UC Berkeley
UC Berkeley Previously Published Works

Title
Oxygenated Mesoproterozoic lake revealed through magnetic mineralogy

Permalink
https://escholarship.org/uc/item/0ha979cH

Journal
Proceedings of the National Academy of Sciences of the United States of America, 115(51)

ISSN
0027-8424

Authors

Slotznick, Sarah P
Swanson-Hysell, Nicholas L
Sperling, Erik A

Publication Date
2018-12-18

DOI
10.1073/pnas.1813493115

Supplemental Material
ttps://escholarship.org/uc/item/0hg979cr#supplementa

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/0hq979cr
https://escholarship.org/uc/item/0hq979cr#supplemental
https://escholarship.org
http://www.cdlib.org/

0 DU WN

Doy O U UL UL UL UL O UL O gt UU B B R B R B s R D DWW wWwWwwWwwWww WwWow W NNDDDDNDDNDDNDNRNDLN & = e = e
N = OO0 Ui W OO UUik WN R OO UERE WNEFRE OO UERE WNRERE OO0 U W= O

An oxygenated Mesoproterozoic lake revealed
through magnetic mineralogy
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Terrestrial environments have been suggested as an oxic haven for
eukaryotic life and diversification during portions of the Proterozoic
Eon when the ocean was dominantly anoxic. However, iron specia-
tion and Fe/Al data from the ca. 1.1 billion year old Nonesuch For-
mation, deposited in a large lake and bearing a diverse assemblage
of early eukaryotes, are interpreted to indicate persistently anoxic
conditions. To shed light on these distinct hypotheses, we analyzed
two drill-cores spanning the transgression into the lake and its sub-
sequent shallowing. While the proportion of highly reactive to total
iron (Fegr/FeT) is consistent through the sediments and typically in
the range taken to be equivocal between anoxic and oxic conditions,
magnetic experiments and petrographic data reveal that iron exists
in three distinct mineral assemblages resulting from an oxycline. In
the deepest waters, reductive dissolution of iron oxides records an
anoxic environment. However, the remainder of the sedimentary suc-
cession has iron oxide assemblages indicative of an oxygenated en-
vironment. At intermediate water depths, a mixed-phase facies with
hematite and magnetite indicates low oxygen conditions. In the shal-
lowest waters of the lake, nearly every iron oxide has been oxidized
to its most oxidized form, hematite. Combining magnetics and textu-
ral analyses results in a more nuanced understanding of ambiguous
geochemical signals and indicates that for much of its temporal du-
ration, and throughout much of its water column, there was oxygen
in the waters of Paleolake Nonesuch.

Proterozoic | oxygen | iron speciation | lacustrine environments | eu-

karyotic evolution

F ollowing the origin of eukaryotic life in the Paleoprotero-
zoic Era (2500-1600 Ma), eukaryotic diversity is inter-
preted to have remained relatively low in marine environments
throughout the Mesoproterozoic Era (1600-1000 Ma) until ca.
800 Ma during the Neoproterozoic Era (1, 2). A hypothesis
to explain delayed eukaryotic diversification is that marine
environments in a relatively low oxygen world were prone to
the upwelling of anoxic, and sometimes sulfidic, waters from
widespread oxygen minimum zones (1, 3-5), but see (6). The
inhibitory effect of low-oxygen waters on aerobic eukaryotic
life holds true whether hypoxic conditions were caused by low
atmospheric oxygen—as commonly assumed—or from shallow
remineralization of sinking organic matter (7). This potential
challenge for eukaryotic life in the marine realm has led to the
suggestion that oxygenated terrestrial environments may have
been cradles of eukaryotic diversification (4, 8).

