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ABSTRACT 

The Indelstam iteration is analyzed for a strip model of the 

four-line connected part that conforms to most knom strong interaction 

experimental requirements at both high and low energies. It is shorn 

that, with the Froissart limit as a suDplementary condition, asymptotic 

behavior is controlled by Regge poles, the amplitude 'oéing meromorphic 

in the right-half angular-momentum complex plane. The results support 

the practicality of the Mandelstam iteration as a numrical technique 

for realistIc bootstrap computations. 
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I. IIflODTJTION 

It has been realized for a number of years that the Mandeistam 

iteration procedure is appropriate for dynamical calculations which 

concentrate on the strip regions of a Mandeistam digram. 1  The motivation 

for emphasis of these regions is experimental. It has been observed that 

four-line connected parts are large within three narrow strips--as shown 

in Fig. 1. The strip labeled M 3  manifests itself in two ways: 

(a) In the s physical region there may be strong peaks in low-energy 

cross sections: these peaks are associated with s poles of definite 

whose residues have a corresponding polynomiai dependence on 

z = cos 8 and thus on t (or u). The inevitable dying out of such 

peaks above about 2 GeV in center-of-mass energy indicates that even if 

resonances continue at high s the partial widths for individual two-

particle channels are small. (b) When there exist low-s poles on or 

near the physical sheet, peaks are systematically observed in the t 

and u reactions near the forward (or backward) direction where Isl 
is small. These peaks have widths in Isl of the order 1/3 GeV and 

persist to indefinitely high values of t (or u), as one might expect 

from the s pole position's independence of crossed channel invariants. 

Outside such forward and backward peaks, high-energy four-line connected 

narts are very small. By suitably permuting the variables s, t, U, 

equivalent statements can be made aboutthe.strips labeled M t  and M 
U 
 

To summarize: L physical regions, four-line connected parts are 

experimentally observed to be small unless the absolute value of at 

V2  least one Of the three channel invariants is no larger than a few Ge 
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Since the existence of the three strips seems to have a connection 

with poles, it is tempting to construct a model 

M(s,t,u) = MS( s, t,u ) + Mt( s, t,u ) + MU( s, t,u ) 

where MS  contains all the s poles, Mt  contains all the t poles, 

and MU  all the u poles. If we in addition assume that MS  is large 

only iL en Isl is small, with corresponding properties for M t  and 

MU , the required strip structure is immediately achieved. (It is of 

course not certain that,the stx'ip structure holds in unphysical regions. 

If it does not, the model will fail.) To further define the model, 

another experimental fact may be invoked. Within the s strip, where 

s poles are prominent, the most important s normal thresholds are 

for two-particle, channels--provided we. include unstable particles. Only 

atlarge values of s ,above the strip, do multiparticle channels 

become dominant. Since poles and nearby important branch points 

inewitably interact, it is natural to concentrate all two-rticle 

s-thresholds inside the s strip into MS , along with the s poles. 

In a similar fashion Mt  absorbs the low-t two-particle thresholds 

' and M U 
the low-u two-particle thresholds. Conversely, since M t  

and M '  dominate at high s , it is natural to assign all multiparticle 

s-thresholds to these two components, leaving such singularities out 

of MS . Similarly Mt  will contain no multiparticle t-thresholds 

and . ivl no multiparticle u-thresholds. 

At this point the. relevance of the Mandelstam iteration becomes 

apparent. This iteration allows us to construct that part of the 
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amplitude containing s poles and two-particle s-thresholds if we are 

given the t and u sigu1arities that are independent of two-particle 

s-thresholds. In other words, if we know V = t + MU (which may be 

• called the generalized "potential' t  for the s reaction), Ivndelstarn 

tells us how to compute MS 	Evidently we are also told how to compute 

Mt from a knowledge of MS ± MU , as well as M'  from a knowledge of 

+ Mt . This reciprocal dynamics constitutes the bootstrap. 

The model outlined here does not ignore multi-particle thresh-

olds, but at the same time it fails to take direct account of the 

associated discontinuity formulas. Only two-particle discontinuities 

are individually and accurately treated. Multi-particle cuts in the 

strip model arise indirectly, via the Mandeistam iteration. Provided 

that individual multi-particle discontinuities are small and only the 

sum is large- -from the accumulation of many different channels- -there is 

. change for such an approach to make sense. 

