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ABSTRACT

The Mandelstam iteration is analyzed for a strip model of the

'four-line connected partythat conforms to most known strong interaction

! .
experimental requirements at both high and low energles. It 1s shown

that, vith the Froissart limit as a'supplementary'condition, asymptotic

behavior is controlled by Regge poles,_the:amplitude being meromorphic

‘in the right-half angular-momentum com?lex plane. The results support

the practicality of the Mandelstam iteration as a numerical technique

for realistic bootstrap computations.
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'T.- INTRODUCTION -
<

Iﬁ-has.been realized for a number of years that the Mandelstam
iteration pfocedﬁre is appropriete for dynamical calculations which
concentrate on the strip regions of a Mandélstam diagram.l The.motivation
for emphasis of these régions is experimental. 'Itvhas been observed that
four-line cohneéted parts are large within three narrow strips--as shown
in Fig. 1. The striélabeled M° manifests itself in two ways:
(a) In the s physical region there may be strong pesks in low-energy

cross sectlions; these peaks are associated with s poles of definite
N . [

‘ Jﬁ whose fesidues have a corresponding polynomial dependence on’

o

z, =cos 6  and thus on % (or w). The inevitable dying out of such

¢

peaks above about 2 GeV in center-of-mass energy indicates éhat even if
resonances continue at high s +the partial widths for individual two-
pa;ticle channels afe small. (b) When there exist low-s poles on or
near thg physical sheet, peaks‘are systematically oBserved in tﬁe t
and u- reactions near fhé forward (or backward) direction where Is|

15 small. These peaks have widths in. Is| of the order 1/3 Ge& and
persist to indefinitely high values of t (or u), as one might expect
from the s pole position's independence of‘crossed channel invariaﬁts.
Ouﬁside such forward and backward peaks, higheenergy four-liné coﬁnécted
parts are'very.small. By suiltably permuting the variables s, t, u,
equivalent statéments can be made about the strips labeled Mt and Mu .
To sﬁmmarize: In physical regions,_four-line connected parts are

éxperimentally observed to be small unless the absolute value of at

least one of the three channel invariants is no larger than a few GeV2 .
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Since the existence of the three strips seems to have a connection

with poles, it is tempting to construct a model

t

M(s,t,0) = VMS(s,t,.u) . M°(s,t,0) + M (s, t50) 5 (1-1)
 where M? cohtains all the ] poies, Mf éontains all the t poles,
and ,Mu all'the u poles. If we in»addifionhaSSUme‘that MS is large
only when .[s[' is small, with correspdnding properties for M? and

Mu ,» the required strip structure is immediately achieved. (It is of
céu;ée nét certain that,the strip structﬁre holds in unphysical regions.
If it does not, the moael will fail.) To further define the model,
'énother ekperimenﬁal fact may be invoked. Within the s strip, where

S polés ére prominent, the most imporﬁaht s hormal thresholds ;;e

for two-particle channels--provided ve include unétabie'particles. Oniy
at large values of éb, above the strip, do mﬁltiparticle channels

become dominant. Since poles and nearby important branch points

inevitably interact, it is natural to concentrate all two-particle

[0}

-thresholds inside the s strip into MS ,>along with the s poles.
In a similar fashion Mt absorbs the léwft two;particle thresholds
and 'Mu' the.léw-u two~particle threshoids. fConversely, since Mt

and M7 dominate at high s, it-ls natural to assign all multiparticle
s-thresholds to these two components, leaving such singularities out

of MS . Simiiariy Mt will contain no multiparticle t-thresholds
and . M" no multiparticle u-thresholds.

