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Abstract 

We propose a geometric theory of flavor based on the discrete 
group (Sa)3, in the context of the minimal supersymmetric standard 
model. The group treats three objects symmetrically, while making 
fundamental distinctions between the generations. The top quark is 
the only heavy quark in the symmetry limit, and the first and second 
generation squarks are degenerate. The hierarchical nature of Yukawa 
matrices is a consequence Of a sequential breaking of (Sa)3. 

1 This work was supported in part by the Director, Office of Energy Research, Office of 
High Energy and Nuclear Physics, Division of High Energy PhysicS of the U.S. Depart
ment of Energy under Contract DE-AC03-76SF00098 and in part by the National Science 
Foundation under grant PHY-90-21139. 



The smallness of the electroweak symmetry breaking scale and the hier
archical nature of the Yukawa matrices provide two of the most important 
problems of particle physics. Weak scale supersymmetry may well play a cru
cial role in the former, since it is the only symmetry which can protect the 
mass of an elementary scalar. However, weak scale supersymmetry widens 
the scope of flavor physics: any supersymmetric extension of the standard 
model possesses eleven flavor matrices rather than the three Yukawa matrices 1 

of the standard model. The additional eight flavor matrices all involve cou
plings to squarks and sleptons, and have therefore not been directly probed 
experimentally. However, rare processes, such as the KL-Ks mass difference 
provide experimental constraints on these flavor mixing matrices [1]. Hence 
the problem of flavor symmetries is greatly affected by the inclusion of weak 
scale supersymmetry. 

It is frequently remarked that the most striking feature of the observed 
flavor physics is that the top quark is the only fermion with a mass of order 
the weak scale. In the context of the standard model this implies that only 
one entry of the three Yukawa matrices is of order unity, while all other 
entries are numerically small. In the context of supersymmetric standard 
model, we find that there are now two features of flavor physics which must 
be considered at the zeroth order level: (1) the large mass of the top quark, 
(2) the near absence of flavor-changing neutral currents .strongly suggest that 
scalars of a given charge of the light two generations are degenerate [1, 2]. 
In this paper we explore the consequences of assuming that both of these 
salient features arise from a common origin- a flavor symmetry group a,. 

The existence of an exact flavor symmetry group at high energies is very 
plausible - it is suggested by the replication of generations. However, in 
many supersymmetric theories it becomes a necessity. Presumably the ulti
mate theory of flavor will involve no small parameters: all the dimensionless 
couplings will be of order unity and small mass ratios will result from hier
archies of dynamically generated mass scales, or perhaps from loop factors. 
If the supersymmetry breaking squark masses appear as hard interactions 
in such theories, as they do in supergravity models, then the couplings of 
order unity will lead to large radiative contributions to the squark masses 
[4]. The degeneracy between first two generation scalars can then only be 
maintained ifthe dimensionless couplings of the theory possess a non-Abelian 
flavor symmetry a J. 

What should we take for a1? In the context of supergravity theories it 
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was suggested that a U (N) invariance of the Kahler potential, where N is the 
total number of chiral superfields of the theory, be used to protect the squark 
degeneracy [5]. However, in this paper we require that G 1 also acts on the 
superpotential interactions which generate the fermion masses, so this U (N) 
invariance is not possible. Flavor symmetries which have been considered to 
date fall into two categories: 
{1) Unified The group is such that in the symmetry limit there is no distinc
tion whatever between generations. This occurs if the three generations are 
assigned to an irreducible representation which has three indistinguishable 
components- such as a triplet of SU(3). 
{2) Asymmetric The action of the group is such that there is no symmet
rical treatment of N objects, where N = 3 is the number of generations. 
There are many examples with Gt taken to be U(l)n [6] or SU(2) [7]. 

A unified G 1 has the advantage of providing a more complete theory of 
flavor, whereas an asymmetric G 1 does not provide an understanding of the 
difference between the generations. On the other hand, a unified G 1 must be 
broken by couplings of order unity to obtain mt, whereas an asymmetric G1, 
such as SU(2), can provide an understanding of the salient flavor features 
even in the absence of symmetry breaking. In this paper we propose to 
combine the advantages of a unified G 1 with those of an asymmetric G 1 by 
introducing a third category of flavor symmetry: 
{3) Symmetric The group has an action which is identical on three objects, 
yet has a representation structure which treats the generations differently. 

