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ABSTRACT OF THE DISSERTATION

Training Discriminative Computer Vision Models
with Weak Supervision

by

Boris Babenko

Doctor of Philosophy in Computer Science

University of California, San Diego, 2012

Professor Serge Belongie, Chair

Statistical machine learning techniques have transformed computer vision

research in the last two decades, and have led to many breakthroughs in object

detection, recognition and tracking. Such data-driven methods extrapolate rules

from a set of labeled examples, freeing us from designing and tuning a system

by hand for a particular application or domain. Discriminative learning methods,

which directly learn to differentiate categories of data rather than modeling the

data itself, have been shown to be particularly effective. However, the requirement

of a large set of labeled examples becomes prohibitively expensive, especially if

we consider scaling to a wide range of domains and applications. In this disserta-

tion we explore weakly supervised methods of training discriminative models for a

xvii



number of computer vision applications. These methods require weaker forms of

annotation that are easier and/or cheaper to obtain, and can learn in situations

where the ground truth is inherently ambiguous. Many of the algorithms in this

dissertation are based on a particular form of weakly supervised learning called

Multiple Instance Learning (MIL). Our final contribution is a theoretical analy-

sis of MIL that takes into account the characteristics of applications in computer

vision and related areas.
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1 Introduction

The integration of statistical learning methods into computer vision has

proven to be transformative. Rather than relying on hand tuned models of real-

world objects (e.g. [143]), learning based methods rely on large collections of labeled

data to automatically train a system. Indeed some hand-tuned design must still

be done to construct relevant statistics and features (e.g. [43]); however, learning

based methods can adapt to new data domains, and can automatically discover

patterns that would otherwise be difficult to find by hand.

Learning methods are typically split into two broad categories: discrimi-

native and generative. Generative methods attempt to model the distribution of

the data and use the model to make classification decisions. On the other hand,

discriminative methods aim to directly minimize classification error. The latter

class of methods (e.g. Support Vector Machines [129], Boosting [52]) have resulted

in huge performance improvements in many vision problems. Perhaps the best

example of this is the problem of face detection: after the seminal work of Viola

& Jones [135] face detection has reached performance levels compatible with con-

sumer products (e.g. most point-and-shoot cameras today come with face detection

built in). Many other problems in computer vision have benefited from discrimi-

native learning techniques: pedestrian detection [38, 49, 43], image categorization

[75, 134], pose estimation [45], etc. While generative methods are appealing in that

they could be used to synthesize or hallucinate novel data examples (much like the

human brain), at present their performance is often significantly lower than that

of discriminative approaches.

The main bottleneck of training a statistical model lies in obtaining a large

amount of labeled data. For this reason, many different types of weakly supervised

1
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learning paradigms have recently been explored [139, 50, 48, 136, 6, 90, 37, 134,

97]. The term “weakly supervised” is overloaded in the literature, but in this

dissertation we define it as any form of supervised learning that involves some

form of missing labels (i.e. latent variables). The advantages of such approaches

are as follows:

• Reducing labor costs.

The most obvious advantage for weak supervision is the reduction of required

labeling. Since labeling is typically done by humans, strongly supervised

learning can often become intractable due to the amount of labeling required.

• Human precision and label ambiguity.

While human labels remain the gold standard in supervision, such labels

are far from being perfect. In fact, certain labeling tasks are inherently

ambiguous. For instance, consider the task of putting a bounding box around

a face in an image. A single correct bounding box does not exist (e.g. if we

consider we consider two bounding boxes that are just 1 pixel off from each

other, a human providing ground truth would have a hard time telling the

two apart). For this reason, it may be better to simply ask the user a binary

question, “is there a face in this image?”, and leave the precise location of

the face as a latent variable.

• Suboptimal labels.

In certain scenarios the variables we require for strong supervision may have

no semantic meaning. Consider a bird detection task where we ask human

annotators to provide locations of bird body parts (e.g. wing, beak). In this

application, there may be a particularly salient region of birds that does not

correspond to a semantic “part” – for example, the space between the bird

legs. Therefore it may be difficult to specify which parts we desire to have

labeled. In the weakly supervised setting we would simply ask for a binary

presence/absence label (similar to the face detection scenario we described

above), and allow the part identities and locations to remain latent in the

hopes that an algorithm will recover the best regions automatically.
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The constellation model of object recognition is perhaps the earliest and

best known weakly supervised method in computer vision [139]. However, the

constellation model and its many extensions [50, 48, 37] are generative style ap-

proaches. As mentioned earlier, for many vision applications, discriminative meth-

ods have been shown to be superior. Some recent work has started exploring

discriminative approaches to weakly supervised learning [136, 6, 134, 97]. Many

of these works employ a particular weakly supervised learning paradigm called

Multiple Instance Learning [41] (discussed in much detail in later Chapters of this

dissertation), and this dissertation extends these ideas further.

The goal of this dissertation is to explore methods for training discrimina-

tive models with weak supervision, with applications to computer vision problems.

We consider a wide variety of applications including object detection and recogni-

tion, object tracking, and image categorization. Since many of the applications in

this dissertation are based on Multiple Instance Learning, our final contribution

is a theoretical analysis of this learning paradigm that takes into the particular

characteristics of applications in computer vision and related areas.



2 Preliminaries

In this chapter we will present our notation and review some concepts and

algorithms that will be useful in the following chapters. We will begin with a re-

view of traditional, or “strongly”, supervised learning, introduce weakly supervised

learning (including Multiple Instance Learning), and review the Gradient Boosting

framework that will be used in other parts of the dissertation.

2.1 Strongly Supervised Learning

In the strongly supervised learning setting a learner receives labeled exam-

ples (xi, yi) where x ∈ X (typically Rd for some integer d > 0) and yi ∈ Y is a

corresponding label. Binary classification, where Y = {−1,+1} or Y = {0, 1}, is

the simplest and most commonly studied variation; this will also be the case we

focus on in most of this dissertation.

Upon receiving labeled examples, the learner returns a classifier h ∈ H,

where H is some hypothesis class and h : X → Y . Training discriminative models

typically involves searching for classifier that minimizes a loss function that is

related to training error:

L(h) =
n∑
i=1

`(yi, h(xi)) (2.1)

where `(·) takes the true and predicted labels for a particular training example

as inputs, and outputs a large positive value if the two disagree. Since 0 − 1 loss

(i.e. `(·) returns 0 if the prediction matches the ground truth, and 1 otherwise)

is difficult to optimize directly, a convex upper bound to the training error is

4
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commonly used instead. Examples of this include the hinge loss (used in Support

Vector Machines [129]), and the exponential loss (used in AdaBoost [52]). Finally,

note that for many learning algorithms the classifier also returns a confidence score

in addition to the label. This is especially common for binary classification, since

a binary label can be obtained from the confidence score via a simple threshold.

2.2 Weakly Supervised Learning

Now consider a learning problem where some portion of training examples

is kept hidden from the learner. Our classifier will now take as input both the

observed input x, and its corresponding latent variable z ∈ Z: h(x, z). At run

time, given a novel input x, we must find the value of z, which typically consists

of scanning over all possible values to see where the classifier responds most confi-

dently: (e.g. going back to our face detection example, z would specify a particular

region in an image, and we would scan over all such regions). In other words, we

must solve the following optimization problem to produce a label for an input x

using a trained classifier: maxz h(x, z) (here we are abusing the notation slightly, in

that the max is taken with respect to the confidence that the classifier h outputs,

rather than the label1). We must also make the corresponding change to the loss

function:

L(h) =
n∑
i=1

`(yi,max
z
h(x, z)) (2.2)

Unfortunately, the above objective function is no longer convex. Two popular

heuristic approaches exist in the literature for performing the above optimization.

The first is to use an alternating procedure: the first step consists of fixing the

latent variables and finding a classifier, and the second step consists of finding the

values for the latent variables given the latest classifier; the two steps are repeated

in sequence. Note that when the latent variables are fixed, the learning problem

reduces to the strongly supervised case. This type of procedure is similar in spirit

1A more precise but messier way of writing this is h(x, argmaxz h̃(x, z)), where h(x, z) returns
a label, and h̃(x, z) returns a confidence score.
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to the EM algorithm [40], as well as many recent weakly supervised learning tech-

niques, including latent SVM [49, 146]. The other approach is to use a simple

optimization procedure like gradient descent on the objective function (with a mi-

nor caveat that the function should be made smooth via approximating any hard

max or min operators; see Section 2.3). Since the objective function is not convex,

neither procedure is guaranteed to converge to a global optimum. Nevertheless, we

find that in practice these methods work well. In this dissertation we will primarily

use the latter heuristic in developing algorithms.

2.2.1 Multiple Instance Learning

Multiple Instance Learning (MIL) is a popular form of weakly supervised

learning introduced in [41]. In this paradigm the learner receives sets of inputs,

or bags, and a label for each bag. In particular, the bag is labeled positive if and

only if it contains at least one positive input (though extensions exist [134], the

problem is typically defined for binary classification). More formally, each bag is

defined as Xi = {xi1, . . . , xim}, where xij ∈ X . Every instance has some true label

yij ∈ {−1,+1}, but its value is not known during training (i.e. it is latent). The

label of the bag can be expressed as follows:

yi = max
j

(yij) (2.3)

The goal is then to learn a classifier h using only bag labels yi, such that

maxj(h(xij)) = yi (and similarly on unseen data).

In the last decade there have been numerous algorithms proposed for train-

ing a classifier in the MIL setting. Some of these are extensions of popular su-

pervised learning algorithms (e.g. boost [136], support vector machines (SVM)

[6, 5, 30], neural networks [107], logistic regression [108]), while others are brand

new procedures specific to MIL (e.g. [91, 90, 148, 21]). In this dissertation we will

use the boosting algorithm for MIL called MILBoost [136], a review of which is

presented in Section 2.3.1.

There are many applications in computer vision that can be solved with

the MIL framework, a couple of which will be discussed in this dissertation. We
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Object Detection in Images Event Detection in Video

Figure 2.1: Examples of computer vision applications of Multiple In-
stance Learning (MIL). See text for details.

will defer detailed discussion of related work to the appropriate chapters, but for

now consider two examples for illustration (c.f. Fig. 2.1). In the first example

we would like to train an object detector. Normally, this would require a dataset

of cropped objects of interest as well as images that do not contain the objects.

However, suppose we have images that are labeled as positive if they contain the

object of interest, but its precise location is unknown. We can train a detector

via MIL by treating each image as a bag, and breaking it up into many regions

and treating each region as an instance – notice that at least one region from a

positive bag should be the object of interest. In practice these regions are formed

either by sliding a rectangular window around the image, or via some segmentation

algorithm (see Fig. 2.2); a more detailed discussion of this will be the focus of

Section 3.1 in Chapter 3. The other scenario in Fig. 2.1 is that of event detection

in video. Here each video is treated as a bag, and is labeled positive if some event

of interest occurs in it. Each bag is broken up into many instances (i.e. short video

clips) via sliding window. Similar to the case of object detection, here a positive

bag will contain a clip of the event of interest.
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{ }Slidi Wi d {                       …}Sliding Window

Figure 2.2: Forming a bag out of an image. See text for details.

2.3 Gradient Boosting

Boosting [52] has been shown to be a very successful approach for binary

classification. In boosting, the goal is to train a classifier of the form:

H(x) =
T∑
t=1

αtht(x), (2.4)

where each ht : X → Y is a weak learner whose performance may only be slightly

above chance, and the αt weigh the weak learners’ relative importance. Boost-

ing combines multiple weak learners into a single strong classifier with low error.

Training proceeds sequentially. In each phase incorrectly classified examples re-

ceive more weight; details vary according to boosting algorithm.

Friedman [53] proposes an elegant method for deriving boosting algorithms

for a wide range of loss functions. The general idea is to optimize a loss function

L(H) by performing gradient descent on H (known as gradient descent in function

space). Intuitively, the idea is to always select the ht that most reduces the loss

on the training data. Finding the best ht proceeds in two stages: (1) compute the

optimal weak classifier response and (2) from the available candidates select the

weak classifier that best approximates the optimal response.

More formally, we can consider H as an n vector whose ith component

Hi has the value H(xi). The loss L is a function over H, and the goal is to
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Figure 2.3: Gradient Boosting Framework. See text for details.

minimize L(H) with respect to H via gradient descent. In other words to find the

optimal weak classifier response in each phase t we compute − ∂L
∂H

, which is a vector

with components wi ≡ − ∂L
∂Hi

. Ideally we would select ht such that wi = ht(xi)

∀i; however, in practice we are limited in the choice of ht. Therefore, Friedman

proposes to find the ht which is as close as possible to the gradient in function

space:

ht = argmax
h

n∑
i=1

wih(xi) (2.5)

The general process is illustrated in Fig. 2.3. Once we compute ht, the step size

αt can be found via a line search (again minimizing L(H)). Putting everything

together, we obtain the boosting procedure in Algorithm 1. Remaining details

follow.

Log Likelihood

The negative log likelihood is a commonly used loss function for boosting,

and we will use it in some of the later chapters. We begin by deriving a standard

boosting algorithm using this loss function and gradient descent boosting. Note
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Algorithm 1 Boosting via gradient descent in function space.

Input: Dataset {x1, . . . , xn}, {y1, . . . , yn},yi ∈ {−1, 1}

1: for t = 1 to T do

2: Compute weights wi = − ∂L
∂Hi

3: Train weak classifier ht using weights |wi|
ht = argminh

∑
i 1(h(xi) 6= yi)|wi|

4: Find αt via line search to minimize L(H)

αt = argminα L(H + αht)

5: Update strong classifier H ← H + αtht.

6: end for

that a related derivation is done in [53]; furthermore, the popular LogitBoost algo-

rithm [55] uses similar criteria, though the actual optimization procedure differs.

If we define pi ≡ p(yi = 1|xi), the negative log likelihood is expressed as

follows:

L(H) = −
n∑
i=1

(
1(yi = 1) log pi + 1(yi = −1) log(1− pi)

)
. (2.6)

To derive a boosting algorithm we must first define pi in terms of Hi = H(xi). We

follow [53, 55] and define:

pi = σ (2Hi) , (2.7)

where σ(v) = 1
1+exp(−v) is the sigmoid. Note that σ(v) ∈ [0, 1] and ∂σ

∂v
= σ(v)(1 −

σ(v)). Finally, taking the derivatives:

∂L
∂pi

=

{
−1
pi

if yi = 1

1
1−pi if yi = −1

(2.8)

∂pi
∂Hi

= 2pi(1− pi), (2.9)

and using the chain rule, we get wi = − ∂L
∂Hi

= − ∂L
∂pi

∂pi
∂hi

:

wi =

{
2(1− pi) if yi = 1

−2pi if yi = −1
(2.10)

Intuitively, negatives with large pi and positives with small pi receive high weight.
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Training weak classifier ht

In the original gradient boosting paper weak classifiers are chosen by opti-

mizing Eqn. (2.5), while in most boosting algorithms weak classifiers are chosen

by optimizing weighted error:

ht = arg min
h

∑
i

1(h(xi) 6= yi)wi, (2.11)

where yi ∈ {−1, 1}. The criterion in Eqn. (2.11) is more common and many

existing learning algorithms approximately minimize this cost function. Here we

show that for binary classifiers the first cost function can be converted to the

second. Let y′i = sign(wi) (typically y′i = yi), and w′i = |wi|/
∑

i(|wi|). Then:

ht+1 = arg min
h

∑
i

−h(xi)wi

= arg min
h

∑
i

(2 · 1(h(xi) 6= y′i)− 1)|wi|

= arg min
h

∑
i

2 · 1(h(xi) 6= y′i)|wi|

= arg min
h

∑
i

1(h(xi) 6= y′i)w
′
i

This transformation allows us to use existing learning algorithms, e.g. decision

stumps, that minimize weighted error or some approximation to it to train ht.

Initial distribution

It is often useful to train with an initial (prior) distribution over the data,

e.g. if more negative than positive training examples are available. Let ωi be the

prior on the ith example. We can modify L as follows:

L(H) = −
n∑
i=1

ωi

(
1(yi = 1) log pi + 1(yi = −1) log(1− pi)

)
. (2.12)

Observe that doubling the weight of xi is the same as having two copies of xi in

the training data. The derivative of L becomes ∂L
∂pi

= −ωi
pi

if yi = 1 and ωi
1−pi if

yi = −1. Modifying the corresponding equations for wi is trivial.
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Real vs. Discrete ht

Thus far we have assumed that the weak classifiers are binary, i.e. ht(x) ∈
{−1, 1}. If, however, ht outputs a real valued confidence or score, we can use

this score directly. The procedure outlined in Fig. 1 remains unchanged. The

alternative is to just use sign(ht(x)). Using the terminology of [55], we refer to

these variations as real and discrete, respectively.

Approximating Max
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g i(v
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LSE(r=5)
LSE(r=20)

Figure 2.4: Smooth approximations to a max operator. See text for details.

Table 2.1: Four max approximations g`(v`) ≈ max`(v`).

g`(v`) ∂g`(v`)/∂vi domain

LSE 1
r

ln
(

1
m

∑
` exp(rv`)

) exp(rvi)∑
` exp(rv`)

[−∞,∞]

GM
(

1
m

∑
` v

r
`

) 1
r g`(v`)

vr−1
i∑
` v
r
`

[0,∞]

NOR 1−
∏

`(1− v`)
1−g`(v`)
1−vi [0, 1]

ISR
∑
` v
′
`

1+
∑
` v
′
`
, v′` = v`

1−v`

(
1−g`(v`)
1−vi

)2
[0, 1]

We now present an overview of differentiable approximations of the max

operator. The general idea is to approximate the max over {v1, . . . , vm} by a
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differentiable function g`(v`), such that:

g`(v`) ≈ max
`

(v`) = v∗ (2.13)

∂g`(v`)

∂vi
≈ 1(vi = v∗)∑

` 1(v` = v∗)
(2.14)

Intuitively, if vi is the unique max, then changing vi changes the max by the same

amount, otherwise changing vi does not affect the max.

