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ABSTRACT OF THE DISSERTATION

Incorporating World Model Knowledge into Event Parsing, Prediction, and Reasoning

by

Baoxiong Jia

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2022

Professor Song-chun Zhu, Chair

Event understanding is one of the most fundamental problems in artificial intelligence and

computer vision. Rooted in the field of neuroscience, the study and analysis of human motion

perception have long suggested that we perceive human activities as goal-directed behaviors.

As an essential capability of humans, we interpret others’ goals and learn tasks through

the endless video stream of daily activities. To endow machines with the same intelligent

behaviors, the challenges of emerging such a capability lie in the difficulty of generating a

detailed understanding of world model knowledge including situated actions, their effects

on object states (i.e., state changes), and their causal dependencies. These challenges are

further aggravated by the natural parallelism in human multi-tasking, and partial observations

originated from both the egocentric perception and uncertainties in estimating others’ beliefs

in multi-agent collaborations.

In this dissertation, we propose to study this missing gap from both the data and

the modeling perspective by incorporating knowledge of the world model for proper event

parsing, prediction, and reasoning. First, we propose three datasets, RAVEN, LEMMA, and

EgoTaskQA, to study the event understanding problem from both the abstract and real
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domain. We further devise three benchmarks to evaluate models’ detailed understanding of

events with (1) intelligence tests for spatial-temporal reasoning in RAVEN, (2) compositional

action recognition and prediction in LEMMA, and (3) task-conditioned question answering in

EgoTaskQA. Next, from the modeling side, we decompose the problem of event understanding

into a unified framework that involves three essential modules: grounding, inference, and

the knowledge base. To properly solve the problem of detailed event understanding, we

need to focus on (1) the perception problem for grounding, (2) the knowledge representation

problem, and (3) the inference problem. For the perception problem, we discuss the potential

in existing models and propose the BO-QSA for the unsupervised emergence of object-centric

concepts. For the inference problem, we discuss ways to initialize the overall framework with

(1) PrAE which makes use of probabilistic abductions given logical rules, and (2) GEP which

leverages stochastic context-free grammars for modeling. We conduct experiments to show

their effectiveness on various tasks and also discuss the limitations of each proposed work to

highlight immediate next steps for possible future directions.
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CHAPTER 1

Introduction

1.1 Goal-oriented Human Activities

As the most readily available learning source, videos of daily human activities could be used to

train intelligent agents and, in turn, to assist humans. However, compared to recent progress

in learning from static images [AAL15, HZR16, HGD17, RHG15], current machine vision’s

ability to understand activities from videos still falls short. Admittedly, event understanding is

inherently more challenging, which requires reason about the complex structures in activities

along the additional temporal dimension; but there are more profound reasons that we must

look back to the origin of activity understanding.

The study and analysis of human motion perception are rooted in the field of neuro-

science [TCS08]. Using a dot-representation of human motions, Johansson [Joh73] adopted

a method to produce proximal patterns (i.e., the moving light display experiment), which

demonstrated that human perception of events is not tightly coupled with pixel-based fea-

tures; human subjects can still perceive the semantics of activities from sparse represen-

tations of motions. Evidence from developmental psychology, the classic Heider-Simmel

experiment, further suggests that we perceive human activities as goal-directed behav-

iors [Woo98, BBS01, GBK02, CG07]; it is the underlying intent, rather than the surface

pixels or behavior, that matters when we observe motions [BB01].

Following this line of thought, cognitive studies suggest that we approach this goal-

attribution problem through three major mechanisms: a) action-effect association, b) em-
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bodied simulation and c) teleological reasoning [CG07]. From the perspective of action-

effect association, goals or desired effects automatically activate the corresponding action,

while the activation of an action elicits the anticipation of the distal effect associated with

it [HMA01, Woo98]. The embodied simulation theory conjectures that people imagine

themselves in the other’s position and simulatively generate mental states (beliefs, desires, in-

tentions) in the other’s “shoes” for understanding and predicting behaviours. This hypothesis

is further boosted by the discovery of mirror neuron areas in humans [BSS07, GEM07, GG98].

At last, teleological reasoning emphasizes that people infer the goals of others by first reason-

ing on the accessible goal states given current situational constraints. The principle of rational

action is then adopted for evaluating the efficiency of each approach toward the goal, which

further leads to goal prediction and future action prediction [CG98, Csi03, GNC95]. Despite

their differences, all three mechanisms require detailed knowledge of action dependencies

and effects. With such knowledge playing crucial roles in human cognitive development,

learning them from visual observation is pivotal for building more intelligent agents.

Finally, daily human activities are intrinsically multi-tasked [Mon03, RME01]. Under-

standing activity naturally demands a learning system to interpret concurrent interactions.

As agents’ decision-making processes are deeply affected by their unique social values, task

scheduling is significantly affected by interactions (e.g ., cooperation, competition, subordina-

tion) among multi-agents [KHA16]. These observations implicate that the machine vision

system must objectively understand how a given task should be decomposed into atomic-

actions, how multi-tasks should be executed and coordinated in parallel among multi-agents,

and take the perspective from human agents to understand why the observed human activities

are optimal solutions. Such a decompositional, multi-task, multi-agent, diagnostic-

driven, social perspective of event understanding is critical for an intelligent agent to

understand human behavior and team with humans collaboratively.
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1.2 Evaluating Spatial-Temporal Understanding

In spite of the importance of event understanding, the key factors as discussed in Section 1.1

have been largely left untouched in current video-related research. The majority of the recent

progress in video understanding has been focusing on action recognition, captioning, and

future anticipation, especially in an embodied egocentric view [SZS12, KTS14, CEG15, CZ17,

FKE18, SGS18, LLR18, JCH20, DDF22, GWB22]. However, these tasks merely cover the tip

of the iceberg, considering how humans learn from visual observations to obtain knowledge

for profound tasks like learning world models, planning for desired goals, and building beliefs

about others.

Motivated by the deficiencies of existing works, we start from a synthetic abstract domain,

RAVEN [ZGJ19], to evaluate the model’s capabilities on the abstract spatial-temporal

understanding and reasoning task through intelligent quotient tests. When viewing from the

video perspective, columns in these tasks for reasoning could be treated as consecutive time

frames inside the videos. With simple shapes, this task offers a clean environment as a test

bed for evaluating different sequence modeling methods without perceptual level difficulties.

Next, we introduce the LEMMA dataset [JCH20] to go a step further toward the innate

difficulties in real-world human activity modeling. By quantifying the scenarios to up to

two multi-step tasks with two agents, we strive to address detailed human multi-task and

multi-agent interactions in our videos for task-oriented event understanding. Finally, we

present EgoTaskQA [JLZ22], a challenging egocentric, goal-oriented video question-answering

benchmark built on top of LEMMA. By extending the LEMMA dataset with annotations

consisting of object status, human-object and multi-agent relationships, and causal dependency

structures between actions, we design different questions that target various aspects of event

and task understanding. We provide the details of the proposed evaluation benchmarks in

Part I.
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1.3 Modeling Sequential Events

For sequence modeling, we use the POMDP [KLC98] framework to illustrate existing problems

that need to be solved. The basic elements of the formulation could be defined by the tuple

xS,A, T, V,Ω, O,Gy where S is a set of states representing the world; A is a set of actions

that an agent can perform in the environment; T : S ˆ A ÞÑ ΠpSq is the state-transition

function, giving for each world state and agent action, a probability distribution over world

states (we use T ps, a, s1q or Penvps1|s, aq to denote this probability); V : S ÞÑ R is the value

function, giving the value of states that agents can reach; Ω is a set of observation the agent

can experience or observe; O : S ÞÑ ΠpΩq is the observation function, which gives, for each

action and resulting state; and G Ď S is a set of goal state that an agent is trying to achieve,

or more intuitively, the final world state an agent is trying to arrive at.

For a real-world problem, we are provided with the observed sequence o1:T “ to1, o2, ¨ ¨ ¨ , otu

and history action sequence a1:T “ ta1, a2, ¨ ¨ ¨ , atu. We use g to denote the potential goal

state of an agent. The probability of the event with latent dynamics and observations of

both scene configurations and human actions, i.e., τ “ to1, a1, o2, a2, ¨ ¨ ¨ , ot´1, at´1, otu, can

be formulated as:

P pτ, I0:T ; ∆q “P ps0, a0, o0, ..., sT , aT , oT ; ∆q

“P po0|s0; ∆qP ps0q
T

ź

t“1

P pat|st; ∆qP pst|st´1, at; ∆qP pot|st; ∆q

9P po0|s0; ∆q

T
ź

t“1

P pat|st; ∆qP pst|st´1, at; ∆qP pot|st; ∆q

“P po0:T |s0:T ; ∆q

T
ź

t“1

P pat|st; ∆q P pst|st´1, at; ∆q

(1.1)

where ∆ contains knowledge of goal set G, values R, as well as needed parameters for the

underlying representation of states and actions. Eq. (1.1) points out the three key challenges

toward good activity understanding and learning from demonstration:
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(1) What is a good representation space of S such that fits for both visual generation and

projection (P po|sq) and latent world dynamics building (P ps1|s, aq)?

(2) How do we capture world dynamics (P ps1|s, aq) from raw pixels with limited supervision?

(3) How do we model action policies of humans (P pa|sq)?

In this dissertation, we focus on the first two problems. The challenge in solving these

problems resides in the efficiency in properly representing both world states and dynamics.

To answer the question of what is a good representation for knowledge, we have some key

properties that such representations must possess: (i) the representation should have a

compositional syntax and semantics, (ii) the operations defined over these representations

are sensitive only to their syntax. This hypothesis is also referred to as the Language of

Thought Hypothesis (LOTH), which states that human thinking occurs in a mental language

that has the systematic generalization ability to generalize from interrelations. Important

as it is, disentangling such concepts from visual stimuli is an exceedingly difficult task to

accomplish with limited supervision [GVS20] and requires proper inductive biases [SLB21].

Therefore, we propose Bi-level Optimized Query Slot Attention (BO-QSA) at the beginning

of Part II to study the architectural inductive biases that a model should possess for learning

groundable concepts from static images. Following this discussion, we aim to address the

second problem by making basic assumptions on video representations and incorporating

world dynamics knowledge of different forms for sequential event modeling. We show that with

three different knowledge representations (logic, grammar ) and their corresponding inference

module (PrAE [ZJZ21], Generalized Earley Parser (GEP) [QJH20] ), we can improve the

capability of existing models on modeling sequential events. We leave the discussion on this

topic to the second half of Part II.

5



Part I

Evaluating Spatial-Temporal

Understanding
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CHAPTER 2

RAVEN: A Dataset for Relational and Analogical Visual

Reasoning

Computer vision has a wide spectrum of tasks. Some computer vision problems are

clearly purely visual, “capturing” the visual information process; for instance, filters in

early vision [CR68], primal sketch [GZW07] as the intermediate representation, and Gestalt

laws [KK79] as the perceptual organization. In contrast, some other vision problems have

trivialized requirements for perceiving the image, but engage more generalized problem-

solving in terms of relational and/or analogical visual reasoning [HHT96]. In such cases, the

vision component becomes the “basis for decisions about our thoughts and actions”. With

dramatic progress made in relational reasoning through the task of Visual Question Answer-

ing (VQA) [AAL15, JHV17, RKZ15, YWG18, ZGB16], the reasoning capability required in

such tasks lies only at the periphery of the cognitive test circle [CJS90], especially when

compared to core reasoning capabilities like spatial-temporal and analogical reasoning. To

push the limit of computer vision towards the center of cognitive ability test circle, we need

a test originally designed for measuring human intelligence on these reasoning problems to

challenge, debug, and improve the current artificial systems.

A surprisingly effective ability test of human visual reasoning has been developed and

identified as the Raven’s Progressive Matrices (RPM) [KMG13, Rav38, SCS13], which is

widely accepted and believed to be highly correlated with real intelligence [CJS90]. Unlike

VQA, RPM lies directly at the center of human intelligence [CJS90], is diagnostic of abstract

and structural reasoning ability [EKM84], and characterizes the defining feature of high-level

7



?
An

sw
er

 S
et

Pr
ob

le
m

 M
at

rix

1 2 3 4

5 6 7 8

(a) (b)

(c)

Center
<latexit sha1_base64="Ni4/QsatCtXebIKLMZf16berMWg=">AAAB+HicbVBNTwIxFOziF+IHqEcvjcTEE9k1JnokcvGIiYAJbEi3vIWGbnfTvjXihl/ixYPGePWnePPfWGAPCk7SZDLzJu91gkQKg6777RTW1jc2t4rbpZ3dvf1y5eCwbeJUc2jxWMb6PmAGpFDQQoES7hMNLAokdIJxY+Z3HkAbEas7nCTgR2yoRCg4Qyv1K+UewiMiZg1QCHrar1TdmjsHXSVeTqokR7Nf+eoNYp5GNs4lM6bruQn6GdMouIRpqZcaSBgfsyF0LVUsAuNn88On9NQqAxrG2j6FdK7+TmQsMmYSBXYyYjgyy95M/M/rphhe+ZlQSYqg+GJRmEqKMZ21QAdCA0c5sYRxLeytlI+YZtx2YEq2BG/5y6ukfV7z3Jp3e1GtX+d1FMkxOSFnxCOXpE5uSJO0CCcpeSav5M15cl6cd+djMVpw8swR+QPn8weGvJOj</latexit><latexit sha1_base64="Ni4/QsatCtXebIKLMZf16berMWg=">AAAB+HicbVBNTwIxFOziF+IHqEcvjcTEE9k1JnokcvGIiYAJbEi3vIWGbnfTvjXihl/ixYPGePWnePPfWGAPCk7SZDLzJu91gkQKg6777RTW1jc2t4rbpZ3dvf1y5eCwbeJUc2jxWMb6PmAGpFDQQoES7hMNLAokdIJxY+Z3HkAbEas7nCTgR2yoRCg4Qyv1K+UewiMiZg1QCHrar1TdmjsHXSVeTqokR7Nf+eoNYp5GNs4lM6bruQn6GdMouIRpqZcaSBgfsyF0LVUsAuNn88On9NQqAxrG2j6FdK7+TmQsMmYSBXYyYjgyy95M/M/rphhe+ZlQSYqg+GJRmEqKMZ21QAdCA0c5sYRxLeytlI+YZtx2YEq2BG/5y6ukfV7z3Jp3e1GtX+d1FMkxOSFnxCOXpE5uSJO0CCcpeSav5M15cl6cd+djMVpw8swR+QPn8weGvJOj</latexit><latexit sha1_base64="Ni4/QsatCtXebIKLMZf16berMWg=">AAAB+HicbVBNTwIxFOziF+IHqEcvjcTEE9k1JnokcvGIiYAJbEi3vIWGbnfTvjXihl/ixYPGePWnePPfWGAPCk7SZDLzJu91gkQKg6777RTW1jc2t4rbpZ3dvf1y5eCwbeJUc2jxWMb6PmAGpFDQQoES7hMNLAokdIJxY+Z3HkAbEas7nCTgR2yoRCg4Qyv1K+UewiMiZg1QCHrar1TdmjsHXSVeTqokR7Nf+eoNYp5GNs4lM6bruQn6GdMouIRpqZcaSBgfsyF0LVUsAuNn88On9NQqAxrG2j6FdK7+TmQsMmYSBXYyYjgyy95M/M/rphhe+ZlQSYqg+GJRmEqKMZ21QAdCA0c5sYRxLeytlI+YZtx2YEq2BG/5y6ukfV7z3Jp3e1GtX+d1FMkxOSFnxCOXpE5uSJO0CCcpeSav5M15cl6cd+djMVpw8swR+QPn8weGvJOj</latexit><latexit sha1_base64="Ni4/QsatCtXebIKLMZf16berMWg=">AAAB+HicbVBNTwIxFOziF+IHqEcvjcTEE9k1JnokcvGIiYAJbEi3vIWGbnfTvjXihl/ixYPGePWnePPfWGAPCk7SZDLzJu91gkQKg6777RTW1jc2t4rbpZ3dvf1y5eCwbeJUc2jxWMb6PmAGpFDQQoES7hMNLAokdIJxY+Z3HkAbEas7nCTgR2yoRCg4Qyv1K+UewiMiZg1QCHrar1TdmjsHXSVeTqokR7Nf+eoNYp5GNs4lM6bruQn6GdMouIRpqZcaSBgfsyF0LVUsAuNn88On9NQqAxrG2j6FdK7+TmQsMmYSBXYyYjgyy95M/M/rphhe+ZlQSYqg+GJRmEqKMZ21QAdCA0c5sYRxLeytlI+YZtx2YEq2BG/5y6ukfV7z3Jp3e1GtX+d1FMkxOSFnxCOXpE5uSJO0CCcpeSav5M15cl6cd+djMVpw8swR+QPn8weGvJOj</latexit>

Figure 2.1: A visualization of RPM (a), structural information (b), and compositional rules (c).

intelligence, i.e., fluid intelligence [JBJ08].

Figure 2.1 shows an example of RPM problem together with its structure representation.

Provided two rows of figures consisting of visually simple elements, one must efficiently derive

the correct image structure (Figure 2.1(b)) and the underlying rules (Figure 2.1(c)) to jointly

reason about a candidate image that best completes the problem matrix. In terms of levels

of reasoning required, RPM is arguably harder compared to VQA:

‚ Unlike VQA where natural language questions usually imply what to pay attention to in

the image, RPM relies merely on visual clues provided in the matrix and the correspondence

problem itself, i.e., finding the correct level of attributes to encode, is already a major

factor distinguishing populations of different intelligence [CJS90].

‚ While VQA only requires spatial and semantic understanding, RPM needs joint spatial-

temporal reasoning in the problem matrix and the answer set. The limit of short-term

memory, the ability of analogy, and the discovery of the structure have to be taken into

consideration.

‚ Structures in RPM make the compositions of rules much more complicated. Unlike VQA

whose questions only encode relatively simple first-order reasoning, RPM usually includes

more sophisticated logic, even with recursions. By composing different rules at various
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levels, the reasoning progress can be extremely difficult.

We, therefore, generate the dataset with RPMs and refer to the generated dataset as the

Relational and Analogical Visual rEasoNing dataset (RAVEN) in homage to John Raven for

the pioneering work in the creation of the original RPM [Rav38]. In summary:

‚ RAVEN consists of 70K RPM problems, equally distributed in 7 distinct configurations.

‚ Each problem has 16 tree-structure annotations, totaling up to 1.12M structural labels.

‚ We design 5 rule-governing attributes and 2 noise attributes. Each rule-governing attribute

goes over one of 4 rules, and objects in the same component share the same set of rules,

making in total 440K rule annotations and an average of 6.29 rules per problem.

The RAVEN dataset is designed inherently to be light in visual recognition and heavy in

reasoning. Each image only contains a limited set of simple gray-scale objects with clear-cut

boundaries and no occlusion. Meanwhile, rules are applied row-wise, and there could be one

rule for each attribute, attacking visual systems’ major weaknesses in short-term memory

and compositional reasoning [JHV17].

An obvious paradox is: in this innately compositional and structured RPM problem, no

annotations of structures are available in previous works (e.g ., [BHS18, WS15]). Hence, we

set out to establish a semantic link between visual reasoning and structure reasoning in RPM.

We ground each problem instance to a sentence derived from an Attributed Stochastic Image

Grammar (A-SIG) [Fu74, LWP09, PZ15, WXZ07, ZWZ16, ZM07] and decompose the data

generation process into two stages: the first stage samples a sentence from a pre-defined A-SIG

and the second stage renders an image based on the sentence. More importantly, the data

generation pipeline naturally provides us with abundant dense annotations, especially the

structure in the image space. This semantic link between vision and structure representation

opens new possibilities by breaking down the problem into image understanding and tree-

or graph-level reasoning [KW16, TSM15]. In the following sections, we discuss related

work in visual reasoning and computational efforts in RPM, provide detailed descriptions

of the RAVEN dataset generation process, design models that could leverage the important
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structural information, and provide human as well as machine performance on RAVEN with

analyese. The notable gap between human subjects (84%) and vision systems (59%) calls for

further research into this problem.

2.1 Related Work

Visual Reasoning Early attempts were made in the 1940s-1970s in the field of logic-based

Artificial Intelligence (AI). Newell argued that one of the potential solutions to AI was “to

construct a single program that would take a standard intelligence test” [New73]. There are

two important trials: (i) Evans presented an AI algorithm that solved a type of geometric

analogy task in the Wechsler Adult Intelligence Scale (WAIS) test [Eva62, Eva64], and

(ii) Simon and Kotovsky devised a program that solved Thurstone letter series completion

problems [TT41]. However, these early attempts were heuristic-based with hand-crafted rules,

making it difficult to apply to other problems.

The reasoning ability of modern vision systems was first systematically analyzed in the

CLEVR dataset [JHV17]. By carefully controlling inductive bias and slicing the vision systems’

reasoning ability into several axes, Johnson et al . successfully identified major drawbacks

of existing models. A subsequent work [JHM17] on this dataset achieved good performance

by introducing a program generator in a structured space and combining it with a program

execution engine. A similar work that also leveraged language-guided structured reasoning

was proposed in [HAR17]. Modules with special attention mechanisms were latter proposed

in an end-to-end manner to solve this visual reasoning task [HM18, SRB17, ZZH17]. However,

superior performance gain was observed in very recent works [CLL18, MTS18, YWG18] that

fell back to structured representations by using primitives, dependency trees, or logic. These

works also inspire us to incorporate structure information into solving the RPM problem.

More generally, Bisk et al . [BSC18] studied visual reasoning in a 3D block world. Perez

et al . [PSD18] introduced a conditional layer for visual reasoning. Aditya et al . [AYB18]
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proposed a probabilistic soft logic in an attention module to increase model interpretability.

And Barrett et al . [BHS18] measured abstract reasoning in neural networks.

Computational Efforts in RPM The research community of cognitive science has tried

to attack the problem of RPM with computational models earlier than the computer science

community. However, an oversimplified assumption was usually made in the experiments

that the computer programs had access to a symbolic representation of the image and the

operations of rules [CJS90, LF17, LFU10, LTF09]. As reported in Section 2.3.3, we show

that giving this critical information essentially turns it into a searching problem. Combining

it with simple heuristics provides us an optimal solver, easily surpassing human performance.

Another stream of AI research [LLG12, MG14, MKG14, MSD18, SG18b] tries to solve RPM

by various measurements of image similarity. To promote fair comparison between computer

programs and human subjects in a data-driven manner, Wang and Su [WS15] first proposed a

systematic way of automatically generating RPM using first-order logic. Barrett et al . [BHS18]

extended their work and introduced the Procedurally Generating Matrices (PGM) dataset by

instantiating each rule with a relation-object-attribute tuple. Hoshen and Werman [HW17]

first trained a CNN to complete the rows in a simplistic evaluation environment, while

Barrett et al . [BHS18] used an advanced Wild Relational Network (WReN) and studied its

generalization.

2.2 Creating RAVEN

Our work is built on the prior work aforementioned. We implement all relations in Advanced

Raven’s Progressive Matrices identified by Carpenter et al . [CJS90] and generate the answer

set following the monotonicity of RPM’s constraints proposed by Wang and Su [WS15].

Figure 2.2 shows the major components of the generation process. Specifically, we use

the A-SIG as the representation of RPM; each RPM is a parse tree that instantiates from
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<latexit sha1_base64="Uad/anDlQ6UUS83mw0Oc/Ox6uFw=">AAAB+3icbVC7TsNAEDzzDOFlQkljESFRRXYaKCNoKIMgDymxovNlnZxyfuhuDyWy/Cs0FCBEy4/Q8TdcEheQMNJKo5ld7e4EqeAKXffb2tjc2t7ZLe2V9w8Oj47tk0pbJVoyaLFEJLIbUAWCx9BCjgK6qQQaBQI6weR27neeQCqexI84S8GP6CjmIWcUjTSwK32EKSJmDyg1Qy0hH9hVt+Yu4KwTryBVUqA5sL/6w4TpCGJkgirV89wU/YxK5ExAXu5rBSllEzqCnqExjUD52eL23LkwytAJE2kqRmeh/p7IaKTULApMZ0RxrFa9ufif19MYXvsZj1ONELPlolALBxNnHoQz5BIYipkhlElubnXYmErK0MRVNiF4qy+vk3a95rk1775ebdwUcZTIGTknl8QjV6RB7kiTtAgjU/JMXsmblVsv1rv1sWzdsIqZU/IH1ucPOOuVLw==</latexit><latexit sha1_base64="Uad/anDlQ6UUS83mw0Oc/Ox6uFw=">AAAB+3icbVC7TsNAEDzzDOFlQkljESFRRXYaKCNoKIMgDymxovNlnZxyfuhuDyWy/Cs0FCBEy4/Q8TdcEheQMNJKo5ld7e4EqeAKXffb2tjc2t7ZLe2V9w8Oj47tk0pbJVoyaLFEJLIbUAWCx9BCjgK6qQQaBQI6weR27neeQCqexI84S8GP6CjmIWcUjTSwK32EKSJmDyg1Qy0hH9hVt+Yu4KwTryBVUqA5sL/6w4TpCGJkgirV89wU/YxK5ExAXu5rBSllEzqCnqExjUD52eL23LkwytAJE2kqRmeh/p7IaKTULApMZ0RxrFa9ufif19MYXvsZj1ONELPlolALBxNnHoQz5BIYipkhlElubnXYmErK0MRVNiF4qy+vk3a95rk1775ebdwUcZTIGTknl8QjV6RB7kiTtAgjU/JMXsmblVsv1rv1sWzdsIqZU/IH1ucPOOuVLw==</latexit><latexit sha1_base64="Uad/anDlQ6UUS83mw0Oc/Ox6uFw=">AAAB+3icbVC7TsNAEDzzDOFlQkljESFRRXYaKCNoKIMgDymxovNlnZxyfuhuDyWy/Cs0FCBEy4/Q8TdcEheQMNJKo5ld7e4EqeAKXffb2tjc2t7ZLe2V9w8Oj47tk0pbJVoyaLFEJLIbUAWCx9BCjgK6qQQaBQI6weR27neeQCqexI84S8GP6CjmIWcUjTSwK32EKSJmDyg1Qy0hH9hVt+Yu4KwTryBVUqA5sL/6w4TpCGJkgirV89wU/YxK5ExAXu5rBSllEzqCnqExjUD52eL23LkwytAJE2kqRmeh/p7IaKTULApMZ0RxrFa9ufif19MYXvsZj1ONELPlolALBxNnHoQz5BIYipkhlElubnXYmErK0MRVNiF4qy+vk3a95rk1775ebdwUcZTIGTknl8QjV6RB7kiTtAgjU/JMXsmblVsv1rv1sWzdsIqZU/IH1ucPOOuVLw==</latexit><latexit sha1_base64="Uad/anDlQ6UUS83mw0Oc/Ox6uFw=">AAAB+3icbVC7TsNAEDzzDOFlQkljESFRRXYaKCNoKIMgDymxovNlnZxyfuhuDyWy/Cs0FCBEy4/Q8TdcEheQMNJKo5ld7e4EqeAKXffb2tjc2t7ZLe2V9w8Oj47tk0pbJVoyaLFEJLIbUAWCx9BCjgK6qQQaBQI6weR27neeQCqexI84S8GP6CjmIWcUjTSwK32EKSJmDyg1Qy0hH9hVt+Yu4KwTryBVUqA5sL/6w4TpCGJkgirV89wU/YxK5ExAXu5rBSllEzqCnqExjUD52eL23LkwytAJE2kqRmeh/p7IaKTULApMZ0RxrFa9ufif19MYXvsZj1ONELPlolALBxNnHoQz5BIYipkhlElubnXYmErK0MRVNiF4qy+vk3a95rk1775ebdwUcZTIGTknl8QjV6RB7kiTtAgjU/JMXsmblVsv1rv1sWzdsIqZU/IH1ucPOOuVLw==</latexit>

Component
<latexit sha1_base64="o3fu2Fy9zhZ/Q2k5webgQ6o6e54=">AAAB+3icbVDLSsNAFJ34rPUV69JNsAiuStKNLovduKxgH9CGMplO2qHzCDM30hLyK25cKOLWH3Hn3zhts9DWAwOHc+7h3jlRwpkB3/92trZ3dvf2Swflw6Pjk1P3rNIxKtWEtoniSvcibChnkraBAae9RFMsIk670bS58LtPVBum5CPMExoKPJYsZgSDlYZuZQB0BgBZU4lESSohH7pVv+Yv4W2SoCBVVKA1dL8GI0VSYcOEY2P6gZ9AmGENjHCalwepoQkmUzymfUslFtSE2fL23LuyysiLlbZPgrdUfycyLIyZi8hOCgwTs+4txP+8fgrxbZgxmaRAJVktilPugfIWRXgjpikBPrcEE83srR6ZYI0J2LrKtoRg/cubpFOvBX4teKhXG3dFHSV0gS7RNQrQDWqge9RCbUTQDD2jV/Tm5M6L8+58rEa3nCJzjv7A+fwBCnWVEQ==</latexit><latexit sha1_base64="o3fu2Fy9zhZ/Q2k5webgQ6o6e54=">AAAB+3icbVDLSsNAFJ34rPUV69JNsAiuStKNLovduKxgH9CGMplO2qHzCDM30hLyK25cKOLWH3Hn3zhts9DWAwOHc+7h3jlRwpkB3/92trZ3dvf2Swflw6Pjk1P3rNIxKtWEtoniSvcibChnkraBAae9RFMsIk670bS58LtPVBum5CPMExoKPJYsZgSDlYZuZQB0BgBZU4lESSohH7pVv+Yv4W2SoCBVVKA1dL8GI0VSYcOEY2P6gZ9AmGENjHCalwepoQkmUzymfUslFtSE2fL23LuyysiLlbZPgrdUfycyLIyZi8hOCgwTs+4txP+8fgrxbZgxmaRAJVktilPugfIWRXgjpikBPrcEE83srR6ZYI0J2LrKtoRg/cubpFOvBX4teKhXG3dFHSV0gS7RNQrQDWqge9RCbUTQDD2jV/Tm5M6L8+58rEa3nCJzjv7A+fwBCnWVEQ==</latexit><latexit sha1_base64="o3fu2Fy9zhZ/Q2k5webgQ6o6e54=">AAAB+3icbVDLSsNAFJ34rPUV69JNsAiuStKNLovduKxgH9CGMplO2qHzCDM30hLyK25cKOLWH3Hn3zhts9DWAwOHc+7h3jlRwpkB3/92trZ3dvf2Swflw6Pjk1P3rNIxKtWEtoniSvcibChnkraBAae9RFMsIk670bS58LtPVBum5CPMExoKPJYsZgSDlYZuZQB0BgBZU4lESSohH7pVv+Yv4W2SoCBVVKA1dL8GI0VSYcOEY2P6gZ9AmGENjHCalwepoQkmUzymfUslFtSE2fL23LuyysiLlbZPgrdUfycyLIyZi8hOCgwTs+4txP+8fgrxbZgxmaRAJVktilPugfIWRXgjpikBPrcEE83srR6ZYI0J2LrKtoRg/cubpFOvBX4teKhXG3dFHSV0gS7RNQrQDWqge9RCbUTQDD2jV/Tm5M6L8+58rEa3nCJzjv7A+fwBCnWVEQ==</latexit><latexit sha1_base64="o3fu2Fy9zhZ/Q2k5webgQ6o6e54=">AAAB+3icbVDLSsNAFJ34rPUV69JNsAiuStKNLovduKxgH9CGMplO2qHzCDM30hLyK25cKOLWH3Hn3zhts9DWAwOHc+7h3jlRwpkB3/92trZ3dvf2Swflw6Pjk1P3rNIxKtWEtoniSvcibChnkraBAae9RFMsIk670bS58LtPVBum5CPMExoKPJYsZgSDlYZuZQB0BgBZU4lESSohH7pVv+Yv4W2SoCBVVKA1dL8GI0VSYcOEY2P6gZ9AmGENjHCalwepoQkmUzymfUslFtSE2fL23LuyysiLlbZPgrdUfycyLIyZi8hOCgwTs+4txP+8fgrxbZgxmaRAJVktilPugfIWRXgjpikBPrcEE83srR6ZYI0J2LrKtoRg/cubpFOvBX4teKhXG3dFHSV0gS7RNQrQDWqge9RCbUTQDD2jV/Tm5M6L8+58rEa3nCJzjv7A+fwBCnWVEQ==</latexit>

Layout
<latexit sha1_base64="jhPsFuCqox3thqZ2m6YHNJKR6G0=">AAAB+HicbVA9T8MwEHX4LOWjAUaWiAqJqUq6wFjBwsBQJPohtVHluE5r1bEj+4wIUX8JCwMIsfJT2Pg3uG0GaHnSSU/v3enuXpRypsH3v5219Y3Nre3STnl3b/+g4h4etbU0itAWkVyqboQ15UzQFjDgtJsqipOI0040uZ75nQeqNJPiHrKUhgkeCRYzgsFKA7fSB/oIAPktzqSB6cCt+jV/Dm+VBAWpogLNgfvVH0piEiqAcKx1L/BTCHOsgBFOp+W+0TTFZIJHtGepwAnVYT4/fOqdWWXoxVLZEuDN1d8TOU60zpLIdiYYxnrZm4n/eT0D8WWYM5EaoIIsFsWGeyC9WQrekClKgGeWYKKYvdUjY6wwAZtV2YYQLL+8Str1WuDXgrt6tXFVxFFCJ+gUnaMAXaAGukFN1EIEGfSMXtGb8+S8OO/Ox6J1zSlmjtEfOJ8/snGTvg==</latexit><latexit sha1_base64="jhPsFuCqox3thqZ2m6YHNJKR6G0=">AAAB+HicbVA9T8MwEHX4LOWjAUaWiAqJqUq6wFjBwsBQJPohtVHluE5r1bEj+4wIUX8JCwMIsfJT2Pg3uG0GaHnSSU/v3enuXpRypsH3v5219Y3Nre3STnl3b/+g4h4etbU0itAWkVyqboQ15UzQFjDgtJsqipOI0040uZ75nQeqNJPiHrKUhgkeCRYzgsFKA7fSB/oIAPktzqSB6cCt+jV/Dm+VBAWpogLNgfvVH0piEiqAcKx1L/BTCHOsgBFOp+W+0TTFZIJHtGepwAnVYT4/fOqdWWXoxVLZEuDN1d8TOU60zpLIdiYYxnrZm4n/eT0D8WWYM5EaoIIsFsWGeyC9WQrekClKgGeWYKKYvdUjY6wwAZtV2YYQLL+8Str1WuDXgrt6tXFVxFFCJ+gUnaMAXaAGukFN1EIEGfSMXtGb8+S8OO/Ox6J1zSlmjtEfOJ8/snGTvg==</latexit><latexit sha1_base64="jhPsFuCqox3thqZ2m6YHNJKR6G0=">AAAB+HicbVA9T8MwEHX4LOWjAUaWiAqJqUq6wFjBwsBQJPohtVHluE5r1bEj+4wIUX8JCwMIsfJT2Pg3uG0GaHnSSU/v3enuXpRypsH3v5219Y3Nre3STnl3b/+g4h4etbU0itAWkVyqboQ15UzQFjDgtJsqipOI0040uZ75nQeqNJPiHrKUhgkeCRYzgsFKA7fSB/oIAPktzqSB6cCt+jV/Dm+VBAWpogLNgfvVH0piEiqAcKx1L/BTCHOsgBFOp+W+0TTFZIJHtGepwAnVYT4/fOqdWWXoxVLZEuDN1d8TOU60zpLIdiYYxnrZm4n/eT0D8WWYM5EaoIIsFsWGeyC9WQrekClKgGeWYKKYvdUjY6wwAZtV2YYQLL+8Str1WuDXgrt6tXFVxFFCJ+gUnaMAXaAGukFN1EIEGfSMXtGb8+S8OO/Ox6J1zSlmjtEfOJ8/snGTvg==</latexit><latexit sha1_base64="jhPsFuCqox3thqZ2m6YHNJKR6G0=">AAAB+HicbVA9T8MwEHX4LOWjAUaWiAqJqUq6wFjBwsBQJPohtVHluE5r1bEj+4wIUX8JCwMIsfJT2Pg3uG0GaHnSSU/v3enuXpRypsH3v5219Y3Nre3STnl3b/+g4h4etbU0itAWkVyqboQ15UzQFjDgtJsqipOI0040uZ75nQeqNJPiHrKUhgkeCRYzgsFKA7fSB/oIAPktzqSB6cCt+jV/Dm+VBAWpogLNgfvVH0piEiqAcKx1L/BTCHOsgBFOp+W+0TTFZIJHtGepwAnVYT4/fOqdWWXoxVLZEuDN1d8TOU60zpLIdiYYxnrZm4n/eT0D8WWYM5EaoIIsFsWGeyC9WQrekClKgGeWYKKYvdUjY6wwAZtV2YYQLL+8Str1WuDXgrt6tXFVxFFCJ+gUnaMAXaAGukFN1EIEGfSMXtGb8+S8OO/Ox6J1zSlmjtEfOJ8/snGTvg==</latexit>

Entity
<latexit sha1_base64="DheW/XW82PgaPGW4ch7oKorpmY4=">AAAB+HicbVDLSsNAFL3xWeujUZdugkVwVZJudFkUwWUF+4A2lMl00g6dTMLMjRhDv8SNC0Xc+inu/BunbRbaemDgcM493DsnSATX6Lrf1tr6xubWdmmnvLu3f1CxD4/aOk4VZS0ai1h1A6KZ4JK1kKNg3UQxEgWCdYLJ9czvPDCleSzvMUuYH5GR5CGnBI00sCt9ZI+ImN9Ik86mA7vq1tw5nFXiFaQKBZoD+6s/jGkaMYlUEK17npugnxOFnAo2LfdTzRJCJ2TEeoZKEjHt5/PDp86ZUYZOGCvzJDpz9XciJ5HWWRSYyYjgWC97M/E/r5dieOnnXCYpMkkXi8JUOBg7sxacIVeMosgMIVRxc6tDx0QRiqarsinBW/7yKmnXa55b8+7q1cZVUUcJTuAUzsGDC2jALTShBRRSeIZXeLOerBfr3fpYjK5ZReYY/sD6/AGw4ZO9</latexit><latexit sha1_base64="DheW/XW82PgaPGW4ch7oKorpmY4=">AAAB+HicbVDLSsNAFL3xWeujUZdugkVwVZJudFkUwWUF+4A2lMl00g6dTMLMjRhDv8SNC0Xc+inu/BunbRbaemDgcM493DsnSATX6Lrf1tr6xubWdmmnvLu3f1CxD4/aOk4VZS0ai1h1A6KZ4JK1kKNg3UQxEgWCdYLJ9czvPDCleSzvMUuYH5GR5CGnBI00sCt9ZI+ImN9Ik86mA7vq1tw5nFXiFaQKBZoD+6s/jGkaMYlUEK17npugnxOFnAo2LfdTzRJCJ2TEeoZKEjHt5/PDp86ZUYZOGCvzJDpz9XciJ5HWWRSYyYjgWC97M/E/r5dieOnnXCYpMkkXi8JUOBg7sxacIVeMosgMIVRxc6tDx0QRiqarsinBW/7yKmnXa55b8+7q1cZVUUcJTuAUzsGDC2jALTShBRRSeIZXeLOerBfr3fpYjK5ZReYY/sD6/AGw4ZO9</latexit><latexit sha1_base64="DheW/XW82PgaPGW4ch7oKorpmY4=">AAAB+HicbVDLSsNAFL3xWeujUZdugkVwVZJudFkUwWUF+4A2lMl00g6dTMLMjRhDv8SNC0Xc+inu/BunbRbaemDgcM493DsnSATX6Lrf1tr6xubWdmmnvLu3f1CxD4/aOk4VZS0ai1h1A6KZ4JK1kKNg3UQxEgWCdYLJ9czvPDCleSzvMUuYH5GR5CGnBI00sCt9ZI+ImN9Ik86mA7vq1tw5nFXiFaQKBZoD+6s/jGkaMYlUEK17npugnxOFnAo2LfdTzRJCJ2TEeoZKEjHt5/PDp86ZUYZOGCvzJDpz9XciJ5HWWRSYyYjgWC97M/E/r5dieOnnXCYpMkkXi8JUOBg7sxacIVeMosgMIVRxc6tDx0QRiqarsinBW/7yKmnXa55b8+7q1cZVUUcJTuAUzsGDC2jALTShBRRSeIZXeLOerBfr3fpYjK5ZReYY/sD6/AGw4ZO9</latexit><latexit sha1_base64="DheW/XW82PgaPGW4ch7oKorpmY4=">AAAB+HicbVDLSsNAFL3xWeujUZdugkVwVZJudFkUwWUF+4A2lMl00g6dTMLMjRhDv8SNC0Xc+inu/BunbRbaemDgcM493DsnSATX6Lrf1tr6xubWdmmnvLu3f1CxD4/aOk4VZS0ai1h1A6KZ4JK1kKNg3UQxEgWCdYLJ9czvPDCleSzvMUuYH5GR5CGnBI00sCt9ZI+ImN9Ik86mA7vq1tw5nFXiFaQKBZoD+6s/jGkaMYlUEK17npugnxOFnAo2LfdTzRJCJ2TEeoZKEjHt5/PDp86ZUYZOGCvzJDpz9XciJ5HWWRSYyYjgWC97M/E/r5dieOnnXCYpMkkXi8JUOBg7sxacIVeMosgMIVRxc6tDx0QRiqarsinBW/7yKmnXa55b8+7q1cZVUUcJTuAUzsGDC2jALTShBRRSeIZXeLOerBfr3fpYjK5ZReYY/sD6/AGw4ZO9</latexit>

… …… …… … … …

(a) (b)

(d) (e)

Modify constrained attributes to generate an answer set 

(c)

Noise Attributes

Center
<latexit sha1_base64="Ni4/QsatCtXebIKLMZf16berMWg=">AAAB+HicbVBNTwIxFOziF+IHqEcvjcTEE9k1JnokcvGIiYAJbEi3vIWGbnfTvjXihl/ixYPGePWnePPfWGAPCk7SZDLzJu91gkQKg6777RTW1jc2t4rbpZ3dvf1y5eCwbeJUc2jxWMb6PmAGpFDQQoES7hMNLAokdIJxY+Z3HkAbEas7nCTgR2yoRCg4Qyv1K+UewiMiZg1QCHrar1TdmjsHXSVeTqokR7Nf+eoNYp5GNs4lM6bruQn6GdMouIRpqZcaSBgfsyF0LVUsAuNn88On9NQqAxrG2j6FdK7+TmQsMmYSBXYyYjgyy95M/M/rphhe+ZlQSYqg+GJRmEqKMZ21QAdCA0c5sYRxLeytlI+YZtx2YEq2BG/5y6ukfV7z3Jp3e1GtX+d1FMkxOSFnxCOXpE5uSJO0CCcpeSav5M15cl6cd+djMVpw8swR+QPn8weGvJOj</latexit><latexit sha1_base64="Ni4/QsatCtXebIKLMZf16berMWg=">AAAB+HicbVBNTwIxFOziF+IHqEcvjcTEE9k1JnokcvGIiYAJbEi3vIWGbnfTvjXihl/ixYPGePWnePPfWGAPCk7SZDLzJu91gkQKg6777RTW1jc2t4rbpZ3dvf1y5eCwbeJUc2jxWMb6PmAGpFDQQoES7hMNLAokdIJxY+Z3HkAbEas7nCTgR2yoRCg4Qyv1K+UewiMiZg1QCHrar1TdmjsHXSVeTqokR7Nf+eoNYp5GNs4lM6bruQn6GdMouIRpqZcaSBgfsyF0LVUsAuNn88On9NQqAxrG2j6FdK7+TmQsMmYSBXYyYjgyy95M/M/rphhe+ZlQSYqg+GJRmEqKMZ21QAdCA0c5sYRxLeytlI+YZtx2YEq2BG/5y6ukfV7z3Jp3e1GtX+d1FMkxOSFnxCOXpE5uSJO0CCcpeSav5M15cl6cd+djMVpw8swR+QPn8weGvJOj</latexit><latexit sha1_base64="Ni4/QsatCtXebIKLMZf16berMWg=">AAAB+HicbVBNTwIxFOziF+IHqEcvjcTEE9k1JnokcvGIiYAJbEi3vIWGbnfTvjXihl/ixYPGePWnePPfWGAPCk7SZDLzJu91gkQKg6777RTW1jc2t4rbpZ3dvf1y5eCwbeJUc2jxWMb6PmAGpFDQQoES7hMNLAokdIJxY+Z3HkAbEas7nCTgR2yoRCg4Qyv1K+UewiMiZg1QCHrar1TdmjsHXSVeTqokR7Nf+eoNYp5GNs4lM6bruQn6GdMouIRpqZcaSBgfsyF0LVUsAuNn88On9NQqAxrG2j6FdK7+TmQsMmYSBXYyYjgyy95M/M/rphhe+ZlQSYqg+GJRmEqKMZ21QAdCA0c5sYRxLeytlI+YZtx2YEq2BG/5y6ukfV7z3Jp3e1GtX+d1FMkxOSFnxCOXpE5uSJO0CCcpeSav5M15cl6cd+djMVpw8swR+QPn8weGvJOj</latexit><latexit sha1_base64="Ni4/QsatCtXebIKLMZf16berMWg=">AAAB+HicbVBNTwIxFOziF+IHqEcvjcTEE9k1JnokcvGIiYAJbEi3vIWGbnfTvjXihl/ixYPGePWnePPfWGAPCk7SZDLzJu91gkQKg6777RTW1jc2t4rbpZ3dvf1y5eCwbeJUc2jxWMb6PmAGpFDQQoES7hMNLAokdIJxY+Z3HkAbEas7nCTgR2yoRCg4Qyv1K+UewiMiZg1QCHrar1TdmjsHXSVeTqokR7Nf+eoNYp5GNs4lM6bruQn6GdMouIRpqZcaSBgfsyF0LVUsAuNn88On9NQqAxrG2j6FdK7+TmQsMmYSBXYyYjgyy95M/M/rphhe+ZlQSYqg+GJRmEqKMZ21QAdCA0c5sYRxLeytlI+YZtx2YEq2BG/5y6ukfV7z3Jp3e1GtX+d1FMkxOSFnxCOXpE5uSJO0CCcpeSav5M15cl6cd+djMVpw8swR+QPn8weGvJOj</latexit>

Center
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Figure 2.2: An illustration the A-SIG (b). Given a sampled set of rules (a), we prune the grammar
tree and sample values of attributes (c) from (b) to generate a row of images.

the A-SIG. After rules are sampled, we prune the grammar to make sure the relations could

be applied to any sentence sampled from it. We then sample a sentence from the pruned

grammar, where rules are applied to produce a valid row. Repeating such a process three

times yields a problem matrix. To generate the answer set, we modify attributes on the

correct answer such that the relationships are broken. Finally, the structured presentation is

fed into a rendering engine to generate images. We elaborate on the details in the following

subsections.