Microfossils recovered from the Torridonian sequence of
Scotland and the Nonesuch Formation of North America have
been interpreted to indicate that by ca. 1.1 Ga freshwater
habitats were colonized by eukaryotes as well as cyanobacteria
(4, 8, 13). Recovered specimens from the Nonesuch Formation
include Valeria lophostriata (4), which is considered to be
diagnostically eukaryotic as the complex wall morphologies
and microstructures could not be generated by an organism
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that does not have a cytoskeleton and endomembrane system
(14). The microfossil record of the Nonesuch Formation has
been further interpreted to indicate the presence of more
than 50 different species (4). This record is argued to be
more diverse than similar-aged marine assemblages which
leads to the interpretation that lacustrine environments with
stable oxygenated waters may have been more hospitable to
eukaryotic evolution than marine ones (4). Early oxygenation
of lacustrine environments during the Mesoproterozoic has
also been proposed based on large sulfur isotope fractionations
from sedimentary rocks of the Stoer and Torridon groups that
were interpreted to have resulted from oxidative sulfur cycling
(15). However, this interpretation is equivocal given that such
fractionation can arise without oxidative cycling (16, 17).
The chemistry and mineralogy of iron and oxygen in the
environment are tightly interwoven, and iron-based geochemi-
cal proxies are amongst the most mature available for gain-
ing insight into local redox conditions (18). Iron speciation
measurements, combined with total iron to aluminum ratios
(Fer/Al), have been performed on the Nonesuch Formation in
the Presque Isle Syncline and used to infer persistent water-
column anoxia throughout Paleolake Nonesuch (11). This find-
ing was extrapolated to terrestrial environments as a whole in
the Mesoproterozoic, thereby challenging the interpretation of
such environments as a potential locus of aerobic Proterozoic
eukaryotic evolution (11). However, published bulk-rock iron
speciation data are not entirely straightforward to interpret.
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The strength of the iron speciation proxy lies in its empirical
calibration in modern marine sediments, allowing for the iden-
tification of authigenic reactive iron enrichments (resulting
from anoxic water column processes) above an oxic baseline
(the reactive iron delivered through detrital processes). There
are few baseline data from lacustrine settings, and the delivery
of iron to different lakes can be highly variable (19). Further,
most of the existing iron speciation values from the Nonesuch
Formation fall not in the clearly defined oxic or anoxic fields
but in the ‘possibly anoxic’ area of iron speciation interpre-
tive space (18). Given these ambiguities, new approaches to
harness the redox information contained in the sedimentary
iron record will have high utility in lacustrine rocks and other
sediments where established proxies like iron speciation are
ambiguous. This study pairs rock magnetics, geochemistry,
and microscopy to develop a more detailed picture of assem-
blages of iron oxides and sulfides in Paleolake Nonesuch. These
data reveal distinct depth-dependent mineralogical facies asso-
ciated with the oxycline of this 1.1 billion year old lake. These
facies are also seen within iron speciation extractions, but are
obscured if these geochemical data are interpreted solely on
the basis of the traditional anoxia proxy of Feur/Fer (highly
reactive iron to total iron) in conjunction with Fer/Al.

Paleolake Nonesuch. Following a prolonged interval of volumi-
nous volcanic activity within the North American Midcontinent
Rift, sedimentation within a thermally subsiding basin led to
the deposition of sedimentary rocks of the Oronto Group (20).
The Oronto Group commences with the Copper Harbor Con-
glomerate, which represents a terrestrially-deposited alluvial
fan and fluvial sediments (21). Locally, on the Keweenaw
Peninsula, lava flows of the Lake Shore Traps erupted within
the Copper Harbor Conglomerate and an andesitic lava within
these flows has an U-Pb date of 1085.57 + 0.25/1.3 Ma (Fig.
1; 10). The Copper Harbor Conglomerate fines upward and
is conformable with the overlying shales, siltstones and sand-
stones of the Nonesuch Formation, which are the focus of
this study. These lithologies of the Nonesuch Formation are
interpreted as a lacustrine facies association (e.g. 22, 23) along
a >250 km long belt in northern Michigan and Wisconsin (Fig.
1). Similar facies in drill core as far south as Iowa has led to
an interpretation that Paleolake Nonesuch was >800 km long
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(24), although the extent of these lithofacies could be due to
multiple lakes along the rift axis as in the modern East African
Rift. Regardless, the lake in northern Wisconsin and Michi-
gan was large and persistent with lacustrine sedimentation
continuing until after the transition into the overlying Freda
Formation. The Freda Formation is a >4 km thick succession
that is dominantly comprised of channelized sandstone and
overbank siltstone deposits representing a prolonged terrestrial
fluvial environment (25). The Nonesuch Formation has been
directly dated using Re-Os geochronology with a preferred
date of 1078 + 24 Ma (11). Paleomagnetic data from the
Nonesuch Formation (26) suggest deposition in the tropics at
a latitude of 3°+ 3°.