A number of approximations for g have been proposed. We summarize the

choices used here in Table 2.1: a variant of log-sum-exponential (LSE) [25, 107],

generalized mean (GM), noisy-or (NOR) [136], and the ISR model [71, 136]. In

Fig. 2.4 we show the different models applied to (v, 1− v) for v ∈ [0, 1].

LSE and GM each have a parameter r the controls their sharpness and ac-

curacy; g`(v`)→ v∗ as r →∞ (note that large r can lead to numerical instability).

For LSE one can show that v∗ − log(m)/r ≤ g`(v`) ≤ v∗ [25] and for GM that

(1/m)1/rv∗ ≤ g`(v`) ≤ v∗, where m = |v`|. NOR and ISR are only defined over

[0, 1]. Both have probabilistic interpretations and work well in practice; however,

these models are best suited for small m as g`(v`) → 1 as m → ∞. Finally, all

models are exact for m = 1, and if ∀` v` ∈ [0, 1], then 0 ≤ g`(v`) ≤ 1 for all models.

2.3.1 MILBoost

We now turn to Multiple Instance Learning (MIL), and re-derive and gen-

eralize MILBoost [136]. As in the previous cases, we would like to optimize the

negative log likelihood L. To do so we must define pi ≡ p(yi = 1|Xi), the prob-

ability of a bag Xi. We begin by defining the probability pij ≡ p(yij = 1|xij) of

an instance xij in the same manner as before: pij = σ(2Hij), where Hij = H(xij).

Given the instance probabilities, we define the bag probability pi as the maximum

over the instance probabilities pij. Using the max approximator g in place of the

max we write:

pi = gj(pij) = gj(σ(2Hij)) (2.15)

This can be viewed as the probabilistic approximation of Eqn (2.3).
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Algorithm 2 MILBoost

Input: Dataset {X1, . . . , Xn}, {y1, . . . , yn},yi ∈ {−1, 1}

1: for t = 1 to T do

2: Compute weights wij = − ∂L
∂Hij

3: Train weak classifier ht using weights |wij|
ht = argminh

∑
ij 1(h(xij) 6= yi)|wij|

4: Find αt via line search to minimize L(H)

αt = argminα L(H + αht)

5: Update strong classifier H ← H + αtht.

6: end for

Algorithm details are given in Algorithm 2. The optimization procedure

for MIL is similar to the optimization procedure for regular boosting described

in Section 2.3: compare Algorithms 1 and 2. Table 2.2 shows the expressions for

instance weights for different variations of g.

Table 2.2: MIL equations for wij for different choices of g.

yi = −1 yi = 1

LSE
−2pij(1−pij)

1−pi
exp(rpij)∑
` exp(rpi`)

2pij(1−pij)
pi

exp(rpij)∑
` exp(rpi`)

GM −2pi
1−pi

(
(pij)

r−(pij)r+1∑
`(pi`)

r

)
2
(

(pij)
r−(pij)r+1∑
`(pi`)

r

)
NOR −2pij

2pij(1−pi)
pi

ISR
−2χijpi∑

` χi`
, χij =

pij
1−pij

2χij(1−pi)∑
` χi`

, χij =
pij

1−pij

2.4 Conclusions

In this section we reviewed the tools that will be used throughout this thesis.

Portions of this chapter are based on the following publications:

• “Multiple Component Learning for Object Detection” by P. Dollár, B. Ba-

benko, S. Belongie, P. Perona, and Z. Tu [42]. The dissertation author con-
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tributed to algorithm development, implemented parts of the code and ex-

periments, and contributed to writing of the paper.



3 Weakly Labeled Location

In this chapter we will explore weakly supervised computer vision systems

where the precise location of an object or its parts is latent. Our applications will

include object detection & recognition, as well as object tracking.

3.1 Object Recognition and Localization

{ …}Multiple Stable 
Segmentation {                       …}g

Figure 3.1: Object recognition and localization with Multiple Instance
Learning and Stable Segmentations (MILSS). We use Multiple Stable Seg-
mentations to break an image up into many overlapping segments. This particular
choice of segmentation procedure increases the chance of extracting the correct
segment from an image, while keeping the total number of segments manageable.
For each segment we compute the Bag-of-features representation, and these feature
vectors are passed into MIL for training

The goal of object categorization is to locate and identify instances of an

object category within an image. This task is challenging in real world scenes

since objects may vary in scale, position, and viewpoint; in addition, they may

be surrounded by background clutter, occluded by other objects, and obscured by

poor image quality. To model these sources of variability, traditional approaches

to object categorization require large labeled data sets of fully annotated training

16
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images. Typical annotations in these “fully” labeled data sets provide masks or

bounding boxes that specify the locations, scales, and orientations of objects in

each training image. Though extremely valuable, this information is prone to

error and is expensive to obtain. Without this information, however, traditional

approaches to object categorization tend to learn spurious models of background

artifacts, leading to lower accuracy during testing.

Some approaches for object categorization have successfully learned object

models from weakly labeled data [50, 101, 111, 121, 124]. Weakly labeled training

examples indicate which objects of interest are present in training images without

specifying the pixels that are associated with them. From weakly labeled examples,

the existing methods use standard techniques in statistical learning to model the

“essence” of each category. Popular approaches include constellation models [50,

49, 37], region based methods [101, 124] and latent models such as pLSA and

LDA, with bag of visual words [111, 121, 137]. While they excel at exploiting

correlations between different image patches, they suffer from computationally

expensive inference and background noise that is learned as part of the category

model.

Recently, Multiple Instance Learning (MIL) models have been applied to

object detection and recognition [32, 104, 134, 6, 136]. In the MIL framework

a weakly labeled image is broken down into many pieces which constitute the

instances of a bag. As discussed before, this the pieces are typically rectangular

bounding boxes or segments (see Fig. 2.2). The bounding box approach fails

to accurately localize the object of interest, especially when the object is non-

rectangular (e.g. a snake or a airplane). On the other hand, segmentation is well

known to be a difficult problem, and can often under or over segment the object

of interest. If segmentation fails to accurately crop out the object of interest, a

positive bag may end up containing no positive instance breaking the assumption

of MIL (we will explore the theoretical foundations of this phenomenon in Chapter

5).

In this work we propose a pipeline for training object classifiers using MIL.

In order to get accurate localization and avoid the problems of segmentation failure
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we propose the use of Multiple Stable Segmentation (MSS). We demonstrate the

efficiency and accuracy of our framework on two databases that present significant

intra-class variation: Caltech 4 [50] and a landmark image database, Landmarks-

18. The Caltech dataset, although highly popular in the computer vision com-

munity, is a rather artificial dataset, where objects often appear in isolation and

with uniform backgrounds. The Landmarks-18 dataset on the other hand, is taken

directly from common web albums and contains instances of popular landmarks in

cluttered scenes with variable viewpoint, weather, and illumination.

3.1.1 Proposed Pipeline

We now described our proposed pipeline, which we call Multiple Instance

Learning with Stable Segmentation (MILSS).

Object Classification with MIL

The problem of learning an object classifier from weakly labeled data can

be elegantly framed as multiple instance learning. During training it is known for

each image whether a certain object category is present, but the exact location

of that object is unknown. If we split an image Ii into J multiple regions or

segments {si1, si2..., siJ}, we can assume that one of the segments contains the

object of interest. For each image we are given a category label yi = {c1, c2, ..., cC};
however, since the MIL problem is defined only for binary classification, we will

train our classifiers in a one versus all manner. If we define yik ∈ 1(yi = ck) to

be a binary label indicating the presence of category k in image i, we can train C

different classifiers. For each category k, we train a classifier Hk : s→ {1, 0} using

the training data set {(I1, yik), ...}. In practice, since our problem is multi-class

it is more useful for us to also obtain the probability of the segment containing

an object category k, p(ck|s). The boosting algorithm for MIL developed in [136]

provides us with an effective way of learning these functions; we refer the reader

to Section 2.3.1 for details on the algorithm.
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Multiple Stable Segmentations

In the weakly supervised setting, for an image with a particular label we

know that some region of the image contains the corresponding object. The number

of possible image regions is, for all practical purposes, infinite. We therefore require

a method of splitting the image up into a manageable number of “reasonable”

regions or segments. Traditional segmentation methods [120, 87] will often lead

to over or under segmentation, and require many parameters to be set a priori

(e.g. typically these algorithms require the number of segments; of course, this is

very difficult to estimate for a novel image). Instead, we turn to Multiple Stable

Segmentations [105]. The method of multiple stable segmentations uses stability

as a heuristic for a particular set of parameters, cue weightings and a model order.

For each choice of parameters (e.g., cue combinations ~p and number of

segments q), the image is segmented using Normalized Cuts [120, 87]. The seg-

mentation is considered stable if small perturbations of the image do not yield

substantial changes in the segmentation. The image is perturbed and segmented

T times and the following score is evaluated:

Φ(q, ~p) =
1

n− n
q

(
n∑
i=1

T∑
j=1

δij −
n

q

)
,where δij =

1 if i =j

0 otherwise
. (3.1)

Here n is the number of pixels and δij is equal to 1 if the i-th pixel is mapped to

a different segment in the j-th perturbed segmentation, and zero otherwise. Thus

Φ is a properly normalized1 measure of the probability of a pixel to change label

due to a perturbation of the image. Segmentations with a high stability score are

retained. Notice that, in general, there may exist several stable segmentations for

an image.

Segment Representation

To represent each segment in feature space we use the bag of features model

(BoF) [50] to capture appearance information. Recently, the BoF image represen-

tation has found widespread application in object categorization due to its sim-

1In particular Φ ranges in [0, 1] and it is not biased towards a particular value of q.
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plicity and efficiency. We first detect salient regions in the segment and compute

a feature vector for each region. These feature vectors are then mapped to a vo-

cabulary of “visual words” which are computed using vector quantization. The

BoF representation of an image segment is then a histogram of these visual words

(often referred to as a signature).

Classifying Images and Localizing Objects

Given an image Ii we compute q stable segmentations resulting in multiple

segments {si1, si2..., siJ}. For each segment sij we compute a BoF signature, with

each signature corresponds to an instance of the bag. A segment sij is classified

as follows:

yij = argmax
k

p(ck|sij), (3.2)

where p(ck|sij) is the probability of the segment sij belonging to the category ck.

We classify an image Ii as proposed by [106]:

yi = argmax
k

J∑
j=1

p(ck|sij). (3.3)

The task of object localization generally corresponds to placing a bounding

box, or preferably the actual object outline, around the object within the image.

Since our framework uses segments for categorization, we utilize segment bound-

aries that yield highest recognition score in order to describe object locations [50].

For evaluating our localization performance for an image Ii classified overall as

yi and segment labels yij, we look for segments with labels such that yij = yi.

Then we check for overlapping segments and return the first n unique segment

boundaries, with n� J .

3.1.2 Experimental Results

To evaluate the MILSS framework, we compare our approach to the state-of-

the-art methods in object categorization. Existing MIL-based approaches often use

the COREL dataset to evaluate their models for image categorization. However,
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since we concentrate on object categorization, the performance of our approach is

evaluated on Caltech 4 and a new dataset Landmarks-18.

Caltech 4 Dataset

Caltech 4 [50] is a well established dataset and is a standard benchmark for

object categorization. Although simple, we utilize this dataset as a means of com-

parison with Mil-based methods. Following the experimental set up of [32, 104],

we perform a category versus background classification. Table 3.1(a) presents the

results of categorization accuracy for our method. Results are compared to existing

MIL-based image categorization models [32, 104] and a non-MIL-based approach

of [18]. The presented results are competitive with the rest of the algorithms. The

average categorization accuracy for MILSS as well as ConMIL is 98%; while MILES

is 97% and Bar-Hillel et al.’s algorithm is 93%. Note that the highest performance

is achieved in the Airplanes category given that the stable segmentations were able

to separate the background from the objects accurately.

Table 3.1: Caltech 4 results. (a) Comparison of categorization results between
our framework, MIL-based models [32, 104] and a traditional object categorization
approach [18] for Caltech 4 categories. Results in bold indicate the highest perfor-
mance for each category. (b) MILSS Confusion matrix between the four categories
for multi-class object recognition.

Airplanes Cars Faces Motorbikes

Training data 400 400 218 400

MILSS 1 .971 .976 .972

ConMIL [104] .992 .984 .976 .987

MILES [32] .980 .945 .995 .967

Bar-Hillel [18] .897 .977 .917 .931

(a)

A F L M

Training data 400 218 100 400

Airplanes (A) .98 .00 .01 .01

Faces (F) .01 .99 .00 .00

Leopards (L) .05 .01 .93 .01

Motorbikes (M) .01 .00 .01 .97

(b)

Table 3.1(b) reports accuracy for multi-class object categorization. Instead

of considering a background category, images belonging to each category acted as

negative examples for models trained on the other categories. We compare our

method to existing non-MIL-based object recognition frameworks: the dependent

Hierarchical Dirichlet process (DHDP) [137] and constellation of parts model [50].

As shown in Table 3.2(a), MILSS reports an average recognition accuracy of 97%
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while DHDP reports 98%. Looking closely at the categories, MILSS outperforms

DHDP in three out of four of them. The Leopards category seems to be the most

challenging for our framework, since it contains fewer images than the rest of the

categories (100 for training and 100 for testing). In order to improve these results

we could easily augment our training set with images from public repositories, as

manual labeling is not required.

Table 3.2: Caltech 4 Results. (a) Results of multiple object categorization
models for four Caltech categories. We compare our results to those of non MIL-
based models. Results in bold indicate the highest performance for each category.
(b) Average localization results of MILSS for four categories of Caltech.

Airplanes Faces Leopards Motorbikes Mean

Training data 400 218 100 400

MILSS .977 .986 .927 .971 0.965

DHDP [137] .961 .978 1 .967 0.976

Fergus [50] .888 .862 - .977 0.909

(a)

MILSS

Airplanes .932

Faces .902

Leopards .891

Motorbikes .859

Mean .896

(b)

In a multi-class setting, localization accuracy of MILSS is 90% on the Cal-

tech 4 dataset. Our localization results are presented in detail in Table 3.2 (b). To

quantify the accuracy of object localization we adopt the methodology of [50] and

consider the overlap α = B∩Bgt
B∪Bgt . Note that our method may be at a disadvantage

in cases where the objects’ contour areas B are smaller than the ground truth

bounding box Bgt; thus it is difficult to make a direct comparison with the results

in [50]. Since our method localizes objects using segment boundaries, the loca-

tion and extent of the object is captured more precisely than those with bounding

boxes, see Fig. 3.3.

Landmark Database

With the increasing popularity of digital photography and the user’s desire

to share their pictures in web albums, recognition of destinations and landmarks

has become an interesting problem. Recognizing objects in real world images is

a challenging task, as images are presented at a variety of viewpoints, scales, and

illuminations; noise, background clutter, and occlusions also make the problem
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more difficult. Since photo-sharing sites are a vast resource of weakly labeled

image data, we easily gather large datasets to evaluate our framework.

Figure 3.2: Landmarks-18 Dataset. Two examples are shown per landmark
and each row shows 9 categories. Top row: Arc de Triomphe, Ayres Rock, Bell-
south Building, Brandenburg Gate, Buckingham Palace, Burjal Arab, CN Tower,
Centre Pompidou and Chrysler Building. Bottom row: Church Savior Spilled
Blood, Eiffel Tower, Liberty Bell, Lincoln Memorial, Lincoln Memorial Statue,
London Tower Bridge, Space Needle, Sydney Opera House and Taipei 101.

Here we introduce a new dataset called Landmarks-18, consisting of 18 dif-

ferent categories of landmarks, provided by Google Research and collected from

public web albums. Landmarks-18 captures much more significant intra-class

variability than standard benchmark datasets for object recognition. Figure 3.2

demonstrates the diversity of landmarks in the dataset.

Here we performed two different multi-class categorization experiments on

Landmarks-18. Each experiment considers 10 different categories, where images

in each category were divided randomly into 80%/20% for training and testing

respectively. Experiments were performed with 5-fold cross validation to obtain

statistically relevant average categorization results. Figure 3.4 shows confusion

matrices for both experiments. The results show that Landmarks-18 is much more

difficult for categorization than Caltech 4, due to the challenging characteristics
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Figure 3.3: Top image: Examples of Caltech test images. First three columns
correspond to successful image categorization and localization of objects in the
scene. Last column correspond to a false positive. Bottom row: Examples of
Landmarks-18 test images. Green segments represent the image region with the
highest probability of being the landmark. Images enclosed by a red rectangle
correspond to a false positive.
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of its images and the larger number of classes. Despite this, MILSS achieves high

categorization accuracy in both experiments. The outcome of both experiments

indicate that Eiffel Tower, Taipei101, and Bellsouth Building are the most chal-

lenging categories. The main source of low recognition accuracy is between visu-

ally similar categories such as Bellsouth Building vs. Chrysler Building. For this

dataset we were unable to compare our results to other MIL-based categorization

systems as code was not available.
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Figure 3.4: Confusion matrices of categorization accuracy for the
Landmark-18 dataset. (a) Experiment 1; (b) Experiment 2.