2.2.1 Defining the Attributed Grammar

We adopt an A-SIG as the hierarchical and structured image grammar to represent the RPM

problem. Such representation is advanced compared with prior work (e.g ., [BHS18, WS15])

which, at best, only maintains a flat representation of rules.

See Figure 2.2 for a graphical illustration of the grammar production rules. Specifically,

the A-SIG for RPM has 5 levels—Scene, Structure, Component, Layout, and Entity. Note

that each grammar level could have multiple instantiations, i.e., different categories or
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types. We list all production rules in Table 2.1. The Scene level could choose any available

Structure, which consists of possibly multiple Components. Each Component branches into

Layouts that links Entities.

Table 2.1: Grammar production rules used in RAVEN.

Level Production Rules
Scene Scene Ñ Singleton

Scene Ñ Left-Right
Scene Ñ Up-Down
Scene Ñ Out-In

Structure Singleton Ñ Grid
Left-Right Ñ Left ¨̈̈ Right
Up-Down Ñ Up ¨̈̈ Down
Out-In Ñ Out ¨̈̈ In

Layout Layout˚ Ñ Entity ¨̈̈ Layout˚

Layout˚ Ñ H

Level Production Rules
Component Grid Ñ Center

Grid Ñ 2ˆ2Grid
Grid Ñ 3ˆ3Grid
Left Ñ Center
Right Ñ Center
Up Ñ Center
Down Ñ Center
Out Ñ Center
In Ñ Center
In Ñ 2ˆ2Grid

Entity Entity Ñ Entity

Another important construct in A-SIG is the attribute. We only have attributes in Layout

and Entity, as summarized in Table 2.2. Note that all the symbols in the same level have the

same set of attributes. In Table 2.2, Uniformity and Orientation are noise attributes and

are not governed by rules. Uniformity, set false, will not constrain Entities in a Layout

to look the same, while Orientation allows an Entity to self-rotate. The other attributes

share their naming semantic where Number and Position indicates the number of entities

and possible object slots in a given layout. Each Entity has its own Type, Size, Color, and

Orientation.

Table 2.2: Attributes in different levels of the grammar.

Level Attributes
Layout Number, Position, Uniformity
Entity Type, Size, Color, Orientation

This grammatical design of the image space allows the dataset to be very diverse and

easily extendable. In this dataset, we manage to derive 7 configurations by combining different

Structures, Components, and Layouts.
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2.2.2 Applying Rules

Carpenter et al . [CJS90] summarized that in the advanced RPM, rules were applied row-wise

and could be grouped into 5 types. Unlike Berrett et al . [BHS18], we strictly follow Carpenter

et al .’s description of RPM and implement all the rules, except that we merge Distribute

Two into Distribute Three, as the former is essentially the latter with a null value in one of

the attributes.

Specifically, we implement 4 types of rules in RAVEN: Constant, Progression, Arithmetic,

and Distribute Three. Different from [BHS18], we add internal parameters to certain rules

(e.g ., Progression could have increments or decrements of 1 or 2), resulting in a total of

8 distinct rule instantiations. Rules do not operate on the 2 noise attributes. As shown in

Figure 2.1 and 2.2, they are denoted as [attribute:rule] pairs. These 4 rules operate on

5 rule-governing attributes: Constant, Progression, Arithmetic, and Distribute Three

where Constant indicates attributes governed by this rule would not change in the row.

Progression indicates that attribute values monotonically increase or decrease in a row.

Arithmetic uses mathematical summation or subtraction between numbers of objects in

the first two panels to obtain the third panel. Distribute Three samples 3 values of an

attribute in a problem instance and permutes the values in different rows. To make the image

space even more structured, we require each attribute to go over one rule and all Entities

in the same Component to share the same set of rules, while different Components could vary.

Given the tree representation and the rules, we first prune the grammar tree such that all

sub-trees satisfy the constraints imposed by the relations. We then sample from the tree and

apply the rules to compose a row. Iterating the process three times yields a problem matrix.

2.2.3 Generating the Answer Set

To generate the answer set, we first derive the correct representation of the solution and

then leverage the monotonicity of RPM constraints proposed by Wang and Su [WS15]. To
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break the correct relationships, we find an attribute that is constrained by a rule as described

in Section 2.2.2 and vary it. By modifying only one attribute, we could greatly reduce the

computation. Such a modification also increases the difficulty of the problem, as it requires

attention to subtle difference to tell an incorrect candidate from the correct one.

2.3 Comparison and Analysis

In this section, we fill in two missing pieces in a desirable RPM dataset, i.e., structure and

hierarchy (Section 2.3.1), as well as the human performance (Section 2.3.2). We also show

that RPM becomes trivial and could be solved instantly using a heuristics-based searching

method (Section 2.3.3), given a symbolic representation of images and operations of rules.

2.3.1 Introduction of Structure

A distinctive feature of RAVEN is the introduction of the structural representation of the

image space. Wang and Su [WS15] and Barrett et al . [BHS18] used plain logic and flat rule

representations, respectively, resulting in no base of the structure to perform reasoning on. In

contrast, we have in total 1.12M structure annotations in the form of parsed sentences in the

dataset, pairing each problem instance with 16 sentences for both the matrix and the answer

set. These representations derived from the A-SIG allow a new form of reasoning, i.e., one that

combines visual understanding and structure reasoning. As shown in [LF17, LFU10, LTF09]

and our experiments in Section 2.5, incorporating structure into RPM problem solving could

result in further performance improvement across different models.

2.3.2 Human Performance Analysis

Another missing point in the previous work [BHS18] is the evaluation of human performance.

To fill in the missing piece, we recruit human subjects consisting of college students from a
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subject pool maintained by the Department of Psychology to test their performance on a

subset of representative samples in the dataset. In the experiments, human subjects were

familiarized by solving problems with only one non-Constant rule in a fixed configuration.

After the familiarization, subjects were asked to answer RPM problems with complex rule

combinations, and their answers were recorded. Note that we deliberately included all

figure configurations to measure generalization in the human performance and only “easily

perceptible” examples were used in case certain subjects might have impaired perception.

The results are reported in Table 2.3. The notable performance gap calls for further research

into this problem. See Section 2.5 for detailed analysis and comparisons with vision models.

2.3.3 Heuristics-based Solver using Searching

We find that the RPM could be essentially turned into a search problem, given the symbolic

representation of images and the access to rule operations as in [LF17, LFU10, LTF09].

Under such a setting, we could treat this problem as constraint satisfaction and develop

a heuristics-based solver. The solver checks the number of satisfied constraints in each

candidate answer and selects one with the highest score, resulting in perfect performance.

Results are reported in Table 2.3. The optimality of the heuristic-based solver also verifies

the well-formedness of RAVEN in the sense that there exists only one candidate that satisfies

all constraints.

2.4 Dynamic Residual Tree for RPM

The image space of RPM is inherently structured and could be described using a symbolic

language, as shown in [CJS90, LF17, LFU10, LTF09, Rav38]. To capture this characteristic

and further improve the model performance on RPM, we propose a simple tree-structure

neural module called Dynamic Residual Tree (DRT) that operates on the joint space of image

understanding and structure reasoning.
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In the DRT, given a sentence S sampled from the A-SIG, usually represented as a serialized

n-ary tree, we could first recover the tree structure. Note that the tree is dynamically

generated following the sentence S, and each node in the tree comes with a label. With a

structured tree representation ready, we could now consider assigning a neural computation

operator to each tree node, similar to Tree-LSTM [TSM15]. To further simplify computation,

we replace the LSTM cell [HS97] with a ReLU-activated [NH10] fully-connected layer f . In

this way, nodes with a single child (leaf nodes or OR-production nodes) update the input

features by

I “ ReLUpfprI, wnsqq, (2.1)

where r¨, ¨s is the concatenation operation, I denotes the input features, and wn the distributed

representations of the node’s label [MSC13, PSM14]. Nodes with multiple children (AND-

production nodes) update input features by

I “ ReLU

˜

f

˜«

ÿ

c

Ic, wn

ff¸¸

, (2.2)

where Ic denotes the features from its child c.

In summary, features from the lower layers are fed into the leaf nodes of DRT, gradually

updated by Equation 2.1 and Equation 2.2 from bottom-up following the tree structure, and

output to higher-level layers. Inspired by [HZR16], we make DRT a residual module by

adding the input and output of DRT together, hence the name Dynamic Residual Tree (DRT)

I “ DRTpI, Sq ` I. (2.3)
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2.5 Experiments

2.5.1 Baselines

We adopt several representative models suitable for RPM and test their performances on

RAVEN [BHS18, HZR16, KSH12, XCW15]. In summary, we test a simple sequential learning

model (LSTM), a CNN backbone with an MLP head (CNN), a ResNet-based [HZR16] image

classifier (ResNet), the recent relational WReN [BHS18], and all these models augmented

with the proposed DRT.

LSTM The partially sequential nature of the RPM problem inspires us to borrow the

power of sequential learning. Similar to ConvLSTM [XCW15], we feed each image feature

extracted by a CNN into an LSTM network sequentially and pass the last hidden feature into

a two-layer MLP to predict the final answer. In the DRT-augmented LSTM, i.e., LSTM-DRT,

we feed features of each image to a shared DRT before the final LSTM.

CNN We test a neural network model used in Hoshen and Werman [HW17]. In this model,

a four-layer CNN for image feature extraction is connected to a two-layer MLP with a softmax

layer to classify the answer. The CNN is interleaved with batch normalization [IS15] and

ReLU non-linearity [NH10]. Random dropout [SHK14] is applied at the penultimate layer of

MLP. In CNN-DRT, image features are passed to DRT before MLP.

ResNet Due to its surprising effectiveness in image feature extraction, we replace the

feature extraction backbone in CNN with a ResNet [HZR16] in this model. We use a publicly

available ResNet implementation, and the model is randomly initialized without pre-training.

After testing several ResNet variants, we choose ResNet-18 for its good performance. The

DRT extension and the training strategy are similar to those used in the CNN model.
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Table 2.3: Mean and per-category testing accuracy of each model against human subjects under
different figure configurations.

Method Acc Center 2x2Grid 3x3Grid L-R U-D O-IC O-IG
LSTM 13.07% 13.19% 14.13% 13.69% 12.84% 12.35% 12.15% 12.99%
WReN 14.69% 13.09% 28.62% 28.27% 7.49% 6.34% 8.38% 10.56%
CNN 36.97% 33.58% 30.30% 33.53% 39.43% 41.26% 43.20% 37.54%
ResNet 53.43% 52.82% 41.86% 44.29% 58.77% 60.16% 63.19% 53.12%
LSTM+DRT 13.96% 14.29% 15.08% 14.09% 13.79% 13.24% 13.99% 13.29%
WReN+DRT 15.02% 15.38% 23.26% 29.51% 6.99% 8.43% 8.93% 12.35%
CNN+DRT 39.42% 37.30% 30.06% 34.57% 45.49% 45.54% 45.93% 37.54%
ResNet+DRT 59.56% 58.08% 46.53% 50.40% 65.82% 67.11% 69.09% 60.11%
Human 84.41% 95.45% 81.82% 79.55% 86.36% 81.81% 86.36% 81.81%
Solver‹ 100% 100% 100% 100% 100% 100% 100% 100%

WReN We follow the original paper [BHS18] in implementing the WReN. In this model,

we first extract image features by a CNN. Each answer feature is then composed with each

context image feature to form a set of ordered pairs. The order pairs are further fed to an

MLP and summed. Finally, a softmax layer takes features from each candidate answer and

makes a prediction. In WReN-DRT, we apply DRT on the extracted image features before

the relational module.

For all DRT extensions, nodes in the same level share parameters and the representations

for nodes’ labels are fixed after initialization from corresponding 300-dimension GloVe

vectors [PSM14]. Sentences used for assembling DRT could be either retrieved or learned by

an encoder-decoder. Here we report results using retrieval.

2.5.2 Experimental Setup

We split the RAVEN dataset into three parts, 6 folds for training, 2 folds for validation,

and 2 folds for testing. We tune hyper-parameters on the validation set and report the

model accuracy on the test set. For loss design, we treat the problem as a classification

task and train all models with the cross-entropy loss. All the models are implemented in

PyTorch [PGC17] and trained with ADAM [KB14] before early stopping or a maximum
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number of epochs is reached.

2.5.3 Performance Analysis

Table 2.3 shows the testing accuracy of each model trained on RAVEN, against the human

performance and the heuristics-based solver. Neither human subjects nor the solver expe-

riences an intensive training session, and the solver has access to the rule operations and

searches for the answer based on a symbolic representation of the problem. In contrast, all

the computer vision models go over an extensive training session, but only on the training

set.

In general, human subjects produce better testing accuracy on problems with simple figure

configurations such as Center, while human performance reasonably deteriorates on problem

instances with more objects such as 2x2Grid and 3x3Grid. Two interesting observations:

1. For figure configurations with multiple components, although each component in Left-Right,

Up-Down, and Out-InCenter has only one object, making the reasoning similar to Center

except that the two components are independent, human subjects become less accurate in

selecting the correct answer.

2. Even if Up-Down could be regarded as a simple transpose of Left-Right, there exists

some notable difference. Such effect is also implied by the “inversion effects” in cogni-

tion; for instance, inversion disrupts face perception, particularly sensitivity to spatial

relations [CM09, LMM01].

In terms of model performance, a counter-intuitive result is: computer vision systems do

not achieve the best accuracy across all other configurations in the seemingly easiest figure

configuration for human subjects (Center). We further realize that the LSTM model and

the WReN model perform only slightly better than random guess (12.5%). Such results

contradicting to [BHS18] might be attributed to the diverse figure configurations in RAVEN.

Unlike LSTM whose accuracy across different configurations is more or less uniform, WReN
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achieves higher accuracy on configurations consisting of multiple randomly distributed objects

(2x2Grid and 3x3Grid), with drastically degrading performance in configurations consisting

of independent image components. This suggests WReN is biased to grid-like configurations

(majority of PGM) but not others that require compositional reasoning (as in RAVEN). In

contrast, a simple CNN model with MLP doubles the performance of WReN on RAVEN,

with a tripled performance if the backbone is ResNet-18.

We observe a consistent performance improvement across different models after incorpo-

rating DRT, suggesting the effectiveness of the structure information in this visual reasoning

problem. While the performance boost is only marginal in LSTM and WReN, we notice a

marked accuracy increase in the CNN- and ResNet-based models (6.63% and 16.58% relative

increase respectively). However, the performance gap between artificial vision systems and

humans is still significant (up to 37% in 2x2Grid), calling for further research to bridge the

gap.

2.5.4 Effects of Auxiliary Training

Barrett et al . [BHS18] mentioned that training WReN with a fine-tuned auxiliary task could

further give the model a 10% performance improvement. We also test the influence of auxiliary

training on RAVEN. First, we test the effects of an auxiliary task to classify the rules and

attributes on WReN and our best-performing model ResNet+DRT. The setting is similar

to [BHS18], where we perform an OR operation on a set of multi-hot vectors describing the

rules and the attributes they apply to. The model is then tasked to both correctly find the

answer and classify the rule set with its governing attributes. The final loss becomes

Ltotal “ Ltarget ` βLrule, (2.4)

where Ltarget denotes the cross-entropy loss for the answer, Lrule the multi-label classification

loss for the rule set, and β the balancing factor. We observe no performance change on
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WReN but a serious performance downgrade on ResNet+DRT (from 59.56% to 20.71%).

Since RAVEN comes with structure annotations, we further ask whether adding a structure

prediction loss could help the model improve performance. To this end, we cast the experiment

in a similar setting where we design a multi-hot vector describing the structure of each problem

instance and train the model to minimize

Ltotal “ Ltarget ` αLstruct, (2.5)

where Lstruct denotes the multi-label classification loss for the problem structure, and α

is the balancing factor. In this experiment, we observe a slight performance decrease in

ResNet+DRT (from 59.56% to 56.86%). A similar effect is noticed on WReN (from 14.69%

to 12.58%).

2.5.5 Test on Generalization

One interesting question we would like to ask is how a model trained well on one figure

configuration performs on another similar figure configuration. This could be a measure of the

models’ generalizability and compositional reasoning ability. Fortunately, RAVEN naturally

provides us with a test bed. To do this, we first identify several related configuration regimes:

‚ Train on Center and test on Left-Right, Up-Down, and Out-InCenter. This setting

directly challenges the compositional reasoning ability of the model as it requires the model

to generalize the rules learned in a single-component configuration to configurations with

multiple independent but similar components.

‚ Train on Left-Right and test on Up-Down, and vice-versa. Note that for Left-Right and

Up-Down, one could be regarded as a transpose of another. Thus, the test could measure

whether the model simply memorizes the pattern in one configuration.

‚ Train on 2x2Grid and test on 3x3Grid, and vice-versa. Both configurations involve multi-

object interactions. Therefore the test could measure the generalization when the number
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(a) Trained on Left-Right/Up-Down.

Left-Right Up-Down
Left-Right 41.07% 38.10%
Up-Down 39.48% 43.60%

(b) Trained on 2x2Grid/3x3Grid.

2x2Grid 3x3Grid
2x2Grid 40.93% 38.69%
3x3Grid 39.14% 43.72%

(c) Trained on Center.

Center Left-Right Up-Down Out-InCenter
51.87% 40.03% 35.46% 38.84%

Table 2.4: Generalization test results. The columns indicates the transfer subset used.

of objects changes.

The following results are all reported using the best-performing model, i.e., ResNet+DRT.

Table 2.4c, 2.4a and 2.4b show the result of our model generalization test. We observe:

‚ The model dedicated to a single figure configuration does not achieve better test accuracy

than one trained on all configurations together. This effect justifies the importance of the

diversity of RAVEN, showing that increasing the number of figure configurations could

actually improve the model performance.

‚ Table 2.4c also implies that a certain level of compositional reasoning, though weak, exists

in the model, as the three other configurations could be regarded as a multi-component

composition of Center.

‚ In Table 2.4a, we observe no major differences in terms of test accuracy. This suggests

that the model could successfully transfer the knowledge learned in a scenario to a very

similar counterpart when one configuration is the transpose of another.

‚ From Table 2.4b, we notice that the model trained on 3x3Grid could generalize to 2x2Grid

with only minor difference from the one dedicated to 2x2Grid. This could be attributed to

the fact that in the 3x3Grid configuration, there could be instances with object distribution

similar to that in 2x2Grid, but not vice versa.
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2.6 Conclusion

We present a dataset for Relational and Analogical Visual Reasoning in the context of Raven’s

Progressive Matrices (RPM), called RAVEN. Unlike previous work, we apply a systematic

and structured tool, i.e., Attributed Stochastic Image Grammar (A-SIG), to generate the

dataset, such that every problem instance comes with rich annotations. One distinguishing

feature of RAVEN is the introduction of the structure. We also recruit quality human subjects

to benchmark human performance on the RAVEN dataset. These aspects fill two important

missing points in previous works.

We further propose a neural module called Dynamic Residual Tree (DRT) that leverages

the structure annotations for each problem. Extensive experiments show that models

augmented with DRT enjoy consistent performance improvement, suggesting the effectiveness

of using structure information in solving RPM. However, the difference between machine

algorithms and humans clearly manifests itself in the notable performance gap, even in an

unfair situation where machines experience an intensive training session while humans do not.

We also realize that auxiliary tasks do not help performance on RAVEN. The generalization

test shows the importance of the diversity of the dataset, and indicates current computer

vision methods do exhibit a certain level of reasoning ability, though weak.

The entire work still leaves us with many mysteries. How could we the combine top-

down and bottom-up methods into a model for solving RPMs? What is the correct way of

formulating visual reasoning? Is it model-fitting? Is deep learning the ultimate way to visual

reasoning? How could we improve the models? We hope these unresolved questions would

call attention to this challenging reasoning problem.
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CHAPTER 3

LEMMA: A Benchmark for Learning Multi-agent

Multi-task Activities

In this chapter, we extend the event understanding problem to the real-world domain where

agents collaboratively work together towards certain real-world goals. In contrast to RPMs,

the difficulty of real-world event understanding resides in the innate complexity of both human

activities and noisy perceptions. As a result, as described in Section 1.2, understanding and

interpreting human actions has been a long-standing challenge for artificial intelligence. To

study this problem, a few imperative components of daily human activities are largely missed

in prior literature, including goal-directed actions, concurrent multi-tasks, and collaborations

among multi-agents. Therefore, we introduce the LEMMA dataset to provide a single

home to address these missing dimensions with meticulously designed settings, wherein the

number of tasks and agents varies to highlight different learning objectives. In addition, we

focus on the compositionality of human actions since the semantics of human actions are

intrinsically ambiguous when described in natural language. For instance, although both

“opening the fridge” and “opening a book” use the action verb “open,” their semantics of

the actions are utterly different. We take the stance of Grice’s influential work on language

act [Gri75]—technical tools for reasoning about rational action should elucidate linguistic

phenomena [GF16]. Specifically, the compositional relations between the verbs and nouns

could reveal the functionality of the object and the patterns of human-object interactions,

which subsequently facilitate the understanding of the observed human activities and the

language that describes them.
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Figure 3.1: Illustrations of the proposed multi-view dataset with annotations.

In the following sections, we first discuss related efforts in video understanding. We

then describe in details about the data collection process for the multi-view video dataset,

LEMMA, that captures multi-agent, multi-task activities with goal-directed daily tasks;

see Fig. 3.1 for an overview. Next, we list all annotations collected on LEMMA, focusing

on the compositionality of actions and the governing task for each atomic-action. Finally,

we provide compositional action recognition and action/task anticipation benchmarks by

considering the aforementioned features, and provide comparisons and analyses of multiple

baseline models to promote future research on human activity understanding.

3.1 Related Work

In this section, we review and compare prior indoor activity datasets on the basis of tasks

and captured video contents; see a detailed summary in Table 3.1.

Crowd-sourced from online videos and movie-sharing platforms, typical large-scale video

datasets [SZS12, KTS14, CEG15, CZ17, FKE18] focus on video-level summarization and

classification. Although activity classes exhibit a large inter-class variability, spanning
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from outdoor sports activities to indoor household activities, they generally lack sequential,

goal-directed activities. Notably, they suffer from a major drawback [GR20]; activities are

highly correlated to the general scene and object context, possessing a strong dataset bias for

activity understanding.

Some datasets tackle the human atomic-actions using short clips or limited tasks, with

a focus on the semantics of action verbs and objects [GKM17], 3D action analysis [LZL10,

IPO13, SCH16], and action grounding with multi-modality inputs [MAZ19]. Although such

datasets are suitable for atomic-actions, they are intrinsically impaired at studying the

long-term reasoning of goal-directed human activities.

Recently, concurrent actions have been taken into consideration. For instance, Cha-

rades [SVW16] is a large-scale benchmark for household activities, and Charades-Ego [SGS18]

steps further with both FPVs and TPVs. However, the activities involved are mostly unre-

lated to specific goals due to the crowdsourced script generation process. Similarly, although

Multi-THUMOS [YRJ18] and AVA [GSR18] focus on highly paralleled activities, and some

datasets look at the temporal order of activities [BLB14, TZS16], the unnaturally scripted

activities result in the lack of meaningful goal-directed tasks exhibited in our daily life.

Conversely, instructional video datasets [ABA16, SM13, KAS14, KGS13, RRR16]

tackle goal-directed multi-step tasks, mostly in cooking, repairing, and assembling activities.

In spite of their relevance, they fail to account for multi-agent or multi-task problems.

Table 3.1: Comparisons between LEMMA and relevant indoor activity datasets.

Dataset Task
Annotation

Multi-
agent

Multi-
task

Multi-
view Samples Frames Action

Classes
Action

Segments
Actions per

Video Modality Year

MPII Cooking [RAA12] ✓ ✗ ✗ ✗ 273 2.9M 88 14,105 51.7 RGB 2012
ADL [PR12] ✗ ✗ ✓ ✗ 20 1.0M 32 436 13.6 RGB 2012

50Salads [SM13] ✓ ✗ ✗ ✗ 50 0.5M 17 966 19.3 RGB-D 2013
CAD-120 [KGS13] ✗ ✗ ✗ ✗ 120 0.1M 10 1,175 9.8 RGB-D 2013
Breakfast [KAS14] ✓ ✗ ✗ ✓ 433 3.0M 50 3,078 7.1 RGB 2014

Watch-n-Patch [WZS15] ✓ ✗ ✗ ✗ 458 0.1M 21 2978 6.5 RGB-D 2015
Charades [SVW16] ✗ ✗ ✓ ✗ 9,848 7.4M 157 67,000 6.8 RGB 2016

Something-Something [GKM17] ✗ ✗ ✗ ✗ 108,499 - 174 108,499 1.0 RGB 2017
EGTEA GAZE+ [LLR18] ✓ ✗ ✗ ✗ 86 2.4M 106 10,325 120.1 RGB 2018

EPIC-KITCHENS [DDM18] ✗ ✗ ✓ ✗ 432 11.5M 149 39,596 91.7 RGB 2018
LEMMA (proposed) ✓ ✓ ✓ ✓ 324 4.6M 641 11,781 36.4 RGB-D 2020
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EPIC-KITCHENS [DDM18] is perhaps the only exception; it records naturally paralleled

task execution of agents in kitchen environments, but with no task specification or multi-

agent interactions. Additionally, prior instructional video datasets have either drastic view

perspective changes [ZXC18, ABA16, TDR19, TCH17] or limited egocentric view with severe

occlusions [PR12, LLR18], hindering the activity understanding.

Another related stream of work is the learning of group-level activities in a multi-agent

setting [IMD16], such as detecting key actors [RHA16], predicting future trajectories [PES09,

LCL07], and recognizing collective activities [CSS09, OHP11, SXR15]. However, such coarse-

grained multi-agent interactions leave the latent subtlety of collaboration and task assignment

untouched. Although simulation-based multi-agent environments [BKM20, VBC19, BBC19]

can partially address such an issue, learning from noisy and real visual input in physical work

is still essential for understanding collaborative planning behaviors of agents in the context

of complex daily tasks.

The collected LEMMA dataset strives to address the shortcomings of the aforementioned

works, capturing goal-directed, decompositional, multi-task activities with multi-agent collab-

orations. As shown in Table 3.1, the size, annotation, and actions per video of LEMMA are

at a comparable scale to state-of-the-art benchmarks.

3.2 The LEMMA Dataset

This section describes the design, data collection, and data annotation process of the LEMMA

dataset. The dataset is profiled by various statistics from diversified perspectives to highlight

its potential in activity understanding.

3.2.1 Activities and Scenarios

We first build a task pool of 15 common tasks in the kitchen (e.g ., “make juice,” “make cereal”)

and the living room (e.g . “watch TV,” “water plant”). On top of these tasks, we design four
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types of scenarios (with a different focus) to study goal-directed multi-step multi-task indoor

activities in multi-agent settings.

- Single-agent Single-task (1 ˆ 1): Each participant was first asked to perform all tasks

from the task pool independently; this ensured participants are clear with the goal of each

task and could schedule and assign tasks efficiently in later multi-task or multi-agent scenarios.

Participants were asked to read the instructions and walk around to get familiarized with the

new environments.

- Single-agent Multi-task (1 ˆ 2): Each participant was then asked to simultaneously

perform two tasks, randomly sampled from the task pool. The participants determined the

order of task executions without any restrictions.

- Multi-agent Single-task (2 ˆ 1): Two participants were asked to perform a single task

cooperatively; the task is randomly selected from the task pool. To emulate human-robot

teaming accurately, only one participant (leader) was provided with task instructions; the

other participant (helper), with no knowledge of the task, was asked to collaborate with the

leader agent to finish the task efficiently. Only nonverbal communication (e.g ., gestures)

were allowed between two participants; this design would open up new venues for nonverbal

communication and the emergence of language in real-world environments.

- Multi-agent Multi-task (2 ˆ 2): Both participants were provided with task instructions.

Since both participants were asked to accomplish two complex multi-step tasks collaboratively,

this scenario has the most natural activity/task patterns and richest mechanisms for learning

task scheduling and assignment.

In total, the LEMMA dataset includes 37 unique task combinations in the multi-task

scenarios. Participants were explicitly instructed to perform tasks efficiently and provided

with a brief task instruction with basic environment information. Except for the specification

of the goal states for each task, we add no additional constraint to the order of task execution;

participants perform tasks naturally and freely. Fig. 3.2 shows a sample instruction for the

2 ˆ 1 scenario.
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Lorem ipsum

In this task, you are asked to make watermelon juice. Here are things to know before your start:
- All the items needed for this task can be found either in the fridge, on the table, or in one of the drawers or closets.
- Please cut the watermelon into pieces before blending it with the juicer.
- Please keep the kitchen clean; wash all the tools/objects you used.
- You will have an additional helper to collaborate with you.
  - Do Not speak with them. They do NOT know anything about the task you are working on.
  - Feel free to ask them for help, but only using non-verbal communication (e.g., gestures). For instance, you may point
    to something, or any other gestues you think may help instruct them.

In this task, you are asked to collaborate with your friend to finish a task in the kitchen.
Here are things to know before your start:
- All the items needed for this task can be found either in the fridge, on the table, or in one of the drawers or closets.
- Please keep the kitchen clean; wash all the tools/objects you used.
- As only your friend knows the task instruction, please try to infer what the task is and offer helps.
- You may not speak with your friend. You can only use non-verbal communication (e.g., gestures).

Leader

Helper

Figure 3.2: An example instruction of making juice in a multi-agent single-task (2 ˆ 1) scenario.

3.2.2 Data Collection

We recorded the data in 7 different Airbnb houses, performed by 8 individuals in 14 unique

kitchens/living rooms. To provide different views of performing daily activities and avoid

occlusion in narrow spaces, we set up two Kinect Azure cameras to capture RGB-D videos of

the global scene and human bodies. In addition, each participant was instructed to wear a

head-mounted GoPro camera to capture detailed agent-specific actions in an egocentric view.

In post-processing, we synchronize the camera recordings of all views at a frame rate of

24 FPS. Fig. 3.2 shows an example of a scene with a point cloud merged from two Kinects

and four RGB views from both Kinects and GoPros. Combining TPVs and FPVs captures

most of the details of performing daily activities, provides sufficient data for understanding

human activities and benefits future research in embodied vision. The additional depth

information and 3D human skeletons captured by Kinects can also be adopted for future 3D
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understanding tasks.

3.2.3 Ground-truth Annotation

We used the Amazon Mechanical Turk (AMT) to annotate both human bounding boxes and

action information in the recordings. Specifically, action information includes the temporal

localization of segments, semantic labels, and the governing task of each atomic-action. The

semantic labels of atomic-actions are composed of verbs and nouns, representing flexible

compositional relations to describe human actions. Additional details are provided below.

Bounding Boxes and Segments: Bounding boxes of humans are annotated on the

primary view of TPVs. Skeletons captured by Kinects are used to provide initial estimations

of bounding boxes. Next, we use Vatic [VPR13] to adjust bounding boxes and annotate the

segments of atomic-actions. The segments of atomic-actions are defined by verbs without

corresponding nouns, for example, “put to using ,” “pour into from .” Each video

was first annotated by two AMT workers; task-irrelevant actions (e.g ., “walking,” “holding”)

are ignored. We then compute the Intersection over Union (IoU) of both bounding boxes and

temporal segments. A third AMT worker is asked to fine-tune the annotations if the IoU of

bounding boxes or segments annotated is lower than 0.5.

Atomic-actions and Activities: Given the verbs of the atomic-action segments, two AMT

workers were asked to fill in the blanks of the verb patterns and annotate the governing tasks

in multi-task scenarios with a self-developed interactive annotation tool. We allow concurrent

actions for each agent with multiple nouns for the same verb; for example, “get spoon, cup

from table using hand.” As there might exist ambiguities in describing the atomic-actions

with natural languages, such as the possible annotations of “wash cup using water” vs. “wash

cup using sink,” we manually go through all the annotations and resolve the ambiguous action

annotations following a uniform criterion.
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Figure 3.3: Statistics of the LEMMA dataset.

3.2.4 Dataset Statistics

In total, we recorded 324 activities, generating 324 ˆ 2 TPV videos (from both Kinects) and

445 FPV videos. Among them, 136 activities were performed in kitchens, and the remaining

188 in the living rooms. The collected LEMMA dataset consists of 127 1 ˆ 1 activities, 76

1 ˆ 2 activities, 66 2 ˆ 1 activities, and 55 2 ˆ 2 activities. The frequency of the recorded

tasks is shown in Fig. 3.3b. The total duration of all the activities is 10.1 hours, with an

average duration of 2 minutes per video and the longest activity of 7 minutes.

We retrieved a total of 4.6 million images during post-processing, including 2.9 million

RGB images captured by both GoPros and Kinects and 1.7 million depth images captured

by Kinects. We annotated 0.9 million RGB frames captured by the primary view Kinect and
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Figure 3.4: The co-occurrence statistics for verbs, nouns, and tasks in LEMMA.

gathered 0.8 million annotated frames with one or more actions performed by each of the

agents (if multiple).

After resolving annotation ambiguities, we collected 24 verb classes and 64 noun classes,

resulting in 862 compositional atomic-action labels, of which 641 appear more than 50

times. We show the frequencies of annotated verbs and nouns in Figs. 3.3a and 3.3c; both

distributions roughly follow the Zipf’s law.
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Co-occurrence relations among annotated verbs, nouns, and tasks are shown in Fig. 3.4.

As we can see from Figs. 3.4a and 3.4c, verbs like “get” and “put” co-occur with various nouns

in almost all of the tasks, which aligns with our intuition that moving objects around consists

a large portion of our daily activities. Interactive actions between participants are captured

by verbs (e.g ., “point-to”) and nouns (e.g ., “P1,” short for “participant 1”) in the form of

annotations like “get knife from P1 using hand” or “point-to sink.”

3.3 Benchmarks

Aligned with our motivations, two tasks are constructed to evaluate indoor human activity

understanding on the collected LEMMA dataset: (i) recognizing atomic-actions and their

semantics; and (ii) predicting possible future steps for goal-directed activities, especially

in multi-agent scenarios. Specifically, we define two challenging benchmarks to test the

capability of understanding complex goal-directed activities for computer vision algorithms.

3.3.1 Compositional Action Recognition

Human indoor activities are composed of fine-grained action segments with rich semantics.

As mentioned by Goyal et al . [GKM17], interactions with objects are highly purposive. From

the simplest verb of “put,” we can generate a plethora of combinations of objects and target

places, such as “put cup onto table,” “put fork into drawer.” Situations could become even

more challenging when objects were used as tools, e.g ., “put meat into pan using fork.”

Motivated by the above observation, we propose the compositional action recognition

benchmark on the collected LEMMA dataset with each object attributed to a specific semantic

position in the action label. Specifically, we build 24 compositional action templates. In these

action templates, each noun could denote an interacting object, a target or a source location,

or a tool used by a human agent to perform certain actions.

The proposed compositional action recognition benchmark is challenging; it requires
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Put bread to plate with hand, knife
Get cup, spoon from table with hand
Pour milk into bowl with hand
Blend coffee with spoon
Drink milk with spoon, cup
Fill cup with kettle
Play games with controller

Turn off juicer with hand
Cut watermelon with knife

Turn on microwave with hand
Throw wrapping into trashcan
Point to cereal
Sit on sofa

Switch with remote
Watch TV
Open fridge

Targets Location ToolAction

(a) Compositional action templates

GT: Put watermelon to juicer with knife
Cut watermelon with knife

PR: Get knife, watermelon from table with hand
Cut watermelon with knife

Put Get Cut

... 1 0 … 1 …GT

... 0fn 1fp … 1tp …PR

... 0 … 1 … …GT

... 1fp … 1tp … …PR

Watermelon

... 0 … 1 … …

... 0 … 1tp … …

WatermelonKnife Knife

0 … 1 … … …GT
1fp … 0fn … … …PR

Juicer

0 … 0 … … …
0 … 0 … … …

JuicerTable Table

… 1 … … … 0GT
… 0fn … … … 1fpPR

Hand

… 1 … … … 0
… 1tp … … … 0

Knife Hand Knife

Action

Target

Location

Tool

(b) Prediction of verbs and nouns

Figure 3.5: Compositional action labels in LEMMA.

computational models to correctly detect the ongoing concurrent action verbs as well as the

nouns at their correct semantic positions. We evaluate model performances by metrics on

compositional action recognition in both FPVs and TPVs. Specifically, the model is asked to

predict (i) multiple labels in verb recognition for concurrent actions (e.g ., “watch tv” and

“drink with cup” at the same time), and (ii) multiple labels in noun recognition for each

semantic position given verbs, representing the interactions with multiple objects using the

same action (e.g ., “wash spoon, cup using sink”). Fig. 3.5b shows the schematics of the

evaluation process. For training and testing on TPVs, we provide ground-truth bounding

boxes of humans as additional information on spatial localization.

3.3.2 Action and Task Anticipation

As emphasized throughout this chapter, the most significant factor of human activities is the

goal-directed, teleological stand. An in-depth understanding of goal-directed tasks demands a

predictive ability of latent goals, action preferences, and potential outcomes. To tackle these

challenges, we propose the action and task anticipation benchmark on the collected LEMMA

dataset. Specifically, we evaluate model performances for the anticipation (i.e., predictions
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for the next action segment) of action and task with both FPV and TPV videos.

This benchmark provides both the training and testing data in all four scenarios of

activities to study the goal-directed multi-task multi-agent problem. As there is an innate

discrepancy of prediction difficulties among these four scenarios, we gradually increase the

overall prediction difficulty, akin to a curriculum learning process, by setting the percentage

of training videos to be 3/4, 1/4, 1/4, and 1/4 for 1 ˆ 1, 1 ˆ 2, 2 ˆ 1 and 2 ˆ 2 scenarios,

respectively. Intuitively, with sufficient clean demonstrations of tasks in 1 ˆ 1 scenario,

interpreting tasks in more complex settings (i.e., 1 ˆ 2, 2 ˆ 1, and 2 ˆ 2) should be easier,

thus requiring less learning samples; such a design encourages the model to generalize. The

model performance is evaluated individually for each scenario.

3.4 Experiments

In this section, we conduct experiments on the two proposed benchmarks with details on

evaluation metrics, experimental settings, and baseline results. We further discuss the results

to highlight the underlying challenges of each task.