What obstructed the original strip model proposal of Chew and 

.1 Frautscra? Fundamentally it was a matter of asymptotic behavior. In 

realistic situations, where the notential may contain poles corresponaing 

to spin 1 or greater, the Mandelstam iteration becomes unstable and in 

the absence of delicate cancellations leads to nonsensical results.. 

In particular, there is no tendency for MS  to become small at large 

si . It thus seems probable that the ultimate dynamical origin of 

the exuerimentally observed strin structure involves a more intimate 
441- 
	 - 	 .. 	 . 

iriteratiori bet..ieen two-particle arid many-particle channels than is 

included in the model In other words the strip structure must be 
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imDosed; it will not automatically emerge. Nevertheless it remains 

plausible that, if strip structure can be built in,. the model may have . 

great utility. 

An attempt to impose strip structure via a cut-off prescription 

was made by 'ansden, et. al.--with results that were generally 

encouraging. The underlying mathematical character of their prescription 

was never established, however, so it was not sure that the iteration 

was converging to the limit assumed. The purpose of our paper is to 

formulate a cut-off procedure that is susceptible to analysis and that 

guarantees manageable asymptotic behavior in the iteration. The following 

paper describes certain numerical tests of the procedure that confirm 

its practicability. 

Before we proceed to detailed analysis a word is in order about 

the "new form of strip approximation" that attempted to bss the 

ndelstam iteration, going directly to N/D equations. The physical 

motivation of both "old" and "new" forms is identical, the advantage 

of the "new" being the reduction of the problem to functions of a 

single variable--the Regge trajectory and residue functions. A great 

deal has been learned by studying the new form, 5  but its inadequacies 

have proved serious. Like other N/D methods it does not permit a proper 

treatment of the left-hand cut in the partial-wave amplitude, and the 

joining, of elastic to inelastic regions on the right is awkward. A 

crucial aspect of the former deficiency is the inability to calculate 

reliably when the (direct reaction) angular momentum is larger than 1 . 

The "old" foim with a suitable cutoff has no trouble with such questions 
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and, as described in the following par, does not require appreciably 

more computing time. The disadvantage is that functions of two variables 

are unavoidable. 

From a concrete practical standpoint we hope, by returning to 

the Mandelstam iteration, to remedy the following specific inadequacies 

of alternative procedures. 

(a) It has not so far been possible to confidently follow Regge 

trajectories to angular momenta greater than 1 

• 	(b) It has been impossible to include the generalized potential 

the repulsive effect of trajectories like the Pomeranchuk, where 

Ughosts? occur.6 

(c) Multi-particle production at intermediate energies (i.e., the 

upper half of the strip) has never been included in the damics. We 

shall see that the Mandelstam iteration handles all three of these 

points in a natural fashion. 
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II. THE MANDELSTAM EQUATIONS WITH A CUTOFF 

7 

	

A preliminary study by Drununond of the complex normal thresholds 	 lxf 

associated with unstable two-particle channels shows their qualit.tive 
Ul 

similarity to ordinary stable-channel thresholds. There are of course 

complications, but Drummond finds it possible to preserve the key 

elements of the strip model. The discussion here will proceed, therefore, 

as if one had to deal only with stable channels. The inclusion, further-

more, of any finite number of two-particle channels In the dynamics 

creates no difficulties beyond those already present with a single 

channel. The calculations merely become more lengthy. For pedagogical 

reasons, then, we write down only those eQuations appropriate to a 

single two-partiOle channel, with zero spins for both channel particles. 

The first step is to introduce the standard "one-sided" functions 

corresponding to M(s, z), V 5 (s, z), and M5 (s, z).Each of the new 

functions has only a right-hand cut in z , a superscript (+) convention-

ally designating a function of this type whose even part in z 5  coincides 

with the even part in an original "two-sided" function, and a superscript 

(-) designating a function whose odd part so cocides. Thus, for 

example. 

M(s, z 5 ) = 	[M+(s l. z 5 ) + M(s, - z)] 	+ 	[y[(s, z) - M(s, - z)j 	. 

