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Dissertation Abstract 
 

The process of searching for and rescuing people in distress provides an appealing spatial 

problem for geographers to support and for testing theoretical developments in the real-world. 

Essentially, the fundamental goals of wildland search and rescue (WiSAR) are to locate 

persons in need and extract them from dangerous situations. More recently, WiSAR 

researchers and professionals have also cited a need for proactive incident prevention as a 

critical responsibility, known as preventative search and rescue (PSAR). This research draws 

on my recently completed case-studies in Yosemite National Park and community 

development amongst GISystem and WiSAR professionals. Each of these components of 

WiSAR are inherently spatial and should be evaluated in light of emerging technology and 

theoretical advances in spatial sciences. Of particular interest are the real-world implications 

of time geography and probabilistic modeling of objects in space.  

 

This dissertation is formatted using standalone chapters for publication. In the first chapter I 

discuss the overall need for GIS related research in search and rescue as well as a conceptual 

framework for doing so. In Chapter II I present research related to preventing incidents. This 

chapter features two papers with first describing methods for georeferencing text based 

locality descriptions and preliminary findings on spatial patterns of incident. The second 

paper presents a spatiotemporal method for mapping the probability of WiSAR in Yosemite 

National Park by month. Chapter III presents research related to searching for missing 

persons. I present a paper that describes two probability of area methods and findings related 

to applying global versus local models. 

 

Finally, Chapter IV pertains to the rescue phase of WiSAR. Here I present a paper that 

compares an expert (weighted overlay) versus machine-learning technique for mapping 

suitability of helicopter landing areas. Following this I conclude the dissertation with final 

remarks and recommendations. 
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Chapter I: Introduction 

Researching Wildland Search and Rescue GISystems: An 
Inherently Spatial Topic for Geographers and GIScientists 
 

[Formatted and prepared for the Annals of the Association of the America Geographers] 

 

Wildland search and rescue (WiSAR) is the process of searching for and rescuing people in 

distress. It provides an appealing spatial problem for geographers and allows for testing 

theoretical developments in the real-world. In this paper we aim to present a background on 

WiSAR, describe the operational components, identify current GISystem use-cases, and 

highlight areas of GIScience that should be explored within the context of WiSAR operations 

(Prevent, Search, and Rescue).  

In the United States, the number of people and total time spent participating in one or 

more outdoor activities is believed to have increased steadily since 1999 and in 2011, 141.1 

million Americans participated in some form of outdoor recreation (The Outdoor Foundation 

2012). With this comes increased frequency of activities in and around wildland (wilderness / 

rural) areas, including hiking, climbing, skiing, etc., especially on public lands such as US 

National Parks. While this can be viewed as a positive impact on civic engagement in the 

protection of public lands – it places an increased demand on government agencies 

responsible for protecting the landscape from recreational impacts while at the same time, 

protecting people while they recreate in the landscape. When mishaps occur in undeveloped 

areas where modern emergency service equipment cannot access, a search and rescue 

response is typically required. In Heggie and Amundson (2009), a 15-year survey of US 

National Parks, it was found that the financial cost of WiSAR operations is between 3 and 4 

million dollars per year and it was estimated that 1 in 5 incidents would have resulted in a 

victim fatality if a response was not initiated.  Moreover, rescues require many hours of 

specialized training to prepare for and expose rescuers, even those that are unpaid volunteers, 

to great personal risk. Any technology that can reduce the frequency, risk, and / or resource 

cost would be of great benefit to the US National Park Service, volunteer teams, and other 

agencies responsible for WiSAR response. 

WiSAR operations can typically be broken down into four phases: Locate, Access, 

Stabilize, and Transport (LAST; Hill & Gale, 1997). More simply, it can be described as the 

search (Locate) and rescue (Access, Stabilize, and Transport) phases. In some cases the 

process of locating a victim (search) takes much longer than the actual rescue. In other cases, 

particularly in extreme environments such as vertical terrain or high energy riverine 

environments the rescue phase will be more technical and complex, taking a longer period of 

time than locating the victim. In all cases time to completion and safety of rescuers are high 

priority and require the communication and understanding of relevant geographic elements 

(e.g. likely area of missing person, fastest route to the victim, coordinates of hazards in the 

area). Additionally, WiSAR researchers and professionals have also cited a need for proactive 

incident prevention as a critical responsibility for land management agencies, known as 

preventative search and rescue (Hung and Townes 2007a, Heggie and Amundson 2009, 

Heggie and Heggie 2009). This requires a high level of geographic understanding prior to an 

incident actually occurring. 

Each component of WiSAR (Search, Rescue, and Prevention) is inherently spatial 

and should be evaluated in light of emerging technology and theoretical advances in spatial 

sciences. If Geographic Information Science (GIScience) is the theory behind the 

development, use, and application of geographic information systems (GISystems; 

Goodchild, 1992), then WiSAR is an ideal topic for GIScientists to study. However, to date, 

GISystems have not been integrated into WiSAR as they have been in other emergency 

services. One simple reason for this may be historically poor access to GIS technology. Most 

WiSAR teams in the US are volunteer (unpaid) and have limited or no exposure to advances 
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in computer technology due to budget limitations and have limited access to GISystem 

training. Manager perceptions may be that the advantages of a true GISystem  are be 

outweighed by the monetary or training-time cost of GISystem integration until proven 

otherwise. Yet the demands placed on these agencies for WiSAR continues to grow. 

In S.L. Cutter's (2003) historic review of GIScience in disaster and emergency 

management, she highlighted challenges associated with the use of GISystems previously 

outlined by GIScientists (Alexander 1991, Goodchild 2003, Kwan 2003) and proposed core 

areas that were high priority for GIScience research. Since writing this paper, use of 

GISystems has expanded into many core workflows of emergency management agencies with 

dedicated software packages (e.g. HAZUS; Schneider and Schauer 2006; Tate, Cutter, and 

Berry 2010). Emergency Management and WiSAR are similar and therefore have similar 

challenges with utilizing GISystems. Today, the lack of GISystem utilization in WiSAR may 

be due to similar constraints previously faced by emergency management in the following 

manners: understandable user interfaces; data quantity, quality, and integration; real-time data 

and information. With advances in technology and more widespread availability of 

commercial-off-the-shelf GIS software, many of these constraints have been lifted and 

communities of WiSAR practitioners interested in GISystems have recently emerged. Recent 

research proposals and abstracts in Annual Meeting of the Association of American 

Geographers confirm the need to explore ways to make GISystem software more accessible, 

continue to raise GISystem awareness, and for spatial analyses to be incorporated into 

WiSAR operations (Doherty, Ferguson, et al. 2012). 

In response to the needs described above we propose two related concepts; WiSAR 

operations and prevention efforts can benefit from the incorporation of GISystems, and 

likewise, GIScience theory can benefit from the application GISystems to WiSAR. Once 

integrated, new spatial analyses may emerge or converge as is seen at the interface of 

GISystems and other industries (e.g. crime mapping, wildland fire GIS, geomedicine). There 

have been some preliminary attempts to integrate GISystems to WiSAR, but our objectives 

here is to formally investigate prominent GIScience questions related to WiSAR and raise 

awareness in each respective community of professionals. We use the Prevention, Search, and 

Locate components of WiSAR to explain this synergistic relationship and illustrate the 

conceptual relationships of each with current topics in GIScience and Geography research. 

The case study we present here is an actual WiSAR incident in Yosemite National Park from 

2004 (Figure 1.1). In this case, a 61-year old woman was reported missing near Half Dome 

surrounded by steep terrain.  

 

Prevention  

In order to intentionally prevent an event from occurring there are some prerequisites 

required. The incident must be preventable, one must know about the possibility of the 

incident ahead of time, and an action must occur at the right time and place to inflict some 

plausible change to prevent the situation (Lawson et al. 2006). In Preventative Search and 

Rescue (PSAR), the primary tool employed for prevention is to educate people at risk by 

providing information. In order to know what information to provide, PSAR personnel must 

be familiar with the when and where details of current hazards (weather, trail conditions, 

overall fitness of visitors) as well as hazards that have occurred in the past (spatio-temporal 

information). GISystems offer a robust solution to document and analyze the geographic 

elements that are factors controlling the presence or absence of events, such as disease 

outbreaks. Just as in classic spatial epidemiology studies (Dr. Snow’s map of cholera in 

England, Koch and Denike 2009) that raised the notion of how geography might be used to 

understand disease transmission, this concept should be extended to SAR at a local level to 

provide a GIScience approach to risk assessment.  

To date, little or no research has implemented the use of GISystems in the spatial 

epidemiology of search and rescue as suggested here. There appears to be a widespread 

interest in WiSAR risk assessment research , especially in national parks beginning over a 



13 

 

 

 

decade ago with the paper Morbidity and Mortality in the Wilderness (Montalvo et al. 1998). 

This was the first of several retrospective studies to discuss how WiSAR incident data could 

be used to “guide future wilderness use, education, and management” and alluded to how a 

“standardized, computerized database would greatly facilitate future evaluations, decisions, 

and policies”. Since then, however, findings in retrospective studies are limited to age, sex, 

recreational activity, mode of rescue, and contributing factors in WiSAR incidents (Wild 

2008, Forrester and Holstege 2009, Heggie and Amundson 2009, Heggie and Heggie 2009). 

In order to know what information to provide however, PSAR personnel must be familiar 

with the when and where details of current hazards (weather, trail conditions, overall 

preparedness of visitors) as well as hazards that have occurred in the past (spatio-temporal 

information). Having knowledge of where and when incidents have occurred in the past can 

enhance our knowledge of where incidents will occur in the future and lead to prevention of 

incidents. 

To begin understanding incident prevention we must first describe the locations in 

which previous incidents have occurred. In wilderness locations there is lack of building 

addresses for geocoding incident locations and coordinates are often not recorded at the time 

of the incident. Instead, reports are written and localities are described in text. Compared with 

geographic coordinates, textual locality descriptions can be seen as qualitative or semi-

qualitative, representing a rough distribution range of the locality based on the understanding 

of the person who recorded the information and subject to the interpretation of the person 

reading it. Hence, uncertainty associated with these descriptions is inevitable (Goodchild 

2004, Liu et al. 2009). However, georeferencing techniques such as the point-radius method 

(Wieczorek et al. 2004a) and probabilistic method (Guo et al. 2011a) have provided us with 

quantitative assessment tools that allow us to create spatial data that accounts for uncertainty 

in textual data. In particular, such text-based data of incidents can provide rich sources of 

cultural and geographic information if they are simply georeferenced for future use (Mostern 

and Johnson 2008).  

In Doherty et al. 2011, 10-years of search and rescue incident reports in Yosemite 

National Park provided a unique opportunity to study the textual description and its 

uncertainty.  It was found that while largely text based, the locality descriptions in historic 

reports were precise enough to be georeferenced.  In addition, once incidents can be 

georeferenced they can be archived and also analyzed using spatial statistics to determine 

areas with significant amounts of WiSAR activity in the past. This was the first study where 

such georeferencing techniques were applied to incident data for analysis purposes. A follow 

up study showed that probabilistic models based on incident location and environmental 

layers alone could be used to determine areas of high incident probability in the future (P. J. 

Doherty et al. in press). This allowed for a novel test of forecasting techniques with presence-

only data, or geographic one-class data (GOCD; Guo et al. 2011) with the presence and 

background learning algorithm (PBL; W. Li, Guo, and Elkan 2011). More importantly, the 

Yosemite dataset revealed the value of incorporating temporal factors in PBL algorithms – 

analyzing incidents by the time of year they occur reveals spatial patterns of probability that 

would not otherwise be seen. While this early research is very compelling, future research is 

needed in WiSAR Prevention and GIScience to focus on spatio-temporally enabled records 

management systems and further analyze incidents by specific attribute types (incident type, 

method of rescue, victim demographics) to direct and prioritize PSAR efforts.  

 

Search 

It is estimated that worldwide over 100,000 people will be reported missing in the 

wilderness each year and some are never found alive or recovered (National Association for 

Search and Rescue 2005). Search incidents are inherently spatial problems that need to be 

solved quickly. The search for a missing person is the Locate phase of a WiSAR incident as 

explained earlier (Locate, Access, Stabilize, Transport) and represents a true emergency. 

Finding a missing person in the wilderness or rural area is a precursor to a successful rescue. 
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In search incidents, time is a critical variable in determining patient survival, with 

survivability declining significantly after the first 51-hours of a search (Adams et al. 2007).  

Therefore search managers need to develop a search plan quickly and establish an area of 

containment. Once it is determined that someone is missing, the first step to finding these 

missing persons is to draw a boundary around the area where they are most likely to be lost or 

injured. Then the search area must be divided into feature-based polygons known as search 

segments. Finally, the search segments are prioritized in order of highest estimated 

probability and assigned to search teams.  

There are concepts of probability in this process known as Probability of Area (POA), 

Probability of Detection (POD), and Probability of Success (POS) as described in equation 

2.1 below.  

 

              
 

Search theory is completely dependent upon an accurate assessment of how well a search area 

was covered by a team (POD) and that the boundary of the area (polygon) being searched 

actually contains the missing person (POA). 

 

          
 

Where c is the coverage and e is the base of the natural logarithm. Coverage is the ratio of 

two areas: search effort as track length multiplied by width (the polyline representing 

searchers movements and the buffer indicating where they can effectively search), divided by 

the total area searched. In search planning like most complex decision making processes, 

errors in judgment (underestimated POA, overestimated POD) early in the planning stages 

significantly hampers the search effort despite subsequent decisions. 

The objectives of any search operation are to maximize POS as quickly as possible 

which is a function of increasing POA and POD. These concepts are grounded in Operations 

Research and were initially developed with maritime and aviation search techniques in mind 

(Koopman 1980, Stone 1989, 2007, Koester et al. 2004). At this time, most WiSAR 

operations utilize these concepts in a variety of ways but with little geospatial resources to 

accurately measure either POA or POD. With the integration of Global Position Systems 

(GPS) for searchers, a quantitative index of POD can be obtained by measuring coverage 

based on searchers’ GPS receiver track-log, but the POA is still very much theoretical.  

Considerable effort in missing person research has been dedicated to analyzing lost person 

behavior and summaries of previous search incident outcomes to generate a POA value 

(Syrotuck 1977; R. J. Koester and Stooksbury 1995), and the best source of these data is the 

International Search and Rescue Incident Database (ISRID; R. Koester 2008). The ISRID 

database provides an excellent tool for comparing incident outcomes based on the missing 

person profile (e.g. age, gender, mental status) and activity (e.g. hiking, biking, gathering). 

However this database has limitations in its use as a search planning tool because of its lack 

of GISystem integration and the inability to infer global statistics onto local landscapes. For 

instance would a hiker in rolling topography in Great Britain be expected to behave the same 

as hiker on a mountainous trail in the Sierra Nevada of the United States?   

In Doke et al. (in press), eleven years of missing person case incident reports were 

reviewed from Yosemite National Park beginning in the year 2000. The initial planning 

point (IPP; e.g. last known location or point last seen) and found locations for each of 

these incidents were georeferenced using the point radius method by decoding geographic 

data that were buried in narrative text (Figure 1.2). These two pieces of information were 

used to compare a local dataset to that of the ISRID. While many statistical summaries of 

the ISRID were similar to the Yosemite dataset, the localized dataset was significantly 

different in key areas such as distance between IPP and found locations (in general, a 

shorter total distance in Yosemite versus global incidents). This research also 

(1.1) 

(1.2) 
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demonstrated the usefulness of other geographic data such as watershed boundaries 

(USGS 2012) for studying missing person search outcomes and developing POA strategy.  
One way to improve on this statistical POA strategy would be to take into account the 

physical limitations to walking velocity in the landscape and combine it with the theoretical 

POA. Travel cost modeling (cost surface plus cost distance) integrated into GISystems can 

produce potential path areas (Kim and Kwan 2003, Lin and Goodrich 2010) and this has been 

cited as a critical  need in recent years by both SAR (Koester 2008) and GIScience 

researchers (Miller and Bridwell 2009) for improving POA calculations. Here (Figure 1.3) we 

provide an example of such a tool used on an actual search incident. The result of this 

simulation is a display of classified isochrones by hour. While such isochrones products are a 

valuable visualization tool, they must be correctly interpreted by a trained search manager and 

should be further tested and refined by GIScientists.  

While Search related applications of GISystems are used in Maritime environments 

(Search and Rescue Optimal Planning System Kratzke, Stone, and Frost 2010), a specific 

graphic user interface (GUI) is still lacking for wilderness search. Use of commercial-off-the-

shelf software is beginning to increase in frequency (Ferguson 2008, Theodore 2009, Durkee 

2010, Filipkowska et al. 2012) and remote sensing techniques have been applied to more 

recent high profile missing person incidents (e.g. Steve Fossett and Jim Gray). At the time of 

this writing, a community of practice has formed around WiSAR and GIS and they have 

made GISystem tools available, known as MapSAR
1
. In addition, government agencies are 

beginning to build requirements for GISystem integration into missing person search 

operations (personal communication; US National Park Service, California Emergency 

Management Agency). Therefore it is critically important that GIScience approaches are 

available to ensure the best use of GISystems for search operations. Future research in the 

Search component of WiSAR and GIScience should focus on quantifying POA and POD 

and incorporating time-geography into operational planning. This interesting coupling of 

theory and practice will benefit GIScientist and WiSAR practitioner alike. 
 

Rescue  

Once a person(s) is located, access has been established, and the situation has been 

stabilized, rescuers will need to make a transport decision. If the person is not ill or injured 

they will probably be guided out in the same fashion the rescuers arrived, by walking. If the 

person cannot leave the wilderness without support then they may be carried out on a 

wheeled-litter. This can require several people and a long period of time depending on the 

terrain and weather conditions. A critical piece of information for making this decision would 

be the amount of travel time needed to access the patient and then the total time needed to 

transport the patient based on the route (i.e. which trail to use) and mode of transportation 

(foot, horse, helicopter). This information is typically described by GIScientists as Location 

Science.  

Location Science is the sub discipline of GIScience that seeks to solve problems 

based on the classic mathematical principles of maximizing benefits and/or minimizing costs 

in travel (Dijkstra 1959). GISystems provide a platform for solving these problems (Li and 

Yeh 2005, Murray and Tong 2007) by enabling mathematical analyses to be done in three 

dimensions and in a representative network of points, lines, and polygons (Miller 1996). Early 

Location Science research was actually conducted with the intent to solve the real-world 

problems that emergency service agencies face. For example, if we were to construct a new 

fire station in a growing city, where should we place it to handle fire response in the shortest 

time possible (Hogg 1968, Toregas et al. 1971, Church and ReVelle 1974)? Much of the 

initial theories behind such analyses were based on service areas defined as a simple radius 

extended outward from each station. These analyses however do not account for topography, 

barriers to travel, and travel corridor attributes. More recently researchers have approached 

                                                      
1
 www.mapsar.net 
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network analyses from a regional service coverage approach utilizing more advanced 

algorithms (Indriasari et al. 2010) in conjunction with a network dataset. These same 

techniques could be used to make decisions on what access points should be used for a 

ground-based rescue or for making decisions on how long a rescue may take (Figure 1.4a). 

Finally, if a rescue is deemed extremely urgent and requires a helicopter, then a 

suitable site (landing zone) must be chosen within close proximity to the rescue scene. In 

addition, to land safely a landing zone must meet the terrain requirements of minimal slope 

and be free of hazards (vegetation and man-made structures). If a landing zone cannot be 

found, alternatives may include more dangerous helicopter rescue techniques or calling off a 

helicopter operation altogether. A landing zone suitability map (Figure 1.4b) would be a 

useful tool to assist in this decision making process. In some cases, a rescue team may have a 

set of coordinates for previously used landing areas, but incidents may occur in an unfamiliar 

location without a known landing location nearby. This is the problem researched in P. J. 

Doherty, Guo, and Alvarez 2012 where classic site-search analysis techniques (Malczewski 

2004) were compared to machine learning algorithm models (Baldwin 2009). While this 

solved a practical problem of where to land helicopters, it also contributed a key GIScience 

finding that both expert and machine learning approaches can produce accurate suitability 

maps and be used to validate each other. In the future, GIScience research related to the 

Rescue component of WiSAR should focus on reducing the elapsed time between locating 

patients and rescue completion. This will have practical applications as well as provide 

innovative research topics in Location Science and beyond.  
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Chapter II: Prevention  
 

Georeferencing Incidents from Locality Descriptions and its 
Applications: a Case Study from Yosemite National Park Search 
and Rescue 
 

[Formatted and previously published in Transactions in GIS] 

 

 

Abstract 

The Search and Rescue (SAR) of individuals who become lost, injured, or stranded in 

wilderness presents a unique and worthwhile spatiotemporal challenge to investigate. Once 

incidents are georeferenced they can be spatially queried and analyzed. However, one major 

challenge for evaluating SAR in a spatial context is the lack of explicitly spatial data 

(addresses or coordinates) for historic incidents; they must be georeferenced from textual 

descriptions. This study implemented two established approaches for georeferencing 

incidents, the ‘Point-Radius’ and ‘Shape’ methods. Incorporating uncertainty measurements 

into a spatial database allows for more appropriate analyses of spatial dependence and the 

spatial distribution of incidents. From 2005–2010, 1,271 of 1,356 Yosemite Search and 

Rescue YOSAR incidents (93.7%) could be georeferenced using the Point-Radius Method, 

with a mean uncertainty radius = 560 _ 51 m and mean uncertainty area of 3.60 _ 0.840 km2. 