3.4.1 Compositional Action Recognition

Experimental Setup: We randomly split all the video samples into training and test sets

with a ratio of 3:1, resulting in 243 recorded activities for training and the remaining 81 for

testing. Due to the multi-agent setup, each activity may have multiple FPVs; 333 (out of

445) FPV videos are split into training. In TPVs, the recordings of the primary view with

the ground-truth human bounding box annotations are given for both training and testing

videos. Results are evaluated on two separate sources of inputs: FPVs and TPVs.

Evaluation Metrics: Model performances are evaluated separately for verbs, nouns, and

compositional action recognition. Verb and compositional action recognition are treated as
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multi-label classifications with 25 verb classes and 863 compositional action classes (including

a “null” action). After generating multi-hot labels for each semantic position in the presented

verb, noun recognition is evaluated as multi-label classification (64 object classes). Average

precision, recall, and F1-score for all predictions are reported on testing sets. During the

evaluation, we sample image frames at 5 FPS and evaluate models on these frames.

Methods: We adopt two recent 3D-CNN networks, I3D [CZ17] and SlowFast Network [FFM19],

as the baseline models. The baseline models predict the compositional action directly. Con-

sidering the compositionality of verbs and nouns, we propose two variants of the baseline

models: (i) a multi-branch network (branching model) that builds on the bottleneck layer

of the backbone models to leverage both verb and noun supervision, and (ii) a multi-step

inference model (sequential model), wherein verbs are first inferred with a beam search and

then fed into object inference with their verb embeddings for joint learning.

Implementation Details: The training procedure utilizes all annotated segments in the

training set. Additionally, we re-scale all the images with the short side to 256 pixels. To

feed data into 3D-CNN models, 4 frames are first sampled for each action segment as center

frames, and an additional 8 frames are then uniformly sampled around center frames with a

window length of 32. We train each model on 8 Titan RTX GPUs on a single computing

node for 50 epochs (20k iterations) with a batch size of 96. We use the warm-up strategy and

perform large mini-batch batch normalization, as suggested in [GDG17]. The learning rate

is initially set to 0.0125 for each parallel branch and decays with a cosine annealing. Other

settings of the backbone models are the same as in [FFM19]. For the proposed sequential

model, we use the beam search with a size of 5 for action inference. We extract bounding

box features of humans with ROIAlign [HGD17] for frames in TPVs.

For the implementations of the two proposed models, “branching” and “sequential”, we

build both models on top of the backbone 3D CNN model and use a multi-branch network to
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train verbs, nouns, and their correspondences. We start from the “sequential” model as the

“branching” model is a variant of the “sequential” model; see an illustration in Fig. 3.6.

For the verb branch, we propose 3 verb candidates for each segment and extract verb

visual features for verb recognition. Specifically, the verb visual features fverb “ tF
piq
verbpfvisqu

are generated using three different linear projections tF
piq
verbui“1,2,3 applied onto the feature

fvis extracted by 3D CNN. We sort ground-truth action labels according to their index in the

verb vocabulary and use cross-entropy loss Lverb as the supervision for verb recognition.

For the noun branch, we utilize the embeddings of each verb provided by GloVe [PSM14]

as additional features. The embedding of each verb is passed into a linear projection

layer and concatenated with the extracted visual features to generate noun feature vectors

fnoun-vis. Next, we use three different linear projections tF
piq
nounui“1,2,3 to generate features

for each of the noun visual feature vectors and obtain noun semantic features fnoun-sem “

Figure 3.6: An illustration of the proposed “sequential” model, which predicts verbs, nouns, and
compositional actions jointly.
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trF piqnounpf
pjq

noun-visqsi“1,2,3uj“1,2,3. As we generate ground-truth labels following the same

scheme, we use binary cross-entropy loss Lnoun as the supervision for recognizing nouns

at their correct semantic positions using fnoun-sem. During training, the embeddings of the

ground-truth verbs are fed into the network. During testing, we use the embedding of the

predicted top-3 verbs.

We use max-pooling to summarize the noun semantic features and concatenate it with verb

visual features. We use another layer of max pooling to generate the final compositional action

feature and use binary cross-entropy loss as Lcomp to provide supervision for compositional

action recognition. The joint loss is

L “ Lverb ` Lnoun ` Lcomp.

For the “branching” model, we follow the same basic scheme of the “sequential” model

but remove the connection between the verb branch and the noun branch by discarding

the additional verb embeddings. The remaining details of the architecture, as well as the

optimizing objectives, remain the same.

Results and Discussion: Table 3.2 shows quantitative results of predicting verbs, nouns,

and compositional actions for the compositional action recognition task. For FPVs, rather

than directly predicting the compositional actions (baseline models), predicting the verbs and

nouns with their semantic positions boosts the performance on all metrics, indicating that

understanding the compositional structures of human actions indeed supports the prediction.

We also observe that the results of compositional action recognition in the sequential models

are slightly lower than the branching model due to the aggregated error brought in by a

relatively low precision („25%) of the verb recognition.

In comparison, the results of compositional action recognition in TPVs are significantly

lower than those in the FPVs due to severe occlusion. It also shows that predicting the
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Table 3.2: Comparisons of compositional action recognition on LEMMA.

View
Type Method Verb Noun Compositional Action

Avg.Prec Avg.Rec Avg.F1 Avg.Prec Avg.Rec Avg.F1 Avg.Prec Avg.Rec Avg.F1

F
P

V

I3D 17.09 43.89 24.60 3.42 16.15 5.72 11.07 39.49 17.30
Slowfast 22.27 56.42 31.94 4.31 20.60 7.13 18.68 50.65 27.3

I3D sequential 25.04 57.00 34.80 19.36 75.29 30.80 18.00 50.04 26.47
Slowfast sequential 24.30 49.71 32.64 17.95 59.11 27.54 26.80 38.41 31.57

I3D branching 25.73 55.62 35.8 18.63 69.76 29.41 22.29 48.46 30.53
Slowfast branching 26.16 56.33 35.73 18.18 73.46 29.15 27.97 48.87 35.58

T
P

V

I3D 14.18 36.34 20.40 2.29 11.05 3.79 6.85 23.82 10.64
Slowfast 14.28 37.38 20.66 2.32 11.14 3.83 7.76 23.25 16.31

I3D sequential 16.17 30.17 21.05 7.79 25.41 11.93 2.23 12.67 3.79
Slowfast sequential 15.31 28.84 20.00 6.37 22.39 9.92 3.27 9.16 4.82

I3D branching 12.92 32.09 18.43 12.75 17.70 14.82 4.67 20.76 7.6
Slowfast branching 16.64 33.40 22.21 17.29 18.36 17.81 6.52 21.55 10.01

GT
PR

put meat to table with hand
put meat to table with hand

pour milk to cup with hand
pour milk to cup with hand

switch with Remote, Watch TV
switch with Remote, Watch TV

put vacuum to floor with hand
put vacuum to floor with hand

GT

PR

watch TV, sweep floor with vacuum
watch TV

pour tank to sink with hand
pour tank to sink with hand
fill tank with sink

wash juicer
wash juicer, turn-off sink with hand

play game with controller
play game with controller
switch with remote

Figure 3.7: Qualitative results of compositional action recognition on LEMMA, we show correct
predictions (in green) and failure examples (in red).

composition of verbs and nouns makes no significant improvement compared with predicting

compositional action directly. Such a result implies that current models could not capture

the details of compositions between verbs and nouns from TPVs. Taken together, the results

indicate that fusion among the representations of visual embodiment between TPVs and

FPVs might be a crucial ingredient to tackle this problem in the future.

Fig. 3.7 shows qualitative results for the compositional action recognition task.
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3.4.2 Action and Task Anticipations

Experimental Setup: We split the training and test sets with ratios 3 : 1, 1 : 3, 1 : 3,

1 : 3 for the four scenarios 1 ˆ 1, 1 ˆ 2, 2 ˆ 1, 2 ˆ 2, respectively. Such a spit results in a

training set with (96, 19, 16, 13) activities and a test set with (31, 57, 50, 42) activities in

four scenarios. During training and testing, the computational models have access to both

FPVs and TPVs, together with the ground-truth human bounding boxes annotations of the

TPV primary view.

Evaluation Metrics: Model performances are evaluated individually (per agent) for the

action and task anticipations task. Specifically, both action and task anticipations are

evaluated as multi-label classifications with 863 compositional action classes (including a “null”

action) and 15 task classes. Average precision, recall, and F1-score are reported individually

for each of the four scenarios on the testing sets. Similar to the protocol used in the above

compositional action recognition task, we re-sample image frames at 5 FPS and evaluate

these sub-sampled frames during the testing phase.

Methods: We leverage the visual features extracted by the pre-trained SlowFast model in

compositional action recognition for baseline models. Specifically, we compare two backbone

models: (i) using segment-level recognition feature (SF) directly by adding an MLP on top

of the features, and (ii) using long-term feature bank (LFB) with max pooling [WFF19]. For

activities with multi-agent interactions, we use the other agent’s FPV features together with

their own’s to capture the joint task execution progress for learning and inference; these

variants are denoted as M-SF (FPV) and M-LFB (FPV) For comparison, we also use the

concatenation of the FPV feature and primary TPV feature as the input; the corresponding

models are denoted as M-SF (TPV) and M-LFB (TPV).
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Implementation Details: For the LFB model, we use a history window size of 10 and

aggregate the features using max-pooling, as described in [WFF19]. For the multi-agent

variants, we use max-pooling to fuse features of two views and process them with a different

branch as another temporal inference module. We train models on a single Titan Xp GPU

for 50 epochs with a learning rate of 0.001.

For scenarios where two agents collaborate, we incorporate the egocentric features of

another agent (denoted as Ego in Table 3) or TPV features (denoted as TPV in Table 3)

through a pooling mechanism, similar to [GJF18]. We use these pooled features to incorporate

global task execution information to each agent. Specifically, we concatenate the extracted

global features to features extracted by the backbone 3D CNN models from the target agent’s

egocentric view for training and inference. For TPV, we use ROIAlign to extract visual

features corresponding to each agent’s bounding box. An illustration of the pipeline with

TPV features as additional features is shown in Fig. 3.8.

Results and Discussion: Table 3.3 shows quantitative results of action and task anticipa-

tion. The proposed multi-agent variants (M-) of baseline models perform the best among

all models. For single-agent activities (1 ˆ 1, 1 ˆ 2), we have the following observations.

First, models that consider temporal relations between frames generally perform better than

the models using segment features. Second, adding additional TPV features to single-agent

activities slightly helps interpret the task being executed and therefore promotes anticipation.

This result matches the intuition that models having access to both FPVs and TPVs would

perceive more holistic scene information. We also find that the performances of task anticipa-

tion in the 1 ˆ 1 single-task scenario are better than the one in the 1 ˆ 2 multi-task scenario,

matching what we would expect from more complicated task execution patterns.

For multi-agent activities (2 ˆ 1, 2 ˆ 2), we observe that the aggregation of FPV and

TPV features generally performs better. It supports our hypothesis that observing the other

agents’ actions helps models to “understand” task scheduling and assignment. We also observe
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Figure 3.8: An illustration for the multi-agent variants of the original sequential model with TPV
features as additional features.

Table 3.3: Comparisons of the action and task anticipations on LEMMA.

Scenario Method 1 ˆ 1 1 ˆ 2 2 ˆ 1 2 ˆ 2
Avg.Prec Avg.Rec Avg.F1 Avg.Prec Avg.Rec Avg.F1 Avg.Prec Avg.Rec Avg.F1 Avg.Prec Avg.Rec Avg.F1

C
om

po
si

ti
on

al
ac

ti
on

SF 23.42 22.25 22.82 20.13 20.06 20.10 18.89 19.22 19.05 18.31 16.67 17.45
LFB 23.03 28.67 25.54 20.48 25.4 22.67 18.31 22.30 20.11 18.53 20.97 19.68

M-SF (TPV) 24.22 28.05 25.99 20.10 24.48 22.08 19.15 16.71 17.85 19.64 15.18 17.12
M-LFB (TPV) 23.54 37.81 29.01 21.10 31.86 25.39 19.67 21.03 20.33 20.11 20.30 20.15
M-SF (FPV) 23.30 25.41 24.31 21.34 23.18 22.22 19.70 17.46 18.51 19.82 15.8 17.58

M-LFB (FPV) 23.26 31.07 26.60 20.78 27.40 23.63 19.42 21.73 20.51 19.49 20.12 19.8

Ta
sk

SF 50.53 79.08 61.66 48.07 67.78 56.25 39.05 57.43 46.49 44.88 62.09 52.1
LFB 57.57 84.31 68.42 52.12 68.94 59.36 38.40 53.08 44.56 48.17 64.61 55.19

M-SF (TPV) 58.61 79.96 67.05 55.45 67.24 60.78 45.73 58.98 51.51 49.66 64.47 56.10
M-LFB (TPV) 60.27 82.19 69.54 56.2 72.46 63.30 43.94 61.41 51.23 48.85 67.48 56.67
M-SF (FPV) 51.12 79.18 62.13 48.42 69.04 56.92 41.00 58.11 48.08 46.04 65.97 54.24

M-LFB (FPV) 55.56 82.83 66.51 52.22 70.01 59.82 41.33 64.49 50.38 46.65 69.59 55.86

that models’ performances in 2 ˆ 1 activities are slightly worse than in 2 ˆ 2 activities. We

hypothesize that task plans in the 2 ˆ 2 scenarios change less frequently, with a clear task

assignment coordinating the individual tasks. In comparison, in the 2 ˆ 1 scenarios, the

sequential ordering of the task requires more frequent communication between agents to

coordinate. Such a performance gap calls for better modeling of multi-agent task assignments.
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3.5 Conclusions

In this chapter, we introduce the LEMMA dataset with a focus on natural multi-agent

multi-task daily activities. Dense annotations are provided on both compositional action

and task for learning and inference on four different activity scenarios with increasing

difficulty. Additionally, we propose two challenging tasks on LEMMA to measure existing

models’ competence in action understanding and temporal reasoning: (i) compositional

action recognition, and (ii) action/task anticipations. The current performance of existing

state-of-the-art models suggest efforts should be continually put into natural and realistic goal-

directed human activities understanding, especially with complex activities and fine-grained

compositional actions.
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CHAPTER 4

EgoTaskQA: Understanding Human Tasks in Egocentric

Videos

Stepping further into the fine-grained human activity understanding problem, we argue that

the task of action localization or future prediction as an indirect metric is not enough for

evaluating models on the capabilities that human possess. Specifically, these two tasks do not

fully reveal the innate strong correspondences between actions, objects, and states. Therefore,

to make a direct evaluation, we introduce the EgoTaskQA benchmark that builds on top

of the egocentric videos collected in LEMMA to evaluate the crucial dimensions of task

understanding for models through question-answering. By extending the LEMMA dataset

with annotations consisting of object status, human-object and multi-agent relationships, and

causal dependency structures between actions, We meticulously design questions that target

three specific scopes: (1) actions with world state transitions and their dependencies, (2)

agents’ intents and goals in task execution, and (3) agents’ belief about others in collaboration

to provide an in-depth evaluation metric for task understanding. These questions are

procedurally generated within four types: descriptive, predictive, explanatory, and

counterfactual, to systematically test models’ capabilities over spatial, temporal, and

causal domains of goal-oriented task understanding. To avoid spurious correlations in

questions, we include both direct and indirect references to actions and objects. We further

balance the answer distribution by the reasoning type of questions and carefully design

benchmarking train/test splits to provide a systematic test on goal-oriented reasoning and

indirect reference understanding; see Fig. 4.1 for an example.
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Figure 4.1: Example questions in EgoTaskQA.

The importance of adopting the egocentric view for perception lies in the essence of its

usage in our daily life observations. Taking a closer look at how humans learn from interacting

with the world, we locate objects, change their positions and manipulate them in various ways,

all presumably under visual control from an egocentric perspective [LMR99]. This unique

first-person experience provides essential visual cues for human attention and goal-oriented

task understanding. Moreover, egocentric perception naturally reflects how humans reason

and perform in a partially observable environment, making it the most available learning

source for learning actions, tasks [NRK22], and belief modeling [FQZ21].

As shown in Table 4.1, EgoTaskQA complements existing video reasoning benchmarks on

various dimensions. In the following sections, we first review all prior works on video-based

question-answering. Next, we provide details of the extensions and additional annotations,

especially the annotations of object status, human-object and multi-agent relationships, and

causal dependency relationships between actions made on LEMMA. We also illustrate the

question-answer generation pipeline with a focus on indirect reference and balancing. We

further evaluate state-of-the-art video reasoning models on our benchmark and show their

significant gaps between humans in understanding complex goal-oriented egocentric videos.

46



Table 4.1: A comparison between EgoTaskQA and existing video question-answering benchmarks.
We use “world” for world model-related information, including action preconditions, post-effects, and
dependencies. We use MC as short for multiple-choice question-answering, and OP for open-answer
question-answering.

Dataset
Video Question Scope Question type Answer

Type # questions
View Real-world World Intents & Goals Multi-agent Descriptive Predictive Explanatory Counterfactual

MarioQA [MSJ17] TPV ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✗ OP 188K
Pororo-QA [KHC17] TPV ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✗ MC 9K
CLEVRER [YGL20a] TPV ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ OP+MC 282K

Env-QA [GWB21] FPV ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ OP 85K
MovieQA [TZS16] TPV ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗ MC 14K
Social-IQ [ZCL19] TPV ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✗ MC 7.5K
TVQA [LYB18] TPV ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗ MC 152.5K

TVQA+ [LYB20] TPV ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗ MC 29.4K
MSVD-QA [XZX17] TPV ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ OP 50.5K

MSRVTT-QA [XZX17] TPV ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ OP 243K
Video-QA [ZCC17] TPV ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ OP 175K

ActivityNet-QA [YXY19] TPV ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ OP 58K
TGIF-QA [JSY17] TPV ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ MC 165.2K
How2QA [LCC20] TPV ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ MC 44K

HowToVQA69M [YMS21] TPV ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ OP 69M
AGQA [GKA21] TPV ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ OP 3.6M

NExT-QA [XSY21] TPV ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✗ OP+MC 52K
STAR [WYC21] TPV ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ MC 60K
EgoVQA [Fan19] FPV ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗ OP+MC 520

EgoTaskQA (Ours) FPV ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ OP 40K

With models exhibiting large performance gaps compared to humans, we devise diagnostic

experiments to reveal both the easy and challenging spots in our benchmark. We hope such

designs and analyses will foster new insights into goal-oriented activity understanding.

4.1 Related Work

Action as Inverse Planning Action understanding has been seen as an inverse plan-

ning problem on agents’ mental states [BST09, SKL19]. Early studies formulate it as

reasoning on the first-order logic formulae that describes actions’ preconditions and post-

effects [McC63, Rei91]. This symbolic formalism is later paired with domain-specific language

and algorithms to become mainstays in robotics planning [FN71, MGH98]. In computer

vision, similar attempts have been made to link visual observations with world states and

actions [DPC12, ILA15, NG18]. Various methods treated actions as transformations on

images to solve action-state recognition [FR13, FZ15, WFG16, ALS17, LWZ17] and video

prediction [OGL15, VPT16, HS18]. With the emerging interest in language-grounded un-

derstanding, Zellers et al . [ZHP21] proposed PIGLeT to study the binding between images,
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world states, and action descriptions. Padmakumar et al . [PTS22] further studies the problem

of language understanding and task execution by designing an intelligent embodied agent

that can chat during task execution. However, these works are mostly limited to atomic

actions, missing the important action dependency in task execution. To tackle this problem,

instructional videos [KAS14, ABA16, TDR19, MZA19] are studied with their goal-oriented

multi-step activities. In these videos, external knowledge [PHM16, KW18] can be used as

guidance for advanced tasks like temporal dynamics learning [EWS21] and visually grounded

planning [CHX20, SHL22]. Unfortunately, these videos highlight the instructions and include

no task-level noise, which is much simpler than the partially observable, highly paralleled,

multi-agent environment that humans learn from and as presented in our benchmark. These

complexities make the goal-oriented action understanding a challenging task remaining to be

solved.

Egocentric Vision Egocentric vision offers a unique perspective for actively engaging with

the world. Aside from traditional video understanding tasks like video summarization [LGG12,

LG13], activity recognition [FFM19, WLM22, GSR22] and future anticipation [NLF20, FF20,

QJZ18, QJH20, GG21], egocentric videos provide fine-grained information for tasks like

human-object interaction understanding [NFG19, DLM16, CKS16, BLC15, QWJ18, GYB18,

MFK16] and gaze/attention prediction [WLS18, LLR18]. With its natural reflectance of

partial observability, egocentric videos are also used for social understanding tasks such as joint

attention modeling [FHR12, SS15], perspective taking [YMY18, NXJ20] and communicative

modeling [NZL20, FQZ21]. However, with various egocentric datasets curated over the

last decade [PR12, LGG12, SGS18], data and detailed annotations for human tasks are

still largely missing. Large-scale daily lifelog datasets like EPIC-KITCHENS [DDF22] and

Ego4D [GWB22] cover certain aspects of action-dependencies, effects, and social scenarios in

their recordings, but are unsuitable for detailed annotation due to their size. The other stream

of datasets collects activities by providing coarse task instructions to both single actor [RCJ21]
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and multiple agent collaborations [JCH20]. They annotate tasks and compositional actions to

reveal agents’ execution and collaboration process for multi-step goal-directed tasks. Despite

all the preferred characteristics of these goal-oriented activity videos, none of them successfully

addressed action-dependencies and effects, nor multi-agent belief modeling.

Video Question-Answering Benchmarks Visual question-answering can be designed to

evaluate a wide spectrum of model capabilities, spanning from visual concept recognition and

spatial relationship reasoning [TML14, AAL15, JHV17, HM19], abstract reasoning [BHS18,

ZGJ19, NYM20, ZJZ21, ZJE21, ZXJ22], to common sense reasoning [PBM20, ZBF19]. In

the temporal domain, synthetic environments are used for questions that involve simple action-

effect reasoning [MSJ17, KHC17]. Crowdsourced videos [JSY17, YXY19, LYB18, YMS21]

are used for collecting questions on basic spatial-temporal reasoning capabilities like event

counting [JSY17], grounding [LYB20], and episodic memory [GWB22]. Recent advances in

video question-answering aim for more profound reasoning capabilities. Gao et al . [GWB21]

leverages an indoor synthetic environment to generate questions on spatial relationships

and simple action-effect reasoning from an egocentric perspective. Xiao et al . [XSY21]

designs NExT-QA containing questions about knowledge of the past, present, and future on

both temporal and causal domains. Grunde-McLaughlin et al . [GKA21] programmatically

generates questions for compositional spatial-temporal reasoning and generalization. Wu et

al . [WYC21] focus on short atomic action clips for situated reasoning. Yi et al . [YGL20a]

generates synthetic videos for studying counterfactual predictions on collisions. Zadeh

et al . [ZCL19] collects questions for social intelligence evaluation. Nevertheless, none of

these benchmarks addressed the aforementioned critical dimensions of goal-oriented activity

understanding from a real-world egocentric perspective.
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4.2 The EgoTaskQA Benchmark

The EgoTaskQA benchmark contains 40K balanced question-answer pairs selected from 368K

programmatically generated questions generated over 2K egocentric videos. We target the

crucial dimensions for understanding goal-oriented human tasks, including action effects and

dependencies, intent and goals, and multi-agent belief modeling. We further evaluate models’

capabilities to describe, explain, anticipate, and make counterfactual predictions about goal-

oriented events. A detailed comparison between EgoTaskQA and existing benchmarks is

shown in Table 4.1.

4.2.1 Data Collection

We select egocentric videos from the LEMMA dataset [JCH20] as base video sources. Com-

pared to similar egocentric datasets, human activities in LEMMA are highly goal-oriented and

multi-tasked. These activities contain rich human-object interactions and action dependencies

in both single-agent and two-agent collaboration scenarios. We take advantage of these desired

characteristics and augment LEMMA with ground truths of object states, relationships, and

agents’ beliefs about others. More specifically, we augment LEMMA on the following aspects:

World States We focus on world states consisting of object states, object-object relation-

ships, and human-object relationships. First, we build the vocabulary of relationships and

state attributes from activity knowledge defined in previous works [PHM16, JKF20]. We

manually filter irrelevant relationships and attributes by removing dataset-specific (e.g ., under

the car) and detailed numerical (e.g ., cut in three) relationships. Next, we gather similar

relationships to obtain 48 relationships and 14 object attributes. This vocabulary covers

spatial relationships (e.g ., on top of), object affordances (e.g ., openable), and time-varying

attributes (e.g ., shape). We build on top of action annotations from LEMMA and use Amazon

Mechanical Turk (AMT) to annotate this information before and after the changing action
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Figure 4.2: We use two actions A1:“get cup from microwave” and A2:“put cup to the other person”
as an example to visualize annotations in EgoTaskQA. We annotate states and relationships for
objects changed by actions as well as human-object and multi-agent relationships and decide the
causal dependency between actions based on the “before” and “after” annotations.

for all time-varying objects. With these annotations, we reconstruct the transition chain for

each interacted object and obtain their temporal status.

Multi-agent Relationships To capture how two agents (actor and helper) collaborate

over the same task, we annotate basic information about objects’ visibility and the actor’s

awareness of the helper. For each object that the actor operates on, we annotate its visibility

to the helper by providing synchronized videos from both agents’ views to AMT workers. For

the actor’s awareness of others, we instruct AMT workers to first go through the egocentric

view video of both agents to get familiar with actions performed by the actor and the helper.

Next, we ask AMT workers to replay the video of the actor and annotate, during each action

segment, whether the actor can see the helper or whether the actor is aware of the helper’s

action if the helper is not in sight. As this annotation is usually subjective, we take the

majority vote of three workers as ground truth.
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Causal Trace Based on the annotated transition chain of objects, we generate causal

traces for each action with rules. By checking whether the post-effect of one action fulfills the

preconditions of another, we define the causal relationship between two actions into unrelated,

related, and causally dependent; see Fig. 4.2 for an illustration.

Given two actions a1 and a2, and their state annotations s1 and s2, we determine the

causal dependency between them as shown in Algorithm 1. We first collect all interactive

object set O1 and O2 for a1 and a2, and see if there exists an overlap of objects. If no, we

assume a1 and a2 is not related. Next, for each object o that is interacted in both actions, we

check whether a1 lead to the change of attribute s, which is a precondition of a2’s change on

o. This condition is validated by checking if o changed the same attribute s in both a1 and

a2, and the status after a1 equals the status before a2, i.e. safter
1,o “ sbefore

2,o . We say that a1 and

a2 are causally dependent if this condition is satisfied. If there exists an attribute s that was

affected by a1 and did not change during a2, i.e. psbefore
1,o ‰ safter

1,o q ^ psafter
1,o “ sbefore

2,o q, we say

that these two actions are related since we can not determine whether this relationship is

causal or not from the annotations. As currently, we do not use additional human resources

for verifying each of these related actions, we limit our scope of question generation to the

dependent and unrelated action pairs. After checking the causal dependency for all action

pairs in the video, we recursively construct the dependency tree by taking each action as root

and adding actions that are dependent on all dependants of the action to its dependants set.

During the recursion, we update the dependency for a newly added action to related if there

exist related dependency relationships in the path from the root action to it.

52



Algorithm 1: Causal Dependency Check
Input: two actions a1 and a2 and their object state annotation S1 and S2.

Output: the causal dependency relationships between a1 and a2.

Gather all interactive objects O1 “ to1i umi“1 and O2 “ to2i u
n
i“1 in action a1 and a2.

if O1 X O2 “ ∅ then
return unrelated

else for o P O1 X O2 do

for s1,o P S1, s2,o P S2 do

if psbefore
1,o ‰ safter

1,o q^psafter
1,o “ sbefore

2,o q ^psbefore
2,o ‰ safter

2,o q then
return dependent

else if psbefore
1,o ‰ safter

1,o q^ psafter
1,o “ sbefore

2,o q then return related

return unrelated

Given a video, we run this dependency check for each pair of actions, resulting in a video-

level dependency tree generated by recursively checking sequential depending relationships. We

use it as the ground truth dependency structure for subsequent explanatory and counterfactual

question generation.

In total, we augment LEMMA with 30K annotated before states, after states, and person

annotation blocks as shown in Fig. 4.2. We then segment the videos in LEMMA into clips with

lengths of around 25 seconds for question generation. This design helps generate interesting

clips with partially observed environmental constraints (e.g ., the cup is already washed when

the person pours juice), and visual hints for future actions (e.g ., cutting watermelon into dice

instead of pieces for making juice rather than eating it directly). Meanwhile, we keep our

videos reasonably long, with an average of 5 actions per clip to cover sufficient information

for action dependency inference and future prediction.

As we can see from the histogram Fig. 4.3, spatial relationships of objects were annotated

the most, followed by multi-agent relationships like “aware of others” and “looking at”. This

meets our expectation of the frequent changes in objects’ spatial relationships during goal-
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Figure 4.3: Statistics of relationships annotated during EgoTaskQA data collection.
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Figure 4.4: Statistics of object state/attribute change.

oriented task execution. Action-related relationships also make up a considerable portion

of overall relationship annotations and describe detailed relationships between the person

and the target object (e.g . getting, putting, pouring) or the tool object (e.g . getting-with,

cutting-with, putting-with).

We list all annotated object attributes and their state values in Table 4.2, and visualize

their statistics in Fig. 4.4. We add an option “unknown” to all attributes for annotating
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Table 4.2: A full list of time-varying object attributes considered and their corresponding values.

Attribute Type Possible State Values

visibility to me visibility visible to me / invisible to me / unknown
visibility to the other person visibility visible to the other person / invisible to the other person / unknown

edibility affordance edible / can not be eaten / unknown
cuttability affordance cuttable / not cuttable / unknown
openability affordance openable / can not be opened / unknown

switchability affordance can be turned on / can not be turned on / unknown
temperature status boiled / in room temperature / unknown
poweredness status on / off / unknown
cookedness status cooked / raw / unknown

wrappedness status wrapped / unwrapped / unknown
emptiness status empty / full / unknown

state of mixture status mixing / not mixing / unknown
cleanliness status clean / dirty / unknown

shape status whole / part / diced / fluid / unknown

unclear scenarios and ignore this answer during question generation. As shown in Table 4.2

and Fig. 4.4, we consider various time-varying object attributes including visibility, affordance

(e.g . cuttability, edibility), and task-dependent status (e.g . emptiness, shape). In Fig. 4.4

(right), we plot the number of changes for each object attribute. In addition to spatial

relationship changes described previously, there is an increasing number of occurrences from

affordance changes to visibility changes and, finally, task-dependent status changes. As

LEMMA is recorded in indoor environments (kitchens and living rooms), we also observe a

large amount of containment relationship changes (“open/close” and “emptiness”). We argue

that this data is also potentially beneficial for the study of containment relationships [LZZ16].

4.2.2 Question-Answer Generation

We use machine-generated questions to evaluate models’ task understanding capabilities. We

focus on the transition chain of each interacted object, especially what actions caused changes

in objects and how these changes contribute together to a multi-step task.

Question Design We design questions that pinpoint scopes, including (1) action precon-

ditions, post-effects, and their dependencies, (2) agents’ intents and goals, and (3) agents’
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beliefs about others. Similar to [YGL20a], we categorize our questions over these three scopes

into four types to systematically test models’ capabilities over spatial, temporal, and causal

domains of task understanding:

‚ Descriptive questions evaluate the understanding of detailed spatial-temporal information.

We provide spatial-temporal references in the questions to identify a unique interval for

answering queries on objects and actions. These properties include object states and

changes, relationships, human actions, and multi-agent-related information. We generate

this type of question by randomly sampling an interval in the video clip and then gathering

all related annotations for question generation. Answers in this category are generated based

on interval annotation and contain both open-ended queries and statement verifications.

‚ Predictive questions aim at understanding intents and task planning. Given a video

clip, we ask about possible future object states and actions for both the actor and the

helper. These predictions include both direct predictions on actions and objects, as well as

more challenging task-dependent predictions such as the executability of actions and the

desired states of objects. Questions and answers for predictive questions are generated by

gathering the future action/object annotations in a fixed window size after the truncated

interval (i.e. unseen future video) in the long original video. Answers in this category are

open-ended action, object, and state queries.

‚ Counterfactual questions aim at understanding action preconditions and post-effects.

Based on the causal trace of actions, we generate counterfactual questions with hypothetical

conditions that certain actions in the sequence were not executed. Under this condition,

we query both the affected and unaffected actions about their executability and whether

the corresponding changes of object states associated with these actions will occur. We

generate counterfactual questions by adding or removing actions in the causal trace and

adjusting the depending actions’ executability recursively. Answers in this category contain

action executability verifications and object state queries.

56



(a) (b) If the person did not wash something,  will he/she be able to change the shape of apple?
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Figure 4.5: An illustration of the generation pipeline and statistics of the question-answer pairs. We
balance questions by reasoning types and use the abbreviation with the concatenation of their initial
letters (e.g ., DWAQ for descriptive, world, action, and query)

‚ Explanatory questions evaluate the understanding of task-related object changes as

well as action preconditions and post-effects. Given the object state annotations and the

causal trace, we query the cause of state changes, the leading factor that satisfies the

preconditions of specific actions, as well as why would the post-effect of certain actions

affects other actions in the video clip. We generate explanatory questions by querying both

the annotations as well as the causal trace. Answers for explanatory questions contain

both open-ended and verification queries.

Answer Generation In EgoTaskQA, we consider both open-answer queries and binary

statement verifications. To generate answers, we first collect video intervals as mentioned

in Section 4.2.1. These clips are cropped from original videos to contain 4„5 actions on

average. We further concatenate the next three actions performed by the actor that is

unseen in videos into the intervals of interest for generating predictive questions. After

generating these intervals of interest, we gather all corresponding annotations, including
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Table 4.3: All program modules used for question-answer generation.
Query Operation Parameter List Return Type Usage and Example

Filter arg1: conditions intervals Return the intervals that satisfies the conditions.
arg2: intervals filter([obj@spoon, change@cleanliness], video)

Only arg1: intervals interval Return the only interval from list, return None if |arg1| ‰ 1.
only(filter([action@putting]))

Localize arg1: before/after intervals Return all intervals before/after the interval provided in arg2.
arg2: interval localize(before, only(filter(action@putting)))

IterateUntil arg1:forward/backward interval Return the first interval of the interval list from the front/back.
arg2: intervals iterate_until(forward, filter([change@emptiness], video))

Query arg1: conditions value Return the value from the interval identified by the conditions.
arg2: interval query([aware@yes, action$], only(filter([action@getting], video)))

Verify arg1: conditions bool Verify arg1 in the interval arg2, return “yes” if satisfied, “no” otherwise.
arg2: interval verify([change@openedness, obj@closet], only(filter([action@closing], video)))

Pred arg1: intervals intervals Return the anticipating intervals within intervals arg1
pred(filter([action@pouring], video))

Counterfactual arg1: conditions intervals Return the original intervals with executability of each interval adjusted according to the counterfactual query arg2.
arg2:intervals counterfactual([action@getting], video)

Depend arg1: interval bool Return “yes” if interval arg1 and interval2 are dependent, “no” otherwise.
arg2: interval depend(only(filter([action@opening], video)), only(filter([action@closing], video)))

annotations for both the actor’s action and the helper’s (i.e. the other person’s) simultaneous

actions. We organize these annotations in a dictionary for convenience purposes. Next, to

generate question-answer pairs for these questions, we design both text templates and the

corresponding functional program templates as shown in Fig. 4.5 (b). More specifically, we

design operators that work on the annotation dictionaries with different purposes. Inspired

by previous works [JHV17, YGL20a, GKA21], we design nine basic operators for composing

the logic for each program template. We provide the specification of each operator, and its

usage with an example, in Table 4.3. The basis of these programs lies in the conditional query,

similar to database queries. We use A@B for filtering data with the attribute A equal B, and

we use A$ for querying the value of attribute A from data. The resulting programs consist of

sequences of modules for querying the answers from the annotations and the causal traces.

We exhaustively execute all possible program instantiations on videos to obtain answers

by substituting arguments with instances in the available sample space. As all questions

take action grounding as a prerequisite, we add indirect references (e.g ., the first..., the

action before...) to actions and objects when making substitutions to reflect this challenge.

Specifically, we make use of the provided templates and use indirect reference to substitute

parameters for action ({a}) and object ({o}). Concretely, we substitute the corresponding

positional arguments {a} and {o} with the substituting text and program templates. As

this substitution could be easily adapted to have multi-step indirect references, we limit
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Table 4.4: Question-answer pair statistics before and after balancing.
World Intent Multi-agent Descriptive Predictive Counterfactual Explanatory Action Object State Change Open Binary

Before 299K 43K 53K 181K 22K 71K 102K 122K 14K 105K 126K 182K 186K
After 32K 5K 6K 21K 4K 6K 9K 17K 4K 9K 10K 26K 13K

the indirect references in our benchmark to 1-step indirect references to avoid generating

questions that are difficult to understand. To facilitate models’ understanding of indirect

references, we add additional questions on these indirect queries for objects and actions. After

these processes, we obtain 368K question-answer pairs over 2K videos as the full question set.

Answer Distribution Balancing We balance our answer distribution to avoid shortcuts

from exploiting imbalances. Following the scheme introduced in [GKA21], we tag each

question template with its scope, type, and the targeting semantic category (e.g ., actions,

objects, states) and use the composition of all tags as the unique reasoning type for each

question. We balance binary verification questions to have an equal proportion of each answer

within each reasoning type. For open-answer questions, we use rejection sampling to ensure

that the top 20% frequent answers for each reasoning type do not appear as answers for

more than 33.3% of questions in the same type. After balancing by reasoning types, we

proportionally sample questions to obtain a 40K diverse and balanced question set with a

1:2 ratio of binary and open-answer questions. We visualize the statistics of questions and

answers and the effect of answer balancing in Fig. 4.5 . More specifically, we follow the

algorithm provided by [GKA21] and adjust the open-answer problems to ensure that the top

20% answers of each reasoning type do not answer to more than 33% questions in the same

type. We select this ratio to get a smoother answer distribution while not deleting too many

questions in the whole set. To avoid overfitting to the binary answer distribution, we control

the ratio between open-answer and binary questions to be 2:1. We show the statistics for

each general question type before and after balancing in Table 4.4.
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Benchmark Splits We provide two benchmarking splits normal and indirect for video

question-answering on EgoTaskQA. For the normal split, we randomly sample questions

according to their answer distribution and reasoning types to have a 3:1:1 split over training,

validation, and test sets. The indirect split is motivated by the fact that during task execution,

actions, objects, and their changes are often strongly correlated. It leaves the chance for the

model to perform well by simply over-fitting these strong correlations without thorough task

understanding; see Section 4.3.2 for a more in-depth discussion. We leverage the indirect

references in our question to inspect the models’ capability to use the learned knowledge for

multi-step reasoning and generalize them to indirect references without over-fitting. More

specifically, we filter questions without indirect references and simple indirect reference

questions without multiple reasoning steps (e.g ., what is the first action this person did?

what did the person do before action “putting something”?) from all question-answer pairs

to form the training set, and split all indirect reference questions with multiple reasoning

steps as validation and test sets. Under this setting, the indirect split has a portion of 2:1:1

for training, validation, and test sets, respectively. We leave the remaining discussion of the

indirect split to Section 4.3.3.

4.3 Experiments

In this section, we evaluate and analyze the performance of video question-answering models

on EgoTaskQA. We report how well models perform on different question scopes, types as

well as targeting semantics on both normal and indirect splits. We also provide diagnostic

experiments on the language modality to show the necessity of the indirect split.

Baselines In our experiments, we evaluate six state-of-the-art video question-answering

models: VisualBERT [LYY19], PSAC [LSG19], HME [FZZ19], HGA [JH20], HCRN [LLV20],

and ClipBERT [LLZ21]. VisualBERT is a VL-BERT model designed for vision-language
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Table 4.5: Model performance on the EgoTaskQA normal split.
Category Most Likely VisualBERT [LYY19] PSAC [LSG19] HME [FZZ19] HGA [JH20] HCRN [LLV20] ClipBERT [LLZ21] Human

Sc
op

e world 18.62 39.73 40.76 41.91 38.82 44.27 42.15 74
intent 2.54 44.51 46.19 48.92 42.12 49.77 40.94 82

multi-agent 10.92 26.29 30.59 27.98 23.43 31.36 27.63 76

T
yp

e

descriptive 18.64 41.99 40.63 41.45 38.04 43.48 38.45 88
predictive 1.57 30.37 31.98 35.88 25.57 36.56 31.50 88

counterfactual 23.62 41.99 41.89 44.13 41.94 48.00 46.75 80
explanatory 7.97 37.42 37.99 38.85 35.97 40.60 42.39 74

Se
m

an
ti

c action 10.05 15.02 14.75 14.99 15.08 14.92 22.91 70
object 2.07 23.26 36.53 36.05 19.09 45.31 21.80 82
state 6.05 59.20 61.89 63.44 55.65 68.28 54.36 80

change 41.97 68.27 65.05 68.87 68.38 67.38 66.58 82

O
ve

ra
ll open 0.70 24.62 26.97 27.66 22.75 30.23 27.70 82

binary 50.46 68.08 65.95 68.6 68.53 69.42 67.52 76
all 15.4 37.93 38.90 40.16 36.77 42.20 39.87 80

tasks. PSAC uses positional self-attention and co-attention network blocks to fuse visual and

language features. HME uses external memory blocks for both visual inputs and questions on

top of an LSTM-based encoder-decoder structure. HGA formulates video question-answering

by constructing graphs for both videos and questions and aligning them. HCRN adopts

a hierarchical framework by stacking relational modules over motion, question, and visual

features. ClipBERT leverages sparsely sampled video clips and grid features [JMR20] in a

transformer architecture and achieves state-of-the-art results on video question-answering.

We formulate question-answering in EgoTaskQA as a classification problem over all answer

vocabulary and use models’ accuracy as the evaluation metric under different settings.

4.3.1 Comparative Analysis

We provide experimental results of baseline models on the EgoTaskQA normal split in Ta-

ble 4.5. Model performances are evaluated on question scopes, types, targeting semantics,

and overall answer categories. To quantify the naturalness and correctness of questions

and answers in the EgoTaskQA benchmark, we provide human evaluation following the

consistency check introduced in [HM19, GKA21]. More specifically, we randomly sample 50

questions for each category and instruct AMT workers to evaluate the quality of the generated

answer. Additionally, we compare all baseline models with a simple frequency-based baseline,

namely "Most Likely" in Table 4.5, where we select the most likely answer for each category
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to answer all questions in that category.

