and understand why the

false-positives and false-negatives were occurring (i.e. which

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 5 10 15 20 25 30

nu
m

be
r

of
 fi

ng
er

pr
in

ts

number of unique destinations

Fingerprint distribution for sub-string length 39

RFP
RFP-WP

Fig. 2. Signature Distribution for signatures computed using Rabin Finger-
prints of sub-string length � = 39 with and without the destination port num-
ber.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 20 40 60 80 100 120 140 160

nu
m

be
r

of
 fi

ng
er

pr
in

ts

number of unique destinations

Fingerprint distribution for sub-string length 4

RFP4-WP

Fig. 3. Signature Distribution for signatures computed using Rabin Finger-
prints of sub-string length � = 4 and the destination port number

applications or services if any, had an unusually high false re-

porting rate and what was causing it), and what impact the se-

lection of the various threshold levels as well as the length of the

sub-string (over which the Rabin fingerprints were computed)

had on the false-positive and false-negative rates.

First consider the figures 2 and 3. In both figures the X-

axis shows the number of unique destinations and the Y-axis

shows the number of signatures, thus each point represents the

total number of signatures (y-axis) destined for a number of

destinations (x-axis).

Understanding the effects of using the port number in the sig-

nature: In Figure 2 the curve RFP represents the distribution of

signatures based on the Rabin fingerprints and curve RFP-WP

represents the distribution of the same signatures when aug-

mented with the destination port number. As we need to main-

tain per signature counters (for signatures greater than threshold

level) it is clear from this figure that utilizing the port number

as a component of the signature significantly reduces the num-

ber of distinct signatures destined for more than one destination

(thus we need to maintain counters for fewer signatures).

Understanding the effects of using small sub-strings for com-

puting the signatures: Figure 3 shows the distribution of signa-

tures based on Rabin fingerprints of sub-string length 4 aug-

mented with the destination port number. It is clear that by

reducing the length of the sub-string there is an order of mag-

nitude increase in the total number of fingerprints.3 Further in

3We emphasize again that the implementation does not use sample-and-hold

SUBMITTED TO HOTNETS-II 5

Source Dest SD Pairs Prot/Port Exploit (truncated) Vulnerability Name/Incident

45 5 51 TCP/80 GET /default.ida?XXXXXXX IIS CodeRed variant

4 3 4 TCP/80 GET / HTTP /1.1 pre-attack scan for ssl Slapper

1 4 4 TCP/80 GET /scripts/.%252e/.%252e/ IIS Unicode exploit

1 4 4 TCP/80 GET /scripts/..%c0%af../ IIS Unicode exploit

1 4 4 TCP/80 GET /scripts/..%255c%255c../ IIS Unicode exploit

1 9 9 TCP/443 - OpenSSL-Linux Slapper

1 3 3 TCP/80 GET http://www.s3.com HTTP/1.1 scan for open proxies Not a Worm

498 4 742 TCP/139 - NetBios Out of band attack

17 3 23 TCP/445 - NetBios Out of band attack

TABLE I

Summary information of the packets marked as containing worm like traffic. Note, we do not only catch Worms, but also other intrusion attempts

made which try to exploit vulnerabilities on the end hosts, many of these attempts follow the same characteristics as worms but for the fact that

they are initiated by users.

comparison with figure 2 it is clear that reducing the length of

the fingerprint increases the probability of finding a match for

the small sub-string in a packet which has a direct impact on

the resources needed by the system.

Recall that the IDS system does not require as seed (user in-

put) any type of signatures (content based or port and byte count

based) but instead the system should be able to automatically

identify the anomalous signatures. We did not identify any new

worms (as there were no new outbreaks during the evaluation

period), but the results are nevertheless promising.

Our goal is to identify identical content that is prevalent on

the network. Once identified (and the signatures gathered au-

tomatically) the system is required to determine the number of

hosts the content has (and is) traversed. A content signature is

determined to be anomalous if the count of source-destination

pairs the content has traversed is above a threshold. For the re-

sults presented here we used the minimum threshold of 2 (i.e.

the same piece of content is transferred between two or more

hosts) for this counter. Table 1 summarizes some of the inter-

esting findings.

All the exploits reported here (Code Red, Linux-Slapper etc.)

have been out in the wild for some time. However, we were

able to automatically identify their signatures, and verify that

they were indeed worm attacks by comparing them with pub-

licly available security advisories. The Unicode exploit is on

the lines of the popular Nimda exploits. We were able to au-

tomatically capture 3 distinct attack patterns for the Unicode

exploit.