To evaluate the importance of the multiple stable segmentations within

MILSS, we also experimented with two different single segmentations (q = 4 and

q = 6) using Normalized Cuts [120]. Figure 3.5 shows the average categorization

accuracy for each method using 5-fold cross validation. With multiple stable seg-

mentations categorization performance is improved in almost all categories. The

average categorization accuracy for q = 4, 6 and multiple segmentations is 58.3%,

61.8% and 71.0% respectively. The total number of segmentations extracted from

an image plays an important role in categorization accuracy. As noted by others,

as the number of segments per image increases, so does the chance of having a

segment that represents the object accurately [106, 88]. We believe that multiple

stable segmentations provide a way of gathering the most meaningful segments, as
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is reflected in our results.

Figure 3.5: Three different types of region extraction. two single segmen-
tations with number of segments equal to 4 and 6, and multiple stable segmenta-
tions. The average categorization accuracy for q = 4, 6 and multiple segmentations
is 58.3%, 61.8% and 71.0% respectively. Multiple stable segmentations outperform
(on average) all the other methods.

Implementation Details

The stability based image segmentation was implemented using Normal-

ized Cuts [120, 36]. Five iterations, combining brightness and texture cues with

~p ={0.4, 0.5, 0.6, 0.7} were used to sample the parameter space. For the catego-

rization experiments done for Caltech and Landmarks-18, we computed 5 different

segmentations with q = 2, . . . , 6 with a total of 20 segments per image. Computing

a single segmentation takes about 20-30 seconds per image. For the BoF model we

computed 5000 random SIFT [86] features at multiple scales (from 12 pixels up to

the full image size) for each image segment. Visual words are obtained computing

a hierarchical K-means with K = 17 and three levels. The computation of SIFT

descriptors and signatures takes about 1 second per segment in a MATLAB/C
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implementation. Constructing the vocabulary tree takes 40-50 minutes for ten

categories. Training time for MilBoost on four Caltech categories takes about 1

day using 500 weak classifiers. Using ten categories of Landmarks-18 MilBoost

take less than a day of training using 200 weak classifiers. Classification of all

test images for ten categories is done in 0.5 seconds. All above operations were

performed on a Pentium 2.8 GHz.

3.2 Object Detection with Parts

In this chapter we focus on the problem of detection of non-rigid objects.

The main challenge lies in the amount of variability of non-rigid object categories,

and the fact that most commonly used features are not invariant to such defor-

mation. A growing trend in object detection is to construct part-based object

detectors based on the observation that parts of an object are typically rigid. We

follow this trend and propose an approach that uses Multiple Instance Learning

(MIL) to train component classifiers (corresponding to rigid parts) from data where

only object labels in the form of bounding boxes are provided, but part locations

are unknown. The resulting method, Multiple Component Learning (MCL), learns

individual component classifiers and combines these into an overall object classifier.

3.2.1 Related Work

A number of discriminative detection systems that learn from simple low-

level features and large amounts of data have been proposed; typically their focus

is either on the learning aspect [135, 128] or the design of appropriate features

[38]. These methods require large amounts of labeled data to learn invariance to

articulation, occlusion and intra-class variations. As mentioned, they have proven

particularly successful for detecting rigid objects, achieving low false positive rates.

MCL is similar to these methods in some regards, the key difference being that

built into MCL is the domain knowledge that objects are composed of parts, that

the mutual position of parts is somewhat variable and that parts may not all be

visible. MCL is therefore much better suited for detecting articulated objects, e.g.
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Figure 3.6: Response of first 5 learned components classifiers on randomly se-
lected INRIA pedestrian test images (best viewed in color). At most one box is
displayed per component after non-maximal suppression and thresholding. Three
components correspond to semantically meaningful parts (head-magenta, left foot-
red, right foot-yellow); 2 correspond to the region between between the legs. The
components were learned with no component labels provided during training.

pedestrians, and remains robust in the presence of occlusion.

Part-based approaches have a rich history; one of the earliest approaches

dates back to 1973 [51]. A number of different ways of extracting parts from

images have since been proposed. One approach involves designing part detectors

by hand [28] or providing a system with labeled part examples [93, 92]. Other than

the obvious disadvantage of being labor intensive, these methods are restricted to

using a limited number of possibly sub-optimal parts. An alternative approach

involves searching for repeatedly occurring elements using different criteria such

as frequency of appearance in the training data [4], lowering an empirical risk

function [19], or increasing mutual information [133]. Unlike in MCL , the recurring

elements in these methods are fairly simple, including edge fragments [4], Gaussian
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models [19], or image fragments [133].

A simple but effective method of extracting parts is to crop small image

patches, either using an interest point operator [139, 2] or by dense sampling [70].

The patches can be vector quantized to form ‘codebooks’ [139], and an image can

then be represented using a ‘bag of words’ model [70]. Spatial information can

be encoded using pairwise relationships [2] or with a spatial voting scheme [77].

Alternatively, a generative model can be used to model the object, e.g. the con-

stellation model and its variants [81, 139, 37] have proven robust and capable of

operating with little training data. Though effective in recognition tasks, these

patch-based methods are limited by simple or fixed part appearance models, often

relying on a patch distance measure in a predefined feature space, e.g. using nor-

malized correlation or other patch descriptors. In MCL the component classifiers

are learned from low level features, and although MCL requires more training data,

the approach can lead to higher accuracy models.

Most closely related to our work is [49], which uses a formalism called latent

SVMs to simultaneously learn part and object models. The resulting system is

effective, though very different from our own. We emphasize that, as far as we

are aware, aside from [49] MCL is the first part-based method that uses rich part

appearance models without relying on part labels during training.

3.2.2 Multiple Component Learning

There are three primary challenges that we address in order to come up

with our discriminative component-based object model. The first of these is how

to learn a component classifier when only an object label is given. The second

is how to learn diverse component classifiers given a method for learning a single

component classifier. Finally, given multiple diverse component classifiers, we must

combine these properly into an overall classifier for the object of interest. In this

work we present a unified and effective solution to these challenges.
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Figure 3.7: Part-based detection with Multiple Component Learning
(MCL). Pedestrians have limited articulation, so each component appears in a
limited region of the image. Prior to training, T overlapping regions are randomly
generated. For each region we extract patches, generating a list of image patch
bags Xi = (X1

i , . . . , X
T
i ).

Step 1: Learning a Single Component Classifier from Weakly Labeled

Data

In order to learn component classifiers we turn to weakly supervised learning

methods developed for object detection, where positive training images contain

the object of interest, but, unlike the fully supervised case, the object location

in each image is unknown [139, 37, 136]. Observe that learning a component

classifier from images of objects where the components are in unspecified locations

is an analogous problem. Thus, we can use weakly supervised learning to learn

a single component classifier. Specifically we use multiple instance learning (MIL

), creating a bag out of each training image (where instances are image patches

of a fixed size). Notice that if we simply split our training images into patches

and train a classifier using MIL the result will be a single component classifier (for

example, if we use pedestrian images we may end up with a head detector because

heads are particularly discriminative in pedestrian images).
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Step 2: Learning Many Complimentary Component Classifiers

To learn a diverse collection of component classifiers we exploit the following

fact: while the location of parts of an object may be vary in location, for many

datasets we can assume that objects are roughly aligned. Thus, to learn multiple

diverse classifiers we split each image, Xi, into p random regions X1
i , . . . , X

T
i . For

each region we generate a bag of image patches xki,j and train a classifier using

MIL. This results in T component classifiers that serve as our part detectors. See

Fig. 3.7 for an illustration.

Step 3: Combining Component Classifiers

One we have trained T component classifiers we combine them into one ob-

ject classifier as follows. First, note that our object classifier will itself be used in a

sliding window fashion, classifying each image window in a large image. Each com-

ponent classifier is trained to take an image patch as input. We use the component

classifiers in a sliding window fashion to produce confidence scores for each pixel

in the image window. These confidence maps are then treated as image channels,

and passed into a Viola-Jones framework (i.e. Haar-like features are computed

over these image channels). See Fig. 3.8 for an illustration.

An Alternative

An alternative to the last two steps is described in detail in [42]; we sum-

marize it here briefly for completeness. Recall that in boosting, multiple weak

learners, each of which may have fairly high error, are combined into a single

strong classifier with a low overall error. Weak classifiers are trained sequentially

with the weights of the training samples adjusted so that incorrectly classified ex-

amples receive more weight. Boosting is ideally suited both for learning diverse

classifiers and combining them into an overall classifier. Thus, an alternative to

the above method is to use component classifiers, trained using weakly supervised

learning, as the weak classifiers in a boosting framework. This approach is more

elegant than what we described above, but it is not immediately clear how to build

in spatial information.
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C1 C2 … CT

Figure 3.8: Putting together component classifiers and incorporating
spatial information. Each of the T trained component classifiers is used in
a sliding window fashion on an incoming image window. The output of these
classifiers is treated as T image channels which are then passed into an object level
classifier that computes Haar-like features [135] over these channels.

3.2.3 Experiments

We now present results on the INRIA pedestrian dataset [38]. A number

of recent methods have targeted this data [38, 128, 114], We compare our results

to each, using the training and evaluation methodology presented in [38], except

to [114] as it appears the results reported in that work are inaccurate2.

Here we provide details for training MCL on this dataset. Training windows

are 128x64, and for each of these we extract ∼4K overlapping patches. We compute

∼10K random Haar features [135] per patch, using the original grayscale image,

as well as gradient magnitude and 6 channels of gradient quantized by orientation.

We use MILBoost to select 256 stump classifiers. All 2416 positive sets and ∼10K

negative sets are used for training each MIL . Initially 50 binary masks in the shape

of ellipses are randomly generated, and one MIL classifier is trained per mask, using

sets generated from patches only in the masked region. The original binary masks

are random and likely suboptimal; after training each MIL , we compute a new

mask based on the MIL probability response images on the training positives and

then retrain. This mask refinement step improves results. From among the 50 MIL

2See http://www.cs.sfu.ca/~mori/research/papers/sabzmeydani_shapelet_cvpr07.html
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Figure 3.9: Results on pedestrian detection. Left: MCL outperforms all reported
results at the time. At a false positive per window rate (FPPW) of 10−4, a com-
monly used reference point, MCL has a miss rate of ∼4%, compared to ∼7% for
[128] and ∼10% for [38]. For comparison we also implemented the SoftCascade ap-
proach described in [147], using the same candidate Haar features we use in MCL
. Consistent with previously reported results, a cascade of Haars performs poorly.
Right: Results on artificially generated occlusion. We overlaid random 30x30 or
45x45 patches into random locations in the pedestrian test images. We then re-
generated the ROC curves for MCL as well as SoftCascade (which, like [38, 128],
is not part-based). MCL on data with 30x30 performs similarly to SoftCascade on
unoccluded data, and as the amount of occlusion increases, the gap between MCL
and SoftCascade further increases.

candidate classifiers, AdaBoost is used to select the 20 best components. Next,

we bootstrap ∼10K new negative windows from the training images from the false

positives reported by MCL . The entire process is repeated 4 times to form a

cascade. Our final MCL classifier is composed of 80 components (selected from

200 candidates).

Training takes 2 weeks on a modern PC (majority of time is spent in MIL-

Boost training). Our classifier is composed of ∼20K Haar features (256 per MIL ),

compared to ∼6K in the Viola & Jones real-time face detector [135]; however, they

are organized into multiple shallow cascades as opposed to a single deep cascade,

so evaluation is slower. Simple feature sharing strategies should increase speed by

an order of magnitude, reducing evaluation time to a few seconds per image.

The first five learned components are shown in Fig. 3.6. ROC curves com-

paring our method with Dalal and Triggs [38] and Tuzel et al. [128] are shown in
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Fig. 3.9, left. Part-based approaches have a natural advantage when occlusions

are present. We show the robustness of MCL to occlusions in Fig. 3.9, right.

Role of Data Alignment
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Figure 3.10: Effects of alignment on training part classifiers, see text for details.

We perform a final experiment to show that using aligned data results in

higher accuracy (part) classifiers. Note that simultaneous alignment of articulated

objects is often impossible without relying on a part-based model.

We labeled the head and feet in the 2416 INRIA training pedestrians. For

each part, we trained a classifier using patches sampled from each pedestrian in 1

of 3 ways: at the labeled part location, at the mean part location, and in a region

around the mean part location (mil). We used AdaBoost for the first two cases

and the extended version of MILBoost for the third, using 256 Haars selected from

an identical pool in each case. During testing, we applied each classifier to a region

around the mean part location and recorded the maximum probability.

Results against bootstrapped negatives are shown in Fig. 3.10. Not surpris-

ingly, labeled outperformed mean, showing alignment is beneficial. Additionally,

mean performed better when we took the max probability over the region dur-

ing testing rather than rely on the probability at the mean part location (mean* ).

Also, consistent with the findings of [136], mil outperformed labeled even though it

was trained in a weakly supervised manner (presumably our labeling is imperfect).

Together, these results make a strong case that data alignment is highly

beneficial. As articulated objects typically cannot be fully aligned everywhere,
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(A) (B) (C)

Classifier Classifier MILClassifier Classifier Classifier

Figure 3.11: Updating a discriminative appearance model. (A) Using a
single positive image patch to update a traditional discriminative classifier. The
positive image patch chosen does not capture the object perfectly. (B) Using
several positive image patches to update a traditional discriminative classifier.
This can make it difficult for the classifier to learn a tight decision boundary.
(C) Using one positive bag consisting of several image patches to update a MIL
classifier. See Section 3.3.3 for empirical results of these three strategies.

MCL has an inherent advantage over methods that are not part-based.

3.3 Object Tracking

Object tracking is a well studied problem in computer vision and has many

practical applications. The problem and its difficulty depend on several factors,

such as the amount of prior knowledge about the target object and the number and

type of parameters being tracked (e.g. location, scale, detailed contour). Although

there has been some success with building trackers for specific object classes (e.g.

faces [22], humans [68], mice [26], rigid objects [80]), tracking generic objects has
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remained challenging because an object can drastically change appearance when

deforming, rotating out of plane, or when the illumination of the scene changes.

In this section we will study the problem of tracking an arbitrary object with

no prior knowledge other than its location in the first video frame (sometimes

referred to as “model-free” tracking). In particular, we will focus on the problem

of tracking the location and scale of a single object, using a rectangular bounding

box to approximate these parameters. It is plausible that the ideas presented here

can be applied to other types of tracking problems like tracking multiple objects

(e.g. [100]), tracking contours (e.g. [67, 132]), or tracking deformable objects

(e.g. [115]), but this is outside the scope of our work. The goal of this work is to

transfer the success of weakly supervised methods (in particular Multiple Instance

Learning) in object detection to the problem of tracking.

3.3.1 Adaptive Appearance Models

A typical tracking system consists of three components: (1) an appearance

model, which can evaluate the likelihood that the object of interest is at some

particular location; (2) a motion model, which relates the locations of the object

over time; and (3) a search strategy for finding finding the most likely location

in the current frame. Here we will focus on the first of these three components;

we refer the reader to [145] for a thorough review of the other components. An

important choice in the design of appearance models is whether to model only the

object [17, 110], or both the object and the background [82, 61, 84, 10, 9, 138, 35].

Many of the latter approaches have shown that training a model to separate the

object from the background via a discriminative classifier can often achieve superior

results. These methods are closely related to object detection – an area that

has seen great progress in the last decade. In fact, some of these methods are

referred to as “tracking-by-detection” or “tracking by repeated recognition” [95]. In

particular, the recent advances in face detection [135] have inspired some successful

real-time tracking algorithms [61, 84].

A major challenge that is often not discussed in the literature is how to

choose positive and negative examples when updating the adaptive appearance
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model. Most commonly this is done by taking the current tracker location as one

positive example, and sampling the neighborhood around the tracker location for

negatives. If the tracker location is not precise, however, the appearance model

ends up getting updated with a sub-optimal positive example. Over time this can

degrade the model, and can cause drift. On the other hand, if multiple positive

examples are used (taken from a small neighborhood around the current tracker

location), the model can become confused and its discriminative power can suffer

(cf. Fig. 3.11 (A-B)). Alternatively, Grabner et al. [62] recently proposed a semi-

supervised approach where labeled examples come from the first frame only, and

subsequent training examples are left unlabeled. This method is particularly well

suited for scenarios where the object leaves the field of view completely, but it

throws away a lot of useful information by not taking advantage of the problem

domain (e.g., it is safe to assume small interframe motion).

Object detection faces issues similar to those described above, in that it

is difficult for a human labeler to be consistent with respect to how the positive

examples are cropped. For this reason, as we have discussed earlier, Multiple In-

stance Learning is an appealing approach to training object detectors from weakly

labeled data. In this paper we make an analogous argument, and propose to use

a MIL based appearance model for object tracking (cf. Fig. 3.11(C)). In fact, in

the object tracking domain there is even more ambiguity than in object detection

because the tracker has no human input and has to bootstrap itself. Therefore,

we expect the benefits of a MIL approach to be even more significant than in the

object detection problem. In order to incorporate MIL into a tracker, an online

MIL algorithm is required. The algorithm we propose (to our knowledge this is the

first online MIL algorithm in the literature) is based on boosting and is related to

the MILBoost algorithm [136] as well as the Online AdaBoost algorithm [103]. We

present empirical results on challenging video sequences, which show that using an

online MIL based appearance model can lead to more robust and stable tracking

than existing methods in the literature.
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Figure 3.12: Tracking by detection with a greedy motion model. An
illustration of how most tracking by detection systems work.