However, when the Shape Method was applied to six case studies by considering the 

reference object shape, the uncertainty areas were reduced considerably (by up to 99.5% of 

the uncertain area generated by the Point-Radius Method). This is the first spatially-explicit 

study of SAR incidents and yields valuable insights into the role of georeferenced data in 

emergency preparedness. 
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1 Introduction 

 

The lack of spatially explicit descriptions in text for natural and cultural information is a 

widespread challenge for the management and analysis of retrospective data. The process of 

spatially referencing localities or historic incidents from text is typically known as 

georeferencing and is a fundamental component of spatial analysis (Goldberg et al. 2007). 

Geographic Information System (GIS) technology has greatly enhanced our ability to process, 

store, and analyze georeferenced data as spatial data points. For instance, when textual 

descriptions already match those in a spatial database with coordinates, such as address lists, 

this process is known as geocoding. However, when these textual descriptions cannot be 

found in an existing geocoded database or do not have a physical address, localities must be 

georeferenced using a gazetteer (Mostern and Johnson 2008) of named places. This applies 

directly to the Yosemite Search and Rescue (SAR) data used for this research. SAR incident 

reports have been written or typed in case incident report format from 1967 to 2010 with 

narratives that describe where incidents occurred. Aspects of retrospective georeferencing 

from historical descriptions have been evaluated closely by ecologists (Hill et al. 2009) for 

spatially referencing museum specimens, but the techniques have not been applied directly to 

a wide variety of other potentially suitable case studies. 

For example, an incident may have been described as occurring “3 miles North of 

Tuolumne Meadows”. This description attempts to identify where the incident has occurred 

with only words. The only geographic information given involves a feature found in a 

topographic base map (Tuolumne Meadows), a heading (North), and a distance (3 miles). It is 

important to consider that retrospective georeferencing is done with the best information 

available and that much of the historic data were recorded without best practices in mind. 

While this is unfortunate from an analytic perspective, many of the accounts still contain 

valuable geographic information. Without a protocol for georeferencing these reports, these 

data will be underutilized and actionable spatial information will be unavailable for future 

studies on epidemiology or planning for emergency preparedness. 

In historic text, most locality descriptions are based on at least one specific named 

place, which acts as the Reference Object (RO) for positioning a locality. The RO may be a 

point, linear (path), or areal feature, such as a junction, highway, or city. For simplicity, these 

objects are sometimes represented using a bounding box, by which the actual shape of the RO 

is circumscribed. The final shape containing the described locality is called the Target Object 

(TO). The objective of the georeferencing process is to estimate the TO based on the 

positions, shapes, and uncertainties of its ROs and spatial relationships (Guo et al. 2008, Liu 

et al. 2009). 

While an estimated location based on this information may not be as specific as 

coordinates given from a modern GPS, it still provides valuable information. However, in 

traditional methods, the uncertainty involved with each frame of reference creates barriers for 

understanding spatial patterns of occurrence and causative factors (Chapman and Wieczorek 

2006). In other words, the incident referenced will have occurred in one distinct location, but 

if it is represented by a single point or large indiscriminate bounding box, then isolated 

causative factors will not be identifiable. Spatial analysis without consideration of spatial 

uncertainty cannot be trusted in the same way as those computed with quantitative uncertainty 

values (Fisher 1999). New georeferencing techniques account for spatial uncertainty using 

hypothesis-driven approaches to overcome the shortcomings associated with traditional 

techniques. Two methods will be examined in this research; the “Point-Radius” and the 

“Shape” methods. The concepts of both methods have previously been described, but have 

not been compared explicitly, in the peer-reviewed literature. 

The main objectives of this study are to: (1) review the conceptual basis for the Point-

radius and Shape methods; (2) highlight several case-studies to compare the Point-radius and 

Shape methods; (3) present the integration of georeferencing with spatial pattern analyses; 

and (4) describe the implications of our findings on GIScience. Finally, the SAR 
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georeferencing problem has real-world implications worth solving and we intend to lay the 

foundation for novel epidemiology research. 

 

2 The Point-Radius and Shape Methods 

 

The Point-Radius Method goes beyond describing a location using a single coordinate 

pair (‘Point Method’) by indicating an area of uncertainty using a circle with a well defined 

radius. The radius of each georeferenced incident represents a distinct hypothesis that 

combines multiple uncertainties into one metric attribute, the uncertainty radius. This method 

arose in the discipline of biodiversity informatics as a means to capture location information 

for historical accounts of the occurrences of species in nature in such a way that consumers of 

that information would have an easy way to assess each record’s potential fitness for an 

intended use (Chapman 2005). The method is well documented (Wieczorek et al. 2004) and 

has six steps that can be performed relatively quickly using explicit documentation: 

 

1. Classify the locality description; 

2. Determine coordinates; 

3. Calculate uncertainties; 

4. Calculate combined uncertainties; 

5. Calculate overall error; and 

6. Document the georeferencing process 

 

Once all of these steps have been completed for a particular georeference, the result is a set of 

unprojected coordinates (which can be projected by local datum) and a radius is typically 

given in meters for most locality descriptions. The Point-Radius Method was designed to be 

easy to construct and to store, providing a least common denominator to express 

georeferences that includes all of the associated uncertainties.  

The Shape Method has the same overall goal as the Point-Radius Method – to capture 

all sources of uncertainty in a textual description of place in a spatial description. The main 

difference between the two is that in the Shape Method the geometries may be more complex 

than a circle and seek to exclude areas that are not within the original description. An easy 

way to illustrate the difference is to consider a textual description “along Strawberry Creek”. 

Using the Point-Radius Method, the resulting georeference would be a circle with the center 

located on the creek in a position that minimized the distance to both mouth and head. With 

the Shape Method, the resulting georeference would be a buffered poly-line that included the 

full length of the creek with all of its twists and turns from head to mouth. Concrete examples 

of the practical differences between the two methods are illustrated in association with the 

case studies in later sections. Though the Shape Method is, in general, more time-consuming 

to produce than a Point-Radius, it excludes areas that do not fit the original description.  

There are other methods for capturing georeferences and associated uncertainties that 

will not be considered in detail in this article. These include the Bounding Box method and 

the Probability Method (Guo et al. 2008). The Bounding Box Method is conceptually similar 

to the Point-Radius Method. Instead of a single central coordinate and a radius as a distance, 

the Bounding Box Method describes the area as two coordinate pairs. The disadvantage of the 

Method in comparison to the Point-Radius Method is that it requires a complex latitude- and 

datum-dependent calculation to determine the linear “size” of the georeference – it has no 

simple scalar with which to assess or filter georeferences. 

The Probability Method is similar to the Shape Method in that it is used to constrain 

the resulting georeferences to only those areas consistent with the original description. The 

Probability Method goes further, to describe the area within the boundaries of non-zero 

probability with a raster of points having values representing the normalized probability that 

the point represents in the original description. 
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3 Case Studies 
 

In order to compare the conceptual model and results from the two georeferencing methods, 

we selected representative case studies from the YOSAR case incident reports in Yosemite 

National Park (Figure 2.1). These case studies cover the type of descriptions used in the 

majority of incident accounts in the 2005–2010 dataset. As for reference objects, we used a 

variety of “map services” available online using commercial-off-the shelf GIS software and 

plug-in web-mapping applications. In addition to these authoritative and free sources of 

spatial data, we also used colloquial data such as digitized park base maps and the Yosemite 

Placenames Database (YPD) that are used internally by the National Park Service Emergency 

Communications Center. The YPD was created by park staff to combine the U.S. Geologic 

Survey (USGS) Geographic Names Information System and geocoded colloquial names for 

geographic localities within Yosemite National Park (USGS 1981). This database is dynamic 

and is updated when new localities are entered by park staff (at a scale no less than 1:24,000). 

The YPD is an example of volunteered geographic information (VGI) that is useful from a 

georeferencing and historic cultural data perspective. 

Each georeference conducted using the Point-Radius Method was done so in 

accordance with Wieczorek et al. (2004) using the Georeferencing Calculator
2
. The 

georeferencing procedure utilized either the USGS Quadrangle maps or the YPD to place the 

TO. The Quadrangle maps have been converted to raster graphics that render at a 1:24,000 

scale. In addition, all TOs were georeferenced using NAD 1983, and the latitude and 

longitude for each TO was measured in decimal degrees using GIS software. The maximum 

uncertainty was calculated as the sum of individual error components: 

 

maximum uncertainty = ∑   ∑   

 

where u is the maximum uncertainty for independent (i) or dependent (d) sources of error 

(Wieczorek et al 2004). In addition, the entire georeferencing process was recorded. 

We successfully georeferenced six case studies, using both the Point-Radius and 

Shape methods. The output of each georeference can be visually compared as vector polygons 

in a GIS leading to a more robust conceptual understanding of the textual descriptions 

themselves. The vector polygon outputs from both methods can be stored in a spatial database 

along with other attribute information. More importantly, both forms of explicitly spatial data 

can be analyzed for autocorrelation, patterns in distribution, and spatial association with 

related factors. The Point-Radius Method generated much larger uncertainty areas (range 2.66 

¥ 10-3–2.17 ¥ 101 km2) than the Shape Method (range 5.70 ¥ 10-4–3.20 ¥ 100 km2; Table 

2.1). Although the area of uncertainty was greater for the Point-Radius Method, the 

processing time per incident for the Point-Radius Method (five to 15 minutes) required less 

time than the Shape Method (15 to 90 minutes). 

 

3.1 Case Study 1 – Junction  

Report Description – “Incident occurred at the confluence of the Merced River and Tenaya 

Creek” 

In this case (Figure 2.2), the locality description comes from two separate 

hydrological units (streams) that have been defined in polyline vector format (Simley and 

Carswell 2010). 

Point-Radius Method – From this account, we classified the locality description as a 

junction and georeferenced the incident following the guidelines set forth for a feature or 

named place (Chapman and Wieczorek 2006). The poly-lines representing the Merced River 

and the Tenaya Creek, the two specified ROs, were identified from the USGS National 

Hydrography Dataset, and we plotted the TO at the intersection of the two ROs. The 

                                                      
2
 http://manisnet.org/gci2.html 

(2.1) 
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uncertainty associated with the precision of the map scale as well as the extent of the 

intersection was taken into account. 

Shape Method – Since each line feature is associated with error, we generated two 

buffer zones of the two linear features and computed their intersection as the maximum 

distribution range of the TO. The buffer distance is determined according to the precision due 

to the map scale. In this incident, the map scale is 1:24,000, and thus we set the buffer 

distance to be 12 m. 

 

3.2 Case Study 2 – Areal Feature 

Report Description – “Incident occurred on the Subdome of Half Dome”  

In this case (Figure 2.3), the locality description for the areal feature known as 

“Subdome” was written using the USGS Topographic Quadrangle maps as a reference map. 

This has been common practice for the report-writers in Yosemite since the 1960s. Today the 

USGS Quadrangle maps have been converted to digital raster graphics and are available in a 

seamless format as a map service at the 1:24,000 scales
3
. 

Point-Radius Method – We classified the locality description as an areal feature. The 

center of the RO, “Subdome of Half Dome”, was identified using the YPD, and the TO was 

plotted at this point. The uncertainty associated with the extent of the Subdome was then 

estimated using the USGS Quadrangle digital raster graphics at a 1:24,000 scale. 

Shape Method – For this case, we assumed that the possible location of the TO is 

uniformly distributed inside the areal feature. Hence, the geometry of the feature is directly 

used to represent the uncertainty. 

 

3.3 Case Study 3 – Offset Along a Path 

Report Description – “Incident occurred on the Four-Mile trail approximately 1.5 miles up 

from the Four-Mile Trailhead” 

The locality description georeferenced here (Figure 2.4) is based on poly-line vector 

data for trails from the National Park Service GIS data store
4
 and the USGS Geographic 

Names Information System (GNIS) Gazetteer as point vector reference objects for the locality 

description. 

Point-Radius Method – We classified the locality description as offset along a path. 

The ROs were then identified as 1.5 miles (distance) along the Four-mile trail, starting at the 

Four-mile trail trailhead. To plot the TO, we measured 1.5 miles along the Four-mile trail 

from the trailhead using a measuring tool within a GIS. The TO was plotted on the trail at this 

distance and the latitude and longitude were recorded for this point. The default extent of 15 

m was used for small features in the extent of the starting point (Four-mile trail trailhead), and 

the distance precision was one-half mile. 

Shape Method – We took into account two types of uncertainty for this case. First, 

the error associated with the path can be modeled by a buffer zone. Second, the offset 

distance may be imprecise. For example, if the description is “9 miles from A along N trail”, 

the error interval is [8.5, 9.5]. Note that the distance is measured along the linear feature 

instead of Euclidean distance. Based on this information, the actual shape formed for the 

TO’s distribution is a buffer zone created by a subset of the path. 

 

3.4 Case Study 4 – Between Two Features 

Report Description – “Incident occurred between Young Lakes and Mount Conness” 

To georeference this incident (Figure 2.5), we used a combination of digital raster 

graphics for the summit of Mount Conness (see above for USA Topo map service) and 

polygon data for Young Lakes from the USGS National Hydrography Dataset (NHD) (Simley 

and Carswell 2010). 

                                                      
3
 http://services.arcgisonline.com/ArcGIS/rest/services/USA_Topo_Maps/MapServer 

4
 https://nrinfo.nps.gov/Map.mvc/GeospatialSearch 
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Point-Radius Method – The case incident report indicates that a hiker went missing 

on a hike from Young Lakes to Mt. Conness. From this information, the locality description 

can be classified as “between two features”. We identified the ROs in this incident as Young 

Lakes and the summit of Mount Conness. The distance was measured between the center of 

the two named features, and the TO was plotted at this location. The extent was then 

measured as one-half the distance between the centers of Young Lakes and the summit of 

Mount Conness. 

Shape Method – Suppose the two features are S1 and S2, we created a convex hull H 

for them and used H-S1-S2 to represent the TO’s possible distribution. Note that we did not 

consider the heterogeneity of uncertainty inside the TO region. 

 

3.5 Case Study 5 – Distance from a Feature 

Report Description – “Incident occurred 200 yards away from the Wilderness Parking Area” 

The Wilderness Parking Area is located in Yosemite Valley, the center of which has 

been entered into the YPD as geographic coordinates. The extent of the Wilderness Parking 

Area can be digitized using high-resolution imagery which for Yosemite National Park is 1 m 

U.S. Department of Agriculture (USDA) National Agriculture Imagery Program (NAIP) 

imagery. 

Point-Radius Method – We classified this locality description as “distance from a 

feature”. The coordinates for the center of the RO, the wilderness parking lot, were identified 

from the YPD, and the TO was plotted at this point. The extent of the wilderness parking lot 

was determined by measuring NAIP imagery of the area within a GIS. The uncertainty due to 

the dependent variable of distance precision (“200 yards”) was also taken into account 

(Figure 2.6). 

Shape Method – We adopted the method proposed by Guo et al. (2008). For each 

point inside the feature, we generated an annular zone considering the distance error. The 

final shape is the union of all annular zones corresponding to the points inside the feature. 

Suppose the feature is S and the distance is d with error δ, the resulting uncertainty area can 

be computed by: 

{ | ( , ) }
p S

T t d dist t p d 


      

where dist(t,p) denotes the distance between two points t and p. 

3.6 Case study 6 – Direction with a header 

Report Description – “Incident occurred 1/4 miles North of Glen Aulin High Sierra Camp” 

The Glen Aulin High Sierra Camp is located in Tuolumne Meadows, which is 

geocoded in the USGS GNIS gazetteer. The extent of the Glen Aulin High Sierra Camp was 

digitized using high-resolution imagery, which for Yosemite National Park is 1 m USDA 

NAIP imagery (Figure 2.7). 

Point-Radius Method – The RO was identified by the writers as Glen Aulin High 

Sierra Camp and there was no information indicating that the incident occurred on a trail. 

Therefore we assumed the distance (1/4 Mile) is to be measured ‘by air’. This locality 

description is classified as “direction with a header”. The geographic coordinates for the 

center of Glen Aulin High Sierra Camp were determined using the YPD. The extent of the 

camp as well as the dependent variables of the distance precision and directional precision 

was taken into account. The Georeferencing Calculator was then used with the calculation 

type: ‘Coordinates and Error’. Finally we placed the TO at the newly calculated coordinates. 

Shape Method – This case is handled using the same approach with that of case 5. 

Suppose the specified direction is R, the resulting uncertainty area is: 

 

{ | ( , ) }
p S

T t dir t p R


   

where the dir(t,p) is the cardinal direction relation between t and p. 

(2.2) 

(2.3) 
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4 Spatial Analysis of Georeferenced Data 

 

The ability to detect clusters amongst spatial count data is fundamental to such fields as 

ecology, geography, and epidemiology (Ostfeld et al. 2005). With regards to epidemiology, 

the ultimate goal of spatial analysis ultimately aims to detect where incidents, such as disease 

or injury occur (Lawson et al. 2006). In order to intentionally prevent an event from 

occurring, the incident must be: preventable, one must know about the possibility of the 

incident ahead of time, and an action must occur at the right time and place to inflict some 

plausible change to prevent the situation. The georeferencing process is crucial to gathering 

retrospective incident data, archiving attributes, and all subsequent spatial analyses. 

 In Preventative Search and Rescue (PSAR), the primary tool employed for 

prevention is educating the people at risk. PSAR personnel must be familiar with the spatial 

and temporal details of current hazards (weather, trail conditions, overall fitness of visitors) as 

well as hazards that have occurred in the past, to provide effective instruction at the right 

place and time. Examples of spatial analyses of pedestrian injuries in urban centers, (LaScala 

et al. 2000; Hameed et al. 2010) have shown significant relationships between pedestrian 

injury and factors such as traffic flow, population density, and socio-economic state of the 

respective neighborhoods. This geographic approach to pedestrian injury in urban 

environments may also be used for wilderness areas and national parks if spatially explicit 

data existed. To date, no such research exists for SAR to utilize in their response calls. 

In order to perform spatial analyses using historic incidents as the TO, uncertainty 

areas and values must be defined using geographic information, i.e., uncertainty radii or 

shapes. For instance, distance statistics such as the G and I values require specification of 

spatial resolution or provision of areal features (e.g., municipal boundaries) prior to 

performing analyses (Getis and Ord 1992; Anselin 1995). If we cannot define the area of 

uncertainty for each incident and specify an appropriate scale for the spatial analyses, the 

results cannot be properly interpreted. For example, if our resulting TOs have an average of 5 

km uncertainty radius using the Point-Radius Method, a spatial analysis using 1 km grids 

would not be appropriate. Likewise, with regard to the Shape method, if our TO polygons are 

larger than the areal boundaries within which the incidents occur, then we cannot assess the 

spatial distribution at this scale, because we would not be able to calculate incident frequency 

per areal boundary. 

Despite the tabular documentation of over 6,000 incidents in 30 years within the 

3,100 km
2
 area of Yosemite National Park, the incident data have not been georeferenced in 

any way. The time, place, and contributing factors of each incident have not been evaluated 

on a large-scale. This rich dataset could contain valuable information essential for the 

prevention of incidents, saving lives and a large amount of monetary resources that could be 

used in areas to help preserve the park for visitors. If historic incident locations are described 

using named places with known geographic coordinates, then they can be georeferenced in a 

manner that controls for uncertainty and provides a suitable dataset applying spatial analyses 

in future studies.  

 

4.1 Spatial Analysis of Yosemite Search and Rescue Incidents 

To demonstrate the usefulness of georeferencing historic localities, case incident 

reports from 2005 to 2010 have been reviewed and georeferenced using the Point-Radius 

Method as described above. The resulting vector point database with uncertainty radii values 

for each georeference were then converted to a vector polygon feature class using a buffer 

geoprocessing tool where each feature is given a circular buffer using the uncertainty radii as 

the buffer distance. The mean (± 95% Confidence Interval) and median radii for the 

georeferenced incidents were used to make decisions on scale and resolution of spatial 

analyses.  