The most unexpected thing we found was that packets orig-

inating from one of the host machines in our network showed

behavior typical of the slapper worm (attempting to infect other

hosts); this came as a complete surprise.

The Windows NetBios out of band attack (TCP/139) was

generating an exceptionally high number of incidents. The

number of incidents (in this trace and other traces) were high

enough to warrant blocking all traffic destined for TCP Port

139 at the university gateway router.

We do not report the individual signatures or content strings

that result in false positives but instead we list the following

on the content signatures to reduce their size.

patterns which resulted in the packets being marked as anoma-

lous. i) when the same piece of content is sent from one host

to many different hosts; as in the case of mailing lists, or many

clients being served the same image (hot object) from the same

source (server), and ii) when the same piece of content is re-

quested from many different clients (sources) from one server

(destination).

In both these situations we would see the signatures repet-

itively along with a large number of source-destination pairs;

however most of these false positive patterns reported by the

system can be eliminated by simply requiring for the system to

check that the same content propagate not just between multi-

ple source-destination pairs, but also that there at least k dis-

tinct sources and k distinct destinations involved. By utilizing

these additional counters we eliminated almost all the false pos-

itives, except for some small data-packets. In the case of the

mailing-lists, the number of sources was one, while requests

for the same piece of hot-content had one unique destination.

Besides these, other false positives the system could not

automatically eliminate were, i) Requests for objects like

”robots.txt”, which are made from many different servers (by

different bots, i.e. different user agents) to many different hosts.

Note, requests for objects like index.html were almost always

distinct for different hosts and are therefore not falsely reported

as anomalous.ii) Single packet application identifier strings, for

example in the case of ssh clients connecting to the server, the

following string is passed during setup “SSH-1.99-3.1.1 SSH

Secure Shell for Windows”. iii) Packets with small payload (3-

4 bytes) belonging to applications like SSH and VNC. As the

data payload is so small, creating signatures from the limited

bytes increases the probability of finding the same signatures

again and again.

All things considered, the particular signatures that generate

false positives appear limited enough that a human can provide

input to verify whether the signature under question is a piece of

valid content or a worm (so that these signatures can be ignored

in the future), just as spell-checkers use human input to avoid

repeated flagging of valid words not present in a dictionary.

SUBMITTED TO HOTNETS-II 6

VIII. RELATED WORK

Due to space limitations we only briefly discuss recent de-

velopments in worm detection mechanisms.

Zou et. al. [14] expand on the idea of Network Telescopes to

monitor for port scan like behavior on ingress and egress routers

as well as unused portions of the address space by setting up a

black hole network. The major challenge they face is the preva-

lent noise on the unused address spaces.

Twycross and Williamson [15] take a host based approach

and propose to rate limit the number of outgoing connections

made by the host machine, as hosts infected with worms will be

expected to connect to a larger than the usual number of hosts.

Snort [16] is publicly available open source software that at-

tempts to prevent intrusions by filtering based on content sig-

natures. However, these signatures must be created by humans

and entered into the system. The system does not provide any

kind of assistance in creation of the signatures. We note that

the mechanisms discussed in this paper can be applied to Snort

(and other existing tools) to further enhance their utility and ef-

fectiveness.

Spring and Wetherall [17] have previously applied Rabin

Fingerprints [13] (in the context of web caching) to identify re-

dundant network traffic in order to improve Web Performance.

Duffield et al [18] sample packets based on a hash of the packet

content for understanding routing packet patterns in a network.

IX. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we present an automated approach for real-time

detection of unknown worms that uses two characteristics com-

mon to all worms — substantial volumes of identical traffic,

and rising infection levels — to automatically derive signatures

for new worms. More specifically, our method detects popular

content, and measures other traffic characteristics (such as the

number of distinct sources sending a particular piece of content

and the number of destinations it is sent to) to ascertain whether

the recurring content is a spreading worm. Given recently de-

veloped techniques for identifying popular flows and counting

flows with small amounts of state, it appears that our method

can be implemented at high speeds.