t tﬁis point the -relevance of the Mandelstam iteration becqmes_

apperent. This iteration allows us to construct that part of the

¥



amplitude conté.ioing ‘s poles and two-particle s-thresholds if we are
given the ‘t' and u vsingularities that are'independent of tWo-particle_
s-thresholds. In Other'words,bif we know v° =_Mt + Mu (which may be
called the generalized "potential™ for the s reaction), Mandelstam
tells us how to compute MS . Evidently we are also told how to compute
Mt from a khowledge of M° ; MY ., as well as M*  from a knowledge of
MS + Mtt, This reciprocal dynamics constitutes the boototran. ‘

The modelkoutlined here does not ignore multi-particle thresh-

olds, but at the same time 1t fails to take direct account of the

assoclated dwscontlnuity formulas. Only two-particle discontlnuitleo
are individually and accurately‘treated. Multi-particle cuts in the
strip hodel a:ise indirectly,»yia the Mandelstam itefation. Provided
that ipdividual multi-oarticle discontinuities are smell and only the
sum is large--from the accumulation of many different channels--there 1is
a chango for such an approach to make sense.

What obstructed the ori_ginal stj:"ip model propoeal of Chew and
Frautschi?l vFundamentally it wvas a matter ofvasymptotic becavior. In
realistic situations} where the potential may contain poles corresponding
to spin 1 or greeter, the'Mandelstam iteration becomes unstable and in
the abseﬁce\of delicate'cancellations leads to nonsensical resu]_;ts..2

In particular, there is no tendency for M® to become small at large

‘ Is‘ . It thus seems probable that the ultimate dynamical origin of

"~ the experimentally observed strip Structw:e involves a more i_ntimate

iﬂu ration beuween two-portlcle and many-na*uicle channels than is’

included in %be model. In other words' the strip structure must be
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imposed: it will'not automatically emergé. ﬁeVertheless it remains &
plausible that, if strip structure can.be built iﬁ, the model may have
great utility.

An attempt to impose strip structure via a cut~off prescription
was made by Branéden, et. al.B--with results that were generally
encouraging. The underlying mathematical chéracter of their prescriptién
was never established, however, so itvwas not sure that the iteratién
was convergingvto the limif assumed. The purpose_of our paper 1is to.
formulate a cﬁt-qff procedure that is susceptible to analysis and that
guarantees manageable asymptotic behavior in the iterati;n. The following
-paper describes certain numyerical tests of the procedure ﬁhat confirm
its practicability.

Before &e proceed to detailed analysis a word is in order sbout
the '"new form of strip approximation"h that attempted to bypass the
Mahdelstam'iteration, goihg‘directiy toIN/D eéuations. The physical
motivation of both "old” and "new" forms is identical, fhe adventage
of the»”new” being the reduction of the problem to fﬁnctions of a
single veriable--the Regge trdjectory and residue functions. A gredt
deal has been learned by studying the new form,5 but its inadeéﬁacies
have proved serious. ILike other N/D methods it does not permit a proper
treatment of thé left-hand cut in the partial-wave amplitude, and the
joining of elastic to inélastic regions on the right is awkvard. A e
crucial aspect of the former deflciency is the inability to calculate ‘3}

. L

reliably when the (direct reaction) angular momentum is larger than 1 .

The "old" form with a suitable cutoff has no trouble with such questions
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and, as described in the following paper, does not'require appreciably

- more computing time. The disadvantage is that functions of two variables.

are unavoidabple.
From a concrete practical standpoint we hope,bby returning to .v
the Mandelstam iteration, to remedy the fbllowing specific>inadequacies
of alternative procedures.
(a) Iﬁ has not so far been posaible ﬁo confidently fallow Regge
trajectories to angular momenta‘greater than 1 . |

(b) It has been impossible to include the generalized potential

~ the repulsivé effect of trajectories like the Pomeranchuk, where

"ehosts" occur.

