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ABSTRACT OF THE DISSERTATION 

 

Melanoma Plasticity Induced by Pro-Inflammatory Cytokines in 

Response to Immunotherapy 

 

by 

 

Yeon Joo Kim 

Doctor of Philosophy in Molecular and Medical Pharmacology 

University of California, Los Angeles, 2020 

Professor Antoni Ribas, Chair 

 

Melanoma dedifferentiation has been reported as a state of cellular resistance to targeted therapy 

and immunotherapy as cancer cells revert to a more primitive cellular phenotype. In a patient with 

metastatic melanoma who received adoptive T-cell transfer therapy using T cells with receptors 

against the melanoma antigen recognized by T cells 1 (MART-1/ Melan-A), we observed 

dedifferentiation as a resistance mechanism after initial response. However, biopsies obtained from 

responding patients during anti-programmed cell death receptor 1 (PD-1) therapy had decreased 

expression of melanocytic markers and increased neural crest markers. When modeling the effects 

in vitro, we documented that melanoma cell lines that were originally melanocytic differentiated 

underwent a process of neural crest dedifferentiation when continuously exposed to interferon 

gamma (IFNγ), through a global chromatin landscape change leading to enrichment in specific 

hyperaccessible chromatin regions. The IFNγ-induced dedifferentiation signature corresponded 
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with improved outcomes in patients with melanoma, challenging the notion that neural crest 

dedifferentiation is an adverse phenotype. 
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Introduction 

 

Cancer immunotherapy has remarkably improved the treatment landscape for advanced 

melanoma, a highly aggressive skin cancer with traditionally dismal survival outcomes. 

Melanoma is the result of a malignant transformation of melanocytes, which develop from 

neural crest cells during embryogenesis (Restivo et al., 2017; Yoshida et al., 1996). The 

melanoma cancer cells arise from different stages of differentiation between the neural 

crest precursors and fully differentiated melanocytes (Hoek et al., 2008; Restivo et al., 

2017; Tirosh et al., 2016; Tsoi et al., 2018). Not only are melanomas highly 

heterogeneous, they also display a large degree of plasticity that is highlighted by the 

ability of the differentiated cancer cells to dedifferentiate to a more neural crest phenotype.  

 

Melanoma dedifferentiation is defined by the loss of melanosomal antigens such as the 

melanoma antigen recognized by T cells 1 (MART-1/ Melan-A) or gp100, with the 

concomitant gain of neural crest markers such as the nerve growth factor receptor (NGFR 

or CD271) or AXL (Müller et al., 2014; Nazarian et al., 2010; Tirosh et al., 2016). The 

expression of the melanosomal antigens is driven by the melanocyte inducing 

transcription factor (MITF), the master regulator of melanoma differentiation (Opdecamp 

et al., 1997; Tachibana et al., 1996). Therefore, the downregulation of MITF is a major 

feature of dedifferentiation. This phenotypic plasticity has been associated with 

therapeutic resistance to BRAF inhibitors and with drug-resistant persister cells 

(Konieczkowski et al., 2014; Müller et al., 2014; Rambow et al., 2018; Tirosh et al., 2016; 

Tsoi et al., 2018). It has also been shown to be a resistance mechanism against MART1 
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antigen-specific T cell adoptive cell transfer therapy in both mice and humans. 

Furthermore, the pro-inflammatory cytokine tumor necrosis factor (TNF) was shown to 

induce this dedifferentiation (Landsberg et al., 2012; Mehta, Kim et al., 2018). The TNF-

induced dedifferentiation was reversible with the removal of immune stimulation (Mehta, 

Kim et al., 2018), suggesting that transcriptomic mechanisms may be at play. 