Five drill cores from northern Wisconsin were used by (23)
to develop a sequence stratigraphic framework for the None-
such Formation. Our work focuses on two of these cores: DO-8
and WC-9 (Figs. 1 and 2). In this region, the transgression
that marks the flooding surface where alluvial facies of the Cop-
per Harbor Conglomerate transition to the lacustrine facies of
the Nonesuch Formation is followed by an interval of deep wa-
ter lacustrine facies dominated by planar laminated siltstone
and very-fine sandstone with intervals of thinly interbedded
siltstone and carbonate (Fig. 2; 23). Following the maxi-
mum flooding of the lake, an aggradational-progradational
sequence records a progressive shallowing sequence (Fig. 2).
The Nonesuch Formation is transitional with the overlying
Freda Formation and the formation boundary is typically set
on the basis of color (23, 25). As a result, similar lithofacies
deposited in a lacustrine environment are found on either
side of the formation boundary with fluvial channel sandstone
present higher in the Freda stratigraphy (Fig. 2).

That the Nonesuch Formation is conformable with under-
lying and overlying terrestrial sediments has been interpreted
to imply that it was deposited in a terrestrial lake rather than
a marine setting (e.g. 22, 27). However, the Nonesuch facies
themselves could be consistent with either a lacustrine or pro-
tected marine depositional environment. Some workers have
invoked incursion of marine waters into the basin based on
interpretations of the affinity of putative sterane biomarkers
(28; whose indigenous origin is called into question by data
from (29) revealing modern contamination) and the presence
of sulfides indicative of bacterial sulfate reduction (30). Given
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that neither of these lines of evidence are diagnostic of a marine
environment, the stratigraphic context of the formation and
its position within an intracontinental rift favors a lacustrine
depositional setting (22).

The Nonesuch Formation is exceptionally well-preserved,
with maximum burial temperatures of 140-150°C estimated by
modeled burial temperatures (31) and 125-155°C inferred from
solid-state reordering modeling of clumped isotope values (32).
In contrast to the Iron River syncline and Presque Isle Syncline
(>100 km away; Fig. 1) where there is copper mineralization
in the basal Nonesuch Formation, there is no mineralization
in cores from the Ashland syncline (23, Fig. S1).

Iron speciation results. Geochemical analyses were performed
to compare the DO-8 and WC-9 cores to previously published
analyses from the Nonesuch Formation within the Presque
Isle Syncline (Fig. 1). Iron speciation is a bulk sequential ex-
traction technique that separates iron into distinct pools that
are ratioed and compared to empirical calibrations on modern
sediments in order to make interpretations of paleo-redox con-
ditions (18, 33). Analyses proceeded using standard protocols
(33, 34) with measurements of standards consistent with pre-
vious analyses (35). Our results for Fegr/Fer are generally
below the common threshold of 0.38 used to separate likely
oxic (<0.38) from anoxic (>0.38) depositional environments
(18, 36) such that they fall in the range of equivocal values (0.2
to 0.38) or the oxic range (<0.2; Fig. 2). Samples falling in the
equivocal zone could have been deposited under an oxygenated
water column or could have been deposited in anoxic condi-
tions but with processes masking Fegr enrichment, such as
rapid sedimentation or burial diagenesis/metamorphism trans-
forming highly reactive iron minerals into unreactive phases
such as clay minerals (37, 38). The Fepy/Feur (pyrite iron
to highly reactive iron) is elevated in lower portions of the
formation, but still indicates that not all reactive iron was
pyritized similar to the findings from the Presque Isle Syncline
(11). Overall, these iron speciation ratios are ambiguous and
elude straightforward interpretation of paleoredox.

Magnetic and petrographic results with interpretation. Experi-
mentally determined estimates of magnetization and coercivity
on samples spanning the stratigraphic sections (Figs. 2, 3),
reveal three distinct magnetic facies within the Nonesuch For-
mation. Low-temperature magnetic experiments designed to
elucidate low-temperature transitions confirm the ferromag-
netic mineral identifications associated with these facies in
both cores (Fig. S2, S3). Petrographic and microscale textural
geochemical analyses on selected samples using transmitted
light, reflected light, and electron microscopy paired with
energy-dispersive X-ray spectroscopy (EDS) further confirm
the magnetic mineralogy interpretations and give a more com-
plete perspective of the mineralogy associated with each facies
and the depositional and diagenetic processes they represent
(Fig. 3, S7-S9).