As shown in Table 4.5, the low performance of the most likely answer proves that our

answer distribution is correctly balanced. For certain categories (e.g ., change), the most

likely answer has relatively high accuracy (41.97%) as it covers both open-answer and binary

questions. Next, we observe relatively low human performance in certain categories (e.g .,

action and explanatory). This indicates that identifying causal dependency between actions

and conducting multi-step reasoning is not a trivial task for humans as also discovered

in [GKA21]. However, we still observe a large gap between state-of-the-art models and

human performance. Among all models, we find HME, HCRN, and ClipBERT to perform

the best. This result is reasonable since they leverage different ways to provide better visual

representations and interactions between video and language. Among all question scopes, we

recognize a relatively low accuracy on multi-agent-related questions among all question scopes.

It implies that understanding other agents’ actions during task execution is still difficult

without explicit modeling. It is significant in egocentric vision as a person’s view changes

dramatically, and only glances can be taken to acquire others’ information. Meanwhile,

we notice that these models perform relatively well for questions on states and changing

attributes. We conjecture that this is attributed to the task knowledge embedded in textual

descriptions of questions since actions, objects, and state changes are strongly correlated, as

mentioned in Section 4.2.2.

4.3.2 The Effectiveness of Language

Object information We found the object information in the texts to be highly beneficial

for question-answering on task-related knowledge during initial experiments. Compared to

the original LEMMA action annotation (e.g ., drinking [cereal] with [cup]), we use verbs to

refer to actions in EgoTaskQA and obfuscate object information at different levels (e.g ., drink

something with cup, drink something with something) as similarly done in [GKA21, WYC21].

While both types of action references localize to the same action interval, it contains different
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levels of knowledge in the language modality. Intuitively, the combination of action verbs

(e.g ., cut) and targeting objects (e.g ., watermelon) provide object state information (e.g .,

diced) under certain scenarios. Therefore, we compare models’ performance at different

levels of object information obfuscation. As shown in Fig. 4.6, we recognize a significant

performance gain for all models by gradually removing object information obfuscation in text,

i.e., substituting “something” with the original object. This result supports the hypothesis

that with fine-grained action annotations, we can learn task-related knowledge reasonably

well by simply exploiting texts. It shares the same conclusion with recent works on leveraging

text-based knowledge for helping instructional video understanding [LPB22]. To further

investigate the effectiveness of the language modality, we conduct ablative experiments on

the EgoTaskQA normal split.

Language-Only Language has been shown to provide knowledge that helps visual question-

answering [GKS17]. To study the role of language in EgoTaskQA, we design a text-only

setting for VisualBERT and HCRN, testing BERT [DCL18] and HCRN without vision against

their vision-language counterparts. As shown in Table 4.6, the performance for most question

categories dropped significantly. For the task of video question-answering, we should expect

that dropping the vision branch will significantly affect the models’ performance. As shown

in Table 4.6, we observe the general performance for the two models decreased as we expected.

Among all categories, the models’ performance for the objects decreased the most, which

is consistent with the fact that the object queries highly depend on the situation provided

in the videos (e.g ., which object changed its status in the video?). However, we observe a

slight performance gain on object state change questions. This further suggests that the

knowledge of world state change, i.e. which object attribute could change under actions,

is embedded within question texts. Models could exploit question texts to learn simple

associations between attribute types and action verbs (e.g ., cleanliness and wash, emptiness

and pour, shape and cut, etc.).
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Figure 4.6: Ablative study on model performance
with different levels of object information obfus-
cation on the EgoTaskQA normal split.

Table 4.6: Language-only question-answering re-
sults on the EgoTaskQA normal split.

Category BERT [DCL18] HCRN (w/o vision)

Acc. Change Acc. Change

world 36.28 -8.7% 35.22 -20.4%
intent 35.02 -21.3% 34.93 -29.8%

multi-agent 20.58 -21.7% 19.17 -38.9%

descriptive 34.55 -17.7% 33.58 -22.8%
predictive 24.75 -18.5% 24.3 -33.5%

counterfactual 41.3 -1.6% 40.4 -15.8%
explanatory 31.78 -15.1% 30.57 -24.7%

action 15.72 +4.6% 15.64 -1.7%
object 7.43 -68% 6.33 -86.0%
state 45.03 -23.9% 42.51 -37.7%

change 69.87 +2.3% 68.77 +2.1%

all 33.92 -10.6% 32.51 -23.0%

Table 4.7: Model performance on the EgoTaskQA indirect split.

Category BERT HCRN (w/o vision) VisualBERT PSAC HME HGA HCRN ClipBERT

Sc
op

e world 34.96 33.61 40.00 44.74 35.91 31.29 44.04 26.51
intent 23.56 23.98 36.02 48.38 31.73 20.42 47.02 14.66

multi-agent 19.70 19.25 26.02 35.37 25.07 17.74 30.11 20.09

T
yp

e

descriptive 33.09 30.73 38.9 43.36 34.48 29.01 42.02 24.35
predictive 15.58 13.68 31.37 29.11 27.79 15.16 46.32 10.32

counterfactual 34.59 34.75 37.63 39.94 35.07 33.01 43.64 26.29
explanatory 27.38 28.11 32.75 42.53 29.16 24.00 39.69 22.46

Se
m

an
ti

c action 26.91 28.18 27.49 30.06 25.12 26.15 29.61 25.25
object 2.808 4.13 22.63 30.97 19.08 7.02 32.20 10.49
state 21.96 21.24 32.02 43.29 31.60 17.67 41.81 15.29

change 55.28 50.71 55.59 57.20 47.65 47.22 56.27 35.26

O
ve

ra
ll open 11.22 11.38 21.05 28.23 18.27 8.66 27.82 11.17

binary 58.24 55.52 57.61 60.30 52.55 53.72 59.29 40.71
all 31.78 30.76 37.01 42.25 33.06 28.36 41.56 24.08

Performance Change -6.4% -5.4% -2.4% +4.9% -17.7% -22.9% -1.5% -39.6%

4.3.3 Generalizing to indirect references

On the EgoTaskQA indirect split, we evaluate models’ capability to leverage learned task

knowledge for solving more complicated indirect reference tasks. With the normal split

allowing for shortcuts on action-state associations, the indirect split forbids such exploitation

by differentiating references during training and testing. As shown in Table 4.7, we observe
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more significant performance drops in language-only models compared to their vision-language

counterparts. More specifically, the performance of BERT and language-only HCRN dropped

20.8% and 26.3% on the “change” category, where we observed potential exploitation on

question texts in Section 4.3.2. This serves as a shred of evidence that the indirect split

helps reduce the possibility of exploiting simple associations in texts. As for baseline models,

we recognize a common performance decrease shared by most models on the indirect split.

Among them, we notice a significant performance drop for ClipBERT, which conflicts with the

dominating role of large-scale pretrained vision-language models on various reasoning tasks.

We suspect that this degeneration might originate from two lines of problems: (1) the model

design on sampling fewer videos and aligning visual/text graphs directly, which conflicts

with the intuition that detailed spatial-temporal information and reasoning is indispensable

for grounding indirect references; and (2) adopting large-scale pre-trained models directly

to a specific domain is non-trivial, especially with challenges in grounding knowledge to

visual signals. Overall, our experiments on the EgoTaskQA indirect split further reveals the

demand for better spatial-temporal reasoning modules that solve the problem of compositional

goal-oriented reasoning with indirect references.

4.4 Conclusions

We introduce the EgoTaskQA benchmark to systematically evaluate models’ understand-

ing of goal-oriented activities from an egocentric perspective. We annotate object states,

relationships, and agents’ beliefs on the LEMMA dataset. We generate diverse questions

covering different reasoning capabilities and target the crucial dimensions of task understand-

ing: action dependencies and effects, agents’ intents and goals, and belief modeling. We

evaluate state-of-the-art video question-answering models and show their gaps compared

with the human on two challenging splits, normal and indirect, to promote future study on

indirect reference understanding and goal-oriented reasoning. As the next steps, we plan to
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investigate the following two branches in the future: (i) explicit spatial-temporal grounding

for modularized video QA models and (ii) prompting large-scale pre-trained models (both

visual and language) for the domain-specific video QA challenges. Firstly, egocentric data can

provide finer information and ease the challenge of grounding in modularized neuro-symbolic

models. This could complement existing video reasoning methods and test the potential

of neuro-symbolic models on complex reasoning tasks from a real-world, multi-agent, and

causal perspective. Next, with increasing efforts in adapting large-scale pre-trained models for

reasoning, our experiments suggest that adopting such models directly to a specific domain

is non-trivial. Compared to their capabilities in commonsense reasoning, how to enable

pre-trained models with the ability to fastly adapt to complex reasoning tasks still remains

an interesting problem to be solved.
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Part II

Modeling Sequential Events
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CHAPTER 5

Unsupervised Object-Centric Learning with Bi-level

Optimized Query Slot Attention

Starting from this chapter, we focus on the problem of modeling sequential events. As

discussed in Section 1.1 and Section 1.3, we believe the solution to fine-grained event

understanding and reasoning lies in the usage of world model knowledge. However, such a

design relies on the representation we adopt for world status. Therefore, the first crucial

question to answer is how do we obtain representations with compositional syntax and

semantics, especially given the challenge of disentangling concepts from visual stimuli with

limited supervision? In fact, the ability to decompose complex natural scenes into meaningful

object-centric abstractions lies at the core of human perception and reasoning. Objects, and

their interactions, are the foundations of human cognition [SK07]. The endowment on making

abstractions from perception and organizing them systematically empowers humans the ability

to accomplish and generalize across a broad range of tasks, such as scene modeling [BFM20],

visual reasoning [YGL20b], and simulating interactions [BFM20]. Therefore, we propose to

use the unsupervised object-centric learning problem on the static image domain as a featured

task to address the compositional representations required in modeling sequential events.

Motivated by the development of symbolic thought in human cognition, slot-based

representations, instance [GVS17, GKK19, LWU20], sequential [GDG15, BMW19, EPP21,

GLH21], or spatial [CP19, LWP20, JJD19], have been the key inductive bias to recent

advances in unsupervised object-centric learning. Among them, the Slot-Attention module

has received tremendous focus given its simple yet effective design [LWU20]. By leveraging the
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iterative attention mechanism, Slot-Attention learns to compete between slots for explaining

parts of the input, exhibiting a soft-clustering effect on visual signals. However, as revealed by

recent studies, the Slot-Attention module comes with innate discrepancies for object-centric

representation learning. First, with slots randomly initialized each time, the object-centric

representations obtained by these models do not necessarily bind to object concepts [KEM22].

Intuitively, such randomness leads to undesired scenarios where slots with similar initializations

compete for objects on different images. Such randomness challenges the iterative refinement

procedure making it highly dependent on hyper-parameter tuning techniques.

To this end, we introduce an extension of the Slot-Attention module, BO-QSA, in this

chapter to tackle the aforementioned problems. First, instead of sampling from a learnable

Gaussian distribution, we propose directly learning the slot initializations as queries.With

these learnable representations, we eliminate the ambiguous competitions between slots and

provide a better chance for them to bind to specific object concepts. More importantly, we ease

the difficulty in training Slot-Attention with learnable queries by formulating Slot-Attention

as a bi-level optimization problem. Model-wise, we improve the training of query-initialized

Slot-Attention with a straight-through gradient estimator (STE) by connecting our method

with first-order approaches [FAL17, NS18, GZB21] in solving bi-level optimization prob-

lems. We provide experimental results to show that the proposed BO-QSA can achieve

state-of-the-art results on both synthetic and real-world image datasets and validate the

potential of our model for binding object concepts to slots with zero-shot transfer experiments.

We hope these efforts can help foster new insights in the field of object-centric learning.

5.1 Related Work

Unsupervised Object-Centric Learning Our work falls into the recent line of research on

unsupervised object-centric learning on images [GRB16, EHW16, GVS17, GKK19, BMW19,

CP19, EKJ20, LWP20, BFM20, LWU20, ZKL21]. A thorough review and discussion on
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this type of method can be found in [GVS20]. One critical issue of these methods is on

handling complex natural scenes. [SDA21, LHG21] leverages a transformer-based decoder

with Slot-Attention for addressing this problem. Similar attempts have also been made

by exploiting self-supervised contrastive learning [CLR21, CTM21, WSH22, HKS22] and

energy-based models [DLS21, YGW22]. Our work builds upon Slot-Attention by extending

it with learnable queries and a novel optimization method for learning. Our compelling

experimental suggests our model could potentially serve as a general plug-and-play module

for a wider range of modalities where variants of Slot-Attention prosper [KEM22, EMS22,

SWA22, YGW22, SDM22, SMP22].

Query Networks Sets of latent queries are commonly used in neural networks. These meth-

ods leverage permutation equivariant network modules (e.g . GNNs [SGT08] and attention mod-

ules [VSP17]) in model design for solving set-related tasks such as clustering [LLK19], outlier

detection [ZKR17, ZHP19], etc. These learned latent queries have been shown to have good po-

tential as features for tasks like contrastive learning [CMM20], object detection [CMS20], and

data compression [JBA21, JGB21]. In contrast to the recent success of query networks in su-

pervised or weakly-supervised learning [CMS20, ZGZ21, KEM22, EMS22, XDL22], [LWU20]

demonstrates the detrimental effect of using independently initialized slots in Slot-Attention

learning. However, we show that our BO-QSA method successfully overcomes this issue

and generalizes the success of query networks to the domain of unsupervised object-centric

learning.

Bi-level Optimization Our work is closely related to bi-level optimization methods with

iterative fixed update rules for solving the inner objective. Specifically, methods are designed

with implicit differentiation [AK17, BKK19] to stabilize the iterative update procedure.

Similar formulations are also found when combined with meta-learning where [MKG21]

train queries through recurrence in a meta-learning fashion and [RFK19] provides a unified

view of the optimization problem with implicit gradients. Concurrent work from [CGL22]
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formulate the Slot-Attention learning from an implicit gradient perspective with gradient-

stopping derived from first-order hyper-gradient methods [GZB21]. However, they ignore the

important role of slot initializations in generalization and concept binding. As our experiments

suggest, such gradient stopping methods do not guarantee superior performance compared to

the original Slot-Attention. We leave the details to Section 5.4.3 for an in-depth discussion.

5.2 Preliminaries

5.2.1 Object-Centric Representation Learning with Slot-Attention

Slot-Attention [LWU20] takes a set of N input feature vectors x P RNˆDinput and maps them

to a set of K output vectors (i.e., slots) s P RKˆDslots . It leverages an iterative attention

mechanism to first map inputs and slots to the same dimension D with linear transformations

kp¨q, qp¨q and vp¨q parameterized by ϕattn. At each iteration, the slots compete to explain

part of the visual input by computing the attention matrix A with softmax function over

slots and updating slots with the weighted average of visual values:

s̃ “ fϕattnps,xq “

˜

Ai,j
řN

l“1Al,j

¸J

¨ vpxq where A “ softmax

ˆ

kpxq ¨ qpsqJ

?
D

˙

P RNˆK .

The slots are initialized from a learnable Gaussian distribution with mean µ and variance σ.

They are refined iteratively within the Slot-Attention module by passing the updates into a

Gated Recurrent Unit (GRU) [CVG14] and MLP parameterized by ϕupdate for T iterations:

spt`1q
“ hϕupdatepsptq, s̃ptq

q, s0 „ N pµ, diagpσqq, ŝ “ spT q. (5.1)

The final prediction ŝ can be treated as the learned object-centric representation w.r.t. to input

features x. In the image domain, we take as input a set of images I and encode them with

fϕenc to obtain features x P RHWˆDinput . After obtaining ŝ through the iterative refinement
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procedure with hϕupdate , images could be decoded from these object-centric representations

with a mixture-based decoder or autoregressive transformer-based decoder. We provide

details on the designs as follows:

Mixture-based Decoder The mixture-based decoder [WMB19] decodes each slot ŝi

into an object image xi and mask mi with decoding functions gimg
ϕdec and gmask

ϕdec , which are

implemented using CNNs. The decoded images and masks are calculated by:

Îi “ gimg
ϕdecpŝiq, mi “

exp gmask
ϕdec pŝiq

řK
j“1 exp gmask

ϕdec pŝjq
, Î “

K
ÿ

i“1

mi ¨ Îi.

During training, a reconstruction objective is employed for supervising model learning. Despite

its wide usage, mixture-based decoders showed limited capability at handling natural scenes

with high visual complexity [SDA21].

Autoregressive Transformer Decoder Recently, [SDA21, SWA22] reveal the limitations

of mixture decoder and leverage transformers and discrete VAE (dVAE)s [VV17, RPG21] for

decoding slot-based object-centric representations. To obtain decoded images Î, they learn a

separate dVAE for first encoding I into a sequence of L tokens z “ tz1, ¨ ¨ ¨ , zLu with dVAE

encoder fdVAE
ϕenc . Next, they use a transformer decoder gtransformer

ϕdec to auto-regressively predict

image tokens with learned slot representation ŝ:

ol “ gtransformer
ϕdec pŝ; zălq where z “ fdVAE

ϕenc pIq.

To train the entire model, we have the reconstruction objective supervising the learning of z

with dVAE decoder gdVAE
ϕdec . Next, the objective for object-centric learning relies on the correct

prediction from the auto-regressive transformer for predicting correct tokens:

L “ LdVAE ` LCE where LdVAE “ ||gdVAE
ϕdec pzq ´ I||

2
2, LCE “

L
ÿ

l“1

CrossEntropypzl,olq
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Under this setting, the model does not predict additional masks and relies on the attention

A within the Slot-Attention module for obtaining slot-specific object masks. Although such

models can achieve competitive results on real-world synthetic datasets, as our experiments

suggest, they can be inferior to mixture-based decoders on segmentation in synthetic datasets.

We suspect that this originates from the low resolution when discretizing images into tokens.

5.2.2 Bi-level Optimization with Fixed Point Iterations

The problem of bi-level optimization embeds the optimization of an inner objective within

the outer objective. Normally, a bi-level optimization problem can be formulated as:

min
θ,ϕ

fpθ, ϕq s.t. θ P argmin
θ1

gpθ1, ϕq, (5.2)

where we call fpθ, ϕq the outer objective function and gpθ, ϕq the inner objective func-

tion. To jointly optimize both objectives w.r.t. parameters θ and ϕ, a straightforward

approach to solving Eq. (5.2) is to represent the inner solution of θ as a function of ϕ, i.e.,

θ˚pϕq “ argminθ1 gpθ1, ϕq. Then we can optimize the outer objective with gradient descent

by approximating ∇ϕfpθ˚pϕq, ϕq as a function of ϕ. When the inner optimization objective

could be solved by a fixed point iteration θ “ Fϕpθq [AK17, BKK19], the bi-level optimization

problem could be solved by

Bfpθ˚pϕq, ϕq

Bϕ
“

Bfpθ˚pϕq, ϕq

Bθ˚
¨

8
ÿ

i“0

ˆ

BFϕpθ˚q

Bθ˚

˙i

¨
BFϕpθ˚q

Bϕ
. (5.3)

For efficiency concerns, recent methods often use the first-order approximation of the infinite

Neumann’s series [SCH19, GZB21] for updating ϕ.
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5.3 Bi-level Optimized Query Slot Attention

5.3.1 Query Slot Attention

As mentioned previously, the Slot-Attention module adopts a random initialization of slots

and conducts iterative refinement to obtain object-centric representations ŝ as in Eq. (5.1).

However, as argued by [KEM22], such random initializations provide no hint on the notion of

object and no means for controllably probing concepts from the model. As shown by [CGL22],

this random initialization plays a minimal role and could be detached from training. This

indicates that the estimation of ŝ relies heavily on the task-specific iterative refining of slots

over data, leaving a limited possibility for slots to bind to specific concepts and be leveraged

as generalizable representations.

To address this issue, we focus on the Query Slot Attention (QSA), which initializes the

slots in the Slot-Attention module with learnable queries s0 “ ϕinit. Such a design is motivated

by the success of recent query-based networks [VV17, JGB21]. It facilitates an object-centric

model to learn general symbolic-like representations that could be quickly adapted by refining

over task-specific requirements, as discussed in [KEM22]. Meanwhile, in contrast to the use of

learnable queries in other encoder-decoder structures (e.g . dVAE), the slot initializations s0

are not necessarily required to encode image features since they were designed for separating

them. This resembles recent discoveries in query networks [CMS20, YLL21] where queries

could be generalizable probes for input properties.

5.3.2 Bi-level Optimization for Object-Centric Learning with Slot-Attention

Despite the good properties and potentials QSA presents, it is shown detrimental to initialize

slots independently in Slot-Attention under unsupervised settings [LWU20]. We inspect from

the bi-level optimization perspective to provide rationales for this discrepancy. Viewing

from the bi-level optimization, Slot-Attention could be treated as solving for the following
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objectives:

min
s,Φ

M
ÿ

i“1

Lpxi, si,Φq s.t. s˚
i “ argmin

s
Lclusterpxi, s,Φq, (5.4)

where xi and si denote the input feature from the i-th image and its corresponding slot

features, and Φ “ tϕinit, ϕattn, ϕupdateu denotes parameters for assigning input features x

to different slots. Under this setting, the outer objective L could be for reconstruction or

set prediction [LWU20] depending on the task. The inner objective could be viewed as

a soft-clustering objective [LWU20] Lcluster “ ´
ř

p

ř

q KΦpxp
i , sqq, where KΦp¨, ¨q denotes a

pseudo distance measure defined by attention for pixel-slot similarity. In Slot-Attention, the

inner objective is solved by iterative refinement, which could be formulated as solving for

fixed-points [CGL22] of

s “ hϕupdateps, s̃q “ hϕupdateps, fϕattnps,xqq “ FΦps,xq, (5.5)

where FΦp¨, ¨q is some fixed-point operation. This procedure could be viewed as finding optimal

solutions to an objective. As introduced by [CGL22] in Implicit Slot-Attention (ISA),

by leveraging Eq. (5.3), the instabilities through the iterative updates could be avoided

by detaching gradients, treating slots in the final iteration as an approximation of s˚
i ,

and computing first-order gradient approximations for updating Φ with s˚
i . However, we

demonstrate in Table 5.7 that this design is only beneficial for randomly initialized slots

and detrimental for query-initialized Slot-Attention architectures since it relies heavily on

the good approximation of the solution to the inner objective. With no randomness in slot

initializations or gradient during training, starting from a fixed set of initialization points puts

challenges on the learning of Slot-Attention update FΦ as it will be difficult to provide a good

approximation of s˚
i with only a fixed number of iterations (see in Section 5.4.4). This urges

the need for information flow to the slot initializations for better fixed-point approximation.
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Algorithm 2: BO-QSA
Input: input features input, learnable queries init, number of iterations T
Output: object-centric representation slots
Modules : stop gradient module SG(¨), slot attention module SA(¨, ¨)
slots = init
for t “ 1, ¨ ¨ ¨ , T do

slots = SA(slots, inputs)
slots = SG(slots) + init - SG(init)
slots = SA(slots, inputs)
return slots

DecEnc

Features

Input Image

Learned
Slots

Reconstruction

xT

Initialization 
Queries

Slot

Attention

Figure 5.1: An illustrative visualization of our proposed BO-QSA slot-encoder.

5.3.3 Bi-level Optimized Query Slot Attention

We propose BO-QSA to address the learning problem of QSA. As shown in Algorithm 2

and Fig. 5.1, we initialize slots with learnable queries in BO-QSA and perform T steps of

Slot-Attention update to obtain an approximation of s˚
i . These near-optimal solutions of

the inner objective are passed into one additional Slot-Attention step where gradients to

all previous iterations are detached. In contrary to ISA, we use a STE [BLC13, VV17] to

backpropagate gradients and also to slot initialization queries. Such designs help find good

starting points for the inner optimization problem on clustering, alleviating the problem of

bi-level optimization with QSA mentioned in Section 5.3.2. Similar to dVAE, the STE adds

bias to the gradient of the initialization queries. However, since these learnable queries are
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meant for disentangling image features, they do not have to maintain information about

the approximated s˚. Such bias could lead to learned queries which are better pivots for

separating different image features, similar to anchors or filter queries learned for different

tasks [CMS20, ZGZ21]. Note that we do not add constraints on the consistency between

s0 and ŝ (e.g . ||sgpŝq ´ s0||
2) as done in dVAE since we find such constraints lead to a

mean-representation of datasets that forbids better concept binding (see in Section 5.4.4). As

shown in Table 5.7 and Fig. 5.4, our learned slot initialization queries do fulfill this goal by

providing a more separable initialization space and can significantly facilitate model learning.

5.4 Experiments

In this section, we aim to address the following questions with our experimental results:

‚ How good is our proposed BO-QSA on both synthetic and complex natural scenes?

‚ How important is the query and the optimization method in BO-QSA?

‚ Does BO-QSA possess the potential for concept binding and zero-shot transfer?

Here we clarify the datasets and metrics selected for evaluating our model on each domain:

Synthetic Domain For the synthetic domain, we select three well-established challenging

multi-object datasets Shapestacks [GFP18], ObjectsRoom [KBM19], and CLEVRTEX for

evaluating our BO-QSA model. Specifically, we consider three metrics to evaluate the quality

of object segmentation and reconstruction. Adjusted Rand Index (ARI) [HA85] and Mean

Segmentation Covering (MSC) [EKJ20] for segmentation and Mean Squared Error (MSE)

for reconstruction. Following the evaluation setting of recent works, we report the first two

segmentation metrics over foreground objects (ARI-FG and MSC-FG).

Real-world Images For the real image domain, we use two tasks (1) unsupervised

foreground extraction and (2) unsupervised multi-object segmentation for evaluating our
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Table 5.1: Multi-object segmentation results on ShapeStacks and ObjectsRoom. We report ARI-FG
and MSC-FG of all models with (mean ˘ variance) across 3 experiment trials. We visualize the best
results in bold.

Model
ShapeStacks ObjectsRoom

Ò ARI-FG Ò MSC-FG Ò ARI-FG Ò MSC-FG

MONet-G [BMW19] 0.70˘0.04 0.57˘0.12 0.54˘0.00 0.33˘0.01
GENESIS [EKJ20] 0.70˘0.05 0.67˘0.02 0.63˘0.03 0.53˘0.07

Slot-Attention [LWU20] 0.76˘0.01 0.70˘0.05 0.79˘0.02 0.64˘0.13
GENSIS-V2 [EPP21] 0.81˘0.01 0.67˘0.01 0.86˘0.01 0.59˘0.01

SLATE [SDA21] 0.65˘0.03 0.63˘0.05 0.57˘0.03 0.30˘0.03

Ours (transformer) 0.68˘0.02 0.70˘0.02 0.68˘0.03 0.72˘0.03
Ours (mixture) 0.93˘0.01 0.89˘0.00 0.87˘0.03 0.80˘0.02

method. Specifically, we select Stanford Dogs [KJY11], Stanford Cars [KSD13], CUB200

Birds [WBM10], and Flowers [NZ10] as our benchmarking datasets for foreground extraction

and YCB [CSB17], ScanNet [DCS17], COCO [LMB14] proposed by [YY22] for multi-object

segmentation. We use mean Intersection over Union (mIoU) and Dice as metrics for evaluating

the quality of foreground extraction and use the evaluation metrics adopted by [YY22] for

multi-object segmentation.

5.4.1 Object Discovery on Synthetic Datasets

Experimental Setup We explore our proposed BO-QSA with two types of decoder designs,

mixture-based and transformer-based, as discussed in Section 5.2.1. We follow the decoder

architecture in Slot-Attention [LWU20] for mixture-based decoders and SLATE [SDA21] for

transformer-based decoders. For both types of models, we use the Slot-Attention module

with a CNN image encoder and initialize slots with learnable embeddings.

Results We report multi-object segmentation results on synthetic datasets in Table 5.1

and visualize qualitative results in Fig. 5.2. As shown in Table 5.1, our BO-QSA achieves

the state-of-the-art results with large improvements over previous object-centric learning
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Table 5.2: Multi-object segmentation results on CLEVRTEX. We report ARI-FG and MSE of all
models in the form of (mean ˘ variance) across 3 experiment trials. We visualize the best results in
bold.

Model
CLEVRTEX-FULL CLEVRTEX-OOD CLEVRTEX-CAMO

ARI-FG (%) Ò MSE Ó ARI-FG (%) Ò MSE Ó ARI-FG (%) Ò MSE Ó

MONet [BMW19] 19.78˘1.02 146˘7 37.29˘1.04 409˘3 31.52˘0.87 265˘1
Slot-Attention [LWU20] 62.40˘2.33 254˘8 58.45˘1.87 487˘16 57.54˘1.01 215˘7
GENSIS-V2 [EPP21] 31.19˘12.41 315˘106 29.04˘11.23 539˘147 29.60˘12.84 278˘75

DTI [MVP21] 79.90˘1.37 438˘22 73.67˘0.98 590˘4 72.90˘1.89 377˘17

Ours (mixture) 80.47˘2.49 268˘2 86.50˘0.19 265˘25 63.71˘6.11 280˘7

Table 5.3: Reconstruction results between mixture-based and transformer-based decoders.

Model ShapeStacks ObjectsRoom

Slot-Attention (mixture) 80.8 20.4
ours (mixture) 72.0 8.1

SLATE (transformer) 52.3 16.3
ours (transformer) 49.3 14.7

methods on all metrics in ShapeStacks and ObjectsRoom. We also observe more stable model

performance, i.e. smaller variances in results, across different trials of experiments. Our model

with mixture-based decoders obtains the best overall performance on all datasets. More specif-

ically, our mixture-based BO-QSA significantly outperforms the vanilla Slot-Attention model

(„15%) with minimal architectural differences. This validates the importance of the learnable

queries and our optimization method. We will continue this discussion in Section 5.4.3. As

shown in Table 5.2, our model also achieves state-of-the-art results on the unsupervised

object segmentation task in CLEVRTEX with consistent improvement over Slot-Attention

on the CAMO and OOD generalization split. Interestingly, our model (1) shows larger recon-

struction errors, (2) generalizes well in out-of-distribution scenarios, and (3) shows marginal

improvement in camouflaged images. We attribute (1) and (3) to the simple architecture of

encoders/decoders currently adopted and provide insights on (2) in Section 5.4.4.

Mixture-based vs. Transformer-based Decoder We observe inferior segmentation

but superior reconstruction performance of transformer-based variants of Slot-Attention on
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Table 5.4: Unsupervised multi-object segmentation results on YCB, ScanNet, and COCO.

Model
YCB ScanNet COCO

(AP / PQ / Pre / Rec) Ò (AP / PQ / Pre / Rec) Ò (AP / PQ / Pre / Rec) Ò

AIR 0.0(0.1)/0.6(0.3)/1.1(0.4)/0.8(0.2) 2.7(1.4)/6.3(1.7)/15.6(2.8)/7.3(1.6) 2.7(0.1)/6.7(0.5)/14.3(2.6)/8.6(0.8)
MONet 3.1(1.6)/7.0(2.6)/9.8(3.6)/1.2(0.8) 24.8(1.6)/24.6(1.6)/31.0(1.6)/40.7(1.8) 11.8(2.0)/12.5(1.1)/16.1(0.9)/21.9(1.7)
IODINE 1.8(0.2)/3.9(1.3)/6.2(2.0)/7.3(1.9) 10.1(2.9)/13.7(2.7)/18.6(4.2)/24.4(3.8) 4.0(1.2)/6.3(1.2)/9.9(1.8)/10.8(2.0)

Slot-Attention 9.2(0.4)/13.5(0.9)/20.0(1.3)/26.2(6.8) 5.7(0.3)/9.0(1.5)/12.4(2.5)/18.3(2.7) 0.8(0.3)/3.5(1.2)/5.3(1.7)/7.3(2.2)

Ours (transformer) 47.96 (1.84)/34.81 (1.30)/50.83 (1.05)/53.60 (0.68) 28.50 (2.36)/26.37 (2.01)/37.30 (2.00)/42.37 (1.91) 17.77 (0.61)/17.60 (0.64)/25.29 (0.61)/30.58 (0.87)

synthetic datasets. Specifically, we compare the MSE of models on ShapeStacks and Object-

sRoom. As shown in Table 5.3, transformer-based methods provide better reconstruction

results. We attribute the low segmentation performance to mask prediction in these methods,

which relies on the attention matrix computed over input features. This leads to coarse object

masks as a result of image tokenization. Nonetheless, we observe consistent improvement by

applying our slot encoder to both mixture and transformer decoders.

5.4.2 Object Discovery on Real Datasets

Experimental Setup For real-world experiments, we use the same slot encoder design

used in Section 5.4.1 with a 4-layer CNN image encoder and initialize slots with learnable

queries. For unsupervised foreground extraction, we follow [YXM21] and report the best

model performance on all datasets. During the evaluation, we select the slot’s mask prediction

that has a maximum intersection with the ground-truth foreground mask as our predicted

foreground. For unsupervised multi-object segmentation, we follow [YY22] and report the

models’ performance on all datasets across trials with different random seeds.

Results We show quantitative experimental results in Table 5.5 and Table 5.4. We also

visualize qualitative results in Fig. 5.2. For multi-object segmentation, as shown in Table 5.4,

our model outperforms existing object-centric learning baselines by a large margin, especially

on the YCB dataset where the segmented objects have clear semantic meanings. For

foreground extraction, as shown in Table 5.5, our method significantly outperforms all

existing baselines on the task of foreground extraction, achieving new state-of-the-art on all

datasets. We recognize the discrepancy of mixture-based decoders in both Slot-Attention and

80



Table 5.5: Unsupervised foreground extraction results on CUB200 Birds (Birds), Stanford Dogs
(Dogs), Stanford Cars (Cars), and Caltech Flowers (Flowers).

Model
Birds Dogs Cars Flowers

Ò IoU Ò Dice Ò IoU Ò Dice Ò IoU Ò Dice Ò IoU Ò Dice

ReDO [CAD19] 46.5 60.2 55.7 70.3 52.5 68.6 76.4 -
IODINE [GKK19] 30.9 44.6 54.4 67.0 51.7 67.3 - -
OneGAN [BW20] 55.5 69.2 71.0 81.7 71.2 82.6 - -

Slot-Attention [LWU20] 35.6 51.5 39.6 55.3 41.3 58.3 30.8 45.9
[VMB20] 68.3 - - - - - 54.0 -

DRC [YXM21] 56.4 70.9 71.7 83.2 72.4 83.7 - -
[MRL21] 66.4 - - - - - 54.1 -

SLATE [SDA21] 36.1 51.0 62.3 76.3 75.5 85.9 68.1 79.1

Ours (mixture) 25.1 39.2 36.8 53.6 69.1 81.5 36.1 51.6
Ours (transformer) 71.0 82.6 82.5 90.3 87.5 93.2 78.4 86.1

Stanford Dogs

Stanford Cars

CUB200 Birds

YCB

ShapeStacks

ObjectsRoom

Recon.

Recon.

Input

GT
Seg.

Pred.
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Input
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Seg.
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Seg.
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COCO

Figure 5.2: Visualization of our segmentations and reconstructions on synthetic and real-world
images.

our mixture-based design in modeling real-world images, reflecting similar discoveries from

recent works [SDA21] that mixture-based decoder struggles in modeling real-world images. On

the other hand, our transformer-based model shows significant improvements over the vanilla

version. Notably, our method outperforms a broad range of models, including GAN-based

generative models (i.e. OneGAN, [VMB20]), and large-scale pre-trained contrastive methods
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Table 5.6: Unsupervised segmentation results compared with contrastive learning methods which
are pre-trained on ImageNet.

Model Birds

MoCo v2 [CFG20] 63.5
BYOL [GSA20] 56.1
R2O [GKL22] 71.2

ours (BO-QSA+transformer) 71.0

Table 5.7: Ablative experiments on slot initialization
and optimization methods. We visualize the best
results in bold and underline the second-best results.

Method
Dogs ShapeStacks

Ò IoU Ò Dice Ò ARI-FG(%) Ò MSC-FG(%)

SA* 71.0 81.9 86.7 84.8
I-SA 80.8 89.2 88.3 76.8

BO-SA 80.9 89.3 87.7 66.6
QSA 64.5 72.9 88.1 76.1

I-QSA 59.3 77.6 84.6 81.8
BO-QSA (ours) 82.5 90.3 92.9 89.2
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Figure 5.3: Effects of iterative updates in
testing.

SA I-SA I-QSA BO-QSA
Figure 5.4: Visualization of learned slot initializations and post-iteration slots after the first iteration
of Slot-Attention on ShapeStacks.

(i.e. MoCo-v2, BYOL, R2O). As shown in Table 5.6, our method achieves comparable results

with state-of-the-art self-supervised contrastive learning methods without large-scale pre-

training and data augmentation. This result sheds light on the potential of object-centric

learning as a pre-training task for learning general visual representations.
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5.4.3 Ablative Studies

Experimental Setup We perform ablative studies over our designs by comparing them

with different design variants on ShapeStacks and Stanford Dogs. For slot initialization,

we consider (1) the original Slot-Attention module’s sampling initialization (SA), and (2)

initializing with learnable queries (QSA). For optimization, we consider (1) the original

optimization in Slot-Attention (i.e. w/o detach or STE), (2) the ISA optimization where

gradients to slots in iterative updates are detached (i.e. w/ detach only), and (3) our

optimization where we both detach the gradients into iterative refinement, and pass gradient

to the initialization queries with STE (i.e. w/ detach and STE). For simplicity, we term

these variants with prefixes (I-) for ISA and (BO-) for our full method. We run all ablations

on each dataset with the same encoder-decoder architecture.

Results We show experimental results in Table 5.7 and Fig. 5.3. First, from Table 5.7, we

observe that BO-QSA significantly outperforms other variants. For sample-based slot initial-

izations, our method shows a similar effect compared with ISA on improving Slot-Attention

learning. For query-based slot initializations, we validate the difficulty in training query-based

Slot-Attention with its inferior performance. We further show the ineffectiveness of ISA

for query-based Slot-Attention. The experiments on query-based Slot-Attention prove that

both of our design choices are necessary and effective for superior performance. To study

the effect of learned queries, we visualize in Fig. 5.3 where we set different numbers of

iterative updates of Slot-Attention during inference on the Stanford Dogs dataset. We can

see that our BO-QSA significantly outperforms other variants with only one iteration. This

indicates that our query-based design can help ease training difficulties. In Fig. 5.4, we

further visualize the learned initializations and post-iteration slots in the same feature space

using t-SNE [MH08]. Our initializers provide a more separable space when differentiating

image features, which validates the desired model behaviors mentioned in Section 5.3.3.
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Figure 5.5: Visualization of learned concepts and attention maps in zero-shot transfer.

Table 5.8: Zero-shot transfer results of unsupervised multi-object segmentation on real images.

Model
YCB Ñ ScanNet YCB Ñ COCO ScanNet Ñ YCB ScanNet Ñ COCO COCO Ñ YCB COCo Ñ ScanNet

(AP / PQ / Pre / Rec) (AP / PQ / Pre / Rec) (AP / PQ / Pre / Rec) (AP / PQ / Pre / Rec) (AP / PQ / Pre / Rec) (AP / PQ / Pre / Rec)

SA 1.37/4.90/11.27/6.35 1.20/4.97/10.48/6.73 19.63/19.24/28.56/31.43 12.84/ 14.86/22.06/26.74 26.53/23.05/35.96/38.12 20.99/22.08/32.14/36.53
I-SA 21.62/21.81/32.32/34.19 18.39/18.47/27.23/30.38 18.66/18.56/28.97/30.82 11.83/14.14/20.70/25.42 26.72/22.90/35.89/37.98 19.34/20.00/29.44/33.18

BO-QSA(ours) 28.24/25.93/36.68/39.62 24.23/21.65/30.20/35.79 21.85/19.96/31.51/33.45 13.95/16.04/23.35/28.49 31.21/25.44/38.90/41.35 24.21/23.59/34.07/38.49

5.4.4 Additional Analyses

In this section, we provide additional analyses on the potential of our BO-QSA as a concept

binder for generalizing to new examples. First, we qualitatively visualize our learned content

for each slot (without additional clustering) in ShapeStacks, Birds, and YCB in Fig. 5.5. We

observe high similarity within the learned content of each slot, indicating similar concepts

learned by specific slots. This shows the potential of the slots in our BO-QSA for binding

specific concepts on object properties (e.g . colors, contours, and spatial positions). Although

we can not control which concepts to learn, these results are important indicators that our

learned initialization queries could potentially be generalizable concept probes. We further

provide quantitative evaluations where we use models trained on dataset X for zero-shot

inference on dataset Y. For unsupervised multi-object segmentation, we report transfer

results from ScanNet and COCO to all other real-image multi-object segmentation datasets

in addition to the results on YCB. As shown in Table 5.8, our model shows consistent

improvement over Slot-Attention and ISA during zero-shot transfer. For unsupervised

foreground extraction, we report transfer results from Stanford Dogs and CUB200 Birds

to all other real-image foreground extraction datasets. As we can see from Table 5.9, our
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Table 5.9: Zero-shot transfer results on unsupervised foreground extraction (mIoU Ò).

Model Dogs Ñ Cars Dogs Ñ Flowers Dogs Ñ Birds Birds Ñ Dogs Birds Ñ Cars Birds Ñ Flowers

SA 57.96 57.96 45.06 74.68 58.79 62.02
I-SA 58.05 58.06 48.88 71.16 69.90 68.67

BO-SA 58.10 58.10 47.96 71.81 70.75 67.95
BO-QSA(ours) 75.50 63.43 52.49 76.66 66.74 70.74

model achieves the overall best results compared with other powerful Slot-Attention variants

(models that achieve best or second-best results in our ablation studies as in Table 5.7 except

for (BirdsÑCars). However, our optimization method still helps improve zero-shot transfer

for randomly initialized Slot-Attention.

Fixed-point approximation We further study whether a fixed point s˚ could be reached

by a fixed number of iterations during training as described in Section 5.3.2. Since we

hypothesized that the low performance of I-QSA in Section 5.4.3 originated from the insufficient

number of starting points for fixed-point approximation, we conduct experiments on increasing

the number of Slot-Attention iterations during training for I-QSA on the Dog dataset. As

shown in Table 5.10, increasing the number of Slot-Attention iterations during training for

I-QSA significantly improves its performance. However, we found that adding more iterations

after a threshold (i.e. 7 in this case) does not further improve the overall performance. This

verifies the need for learning slot initialization vectors for better approximating the fixed

point solution of the inner soft-clustering objective in Slot-Attention.

Table 5.10: Increasing the number of iterations during training for I-QSA.