 

Despite the multitude of studies on melanoma plasticity, its role in the context of immune 

checkpoint blockade therapy has not been elucidated. In fact, direct and indirect evidence 

has led to the postulation that dedifferentiation would be a state of resistance to 

immunotherapy for melanoma (Falletta et al., 2017; Hölzel & Tüting, 2016). Therefore, 

we investigated whether dedifferentiation results in therapeutic resistance to PD-1 

blockade therapy in patients with advanced melanoma. 
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Results 

 

Loss of melanocytic lineage markers is associated with clinical response to 

immune checkpoint blockade 

To study the effect of melanocyte lineage differentiation state, we analyzed paired and 

unpaired baseline and on-therapy biopsies of patients receiving immune checkpoint 

blockade (ICB) therapy from the CheckMate 038 clinical trial. This was a prospective, 

multicenter, international, multi-cohort clinical trial designed to collect tumor biopsies from 

patients with metastatic melanoma treated with the anti-PD-1 antibody nivolumab as 

front-line therapy or after progressing on therapy with the anti-cytotoxic T cell antigen 4 

(CTLA-4) antibody ipilimumab, or receiving the combination of both antibodies (Riaz et 

al., 2017; Grasso et al., under review). Of the 101 patients, 68 had paired biopsies, and 

of those paired, 27 were from patients with progressive disease (PD), 14 with stable 

disease (SD), and 27 with complete response or partial response (CRPR). On-therapy 

biopsies, collected at approximately one month after starting on ICB therapy, had notable 

downregulation of MITF and MLANA and concomitant upregulation of AXL only from the 

CRPR group. The biopsies from the SD and PD groups did not display significant changes 

in MITF, MLANA, or AXL following treatment (Figure 1A). This observation is at odds with 

the conventional view of dedifferentiation as a resistance mechanism and indicates that 

dedifferentiation may serve as a marker of favorable response to immune checkpoint 

blockade. As the presence of interferon-gamma (IFNγ) signatures in biopsies is best 

correlated with response to the anti-PD-1 therapy (Ayers et al., 2017; Cristescu et al., 
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2018; Grasso et al., under review), we hypothesized that the dedifferentiation of these 

responding tumors may be mediated by continued exposure to T cells producing IFNγ.  

 

In vitro modeling of cytokine-induced melanoma dedifferentiation 

Previously, it has been reported that human melanoma cell lines can be categorized into 

four subtypes based on their differentiation states: Melanocytic, transitory, neural crest-

like, and undifferentiated (Tsoi et al., 2018). The cell lines that are baseline melanocyte 

differentiated, characterized by high expression of MART1 and no expression of neural 

crest marker NGFR, have an ability to become dedifferentiated upon exposure to TNF or 

a BRAF inhibitor (Landsberg et al., 2012; Tsoi et al., 2018).  

 

To test whether IFNγ induces this same phenotypic change, we established an in vitro 

system to model the phenotypic plasticity. Four baseline differentiated human melanoma 

cell lines (M262, M308, M399 and 3998mel) were treated continuously with human 

recombinant IFNγ and the change in phenotype was compared to the dedifferentiation 

induced by three days of TNF, which served as a positive control for melanoma 

dedifferentiation. Flow cytometry using fluorescent anti-MART1 and anti-NGFR 

antibodies revealed dedifferentiation of these four cell lines over the course of two to five 

weeks (Figure 1B & S1A). The duration of continuous IFNγ exposure needed to reach the 

maximal MART1-low, NGFR-high state varied for each cell line but were comparable to 

the approximate one-month time point at which the aforementioned biopsies were taken 

during the course of the anti-PD-1 therapy in patients. In addition, in four human 

melanoma cell lines that were baseline undifferentiated (M257A2, M370, M381 and 
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M410), neither cytokines induced dedifferentiation. Interestingly, continuous IFNγ 

exposure led to what appears to be redifferentiation of some of these cell lines. The cells 

increased NGFR levels with no change in MART1 levels, a reversal of the last step of the 

previously described melanoma dedifferentiation trajectory from neural crest-like to 

undifferentiated (Tsoi et al., 2018) (Figure 1B & Fig S1A).  