To prepare the data for distance statistics, a spatial join (point-in-polygon analysis) 

geoprocess was used to calculate the number of incidents found within a square grid vector 
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polygon overlay on the study area (“study grid”). The study grid cell size was determined by 

the 95% percentile value for uncertainty radii of the 2005 – 2010 georeferenced data. This 

scale ensures that 95% of the uncertainty radii are smaller than the grid size chosen for the 

spatial analysis. Once incident counts were generated for both vector polygon feature classes 

from the spatial join, the spatial distribution of the incident points were assessed for 

randomness/clustering using Patrick A.P. Moran’s I statistical geoprocess with inverse 

distance squared conceptualization and Euclidean distance method (Anselin 1995). 

 

  (     ) ∑ ∑         ∑   
 

    

or 

 

  ∑    [  (∑   
    )]  

Where    ∑ ∑       

Finally, a Getis-Ord G* statistical geoprocess was performed with inverse distance 

squared conceptualization and Euclidean distance method on the study grid to determine if 

areas of significant high or low frequency were present and identify which areas exhibited 

these patterns (“hot and cold spots”; Getis and Ord 1992) . 

 

  
  

   (     ) 

 
 

 

These analyses are presented to highlight the need to address spatial uncertainty prior to 

spatial analysis and draw attention to a novel application of GIS to an inherently spatial 

problem. 

 

4.2 Spatial Distribution of Yosemite Search and Rescue Incidents 

From 2005 – 2010, 1271 of 1356 YOSAR incidents (93.7%) could be georeferenced 

using the Point-Radius Method, with mean uncertainty radius = 560 ± 51 m and mean 

uncertainty area of 3.60 ± 0.840 km
2
. The 95

th
 percentile value for the uncertainty radii of the 

dataset was 2026 m, therefore a 2000 m (2 km) grid was chosen for the spatial join, Moran’s 

I, and Getis-Ord G* analysis. The spatial join resulted in a 2 km grid vector polygon (N = 

1560; count range 0 – 226 incidents). The grid exhibited statistically significant spatial 

autocorrelation (Global Moran’s index 0.310, Z = 24.5, P < 0.001), which means there is less 

than a 1% likelihood that this clustered pattern could be a result of random chance. Of the 

entire study grid, 10 had statistically significant G* Z-scores (P < 0.05). These grids were 

clustered primarily around Yosemite Valley vicinity hiking trails with one isolated grid near 

Glen Aulin High Sierra Camp hiking trails (Figure 2.7).  

 

5 Discussion 

 

The majority of SAR reports contained enough spatial information in the narrative text 

to be successfully georeferenced (94%). The Point-radius and Shape methods produced 

explicitly spatial data from textual locality descriptions for SAR incidents in Yosemite 

National Park. The Point-Radius Method produced TOs with a wide range of uncertainty radii 

and subsequent uncertainty areas (some of which were larger than 7.9 ± 104 km
2
), but was 

flexible enough to handle a large number and wide variety of cases. Within the six case 

studies, the Shape Method provided a more specific representation of uncertainty area 

dimensions for each case along with much smaller uncertainty areas (99% smaller in one 

case). 

(2.4) 

(2.5) 

(2.6) 
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Conceptually, the Shape Method is a simple and accurate way to georeference textual 

locality descriptions. Methodologically, however, the Shape Method presented in this article 

is very time consuming and perhaps not as suitable for archiving a large number of textual 

records. In this and other studies, the Point-Radius Method can be used to georeference 

locality descriptions at mean rates of 10 to 30 cases per hour (Wieczorek 2005, 2008). The 

Shape Method produced georeferenced TOs at a rate closer to 2 or 4 per hour. This may prove 

to be problematic over a large dataset, such as the 2005–2010 YOSAR incident data. 

Improvements to the Shape Method are needed if large datasets (>10,000 records) are to be 

considered. Furthermore, at this time, the Shape Method may be preferred in studies where 

more exact uncertainty areas of TOs 

are needed. In some cases, it may be feasible to use the results of the faster Point-Radius 

method in conjunction with spatial operations in a GIS to get results similar to those in the 

Shape method. For example, one could clip a stream layer by the vector result of a Point-

Radius and apply a buffer to it. Another example might involve known z coordinates 

(elevation or depth) or terrain type (slope) to refine the probable location of the incident. 

Though this technique will not work for all locality types, it may be part of a hybrid solution 

to increase overall georeferencing rates while retaining the highest possible level of 

specificity in the results. 

The results of the Point-Radius Method can be stored as vector point (coordinates) 

and vector polygon (circular with radii equal to the uncertainty radius attribute). While vector 

polygon data may be a more thorough way to visualize the uncertainty area, vector point data 

are more easily stored in traditional non-spatial databases where x and y coordinate fields can 

be populated. The Shape Method results are vector polygon with a shape uncertainty. For 

archiving a historic incident database, any of the three outputs can be used (Point-Radius 

polygon, Point-Radius point, actual shape polygon) in a spatial database. The choice of how 

to store the results will depend on the types of spatial analysis questions that need to be 

answered. These data can then be used for archiving history in spatially enabled digital 

libraries (Mostern and Johnson 2008) which can be utilized for records management, season 

pre-planning and implementing effective mitigation measures. 

In addition to archiving historic events, the spatial distribution of the georeferenced 

SAR data has interesting and potentially meaningful patterns. The Point-radius Method was 

successfully used on the 2005–2010 YOSAR incident SAR reports with a mean uncertainty 

radius of 556 m and the overall spatial uncertainty of these incidents were not normally 

distributed (median = 151 m). Overall, 95% of the cases suitable for georeferencing had an 

uncertainty radius smaller than 2,000 m or 2 km. This is an important finding for both 

GIScientists and epidemiologists interested in using historic textual data for georeferencing 

localities and events. 

Therefore, we were able to conduct spatial analyses at this scale with confidence that 

our findings are based on valid assumptions and are pertinent to the real world. If we chose a 

smaller scale, such as 100 m, we could not be confident that the spatial join placed incidents 

in the correct grid, since our uncertainty radii were frequently greater than 100 m. If we want 

to conduct analyses at finer scales, such as examining the spatial distribution of incidents near 

a particular switchback or curve in the trail, more robust data is needed. However, researchers 

are attempting to create a more global relationship between comparisons, allowing for a 

“hierarchy based criterion” (Goldberg and Cockburn 2010). This alteration allows for local 

variances to be ignored, allowing for a more precise return in geocodes. 

For analyzing retrospective data at a fine scale, the Shape or a more probabilistic 

method is needed. In the future, the implementation of GPS receivers will help to solve this 

problem. Our research findings support that this is a much needed and helpful addition to the 

current practice of incidence response. As a result of this study, GPS receivers will be 

required on all Yosemite SAR operations for recording coordinates on-scene and spatial 

information will be integrated into a newly implemented records management system. 

Meanwhile, the results of our analyses at the 2 km scale indicated two findings regarding 



37 

 

 

 

SAR incidents from 2005 to 2010 in Yosemite National Park: the spatial distribution of 

incidents was not random and there were multiple regions with statistically significant 

clusters of high frequency. A visual analysis of the data (Figure 2.8) shows that most of the 

statistically significant high frequency areas are in the vicinity of Yosemite Valley, especially 

near trails. Injury epidemiologists may want to know more about the clustering of incidents in 

these areas. For instance, “Are areas with steep trails or rushing water associated with higher 

incident frequency? Are more people being injured nearer or further from trailheads?”. Before 

answering these and other questions, the spatial distribution of natural (e.g. terrain, 

hydrology, vegetation) and anthropogenic (e.g. trail and road access, signage, number of 

people present) need to be known. For instance, before the risk to visitors in the Yosemite 

National Park can be assessed, actual visitation levels (by geographic area) in the park need to 

be recorded or else results may be misleading. 

One implication of being able to utilize text-based information for successfully 

georeferencing historic incidents is that the same can be done for temporal referencing. In our 

case-study, the date, and in some cases, time of day, are explicitly stated for each component 

of the incident. Key intervals are delineated at the time an incident was reported, the time 

emergency response began, when rescuers arrived at the scene, and time of incident 

completion are available for some reports. These temporal data are similar to those used by 

municipal computer-aided dispatch centers to evaluate expediency and effectiveness of 

emergency response. Temporal data can clearly be utilized in a similar manner for search and 

rescue. Where these data are not available, a method that incorporates temporal uncertainty 

should be used (Schockaert and De Cock 2008, Yuan and Liu, 2010). In addition, the 

spatiotemporal context of these incidents could be used for operational pre-planning and even 

preventive search and rescue (PSAR). The where and when queries such as, “Where should 

we stage our resources on a Saturday afternoon in August?”, will depend on both the spatial 

and temporal resolution of our dataset. The network analyses that are available in GIS 

software ultimately utilize spatiotemporal components of both base and operational data. 

Moreover, if a modern records management system that integrates real-time spatial data and a 

GISystem is implemented, both historic incidents and potential trends should be evaluated to 

ensure a successful decision support system is designed. This cannot be done unless legacy 

data are preserved and exposed in a meaningful way (Zhou and Hripcsak 2007), where space 

and time are available for analysis. 

 

6 Conclusions 

 

The georeferencing issue is important to address, not just for historical data and digital 

libraries alone. While the advent of GPS, wireless communications, geocoding services, and 

GISystems may increase spatial precision for future incidents, textual spatial data is still 

abundant and relevant in our culture. Social media on the Internet and across wireless 

platforms continue to carry spatial information that cannot always be reliably geocoded 

without a best practice implementation (Zook et al. 2010). Today, the Internet itself may be a 

rich source of geographic information (Goldberg et al. 2009). In addition to the need to 

georeference text-based data during disasters, health care in developing nations may operate 

in environments where geocoded addresses do not currently exist. It is clear that there are a 

wide variety of issues where georeferencing text-based data is critical. The conceptual and 

methodological issues addressed in this research are prerequisites to understanding 

geographic information relayed in the human languages of the past, as well as developing 

new technologies for the future. The best practice may be derived from an ensemble approach 

where artificial intelligence, advanced computer programming, and agent-based modeling can 

be leveraged in a Web GIS platform
5
.  

This research also addresses the fundamental and previously overlooked notion that 

                                                      
5
 http://www.biogeomancer.org 
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Search and Rescue provides an inherently spatial problem-set for GIScientists to research. 

In turn, GISystems offer a robust solution to documenting and analyzing the geographic 

features that are factors controlling the presence or absence of events, such as disease 

outbreaks or medical geography (Gundersen 2000). Just as Dr. Snow’s map of cholera in 

England raised the notion of how geography might be used to understand disease 

transmission, this concept should be extended to SAR at a local level to provide a GIScience 

approach to risk assessment (Koch and Denike 2009). From this application of GISytems to 

SAR, interesting and meaningful GIScience theories can be addressed. 
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Table 2.1 – A comparison of six georeferenced case studies using the Point-radius and Shape 

methods. 

  Target area (km
2
)  

Case study  Georeference type Point-Radius Shape Percentage 

difference 

1 Path junction 5.36 x 10
-3

 5.70 x 10
-4

 89.4 

2 Areal feature 2.91 x 10
-2

 6.61 x 10
-3

 77.3 

3 Offset along a 

path 

2.25 x 10
0
 1.78 x 10

-2
 99.2 

4 Between two 

features 

2.17 x 10
1
 3.20 x 10

0
 85.2 

5 Distance from a 

feature 

1.95 x 10
-1

 2.75 x 10
-2

 85.9 

6 Direction with a 

header 

1.25 x 10
0
 1.97 x 10

-1
 84.3 
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Figures 

 

 

Figure 2.1 An overview map of the Yosemite Search and Rescue study area and case study 

locations. 
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Figure 2.2 Case study #1 –Target object is the junction of two path reference object features. 
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Figure 2.3 Case study #2 – Target object coincides with an areal feature reference object.  
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Figure 2.4 Case study #3 – Target object is offset along a path reference object an estimated 

distance from a feature reference object. 
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Figure 2.5 Case study #4 – Target object is an area between two reference object features. 
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Figure 2.6 Case study #5 – Target object is an offset distance from an areal feature reference 

object. 
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Figure 2.7 Case study #6 – Target object is a direction with a header from an areal feature 

reference object. 
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Figure 2.8 – A “hot spot” map where warm colors represent higher density cluster of 

incidents, the grids indicate statistical significance using the Getis-Ord G* spatial analysis.  
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Space-Time Analyses For Forecasting and Understanding Future 
Incident Occurrence: A Case-Study From Yosemite National Park 
Using the Presence and Background Learning Algorithm. 
 

[Formatted and submitted to the International Journal of GIScience] 

 

In order to address a spatio-temporal challenge such as incident prevention, we need 

information about the time and place where previous incidents have occurred in the 

past. Using geographic coordinates of incidents that occurred in the past in 

coincidence with spatial layers corresponding to environmental variables, we can 

produce probability maps in geographic and temporal space. Here we evaluate spatial 

statistic and machine learning approaches to answer an important space-time 

question: where and when are wildland search and rescue (WiSAR) incidents most 

likely to occur within Yosemite National Park in the future? We produced a 

probability map for the year 2011based on the presence and background learning 

algorithm (PBL) that successfully forecasts the most likely areas of future WiSAR 

incident occurrence based on environmental variables (distance to anthropogenic & 

natural features, vegetation, elevation, and slope) and the overlap with historic 

incidents from 2001-2010. This will allow decision-makers to spatially allocate 

resources where and when incidents are most likely to occur. In the process we not 

only answered questions related to a real-world problem, we also used novel space-

time analyses that gives us insight into machine learning principles. The GIScience 

findings from this applied research have major implications for best-practices in 

future space-time research in the fields of epidemiology and ecological niche 

modelling. 

Keywords: epidemiology; machine-learning; presence and background learning; 

search and rescue; spatio-temporal data 
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1 Introduction 

 
The application of GISystems to solve real-world problems continues to expand from 

reactive, where we simply document and visualize where and when a phenomenon happened, 

to proactive, where we are able to reliably forecast event locations based on what we have 

learned from previous events. During this process we often test GIScience theories and 

techniques, leading to new scientific discovery. This is especially true in the field of spatial 

epidemiology, which merges spatial analysis with studies from public health (Ostfeld et al. 

2005, Robertson et al. 2010). The objectives of such studies are to collect information about 

spatially varying factors that may contribute to the occurrence of disease, illness or injury and 

then attempt to map out likely areas of future occurrence, or locations, to apply preventative 

measures. In this paper we present a spatiotemporal presence and background learning 

algorithm and case-study to illustrate how this can be done using presence of incident 

locations and readily available environmental layers. 

 Within spatial epidemiology, datasets used for research often consist of incident 

coordinates, or other locality descriptions, that need to be georeferenced. Furthermore, most 

data describe locations where illness or injuries have previously occurred (presence) but not 

where they have not occurred (absence). Therefore, analyses have often been limited to 

descriptive analyses (density or “heat maps”) and spatial statistics (hot spot or Getis Ord G* 

maps; Getis and Ord 1992)in lieu of predictive modeling because traditional modeling 

approaches require presence and absence data to derive relationships from underlying factors 

(Hirzel et al. 2002). This presence-only limitation is known as the geographic one-class data 

issue (GOCD; Guo et al. 2011) and requires a specialized approach to generate probability 

maps. The most promising methods for extrapolating meaningful information from GOCD 

have been machine learning algorithm techniques such as the presence and background 

learning algorithm (Li et al. 2011)that use background environmental variables and presence 

data to model suitability across the landscape.  However, temporal variation between presence 

and environmental variables is not well studied(An and Brown 2008) and such analyses could 

reveal more meaningful relationships and useful distribution maps for decision making 

throughout the course of a year. A central goal for many GIScientists and their stakeholders is 

this; if given a data set with records of positive observations (e.g. presence of species, 

incidents, phenomena) then we can develop a model that forecasts presence/absence 

elsewhere at any specified time of day, week, or year in the future. This research highlights a 

novel approach for studying spatiotemporal relationships between incident occurrence and 

overlap with environmental variables that produces temporally explicit likelihood models.  

 

2  Presence and background learning algorithm (PBL) 

 

In this study we aim to model wildland search and rescue incident (WiSAR) likelihood that is 

conditional based on environmental covariates (denoted as x, Table 2.2). In other words, since 

previous WiSAR incidence in Yosemite is not randomly distributed across the landscape 

(Doherty et al. 2011), it is likely that there are landscape variables (environmental covariates) 

that can add probabilistic value to forecasts of where WiSAR will occur in the future. The 

incident locations themselves are GOCD. In the past, most presence and background 

modelling has relied on single time series data, and have done cross validation by splitting the 

data into training and testing data. In the current study, we use independent datasets from 

different time periods to train and test the modelling results, thus giving them temporal 

context. 

 

2.1 The spatial probabilistic approach 

 

This approach is described here using probabilistic equations where we denote presence of 

incidents as y = 1 and absence of incidents as y = 0. Hence, the desired model can be written 
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as P(y = 1 | x). Traditional statistical and supervised learning methods require both presence 

and absence data to model P(y = 1 | x), but in reality it is difficult to obtain absence data.  

Recently, Li et al. (2011) developed a presence and background learning algorithm 

(PBL) that is successful in modeling P(y = 1 | x) without absence data. The model is trained 

by two completely separate sets: observed presence and background data. Note that 

background data contain presence and absence data but their labels are not known. The 

trained model is denoted as P(s = 1 | x, η= 1), and hence 
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By defining “prototypical presence” as locations where the incident likelihood is maximal, 

(Li et al. 2011) shows that the predicted value P(s = 1 | x,η= 1) of any prototypical presence 

location can be used to estimate c. We selected half of the observed presence locations, those 

whose predicted probability P(s = 1 | x,η = 1) are higher than 50
th
 percentile as prototypical 

presence locations. We then averaged their predicted probabilities to estimate the constant c 

and adjust the trained model to obtain the desired model using (1).  

The PBL algorithm is a training framework and it can be implemented using any 

binary classifier that can estimate conditional probability. We used a discriminative 

Maximum Entropy (MAXENT) classifier (Berger et al. 1996) to implemented the PBL 

algorithm. Entropy is a fundamental concept in information theory, and it measures how 

much choice is involved in the selection of an event (Shannon 1948). The principle of 

maximum entropy indicates that the distribution model that satisfies any given constraints 

should be as uniform as possible (Phillips et al. 2004), which agrees with everything that is 

known, but carefully avoids assuming anything that is unknown (Jaynes 1990). In this study, 

we used the Matlab code for MAXENT that is freely available online
6
.  

 

2.2 The temporal probabilistic approach 

Using machine learning algorithms such as PBL have been useful in understanding probable 

distribution patterns across geographic space; however little research has been done to study 

the usefulness of these techniques across temporal space. For example, the model in equation 

(1) assumes temporal stationarity which is not likely to be a valid assumption for incident 

data that varies seasonally due to weather or background activity patterns. 

For situations where temporal variability limits the meaningfulness of such an 

approach, it is better to study P(y = 1 | x) at defined time intervals represented as t. Given 

historical observation data, we can group the training samples by t and train the models 

individually, which will lead to P(y = 1 | x) values that vary with time as in equation (2.8).  

 

Pt(y = 1 | x), t = 1,2,3….n     (2.8) 

 

For example, if we group the training data by month of the year, then t = 1, 2, 3, ..., 12. In this 

case, decisions on how to group the presence data by discrete time intervals t would be made 

prior to training the models based on expert knowledge about the data or specific research 

questions. 

 

3 Case-study 

 

Here we study a real-world problem: wildland search and rescue (WiSAR) incident 

prevention in Yosemite National Park. WiSAR is the process of locating, accessing, 

stabilizing, and transporting people in proximity to or within wilderness environments 

                                                      
6
 http://www.cs.grinnell.edu/~weinman/code/index.shtml 

(2.7) 
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(Worsing 1993). Our objectives are to describe a unique methodology, explain results, and 

discuss the implications of our findings for WiSAR incident prevention, spatial epidemiology, 

and GIScience.  

Every year millions of people will enjoy recreating on public lands in the United 

States and across the globe. Unfortunately, many of these visitors (estimated to be more than 

100,000 per year) will experience an injury, medical issue, or lose their way in the wilderness 

requiring a WiSAR response (NASAR 2005). The process of searching for and rescuing 

victims can be dangerous, time-consuming, and costly (Heggie and Heggie 2009) for both the 

rescuee and the rescuer alike and therefore preventative efforts are warranted. Yet, in order to 

intentionally prevent any incident from occurring, there are some prerequisites required. 