3.3.2 Tracking with Online MIL

In this section we introduce our tracking algorithm, MILTrack, which uses

a MIL based appearance model. We begin with an overview of our tracking system

which includes a description of the motion model we use. We then review online

boosting [103, 61] and present a novel boosting based algorithm for online MIL

(a combination of online boost and the MILBoost algorithm). Finally, we review

various implementation details.

System Overview and Motion Model

The basic flow of the tracking system we implemented in this work is il-

lustrated in Fig. 3.12 and summarized in Algorithm 3. Our image representation

consists of a set of Haar-like features that are computed for each image patch

[135, 44]; this is discussed in more detail in Section 3.3.2. The appearance model

is composed of a discriminative classifier which is able to return p(y = 1|x) (we

will use p(y|x) as shorthand), where x is an image patch (or the representation of

an image patch in feature space) and y is a binary variable indicating the presence

of the object of interest in that image patch. At every time step t, our tracker
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Algorithm 3 MILtrack

Input: Video frame number k

1: Crop out a set of image patches, Xs = {x : ||`(x) − `∗t−1|| < s} and compute

feature vectors.

2: Use MIL classifier to estimate p(y = 1|x) for x ∈ Xs.

3: Update tracker location `∗t = `
(

argmaxx∈Xs p(y|x)
)

.

4: Crop out two sets of image patches Xr = {x : ||`(x) − `∗t || < r} and Xr,β =

{x : r < ||`(x)− `∗t || < β}.
5: Update MIL appearance model with one positive bag Xr and |Xr,β| negative

bags, each containing a single image patch from the set Xr,β.

maintains the object location `∗t . Let `(x) denote the location of image patch x (for

now let’s assume this consists of only the (x, y) coordinates of the patch center,

and that scale is fixed; below we consider tracking scale as well). For each new

frame we crop out a set of image patches Xs = {x : ||`(x) − `∗t−1|| < s} that are

within some search radius s of the current tracker location, and compute p(y|x)

for all x ∈ Xs. We then use a greedy strategy to update the tracker location:

`∗t = `
(

argmax
x∈Xs

p(y|x)
)

(3.4)

In other words, we do not maintain a distribution of the target’s location at every

frame, and our motion model is such that the location of the tracker at time t is

equally likely to appear within a radius s of the tracker location at time (t− 1):

p(`∗t |`∗t−1) ∝

{
1 if ||`∗t − `∗t−1|| < s

0 otherwise
(3.5)

This could be extended with something more sophisticated, such as a particle filter,

as is done in [72, 138, 110]; however, we again emphasize that our focus is on the

appearance model.

Once the tracker location is updated, we proceed to update the appearance

model. We crop out a set of patches Xr = {x : ||`(x) − `∗t || < r}, where r < s

is a scalar radius (measured in pixels), and label this bag positive (recall that in

MIL we train the algorithm with labeled bags). In contrast, if a standard learning
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algorithm were used, there would be two options: set r = 1 and use this as a single

positive instance, or set r > 1 and label all these instances positive. For negatives

we crop out patches from an annular regionXr,β = {x : r < ||`(x)−`∗t || < β}, where

r is same as before, and β is another scalar. Since this generates a potentially large

set, we then take a random subset of these image patches and label them negative.

We place each negative example into its own negative bag, though placing them

all into one negative bag yields the same result.

Incorporating scale tracking into this system is straightforward. First, we

define an extra parameter λ to be the scale space step size. When searching for the

location of the object in a new frame, we crop out image patches from the image

at the current scale, `st , as well as one scale step larger and smaller, `st ±λ; once we

find the location with the maximum response, we update the current state (both

position and scale) accordingly. When updating the appearance model, we have

the option of cropping training image patches only from the current scale, or from

the neighboring scales as well; in our current implementation we do the former.

It is important to note that tracking in scale-space is a double-edged sword.

In some ways the problem becomes more difficult because the parameter space

becomes larger, and consequently there is more room for error. However, tracking

this additional parameter may mean that the image patches we crop out are better

aligned, making it easier for our classifier to learn the correct appearance. In our

experiments we have noticed both behaviors – sometimes adding scale tracking

helps, and other times it hurts performance.

Details on how all of the above parameters were set are in Section 3.3.3,

although we use the same parameters throughout all the experiments. We continue

with a more detailed review of MIL.

Online Boosting

Our algorithm for online MIL is based on the boosting framework [52] and

is related to the work on Online AdaBoost [103] and its adaptation in [61]. The

goal of boosting is to combine many weak classifiers h̃(x) (usually decision stumps)



41

into an additive strong classifier:

H(x) =
K∑
k=1

αkh̃k(x) (3.6)

where αk are scalar weights. There have been many boosting algorithms proposed

to learn this model in batch mode [52, 54]; typically this is done in a greedy man-

ner where the weak classifiers are trained sequentially. After each weak classifier

is trained, the training examples are re-weighted such that examples that were

previously misclassified receive more weight. If each weak classifier is a decision

stump, then it chooses one feature that has the most discriminative power for the

entire weighted training set. In this case boosting can be viewed as performing

feature selection, choosing a total of K features, which is generally much smaller

than the size of the entire feature pool. This has proven particularly useful in

computer vision because it creates classifiers that are efficient at run time [135].

In [103], Oza develops an online variant of the popular AdaBoost algorithm

[52], which minimizes the exponential loss function. This variant requires that

all h̃ can be trained in an online manner. The basic flow of Oza’s algorithm is as

follows: for an incoming example x, each h̃k is updated sequentially and the weight

of example x is adjusted after each update. Since the formulas for the example

weights and classifier weights in AdaBoost depend only on the error of the weak

classifiers, Oza proposes to keep a running average of the error of each h̃k, which

allows the algorithm to estimate both the example weight and the classifier weights

in an online manner.

In Oza’s framework if every h̃ is restricted to be a decision stump, the

algorithm has no way of choosing the most discriminative feature because the entire

training set is never available at one time. Therefore, the features for each h̃k must

be picked a priori. This is a potential problem for computer vision applications,

since they often rely on the feature selection property of boosting. Grabner et al.

[61] proposed an extension of Oza’s algorithm which performs feature selection by

maintaining a pool of M > K candidate weak stump classifiers h. When a new

example is passed in, all of the candidate weak classifiers are updated in parallel.

Then, the algorithm sequentially chooses K weak classifiers from this pool by



42

Algorithm 4 Online MILBoost (OMB)

Input: Dataset {Xi, yi}Ni=1, where Xi = {xi1, xi2, . . .}, yi ∈
{0, 1}

1: Update all M weak classifiers in the pool with data {xij, yi}
2: Initialize Hij = 0 for all i, j

3: for k = 1 to K do

4: for m = 1 to M do

5: pmij = σ
(
Hij + hm(xij)

)
6: pmi = 1−

∏
j

(
1− pmij

)
7: Lm =

∑
i

(
yi log(pmi ) + (1− yi) log(1− pmi )

)
8: end for

9: m∗ = argmaxm Lm

10: h̃k(x)← hm∗(x)

11: Hij = Hij + h̃k(x)

12: end for

Output: Classifier H(x) =
∑

k h̃k(x), where p(y|x) = σ
(
H(x)

)
keeping running averages of errors for each, as in [103], and updates the weights of

h̃ accordingly. We employ a similar feature selection technique in our Online MIL

algorithm, although the criteria for choosing weak classifiers is different.

Online Multiple Instance Boosting

The algorithms in [103] and [61] rely on the special properties of the ex-

ponential loss function of AdaBoost, and therefore cannot be readily adapted to

the MIL problem. We now present our novel online boosting algorithm for MIL.

As before, we take a statistical view of boosting, where the algorithm is trying

to optimize a specific objective function J . In this view, the weak classifiers are

chosen sequentially to optimize the following criteria:

(h̃k, αk) = argmax
h̃∈H,α

J(Hk−1 + αh̃) (3.7)

where Hk−1 is the strong classifier made up of the first (k − 1) weak classifiers,
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and H is the set of all possible weak classifiers. In batch boosting algorithms, the

objective function J is computed over the entire training data set. In our case,

for the current video frame we are given a training data set {(X1, y1), (X2, y2) . . .},
where Xi = {xi1, xi2 . . .}. We would like to update our classifier to maximize log

likelihood of this data (Equation 2.6). We model the instance and bag probabilities

in the same manner as the MILBoost algorithm (refer to Chapter 2). To simplify

the problem, we absorb the scalar weights αt into the weak classifiers, by allowing

them to return real values rather than binary.

In the same vein as [61], at all times our algorithm maintains a pool of

M > K candidate weak stump classifiers h. To update the classifier, we first

update all weak classifiers in parallel, similar to [61]. Note that although instances

are in bags, the weak classifiers in a MIL algorithm are instance classifiers, and

therefore require instance labels yij. Since these are unavailable, we pass in the

bag label yi for all instances xij to the weak training procedure. We then choose

K weak classifiers h̃ from the candidate pool sequentially, by maximizing the log

likelihood of bags:

h̃k = argmax
h∈{h1,...,hM}

L(Hk−1 + h) (3.8)

See Algorithm 4 for the pseudo-code of Online MILBoost.

Discussion

There are a couple important issues to point out about this algorithm. First,

we acknowledge the fact that training the weak classifiers with positive labels for all

instances in the positive bags is sub-optimal because some of the instances in the

positive bags may actually not be “correct”. The algorithm makes up for this when

it is choosing the weak classifiers h̃ based on the bag likelihood loss function. We

have also experimented using online GradientBoost [79] to compute weights (via

the gradient of the loss function) for all instances, but found this to make little

difference in accuracy while making the system slower. Second, if we compare

Equations 3.7 and 3.8 we see that the latter has a much more restricted choice of

weak classifiers. This approximation does not seem to degrade the performance of
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the classifier in practice, as noted in [60]. Finally, we note that the likelihood being

optimized in Equation 3.8 is computed only on the current examples. Thus, it has

the potential of overfitting to current examples, and not retaining information

about previously seen data. This is averted by using online weak classifiers that

do retain information about previously seen data, which balances out the overall

algorithm between fitting the current data and retaining history.

Implementation Details

Weak Classifiers

Recall that we require weak classifiers h that can be updated online. In our system

each weak classifier hk is composed of a Haar-like feature fk and four parameters

(µ1, σ1, µ0, σ0) that are estimated online. The classifiers return the log odds ratio:

hk(x) = log

[
pt
(
y = 1|fk(x)

)
pt
(
y = 0|fk(x)

)] (3.9)

where pt
(
ft(x)|y = 1

)
∼ N (µ1, σ1) and similarly for y = 0. We let p(y = 1) =

p(y = 0) and use Bayes rule to compute the above equation. When the weak clas-

sifier receives new data {(x1, y1), . . . , (xn, yn)} we use the following update rules:

µ1 ← γµ1 + (1− γ)
1

n

∑
i|yi=1

fk(xi)

σ1 ← γσ1 + (1− γ)

√
1

n

∑
i|yi=1

(
fk(xi)− µ1

)2
where 0 < γ < 1 is a learning rate parameter. The update rules for µ0 and σ0 are

similarly defined.

Image Features

We represent each image patch as a vector of Haar-like features [135], which are

randomly generated, similar to [44]. Each feature consists of 2 to 4 rectangles, and

each rectangle has a real valued weight. The feature value is then a weighted sum

of the pixels in all the rectangles. These features can be computed efficiently using

the integral image trick described in [135].
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Figure 3.13: Tracking Object Location. Location Error Plots. See text for
details.

3.3.3 Experiments

We tested our MILTrack system on several challenging video sequences,

some of which are publicly available. For comparison, we implemented a tracker

based on the Online AdaBoost (OAB) algorithm described in [61]. We plugged

this learning algorithm into our system, and used the same features and motion

model as for MILTrack (See Section 3.3.2). We acknowledge the fact that our

implementation of the OAB tracker achieves worse performance than is reported in

[61]; this could be because we are using simpler features, or because our parameters

were not tuned per video sequence. However, our study is still valid for comparison

because only the learning algorithm changes between our implementation of the

OAB tracker and MILTrack, and everything else is kept constant. This allows us to
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Table 3.3: Tracking Object Location. Average center location errors (pixels).
Bold green font indicates best performance, red italics font indicates second best.

Video Clip OAB(1) OAB(45) SemiBoost Frag MILTrack(45)

Sylvester 25 79 16 11 11

David Indoor 49 72 39 46 23

Coke Can 25 57 13 63 20

Occluded Face 43 105 7 6 27

Occluded Face 2 21 93 23 45 20

Surfer 23 43 9 139 11

Tiger 1 35 57 42 39 16

Tiger 2 33 33 61 37 18

Coupon Book 25 58 67 56 15

isolate the appearance model to make sure that it is the cause of the performance

difference.

One of the goals of this work is to demonstrate that using MIL results in

a more robust and stable tracker. For this reason all algorithm parameters

were fixed for all the experiments. This holds for all algorithms we tested.

For MILTrack and OAB the parameters were set as follows. The search radius s

is set to 35 pixels. For MILTrack we sample positives in each frame using a radius

r = 4 (we found that the algorithm is fairly robust for a range of values). This

generates a total of 45 image patches comprising one positive bag (for clarity, we

call this MILTrack(45)). For the OAB tracker we tried two variations. In the first

variation we set r = 1 generating only one positive example per frame (we call this

OAB(1)); in the second variation we set r = 4 as we do in MILTrack (although in

this case each of the 45 image patches is labeled positive); we call this OAB(45).

The reason we experimented with these two versions was to show that the superior

performance of MILTrack is not simply due to the fact that we extract multiple

positive examples per frame. In fact, as we will see shortly, when multiple positive

examples are used for the OAB tracker, its performance degrades3 (cf. Table 3.3

3We also experimented with the LogitBoost loss function (as in [79], which penalizes noisy
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Figure 3.14: Tracking Object Location. Precision plots. See text for details.

and Fig. 3.13). The scalar β for sampling negative examples was set to 50, and

we randomly sample 65 negative image patches from the set Xr,β (though during

initialization with the first frame we sample 1000 patches). The learning rate γ for

the weak classifiers is set to 0.85. Finally, the number of candidate weak classifiers

M was set to 250, and the number of chosen weak classifiers K was set to 50.

To gauge absolute performance we also compare our results to three other

algorithms, using code provided by the respective authors. The first of these is the

SemiBoost tracker [62]4; as mentioned earlier, this method uses label information

from the first frame only, and then updates the appearance model via online semi-

supervised learning in subsequent frames. This makes it particularly robust to

examples less harshly, and although it worked better than OAB, it did not outperform MILTrack.
We omit the detailed results due to space constraints.

4Code available at http://www.vision.ee.ethz.ch/boostingTrackers/download.htm.
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(A) Sylvester

(B) David Indoor

(C) Coke Can
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Figure 3.15: Tracking Object Location. Screenshots of tracking results, high-
lighting instances of out-of-plane rotation, occluding clutter, scale and illumination
change. For the sake of clarity we only show three trackers per video clip.
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(A) Occluded Face

(B) Occluded Face 2

(C) Surfer
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Figure 3.16: Tracking Object Location. Screenshots of tracking results, high-
lighting instances of out-of-plane rotation, occluding clutter, scale and illumination
change. For the sake of clarity we only show three trackers per video clip.
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Table 3.4: Tracking Object Location. Precision at a fixed threshold of 20.
Bold green font indicates best performance, red italics font indicates second best.

Video Clip OAB(1) OAB(45) SemiBoost Frag MILTrack(45)

Sylvester 0.64 0.04 0.69 0.86 0.90

David Indoor 0.16 0.08 0.46 0.45 0.52

Coke Can 0.45 0.16 0.78 0.14 0.55

Occluded Face 0.22 0.02 0.97 0.95 0.43

Occluded Face 2 0.61 0.03 0.60 0.44 0.60

Surfer 0.51 0.33 0.96 0.28 0.93

Tiger 1 0.48 0.22 0.44 0.28 0.81

Tiger 2 0.51 0.40 0.30 0.22 0.83

Coupon Book 0.67 0.15 0.37 0.41 0.69

scenarios where the object leaves the scene completely. However, the model relies

strongly on the prior classifier (trained using the first frame). We found that on

clips exhibiting significant appearance changes this algorithm often lost the object.

The second algorithm is FragTrack [1]5. This algorithm uses a static appearance

model based on integral histograms, which have been shown to be very efficient.

The appearance model is part based, which makes it robust to occlusions. For

both algorithms, we use the default parameters provided by the authors for all

of our experiments. For experiments where we track both location and scale we

compare to IVT [110], setting the parameters such that only location and scale are

tracked (rather than a full set of affine parameters). For the trackers than involve

randomness, all results are averaged over 5 runs.

The system was implemented in C++ (code and data available on our

project website6), and runs at about 25 frames per second (FPS).

5Code available at http://www.cs.technion.ac.il/~amita/fragtrack/fragtrack.htm.
6http://vision.ucsd.edu/project/tracking-online-multiple-instance-learning
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Evaluation Methodology

Evaluating a tracking algorithm is itself a challenge. Qualitative comparison

on test video clips is most common; quantitative comparison typically involves

plotting the center location error versus frame number. Since these plots can

be difficult to interpret, it is useful to summarize performance by computing the

mean error over all the frames of the video. However, this value sometimes fails to

correctly capture tracker performance. For example, if a tracker tracks an object

closely for most of the video, but loses track completely on the last several frames,

the mean location error may be higher than a tracker that sticks with the object,

though not as precisely. The preference between these two behaviors inevitably

depends on the final application.