Model # of Training Iterations
Dogs

Ò IoU Gain Ò Dice Gain

I-QSA 3 59.3 - 77.6 -
I-QSA 7 80.5 +35.8% 88.9 +14.6%

Ours 3 82.5 - 90.3 -

Design choices on slot initialization As described in Section 5.3.3, our method is

connected with recent works on dVAE. However, we do not require the initialization queries
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Table 5.11: Comparison between update methods for slot-initialization queries.

Metrics RunningMean RunningMean-M KMeans KMeans-M VQ-constraint Ours

ARI-FG (ShapeStacks) 7.5 51.4 21.0 70.6 88.6 92.9
MSC-FG (ShapeStacks) 3.7 15.4 4.2 60.4 85.3 89.2

to maintain information about the post-iteration slots ŝ as we found such constraints lead

to the learning of the mean-representation of datasets which forbids disentanglement and

concept binding. In this section, we provide experimental results to verify this argument.

Specifically, we consider three different ways to update slot initialization queries in addition

to our proposed method: 1) using the running mean of the post-iteration slots as initialization

queries (RunningMean), 2) running K-Means clustering on post-iteration slots and updating

the initialization queries using re-clustered centers by Hungarian matching (KMeans), 3)

adding consistency loss between initialization queries and post-iteration slots as done in

VQ-VAE (VQ-constraint). For (1) and (2), we empirically found such designs to be suffering

from frequent updates and therefore use momentum updates to stabilize their training. We

term these variants with the suffix (-M).

As shown in Table 5.11, our model achieves the best overall performance compared to

other initialization methods. Specifically, we found that using the running mean of post-

iteration slots or K-Means cluster centers re-clustered from post-iteration slots to be harmful

to model performance. We attribute this effect to the learning of the mean-representation of

datasets. This is further proved in experiments with VQ-VAE loss on consistency between slot

initializations and post-iteration slots (i.e. ||sgpŝq ´ s0||2), where the VQ-constraint variant

showed inferior performance. We also found that the weight of this additional loss needs to

be carefully tuned for the model to decompose objects. Empirically, most configurations of

this hyperparameter will lead to bad reconstructions except for certain small weights (e.g .

0.01 reported here). Above all, we believe these experimental results verify the effectiveness

of our design choices on initialization query learning. We provide additional visualizations on

the learned contents of slots for each update method in Fig. 5.6.
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Figure 5.6: Visualizations per-slot reconstruction for different update methods.

5.5 Conclusions

We introduce BO-QSA for unsupervised object-centric representation learning. We initialize

Slot-Attention with learnable queries, and combine bi-level optimization and straight-through

gradient estimators to ease the difficulty in query-based Slot-Attention learning. With simple

code adjustments on Slot-Attention, we obtain state-of-the-art model for unsupervised object

segmentation in both synthetic and natural image domains, outperforming previous baselines

by a large margin. More importantly, our learned model exhibits concept-binding effects

where visual concepts are attached to specific slot queries. With a fixed number of initialized

slots, our model is limited to handling a fixed maximum number of objects in the inputs.

However, our queries could be learned to bind object attributes, which leads to meaningful

segmentation of images by grouping similar properties (e.g . color, position, etc.). As a future

direction, this connects our method with weakly-supervised contrastive learning methods

that learn grounded visual representations with language.
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CHAPTER 6

Abstract Spatial-Temporal Reasoning via Probabilistic

Abduction and Execution

With the recent culmination of unsupervised object-centric learning, we have gone through

powerful variants of models proposed for 3D scenes [YGW22, SDM22] and videos [KEM22,

EMS22, SWA22]. With more works starting to tackle the concept binding problem discussed

in Chapter 5, we continue the discussion on leveragin these symbolic representations for the

problem of sequential event modeling. In this chapter, we take the spatial-temporal reasoning

in RAVEN proposed in Chapter 2 as the central topic of our discussion. Spatial-temporal

reasoning is a challenging task due to its demanding but unique nature: a theoretic requirement

on representing and reasoning based on spatial-temporal knowledge in mind, and an applied

requirement on a high-level cognitive system capable of navigating and acting in space and

time. Despite the encouraging progress on RPM that achieves human-level performance in

terms of accuracy, modern approaches have neither a treatment of human-like reasoning on

generalization nor a potential to generate answers. Viewing from the cognitive perspective,

psychologists call for weak attribute supervision in RPM. As isolated Amazonians, absent of

schooling on primitive attributes, could still correctly solve RPM [DIP06, IPS11], an ideal

computational counterpart should be able to learn it in absent of visual attribute annotations.

This weakly-supervised setting introduces unique challenges: How to jointly learn these

visual attributes given only ground-truth images? With uncertainties in perception, how to

abduce hidden logic relations from it? How about executing the symbolic logic on inaccurate

perception to derive answers?
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To support cross-configuration generalization and answer generation, we move a step

further towards a neuro-symbolic model with explicit logical reasoning and human-like

generative problem-solving while addressing the challenges. Specifically, we propose the

Probabilistic Abduction and Execution (PrAE) learner; central to it is the process of abduction

and execution on the probabilistic scene representation. Inspired by Fodor, Marcus, and neuro-

symbolic reasoning [HMG19, MGK19, YGL20a, YWG18], the PrAE learner disentangles the

previous monolithic process into two separate modules: a neural visual perception frontend

and a symbolic logical reasoning backend. The neural visual frontend operates on object-

based representation [HMG19, KSM17, MGK19, YGL20a, YWG18] and predicts conditional

probability distributions on its attributes. A scene inference engine then aggregates all object

attribute distributions to produce a probabilistic scene representation for the backend. The

symbolic logical backend abduces, from the representation, hidden rules that govern the time-

ordered sequence via inverse dynamics. An execution engine executes the rules to generate an

answer representation in a probabilistic planning manner [GNT04, HXZ19, KKL15], instead

of directly making a categorical choice among the candidates. The final choice is selected

based on the divergence between the generated prediction and the given candidates. The

entire system is trained end-to-end with a cross-entropy loss and a curricular auxiliary

loss [SHB18, ZGJ19, ZJG19] without any visual attribute annotations. Fig. 6.1 compares the

proposed PrAE learner with prior methods.

The unique design in PrAE connects perception and reasoning and offers several ad-

vantages: (i) With an intermediate probabilistic scene representation, the neural visual

perception frontend and the symbolic logical reasoning backend can be swapped for different

task domains, enabling a greater extent of module reuse and combinatorial generalization. (ii)

Instead of blending perception and reasoning into one monolithic model without any explicit

reasoning, probabilistic abduction offers a more interpretable account for reasoning on a logical

representation. It also affords a more detailed analysis of both perception and reasoning.

(iii) Probabilistic execution permits a generative process to be integrated into the system.
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...<latexit sha1_base64="SYmnc6oLALQRt8axejZI1+eeu1s=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4Ckk96LHoxWNF+wFtKJvtpl262YTdiVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXplIY9LxvZ219Y3Nru7RT3t3bPzisHB23TJJpxpsskYnuhNRwKRRvokDJO6nmNA4lb4fj25nffuLaiEQ94iTlQUyHSkSCUbTSg+u6/UrVc705yCrxC1KFAo1+5as3SFgWc4VMUmO6vpdikFONgkk+Lfcyw1PKxnTIu5YqGnMT5PNTp+TcKgMSJdqWQjJXf0/kNDZmEoe2M6Y4MsveTPzP62YYXQe5UGmGXLHFoiiTBBMy+5sMhOYM5cQSyrSwtxI2opoytOmUbQj+8surpFVz/Uu3dl+r1m+KOEpwCmdwAT5cQR3uoAFNYDCEZ3iFN0c6L86787FoXXOKmRP4A+fzB0ySjSQ=</latexit>

Holistic encoder + MLP
<latexit sha1_base64="iMxhEPjnJV19R+lShDNVzZT7a24=">AAAB/3icbVDLSsNAFL3xWeurKrhxM1gEQShJXeiy6KYLhQr2AW0ok8mkHTrJhJmJUGIX/oobF4q49Tfc+TdO2iy09cLA4Zxz7517vJgzpW3721paXlldWy9sFDe3tnd2S3v7LSUSSWiTCC5kx8OKchbRpmaa004sKQ49Ttve6DrT2w9UKiaiez2OqRviQcQCRrA2VL90WBfZFkYQjYjwqURn6Pam0S+V7Yo9LbQInByUIS/j/+r5giQhjTThWKmuY8faTbE0ozmdFHuJojEmIzygXQMjHFLlptP/T9CJYXwUCGlepNGU/d2R4lCpcegZZ4j1UM1rGfmf1k10cOmmLIoTbc6bLQoSjrRAWRjIZ5ISzccGYCJZFgMZYomJNpEVTQjO/MmLoFWtOOeV6l21XLvK4yjAERzDKThwATWoQwOaQOARnuEV3qwn68V6tz5m1iUr7zmAP2V9/gCEBJUc</latexit>

Relational module + MLP
<latexit sha1_base64="6XQGV+C/GjokMgOygnOPy+cmSiU=">AAACAHicbVDLSsNAFJ3UV62vqgsXbgaLIAglqQtdFt24UKhiH9CGMpnctEMnmTAzEUroxl9x40IRt36GO//GaZqFth4YOJxzLnfu8WLOlLbtb6uwtLyyulZcL21sbm3vlHf3WkokkkKTCi5kxyMKOIugqZnm0IklkNDj0PZGV1O//QhSMRE96HEMbkgGEQsYJdpI/fLBPfCMEo5D4Scc8Cm+vWn0yxW7amfAi8TJSQXlMPmvni9oEkKkKSdKdR071m5KpGaUw6TUSxTEhI7IALqGRiQE5abZARN8bBQfB0KaF2mcqb8nUhIqNQ49kwyJHqp5byr+53UTHVy4KYviRENEZ4uChGMt8LQN7DMJVPOxIYRKZv6K6ZBIQrXprGRKcOZPXiStWtU5q9buapX6ZV5HER2iI3SCHHSO6ugaNVATUTRBz+gVvVlP1ov1bn3MogUrn9lHf2B9/gBfeJWY</latexit>

...<latexit sha1_base64="SYmnc6oLALQRt8axejZI1+eeu1s=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4Ckk96LHoxWNF+wFtKJvtpl262YTdiVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXplIY9LxvZ219Y3Nru7RT3t3bPzisHB23TJJpxpsskYnuhNRwKRRvokDJO6nmNA4lb4fj25nffuLaiEQ94iTlQUyHSkSCUbTSg+u6/UrVc705yCrxC1KFAo1+5as3SFgWc4VMUmO6vpdikFONgkk+Lfcyw1PKxnTIu5YqGnMT5PNTp+TcKgMSJdqWQjJXf0/kNDZmEoe2M6Y4MsveTPzP62YYXQe5UGmGXLHFoiiTBBMy+5sMhOYM5cQSyrSwtxI2opoytOmUbQj+8surpFVz/Uu3dl+r1m+KOEpwCmdwAT5cQR3uoAFNYDCEZ3iFN0c6L86787FoXXOKmRP4A+fzB0ySjSQ=</latexit>

Shared encoder + Potential
<latexit sha1_base64="0GVnFd3DpeNUrnsf8Y/ar0oU+Ew=">AAACA3icbVDLSgMxFM34rPU16k43wSIIQpmpC10W3bisaB/QDiWTudOGZpIhyQilFNz4K25cKOLWn3Dn35i2s9DWA4HDOfdwc0+YcqaN5307S8srq2vrhY3i5tb2zq67t9/QMlMU6lRyqVoh0cCZgLphhkMrVUCSkEMzHFxP/OYDKM2kuDfDFIKE9ASLGSXGSl338K5PFEQYBJURKHyGa9KAMIzwrlvyyt4UeJH4OSmhHLWu+9WJJM0SG6ecaN32vdQEI6IMoxzGxU6mISV0QHrQtlSQBHQwmt4wxidWiXAslX3C4Kn6OzEiidbDJLSTCTF9Pe9NxP+8dmbiy2DERJrZu+hsUZxxbCSeFIIjpoAaPrSEUMXsXzG1nRBqbG1FW4I/f/IiaVTK/nm5clspVa/yOgroCB2jU+SjC1RFN6iG6oiiR/SMXtGb8+S8OO/Ox2x0yckzB+gPnM8fDSKXIw==</latexit>

Existing methods: feature manipulation
<latexit sha1_base64="ViaXqHblAyIoE47iKsGzmGr7PPw="></latexit>

Answer: 5
<latexit sha1_base64="xTIvUXE5z3v6xL2UeudGPba3ilo=">AAAB8HicbVDLSsNAFL2pr1pfVZduBovgqiQtPldVNy4r2Ie0oUymk3bozCTMTJQS+hVuXCji1s9x59+YpEXUeuDC4Zx7ufceL+RMG9v+tHILi0vLK/nVwtr6xuZWcXunqYNIEdogAQ9U28OaciZpwzDDaTtUFAuP05Y3ukr91j1VmgXy1oxD6go8kMxnBJtEuruQ+oGqc3TUK5bssp0BzRNnRkowQ71X/Oj2AxIJKg3hWOuOY4fGjbEyjHA6KXQjTUNMRnhAOwmVWFDtxtnBE3SQKH3kByopaVCm/pyIsdB6LLykU2Az1H+9VPzP60TGP3VjJsPIUEmmi/yIIxOg9HvUZ4oSw8cJwUSx5FZEhlhhYpKMClkIZymOv1+eJ81K2amWqzeVUu1yFkce9mAfDsGBE6jBNdShAQQEPMIzvFjKerJerbdpa86azezCL1jvXwg8kAg=</latexit>

Answer: 5
<latexit sha1_base64="xTIvUXE5z3v6xL2UeudGPba3ilo=">AAAB8HicbVDLSsNAFL2pr1pfVZduBovgqiQtPldVNy4r2Ie0oUymk3bozCTMTJQS+hVuXCji1s9x59+YpEXUeuDC4Zx7ufceL+RMG9v+tHILi0vLK/nVwtr6xuZWcXunqYNIEdogAQ9U28OaciZpwzDDaTtUFAuP05Y3ukr91j1VmgXy1oxD6go8kMxnBJtEuruQ+oGqc3TUK5bssp0BzRNnRkowQ71X/Oj2AxIJKg3hWOuOY4fGjbEyjHA6KXQjTUNMRnhAOwmVWFDtxtnBE3SQKH3kByopaVCm/pyIsdB6LLykU2Az1H+9VPzP60TGP3VjJsPIUEmmi/yIIxOg9HvUZ4oSw8cJwUSx5FZEhlhhYpKMClkIZymOv1+eJ81K2amWqzeVUu1yFkce9mAfDsGBE6jBNdShAQQEPMIzvFjKerJerbdpa86azezCL1jvXwg8kAg=</latexit>

Answer: 5
<latexit sha1_base64="xTIvUXE5z3v6xL2UeudGPba3ilo=">AAAB8HicbVDLSsNAFL2pr1pfVZduBovgqiQtPldVNy4r2Ie0oUymk3bozCTMTJQS+hVuXCji1s9x59+YpEXUeuDC4Zx7ufceL+RMG9v+tHILi0vLK/nVwtr6xuZWcXunqYNIEdogAQ9U28OaciZpwzDDaTtUFAuP05Y3ukr91j1VmgXy1oxD6go8kMxnBJtEuruQ+oGqc3TUK5bssp0BzRNnRkowQ71X/Oj2AxIJKg3hWOuOY4fGjbEyjHA6KXQjTUNMRnhAOwmVWFDtxtnBE3SQKH3kByopaVCm/pyIsdB6LLykU2Az1H+9VPzP60TGP3VjJsPIUEmmi/yIIxOg9HvUZ4oSw8cJwUSx5FZEhlhhYpKMClkIZymOv1+eJ81K2amWqzeVUu1yFkce9mAfDsGBE6jBNdShAQQEPMIzvFjKerJerbdpa86azezCL1jvXwg8kAg=</latexit>

(a)
<latexit sha1_base64="F+lMbzi+uymL9XzxayGNcoim6I8=">AAAB83icbVDLSsNAFJ3UV62vqks3g0Wom5JY8bErunFZwT6gCWUynbRDJ5MwcyOW0N9w40IRt/6MO//GSVpErQcuHM65l3vv8WPBNdj2p1VYWl5ZXSuulzY2t7Z3yrt7bR0lirIWjUSkuj7RTHDJWsBBsG6sGAl9wTr++DrzO/dMaR7JO5jEzAvJUPKAUwJGcl1gD+AHaZUcT/vlil2zc+BF4sxJBc3R7Jc/3EFEk5BJoIJo3XPsGLyUKOBUsGnJTTSLCR2TIesZKknItJfmN0/xkVEGOIiUKQk4V39OpCTUehL6pjMkMNJ/vUz8z+slEFx4KZdxAkzS2aIgERginAWAB1wxCmJiCKGKm1sxHRFFKJiYSnkIlxnOvl9eJO2TmlOv1W9PK42reRxFdIAOURU56Bw10A1qohaiKEaP6Bm9WIn1ZL1ab7PWgjWf2Ue/YL1/Aektkbw=</latexit>

(b)
<latexit sha1_base64="H9AaOZFBUx+a3zprn1JX0By+aQ8=">AAAB83icbVDLSsNAFJ3UV62vqks3g0Wom5JY8bErunFZwT6gCWUynbRDJ5MwcyOW0N9w40IRt/6MO//GSVpErQcuHM65l3vv8WPBNdj2p1VYWl5ZXSuulzY2t7Z3yrt7bR0lirIWjUSkuj7RTHDJWsBBsG6sGAl9wTr++DrzO/dMaR7JO5jEzAvJUPKAUwJGcl1gD+AHadU/nvbLFbtm58CLxJmTCpqj2S9/uIOIJiGTQAXRuufYMXgpUcCpYNOSm2gWEzomQ9YzVJKQaS/Nb57iI6MMcBApUxJwrv6cSEmo9ST0TWdIYKT/epn4n9dLILjwUi7jBJiks0VBIjBEOAsAD7hiFMTEEEIVN7diOiKKUDAxlfIQLjOcfb+8SNonNadeq9+eVhpX8ziK6AAdoipy0DlqoBvURC1EUYwe0TN6sRLryXq13matBWs+s49+wXr/Auqzkb0=</latexit>

Candidate panels
<latexit sha1_base64="tv6OM9UyYM3/ydJqwLXtHPyWtsc=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LBbBU0lb8ONW7MVjBVsLbSiTzbRdutmE3U2hhP4TLx4U8eo/8ea/MU2DqPXBwOO9GWbmeZHg2jjOp1VYW9/Y3Cpul3Z29/YP7MOjjg5jxbDNQhGqrgcaBZfYNtwI7EYKIfAEPniT5sJ/mKLSPJT3ZhahG8BI8iFnYFJpYNtNkD73wSCNQKLQA7vsVJwMdJVUc1ImOVoD+6PvhywOUBomQOte1YmMm4AynAmcl/qxxgjYBEbYS6mEALWbZJfP6Vmq+HQYqrSkoZn6cyKBQOtZ4KWdAZix/ustxP+8XmyGV27CZRQblGy5aBgLakK6iIH6XCEzYpYSYIqnt1I2BgXMpGGVshCuF7j4fnmVdGqVar1Sv6uVGzd5HEVyQk7JOamSS9Igt6RF2oSRKXkkz+TFSqwn69V6W7YWrHzmmPyC9f4FYGOToA==</latexit>

Context panels
<latexit sha1_base64="8n/CTJOYh+8tYewXD6lLfIc/nnY=">AAAB9XicbVBNS8NAEN3Ur1q/qh69LBbBU0lb8ONW7MVjBdsKbSyb7aRdutmE3YlaSv+HFw+KePW/ePPfmKRB1Ppg4PHeDDPz3FAKg7b9aeWWlldW1/LrhY3Nre2d4u5e2wSR5tDigQz0jcsMSKGghQIl3IQamO9K6LjjRuJ37kAbEahrnITg+GyohCc4w1i6bQQK4QFpyBRI0y+W7LKdgi6SSkZKJEOzX/zoDQIe+aCQS2ZMt2KH6EyZRsElzAq9yEDI+JgNoRtTxXwwzjS9ekaPYmVAvUDHpZCm6s+JKfONmfhu3OkzHJm/XiL+53Uj9M6cqVBhhKD4fJEXSYoBTSKgA6GBo5zEhHEt4lspHzHNOMZBFdIQzhOcfL+8SNrVcqVWrl1VS/WLLI48OSCH5JhUyCmpk0vSJC3CiSaP5Jm8WPfWk/Vqvc1bc1Y2s09+wXr/Aq6xksM=</latexit>

. . .<latexit sha1_base64="DmMflNz0jJdnjr3IthytXBV3aY8=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0+HErevFYwdpCG8pms2mXbnbD7kYooT/CiwdFvPp7vPlv3LRB1Ppg4PHeDDPzgoQzbVz30yktLa+srpXXKxubW9s71d29ey1TRWibSC5VN8CaciZo2zDDaTdRFMcBp51gfJ37nQeqNJPizkwS6sd4KFjECDZW6vRHoTS6MqjW3Lo7A1okXkFqUKA1qH70Q0nSmApDONa657mJ8TOsDCOcTiv9VNMEkzEe0p6lAsdU+9ns3Ck6skqIIqlsCYNm6s+JDMdaT+LAdsbYjPRfLxf/83qpiS78jIkkNVSQ+aIo5chIlP+OQqYoMXxiCSaK2VsRGWGFibEJzUO4zHH2/fIiuT+pe6f1xm2j1rwq4ijDARzCMXhwDk24gRa0gcAYHuEZXpzEeXJenbd5a8kpZvbhF5z3LwW8j4A=</latexit>

. . .<latexit sha1_base64="DmMflNz0jJdnjr3IthytXBV3aY8=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0+HErevFYwdpCG8pms2mXbnbD7kYooT/CiwdFvPp7vPlv3LRB1Ppg4PHeDDPzgoQzbVz30yktLa+srpXXKxubW9s71d29ey1TRWibSC5VN8CaciZo2zDDaTdRFMcBp51gfJ37nQeqNJPizkwS6sd4KFjECDZW6vRHoTS6MqjW3Lo7A1okXkFqUKA1qH70Q0nSmApDONa657mJ8TOsDCOcTiv9VNMEkzEe0p6lAsdU+9ns3Ck6skqIIqlsCYNm6s+JDMdaT+LAdsbYjPRfLxf/83qpiS78jIkkNVSQ+aIo5chIlP+OQqYoMXxiCSaK2VsRGWGFibEJzUO4zHH2/fIiuT+pe6f1xm2j1rwq4ijDARzCMXhwDk24gRa0gcAYHuEZXpzEeXJenbd5a8kpZvbhF5z3LwW8j4A=</latexit>. . .<latexit sha1_base64="DmMflNz0jJdnjr3IthytXBV3aY8=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0+HErevFYwdpCG8pms2mXbnbD7kYooT/CiwdFvPp7vPlv3LRB1Ppg4PHeDDPzgoQzbVz30yktLa+srpXXKxubW9s71d29ey1TRWibSC5VN8CaciZo2zDDaTdRFMcBp51gfJ37nQeqNJPizkwS6sd4KFjECDZW6vRHoTS6MqjW3Lo7A1okXkFqUKA1qH70Q0nSmApDONa657mJ8TOsDCOcTiv9VNMEkzEe0p6lAsdU+9ns3Ck6skqIIqlsCYNm6s+JDMdaT+LAdsbYjPRfLxf/83qpiS78jIkkNVSQ+aIo5chIlP+OQqYoMXxiCSaK2VsRGWGFibEJzUO4zHH2/fIiuT+pe6f1xm2j1rwq4ijDARzCMXhwDk24gRa0gcAYHuEZXpzEeXJenbd5a8kpZvbhF5z3LwW8j4A=</latexit>

X
<latexit sha1_base64="FxgQb8RvMHxT6nMRBQaDsvgnwXo="></latexit>

Probabilisitic execution
via forward model

<latexit sha1_base64="Uv/FbfF3kI3Mwgx1in6SPoE90G8=">AAACIHicbVA9SwNBEN2L3/ErammzGASrcBeLWAZtLCMYDeRCmNub6JK93WN3LxqCP8XGv2JjoYh2+mvcu6Tw68HA480Mb+ZFqeDG+v6HV5qbX1hcWl4pr66tb2xWtrYvjMo0wzZTQulOBAYFl9i23ArspBohiQReRsOTvH85Qm24kud2nGIvgSvJB5yBdVK/0gil4jJGaWlLqwgi7ky55YziLbIsH6JhWB5xoAOlb0DHNFExin6l6tf8AvQvCWakSmZo9SvvYaxYljgnJsCYbuCntjcB7bwE3pXDzGAKbAhX2HVUQoKmNykevKP7TonzA1y5Swv1+8YEEmPGSeQmE7DX5ncvF//rdTM7OOpNuEwzi5JNjQaZoFbRPC0ac43MirEjwHSRC7sGDcy6TMsuhOD3y3/JRb0WHNbqZ/Vq83gWxzLZJXvkgASkQZrklLRImzByTx7JM3nxHrwn79V7m46WvNnODvkB7/MLbZqjug==</latexit>

Number: Plus<latexit sha1_base64="4cT8E4IUkewUl9ga28dRPEO8ZIo=">AAAB83icbVDJSgNBEK1xjXGLevTSGARPYZKA2ynoxZNEMAskQ+jp9CRNenqGXoQw5De8eFDEqz/jzb+xZzKIGh8UPN6roqqeH3OmtOt+OkvLK6tr64WN4ubW9s5uaW+/rSIjCW2RiEey62NFORO0pZnmtBtLikOf044/uU79zgOVikXiXk9j6oV4JFjACNZW6t+a0KfyEjW5UYNS2a24GdAiqeakDDmag9JHfxgRE1KhCcdK9apurL0ES80Ip7Ni3ygaYzLBI9qzVOCQKi/Jbp6hY6sMURBJW0KjTP05keBQqWno284Q67H666Xif17P6ODcS5iIjaaCzBcFhiMdoTQANGSSEs2nlmAimb0VkTGWmGgbUzEL4SLF6ffLi6Rdq1Trlfpdrdy4yuMowCEcwQlU4QwacANNaAGBGB7hGV4c4zw5r87bvHXJyWcO4Bec9y+jbpGO</latexit>

Probabilistic abduction
via inverse dynamics

<latexit sha1_base64="B3IGsEhUGReupQ2Yc4ScGJ/zfmY=">AAACInicbVDLSgMxFM34rPVVdekmWARXZdqC2l3RjcsK9gGdUu5k0jY0kwxJpjCUfosbf8WNC0VdCX6MmXYQtR4IHM59nNzjR5xp47ofzsrq2vrGZm4rv72zu7dfODhsaRkrQptEcqk6PmjKmaBNwwynnUhRCH1O2/74Oq23J1RpJsWdSSLaC2Eo2IARMFbqF2qekEwEVBjcUNIHn6WmjGDwg5ikPdjz8hMGmIl0D8VBIiBkRPcLRbfkzoGXSTkjRZSh0S+8eYEkcWi9CAetu2U3Mr0pKGvH6SzvxZpGQMYwpF1LrQvVven8xBk+tUqAB1LZZ/86V39OTCHUOgl92xmCGem/tVT8r9aNzeCyN2Uiig0VZGE0iDk2Eqd54YApSgxPLAGiWBoNGYECYmwa+XkItRTn3ycvk1alVK6WqreVYv0qiyOHjtEJOkNldIHq6AY1UBMRdI8e0TN6cR6cJ+fVeV+0rjjZzBH6BefzCyhKpMs=</latexit>

Our approach: probabilistic abduction and execution
<latexit sha1_base64="pnBoFvbT4JR5Y+Fleo5CgsceZPA=">AAACJXicbVDLSgMxFM34tr6qLt0Ei+CqTBV84UJ0404Fq0Jbyk3mjg1mMkMe0jL0Z9z4K25cKCK48lfM1CK+DoScnHsuN/ewTApjw/AtGBkdG5+YnJouzczOzS+UF5cuTOo0xzpPZaqvGBiUQmHdCivxKtMICZN4yW6OivrlLWojUnVuexm2ErhWIhYcrJfa5f2mxa5lcX7iNIUs0ynwzh71NwMmig8IToFFjhd+Ciqi2EXuile/Xa6E1XAA+pfUhqRChjhtl5+bUcpdgspyCcY0amFmWzloP0Viv9R0BjPgN3CNDU8VJGha+WDLPl3zSkTjVPujLB2o3ztySIzpJcw7E7Ad87tWiP/VGs7GO61cqMxZVPxzUOwktSktIqOR0Mit7HkCXIsiEd4BDdz6YEuDEHYLbH2t/JdcbFRrm9XNs43KweEwjimyQlbJOqmRbXJAjskpqRNO7sgDeSLPwX3wGLwEr5/WkWDYs0x+IHj/AH4Epp4=</latexit>

Figure 6.1: Differences between (a) prior methods and (b) the proposed approach.

Symbolic logical constraints can be transformed by the execution engine into a forward

model [JR92] and applied in a probabilistic manner to predict the final scene representation,

such that the entire system can be trained by analysis-by-synthesis [CHY19, Gre76, HNF19,

HQX18, HQZ18, LB14, WTK17, WWX17, XLZ16, XZW19, YK06, ZWM98]. (iv) Instead

of making a deterministic decision or drawing limited samples, maintaining probabilistic

distributions brings in extra robustness and fault tolerance and allows gradients to be easily

propagated.

In this chapter, we provide a detailed review of prior methods for spatial-temporal reasoning

in the symbolic domain. We further elaborate on the proposed Probabilistic Abduction and

Execution (PrAE) learner, which, unlike previous methods, can disentangle perception and

reasoning from a monolithic model with the reasoning process realized by abduction and

execution on a probabilistic scene representation. Finally, we provide experimental results

to demonstrate that the PrAE learner achieves better generalization results compared to

existing methods in the cross-configuration generalization task of RPM.
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6.1 Related Work

Neuro-Symbolic Visual Reasoning Neuro-symbolic methods have shown promising

potential in tasks involving an interplay between vision and language and vision and causality.

Qi et al . [QJH20, QJZ18] showed that action recognition could be significantly improved with

the help of grammar parsing, and Li et al . [LHH20] integrated perception, parsing, and logic

into a unified framework. Of particular relevance, Yi et al . [YWG18] first demonstrated a

prototype of a neuro-symbolic system to solve VQA [AAL15], where the vision system and the

language parsing system were separately trained with a final symbolic logic system applying

the parsed program to deliver an answer. Mao et al . [MGK19] improved such a system by

making the symbolic component continuous and end-to-end trainable, despite sacrificing the

semantics and interpretability of logic. Han et al . [HMG19] built on [MGK19] and studied the

metaconcept problem by learning concept embeddings. A recent work investigated temporal

and causal relations in collision events [YGL20a] and solved it in a way similar to [YWG18].

The proposed PrAE learner is similar to but has fundamental differences from existing

neuro-symbolic methods. Unlike the method proposed by Yi et al . [YGL20a, YWG18], our

approach is end-to-end trainable and does not require intermediate visual annotations, such as

ground-truth attributes. Compared to [MGK19], our approach preserves logic semantics and

interpretability by explicit logical reasoning involving probabilistic abduction and execution

in a probabilistic planning manner [GNT04, HXZ19, KKL15].

Computational Approaches to RPM Initially proposed as an intelligence quotient test

into general intelligence and fluid intelligence [Rav36, RC98], Raven’s Progressive Matrices

(RPM) has received notable attention from the research community of cognitive science.

Psychologists have proposed reasoning systems based on symbolic representations and discrete

logics [CJS90, LF17, LFU10, LTF09]. However, such logical systems cannot handle visual

uncertainty arising from imperfect perception. Similar issues also pose challenges to methods

based on image similarity [LLG12, MG14, MKG14, MSD18, SG18a]. Recent works approach
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this problem in a data-driven manner. The first automatic RPM generation method was

proposed by Wang and Su [WS15]. Santoro et al . [SHB18] extended it using procedural

generation and introduced the WReN to solve the problem. Zhang et al . [ZGJ19] and Hu

et al . [HML21] used stochastic image grammar [ZM07] and provided structural annotations

to the dataset. Unanimously, existing methods do not explicitly distinguish perception

and reasoning; instead, they use one monolithic neural model, sacrificing interpretability in

exchange for better performance. The differences in previous methods lie in how features

are manipulated: Santoro et al . [SHB18] used the relational module to extract final features,

Zhang et al . [ZGJ19] stacked all panels into the channel dimension and fed them into a

residual network, Hill et al . [HSB19] prepared the data in a contrasting manner, Zhang

et al . [ZJG19] composed the context with each candidate and compared their potentials,

Wang et al . [WJL20] modeled the features by a multiplex graph, and Hu et al . [HML21]

integrated hierarchical features. Zheng et al . [ZZW19] studied a teacher-student setting in

RPM, while Steenbrugge et al . [SLV18] focused on a generative approach to improve learning.

Concurrent to our work, Spratley et al . [SEM20] unsupervisedly extracted object embeddings

and conducted reasoning via a ResNet. In contrast, PrAE is designed to address cross-

configuration generalization and disentangles perception and reasoning from a monolithic

model, with symbolic logical reasoning implemented as probabilistic abduction and execution.

6.2 The PrAE Learner

Problem Setup In this section, we explain our approach to tackling the RPM problem.

Each RPM instance consists of 16 panels: 8 context panels form an incomplete 3 ˆ 3

matrix with a 9th missing entry, and 8 candidate panels for one to choose. The goal is

to pick one candidate that best completes the matrix to satisfy the latent governing rules.

Existing datasets [HML21, SHB18, WS15, ZGJ19] assume fixed sets of object attributes,

panel attributes, and rules, with each panel attribute governed by one rule. The value of a
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z }| {
<latexit sha1_base64="liqjAUrAsH60UtL0qtyiW7LBiN8=">AAACEXicbVDJSgNBEO1xjXGLevTSGIScwkSDyy3oxWMEs0BmCD2dStKkZ6G7RgxDfsGLv+LFgyJevXnzb+xJBlHjKwoe71XRXc+LpNBo25/WwuLS8spqbi2/vrG5tV3Y2W3qMFYcGjyUoWp7TIMUATRQoIR2pID5noSWN7pM/dYtKC3C4AbHEbg+GwSiLzhDI3ULJSc0tqcYh8RBuMPEofM1meS7haJdtqeg86SSkSLJUO8WPpxeyGMfAuSSad2p2BG6CVMouIRJ3ok1RIyP2AA6hgbMB+0m04sm9NAoPdoPlekA6VT9uZEwX+ux75lJn+FQ//VS8T+vE2P/zE1EEMUIAZ891I8lxZCm8dCeUMBRjg1hXAnzV8qHzMSDJsRZCOcpTr5PnifNo3LluFy9rhZrF1kcObJPDkiJVMgpqZErUicNwsk9eSTP5MV6sJ6sV+ttNrpgZTt75Bes9y9Gupt7</latexit>

rNum = Arithmetic plus
<latexit sha1_base64="iKNpHvalFsZioh/b7t7ermyFqs4=">AAACEnicbVDLSgMxFM3UV62vqks3g0XQTZlq8bEQqm5cSQX7gLaWTHrbhiYzQ3JHLMN8gxt/xY0LRdy6cuffmD4UtR4InJxzb8I5biC4Rsf5sBJT0zOzc8n51MLi0vJKenWtrP1QMSgxX/iq6lINgntQQo4CqoECKl0BFbd3NvArN6A0970r7AfQkLTj8TZnFI3UTO+o66iOcIuI0UUo4/j463aiOHYlIGd2IEIdN9MZJ+sMYU+S3JhkyBjFZvq93vJZKMFDJqjWtZwTYCOiyjwpIE7VQw0BZT3agZqhHpWgG9EwUmxvGaVlt31ljof2UP25EVGpdV+6ZlJS7Oq/3kD8z6uF2D5sRNwLQgSPjT5qh8JG3x70Y7e4AoaibwhlpgITn3WpogxNi6lhCUcD7H9HniTl3WxuL5u/zGcKp+M6kmSDbJJtkiMHpEDOSZGUCCN35IE8kWfr3nq0XqzX0WjCGu+sk1+w3j4B5mifog==</latexit>

0.0

0.1

0.6

0.3

...<latexit sha1_base64="ULFiimF3J4Uu6wH9VDIhhwD2/MA=">AAAB7nicbVDLSgNBEJyNrxhfUY9eBoPgKWw0+LgFvXiMYB6QLGF2djYZMjuzzPQGwpKP8OJBEa9+jzf/xtlkETUWNBRV3XR3+bHgBlz30ymsrK6tbxQ3S1vbO7t75f2DtlGJpqxFlVC66xPDBJesBRwE68aakcgXrOOPbzO/M2HacCUfYBozLyJDyUNOCVip058ECkxpUK64VXcOvExqOamgHM1B+aMfKJpETAIVxJhezY3BS4kGTgWblfqJYTGhYzJkPUsliZjx0vm5M3xilQCHStuSgOfqz4mURMZMI992RgRG5q+Xif95vQTCKy/lMk6ASbpYFCYCg8LZ7zjgmlEQU0sI1dzeiumIaELBJrQI4TrDxffLy6R9Vq2dV+v39UrjJo+jiI7QMTpFNXSJGugONVELUTRGj+gZvTix8+S8Om+L1oKTzxyiX3DevwAbOo+O</latexit>

...<latexit sha1_base64="ULFiimF3J4Uu6wH9VDIhhwD2/MA=">AAAB7nicbVDLSgNBEJyNrxhfUY9eBoPgKWw0+LgFvXiMYB6QLGF2djYZMjuzzPQGwpKP8OJBEa9+jzf/xtlkETUWNBRV3XR3+bHgBlz30ymsrK6tbxQ3S1vbO7t75f2DtlGJpqxFlVC66xPDBJesBRwE68aakcgXrOOPbzO/M2HacCUfYBozLyJDyUNOCVip058ECkxpUK64VXcOvExqOamgHM1B+aMfKJpETAIVxJhezY3BS4kGTgWblfqJYTGhYzJkPUsliZjx0vm5M3xilQCHStuSgOfqz4mURMZMI992RgRG5q+Xif95vQTCKy/lMk6ASbpYFCYCg8LZ7zjgmlEQU0sI1dzeiumIaELBJrQI4TrDxffLy6R9Vq2dV+v39UrjJo+jiI7QMTpFNXSJGugONVELUTRGj+gZvTix8+S8Om+L1oKTzxyiX3DevwAbOo+O</latexit>

P (Num = 1)
<latexit sha1_base64="V/dAnEBFeKeerlgkN3KYdeASsZ0=">AAAB+nicbVDLSsNAFJ34rPWV6tJNsAh1UxItPhZC0Y0rqWAf0IYymU7aoTOTMHOjlthPceNCEbd+iTv/xiQtotYDFw7n3Mu993ghZxps+9OYm19YXFrOreRX19Y3Ns3CVkMHkSK0TgIeqJaHNeVM0jow4LQVKoqFx2nTG16kfvOWKs0CeQOjkLoC9yXzGcGQSF2zUCt1gN4DQHwVifGZs981i3bZzmDNEmdKimiKWtf86PQCEgkqgXCsdduxQ3BjrIARTsf5TqRpiMkQ92k7oRILqt04O31s7SVKz/IDlZQEK1N/TsRYaD0SXtIpMAz0Xy8V//PaEfgnbsxkGAGVZLLIj7gFgZXmYPWYogT4KCGYKJbcapEBVphAklY+C+E0xdH3y7OkcVB2DsuV60qxej6NI4d20C4qIQcdoyq6RDVURwTdoUf0jF6MB+PJeDXeJq1zxnRmG/2C8f4Fvf6TzQ==</latexit>

P (Num = 2)
<latexit sha1_base64="VR3qMjdA0+GkWvdGSXmhZMeabVg=">AAAB+nicbVDLSsNAFJ3UV62vVJdugkWom5LU4mMhFN24kgr2AW0ok+mkHTqZhJkbtcR+ihsXirj1S9z5NyZpELUeuHA4517uvccJOFNgmp9abmFxaXklv1pYW9/Y3NKL2y3lh5LQJvG5LzsOVpQzQZvAgNNOICn2HE7bzvgi8du3VCrmixuYBNT28FAwlxEMsdTXi41yD+g9AERXoTc9qx709ZJZMVMY88TKSAllaPT1j97AJ6FHBRCOlepaZgB2hCUwwum00AsVDTAZ4yHtxlRgjyo7Sk+fGvuxMjBcX8YlwEjVnxMR9pSaeE7c6WEYqb9eIv7ndUNwT+yIiSAEKshskRtyA3wjycEYMEkJ8ElMMJEsvtUgIywxgTitQhrCaYKj75fnSatasQ4rtetaqX6exZFHu2gPlZGFjlEdXaIGaiKC7tAjekYv2oP2pL1qb7PWnJbN7KBf0N6/AL+Dk84=</latexit>

P (Num = 3)
<latexit sha1_base64="0KXuNtsNFQIZiWK+ulViM5aQo/E=">AAAB+nicbVDLSsNAFJ3UV62vVJdugkWom5LY4mMhFN24kgr2AW0ok+mkHTqZhJkbtcR+ihsXirj1S9z5NyZpELUeuHA4517uvccJOFNgmp9abmFxaXklv1pYW9/Y3NKL2y3lh5LQJvG5LzsOVpQzQZvAgNNOICn2HE7bzvgi8du3VCrmixuYBNT28FAwlxEMsdTXi41yD+g9AERXoTc9qx709ZJZMVMY88TKSAllaPT1j97AJ6FHBRCOlepaZgB2hCUwwum00AsVDTAZ4yHtxlRgjyo7Sk+fGvuxMjBcX8YlwEjVnxMR9pSaeE7c6WEYqb9eIv7ndUNwT+yIiSAEKshskRtyA3wjycEYMEkJ8ElMMJEsvtUgIywxgTitQhrCaYKj75fnSeuwYlUrtetaqX6exZFHu2gPlZGFjlEdXaIGaiKC7tAjekYv2oP2pL1qb7PWnJbN7KBf0N6/AMEIk88=</latexit>

P (Num = 4)
<latexit sha1_base64="n5nIYeDhvQgZ0irME6zdIP7e7nk=">AAAB+nicbVDLSsNAFJ34rPWV6tJNsAh1UxItPhZC0Y0rqWAf0IYymU7aoTOTMHOjlthPceNCEbd+iTv/xiQtotYDFw7n3Mu993ghZxps+9OYm19YXFrOreRX19Y3Ns3CVkMHkSK0TgIeqJaHNeVM0jow4LQVKoqFx2nTG16kfvOWKs0CeQOjkLoC9yXzGcGQSF2zUCt1gN4DQHwVifFZZb9rFu2yncGaJc6UFNEUta750ekFJBJUAuFY67Zjh+DGWAEjnI7znUjTEJMh7tN2QiUWVLtxdvrY2kuUnuUHKikJVqb+nIix0HokvKRTYBjov14q/ue1I/BP3JjJMAIqyWSRH3ELAivNweoxRQnwUUIwUSy51SIDrDCBJK18FsJpiqPvl2dJ46DsHJYr15Vi9XwaRw7toF1UQg46RlV0iWqojgi6Q4/oGb0YD8aT8Wq8TVrnjOnMNvoF4/0Lwo2T0A==</latexit>