Conceptually, incident prevention is simple (Lawson et al. 2006); the incident must be 

preventable, one must know about the possibility of the incident ahead of time, and an action 

must occur at the right time and place to inflict some plausible change to prevent the 

situation. In Preventative Search and Rescue (PSAR), the primary tool employed for 

prevention is to educate people at risk by providing information (or if necessary, enforcing 

restrictions and law enforcement measures). One study in Grand Canyon National Park (Yee 

and Iserson 2008) suggested that since implementing a PSAR program the WiSAR incident 

rate has decreased from 9.4 incidents per 100,000 visitors in the 10 years prior to 1998 to 7.6 

per 100,000 visitors in the six years following (p = 0.02). In this study, park staff focused 

primarily on reducing heat-related illnesses and used summary statistics to support their 

conclusion on a park-wide scale. 

There appears to be a widespread interest in WiSAR risk assessment research, 

especially in national parks, that began over a decade ago with the landmark paper, Morbidity 

and Mortality in the Wilderness (Montalvo et al. 1998). This was the first of several 

retrospective studies to discuss how WiSAR incident data could be used to “guide future 

wilderness use, education, and management” and alluded to how a “standardized, 

computerized database would greatly facilitate future evaluations, decisions, and policies”. 

Since then, however, findings in retrospective studies have been limited to age, sex, 

recreational activity, mode of rescue, and contributing factors in WiSAR incidents (Wild 

2008, Forrester and Holstege 2009, Heggie and Amundson 2009, Heggie and Heggie 2009) 

and have not contained spatially explicit information. In order to know what safety 

information to provide to the public, PSAR personnel must be familiar with the when and 

where details of current hazards (weather, trail conditions, overall fitness of visitors) as well 

as hazards that have occurred in the past (spatio-temporal information). The United States, 

Canada, and other countries are currently re-evaluating their Search and Rescue data 

collection programs, therefore this research is timely. We intend to produce geographic and 

temporal knowledge from raw data to answer relevant questions related to PSAR in Yosemite 

National Park. 

 

3.1 Study Site and dataset 

 

Yosemite National Park (YNP; Figure 2.9) is located in the Sierra Nevada Mountains of 

California, USA and has over 1287 kilometers (800 miles) of hiking trails with over 200 

WiSAR incidents each year (Hung and Townes 2007a).  High visitation numbers, even in 

remote locations, lead to incidents that occur far from roads and in steep terrain that prevent 

emergency vehicle access. To transport patients, Yosemite Search and Rescue (YOSAR) use 

rescue teams with trail litter apparatus and/or a large helicopter to perform a significant 

proportion of their rescues. Therefore, WiSAR incidents result in not only injury or 

misfortune to park visitors, but also significant cost in terms of risk to rescuers and financial 

resources (Heggie and Amundson 2009).  

Earlier researchers (Hung and Townes 2007) used an YNP case-study to document 

the types of injuries and illnesses visitors faced between the years 1990 - 2001 and also cited 

the need for incident prevention. This study is perhaps one of the most comprehensive of its 
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kind. However, their description of YNP incidents did not make any specific geographic or 

temporal recommendations which may be why managers in YNP and elsewhere did not 

respond with spatio-temporally specific PSAR activities until later years (after preliminary 

results of our analysis were released).  

The present research differs from these past studies in that the first step involved 

georeferencing WiSAR incidents from text using the point-radius method as described in 

(Doherty et al. 2011) this is a georeferencing approach that allows for generating hypothesis-

based coordinates for incidents using reference objects (a known locality found in a gazetteer) 

and target objects (a location that has some spatial relationship to the reference object) that 

are common components to a text-based locality descriptions see (Wieczorek et al. 2004a). 

Essentially, without coordinate-based descriptions, we used a best practices approach to 

create spatial data with a calculated horizontal uncertainty so we could decide on the 

appropriate methodology for analysis. This method was chosen in place of the more costly 

and complex shape method (Guo et al. 2008) so that this study could be extensible to other 

WiSAR teams without specialized software. Also, the PBL analysis uses point data and 

techniques that are believed to account for spatial uncertainty (via local spatial 

autocorrelation), especially at moderate levels in the WiSAR incident reports. Preliminary 

research (showed that these data had uncertainty radii that were smaller (95% were between 

269–866m) than acceptable limits described in previous studies (Fernandez et al. 2009). 

We chose environmental variables (Table 2.2) based on expert knowledge from park 

staff and previous research(Hung and Townes 2007).  Actual visitor activity is calculated 

temporally (number of visitors coming through entrance stations) but it has not been possible 

to measure spatially within the park. Therefore where visitors travel in the park is considered 

a latent variable strongly related to incident probability–we use variables related to 

accessibility (distance to trailheads, distance to road, distance to trails) as a proxy to actual 

spatial visitation data. Other variables were chosen based on their association with incident 

probability (distance to streams, slope, elevation, vegetation). This approach is similar to 

ecological niche modeling where variables related to habitat availability and preference 

would be considered. Moreover, for this study we are not interested in calculating risk 

(incidents / per capita) but rather spatio-temporal incident probability for decision making. 

 

3.2 Spatial and temporal framework 

 

With regards to spatial epidemiology, we are interested in hypotheses related to overall yearly 

WiSAR predictions and the seasonality of predictions (where and when). Therefore we used 

training and validation sets derived from a comprehensive dataset (all of the 2001–2010 

incident data) and conducted analysis for global (entire year) and monthly forecasting 

periods. 

The output of the PBL method gives an estimate of probability between zero and one, 

so we needed to utilize a threshold for generating probabilistic output to binary predictions. 

Here we randomly set aside 25% of the training set for validation and the probabilistic value 

corresponding to a 5% omission rate for the validation set was used as the threshold to make a 

binary prediction (Pearson et al. 2004, Li and Guo 2010). To evaluate model accuracy, or 

how well the PBL models classified true presence locations in the future (2011 data), we 

sampled the binary output for each of the models (global and monthly)  against their 

respective temporal interval at the 2011 incident data locations. In essence, we used the 2001–

2010 WiSAR data to forecast locations where and when WiSAR incidents were most likely to 

occur in 2011.   

To evaluate the accuracy, or how well the PBL algorithm generated from presence 

points classified true presence locations we sampled the binary output from the model at these 

validated points. We then used the binomial test to compare the rate of classification at 

coordinates where WiSAR incidents occurred in 2011 but were not included in the training 

sample (2001 – 2010).  
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4 Results 

 

The threshold for creating binary classification of PBL was a value of 0.021 which resulted in 

22.9% of pixels in the Park being classified as “suitable” (1). The PBL model based on all of 

the 2001–2010 training and validation data predicted potential suitable “habitat” for WiSAR 

incidents with an overall high success rate (low omission rate) of 90.9% for the 2011 test data 

(n = 186, p < 0.001; see Figure 2.10).  

According to a jackknife sensitivity analysis, the most important environment 

variables overall in determining which pixels receive the highest score were distance to trails 

and trailhead–although these variables varied spatio-temporally (Table 2.3). When we 

withdrew slope from calculations, the overall goodness of fit of the trained model decreased 

the most. This indicates that this variable provides unique relationships information not 

already contained in other variables.  

PBL models varied considerably across temporal space and feature space (Table 2.4). 

In the example shown in Figure 2.11, the percentage of the Park classified as “likely” to have 

WiSAR activity varies from 5% (April) to 27% (August). Overall, 72% of incidents occur in 

May–August yet the spatial distribution of incidents varies considerably across these months.  

 

5 Discussion and Conclusion 

 

The PBL provided output maps that could successfully "forecast" future incidents from 

retrospective data year-round and by season. There were distinct spatio-temporal patterns 

exposed by probability maps and hypotheses between environmental variables. In general, we 

can conclude that incidents are most likely to occur relatively close to access points (trails, 

roads, and trailheads) and in steeper terrain and this can be predicted with a low omission 

rate.  

 The spatio-temporal approach, described in equation 2, conducted separate PBL 

analysis based on the monthly intervals. This approach yields maps that very clearly show 

temporal non-stationarity and reflect real-world patterns. For example, incidents are limited to 

the lowest elevations regions of the Park during the early winter months when roads are 

closed but snow conditions are not suitable for skiing. In late winter / early spring WiSAR 

incidents are distributed along roads where skiing is a popular activity. During the late 

summer / early fall months the Park is widely accessible and incidents are distributed across 

the trail network and further from roads than any other time of year. On the one hand these 

observations are consistent with general knowledge of how visitor use the Park throughout 

the year. Yet, the model outputs provide two distinct advantages over alternative methods for 

this type of study 1) the ability to study small-scale likelihood in absence of the ability to 

measure true background activity (spatially explicit visitation levels) 2) the ability to identify 

potentially suitable / probable areas that do not yet have a high frequency of occurrence, but 

could have greater activity in the future. For instance, trails along steep slopes around the 

Hetch Hetchy region of the Park have a high potential for WiSAR incidents based on 

environmental factors but do not have the same level of visitation. If visitation increases in 

those areas due to Park policies or other factors (e.g. climate change, shift in social norms and 

human geography) then we would expect WiSAR incidents to increase. 

Since temporal non-stationarity is likely an issue with most datasets where the PBL 

method can be applied, we believe an analysis-by-interval approach to be most appropriate. 

Furthermore, we selected thresholds on the continuous model outputs based on a 5% omission 

error threshold on the validation dataset to produce Boolean probable-not probable maps. We 

did this for each monthly dataset and observed variability in the number of total pixels 

labelled as “probable”. As stated in earlier research studies (Fielding and Bell 1997, Suárez-
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Seoane et al. 2008), it must be considered that as larger thresholds are selected, commission 

errors will decrease, but omission errors will increase. By accounting for temporal variation 

in probability modeling we can produce maps that more accurately reflect the size and 

distribution of probable areas (large in summer, small in winter) and alleviate the commission 

/ omission error issue. For Park Staff, this helps describe seasonality of their incidents and 

justify resource allocation throughout the year. Videos
7
 and time-enabled maps can also be 

used by non-GIS trained staff for planning PSAR operations. 

The ability to exploit intra-annual cycles and spatial relationships is extremely 

important to a wide variety of scientists and practitioners. For instance, Finket al. (2010) 

introduced the concept of spatiotemporal exploratory models (STEM) for studying broad-

scale survey data for bird species. This ecological research highlighted the advantages of 

spatiotemporal structure to studies over large geographic areas with parametric data. Other 

spatiotemporal techniques based on relatedness such as Markov Chain Analysis (Clark 1965), 

Hidden Markov Models (Green and Richardson 2002) and Markov Random Field Theory 

(Liu and Cai 2011) utilize relatedness between events or temporal trajectories to develop 

classifications for phenomena such as land cover. Yet, the presence and background learning 

algorithm approach described in this paper can be utilized on non-related small scale data that 

vary spatially with the seasons and do not need to meet the same assumptions / requirements 

of traditional statistical techniques. 

Future research should investigate improvements to the spatiotemporal PBL 

approach. In this study we chose monthly intervals for model analysis because these time 

periods closely reflected park management principles (i.e. expert knowledge), but this led to 

small sample sizes in winter months and required some prior knowledge of the temporal 

nature of the data. There were months (e.g. December) where the incident sample size was 

not large enough to be used as a training sample dataset. This is likely to be a problem 

wherever incident likelihood varies across the temporal dimension, as in this study where 

overall visitation to park peaks during spring and summer months and access to the park 

changes due to weather conditions throughout the year. Due to limitations in sample size and 

decision making on temporal interval size for analysis, we suggest further research efforts be 

invested in a hybrid approach that allows for the model to decide on logical time intervals 

based on an adaptive weighting functions similar to those found in the Geographic-

Temporally Weighted Regression methods described in Huang et al. (2010).This would allow 

for intervals of adequate sample size, reveal natural temporal clusters of probability, and 

remove the subjectivity involved with deciding on what time intervals to use for sampling. 

Overall, seasonality and machine learning techniques should be studied more closely when 

possible as this is apparent in habitat niche modeling for seasonally nomadic or migratory 

species (Suárez-Seoane et al. 2008), disease mapping (Moffett et al. 2007), and in this case 

search and rescue incidents whose distribution varies spatiotemporally. 

  For preventative search and rescue (PSAR) within YNP, our analyses have only just 

begun to provide meaningful conclusions related to where and when to stage resources. For 

instance, YNP staff members now have a map of WiSAR incident probability for each season 

and can use these to decide which trailheads or locations to implement PSAR interventions. 

Furthermore, a follow up study similar to Iserson and Lee (2008) Grand Canyon study could 

be conducted after new strategic PSAR efforts based on maps produced in this study have 

been implemented. In order to provide YNP staff with their own analysis capabilities we are 

designing a Web GIS platform that allows for spatial, temporal, and attribute queries of 

historic incidents. We expect the results and recommendations from this research to guide 

WiSAR records management systems and visitor protection policies. 

  

                                                      
7
 http://youtu.be/PloVyDxlI4o  

http://youtu.be/PloVyDxlI4o
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Variable Description Hypotheses 

Trails 
Euclidean distance 

(m) to foot trails. 

Visitors spend more time on or near hiking 

trails. 

Trailheads Euclidean distance 

(m) to foot access 

points. 

Visitors spend more time near hiking trail access 

points. 

Slope Slope angle (degrees) 

of terrain, derived 

from 10m DEM. 

Visitors spend more time in flat areas, but are also 

more likely to become ill or injured in steeper 

terrain. 

Elevation Elevation (m) above 

sea-level from 10m 

digital elevation 

model (DEM). 

Visitors spend more time at elevations where the 

climate is moderate, but are exposed to extreme 

weather at the highest elevations. 

Streams Euclidean distance 

(m) to flowing water 

Visitors spend more time near flowing water and 

these features themselves are hazards. 

Open 

Water 

Euclidean distance 

(m) to water bodies 

Visitors spend more time near lakes and ponds 

and these features themselves are hazards. 

Roads Euclidean distance 

(m) to vehicle routes. 

Visitors spend more time near roads where there 

is more access to amenities. 

NDVI An index of 

vegetation derived 

from aerial 

photography. 

Visitors are more likely to encounter obstacles to 

their travel in vegetated areas when off-trail. 

Table 2.2 



65 

 

 

 

   
 

Percent contribution 

  

Accuracy 
N 

(2011) 
Trails Trailhead Slope Elevation Streams Roads NDVI 

Open 

Water 

Overall 0.91
 

186 68.8 16.9 3.1 1.5 1.4 4.7 1.6 1.9 

January 0.67 6 24.7 28.8 2.8 2.2 0.0 35.3 0.0 6.2 

February 0.75 4 21.4 3.8 2.1 5.1 0.4 64.0 0.2 3.1 

March n/a 0 44.7 2.8 2.4 3.2 1.7 44.0 0.0 1.2 

April 1.00 6 54.0 14.7 6.1 3.9 0.5 17.3 0.8 2.8 

May 1.00 15 58.4 22.8 2.5 5.7 0.8 8.1 0.4 1.3 

June 0.97 30 70.7 12.6 3.0 2.4 1.2 6.5 2.3 1.3 

July 0.83 42 74.0 11.7 2.1 0.7 2.3 3.2 1.0 4.8 

August 0.95 39 76.4 9.4 3.5 2.0 3.3 1.3 0.7 3.3 

September 0.93 29 75.1 9.4 8.7 0.5 0.7 2.5 0.8 2.3 

October 0.85 13 51.0 24.0 9.5 8.1 0.2 3.5 0.7 3.1 

November 1.00 1 52.3 22.0 10.6 0.5 3.0 10.6 0.8 5.8 

December 1.00 1 42.8 33.3 3.2 3.0 0.3 42.8 2.5 4.8 

Table 2.3 
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List of Figures 

Figure 2.9 A reference map of Yosemite National Park with general location map as an inset. 

 

Figure 2.10 Distribution of search and rescue incident likelihood in Yosemite National Park 

for all seasons. Left: probabilistic suitability map created from 2001–2010 incidents and 

environmental layers using the presence and background learning algorithm; right: binary 

suitability map created by applying threshold to probabilistic map. Overall, 91% of 2011 

incidents fell on pixels classified as likely (1).  

 

 

Figure 2.11 Side by side comparison of the monthly distribution of search and rescue 

incident likelihood in Yosemite National Park for April (left) and August (right). 
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Chapter III: Search 
 

A Review of Probability of Area Techniques for Missing Persons in 
Yosemite National Park. 
 

[Formatted for submission to Applied  Geography] 

 

 

 

The search for a missing person is assisted through the application of geographic knowledge from 

past events as general terrain features and subject demographics have been shown to prejudice 

locations where individuals are ultimately found.  In this study, our objectives are to compare two 

complementary distance-based methods for allocating geographic probability of area in formal 

search theory and provide practical guidance for use and suggest future research direction. The 

first method uses historical Euclidean distance statistics to describe probability of where a person 

may be found based on where they were last seen, or known to be, resulting in a series of 

expanding rings. The second is a travel-cost model that accounts for the influence of 

anthropogenic and landscape features on subject mobility and travel time. To evaluate these 

methods we use actual missing person case data from years 2000 – 2010 for Yosemite National 

Park.  The influence of localized terrain features and subject demographics are considered by 

comparing the Yosemite data to a large pool of internationally compiled cases consisting of 

similar subject profiles.   
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1 Introduction 

The process of searching for and rescuing individuals who become lost, injured, or stranded in 

wilderness areas presents a unique geographic problem which provides a novel and largely 

unexplored testing ground for the spatial sciences. In fact, the most important question asked in 

wildland search and rescue (WiSAR) is “where is the missing person most likely to be right 

now?”, a classic time-geography (Winter and Yin 2010) challenge with real-world implications. 

Our goal is to help searchers look in the right place in order to find missing subjects more 

quickly. Here we present and evaluate two distance based elements of formal search theory: the 

Ring Model and the Mobility Model. We use missing person case studies that occurred in 

Yosemite National Park from 2000 – 2010 due to the high frequency of missing person cases in 

the area. The purpose of this research is to answer practical questions regarding the strengths and 

limitations of these methods using applied geographic techniques. The central research question 

is: can a globally derived dataset be used to predict the outcome of search incidents on a local 

scale using two commonly used models? This is the first study to apply GISystem techniques to 

analyze actual search incident outcomes in this manner. 

 

1.1 Probability of area 

In search incidents, time is a critical variable in subject survival, with survivability declining 

significantly after the first 51-hours of a search (Adams et al. 2007). Therefore search managers 

commonly rely on theory outlined in training manuals, largely based on Lost Person Behavior 

(Koester 2008), to quickly develop search strategies. These concepts are grounded in Operations 

Research that were initially developed with maritime and aviation search techniques in mind 

(Koopman 1980, Stone 1989, 2007, Koester et al. 2004). The formal study of search and rescue 

as a discipline grew out of military operations conducted during World War II. The mathematical 

theory of how to search for missing, lost, and hidden objects was used to search for enemy 

submarines as well as to recover lost allied ships and downed pilots (Frost 1999). These initial 

concepts have been adapted to the nuances of ground based search operations by Koester and 

others.  

In WiSAR, grid-based searches are often not possible due to terrain features and the 

limited number of resources available. Based on this, the first step in allocating resources to find 

these missing persons is to begin searching the immediate vicinity of the places they were last 

seen (Point Last Seen - PLS) or last known to be (Last Known Point - LKP) based on the 

availability of substantial evidence. One of these locations is typically used as the Initial Planning 

Point (IPP) which is relevant in the application of standardized planning strategies such as those 

being discussed in this study. These strategies assist in defining the general extent of the search 

area which then must be divided into feature-based polygons known as planning areas where 

experts use their collective knowledge to prioritize resource allocation. Search planners will use 

previous experience from historic search operations and investigation techniques (e.g. clues, 

witness statements, behavioral profile) to further break down planning areas into searchable 

segments that can be prioritized and assigned to search teams. In larger searches, specialized 

software and consensus techniques such as the Mattson Consensus are used to assign quantitative 

values to segments based on combined scores from individuals involved in the consensus process 

(Bownds et al. 2007). Throughout this entire process, it is imperative that all of the geographic 

information be compiled in a way that allows search managers to easily access and understand it.  

The search planning process incorporates several probabilistic concepts: Probability of 

Area (POA), Probability of Detection (POD), and Probability of Success (POS) as described in 

equation 1 below.  

              (1) 
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The Probability of Success (POS) in search theory is completely dependent upon the boundary o f 

the area (polygon) being searched actually containing the missing person (POA) and an accurate 

assessment of how well a search area was covered by a team (POD). POD can be explained using 

the following equation. 

          
 

Where c is the coverage and e is the base of the natural logarithm. Coverage is the ratio of two 

areas: search effort as track length multiplied by width (the polyline representing searchers 

movements and the buffer indicating where they can effectively search), divided by the total area 

searched. In search planning like most complex decision making processes, errors in judgment 

(underestimated POA, overestimated POD) early in the planning stages significantly hampers the 

search effort despite subsequent decisions. The objective of any search operation is to maximize 

POS as quickly as possible by increasing POA and POD. At this time, most WiSAR operations 

utilize these concepts in a variety of ways but with little geospatial resources to accurately 

measure either POA or POD. With the integration of Global Position Systems (GPS) for 

searchers, a quantitative index of POD can be obtained by measuring coverage based on 

searchers’ GPS receiver track-log, but the POA is still very much theoretical.   