 

Concordant transcriptomic programs reflect the phenotypic plasticity driven by 

IFNγ and TNF 

To study the mechanism of this cytokine-induced cellular plasticity, we performed whole 

transcriptome RNA sequencing (RNA-seq) and assay for transposase-accessible 

chromatin sequencing (ATAC-seq) on the aforementioned eight cell lines, four that were 

differentiated at baseline and dedifferentiate with IFNγ exposure, and four that were 

undifferentiated at baseline and did not differentiate further with continuous IFNγ 

exposure, as well as the same cell lines exposed to three days of TNF as positive control 

(Figure 1B).  

 

To assess the effect of cytokine treatment on the melanoma transcriptome, we projected 

all samples onto a previously defined principal component analysis (PCA)  framework of 

54 baseline human melanoma cell lines spanning the four defined differentiation states 

(Tsoi et al., 2018). As expected, the projection of the eight cell lines segregated according 

to the baseline differentiation status, with the dedifferentiated samples from either 

cytokine shifting towards a more neural crest-like state within the defined dedifferentiation 

trajectory (Figure 1C). We also interrogated the gene expression profiles of our samples 
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for the enrichment of previously defined gene signatures for various melanoma 

differentiation states, from melanocytic (M) to undifferentiated (U). Clear downregulation 

of the melanocytic subtype signature was observed with either cytokine-driven 

dedifferentiation, with the concomitant enrichment of the neural crest or transitory subtype 

signatures (Figure 1D). There were no distinguishing patterns between the two groups of 

cell lines in terms of nonsense or missense mutations in well-studied, relevant genes that 

may contribute to the observed differences (Figure 1E). In addition, neither group 

harbored consequential mutations in genes that code for critical members of the IFNγ 

response pathway, as previously reported in melanoma tumors (Shin et al., 2017; 

Zaretsky et al., 2016), suggesting that these lines all activate IFNγ-dependent 

transcription factors upon stimulation (Figure S1B, S2A-B). 

 

In order to identify commonly induced genes across all cell lines, we performed partial 

least squares regression (PLSR) on baseline versus cytokine-exposed cell lines. All eight 

samples had clear cytokine responses regardless of their baseline differentiation status 

(Figure 2A and 2C), which ensures that the difference in phenotype is not attributable to 

any lack of cytokine response in one group. Ranking of the genes induced by continued 

IFNγ exposure across the eight cell lines revealed upregulation of IRF1, SOSC1 and 

STAT1 (Figure 2B). The K-means clustering of the top 300 upregulated genes revealed 

a cluster of genes that were commonly induced to similar levels in both baseline-

differentiated and undifferentiated lines upon continued IFNγ exposure (Figure 2B). It also 

revealed a distinct cluster of genes that were strongly induced in only the undifferentiated 

lines (Figure 2B), which suggests induction of a transcriptional response from these cell 
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lines despite their already dedifferentiated state.  The clusters of genes highly upregulated 

in the dedifferentiating group were also upregulated to similar levels in the baseline 

undifferentiated group, which indicates that the IFNγ downstream signaling is preserved 

regardless of the differentiation status and suggests that epigenetic differences not 

captured by the gene expression analysis may be responsible for the diverging plasticity. 

The ranking of genes induced by TNF across the eight cell lines pointed at much stronger 

upregulation of TNF, TNFAIP3, and NFKBIA in comparison to their rank in the IFNγ 

analysis (Figure 2D). The K-means clustering of the top 300 upregulated genes revealed 

a cluster of genes that were much more strongly induced in the samples that 

dedifferentiate, indicating a transcriptional program induced by TNF that is unique to cells 

capable of the phenotypic switch. We additionally looked at the cross enrichment of one 

cytokine with the top 300 induced genes from the other. The TNF matrix with the top 300 

IFNγ -induced genes and the IFNγ matrix with the top 300 TNF-induced genes showed 

similar levels of induction (Figure S2C-D). 