P (Num)
<latexit sha1_base64="YriSKLFZ3exkG68eRHXsi+RvgjI=">AAAB+HicbVDLSsNAFJ34rPXRqEs3wSLUTUm0+NgV3biSCvYBbSiT6aQdOpmEmRuxhn6JGxeKuPVT3Pk3TtIgaj1w4XDOvdx7jxdxpsC2P42FxaXlldXCWnF9Y3OrZG7vtFQYS0KbJOSh7HhYUc4EbQIDTjuRpDjwOG1748vUb99RqVgobmESUTfAQ8F8RjBoqW+WGpUe0HsASK7jYHrYN8t21c5gzRMnJ2WUo9E3P3qDkMQBFUA4Vqrr2BG4CZbACKfTYi9WNMJkjIe0q6nAAVVukh0+tQ60MrD8UOoSYGXqz4kEB0pNAk93BhhG6q+Xiv953Rj8MzdhIoqBCjJb5MfcgtBKU7AGTFICfKIJJpLpWy0ywhIT0FkVsxDOU5x8vzxPWkdV57hau6mV6xd5HAW0h/ZRBTnoFNXRFWqgJiIoRo/oGb0YD8aT8Wq8zVoXjHxmF/2C8f4FwPqTSw==</latexit>

{<latexit sha1_base64="jFxfkYKM5kcyxNvNY2VKKDK+F7k=">AAAB6XicbVDLSsNAFL2pr1pfUZduBovgqiRafOyKblxWsQ9oQ5lMJ+3QySTMTIQS+gduXCji1j9y5984SYOo9cCFwzn3cu89fsyZ0o7zaZWWlldW18rrlY3Nre0de3evraJEEtoiEY9k18eKciZoSzPNaTeWFIc+px1/cp35nQcqFYvEvZ7G1AvxSLCAEayNdNdPB3bVqTk50CJxC1KFAs2B/dEfRiQJqdCEY6V6rhNrL8VSM8LprNJPFI0xmeAR7RkqcEiVl+aXztCRUYYoiKQpoVGu/pxIcajUNPRNZ4j1WP31MvE/r5fo4MJLmYgTTQWZLwoSjnSEsrfRkElKNJ8agolk5lZExlhiok04lTyEywxn3y8vkvZJzT2t1W/r1cZVEUcZDuAQjsGFc2jADTShBQQCeIRneLEm1pP1ar3NW0tWMbMPv2C9fwG0no2d</latexit>

rNum
<latexit sha1_base64="VEDbfXRGlj7X2IwoShvMVKsBFuo=">AAAB+XicbVDLSsNAFJ3UV62vqEs3wSK4KokWH7uiG1dSwT6gjWUynbRDJ5Mwc1MsIX/ixoUibv0Td/6NkzSIrwMXDufcy733eBFnCmz7wygtLC4tr5RXK2vrG5tb5vZOW4WxJLRFQh7KrocV5UzQFjDgtBtJigOP0443ucz8zpRKxUJxC7OIugEeCeYzgkFLA9OUd0kf6D0AJNdxkKYDs2rX7BzWX+IUpIoKNAfme38YkjigAgjHSvUcOwI3wRIY4TSt9GNFI0wmeER7mgocUOUm+eWpdaCVoeWHUpcAK1e/TyQ4UGoWeLozwDBWv71M/M/rxeCfuQkTUQxUkPkiP+YWhFYWgzVkkhLgM00wkUzfapExlpiADquSh3Ce4eTr5b+kfVRzjmv1m3q1cVHEUUZ7aB8dIgedoga6Qk3UQgRN0QN6Qs9GYjwaL8brvLVkFDO76AeMt0+w/JR8</latexit>

0.0

0.1

0.6

0.3

...<latexit sha1_base64="ULFiimF3J4Uu6wH9VDIhhwD2/MA=">AAAB7nicbVDLSgNBEJyNrxhfUY9eBoPgKWw0+LgFvXiMYB6QLGF2djYZMjuzzPQGwpKP8OJBEa9+jzf/xtlkETUWNBRV3XR3+bHgBlz30ymsrK6tbxQ3S1vbO7t75f2DtlGJpqxFlVC66xPDBJesBRwE68aakcgXrOOPbzO/M2HacCUfYBozLyJDyUNOCVip058ECkxpUK64VXcOvExqOamgHM1B+aMfKJpETAIVxJhezY3BS4kGTgWblfqJYTGhYzJkPUsliZjx0vm5M3xilQCHStuSgOfqz4mURMZMI992RgRG5q+Xif95vQTCKy/lMk6ASbpYFCYCg8LZ7zjgmlEQU0sI1dzeiumIaELBJrQI4TrDxffLy6R9Vq2dV+v39UrjJo+jiI7QMTpFNXSJGugONVELUTRGj+gZvTix8+S8Om+L1oKTzxyiX3DevwAbOo+O</latexit>

...<latexit sha1_base64="ULFiimF3J4Uu6wH9VDIhhwD2/MA=">AAAB7nicbVDLSgNBEJyNrxhfUY9eBoPgKWw0+LgFvXiMYB6QLGF2djYZMjuzzPQGwpKP8OJBEa9+jzf/xtlkETUWNBRV3XR3+bHgBlz30ymsrK6tbxQ3S1vbO7t75f2DtlGJpqxFlVC66xPDBJesBRwE68aakcgXrOOPbzO/M2HacCUfYBozLyJDyUNOCVip058ECkxpUK64VXcOvExqOamgHM1B+aMfKJpETAIVxJhezY3BS4kGTgWblfqJYTGhYzJkPUsliZjx0vm5M3xilQCHStuSgOfqz4mURMZMI992RgRG5q+Xif95vQTCKy/lMk6ASbpYFCYCg8LZ7zjgmlEQU0sI1dzeiumIaELBJrQI4TrDxffLy6R9Vq2dV+v39UrjJo+jiI7QMTpFNXSJGugONVELUTRGj+gZvTix8+S8Om+L1oKTzxyiX3DevwAbOo+O</latexit>

...<latexit sha1_base64="ULFiimF3J4Uu6wH9VDIhhwD2/MA=">AAAB7nicbVDLSgNBEJyNrxhfUY9eBoPgKWw0+LgFvXiMYB6QLGF2djYZMjuzzPQGwpKP8OJBEa9+jzf/xtlkETUWNBRV3XR3+bHgBlz30ymsrK6tbxQ3S1vbO7t75f2DtlGJpqxFlVC66xPDBJesBRwE68aakcgXrOOPbzO/M2HacCUfYBozLyJDyUNOCVip058ECkxpUK64VXcOvExqOamgHM1B+aMfKJpETAIVxJhezY3BS4kGTgWblfqJYTGhYzJkPUsliZjx0vm5M3xilQCHStuSgOfqz4mURMZMI992RgRG5q+Xif95vQTCKy/lMk6ASbpYFCYCg8LZ7zjgmlEQU0sI1dzeiumIaELBJrQI4TrDxffLy6R9Vq2dV+v39UrjJo+jiI7QMTpFNXSJGugONVELUTRGj+gZvTix8+S8Om+L1oKTzxyiX3DevwAbOo+O</latexit>

...<latexit sha1_base64="ULFiimF3J4Uu6wH9VDIhhwD2/MA=">AAAB7nicbVDLSgNBEJyNrxhfUY9eBoPgKWw0+LgFvXiMYB6QLGF2djYZMjuzzPQGwpKP8OJBEa9+jzf/xtlkETUWNBRV3XR3+bHgBlz30ymsrK6tbxQ3S1vbO7t75f2DtlGJpqxFlVC66xPDBJesBRwE68aakcgXrOOPbzO/M2HacCUfYBozLyJDyUNOCVip058ECkxpUK64VXcOvExqOamgHM1B+aMfKJpETAIVxJhezY3BS4kGTgWblfqJYTGhYzJkPUsliZjx0vm5M3xilQCHStuSgOfqz4mURMZMI992RgRG5q+Xif95vQTCKy/lMk6ASbpYFCYCg8LZ7zjgmlEQU0sI1dzeiumIaELBJrQI4TrDxffLy6R9Vq2dV+v39UrjJo+jiI7QMTpFNXSJGugONVELUTRGj+gZvTix8+S8Om+L1oKTzxyiX3DevwAbOo+O</latexit>

Compare
<latexit sha1_base64="HNfmaBItt/10EwAmtG7RWY7TYcc=">AAAB9XicbVDJSgNBEO2JW4xb1KOXwSB4CjMaXG7BXDxGMAskY+jp1CRNeha6a9Qw5D+8eFDEq//izb+xZzKI24OCx3tVVNVzI8EVWtaHUVhYXFpeKa6W1tY3NrfK2zttFcaSQYuFIpRdlyoQPIAWchTQjSRQ3xXQcSeN1O/cglQ8DK5xGoHj01HAPc4oaummj3CPSSP0IyphNihXrKqVwfxL7JxUSI7moPzeH4Ys9iFAJqhSPduK0EmoRM4EzEr9WEFE2YSOoKdpQH1QTpJdPTMPtDI0vVDqCtDM1O8TCfWVmvqu7vQpjtVvLxX/83oxemdOwoMoRgjYfJEXCxNDM43AHHIJDMVUE8ok17eabEwlZaiDKmUhnKc4+Xr5L2kfVe3jau2qVqlf5HEUyR7ZJ4fEJqekTi5Jk7QII5I8kCfybNwZj8aL8TpvLRj5zC75AePtEzeTkx4=</latexit>

JSD
<latexit sha1_base64="MBSxUSTrdl5lbbbjWZ8psMsWH3g=">AAAB8XicbVDLSsNAFJ3UV62vqks3g0VwVRItPnZFXYirivaBbSiT6bQdOpmEmRuxhP6FGxeKuPVv3Pk3TtIgaj1w4XDOvdx7jxcKrsG2P63c3PzC4lJ+ubCyura+UdzcauggUpTVaSAC1fKIZoJLVgcOgrVCxYjvCdb0RueJ37xnSvNA3sI4ZK5PBpL3OSVgpLsOsAeIr24uJt1iyS7bKfAscTJSQhlq3eJHpxfQyGcSqCBatx07BDcmCjgVbFLoRJqFhI7IgLUNlcRn2o3Tiyd4zyg93A+UKQk4VX9OxMTXeux7ptMnMNR/vUT8z2tH0D9xYy7DCJik00X9SGAIcPI+7nHFKIixIYQqbm7FdEgUoWBCKqQhnCY4+n55ljQOys5huXJdKVXPsjjyaAfton3koGNURZeohuqIIoke0TN6sbT1ZL1ab9PWnJXNbKNfsN6/AK93kRA=</latexit>

| {z }
<latexit sha1_base64="BHKUXrqrKeqjE5yUcYyvY5ZsFl4=">AAACEnicbVDJSgNBEO1xjXEb9eilMQh6CRMNLregF48RzAKZEHo6laRJT8/QXSOGId/gxV/x4kERr568+Td2FkSNryh4vFdFd70glsKg5306c/MLi0vLmZXs6tr6xqa7tV01UaI5VHgkI10PmAEpFFRQoIR6rIGFgYRa0L8c+bVb0EZE6gYHMTRD1lWiIzhDK7XcQz9RbdCBZhxSH+EOU5/O1nCYbbk5L++NQWdJYUpyZIpyy/3w2xFPQlDIJTOmUfBibKZMo+AShlk/MRAz3mddaFiqWAimmY5PGtJ9q7RpJ9K2FdKx+nMjZaExgzCwkyHDnvnrjcT/vEaCnbNmKlScICg+eaiTSIoRHeVD20IDRzmwhHEt7F8p7zEbD9oUJyGcj3DyffIsqR7lC8f54nUxV7qYxpEhu2SPHJACOSUlckXKpEI4uSeP5Jm8OA/Ok/PqvE1G55zpzg75Bef9CxARm+c=</latexit>

...
<latexit sha1_base64="ULFiimF3J4Uu6wH9VDIhhwD2/MA=">AAAB7nicbVDLSgNBEJyNrxhfUY9eBoPgKWw0+LgFvXiMYB6QLGF2djYZMjuzzPQGwpKP8OJBEa9+jzf/xtlkETUWNBRV3XR3+bHgBlz30ymsrK6tbxQ3S1vbO7t75f2DtlGJpqxFlVC66xPDBJesBRwE68aakcgXrOOPbzO/M2HacCUfYBozLyJDyUNOCVip058ECkxpUK64VXcOvExqOamgHM1B+aMfKJpETAIVxJhezY3BS4kGTgWblfqJYTGhYzJkPUsliZjx0vm5M3xilQCHStuSgOfqz4mURMZMI992RgRG5q+Xif95vQTCKy/lMk6ASbpYFCYCg8LZ7zjgmlEQU0sI1dzeiumIaELBJrQI4TrDxffLy6R9Vq2dV+v39UrjJo+jiI7QMTpFNXSJGugONVELUTRGj+gZvTix8+S8Om+L1oKTzxyiX3DevwAbOo+O</latexit>

...
<latexit sha1_base64="ULFiimF3J4Uu6wH9VDIhhwD2/MA=">AAAB7nicbVDLSgNBEJyNrxhfUY9eBoPgKWw0+LgFvXiMYB6QLGF2djYZMjuzzPQGwpKP8OJBEa9+jzf/xtlkETUWNBRV3XR3+bHgBlz30ymsrK6tbxQ3S1vbO7t75f2DtlGJpqxFlVC66xPDBJesBRwE68aakcgXrOOPbzO/M2HacCUfYBozLyJDyUNOCVip058ECkxpUK64VXcOvExqOamgHM1B+aMfKJpETAIVxJhezY3BS4kGTgWblfqJYTGhYzJkPUsliZjx0vm5M3xilQCHStuSgOfqz4mURMZMI992RgRG5q+Xif95vQTCKy/lMk6ASbpYFCYCg8LZ7zjgmlEQU0sI1dzeiumIaELBJrQI4TrDxffLy6R9Vq2dV+v39UrjJo+jiI7QMTpFNXSJGugONVELUTRGj+gZvTix8+S8Om+L1oKTzxyiX3DevwAbOo+O</latexit>

I9
<latexit sha1_base64="EcvjtcYCH41o72S0J/dn/FczvAA=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KokWtbeiF71VMG2hDWWz3bRLN5uwuxFK6G/w4kERr/4gb/4bN2kQtT4YeLw3w8w8P+ZMadv+tJaWV1bX1ksb5c2t7Z3dyt5+W0WJJNQlEY9k18eKciaoq5nmtBtLikOf044/uc78zgOVikXiXk9j6oV4JFjACNZGcm8HaWM2qFTtmp0DLRKnIFUo0BpUPvrDiCQhFZpwrFTPsWPtpVhqRjidlfuJojEmEzyiPUMFDqny0vzYGTo2yhAFkTQlNMrVnxMpDpWahr7pDLEeq79eJv7n9RIdXHopE3GiqSDzRUHCkY5Q9jkaMkmJ5lNDMJHM3IrIGEtMtMmnnIfQyHD+/fIiaZ/WnLNa/a5ebV4VcZTgEI7gBBy4gCbcQAtcIMDgEZ7hxRLWk/Vqvc1bl6xi5gB+wXr/Aq2Qjr0=</latexit>

I10
<latexit sha1_base64="FeqMAcFGV5QEEgMW8OHjQtbYdoU=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKexq8HELetFbBPOAZAmzk0kyOjuzzMwKYck/ePGgiFf/x5t/4+xmETUWNBRV3XR3BRFn2rjup1NYWFxaXimultbWNza3yts7LS1jRWiTSC5VJ8CaciZo0zDDaSdSFIcBp+3g/jL12w9UaSbFrZlE1A/xSLAhI9hYqXXdTzx32i9X3KqbAc0TLycVyNHolz96A0nikApDONa667mR8ROsDCOcTku9WNMIk3s8ol1LBQ6p9pPs2ik6sMoADaWyJQzK1J8TCQ61noSB7QyxGeu/Xir+53VjMzzzEyai2FBBZouGMUdGovR1NGCKEsMnlmCimL0VkTFWmBgbUCkL4TzFyffL86R1VPWOq7WbWqV+kcdRhD3Yh0Pw4BTqcAUNaAKBO3iEZ3hxpPPkvDpvs9aCk8/swi84718Qp47v</latexit>

I16
<latexit sha1_base64="GvCgrftmuiGwL+z+taZniVzrQu4=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0VL0Vveitgv2ANpTNdtOu3WTD7kYoof/BiwdFvPp/vPlv3KRB1Ppg4PHeDDPzvIgzpW370yosLa+srhXXSxubW9s75d29thKxJLRFBBey62FFOQtpSzPNaTeSFAcepx1vcpX6nQcqFRPhnZ5G1A3wKGQ+I1gbqX0zSJz6bFCu2FU7A1okTk4qkKM5KH/0h4LEAQ014VipnmNH2k2w1IxwOiv1Y0UjTCZ4RHuGhjigyk2ya2foyChD5AtpKtQoU39OJDhQahp4pjPAeqz+eqn4n9eLtX/uJiyMYk1DMl/kxxxpgdLX0ZBJSjSfGoKJZOZWRMZYYqJNQKUshIsU9e+XF0n7pOqcVmu3tUrjMo+jCAdwCMfgwBk04Bqa0AIC9/AIz/BiCevJerXe5q0FK5/Zh1+w3r8AGcWO9Q==</latexit>

Infer
<latexit sha1_base64="oBZx0gp36sy0HOc3evA+bjIAzY0=">AAAB83icbVDLSsNAFJ3UV62vqks3wSK4KokWH7uiG91VsA9oQplMb9qhk0mYuRFL6G+4caGIW3/GnX9jkgbxdeDC4Zx7ufceLxJco2V9GKWFxaXllfJqZW19Y3Orur3T0WGsGLRZKELV86gGwSW0kaOAXqSABp6Arje5zPzuHSjNQ3mL0wjcgI4k9zmjmEqOg3CPybX0Qc0G1ZpVt3KYf4ldkBop0BpU351hyOIAJDJBte7bVoRuQhVyJmBWcWINEWUTOoJ+SiUNQLtJfvPMPEiVoemHKi2JZq5+n0hooPU08NLOgOJY//Yy8T+vH6N/5iZcRjGCZPNFfixMDM0sAHPIFTAU05RQpnh6q8nGVFGGaUyVPITzDCdfL/8lnaO6fVxv3DRqzYsijjLZI/vkkNjklDTJFWmRNmEkIg/kiTwbsfFovBiv89aSUczskh8w3j4Bo1KSNw==</latexit>

Infer
<latexit sha1_base64="oBZx0gp36sy0HOc3evA+bjIAzY0=">AAAB83icbVDLSsNAFJ3UV62vqks3wSK4KokWH7uiG91VsA9oQplMb9qhk0mYuRFL6G+4caGIW3/GnX9jkgbxdeDC4Zx7ufceLxJco2V9GKWFxaXllfJqZW19Y3Orur3T0WGsGLRZKELV86gGwSW0kaOAXqSABp6Arje5zPzuHSjNQ3mL0wjcgI4k9zmjmEqOg3CPybX0Qc0G1ZpVt3KYf4ldkBop0BpU351hyOIAJDJBte7bVoRuQhVyJmBWcWINEWUTOoJ+SiUNQLtJfvPMPEiVoemHKi2JZq5+n0hooPU08NLOgOJY//Yy8T+vH6N/5iZcRjGCZPNFfixMDM0sAHPIFTAU05RQpnh6q8nGVFGGaUyVPITzDCdfL/8lnaO6fVxv3DRqzYsijjLZI/vkkNjklDTJFWmRNmEkIg/kiTwbsfFovBiv89aSUczskh8w3j4Bo1KSNw==</latexit>

Infer
<latexit sha1_base64="oBZx0gp36sy0HOc3evA+bjIAzY0=">AAAB83icbVDLSsNAFJ3UV62vqks3wSK4KokWH7uiG91VsA9oQplMb9qhk0mYuRFL6G+4caGIW3/GnX9jkgbxdeDC4Zx7ufceLxJco2V9GKWFxaXllfJqZW19Y3Orur3T0WGsGLRZKELV86gGwSW0kaOAXqSABp6Arje5zPzuHSjNQ3mL0wjcgI4k9zmjmEqOg3CPybX0Qc0G1ZpVt3KYf4ldkBop0BpU351hyOIAJDJBte7bVoRuQhVyJmBWcWINEWUTOoJ+SiUNQLtJfvPMPEiVoemHKi2JZq5+n0hooPU08NLOgOJY//Yy8T+vH6N/5iZcRjGCZPNFfixMDM0sAHPIFTAU05RQpnh6q8nGVFGGaUyVPITzDCdfL/8lnaO6fVxv3DRqzYsijjLZI/vkkNjklDTJFWmRNmEkIg/kiTwbsfFovBiv89aSUczskh8w3j4Bo1KSNw==</latexit>

for each
<latexit sha1_base64="1Pqtte3eZGs7QonGFdiw7V5t5QE=">AAAB+HicbVC7TsNAEDyHVwiPGChpTkRIVJEDEY8ugoYySOQhJVZ0vqyTU84P3a0RwcqX0FCAEC2fQsffYDsWAsJUo5ld7ew4oRQaLevTKCwtr6yuFddLG5tb22VzZ7etg0hxaPFABqrrMA1S+NBCgRK6oQLmORI6zuQq9Tt3oLQI/FuchmB7bOQLV3CGiTQwy32Ee4zdQFFgfDwbmBWramWgi6SWkwrJ0RyYH/1hwCMPfOSSad2rWSHaMVMouIRZqR9pCBmfsBH0EuozD7QdZ8Fn9DBRhjQ97gY+0kz9uREzT+up5ySTHsOx/uul4n9eL0L33I6FH0YIPp8fciNJMaBpC3QoFHCU04QwrkSSlfIxU4xj0lUpK+Eixen3y4ukfVytnVTrN/VK4zKvo0j2yQE5IjVyRhrkmjRJi3ASkUfyTF6MB+PJeDXe5qMFI9/ZI79gvH8BI+OTig==</latexit>

Context
<latexit sha1_base64="UmQoqPccZ4CBGZiOvXbG7Iu4HL8=">AAAB+HicbVDLSsNAFJ34rPXRqEs3g0VwVRItPnbFblxWsA9oQ5lMJ+3QyUyYuRFr6Je4caGIWz/FnX9j0gZR64HLPZxzL3Pn+JHgBhzn01paXlldWy9sFDe3tndK9u5ey6hYU9akSijd8YlhgkvWBA6CdSLNSOgL1vbH9cxv3zFtuJK3MImYF5Kh5AGnBFKpb5d6wO4hqSuZ9Wmxb5edijMDXiRuTsooR6Nvf/QGisYhk0AFMabrOhF4CdHAqWDTYi82LCJ0TIasm1JJQma8ZHb4FB+lygAHSqclAc/UnxsJCY2ZhH46GRIYmb9eJv7ndWMILryEyygGJun8oSAWGBTOUsADrhkFMUkJoZqnt2I6IppQSLOah3CZ4ez7y4ukdVJxTyvVm2q5dpXHUUAH6BAdIxedoxq6Rg3URBTF6BE9oxfrwXqyXq23+eiSle/so1+w3r8AFy+TgQ==</latexit>

Candidate
<latexit sha1_base64="65ZCuvyM/GBKfKxnMEB9KzX3RBE=">AAAB+XicbVBNS8NAEN3Ur1q/oh69BIvgqaRa/LgVe/FYwX5AG8pmM2mXbjZhd1Isof/EiwdFvPpPvPlvTNMgan0w8Hhvhpl5biS4Rtv+NAorq2vrG8XN0tb2zu6euX/Q1mGsGLRYKELVdakGwSW0kKOAbqSABq6AjjtuzP3OBJTmobzHaQROQIeS+5xRTKWBafYRHjBpUOlxjyLMBmbZrtgZrGVSzUmZ5GgOzI++F7I4AIlMUK17VTtCJ6EKORMwK/VjDRFlYzqEXkolDUA7SXb5zDpJFc/yQ5WWRCtTf04kNNB6GrhpZ0BxpP96c/E/rxejf+UkXEYxgmSLRX4sLAyteQyWxxUwFNOUUKZ4eqvFRlRRhmlYpSyE6zkuvl9eJu2zSvW8Ururles3eRxFckSOySmpkktSJ7ekSVqEkQl5JM/kxUiMJ+PVeFu0Fox85pD8gvH+BRihlBk=</latexit>

Generate
<latexit sha1_base64="cQW0U74kmf/bCe0VA73gGbl6lk8=">AAAB+HicbVBNS8NAEN3Ur1o/GvXoJVgETyXR4set6EGPFawttKFstpN26WYTdidiDf0lXjwo4tWf4s1/Y9IGUeuDgcd7M8zM8yLBNdr2p1FYWFxaXimultbWNzbL5tb2rQ5jxaDJQhGqtkc1CC6hiRwFtCMFNPAEtLzRRea37kBpHsobHEfgBnQguc8ZxVTqmeUuwj0mlyBBUYRJz6zYVXsKa544OamQHI2e+dHthywOQCITVOuOY0foJlQhZwImpW6sIaJsRAfQSamkAWg3mR4+sfZTpW/5oUpLojVVf04kNNB6HHhpZ0BxqP96mfif14nRP3UTLqMYQbLZIj8WFoZWloLV5woYinFKKFM8vdViQ6oowzSr0jSEswzH3y/Pk9vDqnNUrV3XKvXzPI4i2SV75IA45ITUyRVpkCZhJCaP5Jm8GA/Gk/FqvM1aC0Y+s0N+wXj/AnGFk70=</latexit>

s7 and s8
<latexit sha1_base64="i1LvOrmlc4ZxOM2mnek9wLpnwh8=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0VwVVIttu6KblxWsA9oQphMpu3QySTM3Ig1FH/FjQtF3Pof7vwbkzaIWg9cOJxzL/fe40WCa7CsT2NhcWl5ZbWwVlzf2NzaNnd22zqMFWUtGopQdT2imeCStYCDYN1IMRJ4gnW80WXmd26Z0jyUNzCOmBOQgeR9Tgmkkmvua7dmA7uDxMZE+jaeaLfumiWrbE2B50klJyWUo+maH7Yf0jhgEqggWvcqVgROQhRwKtikaMeaRYSOyID1UipJwLSTTK+f4KNU8XE/VGlJwFP150RCAq3HgZd2BgSG+q+Xif95vRj6dSfhMoqBSTpb1I8FhhBnUWCfK0ZBjFNCqOLprZgOiSIU0sCK0xDOM5x9vzxP2iflymm5el0tNS7yOAroAB2iY1RBNdRAV6iJWoiie/SIntGL8WA8Ga/G26x1wchn9tAvGO9f6JaVAg==</latexit>

Abduction
<latexit sha1_base64="JSkJ0M9DUWW6fj4/oO2WlPVXgLo=">AAAB8HicbZDLSsNAFIZPvNZ6q7p0M1gEcVGSFrzsKm5cVrAXaUOZTCbt0JkkzEyEEvoUblwo4tbHcefbOEmDqPWHgY//nMOc83sxZ0rb9qe1tLyyurZe2ihvbm3v7Fb29jsqSiShbRLxSPY8rChnIW1rpjntxZJi4XHa9SbXWb37QKViUXinpzF1BR6FLGAEa2PdX3l+QjIaVqp2zc6FFsEpoAqFWsPKx8CPSCJoqAnHSvUdO9ZuiqVmhNNZeZAoGmMywSPaNxhiQZWb5gvP0LFxfBRE0rxQo9z9OZFiodRUeKZTYD1Wf2uZ+V+tn+jgwk1ZGCeahmT+UZBwpCOUXY98JinRfGoAE8nMroiMscREm4zKeQiXmc6+T16ETr3mNGqN23q1eVrEUYJDOIITcOAcmnADLWgDAQGP8AwvlrSerFfrbd66ZBUzB/BL1vsX6l+Qig==</latexit>

Exec
<latexit sha1_base64="Q1KT4AdIg+GtWPNNCmDKs8+KZyY=">AAAB8nicbVDJSgNBEO2JW4xb1KOXwSB4ChMNLregCB4jmAUmQ+jp1CRNeha6ayRhyGd48aCIV7/Gm39jz2QQNT4oeLxXRVU9NxJcoWV9GoWl5ZXVteJ6aWNza3unvLvXVmEsGbRYKELZdakCwQNoIUcB3UgC9V0BHXd8nfqdB5CKh8E9TiNwfDoMuMcZRS3ZPYQJJjcTYLN+uWJVrQzmIqnlpEJyNPvlj94gZLEPATJBlbJrVoROQiVyJmBW6sUKIsrGdAi2pgH1QTlJdvLMPNLKwPRCqStAM1N/TiTUV2rqu7rTpzhSf71U/M+zY/QunIQHUYwQsPkiLxYmhmb6vzngEhiKqSaUSa5vNdmISspQp1TKQrhMcfb98iJpn1Rrp9X6Xb3SuMrjKJIDckiOSY2ckwa5JU3SIoyE5JE8kxcDjSfj1XibtxaMfGaf/ILx/gXRiZG+</latexit>

Abduce
<latexit sha1_base64="28ZpLR1OqiuQNMhj/xSiWrAv/10=">AAAB7XicbVDLSsNAFL2pr1pfVZdugkV0VRILPnYVNy4r2Ae0oUwmk3bsZCbMTIQS+g9uXCji1v9x5984SYOo9cCFwzn3cu89fsyo0o7zaZWWlldW18rrlY3Nre2d6u5eR4lEYtLGggnZ85EijHLS1lQz0oslQZHPSNefXGd+94FIRQW/09OYeBEacRpSjLSROld+kGAyrNacupPDXiRuQWpQoDWsfgwCgZOIcI0ZUqrvOrH2UiQ1xYzMKoNEkRjhCRqRvqEcRUR5aX7tzD4ySmCHQpri2s7VnxMpipSaRr7pjJAeq79eJv7n9RMdXngp5XGiCcfzRWHCbC3s7HU7oJJgzaaGICypudXGYyQR1iagSh7CZYaz75cXSee07jbqjdvTWvO4iKMMB3AIJ+DCOTThBlrQBgz38AjP8GIJ68l6td7mrSWrmNmHX7DevwBtfI8U</latexit>

Abduce
<latexit sha1_base64="28ZpLR1OqiuQNMhj/xSiWrAv/10=">AAAB7XicbVDLSsNAFL2pr1pfVZdugkV0VRILPnYVNy4r2Ae0oUwmk3bsZCbMTIQS+g9uXCji1v9x5984SYOo9cCFwzn3cu89fsyo0o7zaZWWlldW18rrlY3Nre2d6u5eR4lEYtLGggnZ85EijHLS1lQz0oslQZHPSNefXGd+94FIRQW/09OYeBEacRpSjLSROld+kGAyrNacupPDXiRuQWpQoDWsfgwCgZOIcI0ZUqrvOrH2UiQ1xYzMKoNEkRjhCRqRvqEcRUR5aX7tzD4ySmCHQpri2s7VnxMpipSaRr7pjJAeq79eJv7n9RMdXngp5XGiCcfzRWHCbC3s7HU7oJJgzaaGICypudXGYyQR1iagSh7CZYaz75cXSee07jbqjdvTWvO4iKMMB3AIJ+DCOTThBlrQBgz38AjP8GIJ68l6td7mrSWrmNmHX7DevwBtfI8U</latexit>

Abduce
<latexit sha1_base64="28ZpLR1OqiuQNMhj/xSiWrAv/10=">AAAB7XicbVDLSsNAFL2pr1pfVZdugkV0VRILPnYVNy4r2Ae0oUwmk3bsZCbMTIQS+g9uXCji1v9x5984SYOo9cCFwzn3cu89fsyo0o7zaZWWlldW18rrlY3Nre2d6u5eR4lEYtLGggnZ85EijHLS1lQz0oslQZHPSNefXGd+94FIRQW/09OYeBEacRpSjLSROld+kGAyrNacupPDXiRuQWpQoDWsfgwCgZOIcI0ZUqrvOrH2UiQ1xYzMKoNEkRjhCRqRvqEcRUR5aX7tzD4ySmCHQpri2s7VnxMpipSaRr7pjJAeq79eJv7n9RMdXngp5XGiCcfzRWHCbC3s7HU7oJJgzaaGICypudXGYyQR1iagSh7CZYaz75cXSee07jbqjdvTWvO4iKMMB3AIJ+DCOTThBlrQBgz38AjP8GIJ68l6td7mrSWrmNmHX7DevwBtfI8U</latexit>

Abduce
<latexit sha1_base64="28ZpLR1OqiuQNMhj/xSiWrAv/10=">AAAB7XicbVDLSsNAFL2pr1pfVZdugkV0VRILPnYVNy4r2Ae0oUwmk3bsZCbMTIQS+g9uXCji1v9x5984SYOo9cCFwzn3cu89fsyo0o7zaZWWlldW18rrlY3Nre2d6u5eR4lEYtLGggnZ85EijHLS1lQz0oslQZHPSNefXGd+94FIRQW/09OYeBEacRpSjLSROld+kGAyrNacupPDXiRuQWpQoDWsfgwCgZOIcI0ZUqrvOrH2UiQ1xYzMKoNEkRjhCRqRvqEcRUR5aX7tzD4ySmCHQpri2s7VnxMpipSaRr7pjJAeq79eJv7n9RMdXngp5XGiCcfzRWHCbC3s7HU7oJJgzaaGICypudXGYyQR1iagSh7CZYaz75cXSee07jbqjdvTWvO4iKMMB3AIJ+DCOTThBlrQBgz38AjP8GIJ68l6td7mrSWrmNmHX7DevwBtfI8U</latexit>

Abduce
<latexit sha1_base64="28ZpLR1OqiuQNMhj/xSiWrAv/10=">AAAB7XicbVDLSsNAFL2pr1pfVZdugkV0VRILPnYVNy4r2Ae0oUwmk3bsZCbMTIQS+g9uXCji1v9x5984SYOo9cCFwzn3cu89fsyo0o7zaZWWlldW18rrlY3Nre2d6u5eR4lEYtLGggnZ85EijHLS1lQz0oslQZHPSNefXGd+94FIRQW/09OYeBEacRpSjLSROld+kGAyrNacupPDXiRuQWpQoDWsfgwCgZOIcI0ZUqrvOrH2UiQ1xYzMKoNEkRjhCRqRvqEcRUR5aX7tzD4ySmCHQpri2s7VnxMpipSaRr7pjJAeq79eJv7n9RMdXngp5XGiCcfzRWHCbC3s7HU7oJJgzaaGICypudXGYyQR1iagSh7CZYaz75cXSee07jbqjdvTWvO4iKMMB3AIJ+DCOTThBlrQBgz38AjP8GIJ68l6td7mrSWrmNmHX7DevwBtfI8U</latexit>

rNum
<latexit sha1_base64="VEDbfXRGlj7X2IwoShvMVKsBFuo=">AAAB+XicbVDLSsNAFJ3UV62vqEs3wSK4KokWH7uiG1dSwT6gjWUynbRDJ5Mwc1MsIX/ixoUibv0Td/6NkzSIrwMXDufcy733eBFnCmz7wygtLC4tr5RXK2vrG5tb5vZOW4WxJLRFQh7KrocV5UzQFjDgtBtJigOP0443ucz8zpRKxUJxC7OIugEeCeYzgkFLA9OUd0kf6D0AJNdxkKYDs2rX7BzWX+IUpIoKNAfme38YkjigAgjHSvUcOwI3wRIY4TSt9GNFI0wmeER7mgocUOUm+eWpdaCVoeWHUpcAK1e/TyQ4UGoWeLozwDBWv71M/M/rxeCfuQkTUQxUkPkiP+YWhFYWgzVkkhLgM00wkUzfapExlpiADquSh3Ce4eTr5b+kfVRzjmv1m3q1cVHEUUZ7aB8dIgedoga6Qk3UQgRN0QN6Qs9GYjwaL8brvLVkFDO76AeMt0+w/JR8</latexit>

rPos
<latexit sha1_base64="PjB46xSVPrQb7Yn3EKtcNm5WvEI=">AAAB+XicbVDLSsNAFJ3UV62vqEs3g0VwVRItPnZFNy4r2Ae0sUymk3boJBNmbool5E/cuFDErX/izr8xSYOo9cCFwzn3cu89bii4Bsv6NEpLyyura+X1ysbm1vaOubvX1jJSlLWoFFJ1XaKZ4AFrAQfBuqFixHcF67iT68zvTJnSXAZ3MAuZ45NRwD1OCaTSwDTVfdwH9gAAcVPqJBmYVatm5cCLxC5IFRVoDsyP/lDSyGcBUEG07tlWCE5MFHAqWFLpR5qFhE7IiPVSGhCfaSfOL0/wUaoMsSdVWgHgXP05ERNf65nvpp0+gbH+62Xif14vAu/CiXkQRsACOl/kRQKDxFkMeMgVoyBmKSFU8fRWTMdEEQppWJU8hMsMZ98vL5L2Sc0+rdVv69XGVRFHGR2gQ3SMbHSOGugGNVELUTRFj+gZvRix8WS8Gm/z1pJRzOyjXzDevwC0BpR+</latexit>

rType
<latexit sha1_base64="2ITrYdW3OTvpQkujKe+sOoZQMsk=">AAAB+nicbVDLSsNAFJ34rPWV6tLNYBFclUSLj13RjcsKfUEby2Q6aYdOHszcqCXmU9y4UMStX+LOv3GSFlHrgQuHc+7l3nvcSHAFlvVpLCwuLa+sFtaK6xubW9tmaaelwlhS1qShCGXHJYoJHrAmcBCsE0lGfFewtju+zPz2LZOKh0EDJhFzfDIMuMcpAS31zZK8SXrA7gEgaWg/Tftm2apYOfA8sWekjGao982P3iCksc8CoIIo1bWtCJyESOBUsLTYixWLCB2TIetqGhCfKSfJT0/xgVYG2AulrgBwrv6cSIiv1MR3dadPYKT+epn4n9eNwTtzEh5EMbCAThd5scAQ4iwHPOCSURATTQiVXN+K6YhIQkGnVcxDOM9w8v3yPGkdVezjSvW6Wq5dzOIooD20jw6RjU5RDV2hOmoiiu7QI3pGL8aD8WS8Gm/T1gVjNrOLfsF4/wKJ9JT4</latexit>

rSize
<latexit sha1_base64="lnAi/+4/T9yZJsnNkiHgpb1D5ts=">AAAB+nicbVDLSsNQEL2pr1pfqS7dBIvgqqRafOyKblxWtA9oa7m5nbSX3jy4d6LWmE9x40IRt36JO//GJA2i1gMDh3NmmJlj+YIrNM1PLTc3v7C4lF8urKyurW/oxc2m8gLJoME84cm2RRUI7kIDOQpo+xKoYwloWeOzxG/dgFTcc69w4kPPoUOX25xRjKW+XpTXYRfhDhHDS34PUdTXS2bZTGHMkkpGSiRDva9/dAceCxxwkQmqVKdi+tgLqUTOBESFbqDAp2xMh9CJqUsdUL0wPT0ydmNlYNiejMtFI1V/ToTUUWriWHGnQ3Gk/nqJ+J/XCdA+7oXc9QMEl00X2YEw0DOSHIwBl8BQTGJCmeTxrQYbUUkZxmkV0hBOEhx+vzxLmvvlykG5elEt1U6zOPJkm+yQPVIhR6RGzkmdNAgjt+SRPJMX7UF70l61t2lrTstmtsgvaO9ffzGU8Q==</latexit>

rColor
<latexit sha1_base64="Ket1KONmdzMXIPLPbOA8/cerhtI=">AAAB+3icbVDLSsNAFJ34rPUV69LNYBFclUSLj13RjcsK9gFtLJPppB06mYSZG2kJ+RU3LhRx64+4829M0iBqPTBwOOdc7p3jhoJrsKxPY2l5ZXVtvbRR3tza3tk19yptHUSKshYNRKC6LtFMcMlawEGwbqgY8V3BOu7kOvM7D0xpHsg7mIXM8clIco9TAqk0MCvqPu4DmwJAnKeTZGBWrZqVAy8SuyBVVKA5MD/6w4BGPpNABdG6Z1shODFRwKlgSbkfaRYSOiEj1kupJD7TTpzfnuCjVBliL1Dpk4Bz9edETHytZ76bJn0CY/3Xy8T/vF4E3oUTcxlGwCSdL/IigSHAWRF4yBWjIGYpIVTx9FZMx0QRCmld5byEywxn319eJO2Tmn1aq9/Wq42roo4SOkCH6BjZ6Bw10A1qohaiaIoe0TN6MRLjyXg13ubRJaOY2Ue/YLx/AULllV8=</latexit>

{
<latexit sha1_base64="jFxfkYKM5kcyxNvNY2VKKDK+F7k=">AAAB6XicbVDLSsNAFL2pr1pfUZduBovgqiRafOyKblxWsQ9oQ5lMJ+3QySTMTIQS+gduXCji1j9y5984SYOo9cCFwzn3cu89fsyZ0o7zaZWWlldW18rrlY3Nre0de3evraJEEtoiEY9k18eKciZoSzPNaTeWFIc+px1/cp35nQcqFYvEvZ7G1AvxSLCAEayNdNdPB3bVqTk50CJxC1KFAs2B/dEfRiQJqdCEY6V6rhNrL8VSM8LprNJPFI0xmeAR7RkqcEiVl+aXztCRUYYoiKQpoVGu/pxIcajUNPRNZ4j1WP31MvE/r5fo4MJLmYgTTQWZLwoSjnSEsrfRkElKNJ8agolk5lZExlhiok04lTyEywxn3y8vkvZJzT2t1W/r1cZVEUcZDuAQjsGFc2jADTShBQQCeIRneLEm1pP1ar3NW0tWMbMPv2C9fwG0no2d</latexit>