For the above reasons, in addition to presenting screen shots and location

error analysis, we include precision plots, similar to the analysis in [31], and sug-

gested in [145]. These plots show the percentage of frames for which the estimated

object location was within some threshold distance of the ground truth. To sum-

marize these plots, we chose the threshold 20 and report the precision at this point

in the curve (e.g. this is the percent of frames for which the tracker was less than

20 pixels off from the ground truth); this threshold roughly corresponds to at least

a 50% overlap between the tracker bounding box and the ground truth. Note that

we could have used the PASCAL [47] overlap criteria throughout our evaluation;

however, this would require us to label full bounding boxes (which is more time

consuming), and would make it difficult to compare trackers that do and do not

return estimated scale. Finally, note that when multiple trails were done, we com-

puted error for each trial and averaged the errors rather than averaging the tracker

outputs and computing error.

Tracking Object Location

We perform our experiments on 3 publicly available video sequences, as well

as 6 of our own. For all sequences we labeled the ground truth center of the object

for every 5 frames, and interpolated the location in the other frames (with the

exception of the “Occluded Face” sequence, for which the authors of [1] provided
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Table 3.5: Tracking Object Location & Scale. Location mean error. Bold
green font indicates best performance, red italics font indicates second best.

Video Clip OABs(1) IVTs MILTrack(45) MILTracks(45)

David Indoor 28 5 23 20

Cliff Bar 18 30 12 9

Twinings 17 14 10 10

Table 3.6: Tracking Object Location & Scale. Precision at a fixed threshold
of 20. Bold green font indicates best performance, red italics font indicates second
best.

Video Clip OABs(1) IVTs MILTrack(45) MILTracks(45)

David Indoor 0.13 0.98 0.52 0.75

Cliff Bar 0.76 0.57 0.90 0.98

Twinings 0.74 0.70 0.91 0.87

ground truth). All video frames were converted to gray scale prior to processing.

The quantitative results are summarized in Tables 3.3 and 3.4, and plots

are shown in Fig. 3.13 and 3.14; Fig. 3.15,3.16 and 3.17 show screen captures for

some of the clips. Below is a more detailed discussion of the video sequences.

Sylvester & David Indoor

These two video sequences have been used in several recent tracking papers [110, 82,

61], and they present challenging lighting, scale and pose changes. Our algorithm

achieves the best performance (tying FragTrack on the “Sylvester” sequence).

Occluded Face, Occluded Face 2

In the “Occluded Face” sequence, which comes from the authors of [1], FragTrack

performs the best because it is specifically designed to handle occlusions via a

part-based model. However, on our similar, but more challenging clip, “Occluded

Face 2”, FragTrack performs poorly because it cannot handle appearance changes

well (e.g. when the subject puts a hat on, or turns his face). This highlights the

advantages of using an adaptive appearance model.

CokeCan, Surfer The Coke Can sequence contains a specular object,

which adds some difficulty. The “Surfer” clip was downloaded from Youtube; this
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clip would be easier to track if color information were used7, but since we use

grayscale images for all experiments this clip is fairly challenging. Both MILTrack

and the SemiBoost tracker perform well on these clips (cf. Fig. 3.14).

Tiger 1, Tiger 2

These sequences exhibit many challenges, and contain frequent occlusions and fast

motion (which causes motion blur). The two sequences show the toy tiger in

many different poses, and include out of plane rotations (cf. Fig. 3.17 (A)). Our

algorithm outperforms the others, often by a large margin.

Coupon Book

This clip illustrates a problem that arises when the tracker relies too heavily on

the first frame. The appearance of the coupon book is changed after about 50

frames, by folding one of its pages; then an “imposter” coupon book is introduced

to distract the trackers. MILTrack successfully tracks the correct coupon book,

while FragTrack and the SemiBoost tracker are confused by the impostor object.

Tracking Object Location & Scale

Here we present results for both location and scale tracking. Scale tracking

is independent of the appearance model, so our implementation of scale tracking

for MILTrack is easily carried over to the OAB tracker. Note that the quantitative

results we present are still based on object center location only; we do not measure

error of scale estimation. This allows us to compare results of trackers that estimate

scale and those with a fixed scale. Furthermore, gathering ground truth for object

center is less time consuming than for a full bounding box.

David Indoor

This is the same clip that we studied in the previous section. Here we see a

big advantage of using scale tracking – MILTrack with scale performs better than

MILTrack without scale, and it performs better than OAB(1) with scale. However,

the IVT tracker achieves the best result on this video clip. We believe IVT is

particularly well suited to faces since it uses a subspace (PCA) appearance model.

7It would be straightforward to extend our system to use color – e.g. compute Haar features
over color channels.
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We will see in the next experiments that IVT does not work well in other scenarios.

Cliffbar In this clip the goal is to track an object that changes in scale

and moves against a background that is very similar in texture. We see that the

IVT tracker fails in this case, when the object is turned upside down. The IVT

tracker uses a generative model, rather than discriminative, so it does not take

into account the negative examples from the image. Because the background is so

similar to the object of interest in this video clip, IVT ultimately loses the object

and snaps to some part of the background. As before, we see that MILTrack with

scale performs better than MILTrack without scale and OAB(1) with scale; overall

MILTrack achieves the best performance on this clip.

Twinings

This clip again shows the shortcomings of IVT – the clip shows a box of tea which

is moved around and rotated (exposing new faces of the box). IVT fails when

these out of plane rotations take place (see Fig. 3.18(C), frame #240 and beyond).

Though the center location error is similar for both version of MILTrack (Fig. 3.19),

we can see the version that includes scale search results in more satisfactory results

(e.g. frame #134).

3.3.4 Discussion

There are still some interesting unanswered questions about adaptive ap-

pearance models. Although our method results in more robust tracking, it cannot

completely avoid the types of problems that adaptive appearance trackers suffer

from. In particular, if an object is completely occluded for a long period of time,

or if the object leaves the scene completely, any tracker with an adaptive appear-

ance model will inevitably start learning from incorrect examples and lose track of

the object. Some interesting work exploring ways to deal with this issue has been

presented in [62] and more recently in [122]. These methods attempt to combine

a pre-trained object detector with an adaptively trained tracker. One interesting

avenue for future work would be to combine these ideas with the ones presented in

this paper. Another challenge is to track articulated objects which cannot be easily

delineated with a bounding box. These types of objects may require a part-based
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approach, such as the recent methods in object detection [49, 42].

Finally, online algorithms for Multiple Instance Learning could be useful in

areas outside of visual tracking. Work on better algorithms and theoretical analysis

relating offline/batch MIL and online MIL is already under way (e.g. [96]), and

we suspect more is to come.

3.4 Conclusions

In this chapter we discussed methods for training vision models for object

localization with weak training data. Portions of this chapter are based on the

following publications:

• “Multiple Component Learning for Object Detection” by P. Dollár, B. Ba-

benko, S. Belongie, P. Perona, and Z. Tu [42]. The dissertation author con-

tributed to algorithm development, implemented parts of the code and ex-

periments, and contributed to writing of the paper.

• “Weakly supervised object recognition and localization with stable segmen-

tations” by C. Galleguillos, B. Babenko, A. Rabinovich, and S. Belongie [57].

The dissertation author implemented parts of the system, and contributed

to writing of the paper.

• “Visual Tracking with Online Multiple Instance Learning” [15] and “Robust

Object Tracking with Online Multiple Instance Learning” [16] by B. Ba-

benko, M. -H. Yang, and S. Belongie. The dissertation author developed the

algorithm and experiments, and wrote most of the paper.
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(A) Tiger 2

(B) Coupon Book
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Figure 3.17: Tracking Object Location. Screenshots of tracking results, high-
lighting instances of out-of-plane rotation, occluding clutter, scale and illumination
change. For the Tiger 2 clip we also include close up shots of the object to highlight
the wide range of appearance changes. For the sake of clarity we only show three
trackers per video clip.
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(A) David Indoor

(B) Cliffbar

(C) Twinings
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Figure 3.18: Tracking Object Location & Scale. Screenshots showing results
for tracking both location and scale of objects. Note that the localization is much
more precise when scale is one of the tracked parameters.
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Figure 3.19: Tracking Object Location & Scale. Average center location
errors. See text for details.
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Figure 3.20: Tracking Object Location & Scale. Precisions plots. See text
for details.



4 Weakly Labeled Categories

Assigning examples to categories is a surprisingly ambiguous task. Suppose

we have an image of an apple – should this image be labeled as “Granny Smith”,

“apple” or “fruit”? It’s easy to see that such categories are actually organized in

a hierarchy and the correct answer to this question depends on the application.

Regardless of what we desire as the output of our system, it may be in our interest

to train the system with categories that are higher or lower in the hierarchy than

what is provided during training. For example, the category “fruit” is extremely

heterogeneous and can be difficult to learn with existing machine vision methods;

it may in our interest to break this category into many smaller or fine-grained

categories (i.e. sub-categories) for purposes of training. On the other hand, we

may want to automatically discover higher level categories (i.e. super-categories) in

the interest of a more efficient hierarchy-based recognition system. In this chapter

we will explore applications where we would like to automatically discover sub or

super-categories, treating these as latent variables in the data.

4.1 Object Detection with Sub-categories

In object detection, data alignment is often necessary to achieve good clas-

sification results. E.g., consider the Viola-Jones face detector [135]. The detector

works best when trained with images that come from a single coherent group (e.g.,

frontal faces) and lie in approximate correspondence (e.g., eyes aligned). General-

izing Viola-Jones to multiple poses and offset training data remains an active area

of research.

In this work we are interested in strategies for simultaneous learning and

59
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=
Figure 4.1: Object detection with Multiple Pose Learning.

alignment. We have already discussed that data must be aligned such that training

samples lie in correspondence and how this can be achieved automatically using

Multiple Instance Learning. While this strategy is appropriate for dealing with

translational offset, it is not appropriate for other cases like out of plane rotation

of objects. in the latter case a more effective approach is to split the positive

examples into sub-categories, each of which would contain well-aligned data. In

this Section we will present an algorithm for simultaneously splitting data into

sub-categories and training classifiers for each sub-category. Coincidentally, the

algorithm is very similar to MILBoost and we will discuss this relationship.

4.1.1 Related Work

A number of papers have focused on grouping data either manually or

automatically. E.g., one approach for face detection is to train multiple detectors,

each on a manually defined range of orientations [69, 65]. A pre-processing step

can be used to predict orientation [69]. However, manual grouping of data can

be labor intensive and suboptimal. Alternatively, data can be clustered prior to
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training [117], but the resulting clustering is likely suboptimal. Most related to

this are methods that attempt to group the data during training [126, 127, 141],

e.g. by learning a tree classifier that naturally splits the data [127, 141]. Although

promising, these approaches often have heuristic splitting procedures and many

parameters.

4.1.2 Multiple Pose Learning

We now present a boosting approach for simultaneously splitting data into

groups and training a classifier for each group. Similar to standard supervised

learning, we are given n samples xi ∈ X and n corresponding labels yi ∈ {−1,+1}.
We assume, however, that there are K latent variables yki ∈ {−1,+1} associated

with each sample. Each latent variable defines membership to one of the K groups.

A sample is considered positive if it belongs to at least one of these groups, which

can be expressed as follows:

yi = max
k

(yki ) (4.1)

Our goal is to simultaneously split the positive data into K groups and train K

classifiers H1, . . . , HK , one per group, so that maxk(H
k(xi)) = yi. We call this

problem Multiple Pose Learning. Note that the latent variables yki are not known;

if they were, we could train each Hk using standard learning approaches.

As before, we would like to optimize the negative log likelihood L. However,

we need to modify our definition of the probability of xi. We define the probability

pki ≡ pk(yi = 1|xi) according to a single classifier Hk as pki = σ(2Hk
i ), where

Hk
i = Hk(xi). This is similar to Eqn. (2.7). Given all of the classifiers, we define

the probability pi ≡ p(yi = 1|xi) as the maximum over the probabilities pki . Using

one of the approximations g of the max from Section 2.3, we write:

pi = gk(p
k
i ) = gk(σ(2Hk

i )) (4.2)

As for MILBoost, this can be viewed as the probabilistic approximation of Eqn.

(4.1). Note that pi and consequently L depend on each Hk
i ; to make this depen-

dence explicit we write L(H1, · · · , HK). We optimize L(H1, · · · , HK) by coordi-

nate descent, cycling through k, where in each phase we add a weak classifier to
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Algorithm 5 MPLBoost

Input: Dataset {x1, . . . , xn}, {y1, . . . , yn},yi ∈ {−1, 1}, K

1: for t = 1 to T do

2: for k = 1 to K do

3: Compute weights wki = − ∂L
∂Hk

i

4: Train weak classifier hkt using weights |wki |
hkt = argminh

∑
i 1(h(xi) 6= yi)|wki |

5: Find αt via line search to minimize L(·, Hk, ·)
αt = argminα L(·, Hk + αhkt , ·)

6: Update strong classifier Hk ← Hk + αkt h
k
t .

7: end for

8: end for

Hk while keeping all other weak classifiers fixed. The algorithm is summarized in

Algorithm 5.

All that remains is to derive wki = − ∂L
∂Hk

i
. Using the chain rule we get:

∂L
∂Hk

i

=
∂L
∂pi

∂pi
∂pki

∂pki
∂Hk

i

. (4.3)

All other terms cancel. Plugging in ∂L
∂pi

and
∂pki
∂Hk

i
, derived in Eqns. (2.8-2.9), we get:

wki =


2pki (1−pki )

pi

∂pi
∂pki

if yi = 1
−2pki (1−pki )

1−pi
∂pi
∂pki

if yi = −1
(4.4)

The form of ∂pi
∂pki

depends on the choice of max approximator g, see Table 2.1. We

list the equations for wki for different choices of g in Table 4.1. Notice that the

algorithm, and in particular the equations of the weights, are nearly identical to

those of MILBoost (see Table 2.2).

4.1.3 Experiments

We used two datasets: LFW [66] and MNIST [76]. MNIST is a simple

optical digit recognition dataset; we use it to illustrate certain properties of the
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Table 4.1: MPL equations for wki for different choices of g.

yi = −1 yi = 1

LSE
−2pki (1−pki )

1−pi
exp(rpki )∑
` exp(rp

`
i)

2pki (1−pki )
pi

exp(rpki )∑
` exp(rp

`
i)

GM −2pi
1−pi

(
(pki )

r−(pki )r+1∑
`(p

`
i)
r

)
2
(

(pki )
r−(pki )r+1∑
`(p

`
i)
r

)
NOR −2pki

2pki (1−pi)
pi

ISR
−2χki pi∑

` χ
`
i
, χki =

pki
1−pki

2χki (1−pi)∑
` χ

`
i
, χki =

pki
1−pki

algorithms presented. The LFW dataset contains images of faces in the media.

Although primarily intended for evaluating face recognition, we use it within a

detection setting. For ‘hard’ non-face images we used false-positives returned by a

Viola-Jones face detector. In all experiments we use random Haar features [44] as

the weak classifiers.

The goal of MPL is to simultaneously group data and train a classifier for

each group. Therefore a natural application of MPL is to train detectors for object

categories that have several distinct views. E.g., out of plane rotations make it

difficult to place faces into correspondence, which can make it difficult to train a

precise face detector. On the other hand, if we can accurately group data during

training, we not only achieve higher accuracy but also potentially more meaningful

output (e.g. a face detector that also predicts facial pose).

LFW

We took 2000 LFW faces and synthesized three distinct groups: (1) faces

kept as is, (2) faces rescaled by a factor of 2.5, and (2) faces rescaled by 2 and

rotated 90◦. In each case we use boosting to select T = 64 weak classifiers from

1000 candidates. We randomly split 4000 images into equal sized training and

testing sets, and average all experiments over 10 trials. Figure 4.2(right) shows

ROC curves comparing AdaBoost with four versions of MPLBoost. In Fig. 4.3 we

show randomly selected test images grouped according to the learned classifiers.

We see that MPLBoost recovers the groups reasonably well. Since we have the

ground truth memberships yki , we can quantify the quality of the grouping (up to
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Figure 4.2: MPL Results. ROC plots comparing four variants of MPLBoost
and standard learning (AdaBoost) with: left: MNIST; right: LFW.

a permutation of the group ids). For the faces, the grouping accuracy for the four

softmax models were: NOR 0.81%, ISR 0.84%, GM 0.83%, LSE 0.88%.

MNIST

Our final experiment is similar to the one described above. We chose the

digits 0-2 as positives and the others as negatives. The setup varied only slightly

(1500 positives, 1500 negatives, 40% used for training, averaged over 10 trials).

ROC curves are shown in Fig. 4.2 (left). We computed membership accuracy by

assuming each positive digit forms its own group: NOR 0.83%, ISR 0.89%, GM

0.87%, LSE 0.87%.

4.2 Object Recognition with Super-categories

Classification methods that are typically used in object recognition require

some notion of similarity over the inputs (e.g. a distance metric for nearest neigh-

bor, a kernel for SVM). Therefore, a major focus in object recognition has been

placed on developing powerful image representations that capture the necessary

similarity information. For example, it is well known that combining features of
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Figure 4.3: MPL Alignment Results. Randomly selected test images grouped
according to the 3 classifiers trained with MPL. Top: MNIST; Bottom: LFW.

many different cues significantly improves recognition performance [78, 131]; the

problem can therefore be reduced to finding the proper combination or weighting

of these cues. This can be done by designing good features by hand, or by starting

with many simple features (e.g. pixel values, or haar wavelets) and using training

data to learn a good similarity metric (or equivalently an embedding). The latter

goes by many different names and appears in various subareas of machine learning

and computer vision: metric learning, cue combination/weighting, kernel combi-

nation/learning, feature selection, etc.. Though the specifics of each subarea may

differ, the basic idea boils down to finding a powerful and discriminative image

representation.