Magnetic facies 1 is present in the deepest water lithologic
facies and is characterized by a lack of hematite and a very
weak magnetization carried by trace magnetite (Figs. 2, 3, S1,
S2, S3). No magnetite could be seen using microscopy tech-
niques, corroborating the low abundance and/or nanoscale size
of these minerals. The iron within this facies is predominantly
found in phyllosilicates, calcalumnosilicates, and abundant
sulfides (Fig. 3, S7). Euhedral pyrite crystals range in size
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from <1 pm to 15 um and can form aggregates up to 100 pum.
Based on their shape and occasional textural association with
iron-bearing clays, we interpret them to have formed in pore
fluids from iron liberated from magnetite and clays during
reductive dissolution and sulfidization (Fig. 3, S7). Facies
1 shows no evidence for oxidation of these reduced phases,
highlighting the excellent preservation of these drill cores and
lack of secondary oxidative fluid flow in this region. Titanium
minerals—titanium oxide (rutile and/or anatase), leucoxene,
and titanite—are found in samples of this facies, and textu-
rally some appear to be authigenic (Fig. S7). Authigenic
titanium-bearing minerals commonly form during dissolution
of iron-bearing phases including titanomagnetite grains (42—
44). Taken together these data indicate that the very weak
magnetization relative to the other magnetic facies is the re-
sult of reductive dissolution of iron oxides, likely through a
combination of dissimilatory iron reduction and sulfidization.

Magnetic facies 2 is characterized by a mixed assemblage of
magnetite and hematite with relatively strong overall magneti-
zation (Figs. 2, 3, S1, S2, S3). Microscale textural observations
demonstrate the presence of detrital (titano)magnetite with
igneous origins based on the exsolution between titanomag-
netite and ilmenite (Fig. 3, S8). A sharply preserved Verwey
transition revealed through low-temperature magnetometry in-
dicates the presence of magnetite with no to minimal oxidation
(Figs. S2, S3). The relatively high coercivity of the magnetite
as revealed in coercivity spectra (Fig. 3), combined with the
results of first-order reversal curve experiments (Figs. S5), are
consistent with behavior dominated by small (<3 um) vortex
state grains (45). Detrital grains containing hematite are ob-
served; the hematite is typically associated with, and replacing,
phyllosilicates indicating oxidation during pre-transport weath-
ering, riverine transport and/or deposition (Fig. 3, S8). The
detrital nature of these grains is confirmed by their sometimes
rounded shapes and the deformation of clay minerals between
them and other detrital grains (Fig. S8). Pieces of organic
matter (80 to 100 ym by 10 pm) with compaction warping
are also preserved within this facies (Fig. S8). Some reductive
dissolution of iron oxides may have occurred based on the
presence of mixed mineral grains of titanite and iron oxides
as well as minor amounts of pyrite (Fig. S8). However, in
contrast with facies 1, the data show that such reductive disso-
lution was minimal and likely isolated to small regions of pore
waters that became anoxic and sulfidic within the sediment.
We interpret this mixed hematite and magnetite assemblage
as a good representation of the detrital riverine input to the
lake given that iron oxide grains were largely not reductively
dissolved nor were magnetite grains fully oxidized to ferric
oxide phases. The preservation of a detrital assemblage is
therefore more consistent with persistent intermediate oxygen
levels than fluctuations between anoxic and oxic conditions.

Magnetic facies 3 is present in the shallowest water sedi-
ments and is dominated by hematite with minimal contribution
from lower coercivity phases such as magnetite (Figs. 2, 3,
S2, S3). Microscale textural analyses reveal hematite that
formed from oxidation of detrital igneous (titano)magnetite
grains based on abundant titanohematite/titanomaghemite
sometimes within rutile grains or with relict skeletal and trel-
lis lamallae shapes (Fig. 3, S9). Additional hematite and
titanohematite/titanomaghemite grains are seen as platelets
within phyllosilicate grains or rimming quartz grains (Fig. S9).
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Fig. 2. Rock magnetic and iron speciation data from the DO-8 (A) and WC-9 (B) cores through the Nonesuch Formation. Lithostratigraphy is modified from (23) with additional
measured section. Core depth is given in feet (1 ft = 0.3048 m) as those units are used for depth in the original cores. The grain size abbreviations are: Mu = mud, S = silt, Vf =
very fine sandstone, F = fine sandstone, M = medium sandstone, C = coarse sandstone, G = granule to cobble conglomerate. The sequence stratigraphic interpretation of
deepening and shallowing follows (22) and (23). Data points are colored reflecting the actual rock color. On the B., (coercivity of remanence) plot, the average coercivity
values of hematite and magnetite are plotted for reference. Magnetite abundance is an upper bound calculated using the saturation magnetization value of well-characterized
magnetite grains (39). Hematite abundance was calculated using either the saturation magnetization (when it is the only ferromagnetic phase present) or the remanent
saturation magnetization and coercivity spectra. Range bars on these calculated values capture both one standard deviation uncertainty associated with coercivity spectra
unmixing and the range of (remanent) saturation magnetization values measured in pure minerals (40, 41) (for more details see S| Appendix). The three distinct magnetic
facies, composed of distinct magnetic mineral assemblages, are denoted by blue lines and labeled along with interpreted depositional redox conditions. In the Feyr/Fer and
Fe,y/Feur plots (HR—highly reactive; T—total; py—pyrite), vertical dashed lines denote boundaries for oxic versus anoxic and ferruginous versus euxinic water column
conditions, respectively, that are utilized for iron speciation paleoredox proxy interpretations (18). While much of the Fexyr/FeT data fall in the “equivocal” zone between anoxic