Considerable effort in missing person research has been dedicated to analyzing lost 

person behavior and summaries of previous search incident outcomes to generate a POA value 

(Syrotuck 1977; R. J. Koester and Stooksbury 1995) with the current standard being the 

International Search and Rescue Incident Database (ISRID; R. Koester 2008). ISRID provides an 

excellent tool for comparing incident outcomes based on the missing person profile (e.g. age, 

gender, mental status) and activity (e.g. hiking, biking, gathering). Not all of these cases are truly 

lost persons; in fact many have been injured or suffered a medical condition but the profile 

comparison between missing person subject categories helps search planners make informed 

decisions based on historical accounts. Many factors have been evaluated with respect to the 

ISRID dataset and search theory, including direction of travel, elevation change, offset from 

linear features, and the type of habitat they are found in. These were also evaluated in a 

comprehensive manner for a localized dataset (Doke 2012) but for this research we focused on 

distance-based POA methods. The two most similar distance-based POA methods typically used 

in search operations are the Ring Model and Mobility Model. 

 

1.2 Ring model 

The Ring Model uses concentric circles or rings to delineate areas of probability based on 

distance. The probability rings (Figure 3.1, often called “crows flight distance”) are quartile and 

95% summaries for the Euclidean distance between the coordinates  for missing persons’ IPP 

locations (defined in 1.1) and the location they were found (Syrotuck 1976). This methodology 

can be applied to any search operation dataset where IPP and Found locations are available and 

Koester (2008) summarizes the results for hikers based on data from ISRID. This database and 

summary tables have known limitations in their use as a search planning tool because of their lack 

of GISystem integration and the risk of inferring global statistics onto local landscapes with 

extreme terrain features. Even though the ISRID separates lost person behavior by ecoregion it is 

unexpected that a hiker in rolling topography in Great Britain would behave the same as hiker on 

a mountainous trail in the Sierra Nevada of the United States.  In this study we will compare the 

results of the Ring Model derived from a local dataset (Yosemite) to the global dataset (ISRID).  

 

 

 

(2) 
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1.3 Mobility model 

Mobility models have been proposed as a POA method, however to date, little GISystem 

integration has been employed in this process. Models of this type attempt to estimate subject 

travel based on a most likely path or period of mobility.  Data concerning how long a subject will 

remain in motion is summarized in the ISRID for cases where this information is known, but 

applying this information can only be grossly estimated without modern GISystem techniques. 

Lin and Goodrich (2010) proposed a Bayesian model to automatically generate a probability 

distribution map from publicly available terrain feature data including topology, vegetation, and 

elevation data. This was the first study to incorporate GIScience techniques to evaluate mobility 

models for missing person search operations. However, this forecasting methodology requires 

actual path polyline data from previous incidents which is not readily available for most areas (if 

a person is found alive they still may not know exactly where they went without a GPS track log). 

Yet this does indicate a viable exploration into the use of terrain based models for developing 

mobility models for the purpose of estimating POA. In a GISystem, this is known as cost-distance 

modeling and has been used extensively for infrastructure development (Van den Broek et al. 

2010), wildlife habitat analysis (Nikolakaki 2004), and anthropological studies (Whitley and 

Hicks 2003). In these models, costs are calculated by applying a least-cost path algorithm to a 

source raster and a resistance raster (Adriaensen et al. 2003). Tobler (1965) was the first to use 

the Imhof (1950) ‘‘hiking function’’ (equation 3) to calculate the cost associated with traversing a 

landscape. The ‘‘hiking function’’ estimates the velocity of travel for hikers across different 

slopes. According to Tobler (1991) in his overview of non-isotropic modeling  between 

pedestrian movement and slope, travel speed can be estimated as:  

 

     
         (          ) 

 

Where e is the natural logarithm and    is pedestrian velocity defined by a mathematical function 

based on the slope of terrain in degrees. This yields a function that is asymmetric about zero 

slopes because it is generally faster to travel down hills than up hills. The effect of land cover on 

off-trail hiking velocity has been estimated by Tobler to be a reduction factor of 0.6x. However, 

this estimate can be refined by local knowledge of land cover and travel speeds as described in 

section 2.3 to produce a calibrated resistance raster that provides a predicted pedestrian velocity 

across a standard distance. Land cover impedance can be described as the area between the curve 

for Tobler’s on and off-trail functions. This calibration of the impedance grid will help avoid 

using crude oversimplifications for slope and land cover impedance that often reduces the 

usefulness of such models (Bateman et al. 1996). If these methods represent actual pedestrian 

capabilities the impedance raster grid can then be used for travel-cost simulation where distance 

traveled is a function of estimated travel time (time since last seen), the coordinates of the IPP, 

and the impedance values of surrounding raster grids. The product would be a minimum potential 

path area. 

 

Materials and methods 

 

2.1 Georeferencing 

The data obtained for this analysis were derived from Yosemite National Park’s Search and 

Rescue Case Incident reports for the years 2000 to 2010. Access to these reports was granted by 

the National Park Service Division of Visitor Protection (Permit 1024-0236). During this eleven 

year span, Yosemite National Park responded to 2,308 total SAR Incidents. This includes both 

genuine searches for lost people as well as rescues in which the actual location of the individual 

was known. Of these SAR incidents, 2201 incident reports were available for review. Out of these 

(3) 
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reports, 393 true search incidents were identified. Each search incident was critically analyzed 

and must have met all of the following criteria in order to be retained for the current study: 

 

1. The incident must have been a ground-based search incident. Searches for downed 

aircraft or searches involving bodies of water were not included. 

2. The incident must have had a distinct PLS/LKP/IPP that can be georeferenced within the 

Yosemite National Park boundary. 

3. The incident must have had a distinct found location that can be georeferenced within, or 

within walking distance of, the Yosemite National Park boundary. 

4. An official SAR response must have been initiated by the National Park Service. 

 

A total of 213 search incidents met these criteria and incidents were georeferenced from text 

based information as part of GIScience research described in Doherty et al. (2011) using the 

point-radius method (Wieczorek et al. 2004b).  

 

2.2 Ring Model 

We used the georeferenced locations to determine the Euclidean distance (D) between the 

IPP to the found location in kilometers, and then calculated the lower quartile, median, upper 

quartile, and 95th percentile of D for the hiker category. This category was the only one with a 

large enough sample to derive reliable statistics and is of the most interest to search managers 

because it is the most common missing person profile in Yosemite. This observed distribution of 

D for Yosemite was then compared with the expected distribution of D based on ISRID using a 

Chi-square Goodness of Fit Test with a significance level of 0.05. Standard geoprocessing and 

calculation of D was done using ArcGIS 10.1 (Esri 2012). 

 
2.3 Mobility Model 

 The Mobility Model  used in this study is based on the Travel Time Cost Surface Model 

(TTCSM) used by the National Park Service (Sherrill et al. 2010). The model provides an 

estimate of travel time using readily available geospatial products such as road, trail, and stream 

networks, digital elevation models and land cover data. The model consists of two basic 

components: speed surface and cost surface.  First a simple speed surface based on Tobler’s 

Hiking Function is defined using Equation 3 based on the slope as measured using the Slope 

function within ESRI ArcMap 10.1.  This speed surface does not account for energy expenditure 

and assumes the subject would be able to maintain a nominal speed across a flat surface (slope = 

0
o
) of 5.0 kilometers per hour (kph).   

  The cost surface is defined as a function of the impedance to foot traffic that would be 

imposed by the presence of various geographical features compared to a nominal paved surface 

such as a side walk or roadway.  Impedance values range from 0 – 100%, with 0% being no 

impedance (e.g. paved roadway or well-maintained trail) and 100% being absolute impedance 

(e.g. high fenceline or large body of water).  A value of 25 would represent a feature that was 

25% slower to cross (e.g. pasture / field) than the nominal surface (paved roadway).   

The impedance raster is formulated using both vector and raster data layers.  Vector 

layers include roads, trails, utility right-of-ways, fencelines (actual and virtual), streams and 

bodies of water.  While maintained roadways offered 0% impedance, the maintenance level of the 

trail as recorded in the feature attribute table was used to assign impedance values with poorly 

maintained or unmaintained trails given a higher impedance value.  A combination of 

hydrological vector data and DEM derived features are used to represent streams.  This 

combination permits access to an estimate of stream order (Strahler) to account for the influence 

of the size of the stream on foot travel.  The higher the stream order the greater the impedance.  
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Large bodies of water (lakes, ponds, etc) were considered absolute barriers since only foot traffic 

was being considered.  Once these vector data was reclassified for impedance it was converted to 

a raster layer. 

Slope derived from 10 meter digital elevation model (DEM) was not only used to define 

the speed surface across the entire area of interest but also for identifying locations with slope 

greater than 60
o
 which was classified as absolute barriers to foot travel.  The underlying land 

cover was derived from the National Land Cover Dataset (2006) with features being reclassified 

similar to costs defined in Sherrill (Sherrill et al. classify cost with respect to Percent of 

Maximum Travel Speed – PMTS, where the model used in this study is defined as impedance, 

1/PMTS). 

The final impedance raster is compiled using a hierarchical overlay method where factors 

are listed in decreasing priority: fenceline, road, trail, impassable slope, bodies of water, streams 

(Strahler order), utility right-of-ways and land cover.  This impedance layer is then combined 

with the speed layer to obtain a travel speed cost surface (km per hour) for the area of interest 

with foot travel speeds ranging from slightly above the nominal speed (maximum speed at a slope 

of -0.05) to zero. The inverse of the cost surface is used as input for the Path Distance function in 

ArcGIS 10.1.  Starting at the IPP, the accumulated cost to travel across the cost surface is 

evaluated in an anisotropic manner in order to account for travelling up or downslope.  While the 

Speed Surface has slope as the primary input, the resultant surface is isotropic as the direction of 

travel is yet unknown at the time the surface is tabulated.  The Path Distance tool within ArcGIS 

provides a means of accounting for direction of travel across the Cost Surface which includes 

slope and travel restrictions.  The resultant product is a travel time surface suggesting the minimal 

time required to reach a destination starting from the IPP. 

The cost surface for Yosemite was used for analyzing individual search incident cases 

described in section 2.1. To begin, the IPP for a search incident is used to seed the travel cost 

surface to produce isochrones (Figure 3.2). The point found location is then sampled for the 

intersecting isochrones. This value is recorded and entered into a table for further analysis. This 

process was then run in batch mode for all search incidents for the hiker category. The isochrones 

value is essentially the predicted minimum amount of time (Tmin) for the subject to reach the find 

location based on the cost surface. The model is not intended to take into account the fact that a 

person may wander, stay in one place, or leave an area and return to it but rather be an empirical 

model based on physical capabilities. Nor does it account for energy expenditure, as previously 

noted, which could potentially increase Tmin.  We summarized hiker mobility statistics in a format 

that could be directly compared to the ISRID as defined by Koester (2008). The lower quartile, 

median, upper quartile, and 95th percentile were calculated for each for the hiker category and 

Tmin values are compared to the global dataset compiled in the ISRID using a Chi-square 

Goodness of Fit Test. We statistically compared the ring and mobility models using bivariate 

correlation of D and Tmin for each hiker search incident. 

 

3 Results and Discussion 

3.1 Ring model 

Of the 213 incidents georeferenced, 129 were cases involving lost hikers in Yosemite 

National Park and we included 130 lost hikers in the analysis since one group of two hikers were 

separated and were found in different locations at different times. Overall, the Euclidean distance 

(D) from each georeferenced IPP to its corresponding georeferenced found location was 

calculated (n = 130, mean = 3.34 km ± 0.25). When the local Yosemite hiker sample was 

compared to the global ISRID data, there were statistically significant differences (Table 3.1; n = 

130, X
2
 = 15.4, P < 0.01).  This means that the distances that hikers travel, as the crow flies, from 

the IPP to the found location in Yosemite was significantly different than the same corresponding 
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distances that hikers travel at the global scale. The values in the first quartile (25%) were equal, 

but were greater in the ISRID for 50%, 75%, and 95% values.  

This would suggest that relying solely on the ISRID Ring Model may lead searchers to 

plan a larger POA than expected from locally derived data. This is not a critical error as you 

would rather slightly overestimate POA rather than underestimate and risk drawing a boundary 

that excluded the missing person. However, deriving ring models based on local data may refine 

POA techniques and help to better allocate resources. Once data has been collected and 

formatted, the ring model, is simple to apply using a GISystem (or even hand-drawn on a paper 

map) and can be considered a good starting point for defining a crude search boundary in the first 

minutes of a search. In all cases, we suggest that ring models should not be used alone without 

considering other sources of information such as mobility models discussed below. Overall, the 

ring model still provides an adequate starting point for areas that do not have georeferenced 

datasets and it is important that the 25% quartiles were similar since these should be the highest 

priority in the early phases of a search. 

 

3.2 Mobility model  

The average Tmin value for the 130 missing hikers  (Tmin =1.5 hours) and the median (Tmin 

= 1.0) were widely separated. In addition when compared to the ISRID, the Yosemite dataset 

differed significantly (Table 3.2; n = 130 X
2
 = 91.4, P < 0.01). These differences may be due to 

differences in the way data were collected. In ISRID mobility values were taken from report 

narratives directly, whereas Yosemite Tmin was derived from a modeling process (actual mobility 

values were not found in reports). The ISRID data is inherently biased in that mobility values 

were estimated and only available from hikers who were found alive (the victims found deceased 

on arrival cannot provide this information unless a GPS recorded such data). This suggests that 

users of the travel cost methods to produce Tmin should not simply use mobility values from the 

ISRID mobility model to produce potential path area, instead local data should be summarized as 

described in this research. Alternatively, if no local historic data is available for mobility model 

analysis as in this study, isochrones can be evaluated in conjunction with investigative 

information (e.g. the amount of time a person has been missing, the time elapsed before a major 

snow storm would cease mobility). Our local analysis shows that in Yosemite, if we run a travel 

cost analysis, 50% of hikers should be found in the 1.0 hour isochrone. This means that 

prioritizing the search of a relatively small area close to the IPP should help resolve around half 

of all incidents. In addition, 95% of all hikers were found within the 6.0 hour isochrone, which 

should help make decisions regarding search boundaries and containment. Overall, the travel cost 

model does present a useful GISystem tool for visualizing probability areas and can be created 

using readily available base data. 

 

3.3 Comparison of the ring and mobility model 

When the ring model and mobility models were compared statistically, we found a 

significant correlation between D and Tmin (Figure 3.3; n = 130, R
2
 = 0.96, P < 0.01). This 

relationship between distance and time is expected, but the scatterplot (Figure 3) shows that there 

is a clear limit to the Euclidean distance (D) as a function of Tmin. If we divide D by Tmin for each 

incident, it yields an average value of 2.02 km / hour and maximum of 3.75 km / hour. This can 

most likely be explained by two factors: the physical limitations of hiking across varied terrain 

and the behavior of hikers. From a human geography standpoint, movement is limited by terrain 

and is represented by the travel cost model. D / Tmin will be greatest and approach a maximum 

where the line between IPP and the location found is across flat terrain and on a trail. Conversely, 

D / Tmin will be minimal when the line between IPP and location found is across steep terrain and 

off-trail. When we consider hiking behavior, D / Tmin is maximized by a straight line and 
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minimized by a circuitous path that closes in on itself over increasing elevation. We would expect 

the greatest variation of D / Tmin in environments with varied terrain and circuitous trails. This is 

an important geographic phenomenon to understand relative to the use of the ring and mobility 

models. From a practical standpoint, in mountainous terrain the mobility model will provide 

greatest contribution of information, whereas in flat terrain with no vegetation the mobility model 

and ring model would be functionally identical. 

The mobility model technique provides a more realistic tool for search boundary 

delineation because it is based on terrain and human geography. Essentially, if we know the point 

last seen, time of last sighting, and possible directions of travel, then we can create a potential 

path area for missing persons using a field-based approach to represent isochrones over the search 

area. Similar to the mobility models produced in this study, lines of equal travel time (isochrones) 

are used for studying accessibility in the city of Glasgow (O’Sullivan et al. 2000) and 

demonstrate a useful tool for visualizing space-time geography. Space-time accessibility is a field 

of research that is well studied in urban environments by geographers and GIScientists (Kim and 

Kwan 2003) and a similar approach has been suggested by other researchers (Miller and Bridwell 

2009, Lin and Goodrich 2010) for use in WiSAR, yet little research has been done to expand this 

concept and the current study is the first of its kind to evaluate travel cost techniques for missing 

person mobility models using detailed accounts. 

It is important to denote that travel cost techniques do not provide predictive models as 

they do not take into account the behavior of a person (i.e. wandering, returning to IPP, resting) 

but they do provide some guidance based on information that is known: the landscape the missing 

person is in and the amount of time they have been missing. Moreover, this model produces 

isochrones that allow for scenario building if provided in an interactive GISystem. For instance, if 

we have reason to believe a missing person would only be in motion for x hours (e.g. due to 

physical limitations or the arrival of a winter storm that would limit movement), we can indicate 

suggested probability area as indicated on the map by the isochrones equal to x hours. Mobility 

can be limited by other factors such as incoming weather, darkness, or the behavior of the person 

themselves (e.g. mental status).  As suggested by Pingel (2013), we believe that travel costs 

methods can underestimate the cost of travel in hilly and mountainous terrain because these 

methods do not take into account human perceptions of slope and elevation change (Yang et al. 

1999). However, this is an acceptable bias for developing POA in this use-case as we would 

rather overestimate than underestimate travel speeds. By using local data as described in this 

study we can verify the effect of this bias and future research should focus on agent-based 

techniques to calibrate these models. In the meantime, travel cost modeling is a tool with visually 

compelling results that can be used in conjunction with the ring model and other elements of 

search theory using GISystems. We demonstrate this with a historic case where these techniques 

could have been used to help develop a more well-informed POA if they were available to search 

planners at the time (Figure 3.4). 

From this evaluation of the ring model and mobility model, we observed that other 

datasets can be used in a mountainous area such as Yosemite for forming functional planning 

areas and delineating the search boundary. One example are watershed boundaries derived from 

Federal Standards and Procedures for the National Watershed Boundary Dataset (WBD) 2012. 

Preliminary investigation (Doke 2012) suggests that missing persons rarely are found in 

watersheds further away than the one in which they were last seen. This fits well within the 

findings of our research since watersheds are determined by terrain models and are essentially 

bordered by ridgelines that greatly influence mobility models using travel cost techniques. 

Further research should be conducted to determine the usefulness of watersheds in search area 

planning since it is a readily available GIS dataset. 
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4 Conclusions 

 

We have found that developing ring and mobility models from local data will give the best 

estimate of POA, but that in absence of these data global datasets will provide distance based 

models that can be used given one understands the constraints in mountainous terrain (a 

potentially larger POA than would be explained by local data). Overall, there is a great need for 

more research in the time geography of missing person searches. Efforts should be focused on 

georeferencing incidents up front in a records management system and then properly analyzing 

the data on a local level. Then software tools based on GISystems can be developed for assisting 

search managers. While we can learn from a global dataset, local information should be used for 

actually deriving meaningful probability of area and delineating search boundaries. Once more 

detailed behavioral data can be obtained, the ring model and mobility model concepts can be 

combined using more advanced GIScience techniques. In the meantime, the authors have begun 

integrating POA tools into desktop GISystem software to learn more about how these concepts 

apply to actual search incidents. We have identified techniques here that can be used for 

improving the search for missing persons; however it will require a community of experts in the 

field of geography working in conjunction with search and rescue personnel to answer the 

fundamental question: “where can the missing person be right now?”  



79 

 

 

 

References 

 

Adams, A.L., Schmidt, T. a, Newgard, C.D., Federiuk, C.S., Christie, M., Scorvo, S., and 

DeFreest, M., 2007. Search is a time-critical event: when search and rescue missions may 

become futile. Wilderness & Environmental Medicine, 18 (2), 95–101. 

Adriaensen, F., Chardon, J.P., De Blust, G., Swinnen, E., Villable, S., Gulinck, H., and 

Matthysen, E., 2003. The application of “least-cost” modelling as a functional landscape 

model. Landscape and Urban Planning, 64 (4), 233–247. 

Alexander, D., 1991. Information technology in real-time for monitoring and managing natural. 

Progress in Physical Geography, 15 (3), 238. 

An, L. and Brown, D.G., 2008. Survival Analysis in Land Change Science : Integrating with 

GIScience to Address Temporal, (February 2013), 37–41. 

Baldwin, R. a., 2009. Use of Maximum Entropy Modeling in Wildlife Research. Entropy, 11 (4), 

854–866. 