For the purpose of categorization, two approaches have thus far been ex-

plored: learning a global or “monolithic” similarity metric, and learning a similarity

metric per category. The former problem is known as metric learning in the ma-

chine learning community. These methods learn either a linear embedding, which

is often a much lower dimensionality than the input [142, 59, 140], or a non-linear

one [33, 69]. More recently, these types of methods have shown up in computer

vision. In particular, the line of work on similarity sensitive hashing (or learning

an embedding into a binary space) [118, 125] has produced very promising results,
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Figure 4.4: Learning multiple distance metrics with Multiple Similarity
Learning (MuSL). The top and bottom scenarios correspond to the two common
ways of computing similarities between a query image and a labeled training set:
in the top row we use a global, or “monolithic”, similarity metric; in the bottom
row we associate a different similarity metric with each category. The latter is
more powerful, but does not scale well to large numbers of categories and cannot
generalize to novel categories. The middle row shows a compromise between these
two extremes, which we study in this paper.

enabling extremely efficient image retrieval.

There are several advantages to training a monolithic similarity metric.

Such a metric can be used in a nearest neighbor classifier, which can lend itself

to efficient classification [119]. Furthermore, the representation is the same for

all data. This is convenient because the metric can easily generalize to novel

categories. In other words, we could train a good similarity metric on C categories,

and if we later receive training data for a few more categories, no re-training is

necessary (assuming the training data from before was reasonably representative).

This form of generalization will be an important focus of our work.

The other end of the spectrum is to train a similarity metric per category.

This is typically done in a 1-vs-all manner. A common example of this is training

a 1-vs-all classifier that performs some form of feature/cue weighting or selection
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(e.g. SVM with kernel combination). The obvious advantage of these methods is

improved performance. In fact, these types of methods have recently been shown

to perform extremely well for object categorization [131]. This is not surprising

since certain cues and features are important for some categories and not others.

Therefore, it is difficult to capture all the relevant information in a single global

metric. Other work has gone so far as to train a similarity metric per training

example [56, 83].

One downside to training category specific metrics is, of course, the difficulty

in scaling to large datasets. Computer vision datasets for recognition are growing

at exponential rates. Consider, then, a problem with 10,000 categories. Training

this many separate similarity metrics is impractical. Furthermore, we speculate

that even if we did train this many metrics, many of them would be redundant.

Another down side is that, unlike a monolithic similarity metric, it is unclear how

this approach could generalize to new categories without an additional training

phase.

Our intuition is that a few good similarity metrics could capture most of

the necessary information and attain good performance without compromising

efficiency. We see this as a happy medium in between the two extremes of generic

and category specific (c.f. Fig. 4.4). The contributions of this work are twofold:

(1) we study how performance changes across this spectrum, and (2) we propose an

algorithm called MuSL that simultaneously groups categories together and trains

a few similarity metrics, one for each group. We show how to assign one of the

learned metrics to novel categories, and study how well these metrics generalize.

Related Work

There are several lines of work that are similar in spirit and motivation

to ours. [126] proposes a procedure for training several boosted detectors in a

multi-task fashion, forcing them to share features; [102] extends this work to train

classifiers incrementally rather than in a single batch. This work, like ours, aims

to exploit the redundancies in representation of similar categories. Similarly, in

[48] prior information is shared between categories enabling the training of new
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classifiers with much less training data. An approach called “dynamic learning”

[144] offers an efficient way of training additional classifiers when new categories

are introduced or existing categories are split. All of these approaches, however,

still require the training of C classifiers for C categories. Instead we take a metric

learning view; this enables us to reap some of the benefits of learning a monolithic

similarity metric such as the ability to generalize to new categories without re-

training.

Work on object taxonomies has similar themes. For example, [64] uses

confusion matrices of trained classifiers to group categories together hierarchically.

In our work, categories get grouped by virtue of sharing a similarity metric.

Perhaps the most similar approach to ours comes from the machine learning

community: in [140] the input space is partitioned, and a metric is learned for each

partition. This work requires the user to specify the partitions a priori (in practice,

k-means on the input space is used). Our algorithm integrates grouping into the

training procedure.

The rest of this paper is organized as follows. In Section 4.2.1 we review

boosted similarity metric learning and introduce our algorithm. In Section 4.2.3

we go over implementation details and present object categorization results. We

conclude in Section 4.2.4.

4.2.1 Boosting Similarity Classifiers

Recently, [118, 125] explored a boosting approach to embedding images into

a binary space. Although this representation sacrifices some recognition power, it

is efficient both in terms of computing similarities (which can be done with bit

operations) and storage. Furthermore, training a boosted classifier is typically

done in phases, which makes it well-suited for the type of problem we address. For

these reasons, we choose this paradigm for our study, though the algorithms we

discuss could be extended to other representations.

In this section we review the gradient boosting approach to learning sim-

ilarity metrics, and introduce our proposed algorithm. We receive a dataset of

the feature vectors {x1, . . . , xn}, x ∈ Rd and category labels {`1, . . . , `n}, where
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`j ∈ {1, . . . , C}. Using this dataset we can construct pairs (xi1, xi2); for conve-

nience we also define pair labels yi = 1[`i1 = `i2]. If nc is the number of examples

for each category, then there are O(n2
c) possible positive pairs, and O(Cn2

c) pos-

sible negative pairs. Since the latter can be quite large, in practice we subsample

negative pairs.

The goal is to train a boosted similarity metric, which we can think of as a

binary classifier that takes a pair as input:

H(xi1, xi2) =
T∑
t=1

ht(xi1, xi2) (4.5)

where each ht is a weak similarity classifier. Following [118, 125], in our model

these weak similarity metrics take the following form:

ht(xi1, xi2) = |ft(xi1)− ft(xi2)| (4.6)

where ft : Rd → R1. In this case, to compute H we embed each example/image

x into a vector F (x) = [f1(x), f2(x), . . . fT (x)], and then compute the L1 distance

in this new space: H(xi1, xi2) = ||F (xi1) − F (xi2)||1. Therefore, training such a

strong classifier induces an embedding. We choose the function ft : Rd → {0, 1}
so that our embedding is binary; this enables us to compute these distances very

efficiently. In the simplest case, these functions are computed by thresholding a

particular feature of x, ft(x) = 1[x[t] < θ]. [118] proposes an efficient algorithm

to learn such a threshold given some training data. Note that for this choice of ft,

the overall metric H(xi1, xi2) ranges from 0 to T .

Monolithic Similarity Classifier

We begin with a review of how to train a single similarity metric for all

data. For a given classifier H we can define the probability that a particular pair

is positive as

pi = σ
(
α
(
T/2−H(xi1, xi2)

))
(4.7)

where σ(a) = 1
1−exp(−a) is the sigmoid function, and α is a global scalar parameter.

Using the above definition we can define the log likelihood over a set of training
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Figure 4.5: The MuSL system consists of a few similarity metrics (in this
example just two: H1, H2) and an assignment vector s that maps each category to
one of the metrics. To compute the distance from a query image to the ith example
in our labeled training set, we use the similarity metric Hs(`i) where `i is the label
of the training example.

pairs:

L(H) =
∑

i|`i1=`i2

log(pi) +
∑

i|`i1 6=`i2

log(1− pi) (4.8)

To derive a boosting algorithm that optimizes the above objective function we

apply Friedman’s gradient boosting framework [53]. We interpret boosting as

gradient ascent in function space. Each step of the ascent equates to adding a new

weak classifier to H. The gradient ∂L(H)
∂H

gives us the direction in function space in

which we should move; however, we are limited by our choice of weak classifier, and

cannot move in arbitrary directions. We therefore seek a weak classifier that is as

close as possible to this gradient. When the weak classifiers have binary output (as

is the case for us), this is equivalent to minimizing weighted error on the training

data [13], where the weights are defined as:

wi =

∣∣∣∣∂L(H)

∂H

∣∣∣∣ (4.9)

In each phase of training we compute these weights and train a weak classifier.

Note that the algorithm presented in [118, 125] is slightly different because

an exponential objective function is used instead of log likelihood; we have found

that empirical differences are insignificant between these two choices.
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Algorithm 6 Multiple Similarity Learning (MuSL)

INPUT: Training data (xi1, xi2) and labels (`i1, `i2)

1: for t = 1 to T do

2: for k = 1 to K do

3: Compute weights

wki = exp(rLkc )∑
j exp(rL

j
c)

∣∣pki − yi∣∣
4: Train weak classifier hkt using weights wki

hkt = argminh
∑

iw
k
i 1[h(xi1, xi2) 6= yi]

5: Update strong classifier Hk ← Hk + hkt .

6: end for

7: end for

8: Assign s(c) = argmaxk Lc(Hk) for c = 1 . . . C

OUTPUT: Classifiers H1 . . . HK , assignment vector s

Per-Category Similarity Classifiers

In this scenario we train a similarity classifier for each category: H1, . . . , HC .

We can then use these in a kNN framework as follows: upon receiving a novel ex-

ample x we will compute similarities to all the examples in the training set. To

compute the similarity of x and a training example xi we will use the classifier H`i .

For each class c, we construct a set of training pairs (xi1, xi2). A pair is

positive if `i1 = `i2 = c and negative if `i1 6= `i2 and `i2 = c. All other training

pairs are not relevant to training Hc. Hence, we optimize the following objective:

Lc(H) =
∑

i|`i1=c,`i2=c

log(pi) +
∑

i|`i1 6=c,`i2=c

log(1− pi) (4.10)

We can train each of the C classifiers separately, using the same training procedure

as before – the only change is that we train only on relevant pairs rather than all

pairs.

Recall that due to our choice of binary weak classifiers, all of the similarity

metrics have the same range of output (0 to T ). An advantage of this choice is that

there are no issues about calibration that sometimes arise in 1-vs-all classification

[109]. For other choices of weak classifiers, this issue would need to be addressed.
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Figure 4.6: Evolution of likelihoods: as training proceeds the values of the
matrix Lkc converge, and clear category groupings become apparent. Above is a
snapshot of the matrix (red indicates high likelihood, blue indicates low likelihood)
for 3 different stages of training for the MERGED 20 dataset, where we combine 7
Caltech 256 categories, 7 Oxford Flowers categories, and 6 UIUC Texture categories
(c.f. Section 4.2.3 for details). Above we see that by the end of the training
procedure, the matrix Lkc reflects the discovered grouping.

4.2.2 Multiple Similarity Learning (MuSL)

Finally, we are interested in training a small number of similarity metrics

H1, . . . , HK where K < C. To do this, our algorithm groups categories together

into K “super-categories”. In other words, we will need to recover a vector s of

length C, each entry of which is s(c) ∈ {1, . . . , K}. To compute the similarity

between a novel example x and an example from our training set xi we use the

similarity classifier Hs(`i) (c.f. Fig. 4.5 for an example). If this assignment vector

were known a priori, our problem would reduce to standard training. We can

therefore think of this vector as a latent variable. It is plausible to think of heuristic

methods of finding this assignment vector as a pre-processing step. However, by

separating this step from the training, the two cannot be jointly optimized.

We would like to solve the following optimization problem:

max
s,H1...HK

∑
c

Ls(c)c

where Lkc = Lc(Hk) is the log likelihood of category c when evaluated with classifier

Hk. We can split the max over metrics H and entries of the assignment vector s,

and the move the latter into the sum:

max
H1,...,HK

∑
c

max
s(c)∈{1...K}

Ls(c)c

Therefore, to solve for the best similarity metrics we use the following objective
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Figure 4.7: Evolution of pair weights: the plots above show the weight of
two training pairs from the MERGED 20 dataset (c.f. Section 4.2.3 for details)
with K = 3. As training proceeds, the leftmost term in Eqn. 4.13 softly assigns
each category, and hence each training pair, to one of the K metrics; the weights
corresponding to the other metrics quickly drop down to 0. In later stages of
training the rightmost term in Eqn.4.13 begins to take effect, and the weights of
the “difficult” pairs (left plot) stay high, while the weights of the “easy” pairs
(right plot) begin to decline; this is similar to traditional boosting.

function1:

L(H1, . . . , HK) =
∑
c

max
k∈{1...K}

Lkc (4.11)

When K = 1 this objection function reduces to the one in Eqn. 4.10. As before we

will derive a boosting algorithm to optimize this objective by performing gradient

ascent in function space. However, when we try to take the derivative of the above

objective function we run into trouble since the max operator is not differentiable.

We therefore replace the max with a differentiable approximation [25]:

G(a1, . . . , aK) =
1

r
log
(∑

k

exp(rak)
)

(4.12)

≈ max
k
{a1, . . . , aK}

1Note that this objective is only concave for K = 1; in all other cases it is possible to get
stuck in local maxima, though in our experiments we have not found this to be too problematic.
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where r is a parameter controls the accuracy of the approximation (we discuss

how to deal with possible numerical instability issues of the above equation in

Section4.2.3).

We will optimize the objective L(H1, . . . , HK) by coordinate ascent, up-

dating each of the K classifiers one at a time. In each step we will add a new

weak classifier hkt to the strong classifier Hk. We train the weak classifier hkt with

weights derived as follows:

wki =

∣∣∣∣∂L(H1, . . . , HK)

∂Hk

∣∣∣∣
=

∣∣∣∣∂G(L1
c , . . . ,LKc )

∂Lkc
∂Lkc
∂pki

∂pki
∂Hk

∣∣∣∣
=

exp(rLkc )∑
j exp(rLjc)

∣∣pki − yi∣∣ (4.13)

where pki is the probability of a pair (computed using Eqn. 4.7) according to

classifier Hk. The overall algorithm is summarized in Algorithm 1. The above

formula has an intuitive interpretation. It is composed of two terms; the rightmost

term gives higher weights to pairs that are currently misclassified (e.g. “difficult”

pairs), similar to traditional boosting. The leftmost term is the familiar softmax

equation [23], applied to the category specific likelihood Lkc . We can think of this

as a soft approximation of 1[k = argmaxj Ljc]. This term will give higher weight to

pairs where `i2 = c if the similarity metric Hk is the “best” for category c. To gain

further intuition for how these two terms interact we plot the evolution of weights

for two training pairs in Fig. 4.7.

We initialize all weights to be uniform. As a result, the first few weak clas-

sifiers chosen by the procedure are not “tuned” to particular categories. However,

as the training proceeds, the leftmost term in the weight equation starts to con-

verge and effectively assign categories to each classifier (c.f. Fig. 4.6 to see how

the values of Lkc evolve during training).

Assignments and Out of Sample Extensions At the end of the training

procedure we recover the assignment vector s as follows:

s(c) = argmax
k
Lkc (4.14)
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This may be obvious for the categories that were included in the training data.

The more interesting aspect of the above equation is that it can also be used for

out of sample extension to novel categories. That is, suppose we trained K metrics

on a few categories, and now we receive training data for one more category; we

would like to assign one of the existing metrics to this new category. The above

equation is appropriate for this scenario as well: we generate positive and negative

training pairs for this category as before, compute log likelihood of each similarity

classifier, and pick the best one.

Note that we do not enforce any sort of balance on the assignments; it is

possible that all categories get assigned to the same similarity metric. In practice,

however, this does not seem to be an issue because assigning metrics to categories

more evenly is advantageous in terms of optimizing the objective function.

Re-training Recall that because the weights are initialized uniformly, the

first weak classifiers are not tuned to specific categories. If the total number

of weak classifiers is large, this would not have a significant effect. However,

in our implementation we use a small number of weak classifiers (for efficiency

reasons). Once the training phase is complete and we have recovered the category

assignments, we re-train the similarity metrics in a standard way using the known

assignments. This step tends to improve performance.

4.2.3 Experiments

In this section we present our results on object categorization. We begin

with an overview of implementation details, which are not required to follow the

rest of this Section.

Implementation Details

Image Representation We use a bag of words framework for constructing

our weak classifiers for boosting, where each decision stump is a threshold on the

count of some visual word. To construct our visual codebook, we use an algorithm

similar to [94], where the vocabulary is constructed from a forest of random trees,

and each node in a tree corresponds to a visual word. Tree nodes are split by
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Figure 4.8: Categorization performance for two datasets, showing the two
extremes, monolithic and per-category similarity metrics, as well as the algorithms
discussed for a range of K values. For low values of K we are able to get significant
improvement in performance. See Section 4.2.3 for details.

randomly sampling a small number of decision stumps (we used thresholded haar-

like filters computed on some image channel), and choosing the split that minimizes

the total class entropy on a labeled training set. We constructed two random

forests, one using CIE-LUV color images, and another using histogram of gradients

images with 8 orientation bins. The main advantage of this style of features is

speed: assigning an interest point to a codeword involves evaluating a small number

of haar-like features, and thus an image can be processed in a fraction of a second.

It also allows for easy integration of multiple cues by using different types of image

channels. We emphasize that our metric learning algorithm is not in any way

tied to this style of features, and we expect that absolute performance could be

improved by using other more advanced features.

Algorithm Parameters Here we briefly discuss the parameters and caveats

of our algorithm. When constructing training pairs given labeled data we randomly

sample 1,000 negative pairs for each example and take every possible positive pair.