or oxic conditions, the iron removed through each progressive extraction, particularly the Feqithionite €xtraction, varies with the magnetic facies.

Titanite and leucoxene are frequently observed and authigenic
titanium oxide grains were found, confirming that in-place
oxidation of iron-titanium minerals occurred (Figs. 3, S9;
42). Petrography also shows that, in addition to the observed
grains of hematite, there is abundant pigmentary hematite in
facies 3 (Fig. S9). These data reveal that in this facies there
has been significant oxidation of the detrital input to the lake
both during transport and, due to the presence of pigmentary
hematite and authigenic titanium oxides, within the sediment.
The original detrital input appears to have been similar to
facies 2 prior to additional oxidation.

Combined insights from magnetism and microscale textural
analyses with iron speciation. While rock magnetism and pet-
rography reveal that the iron mineralogy (and interpreted pale-
oredox) changes significantly through the cores, the Fexr /Fer
ratios are rather uniform. The previous iron speciation study

4 | www.pnas.org/cgi/doi/10.1073/pnas.1813493115

of Lake Nonesuch (11) interpreted their similar ‘equivocal’
Feur /Fer ratios to be indicative of ferruginous environmental
conditions obscured by post-depositional transformation of
the Fepr pool into clays. A major driver of this interpre-
tation was elevated Fer /Al ratios above normal oxic shale
values (e.g. 0.53 = 0.11; 46) and elevated iron abundance
in poorly reactive silicates. Both of these enrichments were
proposed to result from iron shuttling under anoxic conditions
(11). The Fer/Al ratios determined for our samples (ranging
from 0.57 to 0.99) are similar to these previous results (Fig.
S1). However, maps of modern soil geochemistry reveal there
is substantial variability in detrital Fer/Al ratios (19) and
a lake setting within a volcanic province, such as Paleolake
Nonesuch, is a setting where the Fer /Al ratio of the detrital
flux is likely to be higher than average. The Fer/Al ratios
in the oxic shallow sediments of facies 3, which should not
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Fig. 3. Example back-scatter electron microscope images and bulk coercivity spectra from each magnetic facies. The coercivity spectra show the derivative of magnetization
(dM(Am?)/dB (mT)) as a function of applied field and are fit with log-Gaussian components (40). The multiple components in facies 2 are unmixed and shown with uncertainty
associated with the unmixing (40). Facies 1 is characterized by the presence of pyrite and a noisy coercivity spectrum due to weak magnetization that indicates the presence of
magnetite in trace quantities (~15 ppm in this sample). Facies 2 has detrital grains of titanomagnetite (igneous titanomagnetite with exsolution lamallae visible in image) and
hematite with significant quantities of both magnetite and hematite resulting in a double-peaked coercivity spectrum. Facies 3 has a coercivity spectrum dominated by hematite
with disseminated hematite, aggregates of hematite crystals, and oxidized detrital titanomagnetite grains visible via electron microscopy.

have experienced authigenic enrichments, are similar to those
within the other facies (Fig. S1). These data support an
interpretation that the Fer /Al ratio is representative of the
detrital flux into Paleolake Nonesuch rather than the result of
enrichment of iron from an anoxic water column.