{
<latexit sha1_base64="jFxfkYKM5kcyxNvNY2VKKDK+F7k=">AAAB6XicbVDLSsNAFL2pr1pfUZduBovgqiRafOyKblxWsQ9oQ5lMJ+3QySTMTIQS+gduXCji1j9y5984SYOo9cCFwzn3cu89fsyZ0o7zaZWWlldW18rrlY3Nre0de3evraJEEtoiEY9k18eKciZoSzPNaTeWFIc+px1/cp35nQcqFYvEvZ7G1AvxSLCAEayNdNdPB3bVqTk50CJxC1KFAs2B/dEfRiQJqdCEY6V6rhNrL8VSM8LprNJPFI0xmeAR7RkqcEiVl+aXztCRUYYoiKQpoVGu/pxIcajUNPRNZ4j1WP31MvE/r5fo4MJLmYgTTQWZLwoSjnSEsrfRkElKNJ8agolk5lZExlhiok04lTyEywxn3y8vkvZJzT2t1W/r1cZVEUcZDuAQjsGFc2jADTShBQQCeIRneLEm1pP1ar3NW0tWMbMPv2C9fwG0no2d</latexit>{
<latexit sha1_base64="jFxfkYKM5kcyxNvNY2VKKDK+F7k=">AAAB6XicbVDLSsNAFL2pr1pfUZduBovgqiRafOyKblxWsQ9oQ5lMJ+3QySTMTIQS+gduXCji1j9y5984SYOo9cCFwzn3cu89fsyZ0o7zaZWWlldW18rrlY3Nre0de3evraJEEtoiEY9k18eKciZoSzPNaTeWFIc+px1/cp35nQcqFYvEvZ7G1AvxSLCAEayNdNdPB3bVqTk50CJxC1KFAs2B/dEfRiQJqdCEY6V6rhNrL8VSM8LprNJPFI0xmeAR7RkqcEiVl+aXztCRUYYoiKQpoVGu/pxIcajUNPRNZ4j1WP31MvE/r5fo4MJLmYgTTQWZLwoSjnSEsrfRkElKNJ8agolk5lZExlhiok04lTyEywxn3y8vkvZJzT2t1W/r1cZVEUcZDuAQjsGFc2jADTShBQQCeIRneLEm1pP1ar3NW0tWMbMPv2C9fwG0no2d</latexit>

{
<latexit sha1_base64="jFxfkYKM5kcyxNvNY2VKKDK+F7k=">AAAB6XicbVDLSsNAFL2pr1pfUZduBovgqiRafOyKblxWsQ9oQ5lMJ+3QySTMTIQS+gduXCji1j9y5984SYOo9cCFwzn3cu89fsyZ0o7zaZWWlldW18rrlY3Nre0de3evraJEEtoiEY9k18eKciZoSzPNaTeWFIc+px1/cp35nQcqFYvEvZ7G1AvxSLCAEayNdNdPB3bVqTk50CJxC1KFAs2B/dEfRiQJqdCEY6V6rhNrL8VSM8LprNJPFI0xmeAR7RkqcEiVl+aXztCRUYYoiKQpoVGu/pxIcajUNPRNZ4j1WP31MvE/r5fo4MJLmYgTTQWZLwoSjnSEsrfRkElKNJ8agolk5lZExlhiok04lTyEywxn3y8vkvZJzT2t1W/r1cZVEUcZDuAQjsGFc2jADTShBQQCeIRneLEm1pP1ar3NW0tWMbMPv2C9fwG0no2d</latexit>

{
<latexit sha1_base64="jFxfkYKM5kcyxNvNY2VKKDK+F7k=">AAAB6XicbVDLSsNAFL2pr1pfUZduBovgqiRafOyKblxWsQ9oQ5lMJ+3QySTMTIQS+gduXCji1j9y5984SYOo9cCFwzn3cu89fsyZ0o7zaZWWlldW18rrlY3Nre0de3evraJEEtoiEY9k18eKciZoSzPNaTeWFIc+px1/cp35nQcqFYvEvZ7G1AvxSLCAEayNdNdPB3bVqTk50CJxC1KFAs2B/dEfRiQJqdCEY6V6rhNrL8VSM8LprNJPFI0xmeAR7RkqcEiVl+aXztCRUYYoiKQpoVGu/pxIcajUNPRNZ4j1WP31MvE/r5fo4MJLmYgTTQWZLwoSjnSEsrfRkElKNJ8agolk5lZExlhiok04lTyEywxn3y8vkvZJzT2t1W/r1cZVEUcZDuAQjsGFc2jADTShBQQCeIRneLEm1pP1ar3NW0tWMbMPv2C9fwG0no2d</latexit>

Executor
<latexit sha1_base64="mIcqIp/WuZCfSxBWq7WvIXAvcRE=">AAAB+HicbVDLSsNQEL2pr1ofjbp0EyyCq5Jo8bEriuCygn1AG8rN7aS99ObBvRNpDf0SNy4UceunuPNvTNIgaj0wcDhnhpk5Tii4QtP81ApLyyura8X10sbm1nZZ39ltqSCSDJosEIHsOFSB4D40kaOATiiBeo6AtjO+Sv32PUjFA/8OpyHYHh363OWMYiL19XIPYYLx9QRYhIGc9fWKWTUzGIvEykmF5Gj09Y/eIGCRBz4yQZXqWmaIdkwlciZgVupFCkLKxnQI3YT61ANlx9nhM+MwUQaGG8ikfDQy9edETD2lpp6TdHoUR+qvl4r/ed0I3XM75n4YIfhsvsiNhIGBkaZgDLgEhmKaEMokT2412IhKyjDJqpSFcJHi9PvlRdI6rlon1dptrVK/zOMokn1yQI6IRc5IndyQBmkSRiLySJ7Ji/agPWmv2tu8taDlM3vkF7T3L6iSk+E=</latexit>

P (Pos)
<latexit sha1_base64="U4ZdnimrtScZurVT7HavLm86/04=">AAAB+HicbVDLSsNAFJ3UV62PRl26CRahbkqqxceu6MZlBPuANpTJdNIOnUzCzI1YQ7/EjQtF3Pop7vwbJ2kQtR64cDjnXu69x4s4U2Dbn0ZhaXllda24XtrY3Noumzu7bRXGktAWCXkoux5WlDNBW8CA024kKQ48Tjve5Cr1O3dUKhaKW5hG1A3wSDCfEQxaGphlp9oHeg8AiROq2dHArNg1O4O1SOo5qaAczsD86A9DEgdUAOFYqV7djsBNsARGOJ2V+rGiESYTPKI9TQUOqHKT7PCZdaiVoeWHUpcAK1N/TiQ4UGoaeLozwDBWf71U/M/rxeCfuwkTUQxUkPkiP+YWhFaagjVkkhLgU00wkUzfapExlpiAzqqUhXCR4vT75UXSPq7VT2qNm0aleZnHUUT76ABVUR2doSa6Rg5qIYJi9Iie0YvxYDwZr8bbvLVg5DN76BeM9y/EBJNN</latexit>

P (Num)
<latexit sha1_base64="YriSKLFZ3exkG68eRHXsi+RvgjI=">AAAB+HicbVDLSsNAFJ34rPXRqEs3wSLUTUm0+NgV3biSCvYBbSiT6aQdOpmEmRuxhn6JGxeKuPVT3Pk3TtIgaj1w4XDOvdx7jxdxpsC2P42FxaXlldXCWnF9Y3OrZG7vtFQYS0KbJOSh7HhYUc4EbQIDTjuRpDjwOG1748vUb99RqVgobmESUTfAQ8F8RjBoqW+WGpUe0HsASK7jYHrYN8t21c5gzRMnJ2WUo9E3P3qDkMQBFUA4Vqrr2BG4CZbACKfTYi9WNMJkjIe0q6nAAVVukh0+tQ60MrD8UOoSYGXqz4kEB0pNAk93BhhG6q+Xiv953Rj8MzdhIoqBCjJb5MfcgtBKU7AGTFICfKIJJpLpWy0ywhIT0FkVsxDOU5x8vzxPWkdV57hau6mV6xd5HAW0h/ZRBTnoFNXRFWqgJiIoRo/oGb0YD8aT8Wq8zVoXjHxmF/2C8f4FwPqTSw==</latexit>

P (Color)
<latexit sha1_base64="sTnlMhZrs+1Qrs7fi1qUXInDdws=">AAAB+nicbVDLSsNAFJ34rPWV6tLNYBHqpiRafOyKblxWsA9oQ5lMJ+3QySTM3Kgl9lPcuFDErV/izr8xSYOo9cDA4ZxzuXeOGwquwbI+jYXFpeWV1cJacX1jc2vbLO20dBApypo0EIHquEQzwSVrAgfBOqFixHcFa7vjy9Rv3zKleSBvYBIyxydDyT1OCSRS3yw1Kj1g9wAQZ+HpYd8sW1UrA54ndk7KKEejb370BgGNfCaBCqJ117ZCcGKigFPBpsVepFlI6JgMWTehkvhMO3F2+hQfJMoAe4FKngScqT8nYuJrPfHdJOkTGOm/Xir+53Uj8M6cmMswAibpbJEXCQwBTnvAA64YBTFJCKGKJ7diOiKKUEjaKmYlnKc4+f7yPGkdVe3jau26Vq5f5HUU0B7aRxVko1NUR1eogZqIojv0iJ7Ri/FgPBmvxtssumDkM7voF4z3L1E5lC4=</latexit>

P (Type)
<latexit sha1_base64="Bf4PqkGtHSDFbCmEAgTkKbZ9IK0=">AAAB+XicbVDLSsNAFJ3UV62vqEs3g0Wom5Jo8bErunFZoS9oQ5lMJ+3QyYOZm2IJ/RM3LhRx65+482+cpEHUeuDC4Zx7ufceNxJcgWV9GoWV1bX1jeJmaWt7Z3fP3D9oqzCWlLVoKELZdYliggesBRwE60aSEd8VrONOblO/M2VS8TBowixijk9GAfc4JaClgWk2Kn1gDwCQNLU9Px2YZatqZcDLxM5JGeVoDMyP/jCksc8CoIIo1bOtCJyESOBUsHmpHysWETohI9bTNCA+U06SXT7HJ1oZYi+UugLAmfpzIiG+UjPf1Z0+gbH666Xif14vBu/KSXgQxcACuljkxQJDiNMY8JBLRkHMNCFUcn0rpmMiCQUdVikL4TrFxffLy6R9VrXPq7X7Wrl+k8dRREfoGFWQjS5RHd2hBmohiqboET2jFyMxnoxX423RWjDymUP0C8b7F5kdk8c=</latexit>

P (Size)
<latexit sha1_base64="SjLlHVdYK1O6KZsVB3LN2826COU=">AAAB+XicbVDLSsNQEL3xWesr6tJNsAh1UxItPnZFNy4r2ge0odzcTtpLbx7cOynW0D9x40IRt/6JO//GJA2i1gMDh3NmmJnjhIIrNM1PbWFxaXlltbBWXN/Y3NrWd3abKogkgwYLRCDbDlUguA8N5CigHUqgniOg5YyuUr81Bql44N/hJATbowOfu5xRTKSertfLXYR7RIxv+QNMj3p6yayYGYx5YuWkRHLUe/pHtx+wyAMfmaBKdSwzRDumEjkTMC12IwUhZSM6gE5CfeqBsuPs8qlxmCh9ww1kUj4amfpzIqaeUhPPSTo9ikP110vF/7xOhO65HXM/jBB8NlvkRsLAwEhjMPpcAkMxSQhlkie3GmxIJWWYhFXMQrhIcfr98jxpHlesk0r1plqqXeZxFMg+OSBlYpEzUiPXpE4ahJExeSTP5EWLtSftVXubtS5o+cwe+QXt/QuOWpPA</latexit>

Position Abduction
<latexit sha1_base64="22RzhzIvWaUk3Cq9gHOkbKNgi/8=">AAAB+3icbZBLSwMxFIXv1Fetr1qXboJFcVWmLfjYVdy4rGAf0A4lk8m0oZnMkGTEMvSvuHGhiFv/iDv/jZnpIGo9EPg4516SHDfiTGnb/rQKK6tr6xvFzdLW9s7uXnm/0lVhLAntkJCHsu9iRTkTtKOZ5rQfSYoDl9OeO71O8949lYqF4k7PIuoEeCyYzwjWxhqVK+1QsRTRlevFZGFW7ZqdCS1DPYcq5GqPyh9DLyRxQIUmHCs1qNuRdhIsNSOczkvDWNEIkyke04FBgQOqnCR7+xwdG8dDfijNERpl7s+NBAdKzQLXTAZYT9TfLDX/ywax9i+chIko1lSQxUV+zJEOUVoE8pikRPOZAUyk6YAgMsESE23qKmUlXKY6+/7yMnQbtXqz1rxtVFsneR1FOIQjOIU6nEMLbqANHSDwAI/wDC/W3HqyXq23xWjByncO4Jes9y8ZoZSG</latexit>

Number Abduction
<latexit sha1_base64="7qkKCmBpsbDf+sSmeKXYNYsbbwQ=">AAAB+XicbVDLSsNAFJ3UV62vqEs3g0VxVZIWfOwqblxJBfuANpTJZNIOnZmEmUmhhP6JGxeKuPVP3Pk3TtIgaj1w4XDOvdx7jx8zqrTjfFqlldW19Y3yZmVre2d3z94/6KgokZi0ccQi2fORIowK0tZUM9KLJUHcZ6TrT24yvzslUtFIPOhZTDyORoKGFCNtpKFt3yXcJxJe+0GCF1LVqTk54DJxC1IFBVpD+2MQRDjhRGjMkFJ914m1lyKpKWZkXhkkisQIT9CI9A0ViBPlpfnlc3hilACGkTQlNMzVnxMp4krNuG86OdJj9dfLxP+8fqLDSy+lIk40EXixKEwY1BHMYoABlQRrNjMEYUnNrRCPkURYm7AqeQhXGc6/X14mnXrNbdQa9/Vq87SIowyOwDE4Ay64AE1wC1qgDTCYgkfwDF6s1HqyXq23RWvJKmYOwS9Y719a15OG</latexit>

Type Abduction
<latexit sha1_base64="CyhK0CisWKOW521BBhKd8dpcvEc=">AAAB9XicbVDLSsNAFL3xWeur6tLNYFFclaQFH7uKG5cV+oI2lslk0g6dTMLMRCml/+HGhSJu/Rd3/o2TNIhaD1w4c869zL3HizlT2rY/raXlldW19cJGcXNre2e3tLffVlEiCW2RiEey62FFORO0pZnmtBtLikOP0443vk79zj2VikWiqScxdUM8FCxgBGsj3TWNhK48PyHpc1Aq2xU7A1okTk7KkKMxKH30/YgkIRWacKxUz7Fj7U6x1IxwOiv2E0VjTMZ4SHuGChxS5U6zrWfo2Cg+CiJpSmiUqT8npjhUahJ6pjPEeqT+eqn4n9dLdHDhTpmIE00FmX8UJBzpCKURIJ9JSjSfGIKJZGZXREZYYqJNUMUshMsUZ98nL5J2teLUKrXbarl+ksdRgEM4glNw4BzqcAMNaAEBCY/wDC/Wg/VkvVpv89YlK585gF+w3r8AYBmSeg==</latexit>

Size Abduction
<latexit sha1_base64="94u8RkDep6CA4zA62Bs5nVNdU08=">AAAB9XicbVDLSsNAFL2pr1pfVZduBoviqiQt+NhV3LisaB/QxjKZTNqhkwczE6WG/ocbF4q49V/c+TdO0iBqPXDhzDn3MvceJ+JMKtP8NAoLi0vLK8XV0tr6xuZWeXunLcNYENoiIQ9F18GSchbQlmKK024kKPYdTjvO+CL1O3dUSBYGN2oSUdvHw4B5jGClpdtr9kDRuePGJH0OyhWzamZA88TKSQVyNAflj74bktingSIcS9mzzEjZCRaKEU6npX4saYTJGA9pT9MA+1TaSbb1FB1oxUVeKHQFCmXqz4kE+1JOfEd3+liN5F8vFf/zerHyTu2EBVGsaEBmH3kxRypEaQTIZYISxSeaYCKY3hWRERaYKB1UKQvhLMXx98nzpF2rWvVq/apWaRzmcRRhD/bhCCw4gQZcQhNaQEDAIzzDi3FvPBmvxtustWDkM7vwC8b7F1UeknM=</latexit>

Color Abduction
<latexit sha1_base64="6yaSIgsGo0yjO1VgKxANTkFJ+Uo=">AAAB+HicbVBLS8NAGPxSX7U+WvXoZbEonkrago9bxYvHCvYBbSibzaZdutmEfQg19Jd48aCIV3+KN/+NSRpErXMaZuZjZ8eNOFPatj+twsrq2vpGcbO0tb2zW67s7XdVaCShHRLyUPZdrChngnY005z2I0lx4HLac6fXqd+7p1KxUNzpWUSdAI8F8xnBOpFGlXIWQVeuZ8hCqdo1OwNaJvWcVCFHe1T5GHohMQEVmnCs1KBuR9qJsdSMcDovDY2iESZTPKaDhAocUOXEWfE5Ok4UD/lJAT8UGmXqz4sYB0rNAjdJBlhP1F8vFf/zBkb7F07MRGQ0FWTxkG840iFKV0Aek5RoPksIJpIlXRGZYImJTrYqZSNcpjj7/vIy6TZq9Wateduotk7yOYpwCEdwCnU4hxbcQBs6QMDAIzzDi/VgPVmv1tsiWrDymwP4Bev9C46zkxI=</latexit>

Figure 6.2: An overview of learning and reasoning of the proposed PrAE learner. We color the
neural perception front end in red, the scene inference engine in pink, and the symbolic reasoning
backend in blue.

panel attribute constrains the value of the corresponding object attribute for each object in

it.

Overview The proposed neuro-symbolic PrAE learner disentangles previous monolithic

visual reasoning into two modules: the neural visual perception frontend and the symbolic

logical reasoning backend. The frontend uses a CNN to extract object attribute distributions,

later aggregated by a scene inference engine to produce panel attribute distributions. The

set of all panel attribute distributions in a panel is referred to as its probabilistic scene

representation. The backend retrieves this compact scene representation and performs logical

abduction and execution in order to predict the answer representation in a generative manner.

A final choice is made based on the divergence between the prediction and each candidate.

Using REINFORCE [Wil92], the entire system is trained without attribute annotations in a

curricular manner; see Fig. 6.2 for an overview of PrAE.
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6.2.1 Neural Visual Perception

The neural visual perception frontend operates on each of the 16 panels independently to

produce probabilistic scene representation. It has two sub-modules: object CNN and scene

inference engine.

Object CNN Given an image panel I, a sliding window traverses its spatial domain and

feeds each image region into a 4-branch CNN. The 4 CNN branches use the same LeNet-like

architecture [LBB98] and produce the probability distributions of object attributes, including

objectiveness (whether the image region has an object), type, size, and color. Of note, the

distributions of type, size, and color are conditioned on objectiveness being true. Attribute

distributions of each image region are kept and sent to the scene inference engine to produce

panel attribute distributions.

Scene Inference Engine The scene inference engine takes in the outputs of object CNN

and produces panel attribute distributions (over position, number, type, size, and color) by

marginalizing over the set of object attribute distributions (over objectiveness, type, size, and

color). Take the panel attribute of Number as an example: Given N objectiveness probability

distributions produced by the object CNN for N image regions, the probability of a panel

having k objects can be computed as

P pNumber “ kq “
ÿ

BoPt0,1uN

|Bo|“k

N
ź

j“1

P pboj “ Bo
j q, (6.1)

where Bo is an ordered binary sequence corresponding to objectiveness of the N regions,

| ¨ | the number of 1 in the sequence, and P pbojq the objectiveness distribution of the jth

region. We assume k ě 1 in each RPM panel, leave P pNumber “ 0q out, and renormalize the

probability to have a sum of 1. The panel attribute distributions for position, type, size, and

color, can be computed similarly.
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We refer to the set of all panel attribute distributions in a panel its probabilistic scene

representation, denoted as s, with the distribution of panel attribute a denoted as P psaq.

6.2.2 Symbolic Logical Reasoning

The symbolic logical reasoning backend collects probabilistic scene representation from 8

context panels, abduces the probability distributions over hidden rules on each panel attribute,

and executes them on corresponding panels of the context. Based on a prior study [CJS90],

we assume a set of symbolic logical constraints describing rules is available. For example, the

Arithmetic plus rule on Number can be represented as: for each row (column), @l,m ě 1

pNumber1 “ mq ^ pNumber2 “ lq ^ pNumber3 “ m ` lq, (6.2)

where Numberi denotes the number of objects in the ith panel in a row (column). With access

to such constraints, we use inverse dynamics to abduce the rules in an instance. They can

also be transformed into a forward model and executed on discrete symbols: For instance,

Arithmetic plus deterministically adds Number in the first two panels to obtain the Number

of the last panel.

Probabilistic Abduction Given the probabilistic scene representation of 8 context panels,

the probabilistic abduction engine calculates the probability of rules for each panel attribute

via inverse dynamics. Formally, for each rule r on a panel attribute a,

P pra | I1, . . . , I8q “ P pra | Ia1 , . . . , I
a
8 q, (6.3)

where Ii denotes the ith context panel, and Iai the component of context panel Ii corresponding

to a. Note Eq. (6.3) generalizes inverse dynamics [JR92] to 8 states, in contrast to that of a

conventional MDP.

To model P pra | Ia1 , . . . , I
a
8 q, we leverage the compact probabilistic scene representation
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with respect to attribute a and logical constraints:

P pra | Ia1 , . . . , I
a
8 q9

ÿ

SaPvalidpraq

8
ź

i“1

P psai “ Sa
i q, (6.4)

where validp¨q returns a set of attribute value assignments of the context panels that satisfy

the logical constraints of ra, and i indexes into context panels. By going over all panel

attributes, we have the distribution of hidden rules for each of them.

Take Arithmetic plus on Number as an example. A row-major assignment for context

panels can be r1, 2, 3, 1, 3, 4, 1, 2s (as in Fig. 6.2), whose probability is computed as the product

of each panel having k objects as in Eq. (6.1). Summing it with other assignment probabilities

gives an unnormalized rule probability.

We note that the set of valid states for each ra is a product space of valid states on

each row (column). Therefore, we can perform partial marginalization on each row (column)

first and aggregate them later to avoid directly marginalizing over the entire space. This

decomposition will help reduce computation and mitigate numerical instability.

Probabilistic Execution For each panel attribute a, the probabilistic execution engine

chooses a rule from the abduced rule distribution and executes it on corresponding context

panels to predict, in a generative fashion, the panel attribute distribution of an answer. While

traditionally, a logical forward model only works on discrete symbols, we follow a generalized

notion of probabilistic execution as done in probabilistic planning [HXZ19, KKL15]. The

probabilistic execution could be treated as a distribution transformation that redistributes

the probability mass based on logical rules. For a binary rule r on a,

P psa3 “ Sa
3 q9

ÿ

pSa
2 ,S

a
1 qPprepraq

Sa
3 “fpSa

2 ,S
a
1 ;r

aq

P psa2 “ Sa
2 qP psa1 “ Sa

1 q, (6.5)

where f is the forward model transformed from logical constraints and prep¨q the rule

precondition set. Predicted distributions of panel attributes compose the final probabilistic
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scene representation sf .

As an example of Arithmetic plus on Number, 4 objects result from the addition of p1, 3q,

p2, 2q, and p3, 1q. The probability of an answer having 4 objects is the sum of the instances’

probabilities.

During training, the execution engine samples a rule from the abduced probability. During

testing, the most probable rule is chosen.

Candidate Selection With a set of predicted panel attribute distributions, we compare it

with that of each candidate answer. We use the Jensen–Shannon Divergence (JSD) [Lin91]

to quantify the divergence between the prediction and the candidate, i.e.,

dpsf , siq “
ÿ

a

DJSDpP psaf q || P psai qq, (6.6)

where the summation is over panel attributes and i indexes into the candidate panels. The

candidate with minimum divergence will be chosen as the final answer.

Discussion The design of reasoning as probabilistic abduction and execution is a computa-

tional and interpretable counterpart to human-like reasoning in RPM [CJS90]. By abduction,

one infers the hidden rules from context panels. By executing the abduced rules, one obtains

a probabilistic answer representation. Such a probabilistic representation is compared with

all candidates available; the most similar one in terms of divergence is picked as the final

answer. Note that the probabilistic execution adds the generative flavor into reasoning:

Eq. (6.5) depicts the predicted panel attribute distribution, which can be sampled and

sent to a rendering engine for panel generation. The entire process resembles bi-directional

inference and combines both top-down and bottom-up reasoning missing in prior works. In

the meantime, the design addresses the aforementioned challenges by marginalizing over

perception and abducing and executing rules probabilistically.
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6.2.3 Learning Objective

During training, we transform the divergence in Eq. (6.6) into a probability distribution by

P pAnswer “ iq9 expp´dpsf , siqq (6.7)

and minimize the cross-entropy loss. Note that the learning procedure follows a general

paradigm of analysis-by-synthesis [CHY19, Gre76, HNF19, HQX18, HQZ18, LB14, WTK17,

WWX17, XLZ16, XZW19, YK06, ZWM98]: The learner synthesizes a result and measures

difference analytically.

As the reasoning process involves rule selection, we use REINFORCE [Wil92] to optimize:

min
θ

EP prqrℓpP pAnswer; rq, yqs, (6.8)

where θ denotes the trainable parameters in the object CNN, P prq packs the rule distributions

over all panel attributes, ℓ is the cross-entropy loss, and y is the ground-truth answer. Note

that here we make explicit the dependency of the answer distribution on rules, as the predicted

probabilistic scene representation sf is dependent on the rules chosen.

In practice, the PrAE learner experiences difficulty in convergence with cross-entropy loss

only, as the object CNN fails to produce meaningful object attribute predictions at the early

stage of training. To resolve this issue, we jointly train the PrAE learner to optimize the

auxiliary loss, as discussed in recent literature [SHB18, ZGJ19, ZJG19]. The auxiliary loss

regularizes the perception module such that the learner produces the correct rule prediction.

The final objective is

min
θ

EP prqrℓpP pAnswer; rq, yqs `
ÿ

a

λaℓpP praq, yaq, (6.9)

where λa is the weight coefficient, P praq the distribution of the abduced rule on a, and ya

98



Method Acc Center 2x2Grid 3x3Grid L-R U-D O-IC O-IG

WReN 9.86{14.87 8.65{14.25 29.60{20.50 9.75{15.70 4.40{13.75 5.00{13.50 5.70{14.15 5.90{12.25
LSTM 12.81{12.52 12.70{12.55 13.80{13.50 12.90{11.35 12.40{14.30 12.10{11.35 12.45{11.55 13.30{13.05
LEN 12.29{13.60 11.85{14.85 41.40{18.20 12.95{13.35 3.95{12.55 3.95{12.75 5.55{11.15 6.35{12.35
CNN 14.78{12.69 13.80{11.30 18.25{14.60 14.55{11.95 13.35{13.00 15.40{13.30 14.35{11.80 13.75{12.85
MXGNet 20.78{13.07 12.95{13.65 37.05{13.95 24.80{12.50 17.45{12.50 16.80{12.05 18.05{12.95 18.35{13.90
ResNet 24.79{13.19 24.30{14.50 25.05{14.30 25.80{12.95 23.80{12.35 27.40{13.55 25.05{13.40 22.15{11.30
ResNet+DRT 31.56{13.26 31.65{13.20 39.55{14.30 35.55{13.25 25.65{12.15 32.05{13.10 31.40{13.70 25.05{13.15
SRAN 15.56{29.06 18.35{37.55 38.80{38.30 17.40{29.30 9.45{29.55 11.35{28.65 5.50{21.15 8.05{18.95
CoPINet 52.96{22.84 49.45{24.50 61.55{31.10 52.15{25.35 68.10{20.60 65.40{19.85 39.55{19.00 34.55{19.45
PrAE Learner 65.03{77.02 76.50{90.45 78.60{85.35 28.55{45.60 90.05{96.25 90.85{97.35 48.05{63.45 42.60{60.70

Human 84.41 95.45 81.82 79.55 86.36 81.81 86.36 81.81

Table 6.1: Model performance (%) on RAVEN / I-RAVEN. All models are trained on 2x2Grid only.

the ground-truth rule. In reinforcement learning terminology, one can treat the cross-entropy

loss as the negative reward and the auxiliary loss as behavior cloning [SB98].

6.2.4 Curriculum Learning

In preliminary experiments, we notice that accurate objectiveness prediction at the early

stage is essential to the success of the learner while learning without auxiliary will reinforce

the perception system to produce more accurate object attribute predictions in the later

stage when all branches of the object CNN are already warm-started. This observation is

consistent with human learning: One learns object attributes only after one can correctly

distinguish objects from the scene, and their perception will be enhanced with positive signals

from the task.

Based on this observation, we train our PrAE learner in a 3-stage curriculum [BLC09].

In the first stage, only parameters corresponding to objectiveness are trained. In the second

stage, objectiveness parameters are frozen while weights responsible for type, size, and color

prediction are learned. In the third stage, we perform joint fine-tuning for the entire model

via REINFORCE [Wil92].
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Object Attribute Acc Center 2x2Grid 3x3Grid L-R U-D O-IC O-IG

Objectiveness 93.81{95.41 96.13{96.07 99.79{99.99 99.71{97.98 99.56{95.00 99.86{94.84 71.73{88.05 82.07{95.97
Type 86.29{89.24 89.89{89.33 99.95{95.93 83.49{85.96 99.92{92.90 99.85{97.84 91.55{91.86 66.68{70.85
Size 64.72{66.63 68.45{69.11 71.26{73.20 71.42{62.02 73.00{85.08 73.41{73.45 53.54{62.63 44.36{40.95
Color 75.26{79.45 75.15{75.65 85.15{87.81 62.69{69.94 85.27{83.24 84.45{81.38 84.91{75.32 78.48{82.84

Table 6.2: Accuracy (%) of the object CNN on each attribute, reported as RAVEN / I-RAVEN.
The CNN module is trained with the PrAE learner on 2x2Grid only without any visual attribute
annotations.

Panel Attribute Acc Center 2x2Grid 3x3Grid L-R U-D O-IC O-IG

Pos/Num 90.53{91.67 - 90.55{90.05 92.80{94.10 - - - 88.25{90.85
Type 94.17{92.15 100.00{95.00 99.75{95.30 63.95{68.40 100.00{99.90 100.00{100.00 100.00{100.00 86.08{77.60
Size 90.06{88.33 98.95{99.00 90.45{89.90 65.30{70.45 98.15{96.78 99.45{92.45 93.08{96.13 77.35{70.78
Color 87.38{87.25 97.60{93.75 88.10{85.35 37.45{45.65 98.90{92.38 99.40{98.43 92.90{97.23 73.75{79.48

Table 6.3: Accuracy (%) of the probabilistic abduction engine on each attribute, reported as RAVEN
/ I-RAVEN. The PrAE learner is trained on 2x2Grid only.

6.3 Experiments

We demonstrate the efficacy of the proposed PrAE learner in RPM. In particular, we

show that the PrAE learner achieves the best performance among all baselines in the cross-

configuration generalization task of RPM. In addition, the modularized perception and

reasoning process allows us to probe into how each module performs in the RPM task and

analyze the PrAE learner’s strengths and weaknesses. Furthermore, we show that probabilistic

scene representation learned by the PrAE learner can be used to generate an answer when

equipped with a rendering engine.

6.3.1 Experimental Setup

We evaluate the proposed PrAE learner on RAVEN [ZGJ19] and I-RAVEN [HML21]. Both

datasets consist of 7 distinct RPM configurations, each of which contains 10, 000 samples,

equally divided into 6 folds for training, 2 folds for validation, and 2 folds for testing.

We compare our PrAE learner with simple baselines of LSTM, CNN, and ResNet, and

strong baselines of WReN [SHB18], ResNet+DRT [ZGJ19], LEN [ZZW19], CoPINet [ZJG19],

MXGNet [WJL20], and SRAN [HML21]. To measure cross-configuration generalization, we
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train all models using the 2x2Grid configuration due to its proper complexity for probability

marginalization and a sufficient number of rules on each panel attribute. We test the models

on all other configurations. All models are implemented in PyTorch [PGC17] and optimized

using ADAM [KB14] on an Nvidia Titan Xp GPU. For numerical stability, we use log

probability in PrAE.

6.3.2 Cross-Configuration Generalization

Table 6.1 shows the cross-configuration generalization performance of different models. While

advanced models like WReN, LEN, MXGNet, and SRAN have fairly good fitting performance

on the training regime, these models fail to learn transferable representation for other

configurations, which suggests that they do not learn logic or any forms of abstraction but

visual appearance only. Simpler baselines like LSTM, CNNs, ResNet, and ResNet+DRT

show less severe overfitting, but neither do they demonstrate satisfactory performance. This

effect indicates that using only deep models in abstract visual reasoning makes it very

difficult to acquire the generalization capability required in situations with similar inner

mechanisms but distinctive appearances. By leveraging the notion of contrast, CoPINet

improves generalization performance by a notable margin.

Equipped with symbolic reasoning and neural perception, not only does the PrAE learner

achieve the best performance among all models, but it also shows performance better than

humans on three configurations. Compared to baselines trained on the full dataset (see

supplementary material), the PrAE learner surpasses all other models on the 2x2Grid domain,

despite other models seeing 6 times more data. The PrAE learner does not exhibit strong

overfitting either, achieving comparable and sometimes better performance on Center, L-R,

and U-D. However, limitations of the PrAE learner do exist. In cases with overlap (O-IC

and O-IG), the performance decreases, and a devastating result is observed on 3x3Grid. The

first failure is due to the domain shift in the region appearance that neural models cannot

handle, and the second could be attributed to marginalization over probability distributions
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of multiple objects in 3x3Grid, where uncertainties from all objects accumulate, leading to

inaccurate abduced rule distributions. These observations are echoed in our analysis shown

next.

6.3.3 Analysis on Perception and Reasoning

RAVEN and I-RAVEN provide multiple levels of annotations for us to analyze our modularized

PrAE learner. Specifically, we use the region-based attribute annotations to evaluate our

object CNN in perception. Note that the object CNN is not trained using any attribute

annotations. We also use the ground-truth rule annotations to evaluate the accuracy of the

probabilistic abduction engine.

Table 6.2 details the analysis of perception using the object CNN: It achieves reasonable

performance on object attribute prediction, though not trained with any visual attribute

annotations. The model shows a relatively accurate prediction of objectiveness in order

to solve an RPM instance. Compared to the size prediction accuracy, the object CNN is

better at predicting texture-related attributes of type and color. The object CNN has similar

results on 2x2Grid, L-R, and U-D. However, referencing Table 6.1, we notice that 2x2Grid

requires marginalization over more objects, resulting in an inferior performance. Accuracy

further drops on configurations with overlap, leading to unsatisfactory results on O-IC and

O-IG. For 3x3Grid, more accurate predictions are necessary as uncertainties accumulate from

probabilities over multiple objects.

Table 6.3 details the analysis on reasoning, showing how the probabilistic abduction engine

performs on rule prediction for each attribute across different configurations. Since rules on

position and number are exclusive, we merge their performance as Pos/Num. As Center,

L-R, U-D, and O-IC do not involve rules on Pos/Num, we do not measure the abduction

performance on them. We note that, in general, the abduction engine shows good performance

on all panel attributes, with a perfect prediction on type in certain configurations. However,

the design of abduction as probability marginalization is a double-edged sword. While the

102



Position :N/A
Number :N/A
Type :Distribute Three
Size :Constant
Color :Arithmetic

<latexit sha1_base64="Ta7o3APUYJCQPFyz+FIL6A0HGEI="></latexit>

Position :Progression
Number :N/A
Type :Distribute Three
Size :Progression
Color :Distribute Three

<latexit sha1_base64="RMRJ83IjnfJX1iCVz0VKQRo+QoQ="></latexit>

Figure 6.3: Two RPM instances with the final 9th panels filled by our generation results.

object CNN’s performance on size prediction is only marginally different on 2x2Grid and

3x3Grid in RAVEN, their abduction accuracies drastically vary. The difference occurs because

uncertainties on object attributes accumulate during marginalization as the number of objects

increases, eventually leading to poor performance on rule prediction and answer selection.

However, in configurations with fewer objects, unsatisfactory object attribute predictions can

still produce accurate rule predictions. Note there is no guarantee that a correct rule will

necessarily lead to a correct final choice, as the selected rule still operates on panel attribute

distributions inferred from object attribute distributions.

6.3.4 Generation Ability

One unique property of the proposed PrAE learner is its ability to directly generate a panel

from the predicted representation when a rendering engine is given. The ability resembles

the bi-directional top-down and bottom-up reasoning, adding a generative flavor commonly

ignored in prior discriminative-only approaches [HSB19, HML21, SHB18, WJL20, ZGJ19,

ZJG19, ZZW19]. As the PrAE learner predicts final panel attribute distributions and is
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trained in an analysis-by-synthesis manner, we can sample panel attribute values from the

predicted distributions and render the final answer using a rendering engine. Here, we use the

rendering program released with RAVEN [ZGJ19] to show the generation ability of the PrAE

learner. Fig. 6.3 shows examples of the generation results. Note that one of our generations

is slightly different from the ground-truth answer due to random sampling of rotations during

rendering. However, it still follows the rules of the problem and should be considered a correct

answer.

6.4 Conclusion

We propose the Probabilistic Abduction and Execution (PrAE) learner for spatial-temporal

reasoning in Raven’s Progressive Matrices (RPM) that decomposes the problem-solving

process into neural perception and logical reasoning. The proposed PrAE learner is a hybrid

of generative models and discriminative models, closing the loop in a human-like, top-down

bottom-up bi-directional reasoning process. In the experiments, we show that the PrAE

learner achieves the best performance on the cross-configuration generalization task on

RAVEN and I-RAVEN. The modularized design of the PrAE learner also permits us to probe

into how perception and reasoning work independently during problem-solving. Finally, we

show the unique generative property of the PrAE learner by filling in the missing panel with

an image produced by the values sampled from the probabilistic scene representation.

While we answer questions about generalization and generation in RPM, one crucial

question remains to be addressed: How perception learned from other domains can be

transferred and used to solve this abstract reasoning task. Unlike humans that arguably

apply knowledge learned from elsewhere to solve RPM, current systems still need training

on the same task to acquire the capability. While feature transfer is still challenging for

computer vision, we anticipate that progress in answering transferability in RPM will help

address similar questions [ZJE21, ZZZ20, ZGF20] and further advance the field.
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CHAPTER 7

A Generalized Earley Parser for Human Activity Parsing

and Prediction

In this chapter, we move forward from the spatial-temporal reasoning in RPMs as discussed

in Chapter 6. With our ultimate goal of modeling real-world human activities, we propose

an algorithm to tackle the task of understanding complex human activities from (partially

observed) videos from two important aspects: activity recognition and prediction. To find

a joint solution of activity recognition and prediction, we again consider two questions for

real-world human activities: 1) what is a good representation for the structure of human

activities/tasks, and 2) what is a good inference algorithm to cope with such a representation.

A popular family of representations for events is the Markov models (e.g ., hidden Markov

Model). However, Markov models are not expressive enough since human tasks often exhibit

non-Markovian and compositional properties. Hence we argue that 1) a representation should

reflect the hierarchical/compositional task structure of long-term human activities, and 2) an

inference algorithm should recover the hierarchical structure given the past observations, and

be able to predict the future.

We refer to the Chomsky hierarchy to choose a model to capture the hierarchical structure

of the entire history. The Chomsky hierarchy is a containment hierarchy of classes of formal

grammar in the formal languages of computer science and linguistics. The reason is that

activities are analogous to languages: actions are like words and activities are like languages.

The Chomsky hierarchy categorizes language models into four levels: 1) Turing machines, 2)

context-sensitive grammar, 3) context-free grammar, and 4) regular grammar. Higher-level
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Figure 7.1: The generalized Earley parser segments and labels the sequence data into a label sentence
in the language of a given grammar.

models contain lower-level models, and Markov models belong to the lowest level (regular

grammar). In this paper, we propose to use context-free grammar to parse and predict human

activities. In the definition of formal language theory, grammar is a set of production rules

for sentences in a formal language. In our case, the rules describe how to form sentences

(activities) from the language’s alphabet (actions) that are valid. These grammar serves

a similar role with rules in described Chapter 6 where information about the world model

dynamics, or causal chains, is embedded.

However, it has not been possible to directly use symbolic grammar to parse and label

sequence data (e.g ., videos). Traditional grammar parsers take symbolic sentences as inputs

instead of noisy sequence data. The data has to be i) segmented and ii) labeled to be parsed

by existing grammar parsers. One naive solution is to first segment and label the data using

a detector and thus generate a label sentence. Then grammar parsers can be applied on top

of it for parsing prediction. But this is apparently non-optimal since the grammar rules are

not considered in the detection/classification process. It may not even be possible to parse

this label sentence, because the output from detectors is very often grammatically incorrect.

In this chapter, we design a grammar-based parsing algorithm that directly operates on

input sequence data, which goes beyond the scope of symbolic string inputs for classic parsing

algorithms. Specifically, we propose a generalized Earley parser to take probabilistic sequence
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inputs instead of deterministic symbolic inputs, based on the classic Earley parser [Ear70].

The algorithm finds the optimal segmentation and label sentence according to both a symbolic

grammar and a classifier output of probabilities of labels for each frame as shown in Fig. 7.1.

Optimality here means maximizing the joint probability of the label sentence according to

the grammar prior and classifier output while being grammatically correct. In the following

sections, we discuss in detail about related works on event parsing and prediction. Next,

we elaborate on the algorithm design of the generalized Earley parser, especially on how

we incorporate world model knowledge into activity parsing and prediction with grammar-

guided inference. Finally, we provide experimental results and analysis on real-world activity

understanding datasets.

7.1 Related Work

This paper is an extension of previous ICCV and ICML papers [QHW17, QJZ18]. The

extension includes two major aspects. 1) For the method, we have extended the algorithm

to incorporate a non-trivial grammar prior to the generalized Earley parser. This makes

the algorithm applicable to not only context-free grammar (CFGs) but also probabilistic

context-free grammar (PCFGs). 2) In the experiments, we tested the model on more datasets

with more comparisons and in-depth analyses.

Activity parsing refers to the recognition and segmentation of long-term and complicated

activities from videos, whereas action recognition corresponds to short-term actions. The

mainstream of work on activity recognition is to extend mid-level representations to high-

level representations. These extensions are designed in several different ways to model

complex activity structures. A number of method have been proposed to model the high-

level temporal structure of low-level features extracted from video [LLK07, LMS08, NCF10,

GHS11, TFK12, JGR13]. Some other approaches represent complex activities as collections

of attributes [LKS11, SC12, RRA12, FHX12]. Another important type of methods builds
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compositional/hierarchical models on actions [GSS09, WM10, SC12, SMD13, ZWY13, LZR15,

HZG16]. Koppula et al . [KGS13] proposed a model incorporating object affordances for

detecting and predicting human activities. Wei et al . [WZZ17] proposed a 4D human-object

interaction model for event recognition. In some recent works, structural models are implicitly

learned by neural networks [WFG16, CZ17, IM18, CSG18, ZTS19].