(2-1) 
I 

The relation 

• 	+ 	

5 	

4- 	 4- 

) = V(s, z 5 ) ±jviSk(s, z.,) • 	 (2-2) 
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will. hold, just as for the original functions. In fact, all the 

equations to follow have a form independent of the (±) signature, 

so we shalJsuppress these clumsy superscripts. 

By definition the functions MS are supposed to contain all 

the s poles as well as the normal threshold 'oranch point at 

= (ma  + 	Thepotential VS lacks this branch point although 

it contains multiparticle s-thresholds. The potential may be expressed 

as a Cauchy integral over its cut (and poles, if any) in z or 

equivalently in t : 

00 

V(s,t) = 	f 	t' 	
yt S (tf,$), 	 (2-3) 

with similarexDansions of M and M in terms of their t discon-

tinuities Mt  and Mt , respectively, so that from Eq. (2-2)we 

have 

vL(t,$) = V5(t,$) + Mt s (t,$) . 	 (2-1.) 

The lower limit t 0  of the t spectrum in the potential necessarily 

lies below the beginning of the t spectrum in M because all t 

and u poles and two-Darticle thrsholds have been assigned to V 5  

The double spectl function ps(s,t) is defined to be the 

s discontinuity of Mt2 , that is, 

rOO 

M 5 (t,$) = 	J 	p 5 (s', t)  
s0() 
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where the lower limit s0 (t) isrelatd to t6 by 

Cl 2 (s0(t)) = 	_01ft0 	 (2-6) 

is the barycentric system momentum. (The reader is assumed 

tobe familiar with the Mandeistam representation.) The fundamental 

eqtion derived by Mandelstam then is 

	

g(s) rr 	M *(tv  s) M (t", s) 
p(s,t) = 	 ! dt dt" 	 t 	, 	( 2 2 	! 	 -7) 

2 q (s) 	 / ( 2 	t,t', t") 

where 

2(s)  
g(s) 	 (2-8) 

= 	I- vs 

and 
(2-9) 

2 	 2 	2 	1 ,2 	 y yt  y" K( q 	y,y ,y ) = y + y' + y 	- 2(yy' + yy ±y'y. ) - 	' 2 	' 

the range of inteation in (2-7)  being confiied to the region where K 

is positive. From Eas. (2_4.) and (2-5) we have 

	

i4t(t,$) = V 5 (t,$) + 	1 	p s( s ?t) , 
s0(t) 	

(2-10) 

giving a pair of equations in (2-7) and (2-10)on which a Mandeistam 

iteration ma be based, starting from knowledge of 	--or equivalently 

of 
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The flaw in the above equations is the absence of any guarantee 

that the function 

M 5 (s,t) = 	11 ds' dt , 	5 L't') 	 (2-11) 
It Li 	 (s e - s) (t'- t) 

should become small for large Jsj . Such a requirement is essential 

to the consistency of the strip model, but a study of Eqs. (2-7)  and 

(2-10) shows on the contrary a tendency for each successive iteration 

to increase more strongly at large s than its predecessor, if for any 

real positive t the potential itself grows faster than the first power 

2,8 
of S. 	Since particles certainly exist with spin greater than one, 

there will at least sometimes be poles in t whose dependence on s 

goes with a correspo'ding large power ard delicate caricellatiors will 

be required to pre\ent the Mandeistam iteration from "running away 

A crude but simple prescription that might circumvent the 

dilemmais to replace the two-oarticle phase-space factor g(s) in 

Eq. (2-7) by a modified factor g 1 (s) , equal to g(s) for s < s 

but dropping rapidly to zero for s > s 	Although the parameter s l 

(naturally dubbed the "strip width") is not an arbitrary parameter in a 

complete bootstrap calculation, where only energy ratibs are significant, 

the introduction of such a crude cutoff cannot be regarded as satis 

factory and inevItably will serve as a focus for efforts to improve thee  

model. At the same time it is of importance to know whet1r this pre-

scription, crude or not, suffices to ensure that the Mandelstam iteration 

approaches a esib1e iimit that can be given a physical interpretation. 

In the fo1lbing section we attack this question. 
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One immediate consequence of the cutoff is worthy of.notice. 