While we believe that EarlyBird can be a useful system in

itself, we believe that the underlying method (maintaining state

keyed by content signatures for signature extraction) raises a

number of other interesting research questions. First, could

adding content signatures as an extra field in traffic analysis

tools such as FlowScan and AutoFocus yield extra insight for

network managers? Second, can content signatures be used for

better filtering at HoneyFarms, for speedier (maybe real-time)

and efficient detection of intrusion attempts and their associ-

ated signatures? Third, the issue of content replication extends

far beyond worms to other vexing questions such as Spam and

Email worms. How should our ideas be modified for these very

different contexts? These questions point to the more general

notion of making content a first-class entity in traffic analysis.

Our preliminary results for EarlyBird on a small network

show that our automated approach of identifying new worms is

promising: using Rabin signatures, EarlyBird identified three

confirmed worms with an encouragingly low percentage of

false positives when configured with good parameters.

We plan to test EarlyBird at better vantage points such as the

network edge and CAIDA monitors or even on the network of a

Tier-1 ISP. These tests will allow us to further refine our method

and better predict the effectiveness of a network-wide system

based on it. A great challenge in testing the accuracy of worm

detection methods is validating whether the pieces of content

it flags are indeed worms. This requires examining content, an

approach fraught with legal issues.

However, the ultimate question is whether EarlyBird will

spot a genuinely new form of malicious traffic: or, more prover-

bially, will the EarlyBird indeed catch the worm?

X. ACKNOWLEDGEMENTS

This work was made possible by NSF Grant ANI-

0137102 and the Sensilla project sponsored by NIST Grant

60NANB1D0118.

REFERENCES

[1] D. Moore, C. Shannon, and J. Brown, “Code-red: A case study on the
spread and victims of an internet worm,” in Proceedings of the Internet
Measurement Workshop, 2002.

[2] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and N. Weaver,
“The spread of the sapphire/slammer worm,” July 2003.

[3] D. Moore, C. Shannon, G. Voelker, and S. Savage, “Internet quarantine:
Requirements for containing self-propagating code,” in Infocom, Apr.
2003.

[4] S. Staniford, V. Paxson, and N. Weaver, “How to 0wn the internet in
your spare time,” in Proceedings of the 11th USENIX Security Sympo-

sium, 2002.
[5] P. B. Gibbons and Y. Matias, “New sampling-based summary statistics

for improving approximate query answers,” in Proceedings of the ACM
SIGMOD, June 1998, pp. 331–342.

[6] C. Estan and G. Varghese, “New directions in traffic measurement and
accounting,” in Proceedings of the ACM SIGCOMM, Aug. 2002.

[7] P. Flajolet and G. N. Martin, “Probabilistic counting algorithms for data
base applications,” Journal of Computer and System Sciences, vol. 31,
no. 2, pp. 182–209, Oct. 1985.

[8] C. Estan, G. Varghese, and M. Fisk, “Bitmap algorithms for counting
active flows on high speed links,” in Internet Measurement Conference,
Oct. 2003.

[9] D. Moore, G. Voelker, and S. Savage, “Inferring internet denial-of-service
activity,” in USENIX Security Symposium, 2001.

[10] D. Moore, “Network telescopes: Observing small or distant security
events,” 2002.

[11] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and
N. Weaver, “The spread of the sapphire/slammer worm,” Tech. Rep., Jan.
2003, http://www.caida.org/ outreach/ papers/
2003/ sapphire/ sapphire.html.

[12] U. Manber, “Finding similar files in a large file system,” in Proceedings
of the USENIX Winter 1994 Technical Conference, San Fransisco, CA,
USA, 17–21 1994, pp. 1–10.

[13] M. O. Rabin, “Fingerprinting by random polynomials,” Center for Re-
search in Computing Technology, Harvard University, Tech. Rep. 15-81,
1981.

[14] C. C. Zou, L. Gao, W. Gong, and D. Towsley, “Monitoring and early
warning for internet worms,” Department of Computer Science, Univ. of
Massachusetts, Amherst, Tech. Rep. TR-CSE-03-01, 2003.

[15] J. Twycross and M. M. Williamson, “Implementing and testing a virus
throttle,” in to apper in 12th USENIX Security Symposium, Aug. 2003.

[16] “Snort: Open source network intrusion detection system,” 2002. [Online].
Available: www.snort.org

[17] N. T. Spring and D. Wetherall, “A protocol-independent technique for
eliminating redundant network traffic,” in ACM Sigcomm 2000, Aug.
2000.

[18] N. Duffield and M. Grossglauster, “Trajectory sampling for direct traffic
observation,” in ACM SIGCOMM, 2000.