In searching for such a group we are guided by three principles: 
(a) The fields of the theory are those of the minimal supersymmetric standard 
model: three generations and two Higgs doublets Hu and Hd. 
{b) The group should be a local discrete symmetry [8]. Continous global sym
metries are broken by quantum gravity [9] and should therefore be gauged. 
However, flavor symmetries must be broken to generate Yukawa matrices, 
and the breakdown of gauged flavor symmetries splits masses of different 
families due to the D-term contribution [10]. 
(c) The representaton structure of the three generations should be ( 1 + 
2), such that, in the G 1 symmetry limit, the top quark Yukawa coupling 
is allowed, and the non-Abelian nature of the group maintains degeneracy 
between the scalars of the lighter two generations. 

The discrete non-Abelian group with fewest group elements is the sym
metric group S3. By its very definition it acts symmetrically on three objects. 
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Remarkably it has two singlets and a doublet as irreducible representations, 
and therefore offers an excellent match to the flavor problem of supersymmet
ric theories. The action of Sa has a geometrical interpretation as all possible 
rotations in three dimensions which leave an equilateral triangle invariant. 
The three vectors representing the vertices of the triangle, e 1, e2 and ea in 
Figure 1, are treated identically by the group. Yet the sums and differences 
of these vectors form a singlet representation (va) and a doublet representa
tion (v1, v 2 ), whose two components have different group properties. Despite 
a geometrical symmetry amongst three objects, there is also a geometrical 
understanding of the differences between the generations. 

The group Sa has six elements: 

Sa= {e, (12), {13), (23), (123), {132)}, (1) 

where e is the identity element. The two elements {123) and {132) are 120° 
rotation of the triangle around the axis v3 = {1, 1, 1)//3, which form Za 
subgroup of even permutations in Sa. The (12), {13) and {23) elements 
rotate the triangle by 180° around one of its symmetry axes, which are odd 
permutations. The vector va flips its sign under odd permutations but does 
not under even permutations. This is a non-trivial singlet representation 
which we calllA, and will be identified with the third generation later. Two 
other orthogonal vectors v1 = {1,1,-2)/J6 and v 2 = {-1,1,0)/..;2 form a 

I 

doublet representation 2 of Sa. We identify them later with first and second 
generation fields, respectively. Any 2 representation can be written as a two
vector in ( v1, v 2 ) space. There are only three irreducible representations of 
Sa: lA and 2 above and another singlet ls which is a trivial reprentation 
{invariant). The ls representation can be obtained as a symmetric product 
tzy of two 2's, Zi and Yi, while lA is an anti-symmetric product tzcr2Y· The 
other combinations form a 2 such as tzcray ,...._ v1 and tzcr1y ,...._ -v2, and 2a 
contains a totally symmetric invariant (fzcr3y)z1-(fzcr1y)z2. Decomposition 
of tensor products is shown in Table 1. 

The group 'sa has been used before in the context of flavor physics, but 
from a different perspective. The democratic ansatz for quark mass matrices 
[11], which leads to a heavy top quark, is known to possess the symmetry 
group Sax Sax SU(2) x SU{2) [12]. However, in this work the fundamental 
origin of the flavor structure was assumed to come from other dynamics, per
haps BCS-like, and S3 simply appeared as an accidental consequence of this 
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democratic dynamics. In contrast, in this paper we argue that the super
symmetric flavor puzzle suggests uniquely that s3 is the fundamental origin 
of flavor. 

The work [13] is somewhat closer to our philosophy. They advocate 
G1 = Q2n, the dicyclic dihedral groups, rather than Dn or Sn, based on 
an anomaly freedom constraint which we find to be too restrictive. They 
also need "Q-leptons" to cancel anomalies. Furthermore, although Q2n pos
sesses only singlet and doublet representations and therefore allows a large 
mt, this is clearly also possible with Abelian groups. In this paper we com
bine the supersymmeric motivation for some non-Abelian nature to G 1 with 
the aesthetic desire for a symmetric flavor group. 