We are requiring that at high energies the entire s-discontinuity should 

approach that of the potential.. Thus, to the extent that experimental 
	 1' 

0 
data at high energies has been successfully fitted by Regge pole exnsions/ 	

(I 

the model is in good shape if it can be demonstrated that the high s 

behavior of V s = Mt + MU is dominated by Regge poles (in J .  and 

Such domination will emerge by crossing considerations fom the 

analysis to follow. In other words, we shall demonstrate that M has 

only pole singularities in the right-half J plane and that the large t 

behavior of M is controlled by these poles. Crossing then implies 

that Mt is controlled at large s by poles in J t , and MU by poles 

inJ 
U 
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III• THEPOITM B0LThD IN t 

There are three elements in the demonstration that iteration 

of Eqs. (2-7) and (2-10), with a cut-off phase-space factor, leads to 

simple Regge behavior at large t: 

We first employ ndelstam's direct analysis of the itration 8  

to estabUsh that M(t.,$)  is bounded by a finite power of t , say tL 

The Froissart-Gribov formula then defines the analytic continuation in 

J for ReJ>L. 
S 	 S 

10 
N/Dequations of. the kind proposed by Frye and Warnock, 	but 

including the cut-off phase space factor, are next shom to be Fredholm 

in character and to allow continuation through the right-half 

complex plane. The.only singularities allowed bythis continuation 

are poles. 	. . . . 	 . 

The Stmerfeld-.Watson transform then leads to simple Regge 

asymptotic behavior at large t , if the partial-wave amplitude vanishes 

sufficiently rapidly for JJJ , Re J > 0 

\rnat are the differences between our problemand that already 

analyzed by nde1stàm? 8  They are relatively minor: 

We make no requirement that the potential should vanish at 

large s . . In fact,  by crossing we expect the potential to exhibit 

Regge behavior, sometimes increasing with a large positive power of s 

I .  
Because his potential did not increase with energy, Mandeistam 

was able to show that he needed no cutoff for his two-particle phase-

space factor if the generalized potential was sufficiently weak. As 

noted above, e ao necci a cut-off, out triere is then no limitation on 

potential stength. 
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(c) Mandelstam did not concern himself with the imaginary part of 

the potential--which corresponds to multiple production (inelastic 

scattering). The model considered here is more realistic than that of 
(-I 

Mandelstam, but we shall see that the essentials of his analysis manage 

to survive. 

The first step, the establishment of a finite power bound in 

t , can be taken over almost without change. The point is that because 

of the cut-off factor in Eq. (2-7), the behavior of the potential for 

s >> sis irrelevant to the development of M5(t,  s) . Thus, for 

the investigation of the latter function we can introduce a modified 

potential equal to the original throughout the strip but ultimately 

cutoff at verr large s so as to satisfy Mandelstam's requirement. 

The fact that our double spectral funötion p(s,t) is also cutoff 

does not hinder any of his arguments; it only makes them simpler. 

The analysis to establish the power bound on Mt (t,$) does 

note require the otential to be real. This property Mandeistam 

invoked only for step (2), which we take up in the following section. 

It is essential that the potential itself have a power bound in t , 

but such a property is an intrinsic feature of the strip model. In 

fact, we see by crossing that, since MS  falls off at large s at 

least as fast as 1/s , the potential V s will fall off at large t 

at least as fast as i/t 
	 p 

Being assured the existence of a maximum power behavior < t L 

we may define the P'oissart-Gribov partial-wave amplitude for Re J > L 

by the conour integral 11 



As (s) 	= f dz 	Q(z M(s,z) , 

the contour c 	passing around the cut in 	z of 	M(s, z) 	An 

equivalent form is 

As (s) 

Co 

F 	 f 	dz Q(z) ç (t(z,$), 	) 	 (3-2) 

z(s,t0 ) 

The object :f  the final section is.to continue the partial-wave 

amrljtud.e so defined as a meromorphic function throughout the entire 

right-half J 	 complex plane. 