Although the Fepgr/Fer ratios themselves may be ambigu-
ous and lack a clear correlation to the three magnetic facies,
if the iron extraction pools are looked at in detail consider-
able differences are noted, which also separate the section
into three facies (Figs. 2, S1). Facies 3 stands out as having
high Fegithionite, oW Feacetate, and low Fecrs; the dithionite
extraction targets ferric iron (hydr)oxides which agrees well
with our magnetic quantification of abundant hematite in this
facies. While hematite is the most oxidized endmember within
the ulvospinel-magnetite-ilmenite-hematite series and forms
within oxidizing environments, in iron speciation analysis it is
grouped with the highly reactive phases. Therefore, its pres-
ence increases Fenr /Fer, which is higher in oxic facies 3 than
the other facies and contains the only sample with Feyr /Fer
> 0.38. This high Feur/Fer value could erroneously lead to
the interpretation of an anoxic environment if the mineralogy
leading to this high value were not considered. Facies 1 has
relatively low Fegithionite and high Fecrs, which agrees with
magnetic analyses suggesting no hematite and petrographic
observations of pyrite (extracted as chromium reducible sulfur,
CRS) in these samples. While the Feoxalate pool is typically
attributed to magnetite such that it is sometimes called Femag
(33), facies 1, 2 and 3 have similar Feoxalate values even though
the magnetic and textural analyses show facies 2 to have
much more magnetite. The quantity of iron in the oxalate
extraction is one to three orders of magnitude higher than
the abundance of magnetite calculated utilizing the magnetic
data (Fig. S10), and quantities of magnetite approaching 1

Slotznick et al.

wt% in a shale would be highly unusual. These results indi-
cate that the oxalate extraction is solubilizing iron from other
minerals in addition to magnetite. More research is needed to
fully understand the mineralogy removed by each sequential
extraction step in natural samples. In the meantime, workers
should continue to utilize careful terminology to make it clear
that this is an operational definition and that much of the iron
in the oxalate extraction is not from magnetite. Considering
the sequential iron speciation extraction data from (11) in
a similar framework would place most of those analyses in
facies 1 with zones of facies 3 and 2 near the basal flooding
surface with the Copper Harbor Conglomerate. As less than
half of the thickness of the Nonesuch Formation was captured
in the Presque Isle drill-core (47) from which these data were
obtained, such a classification matches our interpretations.

A preserved oxycline. These three facies and their juxtapo-
sition can be explained as the result of an oxycline in the
lake. The detrital input to the lake included both magnetite
and hematite (preserved in facies 2) due to weathering and
oxidation of the source igneous material during transport. Sed-
iments in the deepest part of the lake were anoxic, possibly
with anoxia extending into the water column; as a result, de-
livered iron oxides underwent reductive dissolution through
microbial metabolic processes as recorded by facies 1. Much
of this iron and iron within sheet silicates reacted with sulfide
to form pyrite, but sulfide availability was restricted to pore
waters and not sufficient to sulfidize all the available reactive
iron. Intermediate oxygen levels in waters throughout much of
the lake allowed for the preservation of detrital magnetite and
hematite in facies 2. In the shallow waters of the lake recorded
in facies 3, oxic conditions prevailed and most of the detrital
magnetite, as well as iron in other phases, was oxidized to
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hematite.

We interpret this vertical sequence of facies to reflect a
stacking of laterally distributed environments such that the
transition from the deepest-water low-iron-oxide facies into
the intermediate-water magnetite-rich facies and the shallower-
water hematite-rich facies is the result of an oxycline within
the ancient lake. The depth dependence of the oxycline is
similar to that found in modern eutrophic lakes wherein the
aerobic respiration of descending organic matter leads to a
decrease in dissolved oxygen with depth. Overall, these data
indicate that the lake was more deeply oxygenated than has
previously been interpreted on the basis of iron speciation data
alone. For much of its temporal duration, and throughout
much of its water column, there was oxygen in the waters of
Paleolake Nonesuch. While trophic modes are poorly known
for the diverse biota found within the Nonesuch (4) and their
paleobathymetric distribution is poorly constrained, these eu-
karyotes lived in a stable and hospitable lake environment
with available oxygen. It remains a puzzle why these eukary-
otic denizens in the fossil record did not leave an appreciable
sterane record (29) and why, despite seemingly favorable en-
vironmental conditions, eukaryotic productivity was so low
that sterane/hopane ratios have been found to be zero in in-
digenous organic matter (48). Regardless, the environmental
signal from this diverse lacustrine fossil locality is becoming
clear. Overall, these results highlight that coupling magnetic
and microscale textural data with geochemical data can resolve
ambiguous redox interpretations in deep time.
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