(e) Multi¥particle production at intermediate energies (i.e., the
upper half of the étrip) has never been included in;the dynamics., We
shall‘see that the Mandelstam iteration handles all three of these

points in a natural fashion.
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II.. THE MANDELSTAM EQUATIONS WITH A CUTOFF -

T

’A.preliminary stﬁdy by Drummond ' of the complex normal thresholds
associated Qith unstable two-particle channels shows their qualitative
simiiarity to ordinary stable-channel thresholds. There are of course
complications, but Drummond finds it possible to pfeserve the key
elements of the strip model. The discussion here will proceed, therefore,
as if one had to deal only with stable channels., The inclusion, further-.
more, of any finite number of two-particle channels in the dymamics
creates no difficulties beyonﬁ those already present with a single
channel. The calculations merely become mbre lengthy. Tor pedagogilcal
‘reasons, then, we write down only those equations appropriate to a
single two-particle‘channei, with zero spins for both channel particles.

| The first step.is to introduce the standard "one-sided" functions
corresponding to M(s, zs), VS (s, zs), and Ms(s,'zs). Fach of the new
functions has only a right-hand cut in z, , & superscript (+) convention-
ally designating a function of this type whose even rart in zg coincides
with the even part in an original "two-sided" function, aﬁd a su?erscript

(=) designating a fﬁnétion whose odd part so coincides. Thus, for

xample,
- 1 + + ) 1f
(s, 2.) = 5 [M (s, Zs) + M (s, -_zs)] + 5 M

The relation

M“-“(s,_ 2)) = Vs, z) w1 (s, ) (2-2)

”
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will hold, Just as for the original functions. In fact, all the
equetions to follow have a form independent of the (&) sigrature,
so we shall suppress these clumsy superscripts.

By definition the functions M° are supposed to contain all

~

A

the s poles asfwell as the normal thréshold branch poiht at

Sg = (ma + mb>2 :' The potential V° lacks this branch péinﬁ_although
it contains multirparficle s-thresholds. The.potential may be expressed
as a Cauchy integfal over its cut (and poles, if any) in zs or

equivalently in t : -

. 00 : .
s 1 : at’ S
vi(s,t) = = f ot Vi (8'5s), ~ (2-3)
. t :
0]

vith similar expansions of M- and ¥°  in terms of their t discon-~
tinuities M, eand M%S s respecﬁively; so that from Eq. (2-2) we
have

v

M (t,s) = \7ts(t,s)+MtS(t,s) N
The lpwer limit té of the t spécfrum in the.potential-necessarily
liés below the beginnihg of the t spectrum in .Ms because all t
and u Dpoles aﬁd.two-pérticie thresholds have been assigned to vVS .
The doublevspéctral_fﬁhétion 0°(s,%) is definéd to be the

® ', that is,

s discontinuity of Mt

v

M;S(f,s) =

A f

[
p=

;/s (v*) s CGL Y. ()
oM ' ‘ '
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where the lower limit so(t) is.related to ty by - ’ v
2 . ' &
2 0 v :
Gole)) = g=ms » (2-6)
. y

if qs(s) )is the barycentric system momentum.  (Thé readér I1s assumed -
.to be familiar with the Mandelstam representation.) The fundamental

equation derived by Mandelstam then is

g(s) - M’ (t' s) M (t", s)

S 7
o (st) = ——— dt' at , (2-7)
2n q 2(s) U Kl/2< (s); t,8%, &) .
where
, QqS(s) . ’ . :
g(s) = —— ' , (2-8)
4s . v
anci
(2-9)
> | 2 > 2 o - vyt
(a7 my'sy™) = ¥ 4y Ty -2y " s yy) -

the range of integration in (2-7) being confined to the region where X

is positive. From Egs. (2-4) and (2-5) we have

3 ‘-- r S, 1 ‘_dS,v ' i
fflt(U:S)' = VvV, (t;_s) + = [ S T D (D b t) p) 4
u‘ ] " g (t) 8-S
S¢) (2-10)

v ;
giving a pair of equations in (2-7) and (2-10) on which a Mandelstam
iteration maf_be based, starting from knowledge of VVS -=0r equifalently o
of V. ° .
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The flaw in the above equations is the absence of any guarantee

that the function

S 1] 4
ds' atr L (st (2-11)