Grammar models fall into the category of compositional models for temporal structures.

Ivanov et al . [IB00] proposed to first generate a discrete symbol stream from continuous low-

level detectors, and then applied stochastic context-free parsing to incorporate prior knowledge

of the temporal structure. Pei et al . [PJZ11] detected atomic actions and used a stochastic

context sensitive grammar for video parsing and intent prediction. Similar to the generalized

Earley parser, it parses the video in an online fashion and enables prediction. However,

the algorithm uses manually defined thresholds to detect action transitions. Kuehne et

al . [KAS14] modeled action units by hidden Markov models (HMMs), and models the higher-

level action sequence by context-free grammar. Pirsiavash et al . [PR14] proposed segmental

grammar for video parsing, which extends regular grammar to allow non-terminals to generate

a segment of terminals of certain lengths. Vo et al . [VB14] generated a Bayes network, termed

Sequential Interval Network (SIN), where the variable nodes correspond to the start and end

times of component actions. This network then makes inference about start and end times

for detected action primitives. Qi et al . [QHW17] proposed to integrate spatial-temporal

attributes to terminal nodes of a context-free grammar. Based on Earley parser, an activity

parsing and prediction algorithm is proposed. Overall, grammar-based methods have shown

effectiveness on tasks that have compositional structures.

Future activity prediction is a relatively new domain in computer vision. [ZRG09,

YT10, Ryo11, KZB12, KKS12, WDA12, PSY13, WGH14, VOL14, LF14, WZZ17, HZG16,

AGR16, XST18, RK17, MHL17, QJZ18] predict human trajectories/actions in various settings

including complex indoor/outdoor scenes and crowded spaces. Li et al . [LF14] built a

probabilistic suffix tree to model the Markov dependencies between action units and thus
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Figure 7.2: An example of a temporal grammar representing the activity “making cereal". The green
and yellow nodes are And-nodes and Or-nodes, respectively.

predict future events using a compositional model. Walker et al . [WGH14] predicted not

only the future motions in the scene but also the visual appearances. In some recent work,

Koppula et al . [KS16] used an anticipatory temporal conditional random field to model the

spatial-temporal relations through object affordances. Jain et al . [JZS16] proposed structural-

RNN as a generic method to combine high-level spatial-temporal graphs and recurrent neural

networks, which is a typical example that takes advantage of both graphical models and

deep learning. Qi et al . [QHW17] proposed a spatial-temporal And-Or graph (ST-AOG) for

activity prediction.

7.2 Preliminaries

7.2.1 Probabilistic Context-Free grammar

We model complex activities by grammar, where low-level actions are terminal symbols, i.e.,

like words in a language. In formal language theory, a context-free grammar (CFG) is a

type of formal grammar, which contains a set of production rules that describe all possible

sentences in a given formal language. In Chomsky Normal Form, a context-free grammar G

is defined by a 4-tuple G “ pV,Σ, R,Γq where
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‚ V is a finite set of non-terminal symbols that can be expanded to a sequence of symbols.

‚ Σ is a finite set of terminal symbols that represent words in a language.

‚ R is a finite set of production rules describing the replacement of symbols, typically of

the form A Ñ BC or A Ñ α for A,B,C P V and α P Σ. A production rule replaces

the left-hand side non-terminal symbol with the right-hand side expression. For example,

A Ñ BC|α means that A can be replaced by either BC or α.

‚ Γ P V is the start symbol (root of the grammar).
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Figure 7.3: An example illustrating the symbolic parsing and prediction process based on the Earley
parser and detected actions. We use red edges and blue edges to indicate different parse graphs for
the past observations, purple edges for the overlap of the two possible explanations, and green edges
for the possible future steps.

Probabilistic Context-Free grammar (PCFGs) augment CFGs by associating each produc-

tion rule with a probability. Formally, it is defined by a 5-tuple G “ pV,Σ, R,Γ, P q, where

P is the set of probabilities on production rules. Fig. 7.2 shows an example probabilistic

temporal grammar of the activity “making cereal".

7.2.2 Earley Parser

Earley parser [Ear70] is a classic grammar parsing algorithm with useful concepts that will be

extended in the generalized Earley parser. Earley parser is an algorithm for parsing sentences

of a given context-free language. In the following descriptions, α, β, and γ represent any

string of terminals/nonterminals (including the empty string ϵ), A and B represent single
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nonterminals, and a represents a terminal symbol. We adopt Earley’s dot notation: for

production rule of form A Ñ αβ, the notation A Ñ α ¨̈̈ β means α has been parsed and β is

expected.

Input position n is defined as the position after accepting the nth token, and input position

0 is the position prior to input. At each input position m, the parser generates a state set

Spmq. Each state is a tuple pA Ñ α ¨̈̈ β, iq, consisting of

‚ The production currently being matched (A Ñ αβ).

‚ The dot: the current position in that production.

‚ The position i in the input where the matching of this production began.

Seeded with Sp0q containing only the top-level rule, the parser then repeatedly executes

three operations: prediction, scanning, and completion:

‚ Prediction: for every state in Spmq, pA Ñ α ¨̈̈ Bβ, iq, where i is the origin position as

above, add pB Ñ ¨̈̈γ,mq to Spmq for every production in the grammar with B on the

left-hand side (i.e., B Ñ γ).

‚ Scanning: if a is the next symbol in the input stream, for every state in Spmq, pA Ñ

α ¨̈̈ aβ, iq, add pA Ñ αa ¨̈̈ β, iq to Spm ` 1q.

‚ Completion: for every state in Spmq, pA Ñ γ ¨̈̈, jq, find states in Spjq of the form

pB Ñ α ¨̈̈ Aβ, iq and add pB Ñ αA ¨̈̈ β, iq to Spmq.

In this process, duplicate states are not added to the state set. These three operations are

repeated until no new states can be added to the set.

7.3 Generalized Earley Parser

In this section, we introduce the proposed generalized Earley parser. Instead of taking

symbolic sentences as input, we aim to design an algorithm that can parse raw sequence data
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x of length T into a sentence l of labels of length |l| ď T , where each label k P t0, 1, ¨ ¨ ¨ , Ku

corresponds to a segment of a sequence.

To achieve that, a classifier (e.g ., a neural network) is first applied to each sequence x to

get a T ˆ K probability matrix y (e.g ., softmax activations of the neural network), with ykt

representing the probability of frame t being labeled as k. The proposed generalized Earley

parser takes y as input and outputs the sentence l˚ that best explains the data according to

a grammar G of Chomsky normal form. The best solution is found by performing a heuristic

search in the prefix tree according to the grammar, where the heuristic is computed based on

the probability matrix given by the classifier. A prefix tree is composed of three types of

nodes. 1) The root node of the “empty" symbol ϵ represents the start of a sentence. 2) The

non-leaf nodes (except the root node) correspond to terminal symbols in the grammar. A

path from the root node to any non-leaf node represents a partial sentence (prefix). 3) The

leaf nodes e are terminations that represent ends of sentences. To find the best label sentence

for a probability matrix, we perform a heuristic search in the prefix expanded according to

the grammar: each node in the tree is associated with a probability, and the probabilities

prioritize the nodes to be expanded in the prefix tree. The parser finds the best solution

when it expands a termination node in the tree. It then returns the current prefix string as

the best solution.

We compute two different heuristic probabilities for non-leaf nodes and leaf nodes. For

non-leaf nodes, the heuristic is a prefix probability ppl¨¨¨|x0:T q: the probability that the current

path is the prefix for the label sentence. In other words, it measures the probability that

Dt P r0, T s, the current path l is the label for frame x0:t. For leaf nodes e, the heuristic

ppl|x0:T q is a parsing probability: the probability that the current path l is the label sentence

for x0:T . The computation for ppl|x0:T q and ppl¨¨¨|x0:T q are based on the input probability

matrix y. The formulation is derived in detail in Section 7.3.2.

This heuristic search generalizes the Earley parser to parse the probability matrix. Specif-

ically, the scan operation in the Earley parser essentially expands a new node in the grammar
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Γ Ñ R 1.0
R Ñ N 0.4
R Ñ N“ ` ”N 0.6
N Ñ “0” 0.3
N Ñ “1” 0.7

frame “0" “1" “+"
0 0.8 0.1 0.1
1 0.8 0.1 0.1
2 0.1 0.1 0.8
3 0.1 0.8 0.1
4 0.1 0.8 0.1

(a) Left: input grammar. Right: input
probability matrix.

Frame ϵ 0 1 0 + 1 + 0 + 0 0 + 1
0 0.000 0.240 0.070 0.000 0.000 0.000 0.000
1 0.000 0.192 0.007 0.014 0.004 0.000 0.000
2 0.000 0.019 7.0e-04 0.104 0.007 4.3e-04 0.001
3 0.000 0.002 5.6e-04 0.012 7.1e-04 0.003 0.059
4 0.000 1.9e-04 4.5e-04 0.001 1.1e-04 6.6e-04 0.054

prefix 1.000 0.240 0.070 0.108 0.008 0.004 0.066

(b) Cached probabilities

e

1.0

0.24 0.07 0.0

0.108 1.9e-4

0.004 0.066 0.001

0.054

e

e

e

e0.008 4.5e-4

e 6.6e-4

(c) Prefix tree

state # rule µ ν prefix comment
Sp0, 0q : l “ “ϵ”, ppl|Gq “ 1.000, ppl|x,Gq “ 0.000, ppl¨¨¨|x,Gq “ 1.000

(0) Γ Ñ ¨̈̈R 1.000 1.000 “ϵ" start rule
(1) R Ñ ¨̈̈N 0.400 0.400 “ϵ" predict: (0)
(2) R Ñ ¨̈̈N ` N 0.600 0.600 “ϵ" predict: (0)
(3) N Ñ ¨̈̈0 0.300 0.300 “ϵ" predict: (1),(2)
(4) N Ñ ¨̈̈1 0.700 0.700 “ϵ" predict: (1),(2)

Sp1, 0q : l “ “0”, ppl|Gq “ 0.300, ppl|x,Gq “ 1.9e ´ 04, ppl¨¨¨|x,Gq “ 0.240
(0) N Ñ 0¨̈̈ 0.300 0.300 “0" scan: S(0, 0)(3)
(1) R Ñ N ¨̈̈ 0.120 0.120 “0" complete: (0) and S(0, 0)(1)
(2) R Ñ N ¨̈̈ `N 0.180 0.180 “0" complete: (0) and S(0, 0)(2)
(3) Γ Ñ R¨̈̈ 0.120 0.120 “0" complete: (1) and S(0, 0)(0)

Sp1, 1q : l “ “1”, ppl|Gq “ 0.700, ppl|x,Gq “ 4.5e ´ 04, ppl¨¨¨|x,Gq “ 0.070
(0) N Ñ 1¨̈̈ 0.700 0.700 “1" scan: S(0, 0)(4)
(1) R Ñ N ¨̈̈ 0.280 0.280 “1" complete: (0) and S(0, 0)(1)
(2) R Ñ N ¨̈̈ `N 0.420 0.420 “1" complete: (0) and S(0, 0)(2)
(3) Γ Ñ R¨̈̈ 0.280 0.280 “1" complete: (1) and S(0, 0)(0)

Sp2, 0q : l “ “0 ` ”, ppl|Gq “ 0.180, ppl|x,Gq “ 0.001, ppl¨¨¨|x,Gq “ 0.108
(0) R Ñ N ` ¨̈̈N 0.180 0.180 “0`" scan: S(1, 0)(2)
(1) N Ñ ¨̈̈0 0.054 0.300 “0`" predict: (0)
(2) N Ñ ¨̈̈1 0.126 0.700 “0`" predict: (0)

Sp2, 1q : l “ “1 ` ”, ppl|Gq “ 0.420, ppl|x,Gq “ 1.1e ´ 04, ppl¨¨¨|x,Gq “ 0.008
(0) R Ñ N ` ¨̈̈N 0.420 0.420 “1`" scan: S(1, 1)(2)

Sp3, 0q : l “ “0 ` 0”, ppl|Gq “ 0.054, ppl|x,Gq “ 6.6e ´ 04, ppl¨¨¨|x,Gq “ 0.004
(0) N Ñ 0¨̈̈ 0.054 0.300 “0 ` 0" scan: S(2, 0)(1)

Sp3, 1q : l “ “0 ` 1”, ppl|Gq “ 0.126,ppppl|||x,Gqqq “““ 0.054, ppl¨¨¨|x,Gq “ 0.066
(0) N Ñ 1¨̈̈ 0.126 0.700 “0 ` 1" scan: S(2, 0)(2)
(1) R Ñ N ` N ¨̈̈ 0.126 0.126 “0 ` 1" complete: (0) and S(2, 0)(0)
(2) Γ Ñ R¨̈̈ 0.126 0.126 “0 ` 1" complete: (1) and S(0, 0)(0)

Final output: l˚ “ “0 ` 1” with probability 0.054

(d) A run-through of the algorithm

Table 7.1: An example of the generalized Earley parser. A classifier is applied to a 5-frame signal
and outputs a probability matrix (a) as the input and our algorithm expands a grammar prefix tree
(c), where e represents termination. It finally outputs the best label “0 ` 1” with probability 0.054.

prefix tree. We organize the states into state sets by the partial sentence (prefix) each state

represents. Instead of matching the sentence to the symbolic input, we now process state

sets according to their prefix probabilities.

7.3.1 Parsing Operations

We now describe the details of the parsing operations. Each scan operation will create a new

state set Spm,nq P Spmq, where m is the length of the scanned string, n is the total number

of the terminals that have been scanned at position m. This can be thought of as creating a

new node in the prefix tree, and Spmq is the set of all created nodes at level m. A priority

queue q is kept for state sets for prefix search. Scan operations will push the newly created
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set into the queue with priority ppl¨¨¨q, where l is the parsed string of the state being scanned.

For brevity, we use ppl¨¨¨q as a shorthand for ppl¨¨¨|x0:tq when describing the algorithm.

Each state is a tuple pA Ñ α ¨̈̈ β, i, j, l, ppl¨¨¨qq augmented from the original Earley parser

by adding j, l, ppl¨¨¨q. Here l is the parsed string of the state, and i, j are the indices of the set

that this rule originated. The parser then repeatedly executes three operations: prediction,

scanning, and completion modified from Earley parser:

‚ Prediction: for each state in Spm,nq, pA Ñ α¨̈̈Bβ, i, j, l, ppl¨¨¨qq, add pB Ñ ¨̈̈Γ,m, n, l, ppl¨¨¨qq

to Spm,nq for every production in the grammar with B on the left-hand side.

‚ Scanning: for each state in Spm,nq, pA Ñ α ¨̈̈ aβ, i, j, l, ppl¨¨¨qq, append the new terminal

a to l and compute the probability pppl ` aq¨¨¨q. Create a new set Spm ` 1, n1q where n1

is the current size of Spm ` 1q. Add pA Ñ αa ¨̈̈ β, i, j, l ` a, pppl ` aq¨¨¨qq to Spm ` 1, n1q.

Push Spm ` 1, n1q into q with priority pppl ` aq¨¨¨q.

‚ Completion: for each state in Spm,nq, pA Ñ Γ¨̈̈, i, j, l, ppl¨¨¨qq, find states in Spi, jq,

pB Ñ α ¨̈̈ Aβ, i1, j1, l1, ppl1¨¨¨qq, and add pB Ñ αA ¨̈̈ β, i1, j1, l, ppl¨¨¨qq to Spm,nq.

This parsing process is efficient since we do not need to search through the entire tree. As

shown in Table 7.1 and Algorithm 3, the best label sentence l is returned when the probability

of termination is larger than any other prefix probabilities. As long as the parsing and prefix

probabilities are computed correctly, it is guaranteed to return the best solution.

7.3.2 Parsing & Prefix Probability Formulation

Table 7.2 summarizes the notations we use in this section. The parsing probability ppl|x0:T q

is computed in a dynamic programming fashion. Let k be the last label in l. For t “ 0, the

probability is initialized by:

ppl|x0q “

$

’

&

’

%

yk0 l contains only k,

0 otherwise.
(7.1)
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Algorithm 3: Generalized Earley Parser
Input :Grammar G, probability matrix y
Output :Best label string l˚

/* For brevity, we denote pp¨;x0:tq as pp¨q */
/* Initialization */
Sp0, 0q “ tpΓ Ñ ¨̈̈R, 0, 0, ϵ, 1.0qu

q “ priorityQueuepq

q.pushp1.0, p0, 0, ϵ, Sp0, 0qqq

while pm,n, l´, currentSetq “ q.poppq do
for s “ pr, i, j, l, ppl¨¨¨qq P currentSet do

if pplq ą ppl˚q: l˚ “ l then l˚ “ l
if r is pA Ñ α ¨̈̈ Bβq then // predict

for each pB Ñ Γq in G do
r1 “ pB Ñ ¨̈̈Γq

s1 “ pr1,m, n, l, ppl¨¨¨qq

Spm,nq.addps1q

else if r is pA Ñ α ¨̈̈ aβq then // scan
r1 “ pA Ñ αa ¨̈̈ βq

m1 “ m ` 1, n1 “ |Spm ` 1q|

s1 “ pr1, i, j, l ` a, pppl ` aq¨¨¨qq

Spm1, n1q.addps1q

q.pushppppl ` aq¨¨¨q, pm1, n1, Spm1, n1qqq

else if r is pB Ñ Γ¨̈̈q then // complete
for each ppA Ñ α ¨̈̈ Bβq, i1, j1q in Spi, jq do

r1 “ pA Ñ αB ¨̈̈ βq

s1 “ pr1, i1, j1, l, ppl¨¨¨qq

Spm,nq.addps1q

if ppl´q ą pplq, @ un-expanded l then return l˚

return l˚

Let l´ be the label sentence obtained by removing the last label k from the label sentence l.

For t ą 0, the last frame t must be classified as k. The previous frames can be labeled as

either l or l´. Then we have:

ppl|x0:tq “ ykt rppl|x0:t´1q ` ppl´|x0:t´1qs, (7.2)

where ppl|x0:t´1q corresponds to the possibility that frame t ´ 1 is also labelled as k, and

ppl´|x0:t´1q accounts for the possibility that label k starts from frame t. It is worth men-
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Table 7.2: Summary of notations used for parsing & prefix probability formulation.
x0:t input frames from time 0 to t
l a label sentence
k the last label in l
l´ the label sentence obtained by removing the

last label k from the label sentence l
ykt the probability for frame t to be labelled as k
ppl|x0:tq parsing probability of l for x0:t

ppl¨¨¨|x0:tq prefix probability of l for x0:t

tioning that when ykt is wrongly given as 0, the dynamic programming process will have

trouble correcting the mistake. Even if ppl´|x0:t´1q is high, the probability ppl|x0:tq will be 0.

Fortunately, since the softmax function is usually adopted to compute y, ykt will not be 0 and

the solution will be kept for further consideration.

Then we compute the prefix probability ppl¨¨¨|x0:T q based on ppl´|x0:tq. For l to be the

prefix, the transition from l´ to l can happen at any frame t P t0, ¨ ¨ ¨ , T u. Once the label k

is observed (the transition happens), l becomes the prefix and the rest frames can be labeled

arbitrarily. Hence the probability of l being the prefix is:

ppl¨¨¨|x0:T q “ ppl|x0q `

T
ÿ

t“1

ykt ppl´|x0:t´1q. (7.3)

In practice, the probability ppl|x0:tq decreases exponentially as t increases and will soon

lead to numeric underflow. To avoid this, the probabilities need to be computed in log space:

log ppl|x0:tq “ logpykt q ` d ` logtexprlog ppl|x0:t´1q ´ ds ` exprlog ppl´|x0:t´1q ´ dsu, (7.4)

where d is a constant number and is usually set to be maxtlogpykt q, log ppl|x0:t´1q, log ppl´|x0:t´1qu.

The time complexity of computing the probabilities is OpT q for each sentence l because

ppl´|x0:tq are cached. The worst case complexity of the entire parsing is OpT |G|q.
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7.3.3 Incorporating Grammar Prior

For PCFGs, we can integrate the grammar prior of the sentence l into the above formulation

to obtain a posterior parsing probability. The basic idea is that we can compute a “transition

probability" of appending a new symbol to the current sentence. This probability will be

multiplied to the parsing probability when we append a new symbol.

To compute a transition probability ppk|l´, Gq, we can first compute the prefix probabilities

ppl´¨¨¨|Gq and ppl¨¨¨|Gq according to the grammar. Then the transition probability is given by:

ppk|l´, Gq “
ppl¨¨¨|Gq

ppl´¨¨¨|Gq
. (7.5)

The derivation of the grammar prefix probability with Earley parser [Sto95] can be

achieved by augmenting the Earley parsing states with additional variables for forward

probability and inner probability. We provide a run-through example of the generalized

Earley parser with grammar prior in Table 7.1 and Fig. 7.5. There are two important remarks

to make here. 1) This prior prefix probability is different from the prefix probability based

on the likelihood. The prior is the probability that a string is the prefix of a sentence in the

language defined by the grammar, without seeing any data; the likelihood is the probability

that a string is the prefix of a video’s label. 2) This grammar-based transition probability is

non-Markovian, since the new symbol is conditioned on the entire history string that has a

variable length.

Now, incorporating the grammar transition probability, for t “ 0, the probability is

initialized by:

ppl|x0, Gq9

$

’

&

’

%

ppk|ϵ, Gq yk0 l contains only k,

0 otherwise,
(7.6)

where ppk|ϵ, Gq is the probability of appending k to the empty string ϵ, which is equivalent

to ppk¨¨¨|Gq or ppl¨¨¨|Gq. Notice that the equal sign is replaced by 9 since the right hand side
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Figure 7.5: An illustration of the parsing process of the example in Table 7.1.

should be normalized by the prior ppx0q to get the correct posterior.

Whenever we append a new symbol to our sentence, we multiply the probability by the

transition probability. Hence for t ą 0 we have:

ppl|x0:t, Gq9ykt rppl|x0:t´1, Gq ` ppk|l´, Gqppl´|x0:t´1, Gqs. (7.7)

Compared to Eq. (7.2), we multiply the second term by ppk|l´, Gq to account for the transition

to symbol k.

Finally the posterior probability of l being the prefix of the label sentence for data x is:

ppl¨¨¨|x0:T , Gq “ ppl|x0, Gq `

T
ÿ

t“1

ppk|l´, Gqykt ppl´|x0:t´1, Gq. (7.8)

7.3.4 Segmentation and Labeling

The generalized Earley parser gives us the best grammatically correct label sentence l to

explain the sequence data, which takes all possible segmentations into consideration. Therefore

the probability ppl|x0:T q is the summation of probabilities of all possible segmentations. Let

ppl|y0:eq be the probability of the best segmentation based on the classifier output y for sentence
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l. We perform a maximization over different segmentations by dynamic programming to find

the best segmentation:

ppl|y0:eq “ max
băe

ppl´|y0:bq
e

ź

t“b

ykt , (7.9)

where e is the time frame that l ends and b is the time frame that l´ ends. The best

segmentation can be obtained by backtracing the above probability. Similar to the previous

probabilities, this probability needs to be computed in log space as well. The time complexity

of the segmentation and labeling is OpT 2q.

7.3.5 Future Label Prediction

We consider two types of future label predictions: 1) segment-wise prediction that predicts

the next segment label at each time t, and 2) frame-wise prediction that predicts the labels

for the future δt frames.

Segment-wise Prediction Given the parsing result l, we can make grammar-based top-

down predictions for the next label z to be observed. The predictions are naturally obtained

by the predict operation in the generalized Earley parser, and it is inherently an online

prediction algorithm. To predict the next possible symbols at current position pm,nq, we

search through the states Spm,nq of the form pX Ñ α ¨ zβ, i, j, l, ppl¨¨¨qq, where the first

symbol z after the current position is a terminal node. The predictions Σ are then given by

the set of all possible z:

Σ “ tz : Ds P Spm,nq, s “ pX Ñ α ¨ zβ, i, j, l, ppl¨¨¨qqu. (7.10)

The probability of each prediction is then given by the parsing likelihood of the sentence

constructed by appending the predicted label z to the current sentence l. Assuming that the

best prediction corresponds to the best parsing result, the goal is to find the best prediction
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z˚ that maximizes the following conditional probability as parsing likelihood:

z˚
“ argmax

zPΣ
ppz, l|Gq. (7.11)

For a grammatically complete sentence u, the parsing likelihood is simply the Viterbi

likelihood [Vit67] given by the probabilistic context-free grammar. For an incomplete sentence

l of length |l|, the parsing likelihood is given by the grammar prefix probability.

Frame-wise Prediction Frame-wise future label prediction is rather straightforward using

the generalized Earley parser. We first run activity detection on the input videos, and we

sample the duration of the current action. Based on the segment-wise prediction, we can

further sample the duration for future segments, thus obtaining frame-wise future predictions

according to the prediction range.

7.3.5.1 Maximum Likelihood Estimation for Prediction

We are interested in finding the best grammar and classifier that give us the most accurate

segment-wise predictions based on the generalized Earley parser. Let G be the grammar, f

be the classifier, and D be the set of training examples. The training set consists of pairs of

complete or partial data sequence x and the corresponding label sequence for all the frames

in x. By merging consecutive labels that are the same, we can obtain partial label sentences

l and predicted labels z. Hence we have D “ tpx, l, zqu. The best grammar G˚ and the best

classifier f˚ together minimizes the prediction loss:

G˚, f˚
“ argmin

G,f
LpredpG, fq, (7.12)
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where the prediction loss is given by the negative log likelihood of the predictions over the

entire training set:

LpredpG, fq “ ´
ÿ

px,l,zqPD

log ppz|xq “ ´
ÿ

px,l,zqPD

tlog ppz|l, Gq
looooomooooon

grammar

` log ppl|xq
loooomoooon

classifier

u. (7.13)

Given the intermediate variable l, the loss is decomposed into two parts that correspond to

the induced grammar and the trained classifier, respectively. Let u P tlu be the complete

label sentences in the training set (i.e., the label sentence for a complete sequence x). The

best grammar maximizes the following probability:

ź

pz,lqPD

ppz|l, Gq “
ź

pz,lqPD

ppz, l|Gq

ppl|Gq
“

ź

uPD

ppu|Gq, (7.14)

where denominators ppl|Gq are canceled by the previous numerator ppz, l´|Gq, and only the

likelihood of the complete sentences remain. Therefore inducing the best grammar that gives

us the most accurate future prediction is equivalent to the maximum likelihood estimation

(MLE) of the grammar for complete sentences in the dataset. This finding lets us turn the

problem (induce the grammar that gives the best future prediction) into a standard grammar

induction problem, which can be solved by existing algorithms, e.g ., [SHR05] and [TPZ13].

The best classifier minimizes the second term of Eq. (7.13):

f˚
“ argmin

f
´

ÿ

px,l,zqPD

log ppl|xq « argmin
f

´
ÿ

px,yqPD

ÿ

k

yk logpŷkq, (7.15)

where ppl|xq can be maximized by the CTC loss [GFG06]. In practice, it can be substituted

by the commonly adopted cross entropy loss for efficiency. Therefore we can directly apply

generalized Earley parser to outputs of general detectors/classifiers for parsing and prediction.
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7.4 Experiments

We evaluate our method on the task of human activity detection and prediction. We

present and discuss our experimental results on three datasets, CAD-120 [KGS13], Watch-n-

Patch [WZS15], and Breakfast [KAS14], for comparisons with state-of-the-art methods and

evaluation of the robustness of our approach. CAD-120 is the dataset that most existing

prediction algorithms are evaluated on. It contains videos of daily activities that are long

sequences of sub-activities. Watch-n-Patch is a daily activity dataset that features forgotten

actions. Breakfast is a dataset that contains long videos of daily cooking activities. Results

show that our method performs well on both activity detection and activity prediction.

Grammar Induction. In both experiments, we used a modified version of the ADIOS

(automatic distillation of structure) [SHR05] grammar induction algorithm to learn the event

grammar. The algorithm learns the production rules by generating significant patterns and

equivalent classes. The significant patterns are selected according to a context-sensitive

criterion defined regarding local flow quantities in the graph: two probabilities are defined

over a search path. One is the right-moving ratio of fan-through (through-going flux of

path) to fan-in (incoming flux of paths). The other one, similarly, is the left-going ratio of

fan-through to fan-in. The criterion is described in detail in [SHR05].

Datasets. We consider three datasets: (i) the CAD-120 dataset [KGS13], a standard dataset

for human activity prediction with 120 RGB-D videos of four different subjects performing 10

high-level activities; (ii) Watch-n-Patch [WZS15], an RGB-D dataset that features forgotten

actions with 21 types of fully annotated actions (10 in the office, 11 in the kitchen) interacted

with 23 types of objects; and (iii) Breakfast [KAS14], a dataset of daily cooking activities

that include 52 unique participants, each conducting 10 distinct cooking activities captured

in 18 different kitchens.

Evaluation Metrics. We use the following metrics to evaluate and compare the algorithms.

1) Frame-wise detection accuracy of sub-activity labels for all frames. 2) Frame-wise (future
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Figure 7.6: Confusion matrices for predictions on CAD-120.

3s) online prediction accuracy. We compute the frame-wise accuracy of prediction of the

sub-activity labels of the future 3s (using the frame rate of 14Hz as reported in [KGS13]).

The predictions are made online at each frame t, i.e., the algorithms only see frame 0 to t

and predicts the labels of frame t ` 1 to t ` δt. 3) Segment-wise online prediction accuracy.

At each frame t, the algorithm predicts the sub-activity label of the next video segment.

We consider the overall micro accuracy (P/R), macro precision, macro recall and macro F1

score for all evaluation metrics. Micro accuracy is the percentage of correctly classified labels.

Macro precision and recall are the average of precision and recall respectively for all classes.

7.4.1 Experiment on CAD-120 Dataset

Comparative methods. We compare the results for the following methods: (1) KGS [KGS13],

a Markov random field model. Future frames are predicted based on the transition probabili-

ties given the inferred label of the last frame; (2) Anticipatory temporal CRF (ATCRF) [KS16],

an anticipatory temporal conditional random field that models the spatial-temporal relations

through object affordances. Future frames are predicting by sampling a spatial-temporal
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Table 7.3: Detection results on CAD-120.

Method Micro Macro
P/R Prec. Recall F1-score

KGS [KGS13] 68.2 71.1 62.2 66.4
ATCRF [KS16] 70.3 74.8 66.2 70.2
ST-AOG + Earley [QHW17] 76.5 77.0 75.2 76.1
MLP 67.2 58.7 51.5 51.1
MLP + GEP 73.8 72.8 61.1 61.0
Bi-LSTM 76.2 78.5 74.5 74.9
Bi-LSTM + GEP 79.4 87.4 77.0 79.7

Table 7.4: Future 3s prediction results
on CAD-120.

Method Micro Macro
P/R Prec. Recall F1-score

KGS [KGS13] 28.6 – – 11.1
ATCRF [KS16] 49.6 – – 40.6
ST-AOG + Earley [QHW17] 55.2 56.5 56.6 56.6
LSTM 49.4 40.9 37.3 37.8
LSTM + GEP 57.1 52.3 54.1 52.3

Table 7.5: Segment prediction results on
CAD-120.

Method Micro Macro
P/R Prec. Recall F1-score

ST-AOG + Earley [QHW17] 54.3 61.4 39.2 45.4
LSTM 52.8 52.5 52.8 47.6
LSTM + GEP 70.6 72.1 70.6 70.1

graph; (3) ST-AOG [QHW17], a spatial-temporal And-Or graph (ST-AOG) that uses a

symbolic context-free grammar to model activity sequences; (4) Multilayer Perceptron (MLP);

(5) MLP + GEP, the proposed generalized Earley parser (GEP) applied to the classifier output

generated by a multilayer perceptron for detection; (6) Bidirectional LSTM (Bi-LSTM), a

simple frame-wise detection classifier based on LSTM. It outputs a sub-activity label for

every input frame feature. (7) LSTM, a simple prediction classifier; and Bi-LSTM/LSTM

+ GEP, the proposed generalized Earley parser (GEP) applied to the classifier output for

detection and prediction.

Implementation details. We use the same Bi-LSTM as the base classifier for detection

task and LSTM as the base classifier for prediction tasks on all three datasets. For both

models, we used a 2 layer LSTM backbone with hidden size 256 and added bidirectional

propagation for the Bi-LSTM model. For training, we use a Adam optimizer with learning

rate 1 ˆ 10´3 and set weight decay as 0.8 for every 20 epochs. All methods in the experiment

use the same publicly available features from KGS [KGS13].

Experiment results. We follow the convention in KGS [KGS13] to train on three subjects

and test on a new subject with a 4-fold validation. The results for the three evaluation

metrics are summarized in Table 7.3, Table 7.4 and Table 7.5, respectively. Fig. 7.6 shows

the confusion matrices for the two prediction tasks.
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Bi-LSTM

Bi-LSTM + GEP

silence take bowl pour cereals pour milk silence

Ground Truth

Bi-LSTM

Bi-LSTM + GEP

silence pour milk spoon powder stir milk silence

Figure 7.7: Qualitative results on the Breakfast dataset. The top row pictures show the typical frames
and labels of the groud-truth segments. The bottom rows show the ground-truth segmentation,
Bi-LSTM, and Bi-LSTM + GEP results.

Our method outperforms the comparative methods on all three tasks. Specifically, the

generalized Earley parser on top of a Bi-LSTM performs better than ST-AOG, while ST-AOG

outperforms the Bi-LSTM. More discussions are highlighted in Section 7.4.4.

7.4.2 Experiment on Watch-n-Patch Dataset

Implementation details We follow the model implementation details provided in Sec-

tion 7.4.1 and extract the same features as described in [WZS15] for all methods. Similar to

the previous experiment, the features are composed of skeleton features and human-object

interaction features extracted from RGB-D images.

Experiment results. We use the same evaluation metrics as the previous experiment and

compare our method to ST-AOG [QHW17] and Bi-LSTM. For detection, we also use the base

classifier Multilayer Perceptron (MLP) and MLP with our generalized Earley parser (GEP),

i.e MLP + GEP. We use the train/test split in [WZS15]. The results for the three evaluation
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Table 7.6: Detection results on Watch-n-Patch.

Method Micro Macro
P/R Prec. Recall F1-score

ST-AOG + Earley [QHW17] 79.3 71.5 73.5 71.9
MLP 55.6 48.7 46.7 46.4
MLP + GEP 78.1 73.0 68.4 69.7
Bi-LSTM 84.0 79.7 82.2 80.3
Bi-LSTM + GEP 84.8 80.7 83.4 81.5

Table 7.7: Future 3s prediction results on Watch-
n-Patch.

Method Micro Macro
P/R Prec. Recall F1-score

ST-AOG + Earley [QHW17] 48.9 43.1 39.3 39.3
LSTM 43.9 28.3 26.6 24.9
LSTM + GEP 58.7 50.5 49.9 49.4

Table 7.8: Segment prediction results on Watch-
n-Patch.

Method Micro Macro
P/R Prec. Recall F1-score

ST-AOG + Earley [QHW17] 29.4 28.5 18.9 19.9
LSTM 44.6 43.6 44.6 40.4
LSTM + GEP 49.5 50.1 49.4 45.5

metrics are summarized in Table 7.6, Table 7.7 and Table 7.8, respectively. Our method

slightly improves the detection results over the Bi-LSTM outputs, and outperforms the

other methods on both prediction tasks. In general, the algorithms make better predictions

on CAD-120, since Watch-n-Patch features forgotten actions and the behaviors are more

unpredictable. Fig. 7.8 shows some qualitative results, and more details are discussed in

Section 7.4.4.

7.4.3 Experiment on Breakfast Dataset

Comparative methods. Besides Bi-LSTM, we compare Bi-LSTM + generalized Earley

parser (GEP) with state-of-art methods for activity detection on the Breakfast dataset. The

base classifier Multilayer Perceptron (MLP) and MLP + GEP are also tested. The other

comparative methods include (1) HOGHOF+HTK [KAS14], a grammar-based hidden Markov

model (HMM) for modeling individual action units in the sequence recognition problem;

(2) ED-TCN [LFV17], an end-to-end method tackling the action classification problem; (3)

TCFPN [DX18], one of the end-to-end state-of-the-art methods with temporal convolutional

feature pyramid; and (4) Fisher+HTK [KGS16], the other grammar-based state-of-the-art

method that leverages feature (Fisher kernels [JH99]) in HMM-based action recognition.
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Table 7.9: Detection results on Breakfast.

Method Micro Macro
P/R Prec. Recall F1-score

HOGHOF+HTK [KAS14] 28.8 – – –
ED-TCN [LFV17]˚ 43.3 – – –
TCFPN [DX18] 52.0 – – –
Fisher+HTK [KGS16] 56.3 38.1 – –
MLP 15.4 7.2 7.5 5.9
MLP + GEP 32.5 35.9 15.6 18.5
Bi-LSTM 45.6 29.2 25.4 25.6
Bi-LSTM + GEP 59.7 45.8 36.3 38.5
*The results for [LFV17] is obtained from [DX18].

Experiment results. To eliminate the factors of feature extraction for a fair comparison,

we use the pre-computed feature provided by [KGS16] to train the underlying Bi-LSTM

classifier. Fig. 7.7 shows the qualitative results of activity detection on the Breakfast dataset.

The quantitative results (Table 7.9) show that a simple Bi-LSTM is far from state-of-the-art

methods (an absolute difference of 10.7%). Our full algorithm Bi-LSTM + Genearlized Earley

improves the absolute performance by 14.1%, and outperforms the state-of-the-art by 3.6%.

This shows that our explicit grammar regularization is effective in correcting the mistakes of

the underlying classifier. Although the underlying classifier is simple, it is able to perform

well in the activity detection task well.

7.4.4 Discussion

How different are the classifier outputs and the final outputs for detection? Fig. 7.8

shows some qualitative examples of the ground truth segmentations and results given by

different methods. The segmentation results show that the refined outputs are overall similar

to the classifier outputs since the confidence given by the classifiers are often very high, but

some segments are modified to ensure the grammatical correctness.

How does the generalized Earley parser refine the classifier detection outputs?

When the classifier outputs violate the grammar, two types of refinements occur: i) correction

and deletion of wrong labels as shown in Fig. 7.8a; ii) insertion of new labels as shown in
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(a) Correction (b) Insertion

Figure 7.8: Qualitative results of segmentation results on Watch-and-Patch. The rows from the
top to the bottom show the results of: 1) ground-truth, 2) ST-AOG + Earley, 3) Bi-LSTM, and 4)
Bi-LSTM + generalized Earley parser.

Fig. 7.8b. The inserted segments are usually very short to accommodate both the grammar

and the classifier outputs. Most boundaries of the refined results are well aligned with the

classifier outputs.

How useful is the grammar for activity modeling? From Table 7.4, Table 7.5,

Table 7.7 and Table 7.8 we can see that both ST-AOG and generalized Earley parser

outperforms Bi-LSTM for prediction. Prediction algorithms need to give different outputs

for similar inputs based on the observation history. Hence the non-Markovian property of

grammar is useful for activity modeling, especially for future prediction.

7.5 Conclusion

We proposed a generalized Earley parser for parsing sequence data according to symbolic

grammar. Detections and predictions are made efficiently by the parser given the probabilistic

outputs from a general base classifier. Experiments show that the generalized Earley parser

improves the performance of a base classifier for both detection and prediction tasks in general.

We are optimistic about and interested in further applications of the generalized Earley parser.

In general, we believe this is a step towards the goal of integrating the connectionist and

symbolic approaches.
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CHAPTER 8

Conclusion

In this dissertation, we introduced our contributions to the task of event parsing, prediction,

and reasoning from both the data and modeling perspective. From the data perspective, we

identified critical challenges in event understanding and reasoning. Overall, the key findings of

our continual efforts reflects the need for better representations and models that we addressed

in Section 1.3. With the natural complexity of events, we need proper ways to represent

knowledge and use them for understanding and reasoning.

For the representation problem, we proprosed BO-QSA in Chapter 5 for emerging concepts

from static images without supervision. However, as we found in the experiments, there

exists a strong correlation between the powerfulness of encoder-decoder architectures and

model performance. In contrast to supervised learning, more powerful encoders/decoders do

not guarantee superior performance. This suggests the potential limitation of the proposed

methods for more complex data. Gaining insights from how contrastive learning methods

have shown the effect of concept emergence with large-scale pretraining, we should consider

incorporating representations learned by self-supervised learning into object-centric learning

to unite the best of both worlds. Additionally, the current learned slot initialization vectors

do not explicitly bind towards concepts and is an important next-step to be extended given

the significance of semantically meaningful representations in the majority of AI tasks. To

achieve this goal, we believe one potential direction to be explored is to combine unsupervised

object-centric learning with semantic alignments from language for concept grounding. This

opens future research directions on learning finer-level organization of object concepts under
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more complex scenarios (e.g . hierarchical grouping) with weak supervision of correspondance.

For the world model problem, we discussed two ways for incorporating world model

knowledge into event parsing, prediction, and reasoning. In the synthetic domain of RAVEN

as described in Chapter 2, we treated world model knowledge in the form of abduction

rules in solving spatial-temporal reasoning in PrAE as discussed in Chapter 6. However, the

probabilistic abduction procedure depends heavily on the clear definition of states and rules.

When the number of objects increases, uncertainties over multiple objects will accumulate,

making the entire process sensitive to perception performance, thus PrAE is still limited by

the scalability and efficiency of probabilistic inference over knowledge bases. We further show

that in real-world human activity understanding scenarios, we need to incorporate simpler

and clear world model knowledge in the form of grammar. Nonetheless, the GEP is shares

the same limitation as PrAE on scalability and efficiency in inference. For a comprehensive

evaluation on real-world activities like the LEMMA and EgoTaskQA introduced in Chapters 3

to 4, we believe one potential way to address the critical issues in modeling is the “new”

neuro-symbolic paradigm given the recent culmination of large-scale pretrained models (both

language models and multimodal models). In this new paradigm, we can levereage natural

language as generic symbols, large-scale pre-trained models (both visual and language) as

implicit knowledge base, and prompting as the intermediate tool for bridging the two channels.

However, our experiments on EgoTaskQA suggest that adopting such models directly to a

specific domain is non-trivial. Compared to their capabilities in commonsense reasoning, how

to enable pre-trained models with the ability to fastly adapt to complex reasoning tasks still

remains an interesting problem to be solved.
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