One potential problem with the expression in Eqn. 4.13 is that the expo-

nent can blow up for large values of Lkc . Recall the parameter r in Eqn. 4.12;
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Figure 4.9: Discovered category groupings for the Merged 20 dataset for various
values of K using MuSL. See Section 4.2.3 for details.
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Figure 4.10: Discovered category groupings for the Merged 20 dataset for various
values of K using the k-means heuristic. See Section 4.2.3 for details.

we can set this parameter to a small value to avoid numerical instability. The

value of the likelihood Lkc depends on the number of examples n. We found that

setting r = 500/n is a good compromise between avoid numerical problems and

having reasonable accuracy in the max approximation. We set the number of weak

classifiers T = 32. Finally, as suggested in [125], we set α = 0.1.

Categorization

Our first task is to measure categorization performance as a function of K.

We plug our learned similarity metrics into a nearest neighbor classifier, as de-

scribed in Section 4.2.1. Recall that we are using embeddings into binary spaces,

as was done in [125, 118] (e.g. ft : Rd → {0, 1}). There are a few advantages to

this choice. First, computing distances in binary space is extremely efficient. Fur-

thermore, since each weak classifier relies on only one feature, boosting essentially

performs feature selection. This can further speed up run time as we need to com-

pute fewer features for an incoming image. Nevertheless, as mentioned before, this
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choice also limits the power of our learned metrics to some degree. Therefore, our

results are not state of the art in terms of absolute performance – we are mainly

interested in studying the relative performance of these algorithms as we change

the value of K.

We compare the MuSL algorithm to two baselines, both of which perform

grouping of categories as a pre-processing step, and train similarity metrics in a

standard way. The first baseline is to group the categories randomly. The second is

to use the k-means clustering algorithm [23] to group the categories. To do this, we

first need a way of representing each category in some feature space. While it is not

clear what the “correct” way of doing this is, we use the following heuristic: we take

a mean of all the data points corresponding to that category xc = 1/nc
∑

`i=c
xi;

this results in C vectors, one for each category. We experimented with other k-

means based heuristics, but found this to be the only one that gives reasonable

performance.

We perform experiments with two different datasets described below. For

all experiments we use 30 training images per category for training, and 10 to 20

images per category for testing. The results shown are averages of 20 trials with

different train/test splits. In all experiments we report the average recognition

accuracy (mean of the diagonal of the confusion matrix).

Caltech

Our first experiment uses the Caltech 256 (CT) dataset [63]. We took

the 30 easiest categories2 and randomly chose a subset of 20 out of these (the

other 10 will be used in later experiments); we call this dataset “Caltech 20”.

Categorization accuracy for various values of K are shown in Fig. 4.8(A). As we

slide the value of K from 1 to 20 the recognition performance gradually increases;

the difference between the two extremes is 14%. Randomly grouping categories

together performs worse than the “smarter” ways of discovering super-categories,

suggesting that certain groupings are better than others. Finally, MuSL tends to

perform the best out of all the methods, though in this application the k-means

2Difficulty is measured by performance of a standard classification method; see [63] for details.
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heuristic performs fairly well. We will see some disadvantages to the k-means

heuristic in the next two sections.

Merged One strength of our algorithm is its ability to handle datasets that

consist of a wide variety of heterogenous categories. We constructed a dataset we

called “Merged 20”; it consists of 7 categories from CT [63], 6 categories from

Oxford Flowers-17 (FL) [98], and 6 categories from UIUC Textures (UT) [74].

The CT categories were chosen randomly from the 20 categories in the previous

section; the FL and UT categories were chosen randomly from their respective

datasets. Fig. 4.8(B) shows a plot of recognition accuracy versus K. We see

that for low values of K there is a dramatic increase in performance – for K = 5

recognition accuracy is 10% higher than for a single metric. MuSL outperforms

both the random and the k-means heuristic methods of grouping; for K = 5 MuSL

achieves an accuracy almost 5% higher than the others. Finally, we see that the

re-trained MuSL metrics increase performance by a couple percent.

It is interesting to qualitatively inspect the super-categories that MuSL

discovers; one of the advantages of this dataset is that we have some expectation

for what these super-categories could be. Fig. 4.9 shows the discovered groupings

for K = 3, 5, 7 for a particular train/test fold. For K = 3 the groupings correspond

to the 3 source datasets that we merged; MuSL recovers these super-categories

automatically. The k-means method of grouping, on the other hand, does not

recover these super-categories. For K = 5 MuSL breaks the 3 source datasets

down further, in a seemingly intuitive manner. For example, the ‘mars’, ‘saturn’

and ‘guitar-pick’ categories get grouped together; these objects are roughly circular

and have strong gradients on their boundaries due to constant backgrounds. Again,

the super-categories discovered by k-means are semantically arbitrary (c.f. Fig.4.10

for an example).

Finally, we note that the groupings produced by MuSL are much more con-

sistent, or “stable”, over the different train/test folds: using the stability measure

defined in [73], for K = 3 MuSL groupings are 96% stable, while k-means groupings

are only 50% stable. This means that super-categories discovered by MuSL are

almost always the same, whereas those discovered by k-means are fairly random.
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Figure 4.11: Generalizing to novel categories. Using a few similarity metrics
achieves much better performance than using just one; however, using too many
can overfit to the original categories. See Sec. 4.2.3 for details.

Generalizing to New Categories

We would like to study the ability of the learned similarity metrics to gener-

alize to new categories. It is important to highlight the difference of this generaliza-

tion as opposed to the traditional definition. Here we are interested in generalizing

to novel categories (both train and test data), rather than generalizing to test data

that consists of the same categories as the training data. To this end, we create a

new dataset we call “Merged 10”; it consists of 10 new categories (4 from CT, 3

from FL, and 3 from UT) that were not included in Merged 20. We train similarity

metrics only on the original categories from the previous section (Merged 20), and

test on these new categories, as well as a combination of all 30 categories, which

we call “Merged 20+10”. To do this for K > 1 we use the procedure described

in Sec.4.2.2 to assign one of the learned similarity metrics to each of the new cat-

egories. For the Merged 10 data, when K = 3 we observe that the assignments

are as expected – each of the source datasets get grouped together as before. This

suggests that the assignment procedure is reasonable.

We plot the performance of MuSL (the re-trained version) and the k-means
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heuristic method as we sweep through values of K in Fig. 4.11. The left plot shows

performance only on the new categories, and the right plot shows performance on

all 30 categories. The resulting plots are surprising. Unlike before, performance

does not strictly improve as K gets larger. Instead, performance actually starts to

degrade for higher values of K. This suggests that training with a lower value of K

results in more general similarity metrics. Therefore, having too many similarity

metrics is not only computationally wasteful (in terms of training time and stor-

age), the performance is actually worse when adding new categories to the data.

At the same time, training just one similarity metric performs much worse (almost

25% worse than when K = 3 on the Merged 10 dataset). Furthermore, we see that

MuSL performs better than the k-means heuristic method for both datasets – for

the Merged 20+10 dataset the difference is about 5%.

4.2.4 Conclusions

In this paper we presented a method for learning a few similarity metrics

from labeled data. We studied how performance changes in between the two ex-

tremes of a single metric and a metric per object category, and showed that the

performance of the latter can be matched fairly closely with a small number of

metrics. We also studied how these learned metrics generalize to novel categories;

such generalization is strongly desirable if we wish to scale to large datasets. Here

we saw that training too many metrics is actually detrimental to this type of

generalization. The algorithm we proposed, MuSL, simultaneously trains a few

similarity metrics and groups categories together. Though a number of heuristic

methods for grouping categories as a pre-processing step are possible, our method

is principled and tends to perform better because the optimization of metrics and

grouping is done jointly. In particular, our method is well suited to scenarios where

the categories exhibit a super-categorical structure.

There are several paths we would like to explore in the future. First, we are

currently working on experiments with larger datasets to see how these methods

scale, and investigating more powerful features. Though our focus in this work is

categorization, the ideas we presented could prove to also be useful in the domain of
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image retrieval. For example, given an image query and a large unlabeled dataset

of images, the task of retrieving images similar to the query is ambiguous when we

acknowledge the fact that there is no single “correct” similarity metric. Perhaps

it is best to return several sets of results to the user, one for each of the similarity

metrics. We intend to explore these ideas in the future.

4.3 Conclusions

In this chapter we discussed methods for training vision models for object

categorization with weak training data. Portions of this chapter are based on the

following publications:

• “Simultaneous Learning and Alignment: Multi-Instance and Multi-Pose Lea-

rning” by B. Babenko, P. Dollár, Z. Tu, and S. Belongie [13]. The disser-

tation author contributed to algorithm development, implemented code and

experiments, and contributed to writing of the paper.

• “Similarity Metrics for Categorization: from Monolithic to Category Spe-

cific” by B. Babenko, S. Branson, and S. Belongie [11]. The dissertation

author developed the algorithm and experiments, and wrote most of the

paper.



5 Theoretical Analysis of

Multiple Instance Learning

Negative region
Positive region

Figure 5.1: Manifold bags. In this example the task is to predict whether an
image contains a face. Each bag is an image, and individual instances are image
patches of a fixed size. Examples of two positive bags b1 and b2 (left), and a
visualization of the instance space I (right) are shown. The two bags trace out
low-dimensional manifolds in I; in this case the manifold dimension is two since
there are two degrees of freedom (the x and y location of the image patch). The
green regions on the manifolds indicate the portion of the bags that is positive.

In this chapter we will explore the theoretical aspects of Multiple Instance

Learning. In particular we will argue that existing analysis of MIL is not ap-

propriate for many applications in computer vision (and other areas like computer

audition), and propose an alternative. Note that in this chapter we will use slightly

different notation than the rest of the dissertation to be consistent with related

work.

Theoretical PAC-style analysis of MIL problems has also seen progress in

the last decade [8, 24, 85, 113, 112]. Typical analysis formulates the MIL problem

as follows: a fixed number of instances, r, is drawn from an instance space I to form

83
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a bag. The sample complexity for bag classification is then analyzed in terms of

the bag size (r). Most of the theory work has focused on reducing the dependence

on r under various settings. For example, [24] showed that if one has access to a

noise tolerant learner and the bags are formed by drawing r independent samples

from a fixed distribution over I, then the sample complexity grows linearly with

r. Recently, [113] showed that if one can minimize the empirical error on bags,

then even if the instances in a bag have arbitrary statistical dependence, sample

complexity grows only logarithmically with r.

The above line of work is rather restrictive. Any dependence on r makes

it impossible to apply these generalization bounds to problems where bags have

infinitely many instances – a typical case in practice. Consider the following mo-

tivating example: we would like to predict whether an image contains a face, as

in [136]. Putting this in the MIL framework, a bag is an entire image, which is

labeled positive if and only if there is a face in that image. The individual in-

stances are image patches. Notice that in this scenario the instances collectively

form (a discrete approximation to) a low-dimensional manifold; see Figure 5.1.

Here we expect the sample complexity to scale with the geometric properties of

the underlying manifold bag rather than the number of instances per bag.

This situation arises in many other MIL applications where some type of

sliding window is used to break up an object into many overlapping pieces: images

[6, 136], video [3, 29], audio [116, 89], and sensor data [123]. Consider also the

original molecule classification task that motivated [41] to develop MIL, where a

bag corresponds to a molecule, and instances are different shapes that molecule can

assume. Even in this application, “as the molecule changes its shape, it traces out

a manifold through [feature] space” [91]. Thus, manifold structure is an integral

aspect of these problems that needs to be taken into account in MIL analysis and

algorithm design.

In this work we analyze the MIL framework for bags containing potentially

infinite instances. In this setting a bag is drawn from a bag distribution, and is

labeled positive if it contains at least one positive instance. In order to have a

tractable analysis, we impose a structural constraint on the bags: we assume that
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bags are low dimensional manifolds in the instance space, as discussed above. We

show that the geometric structure of such bags is intimately related to the PAC-

learnability of MIL problems. We investigate how learning is affected if we have

have access to only a limited number of instances per manifold bag. We then discuss

how existing MIL algorithms, that are designed for finite sized bags, can be adapted

to learn from manifold bags efficiently using an iterative querying heuristic. Our

experiments on real-world data (image and audio) validate the intuition of our

analysis and show that our querying heuristic works well in practice.

5.1 Problem Formulation and Analysis

Let I be the domain of instances (for the purposes of our discussion we

assume it to be RN for some large N), and let B be the domain of bags. Here

we impose a structural constraint on B: each bag from B is a low dimensional

manifold over the instances of I. More formally, each bag X ∈ B is a smooth

bijection1 from [0, 1]n to some subset of I (n � N). The geometric properties

of such bags are integral to our analysis. We will thus do a quick review of the

various properties of manifolds that will be useful in our discussion.

5.1.1 Differential Geometry Basics

Let f be a smooth bijective mapping from [0, 1]n to M ⊂ RN . We call the

image of f (i.e. M) a manifold (note that M is compact and has a boundary).

The dimension of the domain (n in our case) corresponds to the latent degrees of

freedom and is typically referred to as the intrinsic dimension of the manifold M

(denoted by dim(M)).

Since one of the key quantities in classic analysis of MIL is the bag size,

we require a similar quantity to characterize the “size” of M . One natural way

to characterize this is in terms of the volume of M . The volume (denoted by

vol(M)) is given by the quantity
∫
u1,...,un

√
det(JTJ)du1 . . . dun, where J is the

1Here we are only considering a restricted class of manifolds – those that are globally dif-
feomorphic to [0, 1]n. This is only done for convenience. The results here are generalizable to
arbitrary (compact) manifolds.
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N × n Jacobian matrix of the function f , with individual entries defined as Jij :=

∂fi/∂uj.

Unlike a finite size bag, a finite volume manifold M ⊂ RN can be arbitrarily

“complex” – it can twist and turn in all sorts of ways in the surrounding space.

We therefore need to also get a handle on its curviness. Borrowing the notation

from computational geometry literature, we can characterize the complexity of

M via its condition number (see [99]). We say that the condition number of M

(denoted by cond(M)) is 1
τ
, if τ is the largest number such that the normals of

length r < τ at any two distinct points in M don’t intersect. One can bound the

sectional curvature of M at any point by 1/τ . Hence, when τ is large, the manifold

is relatively flat and vice versa.

With these definitions, we can define a structured family of bag spaces.

Definition 1. We say that a bag space B belongs to class (V, n, τ), if for every

X ∈ B, we have2 that dim(X) = n, vol(X) ≤ V , and cond(X) ≤ 1/τ .

In what follows, we will assume that B belongs to class (V, n, τ). We now

provide our main results, with all the supporting proofs provided in [14]

5.1.2 Learning with Manifold Bags

Since we are interested in PAC-style analysis, we will be working with a

fixed hypothesis class H over the instance space I (that is, each h ∈ H is of the

form h : I → {0, 1}). The corresponding bag hypothesis class H over the bag

space B (where each h̄ ∈ H is of the form h̄ : B → {0, 1}) is defined as the set of

classifiers {h̄ : h ∈ H} where, for any X ∈ B, h̄(X)
def
= maxα∈[0,1]n h(X(α)). We

assume that there is some unknown instance classification rule h∗ : I → {0, 1}
that gives the true labels for all instances.

The learner gets access to m bag/label pairs (bi, yi)
m
i=1, where each bag Xi

is drawn independently from an unknown but fixed distribution DB over B, and is

labeled according to the MIL rule yi
def
= maxα∈[0,1]n h∗(Xi(α)). We denote a sample

of size m as Sm.

2Technically b is a function and not a manifold. For readability, we will occasionally abuse
the notation and use b to mean the manifold produced by the image of b in the instance space I.



87

Our learner should ideally return the hypothesis h̄ that achieves the low-

est bag generalization3 error: err(h̄)
def
= EX∼DB [h̄(X) 6= y]. This, of course, is not

possible as the learner typically does not have access to the underlying data distri-

bution DB. Instead, the learner has access to the sample Sm, and can minimize the

empirical error: êrr(h̄, Sm)
def
= 1

m

∑m
i=1 11{h̄(Xi) 6= yi}. Various PAC results relate

these two quantities in terms of the properties of H.

Perhaps the most obvious way to bound err(h̄) in terms of êrr(h̄, Sm) is

by analyzing the VC-dimension of the bag hypotheses, VC(H), and applying the

standard VC-bounds (see e.g. [130]). While finding the VC-dimension of the bag

hypothesis class is non-trivial, the VC-dimension of the corresponding instance

hypotheses, VC(H), is well known for many popular choices of H. [113] showed

that for finite sized bags the VC-dimension of bag hypotheses (and thus the gen-

eralization error) can be bounded in terms of the VC-dimension of the underlying

instance hypotheses. Although one might hope that this analysis could be carried

over to bags of infinite size that are well structured, this turns out to not be the

case.

VC(H) is Unbounded for Arbitrarily Smooth Manifold Bags

We begin with a surprising result which goes against our intuition that

requiring bag smoothness should suffice in bounding VC(H). We demonstrate

that requiring the bags to be low-dimensional, arbitrarily flat manifolds with fixed

volume is not enough to get a handle on generalization error even for one of the

simplest instance hypothesis classes (set of hyperplanes in RN). In particular,

Theorem 2. For any V > 0, n ≥ 1, τ < ∞, let B contain all manifolds M

such that dim(M) = n, vol(M) ≤ V , and cond(M) ≤ 1/τ (i.e. B is the largest

member of class (V, n, τ)). Let H be the set of hyperplanes in RN (N > n).

Then for any m ≥ 1, there exists a set of m bags X1, . . . , Xm ∈ B, such that the

corresponding bag hypothesis class H (over the bag space B) realizes all possible 2m

labelings.