Bateman, I.J., Garrod, G.D., Brainard, J.S., and Lovett, A. a., 1996. Measurement Issues in the 

Travel Cost Method: a Geographical Information Systems Approach. Journal of 

Agricultural Economics, 47 (1-4), 191–205. 

Berger, A., Della Pietra, S., and Della Pietra, V., 1996. A maximum entropy approach to natural 

language processing. Computational Linguistics, 22 (1992), 39–71. 

Bownds, J.W., Ebersole, M.J., Lovelock, D., O’Connor, D.J., and Toman, R.J., 2007. Win CASIE 

III: Computer Aided Search Information Exchange. 

Van den Broek, M., Brederode, E., Ramírez, A., Kramers, L., Van der Kuip, M., Wildenborg, T., 

Turkenburg, W., and Faaij, A., 2010. Designing a cost-effective CO2 storage infrastructure 

using a GIS based linear optimization energy model. Environmental Modelling & Software, 

25 (12), 1754–1768. 

Church, R. and ReVelle, C., 1974. The maximal covering location problem. Papers in regional 

science, 32 (1), 101–118. 

Clark, W., 1965. Markov chain analysis in geography: an application to the movement of rental 

housing areas. Annals of the Association of American …, 55 (2), 351 – 359. 

Cutter, S.L., 2003. GI Science, Disasters, and Emergency Management. Transactions in GIS, 7 

(4), 439– 445. 

Dijkstra, E.W., 1959. A Note on Two Problems in Connexion with Graphs. Numerische 

Mathematik, 1, 269–271. 



80 

 

 

 

Doherty, P., Ferguson, D., Goodrich, M.A., Koester, R.J., and Doke, J., 2012. Wilderness Search 

& Rescue and GIScience. In: Annual Meeting of the Association of American Geographers. 

New York. 

Doherty, P., Guo, Q., Liu, Y., Wieczorek, J., and Doke, J., 2011. Georeferencing Incidents from 

Locality Descriptions and its Applications: a Case Study from Yosemite National Park 

Search and Rescue. Transactions in GIS, 15 (6), 775–793. 

Doherty, P.J., Guo, Q., and Alvarez, O., 2012. Expert versus machine: A comparison of two 

suitability models for emergency helicopter landing areas in Yosemite National Park. 

Professional Geographer. 

Doherty, P.J., Guo, Q., Li, W., and Doke, J., n.d. Space-Time analyses for forecasting and 

understanding future incident occurrence: a case-study from Yosemite National Park using 

the presence and background learning algorithm. International Journal of Geographical 

Information Science. 

Doke, J., 2012. Analysis of Search Incidents and Lost Person Behavior in Yosemite National 

Park. 

Durkee, G., 2010. GIS Joins Search for a Missing Hiker on California’s Mount Whitney. 

ArcWatch, Apr. 

Esri, 2012. ArcGIS 10.1. 

Federal Standards and Procedures for the National Watershed Boundary Dataset (WBD), 2012. 

Reston, Virginia. 

Ferguson, D., 2008. GIS for Wilderness Search and Rescue. In: Esri Federal User Conference. 

Washington D.C., 1 – 11. 

Fernandez, M.A., Blum, S.D., Reichle, S., Holzman, B., and Hamilton, H., 2009. Locality 

uncertainty and differential performance of four different common niche-modeling 

techniques. Biodiversity Informatics, 6 (1), 36–52. 

Fielding, A.H. and Bell, J.F., 1997. A review of methods for the assessment of prediction errors 

in conservation presence/absence models. Environmental Conservation, 24 (1), 38–49. 

Filipkowska, E., Koester, R.J., Chrustek, R., and Zaród, M., 2012. Lost and Found in the Polish 

Carpathian Mountains. ArcNews, 34 (3). 

Fink, D. and Hochachka, W., 2010. Spatiotemporal exploratory models for broad-scale survey 

data. Ecological Applications, 20 (8), 2131–47. 

Forrester, J.D. and Holstege, C.P., 2009. Injury and illness encountered in Shenandoah National 

Park. Wilderness & environmental medicine, 20 (4), 318–26. 

Frost, J.R., 1999. Principles of search theory. Response, 17 (2), 1 – 23. 



81 

 

 

 

Getis, A. and Ord, J.K., 1992. The Analysis of Spatial Association. Geographical Analysis, 24 

(3). 

Goodchild, M., 1992. Geographical information science. International Journal of Geographical 

Information …, 6 (March 2013), 37–41. 

Goodchild, M.F., 2003. Geospatial data in emergencies. In: S.L. Cutter, D.B. Richardson, and 

T.J. Wilbanks, eds. The Geographical Dimensions of Terrorism. New York: Routeledge, 

99–104. 

Goodchild, M.F., 2004. GIScience, Geography, Form, and Process. Annals of the Association of 

American Geographers, 94 (4), 709–714. 

Green, P.J. and Richardson, S., 2002. Hidden Markov Models and Disease Mapping. Journal of 

the American Statistical Association, 97 (460), 1055–1070. 

Guo, Q., Li, W., Liu, Y., and Tong, D., 2011a. Predicting potential distributions of geographic 

events using one-class data: concepts and methods. International Journal of Geographical 

Information Science, 25 (10), 1697–1715. 

Guo, Q., Li, W., Liu, Y., and Tong, D., 2011b. Predicting potential distributions of geographic 

events using one-class data: concepts and methods. International Journal of Geographical 

Information Science, 25 (10), 1697–1715. 

Guo, Q., Liu, Y., and Wieczorek, J., 2008. Georeferencing locality descriptions and computing 

associated uncertainty using a probabilistic approach. International Journal of 

Geographical Information Science, 22 (10), 1067–1090. 

Heggie, T.W. and Amundson, M.E., 2009. Dead men walking: search and rescue in US National 

Parks. Wilderness & environmental medicine. 

Heggie, T.W. and Heggie, T.M., 2009. Search and rescue trends associated with recreational 

travel in US national parks. Journal of Travel Medicine, 16 (1), 23–7. 

Hill, K. and Gale, R., 1997. Managing the lost person incident. Managing. Chantilly, VA: 

National Association for Search and Rescue. 

Hirzel, A.H., Hausser, J., Chessel, D., and Perrin, N., 2002. Ecological-niche factor analysis: how 

to compute habitat-suitability maps without absence data? Ecology, 83 (7), 2027–2036. 

Hogg, J.M., 1968. The Siting of Fire Stations. Journal of the Operational Research Society, 19, 

275–287. 

Huang, B., Wu, B., and Barry, M., 2010. Geographically and temporally weighted regression for 

modeling spatio-temporal variation in house prices. International Journal of Geographical 

Information Science, 24 (3), 383–401. 



82 

 

 

 

Hung, E.K. and Townes, D. a, 2007a. Search and rescue in Yosemite National Park: a 10-year 

review. Wilderness & environmental medicine, 18 (2), 111–6. 

Hung, E.K. and Townes, D. a, 2007b. Search and rescue in Yosemite National Park: a 10-year 

review. Wilderness & Environmental Medicine, 18 (2), 111–6. 

Imhof, E., 1950. Gelaende und Karte. Zurich, Switzerland: Rentsch. 

Indriasari, V., Mahmud, A.R., Ahmad, N., and Shariff, A.R.M., 2010. Maximal service area 

problem for optimal siting of emergency facilities. International Journal of Geographical 

Information Science, 24 (2), 213–230. 

Jaynes, E.T., 1990. Notes on present status and future prospects. In: W.. Grandy and L.H. Schick, 

eds. Maximum entropy and Bayesian methods. Dodrecht: Kluwer. 

Kim, H.-M. and Kwan, M.-P., 2003. Space-time accessibility measures: A geocomputational 

algorithm with a focus on the feasible opportunity set and possible activity duration. Journal 

of Geographical Systems, 5 (1), 71–91. 

Koch, T. and Denike, K., 2009. Crediting his critics’ concerns: remaking John Snow's map of 

Broad Street cholera, 1854. Social science & medicine (1982), 69 (8), 1246–51. 

Koester, R., 2008. Lost Person Behavior. Search. Charlottesville, VA: dbS Productions. 

Koester, R.J., Cooper, D.C., Frost, J.R., and Robe, R.Q., 2004. Sweep Width Estimation for 

Ground Search and Rescue. Washington. 

Koester, R.J. and Stooksbury, D.E., 1995. Behavioral profile of possible Alzheimer’s disease 

patients in Virginia search and rescue incidents. Wilderness & Environmental Medicine, 6, 

34–43. 

Koopman, B.O., 1980. Search and Screening. New Yorrk: Pergamon Press. 

Kratzke, T.M., Stone, L.D., and Frost, J.R., 2010. Search and Rescue Optimal Planning System 

(SAROPS). In: 13th Conference on Information Fusion. Edinburgh, Scotland: IEEE, 1 – 8. 

Kwan, M.-P., 2003. Intelligent emergency response systems. In: S.L. Cutter, D.B. Richardson, 

and T.J. Wilbanks, eds. The Geographical Dimensions of Terrorism. New York: 

Routeledge, 111–116. 

Lawson, A., Gangnon, R., and Wartenberg, D., 2006. Developments in disease cluster detection. 

Statistics in Medicine, 25 (5), 721. 

Li, W. and Guo, Q., 2010. A maximum entropy approach to one-class classification of remote 

sensing imagery. International Journal of Remote Sensing, 31 (8), 2227–2235. 

Li, W., Guo, Q., and Elkan, C., 2011. Can we model the probability of presence of species 

without absence data? Ecography, 34 (6), 1096–1105. 



83 

 

 

 

Li, X. and Yeh, A., 2005. Integration of genetic algorithms and GIS for optimal location search. 

International Journal of Geographical Information Science, 19 (5), 581–601. 

Lin, L. and Goodrich, M. a., 2010. A Bayesian approach to modeling lost person behaviors based 

on terrain features in Wilderness Search and Rescue. Computational and Mathematical 

Organization Theory, 16 (3), 300–323. 

Liu, D. and Cai, S., 2011. A Spatial-Temporal Modeling Approach to Reconstructing Land-Cover 

Change Trajectories from A Spatial-Temporal Modeling Approach to Reconstructing Land-

Cover Change Trajectories from Multi-temporal Satellite Imagery. Annals of the 

Association of American Geographers, 102 (6), 1329–1347. 

Liu, Y., Guo, Q., Wieczorek, J., and Goodchild, M.F., 2009. Positioning localities based on 

spatial assertions. International Journal of Geographical Information Science, 23 (11), 

1471–1501. 

Malczewski, J., 2004. GIS-based land-use suitability analysis: a critical overview. Progress in 

Planning, 62 (1), 3–65. 

Miller, H., 1996. GIS and geometric representation in facility location problems. International 

Journal of Geographical Information …, 10 (7), 37–41. 

Miller, H.J. and Bridwell, S. a., 2009. A Field-Based Theory for Time Geography. Annals of the 

Association of American Geographers, 99 (1), 49–75. 

Moffett, A., Shackelford, N., and Sarkar, S., 2007. Malaria in Africa: Vector Species’ Niche 

Models and Relative Risk Maps. PLoS ONE, 2 (9), e824. 

Montalvo, R., Wingard, D.L., Bracker, M., Davidson, T.M., and Diego, S., 1998. Conferences 

and Reviews Morbidity and Mortality in the Wilderness. Wilderness and Environmental 

Medicine, 168 (4), 248–254. 

Mostern, R. and Johnson, I., 2008. From named place to naming event: creating gazetteers for 

history. International Journal of Geographical Information Science, 22 (10), 1091–1108. 

Murray, A. and Tong, D., 2007. Coverage optimization in continuous space facility siting. 

International Journal of Geographical …, (March 2013), 37–41. 

National Association for Search and Rescue, 2005. Fundamentals of Search and Rescue. 

Sudbury, MA: Jones and Bartlett Publishers. 

Nikolakaki, P., 2004. A GIS site-selection process for habitat creation: estimating connectivity of 

habitat patches. Landscape and Urban Planning, 68 (1), 77–94. 

Ostfeld, R.S., Glass, G.E., and Keesing, F., 2005. Spatial epidemiology: an emerging (or re-

emerging) discipline. Trends in Ecology & Evolution, 20 (6), 328–36. 



84 

 

 

 

Pearson, R., Dawson, T., and Liu, C., 2004. Modelling species distributions in Britain: a 

hierarchical integration of climate and land‐cover data. Ecography, 3, 285–298. 

Phillips, S.J., Dudik, M., and Schapire, R.E., 2004. A maximum entropy approach to species 

distribution modeling. In: Proceedings of the Twenty-First International Conference on 

Machine Learning. Banff, Alberta, CA, 655–662. 

Robertson, C., Nelson, T.A., MacNab, Y.C., and Lawson, A.B., 2010. Review of methods for 

space–time disease surveillance. Spatial and Spatio-temporal Epidemiology, 1 (2–3), 105–

116. 

Schneider, P.J. and Schauer, B.A., 2006. HAZUS—Its Development and Its Future. Natural 

Hazards Review, 7, 40–44. 

Shannon, C., 1948. A mathematical theory of communication. The Bell System Technical 

Journal, 27, 379–423. 

Sherrill, K.R., Frakes, B., and Schupbach, S., 2010. Travel time cost surface model: standard 

operating procedure. Natural Resource Report NPS/NRPC/IMD/NRR—2010/238. Fort 

Collins, Colorado. 

Stone, L.D., 1989. What’s happened in search theory since the 1975 Lanchester Prize? 

Operations Research, 37 (3), 501. 

Stone, L.D., 2007. Theory of Optimal Search. 2nd ed. Mathematics in Science and Engineering. 

New York: Academic Press. 

Suárez-Seoane, S., García de la Morena, E.L., Morales Prieto, M.B., Osborne, P.E., and De 

Juana, E., 2008. Maximum entropy niche-based modelling of seasonal changes in little 

bustard (Tetrax tetrax) distribution. Ecological Modelling, 219, 17–29. 

Syrotuck, W.G., 1976. Analysis of Lost Person Behavior. Mechanicsburg, PA: Barkleigh 

Productions, Inc. 

Tate, E., Cutter, S.L., and Berry, M., 2010. Integrated multihazard mapping. Environment and 

Planning B: Planning and Design, 37 (4), 646–663. 

The Outdoor Foundation, 2012. Outdoor Recreation Participation Report. 

Theodore, J., 2009. When every second counts. ArcNews, (March), 66 – 69. 

Tobler, W., 1965. Non-Isotropic Geographic Modeling. Information Systems. 

Tobler, W., 1991. Non-Isotropic Geographic Modeling. In: W. Tobler, ed. Geographic 

Information Systems in the Social Sciences. Santa Barbara. 

Toregas, C., Swain, R., ReVelle, C., and Bergman, L., 1971. The Location of Emergency Service 

Facilities. Operations Research, 19 (6), 1363–1373. 



85 

 

 

 

Whitley, T. and Hicks, L., 2003. A geographic information systems approach to understanding 

potential prehistoric and historic travel corridors. Southeastern Archaeology, (those 1994). 

Wieczorek, J., Guo, Q., and Hijmans, R., 2004a. The point-radius method for georeferencing 

locality descriptions and calculating associated uncertainty. International Journal of 

Geographical Information Science, 18 (8), 745–767. 

Wieczorek, J., Guo, Q., and Hijmans, R., 2004b. The point-radius method for georeferencing 

locality descriptions and calculating associated uncertainty. International Journal of 

Geographical Information Science, 18 (8), 745–767. 

Wild, F.J., 2008. Epidemiology of mountain search and rescue operations in Banff, Yoho, and 

Kootenay National Parks, 2003-06. Wilderness & Environmental Medicine, 19 (4), 245–51. 

Winter, S. and Yin, Z.-C., 2010. Directed movements in probabilistic time geography. 

International Journal of Geographical Information Science, 24 (9), 1349–1365. 

Worsing, R.J., 1993. Rural Rescue and Emergency Care. 1st ed. Rosemont, IL: American 

Academy of Orthopaedic Surgeons. 

Yee, K. and Iserson, K. V., 2008. The Epidemiology of Search and Rescue Incidents in the Grand 

Canyon National Park: Are Preventive Measures Making a Difference? Western Journal of 

Emergency Medicine, 9 (1), 3–5. 

 

  



86 

 

 

 

Table 3.1 Comparison of Euclidean distances traveled from the IPP to the found location for 

hikers. 

 

 Yosemite (km) ISRID (km) 

n 130 568 

25% 1.1 1.1 

50% 1.8 3.1 

75% 4.0 5.8 

95% 16.9 18.3 
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Table 3.2 Comparison of mobility values for hikers in Yosemite derived from isochrones versus 

a global dataset (ISRID) based on reported mobility. 

 

 Yosemite (hours) ISRID (hours) 

n 130 232 

25% 0.5 0.0 

50% 1.0 3.0 

75% 1.5 6.0 

95% 6.0 14.0 
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Figure 3.1 Rings based on Euclidean distance (crow’s flight distance) are often plotted from the 

Initial Planning Point (IPP). These distances correspond to the lower quartile, median, upper 

quartile, and 95th percentile of distance (measured in either miles or kilometers) of lost subjects 

collected by the ISRID. 
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Figure 3.2 Lines of equal travel time given in hours (isochrones) for a hiker based on impedance 

due to geographic factors such as presence and absence of roads, trails lakes, and streams, terrain 

(slope, cliffs, etc.) and land cover layers. In this example we use the ISRID mobility table for the 

hiker category to classify isochrones corresponding to summary statistics for how long a missing 

subject had been actively moving before being found. 
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Figure 3.3 A scatterplot of isochrones (Tmin) values at point found versus Euclidean distance (D) 

between point found and initial planning coordinates. The relationship showed a significant 

positive correlation (n = 130, R
2
= 0.96, P < 0.01). 
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Figure 3.4 A map where both the ring and mobility models (isochrones in hours of travel time) 

derived from local data are incorporated for decision making on probability of area.  

 

 
  



92 

 

 

 

Chapter IV: Rescue 
 

Expert versus Machine: A Comparison of Two Suitability Models for 
Emergency Helicopter Landing Areas in Yosemite National Park 
 

[Formatted and previously published in Professional Geographer] 

 

Landing a rescue helicopter in a wilderness environment, such as Yosemite National Park, 

requires suitable areas that are flat, devoid of tree canopy, and not within close proximity to other 

hazards. The objective of this study was to identify helicopter landing that areas are most likely to 

exist based on available geographic data using two GIScience methods. The first approach 

produced an expert model that was derived from pre-defined feature constraints based on existing 

knowledge of helicopter landing area requirements (weighted overlay algorithm). The second 

model is derived using a machine learning technique (maximum entropy algorithm, Maxent) that 

derives feature constraints from existing presence-only points, i.e. geographic one-class data. 

Both models yielded similar output and successfully classified test coordinates, however Maxent 

was more efficient and required no user-defined weighting that is typically subject to human bias 

or disagreement. The pros and cons of each approach are discussed and the comparison reveals 

important considerations for a variety of future land suitability studies, including ecological niche 

modeling. The conclusion is that the two approaches complement each other. Overall, we 

produced an effective GISystem product to support the identification of suitable landing areas in 

emergent rescue situations. To our knowledge, this is the first GIScience study focused on 

estimating the location of landing zones for a search and rescue application.  

 

Key Words: land suitability, geographic one-class data, Maxent, search and rescue, Yosemite 

National Park. 
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Introduction  

There are inherently spatial components underlying the process of rescuing people in distress or 

life-threatening situations (Search and Rescue or SAR), especially in remote locations such as in 

our National Parks. In National Parks, many SAR incidents occur each year and rescue operations 

can be extremely dangerous and costly (an average of 11 per day at a cost of 895 U.S. dollars 

each; Heggie and Amundson 2009). SAR operations usually consist of two parts: the search for 

missing or distressed persons and then the rescue operation. The helicopter is one tool rescuers 

may use to accomplish these tasks (up to 20 percent of rescues in some National Parks). If a 

rescue is deemed extremely urgent and requires a helicopter, then a suitable site (landing zone) 

must be chosen within close proximity to the rescue. In addition, to land safely a landing zone 

must meet the terrain requirements of minimal slope and be free of hazards (vegetation and man-

made structures). If a landing zone cannot be found, alternatives may include more dangerous 

helicopter rescue techniques or calling off a helicopter operation altogether.  

During helicopter operations, landing a helicopter and directly loading patients on the 

ground is generally the safest option because the other techniques such as short-haul or rappel 

require the helicopter to maintain a hovering position which greatly increases overall risk 

(Manwaring et al 1998). In addition, park managers attempt to reduce ecological impacts by 

finding suitable landing areas instead of manipulating vegetation. However, in the mountainous 

terrain of Yosemite National Park (YNP), our study area, finding suitable landing areas can be 

difficult. Yet, locating and identifying suitable land or habitat is a common workflow across 

many disciplines utilizing geographic information science (GIScience) and we propose that these 

techniques can be applied to find suitable helicopter landing areas. The process of employing 

these techniques will yield insight into the relationships between modeled geographic data, the 

real-world we are trying to study, and the analyses in question.  