Mo (s,t) = L -f’ :
2A) T (st-s) (2= %)

~ JJ
should become small for larger‘ls] . Such a requirement is essential
to the consisténcy of the strip model,'but a étudy of Egs. (2-7) and
(2-10) shows on the contrary a tendency for each successive iteration

to increase more strongly at large s than 1ts predecessor, if for any

- real positive t the potential itself grows faster than the first power

& ‘
of s.g’ Since particles certainly exist with spin greater than one,

there will at least sometimes be poles in t whose dependence on s

goes with 2 cofrespondithlafge power ; and_delicaﬁe cancellations will

be reqﬁifedutb"prétent thé'Mandélstam‘iteration from "running away."

A.éruae bﬁt éimple-prescription that might circumvent the
dilemma~is_to replace the two-pérticle rhase-space factor' g(S) in
Eq. (2-7) vy a modified factor gl(s) ,>equal to g(s) f&r s <5
but dropping rapidly to'zeré for s > sy - Although the rarameter 5,
(naturally dubbed the "strip width") is not an arbitrary parameter in a
complete‘béqtstrap célcgiation, where only energy ratios are significanﬁ{
the intrbdﬁéﬁiéﬁ;of suchvé crude cutoff cannot bevregaxded as satis-
factory and inevifably will serve as a focus fof efforﬁs to improve the”

At the same time it is of importance to know whether this pre-

[

mode

&}

cription, crude or not, suffices to ensure that the Mandelstam iteration
approaches a bensible limit that can be given a physical interpretation.

In the following section we attack this guestion.
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One immediste consequence of the éutoff is worthy of notice.
We are requiring that at high energiés the éntire's-disconﬁinuity showld

approach that of the potential. Thus, to the extenﬁ that experimentalv ' .

o

r

data at high energies‘has been suCcessfuily fitted by Regge pole exyansions,

the model 1s in good shape if it can be_demonstrated'that the high s

t

behavior of V° =M~ + Mu' is -dominated by Regge poles (in J, and

t

Ju). Such domination will emerge by crossing conslderations from the

analysis to follow. In other words,-we shall demonstrate that VMS has
only pole sihgula;ities in the right-half JS plane and that the large »t
vehavior of M° is conﬁrolied‘by fhese poles. Crossingithen implies
kthat Mt 1s controlled at large s 5& poles in Jt » and M by poleé

in J._ .
u
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III. THE POWER BOUND IN ¢t

There afe three elements in the demonstration that iteration

of Egs. (2- 7) and (2 lO), with a cut-off phase space factor, leads to

simple Re gge. behav1or at large t o

'(l) We flrst employ Mandelstam s direct analysis of the iteration8
to establlsh that My (%, s) _is_bounded by a finite power of t , say vtL
The Fr01ssar§fGr;bov formula ﬁhenvdefines the analyticvébntinuation in
g, for Re JS>L : |

() wn/p equations of. the kind proposed by Frye and Warnock,lo but

. including the‘cut-off'phése,space factor, are next shown to be Fredholm

in character and to allow continuation through the right-half JS

~ complex plané. The only singularities'allowed‘by'this-cdntinuation

are poles.
(3) - The SommerfelQ;Watson transform then leads to 31mple Regge
ymptotlc behav1or at large t , if the partlal-wave amplitude vanlohes
su¢11c1enbly rapidly for IJSI - @, Be JS >0,
What arelthe difféfénces between oﬁr prqblem and thét al;eady
anglyzed by Mandelstam?8 They are relatively .minor:

(a) We make no.récuirement that the pot ential should vanish at .
1arge‘_s . In fact by crosoing we ehpect ‘the potential to eAhlbit
Regge behavior, scmetimes increasing with a large posmtive power of s .