3One can also talk about the generalization error over instances. As noted in previous work
(e.g., sabato09), PAC analysis of the instance error typically requires stronger assumptions.
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Thus, VC(H) is unbounded making PAC-learnability seemingly impossi-

ble. To build intuition for this apparent richness of H, and possible alternatives

to bound the generalization error, let us take a quick look at the case of one-

dimensional manifolds in R2 with halfspaces as our H. For any m, we can place

a set of m manifold bags in such a way that all labelings are realizable by H
(see Fig. 5.2 for an example where m = 3; see Appendix of [14] for a detailed

construction).

+
–

Figure 5.2: Bag hypotheses over manifold bags have unbounded VC-
dimension. Three bags (colored blue, green and red) go around the eight anchor
points (shown as black dots) that are arranged along a section of a circle. Notice
that the hyperplanes tangent to the anchor points achieve all possible bag labelings.
The hypothesis h shown above, for example, labels the red and blue bags positive,
and the green bag negative.

The key observation is that in order to label a bag positive, the instance

hypothesis needs to label just a single instance in that bag positive. Considering

that our bags have an infinite number of points, the positive region can occupy an

arbitrarily small fraction of a positively labeled bag. This gives our bag hypotheses

immense flexibility even when the underlying instance hypotheses are quite simple.

It seems that to bound err(h̄) we must ensure that a non-negligible portion

of a positive bag be labeled positive. A natural way of accomplishing this is to

use a real-valued version of the instance hypothesis class (i.e., classifiers of the

form hr : I → [0, 1], and labels determined by thresholding), and requiring that

functions in this class (a) be smooth, and (b) label a positive bag with a certain

margin. To understand why these properties are needed, consider three ways that

hr can label the instances of a positive bag X as one varies the latent parameter
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α (i.e., x-axis corresponds to instances, y-axis corresponds to classifier output):

smooth 
margin

smooth 
margin

smooth 
margin

1

½ 

1

½ 
+

–

1

½ 

margin margin margin

0 0 0

In both the left and center panels, hr labels only a tiny portion of the

bag positive: in the first case hr barely labels any instance above the threshold

of 1/2, resulting in a small margin; in the second case, although the margin is

large, hr changes rapidly along the bag. Finally, in the right panel, when both

the margin and smoothness conditions are met, a non-negligible portion of X is

labeled positive.

We shall thus study how to bound the generalization error in this setting.

Learning with a Margin

Let Hr be the real-valued relaxation of H (i.e. each hr ∈ Hr is now of the

form hr : I → [0, 1]). In order to ensure smoothness we impose a λ-Lipschitz

constraint on the instance hypotheses: ∀hr ∈ Hr, x, x
′ ∈ I, |hr(x) − hr(x

′)| ≤
λ‖x − x′‖2. We denote the corresponding bag hypothesis class as Hr. Note that

the true bag labels are still binary in this setting (i.e. determined by h∗).

Similar to the VC-dimension, the “fat-shattering dimension” of a real-

valued bag hypothesis class, fatγ(Hr), relates the generalization error to the em-

pirical error at margin γ (see for example [7]):

êrrγ(h̄r, Sm)
def
=

1

m

m∑
i=1

11{margin(h̄r(Xi), yi) < γ}, (5.1)

where margin(x, y)
def
=

{
x− 1/2 y = 1

1/2− x otherwise
.
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Recall that it was not possible to bound generalization error in terms of

the instance hypotheses using VC dimension. However, analogous to Sabato &

Tishby’s analysis of finite size bags [113], we can bound generalization error for

manifold bags in terms of the fat-shattering dimension of instance hypotheses,

fatγ(H). In particular, we have the following:

Theorem 3. Let B belong to class (V, n, τ). Let Hr be λ-Lipschitz smooth (w.r.t.

`2-norm), and Hr be the corresponding bag hypotheses over B. Pick any 0 < γ < 1

and m ≥ fatγ/16(Hr) ≥ 1. For any 0 < δ < 1, we have with probability at least

1− δ over an i.i.d. sample Sm (of size m), for every h̄r ∈ Hr:

err (h̄r) ≤ êrrγ(h̄r, Sm) +

O

(√
n2fat γ

16
(Hr)

m
log2

(
V m
γ2τn0

)
+ 1

m
ln 1

δ

)
,

where τ0 = min{ τ
2
, γ
8
, γ
8λ
}.

Observe that the complexity term in Eq. (5.2) is independent of the “bag

size”; it has instead been replaced by the volume and other geometric properties

of the manifold bags. The other term captures the sample error for individual

hypotheses at margin γ. Thus a natural strategy for a learner is to return a

hypothesis that minimizes the empirical error while maximizing the margin.

5.1.3 Learning from Queried Instances

So far we have analyzed the MIL learner as a black box entity, which can

minimize the empirical bag error by somehow accessing the bags. Since the in-

dividual bags in our case are low-dimensional manifolds (with an infinite num-

ber of instances), we must also consider how these bags are accessed by the

learner. Perhaps the simplest approach is to query ρ instances uniformly from

each bag, thereby “reducing” the problem to standard MIL (with finite size bags)

for which there are algorithms readily available (e.g., [91, 6, 148, 136]). More

formally, for a bag sample Sm, let pi1, . . . , p
i
ρ be ρ independent instance samples

drawn uniformly from the (image of) bag Xi ∈ Sm, and let Sm,ρ
def
=
⋃
i,j p

i
j be
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the set of all instances. Assuming that our manifold bags have well-conditioned

boundaries, the following theorem relates the empirical error of sampled bags,

êrrγ(h̄r, Sm,ρ)
def
= 1

m

∑m
i=1 11{margin(maxj∈[ρ] h(pij), yi) < γ}, to the generalization

error.

Theorem 4. Let B belong to class (V, n, τ). Let Hr be λ-Lipschitz smooth (w.r.t.

`2-norm), and Hr be the corresponding bag hypotheses over B. Pick any 0 < δ1,δ2 <

1, then with probability at least 1 − δ1 − δ2, over the draw of m bags (Sm) and ρ

instances per bag (Sm,ρ), for all h̄r ∈ Hr we have the following:

Let 1
κ

def
= maxXi∈Sm{cond(∂Xi)} (where ∂Xi is the boundary of the manifold

bag Xi) and set τ1 = min{ τ
32
, κ
8
, γ
9λ
, γ
9
}. If

ρ ≥ Ω

((
V/τ c0n1

)(
n+ ln

(mV
τn1 δ2

)))
,

then

err(h̄r) ≤ êrr2γ(h̄r, Sm,ρ) +

O

(√
n2fat γ

16
(Hr)

m
log2

( V m
γ2τn0

)
+

1

m
ln

1

δ1

)
,

where τ0 = min{ τ
2
, γ
8
, γ
8λ
} and c0 is an absolute constant.

Notice the effect of the two key parameters in the above theorem: the num-

ber of training bags, m, and the number of queried instances per bag, ρ. Increasing

either quantity improves generalization – increasing m drives down the error (via

the complexity term), while increasing ρ helps improve the confidence (via δ2).

While ideally we would like both quantities to be large, increasing these parame-

ters is, of course, computationally burdensome for a standard MIL learner. Note,

however, the difference between m and ρ: increasing m comes at an additional cost

of obtaining extra labels, whereas increasing ρ does not. We would therefore like an

algorithm that can take advantage of using a large ρ while avoiding computational

costs.
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Iterative Querying Heuristic

As we saw in the previous section, we would ideally like to train with a large

number of queried instances, ρ, per training bag. However, this may be impractical

in terms of both speed and memory constraints. Suppose we have access to a black

box MIL algorithm A that can only train with ρ̂ < ρ instances per bag at once.

We propose a procedure called Iterative Querying Heuristic (IQH), de-

scribed in detail in Algorithm 1 (the main steps are highlighted in blue).

Algorithm 7 Iterative Querying Heuristic (IQH)

Input: Training bags (b1, . . . , bm), labels (y1, . . . , ym), parameters T , ω and

ρ̂

1: Initialize I0i = ∅, h0
r as any classifier in Hr.

2: for t = 1, . . . , T do

3: Query ω new candidate instances per bag:

Zt
i := I t−1i ∪ {pi1, . . . , piω} where pij ∼ bi, ∀i.

4: Keep ρ̂ highest scoring inst. using ht−1r :

I ti ⊂ Zt
i s.t. |I ti | = ρ̂ and ht−1r (p) ≥ ht−1r (p′)

for all p ∈ I ti , p′ ∈ Zt
i \ I ti .

5: Train h̄tr with the selected instances:

h̄tr ← A({I t1 . . . I tm}, {y1 . . . ym}).
6: end for

7: Return hTr and the corresponding h̄Tr

Notice that IQH uses a total of T ρ̂ instances per bag for training (T it-

erations times ρ̂ instances per iteration). Thus, setting T ≈ ρ/ρ̂ should achieve

performance comparable to using ρ instances at once. The free parameter ω con-

trols how many new instances are considered in each iteration.

The intuition behind IQH is as follows. For positive bags, we want to ensure

that at least one of the queried instances is positive; hence we use the current

estimate of the classifier to select the most positive instances. For negative bags,

we know all instances are negative. In this case we select the instances that are

closest to the decision boundary of our current classifier (corresponding to the most

difficult negative instances); the motivation for this is similar to bootstrapping
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Figure 5.3: Synthetic Data Results: Examples of four synthetically gener-
ated bags in R2 with (A) low curvature and (B) high curvature. (C) and (D):
Test error scales with the manifold parameters: volume (V ), curvature ( 1

τ
), and

dimension (n).

negative examples [49] and some active learning techniques [34]. We then use

these selected instances to find a better classifier.

Thus one expects IQH to take advantage of a large number of instances per

bag, without actually having to train with all of them at one time.

5.2 Experiments

Recall that we have shown that the generalization error is bounded in terms

of key geometric properties of the manifold bags, such as curvature (1/τ) and vol-

ume (V ). Here we will experimentally validate that generalization error does indeed

scale with these quantities, providing an empirical lower bound. Additionally, we

study how the choice of ρ affects the error, and show that our Iterative Heuristic

(IQH) is effective in reducing the number of instances needed to train in each itera-

tion. In all our experiments we use a boosting algorithm for MIL called MILBoost

[136] as the black box A; additional experiments with the MI-SVM algorithm [6]

are available in [14]. Both algorithms show similar trends and we expect the same

for any other choice of A. Note that we use IQH only where specified.

5.2.1 Synthetic Data

We begin with a carefully designed synthetic dataset, where we have com-

plete control over the manifold curvature, volume and dimension, and study its

effects on the generalization. The details on how we generate the dataset are pro-
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vided in [14]; see Figure 5.3 (A) and (B) for examples of the generated manifolds.

For the first set of experiments, we study the interplay between the volume

and curvatue while keeping the manifold dimension fixed. Here we generated one-

dimensional curves of specified volume (V ) and curvature (1/τ) in R2. We set h∗

to be a vertical hyperplane and labeled the samples accordingly (see [14]). For

training, we used 10 positive and 10 negative bags with 500 queried instances per

bag (forming a good cover); for testing we used 100 bags. Figure 5.3 (C) shows the

test error, averaged over 50 trials, as we vary these parameters. Observe that for

a fixed V , as we increase 1/τ (making the manifolds more curvy) generalization

error goes up.

For the next set of experiments, we want to understand how manifold di-

mensionality affects the error. Here we set the ambient dimension to 10 and varied

the manifold dimension (with all other experiment settings as before). Figure 5.3

(D) shows how the test error scales for different dimensional bags as we vary

the volume (1/τ set to 1). These results corroborate the general intuition of our

analysis, and give an empirical verification that the error indeed scales with the

geometric properties of a manifold bag.

5.2.2 Real Data

In this section we present results on image and audio datasets. We will

see that the generalization behavior is consistent with our analysis across these

different domains. We also study the effects of varying ρ on generalization error,

and see how using IQH helps achieve similar error rates with less instances per

iteration.

INRIA Heads. For these experiments we chose the task of head detection

(e.g., positive bags are images which contain at least one head). We used the

INRIA Pedestrian Dataset [38], which contains both pedestrian and non-pedestrian

images, to create an INRIA Heads dataset as follows. We manually labeled the

location of the head in the pedestrian images. The images were resized such that

the size of the head is roughly 24×24 pixels; therefore, instances in this experiment

are image patches of that size. For each image patch we computed Haar-like
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Figure 5.4: INRIA Heads: for our experiments we have labeled the heads in
the INRIA Pedestrian Dataset [38]. We can construct bags of different volume by
padding the head region. The above figure shows positive bags for two different
amounts of padding.

features on various channels as in [43], which corresponds to our instance space I.

Using the ground truth labels, we generated 2472 positive bags by cropping

out the head region with different amounts of padding (see Figure 5.4), which

corresponds to changing the volume of the manifold bags. For example, padding

by 6 pixels results in a bag that is a 30 × 30 pixel image. To generate negative

bags we cropped 2000 random patches from the non-pedestrian images, as well as

non-head regions from the pedestrian images. Unless otherwise specified, padding

was set to 16.

TIMIT Phonemes. Our other application is in the audio domain, and is

analogous to the image data described above. The task here was to detect whether

a particular phoneme is spoken in an audio clip (we arbitrarily chose the phoneme

“s” to be the positive class). We used the TIMIT dataset [58], which contains

recordings of over 600 speakers reading text; the dataset also contains phoneme

annotations. Bags in this experiment are audio clips, and instances are audio pieces

of length 0.2 seconds (i.e. this is the size of our sliding window). As in the image

experiments, we had ground truth annotation for instances, and generated bags of

various volumes/lengths by padding. We computed features as follows: we split
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Figure 5.5: Image and Audio Results: three different experiments (columns)
– varying padding (volume), number of queried instances, and number of IQH
iterations – on two different datasets (rows); see text for details. Note that x-axes
are in logarithmic scale. All reported results are averages over 5 trials.

each sliding window into 25 millisecond pieces, computed Mel-frequency cepstral

coefficients (MFCC) [39, 46] for each piece, and concatenated them to form a 104

dimensional feature vector for each instance. The reported padding amounts are in

terms of a 5 millisecond step size (e.g., padding of 8 corresponds to 40 milliseconds

of concatenation). Unless otherwise specified, padding was set to 64.

Results. Our first set of experiments involved sweeping over the amount

of padding (corresponding to varying the volume of bags). We train with a fixed

number of instances per bag, ρ = 4. Results for different training set sizes (m) are

shown in the first column of Figure 5.5. As observed in the synthetic experiments,

we see that increasing the padding (volume) leads to poorer generalization for

both datasets. This corroborates our basic intuition that learning becomes more

difficult with manifolds of larger volume.

In our second set of experiments, the goal was to see how generalization error

is affected by varying the number of queried instances per bag, which compliments

Theorem 4. Results are shown in the middle column of Figure 5.5. Observe the

interplay between m and ρ: increasing either, while keeping the other fixed, drives
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the error down. Recall, however, that increasing m also requires additional labels

while querying more instances per bag does not. The number of instances indeed

has a significant impact on generalization – for example, in the audio domain,

querying more instances per bag can improve the error by up to 15%. As per our

analysis, these results suggest that to fully leverage the training data, we must

query many instances per bag. Since training with a large number of instances can

become computationally prohibitive, this further justifies the Iterative Querying

Heuristic (IQH) described in Section 5.1.3.

Our final set of experiments evaluates the proposed IQH method (see Al-

gorithm 1). The number of training bags, m, was fixed to 1024, and the number

of candidate instances per iteration, ω, was fixed to 32 for both datasets. Note

that T = 1 corresponds to querying instances and training MILBoost once (i.e. no

iterative querying). Results are shown in the right column of Figure 5.5. These

results show that our heuristic works quite well. Consider the highlighed points in

both plots: using IQH with T = 4 and just 2 instances per bag during training we

are able to achieve comparable test error to the naive method (i.e. T = 1) with 8

instances per bag. Thus, using IQH, we can obtain a good classifier while needing

to use less memory and computational resources per iteration.

5.3 Conclusions

We have presented a new formulation of MIL where bags are manifolds

in the instance space, rather than finite sets of instances. This scenario often

appears in practice, but has thus far been overlooked in theoretical analysis and

algorithm design. We showed that manifold geometry is intimately related to PAC-

learnability for this formulation. Our experimental results corroborate the basic

intuition of our analysis. Our iterative querying technique enables us to achieve

good generalization error while needing to use less memory and computational re-

sources, and should thus be of immediate practical value. We hope that our work

encourages further research into leveraging manifold structure in designing MIL

algorithms.
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Portions of this chapter are based on the following publications:

• “Multiple instance learning with manifold bags” by B. Babenko, N. Varma,

P. Dollar, and S. Belongie [14]. The dissertation author developed the algo-

rithm and experiments, and wrote most of the paper.



6 Conclusions & Future Work

In this dissertation we explored a number of weakly supervised methods

for training discriminative models and their applications in computer vision. We

looked at a wide variety of applications including object detection & recognition,

object tracking and image categorization. Finally, we formalized the Multiple

Instance Learning framework in a setting that more closely fits such applications in

computer vision, and obtained theoretical upper bounds on learning performance.

Although machine learning techniques bring us closer to purely data-driven

algorithms, at this point in time some hand tuning and engineering is necessary

for each application domain. In computer vision most of the tuning consists of

designing features. Thus, one important avenue for future work is to develop

features that are general enough to span many application domains.

In the last couple of years, human labor for annotating data has become

easier and cheaper to obtain with the advent of crowdsourcing marketplaces (e.g.

Amazon Mechanical Turk). While weakly supervised methods will still be impor-

tant in dealing with ambiguous labeling tasks, methods that directly address the

interface between human annotators and learning systems should be explored in

the future (e.g. [27]).
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