To identify suitable landing zones, an expert model can be generated using overlay 

analysis in which the layers are combined using constraints (Store and Kangas 2001). In this case 

we defined parameter constraints on feature space (slope, vegetation, aerial hazard layers) for 

suitable landing with best practice guides, standard operating procedures, and local knowledge. 

This is a subjective approach but can be an effective method if parameters being weighted 

adequately represent reality. There are several examples where this approach has been used to 

consider suitability against the spatial distribution of human features and environmental factors 

such as hazardous waste disposal (Jensen and Christensen 1986), road-siting (Li et al. 1999), 

Dengue Fever (Kolivras 2006) and geothermal exploration (Noorollahi 2008). With regards to 

helicopter landing areas, it is apparent in current guidelines (National Interagency Fire Center 

2006) that the constraints on environmental layers (feature space) has been defined literally on 

feature space using expert knowledge (e.g. if slope at a location is less than 5 percent and no 

aerial hazards are present within 90 m, then our model should indicate increased suitability at the 

given coordinates). This can easily be re-projected onto geographic space. In this research we 

used expert knowledge to define criteria for several geographic layers and modeled landing 

suitability using a simple weighted overlay algorithm. However, the weighting process where 

layers are assigned values for their percent influence is subjective and it is likely that experts 

might disagree on how to weight parameters, which is a major concern for decision support 

systems. While many studies highlight the use of expert models or multi-criteria support systems 

(land use planning, transportation management, species habitat modeling, environmental systems; 

see Malczekski 2004 for a comprehensive overview, few report the accuracy or effect of bias in 

the output with regards to actual fitness for use. While land suitability analyses best practices 

utilize an evaluation of fitness of land for a particular use and the values of stakeholders in a 

region (Bojorquez-Tapia et al. 2001), in this research we evaluate an overlay model that defines 
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fitness for use in emergency operations using an overlay technique based on fitness of land as 

defined by protocols. 

Alternatively, we can model helicopter landing suitability using training data and 

environmental features without prior expert opinion. Machine learning models utilize an objective 

approach where only training data are used to examine parameters for relationships and relative 

contribution, on which the models interpolate or extrapolate the suitability of a geographic event. 

These methods primarily assume that the geographic phenomena of interest are determined by a 

set of environmental and non-environmental factors. For example, a species’ distribution is 

controlled by environmental features such as temperature, precipitation, topography, soil and fires 

(Pearson and Dawson 2003). Another example is how landslide hazards are dependent on slope, 

aspect, elevation, soil moisture, and distance to major faults (Lan et al. 2004).  Presence/absence 

models are frequently used for defining suitability, especially with regards to wildlife species 

distribution (Millspaugh 2009). In the past, predicting suitability areas has been challenging due 

to a lack of true absence data. For instance, in our study we only have coordinates for areas where 

helicopters have landed (suitable land), but not areas where they could not land (unsuitable land). 

This is a problem known as the geographic one-class data issue (Guo et al. 2011). Today 

however, powerful machine learning methods (Li et al. 2011) such as maximum entropy 

(Maxent; Phillips et al. 2006), utilize presence-only information to generate powerful predictive 

models with a relatively small training-sample collection effort (Li and Guo 2010). For example, 

in one recent study, 124 vulture presences or colonies were used to perform a Maxent analysis 

with strong results useful for predicting the future range of Griffon Vultures Gyps fulvus (Mateo-

Tomás and Olea 2010). Maxent has been used in a variety of other species distribution studies for 

mammals (Baldwin and Bender 2008; DeMatteo and Loiselle 2008), birds (Yost et al. 2008), 

amphibians (Rödder and Weinsheimer 2009), lizards (Pearson et al. 2007) and endangered tree 

species (Kumar and Stohlgren 2009). Therefore, recent examples support the assumption that 

geographic data can adequately represent reality and relationships between these datasets can be 

characterized as meaningful environmental envelopes or niches. These environmental envelopes 

can then be used to estimate where a focal subject can or cannot exist in geographic or feature-

space. 

Machine learning algorithms require less human intervention during criteria selection and 

model coefficient determination than the expert model approach. Maxent is especially useful for 

this purpose, requiring only presence data to map species distributions. According to Baldwin 

(2009), “Maxent is relatively insensitive to spatial errors associated with location data, requires 

few locations to construct useful models, and performs better than other presence-only modeling 

approaches”. In addition, machine learning algorithms such as Maxent, by design, can reveal the 

most compelling factors to explain some known spatial phenomena or determine the 

environmental envelopes of focal subjects. This is significant since assumptions made by experts 

can be incorrect or overemphasized (Alho et al. 1996).  By matching locations of known landing 

locations within environmental envelopes, other similar locations can be predicted out with less 

bias than an expert model; however the machine learning approach is not interactive and the data 

processing is not always easily understood by those trying to utilize the output. In addition, while 

the algorithm itself is not biased by human opinion, the choice of which datasets to include is 

subject to human interpretation of what factors/layers are consequential to the distribution of the 

focal subject. The layer selection and sample collection process itself should still be based on 

scientific study and a machine learning algorithm is most useful if it generates informative 

models beyond what we already know (expert model). Thus, a comparison of the two techniques 

using a simple “species” (the helicopter) as the study subject is justified. Furthermore, to our 

knowledge, there is no previous research where expert knowledge or machine learning algorithms 

have been applied to helicopter landing suitability modeling. 
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We are testing the following assumptions in this study: the spatial layers we have chosen 

for evaluating helicopter landing suitability are appropriate, we can define parameter weights and 

coefficients using standard operation procedures, and a machine learning algorithm can 

autonomously extract meaningful relationships between training data and the base data provided. 

Therefore, we hypothesize the following; if the statements above are true then output from 

Maxent (1) should demonstrate similar relationships between base data and output as in the expert 

model and (2) Maxent should successfully classify habitat at test points. By testing these 

hypotheses we are essentially evaluating whether an expert model and a machine learning 

algorithm can have similar predictive abilities. This is a novel GIScience approach to locating 

suitable helicopter landing areas and comparing two techniques that are commonly used in land 

suitability analyses, but have not been compared directly.  

 

Methods 

Study Area and Data 

YNP (Figure 4.1) is located in the Sierra Nevada Mountains of California and has over 

1287.47 kilometers (800 miles) of hiking trails with over 200 SAR incidents each year (Hung and 

Townes 2008). The relatively high amount of visitation, even in remote locations leads to SAR 

incidents occurring far from roads that emergency vehicles can access. Therefore, Yosemite 

Search and Rescue (YOSAR) use a large helicopter to perform a significant proportion of their 

rescues each year (22 percent in 2009). Whether the rescued are retrieved by directly entering the 

helicopter at a landing zone or via short-haul (suspended rope) rescue, at some point during an 

operation the helicopter crew will need to locate a flat, open landing area.  Therefore, it would be 

extremely helpful if land suitability analyses could be performed and generate raster data where 

helicopter pilots could be given coordinates for likely landing areas before departing for the 

mission. 

Suitable landing areas are defined within institutional texts, such as the Interagency 

Helicopter Operations Guide (National Interagency Fire Center 2006). This source defined a 

suitable landing zone as 6.096 meters by 6.096 meters (20 feet by 20 feet) that is “reasonably 

level and clear of vegetation greater than 18 inches in height”. This habitat is not easy to locate in 

the undeveloped areas of YNP (96 percent of the 3110 square kilometers is wilderness) where 

many hikers find themselves in trouble. In addition, to land a type II helicopter requires a safety 

circle of 27.432 meters  (90 feet) where there is no open water, building or utility structure 

present.  

Previously known landing areas were used as training data for the Maxent model against 

the same input layers used by the expert model. First, we extracted the YNP Landing Zone 

dataset (points, LZ) from the Park’s geodatabase. The LZ Dataset was in vector format and 

contained 140 points where the Yosemite Helitack crew determined, using a GPS receiver 

(approximately 3 – 9 m accuracy), that a helicopter has landed in the past for rescue, fire, 

backcountry utility support, or snow-station monitoring. It is important to note that these sites 

were chosen based on field-decisions prior to any true spatial analyses and required little or no 

mechanical manipulation for landing.  

We retrieved the following base data for model development: 10m USGS digital 

elevation model converted to slope in degrees (raster), 1m 2009 North American Imagery 

Program red and near infrared band digital numbers converted to pseudo-normalized difference 

vegetation index (raster), YNP buildings (polygon), and YNP open-water (polygon) from the 

publically-available NPS Data Store for vector data and the USDA GIS Server for imagery.  In 

addition, we were provided with the location of YNP power lines (polylines). NDVI values in the 

Sierra Nevada have been derived from imagery to create vegetation classification for wildfire fuel 

models (Van Wagtendonk and Root 2003) and  represent a high positive correlation with 
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vegetation density with open areas having low NDVI values and densely vegetated areas (forest) 

having higher values. Therefore, lower NDVI values were given a higher ranking in the expert 

model. SLOPE was creating using the ArcGIS slope geoprocessing tool and NDVI was created 

using raster algebra.  We were concerned about the level of spatial accuracy in YNP base data 

(horizontal and vertical uncertainty). We used a buffer technique to account for the horizontal 

accuracy of vector data (produced at the 1:24,000 scale with 12m uncertainty; USGS 2005) to err 

on the side of caution for hazards during the rasterization process. The highest optimal slope as 

indicated by the IHOG protocol (National Interagency Fire Center 2006) is 5 degrees and so any 

pixel 5 degrees or lower received a rank prior to weighting as a 3. During the expert model 

construction, we categorized using the vertical uncertainty of the digital elevation model derived 

slope (2 degree uncertainty; Wechsler and Kroll 2006) to account for overestimation of slope. 

Therefore, 5 to 7 degree slope pixels were ranked prior to weighting as a 2. All data were 

projected using UTM Zone 11N datum NAD 1983. All vector data were converted to raster 

format for analyses and model production. The extent was defined by the YNP boundary layer.  

 

 

Expert Model 

The first step of defining suitable habitat is known as site-search analysis (Malczewski 

2004) in which we identify which factors affect landing suitability. We used literature, the 

Interagency Helicopter Operations Guide (IHOG; National Interagency Fire Center 2006) to 

identify what factors are important for landing a helicopter; slope, vegetation and the 

presence/absence of hazards. The IHOG states the following regarding helispots for the type of 

helicopters used in Yosemite (Type II) and we used these siting factors: 

 Slope - Avoid slopes over 5 degrees or 11 percent (9:1) slope 

 Water - Avoid open water 

 Hazards (vegetation, buildings, power lines) - An adequate minimum width for an 

approach-departure path is the diameter of the safety circle (90 feet). 

 In the second step, we used the weighted overlay method to represent the above IHOG 

criteria in a deterministic manner, where each class within a map layer is given a score and each 

unique map layer is given a map weight to reflect the findings of subject matter experts and 

geographic information scientists.  

 

  ̅  
∑      

 

   

∑   
 
   

           

 

 Equation 1 (Bonham-Carter 1994) defines total suitability score as  ̅, where Sij is the 

suitability ranking (from 1 to 3, 0 if the value restricts helicopter landing entirely) within 

individual layers (e.g. slope) and Wi is the weight assigned to individual map layers (from 0 to 

100 percent, with the cumulative percentages equal to 100 percent). The output is a raster (10m 

resolution) rounded to ordinal values of 0 (0.00 – 0.49), 1 (0.50 – 1.49), 2 (1.50 – 2.49), or 3 (2.50 

– 3.00). We defined the variables entered into this weighted overlay model using  an object-

oriented modeling approach where inputs could be selected from spatial layers (ESRI 2010). We 

constructed the model so that the presence of any “hazard”, i.e. where distance to AIRHAZ 

and/or BUILDS < 30m or presence of open water, would nullify all other contributing values at 

that raster cell. So an output of 0 defines that raster cell as restricted, despite any other variable 

values because it cannot be suitable for landing (not suitable). Increasing suitability ranking 

values (Sij) for each of the layers from 1 (Not likely), 2 (Possible), to 3 (Most likely suitable) 

represents the increased likelihood of the raster cell being an appropriate landing area based on 

expert knowledge (Table 4.1). The subjective weighting of each layer (Wij) was based on how 

(1) 
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likely a layer was to impact a helicopter pilot’s decision in YNP.  The weighted overlay 

algorithm, therefore, produces a raster cell equal to 3 for an area that is flat, clear of tall 

vegetation, not open water, and clear of man-made hazards. Because Maxent produces a 

continuous probability output from 0 to 1, users of Maxent can choose a threshold for decision 

making (read below). To directly compare the decision making accuracy of the weighted overlay 

method (expert model) to the machine learning algorithm (Maxent) we needed to recode the 4 

output categories into a binary output. For binary comparison with Maxent we reclassified the 

expert output by recoding as follows: IF 0 OR 1 THEN binary = 0 (not suitable); IF 2 OR 3 

THEN binary= 1 (suitable). 

 

Maximum Entropy Model 

 Entropy is a fundamental concept in information theory, which measures how much 

choice is involved in selection of an event (Shannon 1948). For a random variable, uniform 

distribute provides greater entropy than non-uniform one. Therefore, an equal distribution of 

probabilities has the maximum entropy (Bishop 2006).  For example, given a discrete variable x 

with two possible values, 0 and 1, the best guess of x will be the uniform distribution model: p (x 

= 1) = 0.5 and p (x = 0) = 0.5. If we know that 80% of the samples are 1, then we updated the 

model as p (x = 1) = 0.8 and p (x = 0) = 0.2.  This is based on everything we know and avoids 

making assumption that we do not know (Jaynes 1990). 

In this study, the unknown probability distribution   is over a finite set X (the set of 

pixels in the study area) The distribution   assigns a non-negative probability  x  
to each pixel 

x, with the sum of these probabilities equal to one. The constraints on the unknown probability 

distribution   are represented by a set of environmental features (e.g. NDVI, Slope, etc.)  f1, …, 

fn on X. The information we know about  is the expectations (averages) of each feature fj under
, which is defined as:

  

   

     



Xx

jj xfxf 
            

 

A set of sample pixels x1, …, xm is drawn independently from X. The corresponding 

empirical distribution is denoted as 
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The empirical average of fj under~ is defined as  
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We use  jf~  as an estimate of  jf . The goal is to seek the probability distribution̂ , an 

approximation of , subject to the constraint that the expectation of each feature fj under ̂  is the 

same as its empirical average, stated formally as 

        
   jj ff  ~ˆ          

Although there are many distributions satisfying these constraints, based on the 

maximum entropy principle, we choose the one that produces the maximum entropy. The entropy 

of ̂  is defined as  

     

     



Xx

xxH  ˆlnˆˆ            

(2) 

(3) 

(4) 

(5) 
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We used the ‘Maxent’ software version 3.3.3a that is freely available online
8
. The 

Maxent model received the base data layers in their native raster format (SLOPE, NDVI, 

HYDRO, AIRHAZ, BUILDS) and the coordinates of known landing zones to be used as training 

points for the learning algorithm. The output is a raster (10m resolution) with continuous values 

generated by a machine-learning algorithm based upon maximum entropy. For more detailed 

information regarding Maxent please refer to Phillips et al. (2006). 

We used two output criteria for evaluating the Maxent method for identifying helicopter 

landing suitability; the estimate probability and binary prediction. We used the default output 

logistic that gives an estimate of probability between 0 and 1. Note the output is not the exact 

probability of being positive, but it is proportional to the conditional probability of being positive 

(Phillips et al. 2006). To investigate the ability of Maxent to be used for decision making and 

compare to the weighted overlay method we need to convert these probabilities into binary 

prediction values (0 or 1). Therefore, a threshold is required to convert the probabilistic output to 

binary predictions. To avoid over-fitting, we randomly set aside 40 of the 140 training set 

coordinates for validation. To avoid over-predictions, we allow for a small omission rate to 

account for outliers in the validation set. In this study, we chose the logistic value corresponding 

to a 5 percent omission rate for the validation set as the threshold to make a binary prediction of 0 

for not suitable or 1 for suitable (Pearson et al. 2004). To evaluate the sensitivity of our analysis 

training dataset to sample size needed to train the model, we generated multiple model runs using 

sampling sizes starting from10 to 100 points with a step size of 10 (a total of ten tests). To control 

for different combinations of sampling selections, we ran for each of these ten configurations a 

Monte Carlo simulation that randomly selects point to train the model.  

 

Statistical Analyses 

To evaluate the level of agreement between the expert and Maxent model based on 

estimated probability (Hypothesis 1) we compared the per-pixel distribution of each models’ 

output values. The expert overlay model initially has a categorical output ( 0, 1, 2, 3) for each 

pixel in the study area whereas Maxent’s initial output are continuous values (0.000 to 1.000) for 

each pixel in the study area (N = 53,776,590 pixels). From the study area, we sampled 2000 

random pixels stratified by the expert model’s i factor-levels (four equally sample groups of ni = 

500). Then the continuous output of Maxent (values close to 0.000 indicate low suitability, 1.000 

indicates high suitability) could be compared across the expert model discrete ordinal categorical 

values (0 indicates not suitably; 1 not likely suitable; 2 possibly suitable; 3 most likely suitable). 

To do so, we chose the non-parametric equivalents to the one-way ANOVA and Tukey test 

(Kolmogorov-Smirnov and Nemenyi Test for pairwise post-hoc comparison of ranks; Zar 1999; 

Tabachnik and Fidell 2007). Therefore, we compared the ranks of Maxent continuous data 

between the factor levels from the expert suitability model: not suitable, not likely, possible, most 

likely. Secondly, we compared the global per-pixel binary classification of all output pixels for 

percent agreement. Finally, we qualitatively compared the weighting determined by the Maxent 

machine learning algorithm to that defined by the expert model algorithm to identify possible 

sources of conflict.  

To evaluate the accuracy, or how well the expert and Maxent models classified true-

presence locations (Hypothesis 2), we sampled the binary output from each model at 40 

test/validated points. We then used the Binomial test to compare this classification at coordinates 

where helicopters have landed but were not included in Maxent training sample. The test 

proportion is the random chance proportion of 0.5. Standard geoprocessing was done using ESRI 

                                                      
8
 http://www.cs.princeton.edu/~schapire/maxent/  
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ArcMap 10.0 and statistical analyses using SPSS Statistical Package (ESRI 2010; SPSS Inc. 

2004). 

 

Results 

The output for both models had identical extent and pixel size (10m). The expert model output 

has four categories (not suitable, not likely, possibly, and most likely suitable) and the Maxent 

model output yielded continuous values from 0 to 1. When we compared the distribution of 

ranked-Maxent values between expert model groups at 2000 test points, there was an overall 

significant positive relationship (Kruskal-Wallis χ
2
3 = 3280.97, P < 0.001)  and significant pair-

wise differences between each group (Figure 4.2).  

The threshold for creating binary classification of Maxent was 0.0836 (< threshold = not 

suitable; > threshold = suitable). When we reclassified Maxent output and the expert model 

output into binary variables (0 = not suitable, 1 = suitable), there was an overall agreement of 

90.2 percent (Table 4.2; Figure 4.3). To test the sensitivity of the sample size on the model 

outputs, we ran Maxent with the sample sizes of 20 to 100 with a step interval of 10, and found 

that as we increase the sampling density, there is little disagreement between suitability maps 

produced at each step (average of 0.78% change). 

There is great similarity between the settings implemented in the expert model (percent influence, 

relationship) and the output from Maxent (relative contribution, relationship). Finally, both the 

expert and Maxent model output correctly classified the 40 validation points better than expected 

by chance alone (test proportion at 0.50; P < 0.001) and better than a distribution expected based 

on proportions found in the raster outputs (expert model expected from global distribution 0.23, P 

< 0.001; Maxent model 0.14 expected from global distribution, P < 0.001 ; Table 4.3).  

 

Discussion 

The expert model utilized a weighted overlay approach where reclassified variables are weighted 

by percent influence and added to give an integer suitability score (0 to 3), with 3 indicating a 

raster pixel that is most suitable (low slope, low NDVI score, not on open water, and at least 27m 

from buildings or aerial hazards). The Maxent machine learning algorithm used a maximum 

entropy approach to assigning suitability scores based off of sampling feature space at 100 

training/presence coordinates. Both models indicate that areas of low slope, low NDVI, without 

standing water, and not in close proximity to hazards are suitable for landing helicopters. 