-(b) Because his potential did not increase with energy, Mandelstam
was.ablé to show that he needed no cutoff for his;two-particle phase-
space factor‘if the generélized pbtential'wés sufficiently-weak. As
noted above;;we dé‘need a cut-off, but there is thén no liﬁitation'onv

potential strength.
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(c)._Mandelstam d1id not concern himself with the imaginary pert of
the potential--which corresponds to multiple production (inelastic
scattering). The model-consideredvheré 1s more realistic than that of
Mandelstam, but we shall see that the éssentials ofvhis'analysis manage
to survive.

The first step, the establishment;of a finite power bound in
t , can be taken over almost with@ut change. The point is that because
of the cut-off factor in E.q_. ('2-7), the behavior of the potential for

s >> s

1 is irrelevent to the development of Mts(t, s) . Thus, for

the investigation of the latter function we can intrdduc; a modified
potential equal to the original throughout the strip>but wltimately
cutoff at ngz large s éb as_tobsatisfy Mandelstam's”requirement.
The fact that our double spectral function p(s,t) is also<cutoff
does>noﬁ hindér any of his.arguments;_it only makes them simpler.

The analysis to establish the pdwer bound on Mt(t,s) does
note require the potential to be real. This propgrty Mandelstam
invoked only for step (2), which we take ub in the following sectionf
It is eséential that thévpotential itself havg a power bound in .t B
but such a property is an intrinsic feature of the strip model. 1In
fact, ve see by crossing that, since M® falls off at.large s at
least as fast as l/% , the pdtential v° will fall off at large t
at lea#t as fasﬁ as l/t .

.Beihg assured thélexistence of a meximum power behavior < tl',
ve may define the Froissart-Cribov partial-vave amplitudelfor Re Jd > L

by the contour integralll

o

(&

o
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age) = g [ az, (e Ms,z,) | -1)

the contour c rassing around the cut in Zs of M(s,zs) . An

equivalent form is

A (%)  = '% .Jr ,v._déé Q&(zs) Mt -<}(zS,s); %) . ’(5-2)
'zs(s,to) _ - ‘

. The object of the final section is.to continue the partial-wave

amplitude so defined as a meromorphic function throughout the entire

right-half JS cbmplex plane.
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"IV. MEROMORPHY IN THE RIGHT-HALF COMFLEX ANGULAR-MOMENTUM PLAWNE
Let us define the '"reduced" partial-wave emplitude

-J

B(s) = (¢7) a,(s) (4-1)

and break this function into two components corresponding to Egs. (2-2)

and (2-4):

s s
S = + B . L
By(s) = V.~ +B; | (k-2)
The "potential" component,
-J
2 00 '

v 5%(s) = _(_q_%..L [ az_Q.(z ) v.° (t(z_,s) s) ‘(u-5)
J - B J P AP g S) 8 )

zs(s,to)

is‘immediately defined and analytic for Re J > -1, i.e., throughout
the holomorphy domsin of QJ(zs) . In fact, 1r ) Vts'(‘t,s) decrea_sés fo£
large t Tfaster than any powef,.as will follow from most cut-off pre-
scriptions,vthen J singula:ities.of v&s can at most be fixed poles
.at the negative integers -- these poles arising from the corresponding
poles of QJ .

J-plane lies in the function

(a.%) re
5%(s) = ——r—— N z, 9plz,) " <t(zs,s), > L (ked)

Z_S(s} L"to)

which is iﬁﬁédiately defined only for Re J > L . TFor future reference

The difficulty in continuation throughcut the right-half
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»:ve note that, since M (t,s) 1s~of'order“l/s for large s,

B, S(s) 1s of order l/s ", and for Re J > 1L
BJ(S) — .V (s) + order(g) . o (4-5)
s - o _ ,
J fixed

‘. Thus we do not‘require our'partial-wave amplitude to venish at large s

(which'vould be contrary to experimental indications), but we do require

it to approach the potential plus a remainder that vanishes.