Despite the encouraging features of S3 , it is not possible to satisfy the 
few guiding principles (a), (b), (c) above using a single S3 as G,. Ford and 
s to be degenerate, (d, s)L and (d, s)R should both transform as 2. Since 
2 x 2 = lA + ls + 2, md and m 8 are allowed by S3, no matter whether Hd is 
assigned to lA or to 15 . An enlargement of the group is thus necessary. One 
possibility is to search for interesting structures in larger discrete groups, such 
as Sn, Dn, Q2n, and ~(3n2) [14, 13]. We find the geometric picture of the 
three generations arising from the symmetric action of S3 to be sufficiently 
compelling that we prefer to replicate S3 factors. Hence we consider a group 
Sj X Sf{ x Sf with each of Q, U, D transform as 1 + 2 under its own S3, 
while transforming trivially under other factors. 

We identify the third generation with lA rather than ls, because we 
would like to consider the discrete flavor group as an anomaly-free gauge 
symmetry. The only anomaly one can discuss with the low-energy particle 
content alone is S3 x H2 where His either SU(2) or SU(3) in the standard 
model [15]. Consider the element (12), which leaves ls and v1 in 2 invariant 
but changes sign of lA and v 2 in 2. To avoid an anomaly, the total number of 
lA and 2 with a given quantum number has to be even. In our context, this 
requirement uniquely selects lA + 2. The anomaly freedom of this choice 
can be easily understood by noting a vector 3 in an anomaly free group 
80(3) decomposes to lA + 2. Furthermore, this choice is precisely the one 
which allows a geometric interpretation of families in terms of rotations. 
It is interesting to see that the three generations, although in a reducible 
representation lA + 2, require each other to render the theory consistent 
quantum mechanically. 

The flavor transformation properties of the quarks are shown in Table 2. 
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The quantum number of Hu is fixed to allow mt by G,. Anomaly freedom 
then dictates an identical transformation for Hd. Because of this charge 
assignment, only the top quark is heavy in the (S3) 3 symmetric limit. The 
top-bottom asymmetry, or more generally the up-down asymmetry, is built 
into the representation structure of the Higgs. On the other hand, squark 
mass matrices all have the form diag( M[, M[, Mi). The lepton sector will 
be discussed elsewhere. 

Now we consider the breaking of (S3) 3 symmetry and discuss its con
sequence on the Yukawa and squark mass matrices. In order to keep the 
number of breaking parameters as small as possible, we take the following 
"minimal" form of the Yukawa matrices (16], 

(2) 

(3) 

which correctly reproduce Cabbibo-Kobayashi-Maskawa (CKM) matrix in 
Wolfenstein parametrization. The quark masses are related to the Yukawa 
couplings by mu,c,t = hu,c,t(Hu) and md,s,b = hd,s,b(Hd)· We assumed (Yuh2 
and (Yuht to be 0( ~'because larger off-diagonal elements need a fine
tuning in the determinant. We actually do not need these elements and can 
set them vanishing, but we kept them to make the discussion more general. 
The same comment applies to (Yd)21• The Cabbibo angle originates in the 

down sector and it may be possible to keep the famous relation .X,..._ Jmd/m8 • 

The largest breaking parameters in the Yukawa matrices are hb which 
transforms as (ls, lA, lA) and ht..X2 A as (2, ls, ls). hb breaks Sf x Sf down 
to a subgroup Sf x Sf/ Z 2 , where (even, odd) and (odd, even) elements 
are removed. Note that the diagonal subgroup sf•D is a subgroup of the 
unbroken symmetry. ht..X2 A is a Vt element in a doublet, and breaks s~ 
to S~ ~ Z 2 = { e, (12)}. This Z 2 flips the sign of second generation and 
Higgs fields, while leaving first generation field unchanged. Therefore Q2 can 
acquire a Yukawa coupling while Q1 cannot. he and hs belong to breaking 
parameters (2, 2, ls) and (2, !A, 2), respectively, and break the diagonal Sf'D . 
to Z 2 as well, which still keep all first generation fields massless. After 
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including the smaller breaking parameters, the symmetry (S3)3 is completely 
broken. In this way, the hierarchical pattern of the Yukawa matrices can be 
understood as a sequential breaking of the flavor symmetry. 