 

Expert Model 

The expert model, while subjective from an input standpoint, successfully classifies 

helicopter landing suitability areas (95 percent). While the weighted overlay approach can be 

limited by the quality of expert input and parameters, the spatial data available in this study 

adequately represented reality and the definitive real-world  parameters defined in the IHOG 

document were appropriately transferred in the overlay process.  In most cases a weighted 

overlay  is a process where several raster layers are overlaid using a common measurement scale 

and each layer is weighted according to its importance. Our weighting scheme was determined 

based on some understanding of the spatial distribution of layer attributes. For example, we set 

the percent influence of hazards low (5 percent) because they are not spatially pervasive features 

in YNP, not because they are less important than slope. These weighting criteria may not transfer 

well to more developed environments where hazards are more spatially abundant.  

Despite a drastic rise in publications related to expert models and GISystem based multi-

criteria decision analysis, there has been a lack of research on conceptualization, validation, and 

use of these techniques in real-world spatial problems (Malczewski 2006). In light of this, it is 

important to note that we feel accounting for limitations due to spatial accuracy and spatial 
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distribution (Goodchild and Gopal 1989; Zhang and Goodchild 2002) during the reclassification 

process led to increased model success. In addition to expertise on a focal subject’s requirements 

(i.e. habitat), one must also understand and attempt to account for uncertainty regarding positions 

in geographic space within their dataset. Indeed, two sites of the previously used landing sites 

were misclassified by the expert model (Table 4.3) and appear to be within 10m of a small patch 

of suitable landing area, suggesting horizontal inaccuracy in the point coordinates themselves 

(due to GPS error) not a violation of helicopter landing criteria. This highlights the need to 

understand the horizontal accuracy of spatial data before allowing a machine learning model to 

produce distribution maps based off of training data. In this case, the performance (95% of points 

were correctly classified) of the expert model suggests that the majority of our test data were 

spatially accurate. Spatial data quality and its applicability to the real-world are not always fully 

understood prior to beginning a land suitability studies. Therefore the expert model approach is 

an appropriate step for testing prior assumptions and data quality prior to machine learning 

analyses.  

 

Maximum Entropy Model 

Based on the performance of the machine learning algorithm Maxent (95 percent on 

validated points), it appears that we can extract meaningful relationships between training data 

and the base data provided. Maxent was not sensitive to sample size in our study and produced 

consistent suitability maps between sampling densities) and this is consistent with sample size 

analysis of previous work (Guo et al. 2011). With regards to our first hypothesis, Maxent 

identified similar relationships between base data and landing suitability to the expert model and 

resulted in a global 90.2 percent agreement with expert model. With regards to our second 

hypothesis regarding model success, Maxent classified test points (not used in the training 

dataset) with success equal to the expert model. While Maxent had 90.2 percent agreement with 

the expert model, it was more conservative overall (Maxent classified 86 percent of the area as 

not suitable; expert model classified 77 percent as not suitable; see Figures 4.2 and 4.3). One 

explanation for this disparity may be that the expert model more heavily weighted NDVI than 

Maxent (Table 4.1). Indeed in post-hoc, if we set the percent influence for the expert model equal 

to the percent contribution determined by Maxent we get an even greater level of agreement (97 

percent agreement). However this results in a lower classification score on the validated points 

(from 95 percent in the original to 85 percent) in the new and more conservative expert model. 

This highlights the complexity of subjective weighting criteria involved with the weighted 

overlay technique. 

The way helicopter pilots perceive their environment is arguably no different from other 

species’ habitat selection (mammals, Baldwin and Bender 2008; DeMatteo and Loiselle 2008; 

birds, Yost et al. 2008; amphibians, Rödder and Weinsheimer 2009; and lizards, Pearson et al. 

2007). Both humans and other animals choose habitat based off of what is geographically 

available and appears desirable to them at the time of making the decision, yet we model large 

areas from the localized decisions made in the past for these species. We recognize pilots may not 

always choose suitable landing zones due to a variety reasons (error in judgment, emergency 

landing, etc.) and this will introduce some bias to the analyses. However, applying the 5% 

omission rate as a threshold for converting the probability map into the binary output, the 

resulting map will exclude some unrepresentative sample localities. Note that the machine 

learning algorithm used in this project was not created to find the most optimal landing zones; 

instead they are used to generate binary suitable and unsuitable landing zones for making 

decisions.  Another concern regarding the use of Maxent in this study is the false classification of 

some open water pixels with zero degree slope values (which is desirable), but also a very low 

NDVI score (indicating the presence of open water). Whereas the expert can nullify the influence 
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of other variables if one variable is restricted, Maxent could not always discern low vegetation 

land classes from open water due to the otherwise strong negative relationship between 

openness/suitability and NDVI. This might be corrected by utilizing a combination of vegetation 

indices (simple-ratio) or adding a mask to pixels that cannot possibly be physically (or 

biologically) possible. Nevertheless, the powerful ability of machine learning algorithms to 

correctly classify naïve points based on geographic one-class data was demonstrated without the 

challenge of selecting weighting criteria up front. 

 

Theoretical Implications 

The process of evaluating terrain for land suitability or site selection is typically an 

iterative process that has historically used a combination of GIScience and local or expert 

knowledge and opinion (Malczewski 2004). Challenges in the land suitability modeling process 

are typically constraints bounded by the quality of spatial data available, explicit knowledge 

relating to factors affecting suitability, lack of true absence data, and/or inability to adequately 

model the real world.  

In this example, the weighted overlay model is not used in the classic multi-criteria 

evaluation scenario (such as discussed in Carver 1991). We are not concerned with conflicting 

policy or expert opinion at this stage. Weighted overlay was used in a deterministic sense to map 

out all of the areas where a helicopter may land based on physical parameters given in a 

helicopter operations guide. We could have used a simple map algebra approach, but the idea was 

to produce a model that can be validated by true one-class data and also compared to a machine-

learning model output. The validation step is important because the outcome a model is only as 

valuable as the quality of input that feeds it. Now validated, this suitability model is stored in a 

usable format (ArcGIS toolbox customized model) that can be used to solicit opinions from other 

stakeholders using the multi-criteria evaluation method which is the strength of the weighted 

overlay technique over a machine-learning algorithm approach. 

The deterministic or empirical data issues must be addressed before multi-criteria 

evaluation concerns regarding expert opinions are raised. In other words, if the very data values 

debated do not adequately represent reality, then policy discussions are meaningless in a 

modeling sense. In this study, slope and vegetation were assigned high percent influence values; 

not because they are more important than other factors, but because of they vary ubiquitously. 

The other factors, distance to hazards, vary in a linear fashion, and only a small percentage of the 

geographic area has data of importance (areas on or very near hazards). This was crucial to model 

success, mere opinion or logical conclusions without geographic understanding would have 

resulted in a model without any real-world meaning. Therefore, input based on both subject-

matter expertise and geographic literacy is needed for expert model success. In the future, similar 

approaches to the expert model process such as public participation geographic information 

systems (PPGIS) are expected to increase with the advent of powerful web-based geoprocessing 

technology (Hall et al. 2010). This will likely have a great impact on the field of GIScience and 

society. Therefore, it is important to comprehend the fundamentals of spatial analyses based on 

human input and make advances in techniques (e.g. Fuzzy Set Theory – Thill and Sui 1993) and 

geographic awareness to address shortcomings in expert model approaches. 

Alternatively, the power of machine learning algorithms to use presence-only data 

provides a tool that can complement expert models and PPGIS in a number of ways. The Maxent 

approach in this study required no subjective weighting criteria, used geographic one-class data 

(presence only points), and was efficient at creating a successful model. One advantage to 

utilizing both methods is to test basic assumptions of expert models in a competitive 

environment. If discrepancies exist between expert models and machine learning models then the 

areas where disparities occur might provide insight into a knowledge-gap or inadequate base data. 
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Conversely, constructing expert models prior to machine learning algorithms could provide 

justification and exploration for choosing which base data to provide the machine learning 

algorithms. This comparison is unique and constructive because in the expert model we define 

suitability up front using feature space constraints to map out geographic distribution (e.g. slope 

should be less than 5 degrees), whereas the Maxent model derives feature space constraints from 

geographic distributions of known points. In a sense, the expert makes a wager regarding 

geographic layer ranking and weighting, and bets against the machine-learning algorithm. Where 

there appears to be disagreement between the expert model and machine learning output we can 

gain insight into the inner workings of machine learning techniques and how to interpret results in 

future studies. This is significant because the comprehensive understanding of predictive 

modeling using geographic one-class data will likely lead to increased performance of machine 

learning techniques that matches or even exceeds expert models or any single machine-learning 

algorithm alone (Guo et al. in press; Li et al. 2011). 

 

Expert model versus machine learning model 

The primary benefit of using an expert modeling approach in conjunction with the 

machine learning approach is that the expert model validates simplistic assumptions regarding the 

quality of base data and our proposed relationships (flat areas with little or no hazards/vegetation 

are suitable). In this example, the expert model was essentially a map algebra approach where 

rules followed very clear standards stated in an operation guide regarding environmental 

constraints. The only subjective modification we (Geoscientists and domain experts) made was to 

address spatial uncertainty and spatial distribution in our weighting. Therefore, the expert model 

should represent a solid foundation for testing a machine learning model that is naïve to the rules 

until it has evaluated the distribution of environmental envelopes where training data exist. If this 

study’s focus were a wildlife species whose distribution and behavior were observed for decades, 

would we not want to test our assumptions regarding its habitat selection? When the expert model 

and machine learning approach are used together we validate our assumptions and form 

hypotheses to test our machine-learning outcomes. Without this process, machine learning 

algorithms lend themselves to criticism for not being hypothesis driven. Likewise, the machine 

learning algorithm is a useful tool for modeling species distributions that are more complex than 

helicopter landing (many more factors, many more relationships) where fine-tuning each 

parameter relationship may be impossible. In this case, a machine learning algorithm could be 

used to identify the most pertinent factors and rank their importance, reducing the number of 

factors that need to be evaluated by experts. This is highlighted in our study (Table 1). We set 

slope and NDVI at 40% influence each. Open-water and hazards were each given 10% influence.  

Maxent however, identified slope as having a much higher influence than NDVI, and lower than 

10% influence each. Maxent is obviously sensitive to the spatial distribution of datasets, whereas 

a domain expert may not be. An expert may overestimate the influence of a factor if they do not 

understand the spatial distribution of that factor.  Together, these two approaches complement 

each other by balancing domain knowledge with geographic reality. 

 

Real-world application 

Both the expert and machine learning methods produced models that assigned higher 

suitability values for areas with little or no slope, low NDVI, and that were a minimum distance 

from water, buildings, and aerial hazards. This is consistent with our previous assumptions and 

industry standards regarding helicopter landing area criteria, however it should be noted that we 

did not have a spatially explicit decision and visualization tool prior to conducting this research. 

While the expert model (weighted overlay) method may be limited by decisions related to 
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weighting the relative importance of geographic layers, Maxent efficiently produces a meaningful 

map without the challenge of subjective weighting criteria.   

While we expect our land suitability analyses and modeling to be limited physio-

geographically to YNP and surrounding Sierra Nevada management areas, the techniques 

described in this article will be informative to aviation programs that have access to geographic 

data. The expert model we produced is based exclusively on knowledge of the physical 

limitations of a helicopter (from the IHOG, National Interagency Fire Center 2006) and the 

spatial distribution of geographic layers (from GISystem data). In the future, natural resource 

advisors and land owners (experts and stakeholders) can use this process to work with aviation 

managers to minimize impacts on the environment through the Minimum Impact Suppression 

Technique for non-emergency operations (MIST; National Interagency Fire Center 2006). To do 

so modelers should consult established techniques for eliciting expert opinion, such as Delphi 

methods (Fink et al 1984) or Analytical Hierarchy Process (AHP; Saaty 1990) approaches, that 

can be used to solicit expert opinion from groups of experts.  The mechanistic expert model we 

produced can be modified (and is available upon request) once additional expert opinions for 

determining factor weighting have been solicited for a geographic area. 

The specific aim of this research has been accomplished. Coordinates for suitable landing 

areas near the rescue location can be derived from a suitability map in a command post and 

relayed to the pilots and rescuers before an uninformed decision is made to utilize a more 

dangerous helicopter rescue technique that involves hovering instead of landing. In essence this is 

a decision support tool to tell helicopter pilots what geographic area to consider and the 

likelihood of there being a suitable landing site near a rescue location, whereas before it was 

assumed that there was none unless they have previously landed in that location. The decision of  

exactly where to land will continue to be made on a local level by the helicopter pilot using 

experience and discretion, but narrowing down the areas of suitable terrain will be incredibly 

helpful for YNP emergency staff.   We will continue to evaluate both the expert and Maxent 

suitability models as new landing zones are established in YNP. 

 
Conclusion 

Each year in YNP over 200 incidents will incite a Search and Rescue response and many (up to 

20 percent) will require the use of a helicopter in order to be successfully resolved. Search and 

Rescue operations in National Parks save many lives each year, at great risk to rescuers and 

substantial financial cost. In this study, we compared two GIS methods for identifying suitable 

landing areas for helicopters and found that both the model produced by weighted overlay 

analysis (expert model) and Maxent (machine learning algorithm) had 1) a significantly positive 

relationship between suitability scores, 2) 90.2 percent agreement on binary decisions (suitable 

vs. not suitable), and 3) successfully classified 95.0 percent of test points. The expert model 

approach encourages researchers to test their assumptions which is an inherent component of the 

scientific method. The machine learning algorithm approach, in turn, uses an effective GIScience 

technique to explain the geographic distribution of events and validate our “expert” assumptions. 

This comparison of two successful GIScience methods for identifying suitable helicopter landing 

areas will be beneficial to rescuers and the lessons learned offer insight to researchers developing 

land suitability models across a variety of disciplines. 
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List of Tables and Figures  

Table 4.1 – This table represents layers used to build an expert model for helicopter landing 

suitability in Yosemite National Park, CA. The expert model was created using criteria from the 

Interagency Helicopter Operations Guide (National Interagency Fire Center 2006) and spatial 

uncertainties for slope (vertical accuracy  2⁰; Wechsler and Kroll 2006), NDVI (Yosemite NAIP 

vegetation classification; Van Wagtendonk and Root 2003), and USGS vector data (water and 

hazard data horizontal accuracy ± 12 m; USGS 2005). S represents scores assigned to layer 

categories and W represents weights (percent influence) assigned to each of the layers (Bonham-

Carter 1994).  

 

Table 4.2 – This table represents a confusion matrix comparing two helicopter landing suitability 

models per-pixel where helicopters for Yosemite National Park, CA (N = 53,776,590). The expert 

model was created using criteria from Interagency Helicopter Operations Guide and the Maxent 

model used 100 training points where helicopters have previously landed in Yosemite National 

Park, CA (unique from the validated points). Overall agreement (in bold) is 90 percent.  

 

Table 4.3 – This table represents an error matrix comparing two suitability models at 40 validated 

points where helicopters have previously landed in Yosemite National Park, CA. The expert 

model was created using criteria from Interagency Helicopter Operations Guide and the Maxent 

model used 100 training points where helicopters have previously landed in Yosemite National 

Park, CA (unique from the validated points). Both the expert and the Maxent model classified 

95% of the validated points correctly (38 of 40 points).  

 

Figure 4.1 – A map of Yosemite National Park Boundary (green) overlain on a 10m shaded-relief 

map of the Sierra Nevada Mountains. Inset map shows a map of California, US (yellow) and 

surrounding states with map extent indicated by bounding box.  

 

Figure 4.2 – A comparison of mean Maxent helicopter landing suitability scores by expert model 

suitability categories for stratified randomly distributed sample points in Yosemite National Park, 

CA. Random sample points were at a minimum of 10m from nearest neighboring sample points. 

Maxent scores, when ranked for non-parametric testing, varied significantly between expert 

model categories (χ
2
3 = 3308.016, P < 0.001). Box plots are 25-75% percentiles, dots are outliers, 

and bars mark 95-5% ranges for Maxent scores.  Medians are solid black lines and means are 

dotted lines. The dotted horizontal line represents the threshold required to convert the 

probabilistic output of Maxent to binary predictions (0.083). 

 

Figure 4.3 - A comparison of helicopter landing suitability binary results for an expert model (A) 

and Maxent (B) in and near Yosemite National Park (black line indicates park boundary). Green 

indicates suitable and red indicates not suitable pixels. Blue circles represent pre-existing 

helicopter landing locations (N = 140). Overall agreement between the two models is 90.2 

percent (N = 53,776,590 pixels).  
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  S Slope NDVI 

Distance to 

open water 

Distance to air 

hazard or building 

           W 0.40 0.40 0.10 0.10 

           W’ 0.80 0.14 0.05 0.01 

3 0 to 5⁰ 25 to 109 n/a n/a 

2 5 to 7⁰ 109 to 125 > 12 m > 39 m 

1 7 to 10⁰ 125 to 140 0 to 12 m 27 to 39 m 

0 > 10⁰      > 140 0 m 0 to 27 m 

Table 4.1 – This table represents layers used to build an expert model for helicopter landing 

suitability in Yosemite National Park, CA. The expert model was created using criteria from the 

Interagency Helicopter Operations Guide (National Interagency Fire Center 2006) and spatial 

uncertainties for slope (vertical accuracy  2⁰; Wechsler and Kroll 2006), NDVI (Yosemite NAIP 

vegetation classification; Van Wagtendonk and Root 2003), and USGS vector data (water and hazard 

data horizontal accuracy ± 12 m; USGS 2005). S represents scores assigned to layer categories and W 

represents weights (percent influence) assigned to each of the layers (Bonham-Carter 1994). W’ 

represents the percent contribution assigned by the machine learning algorithm, Maxent. The scores 

defined by Maxent are Logistic Output in terms of probability of presence (0.0 – 1.0). 
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Maxent 

Expert  Not suitable Suitable Total 

Not suitable 0.76 0.01 0.77 

Suitable 
0.09 0.14 0.23 

Total 
0.86 0.14  

  

Table 4.2 – This table represents a confusion matrix comparing two helicopter landing suitability models 

per-pixel where helicopters for Yosemite National Park, CA (N = 53,776,590). The expert model was 

created using criteria from Interagency Helicopter Operations Guide and the Maxent model used 100 

training points where helicopters have previously landed in Yosemite National Park, CA (unique from the 

validated points). Overall agreement (in bold) is 90 percent.  
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Maxent 

Expert  Not suitable Suitable Total 

Not suitable n/a 2 2 

Suitable 2 36 38 

Total 2 38 40 

Table 4.3 – This table represents an error matrix comparing two suitability models at 40 validated points 

where helicopters have previously landed in Yosemite National Park, CA. The expert model was created 

using criteria from Interagency Helicopter Operations Guide and the Maxent model used 100 training points 

where helicopters have previously landed in Yosemite National Park, CA (unique from the validated points). 

Both the expert and the Maxent model classified 95% of the validated points correctly (38 of 40 points).  
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Overall Conclusion 
 

The components of WiSAR operations are entirely spatial. Additionally, the prevention 

of WiSAR incidents requires close study of where and when incidents occur.  I propose that the 

use of geographic information systems (GISystems) and spatial analyses could greatly enhance 

documentation and understanding of previous WiSAR incidents, as well as provide useful tools 

for saving lives in the future. This unique, but robust testing environment of WiSAR will allow 

for new discoveries within the spatial science disciplines. Based on case-studies in Yosemite 

alone, high-impacts topics such as Georeferencing from Text, Spatial Statistics, Time Geography, 

Search Theory, Location Science, Expert Modeling, and Machine Learning Algorithms were 

covered and presented to the GIScience and Geography communities. 

If Geographic Information Science (GIScience) is the theory behind the development, 

use, and application of geographic information systems (GISystems), then WiSAR is an ideal 

topic for GIScientists to study. I have examined the spatial components of WiSAR, reviewed 

pertinent literature, used cutting edge GIScience techniques to solve WiSAR problems, and 

provided a framework for future research in WiSAR GISystems with broad implications for 

GIScience. This dissertation contains an Introduction to the central topic, and chapters that 

highlight in-depth research investigation in GIScience. 

This dissertation presents preliminary, but compelling evidence that there is a universal 

need for GIScientists to address search and rescue problem solving and for WiSAR managers to 

adopt GISystems for apparent uses. Furthermore, I state that the future uses of GISystems in 

WiSAR are seemingly limitless. However, due to the nature of WiSAR as an emergency 

operation, technological efforts should be prioritized based on the potential for solving 

fundamental spatial questions that can be validated. For this reason I conclude that significant 

research efforts be directed towards the planning and operations related to searching for missing 

persons. The applications for time-geography, remote sensing, location science, and probabilistic 

modeling are very apparent in missing person search operations - and the process would greatly 

benefit researchers in these disciplines. Furthermore, I have found that GIS research related to 

preventing severe incidents through PSAR should be investigated further in collaboration with 

experts in spatial epidemiology. Finally, this dissertation is an evidence-based call to action for 

exploration of WiSAR in a GIScience context and for geographers of all specialties to get 

involved with their local search and rescue community. 
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