IV. =OMORPHYY IN THE RIGHT-HALF COMPLEX AI'IGUIAR-MOMENTUM PLANE 	 - 

Let us define the "reduced' t  partial-ve amplitude 

-J 	 (I 

Ba (s) 	(cis 
	

A.(s) 	 (11) 

and break this function into two components corresponding to Eqs. (2-2) 

and (2-4): 

Ba(s) = Vs ±Bjs 	 (42) 

The "potential" component, 

-J 2 	 co 

V(s) 	 dz Q(z) 	(z,$), ), 	(13) 

z(s,t0 ) 

is iirnediately defined and analytic for Re J > - 1 , i.e., throughout 

the holomorphy domain of Q(z) . In fact, if Vt s (t,$) decreases for 

large t faster than any power, as will follow from most cut-off pre-

scriptions, then J sigularities of  
Vi 

can at most be fixed poles 

at the negative integers -- these poles arising from the corresponding 

poles of 0. The difficulty in continuation throughout the right-half 

J-plane lies in the function 

-J 
B5(s) = (q02) 	

dzQ(z) Mt s (-u (z s,$), ) , 

which is iithédiately defined only for Re J > L . For future reference 
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we note that,since Mt s (t, s) is. of order i/s for large s , 

Bs(S) is of order (1/5)J , and for Re J > L 

J+J_ 

	

B(s) 	 . Vt(s) + order() 	. 	. 	(1-5) 

Jfixed 

• Thus we do not require our rtial-wave amplitude to vanish at large . s 

(which would be contrary to experimental indications), but we do require 

it to aperoach the potential plus a remainder that vanishes. 

In order to extend the region of J analy-ticity of BS  and 

thus of .B we consider. the quotient, 	 . 

B(s) = N(s)/D(s) , 	. 	 ( 4_6) 

and attempt to define the numerator and denominator so that each is 

anly-tic in J . The denominator D(s) is to have only a right-hand 

cut from the elastic threshold s to + co, while the numerator Na (s) 

carries not only the left-hand cuts but is also cut from the inelastic 

threshold s. 	on the right to + w . Following the proedure of 

Frye and Warnock10  we shall be able to derive Fredholm equations for 

and D . in which both the inhomogeneous terms and the kernels are 

	

S 	 S 	 . determined by Vt  and  Mt 	 . 

To begin the derivation observe that in the physical region 

along the upper side ofthe right cut it follows from Eq. (2-7) and • 

(2-10) that 	 . 	. 	. . . 	 . . 

Tm B 3 (s) = pt(s) JB(s)f 2 	. 	. 
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where the cut-off phase-space factor 

J 

	

= (cis 
	

g1 (s) 	 (48) 

goes rapidly to zero for s > S1  . The discontinuity of B 	 on the 

left arises, according to Eq. (Li._)#),  from the discontinuity of Q(z). 

The integral over this discontinuity is given by a straightforward 

calculation to be 

L 	
-cD 	 1 

Bs(s ) = 	j 	f 	dz P(z!) Mt S (z,$), s 	, 

S
L 	

z 
S
(s',Lt0 ) 

where s 
L 	 s L 

is given by z (s , 1 t
0 
 ) = 1 . Inspection of thentegral 

here reveals that, if Mt s (t,$) is bounded by tN  for 	sufficiently 

large, the integral is defined and analytic in J for Réi >N - 1 

The Froissart limit assures us that N < 1 , so if we manage to satisfy 

this limit the function BsL(s)  will be analytic throughout the right-

half angular-momentum plane. 

Although no explicit use is to be made of the following non-

linear eq'tion, it may help the reader to keep track of what has been 

said so far: 

Ba (s) = Vs(s) + B'(s) + 	f 	,' p(s') B(s')! 2  . 	(-2) 

The first two terms on the right side of Ea. (4-2.')  are analytic 
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throughout the right-half J-plane. Together, these term will determine 

the inho'rogeneity and the kernel of the linear Fredhoim equation that 

is being sought. 
\_ 

To proceed with the Frye-Warnock method we define a function 

S 1  by the equation 

S 1 1 =1 + 2i Pj'(s) Ba (s) . 	 (-lo) 

This artificial function is equal to the elastic S-matrix element for 

s < S1  but goes rapidly to 1 for s > s 1  . Let us thn require that 

in the Dhysibal region the denominator function should have a phase 

equal to the negative of half the phase of S 	That is 

s 1 = 
	

1 J. 	 n 

	