In order to extend the region of J analyticity of BJS ‘and

!

- thus of {BJ we consider. the quotient,

Bi(s) = W(e)oy(s),  (w6)

and attempt t6 define the numerator and denominator so that>éach is
analytic in J . The denominator DJ(S) 1s to have only a right-hand
cut from the elastic threshold SO’ to + oo, while the numerator NJ(S)

carries not only the left-hand cuts but is also cut from the inelastic

tﬁreshold 'si‘ oﬁ ﬁhe right ﬁb + ;v Followlng the procedure of
"Fryg and Warnocklo_ we shall be able to derive TFredholm equations for NJ
© and DJ in which bothvthe:inhomogeneogs_termé and tﬁe kerﬁels.are

determined by V£S and Mts . |

To begin the derivation observe that in the physical region
along the upper side of the right cut it follows from Eq. (2-7) and

(2-10) that

m3 () = oo In (), ()
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where the cut-off phase-space factor : .

v J ' ' : _ | v
o;7(s) = (a%) e (s) (1-8)

goes rapidly to zero for s > sl . The discontinuity of BJS on the

left arises, according to Eq. (L-4), from the discontinuity of QJ(ZS).

The integral over this discontinuity is given by a straightforward

.calculation to be

-J .
s, L 1 ds' 2 1 ; Py .8 IR
By " T(s) == ,[ —— (-."") 3 dz F&(-zs) M, (F(zs,u )s ')
' s: z (s',ht,.) -
L 270 :
° (4-9)
where s% is given by z (éL, hto) = 1 . Inspection of theintegral
: L s ,

here reveals that, if N%S(t,s) is bounded by £ for _JslA sufficiently

large, the integrel is defined and emslytic in J for Red >N - 1 .
The Fréissart limit assures us that N < l', so if we manage to satisfy
this 1limit the function BJS’L(S) will -be analytic througﬁéﬁ% the right-
half angular-momentum plane. .

Although no explicit use is to be made of the following non-

linear equation, -it may help the reader to keep track of what has been

a
B(s) = v en M o2 [ S ot e ey
{7
s h
0 : v

The first two terms on the right side of Eq. (L4-2') are analytic .



~y

s < s, but goes rapidly to 1 for s>

-17-

throughout the right-half J-plane. _Together}nthese term will determine
the inhomogéneity and the.kerné; of the linear Fredholm equation that
is ‘being sought.

To proceed with the Frye-Warnock method we define a function

SJl by the equation

-sJ = 1+ 21 le(s) BJ(s)l. - ' (k-10)

This artificial function is equal to the elastic S-matrix elemént fof

4 ! - '
. Let us then require that

1 1

in the physical region the denominator function should have a phase

equal to the negative of half the phase of SJl . That 1is

) gt - o L ;o | (4-11)

where qu is.the absolute value of S Compafing Egs. (h-ll),‘

J
(4,10), and (4-6) it follows that in the physical region

1 * ' 1 - ‘
Ny Dy =Dy = 2L o " No, - (4-12)
S or
o 2\ 1 o -
1+ Ny / SR - v
1 R v !

Im‘hJ_ = ;__i—_— - Re DJ 5.5 > Sin . _ <.:l,)

_ ‘ p / ' :
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(It should be‘femembered that Nj also-hasvleft~hand cuts;) The para-

meter nJl may be evaluated from the equation

' 1,2 s
Imn By = p; IBJ[ + Inm V.
leading to
1 2. 1 S s
I [1 - (qN') } = py IV L (k-15)
, 1 !
It follows that ﬂN equals 1 for s < Sin and rapidly approaches
1 for s > Sy Evidenﬁly there 1s a requirement on the potential that