Now we turn to the squark mass matrices. Since the constraints from the 
flavor-changing neutral currents are at best of order a few times w-3, we work 
out the non-degeneracy in squark masses down to this order. It is straight
forward to work out how the breaking parameters enter the scalar matrices. 
Form~ matrix, the leading correction comes from {2, ls, ls) with v1 and v2 

components of O(ht>.2 A) and O(ht>..3 A(p + i17)), respectively. Therefore, 

( 

M'f + m 2ht"A2 A m2ht>.3 A(p + i17) -m12ht>.2 A ) 
m~ "' m 2ht>.3 A(p + i17) M[- m 2ht>.2 A m12ht>.3 A(p + i7J) , 

-m ht>. A m ht>. A(p- i17) M 3 

(4) 

where a possible correction to (m~)33 was absorbed into Mi. Here and 
hereafter, m2 and m12 are arbitrary numbers comparable to M[ and Ml, 
and they are in general different for Q, U, D. For the m~ matrix, the only 
correction comes from the square of (2, 2, ls) breaking parameter of O(h~). 
The resulting form is 

(5) 

The m1> matrix receives corrections from two sources at the leading order. 
One is the square of the (2, lA, 2) breaking parameter of O(h;), and the 
other is a product of three breaking parameters {ls, lA, lA), (2, lA, 2), and 
(2, ls, ls) of O(hshbhtA>-2). They are of the same order of magnitude and 
have the same group theoretical structure {ls, ls, 2). We keep only the first 
for simplicity and obtain 

(6) 

The authors of [3] listed the constraints on the off-diagonal mass matrix 
elements for mq"' 1 TeVin the basis where the Yukawa matrices are diagonal. 
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We adopt their notation and list the constraints in Tables 2, 3, 4. It is 
clear that our mass matrices satisfy all constraints rather easily. We have 
not discussed the left-right mixing mass matrix so far, but they are tightly 
constrained by the Si symmetry as well. The breaking parameters enter the 
mixing mass matrix in the same manner as in the Yukawa matrices. It is 
easy to work them out and see that the constraints are easily satisfied. 

A natural question is how much stronger the constraints become when 
we introduce further breaking parameters and introduce mixing in the right
handed fields as well. The off-diagonal elements of mb and m~ can be much 
larger than the above estimates. However, they are at most of the same 
order as those in m~ if we assume a similar order of mixing angles in the 
right-handed fields. On the other hand, constraints become even weaker if we 
attribute all CKM angles to the down sector, since the breaking parameters 
are then proportional to hb rather than ht. A potentially dangerous breaking 
is that in (ls, ls, lA) or (lA, ls, ls), which do not contribute to the Yukawa 
matrices. However they are presumably as small as hu or hd because they 
break the z2 symmetry which keeps the first generation fields massless. 

In summary, we proposed a geometric theory of flavor based on the dis
crete group (S3 ) 3 . The group acts symmetrically on three objects, yet gives 
fundamentally different characteristics to each generation. The three genera
tions belong to a reducible representation 2 + lA; although they are not uni
fied, they require each other for anomaly cancellations. Only the top quark 
is· heavy in the symmetry limit, and first- and second-generation squarks 
are degenerate. Hierarchical Yukawa matrices can be understood as a con
sequence of sequential symmetry breaking. Flavor-changing processes are 
highly suppressed, allowing squarks at Tevatron energies. 
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® ls lA 2 
ls ls lA 2 
lA lA ls 2 
2 2 2 lA $ls $2 

Table 1: Decomposition of tensor product of two representations into irre
ducible representations. 

Q u D Hu Hd 
sr; (lA, 2) - - lA lA 
Sf - (lA, 2) - lA lA 
sn 

3 - - (lA, 2) - -

Table 2: Quantum number assignments of the fields under (S3)3 symmetry. 
Q refers to left-handed quark doublets, U (D) to right-handed up(down)-type 
quarks. 

upper bound [3] 0.05 0.05 0.008 0.006 

this model 

Table 3: The ~onstraints and the consequence of (S3) 3 symmetry on the mass 
splittings in d-s. 

upper bound [3] 0.1 0.1 0.06 0.04 

this model 

Table 4: The constraints and the consequence of (S3) 3 symmetry on the mass 
splittings in d-b. 
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upper bound [3] 
this model 

0.1 

Jhuh~ 
0.06 

Jhuh~ 
0.04 

Table 5: The constraints and the consequence of (S3)3 symmetry on the 
mass splittings in u-c. We assumed that the rotation angle between u and c 

is 0( Jhu/hc)· 

-------------~v2 

Figure 1: S3 acts as a rotation of the triangle spanned by three orthonomal 
vectors e1,2,3· The vector'v3 corresponds to the IA representation, and two 
vectors v1,2, in the plane of the triangle, to the 2 representation. 
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