, 	 -ll 
 D .  

where 11 	is the absolute value of S 	. Coming Eqs. (111), 

4,10), and (4_6) it follows that in the physical region 

- 	= 21 p N 	 (-12) 

or 

Ia D = - 
	

2 li p Re Ni , s > s0 , 	(-13) 

71 - IIN  Im 	
= 	1 	) Re 
	, s > s 
	

(1#_lL) 

I 
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(It should be' remembered that N also has left-band cuts.) The para- 

1 meter 	may be evaluaed from the equation 

Li B 	P 	FBI 2  + mi 

leading to 

- (TI 	=Li V 5  . 	
(-15) 

It follows that 	equals 1 for s < S. and rapidly approaches 

1 for s > S1  . Evidently there is a requirment on the potential that 

	

0 p31  Li V <, 	 (-16) 

a constraint always to he checked before the dynamical calculation is 

begun. 

We are now in a position to write down equations for N 3  and 

Dj  using as a guide the requirement that for Re 3 > L the partial 

• wavemust coincide with Formula (3-2). Inspection of the latter shows 

that there should be no physical sheet poles in s and that AT(s) 

must decrease exponentially as Re J - + 	It follows from the 

definition (-o) that the phase of S 1  , for sufficiently large 3 , 

• must be the same at s = s 0  as at s = cD . The absence of physical 

sheet poles, together with the phase requirient, eliminates ODD 

ambiguities at least for large Re 3 , and if we normalize the denominatá 

function to unity at s = Co, its equation immediately follows from 

Formula (1.1) to be 
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OD 

1(s') 	 (-17) 

where 

- 	l p / 1  

and 

1 
21i 

NJ  - 	 Re N . 	 (1) - 

i+ J 

The equation for N (or 	) takes longer to derive, but our ob1em
1.  

is fornially equi'a1ent to that considered byye and Warnock 1°  except 

that we have the asptoticconition (-5) in place of a simple 

vanishing requiremeit The result is the same (and. is unique) 

CO 

= 	L() 	1 	f 	ds' 	[L() 	
(s') 	(s'), 

(1..2O) 

With 

2 

L() 
= ReV(s) 	B3 

L()  + 	 [1 	
} 

	

in 	 (-21) 

I 

In order to see that (1_21)  is the foinula derived by Frye and Warnock, 

it is only necessary to recall Eq (4_15) together with the identity 
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2 	 2 

l. 	 L. 	 2 

	

The linear integralequation(L_2O) for 	(s) is nonsingular 

fil"'d s ds' - 	L()  

s' - s 
Tj  (s) 	(s) <co 

( 	I 2 
Jds(s) 	L() 

With a cutoff at s there is no trouble in these conditions from 

the upper range of integration and also none at the lower limit s 0  

if Re J > - 	. Sinceis analytic in J for Re J > 0 , if 

we manage to satisfy the Froissart limit, it follows that the Fred.holm 

equation (4_20) defines a unique function i(s) analytic at least 

throughout the righthalf angular-momentum complex plane except for 

possible fixed poles in J arising from zeros of the Fredholm determinant. 

According to Eq. (-17)  such fed poles would also occur in D(s) and 

thus cancel in the quotient yielding B a (s) , Thus the only J 

singularities of Ba (s) for Re J > 0 would be Regge poles, arising 

from the zeros of Dc (s) 

The final demonstration of Regge asptotic behavior requires, 

beyond meromorphy in J , an investigation of the limiting behavior of 

AT(s) as J i co;but ndelstams 8  analysis of this latter question 

if 

and 
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can, fortunately, be taken over directly. Provided that the Froissart 

limit is satisfied, one can justify the neglect of those portions of 

the distorted Sornmerfeld.-Watson contour at IJI = , Re J > 0 .. The 

usual Regge formula for M(s,t) as t - 	with s fixed, in terms 

ofpole trajectories and residues, then:follows. 

The following per 13  shows in detail how the understanding of 

asymrtotic behavior at large t allows a practical numerical calculation 

of M(s,t) to be based on Eqs. (2-7) and (2-10). 
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FIGURE CAPTION 

Fig. 1. The striregibhs of the Mandeistarn diagram. 
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