0O<p, In¥ g%, ’ (4-16)

a éonstraint élways to be checked before the dynamical éalculation is
begun. |

_AWé are novw in a prosition to write down equations for. LJ_‘and
DJ., using as é guide the requiremenf that for Re J > L the partial

vave.must coincide ﬁith Formula (3-2)f Inspection of the latter shows
that there should be no physical sheet poles in s and that. AJ(S)
must decrease’exponentialiy_as ReJ -+ o . It follows f?om the
definitién (u-io) that the phase of le , for sufficiently large J ,

- must be the same at s = as at s = . The absence of physical

0
sheet poles, together with the phase requirement, eliminates CDD

4

s el 12 : R . ::
ambiguities™ . at least for large Re J s and 1f we normalize the denomlnatdr

function to ity at s = oo, its equation immediately follows from

Formula (4-13) to be

Via

E

N

L4



@
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. o . _
- 1 -% _ds' = YT (st -
DJ(S) = 1 - - Jf R pJ(s ) NJ(S ), (4 17)
' ) .so . . .
where
oy = ey (4-18)
and ' o | ‘ "
v 2qu ' ,
Ny = ——7 RelN;. (k-19) -
1+ : o

The ‘equation for N, (or ﬁ&) tekes longer to derive, but our problem

is'formally equivalent to that considered by Frye‘and Warnocklo except

~ that we have thé asymptotic condition (4-5) in place of a simple

vanishing réquirement. The result is the same (and-is-unique):

- oo : : '
Ti(s) = BMs) + L Jf 25 [ - 5] B F, (e,
o oo o : | - (1-20)

with

=L,y _ Sriy . o SyLy 1 ds' - J (s'
Bs (s) = Re<{Vb.(s) + B, (s) + ~ v[_ ~ . ,) A J

S, i o
n . | 121)

‘In order o see that (h-QI) is the formule deriVed by'Frye ahd'warnéck,

. it is only nécessary”to recall Eq. (4-15) together with the identity
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" The linear integral equation (4-20) for ﬁ&(s)v is nonsingular

if.

|
| BEIEE) <,

Ji{ﬁs ds’

With a cutoff at sy

there is no trouble in these conditions from

the upper range of intégration and also none at the lower limit 84
| g O

if Re J > - g_. Since BJ is analytic in J for Re J >0, if

we mznage to satisfy the Frolssart limit, it follows that the Frédholm

' equafion (h-EO).defihes a unique function E}(s) analytic at least
thréughout the righ€~half angular;momentum cbmplex plane éxcept for
poésible fixed poles in J arisihg from zeros of the Fredholm determinant.
According té Eq. (4-17) such fixed poles would élso occur in DJ(s)' and
thué cancel in ﬁhe quotient yielding BJ(S)‘. Thus the only J

singularities of BJ(S) for Re J >0 would be Regge poles, arising -

~

- from the zeros of DJ(S) .
The final demonstration of Regge asymptotic behavior requires,
beyond meromorphy in J , an investigation of the limiting behavior of

AT(S) as J - 1 ;: but Mandelstam's analysis of this latter question



e

D]~

can, fortunatély, be ‘taken over direqtly, .Efovided that the Froissart‘
limit‘is satisfied, one can jusﬁify the neglect of those portions of |
the distorted Sommerfeld-Watson contour at |J| = oo, Re J > 0 . . The
usual Regge formula for M(S,t) as t - oo with s fixed, in terms
of pole trajectories and residues, then follows.

5

The following paperl shows in detail how the understanding of

asymptotic behavior at lérge t allows a practical numerical calculation

of M(s,t) to be based on Egs. (2-7) and (2-10).
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FIGURE CAPTION

Fig. 1. The strip'regions of the Mandelstam diagram.




-24- -

MUB-g8g45




This report was prepared as an account of Government
sponsored work. Neither the United States, nor the Com-
mission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this.
report, or that the use of any information, appa-
ratus; method, or process disclosed in this report
may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor-
mation, apparatus, method, or process disclosed in
this report.

As used in the above, '"person acting on behalf of the
Commission'" includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee
of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.



|1 h