   

To determine whether the IFNγ- and TNF-induced dedifferentiation states had similar 

gene expression profile changes, we performed rank-rank hypergeometric overlap 

(Plaisier, Taschereau, Wong, & Graeber, 2010). Significant overlap in IFNγ- and TNF-

induced genes were revealed (Figure 2E), with an even higher degree of overlap at the 

level of gene sets (Figure 2F). This data indicates concordant gene programs despite the 

difference in inducible expression of individual genes. Examining the enrichment of the 

terms from GSEA, or GSEA-squared (Balanis et al., 2019), confirmed the loss of 
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pigmentation with the gain of inflammatory signaling following IFNγ and TNF exposures 

(Figure 2G and 2H). 

 

TNF and IFNγ induce dedifferentiation via distinct global chromatin landscape 

alterations 

Evaluation of the ATAC-seq tracks at the promoter of MLANA revealed no basal 

chromatin accessibility in undifferentiated cell lines along with a decrease of chromatin 

accessibility of differentiated cell lines upon IFNγ - or TNF-induced dedifferentiation, 

consistent with the flow cytometry and RNA-seq data (Figure 3A). ATAC-seq tracks at the 

promoter of AXL also reveal the pattern expected, with no changes in the baseline 

undifferentiated lines upon cytokine exposure and increased peaks in the baseline 

differentiated lines when they dedifferentiate upon cytokine exposure (Figure 3A). Pair-

wise comparisons of cytokine-stimulated to unstimulated cell lines revealed between 

2500 and 7000 peaks that were hyperaccessible following either IFNγ or TNF exposure 

(Figure 3B). Interestingly, IFNγ induced a similar number of hyperaccessible peaks for 

both the baseline differentiated and the undifferentiated lines, but TNF induced a large 

number of hyperaccessible peaks only in baseline differentiated lines (Figure 3B). 

Principal component analysis of all induced ATAC-seq peaks showed that the baseline 

differentiated and the undifferentiated cell lines exist in two different epigenomic states.  

TNF exposure in undifferentiated cell lines caused minimal epigenetic changes but drove 

drastic changes toward the undifferentiated state in the baseline differentiated ones, 

consistent with the transcriptional response (Figure 3C). The baseline differentiation 

states and the shared phenotypic change due to IFNγ and TNF were best represented 
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by PC1, whereas PC2 best defined the divergence in the effects of the two cytokines, 

revealing the IFNγ-specific response. Despite inducing the comparable changes in NGFR 

and MART1 status based on protein expression, the exposure to either of the two 

cytokines resulted in distinctive chromatin alterations which manifest as a shift along one 

or both axes of the PCA analysis. Of note, PC2 also supported the redifferentiation 

phenomenon (Figure 3C) observed in the flow cytometry data (Figure 1B, S1A).   

 

K-means clustering of accessible chromatin peaks induced by either cytokine revealed 

patterns that corroborated the PCA observations. The first cluster revealed that chromatin 

regions that were largely closed initially and only weakly induced in the dedifferentiating 

cell lines following cytokine stimulation were accessible in the undifferentiated cell lines 

at baseline and remained so after TNF exposure. This suggests the presence of a high 

baseline signaling pathway that may be responsible for the lack of further response to 

stimulation by TNF. The second cluster revealed that IFNγ induced opening of chromatin 

regions more uniformly across the cell lines regardless of their baseline differentiation 

status, which was reflected in the large magnitude of change observed in the above PCA 

in all eight of the cell lines following IFNγ. Lastly, the third cluster revealed a group of 

peaks that were strongly induced by TNF, in the dedifferentiating cell lines only (Figure 

3D). 

 

K-means clustering of the induced ATAC peaks at the transcriptional start sites similarly 

indicated that undifferentiated cell lines had a more open chromatin at baseline (Figure 

S3A). Motif enrichment analysis of the ATAC peaks revealed distinct clusters of 
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transcription factors whose binding sites were opened upon IFNγ or TNF exposure. 

Notably, no common motifs were enriched to comparable levels in the IFNγ- and TNF-

induced peaks. The motifs of select IRF proteins were the most highly enriched following 

IFNγ, while the motifs of the ATF3, BATF, and AP-1 family factors were the most highly 

enriched following TNF, even more so than those of NFκB (Figure 3E, S3B). Both TNF 

and IFNγ exposure led to largely hyperaccesible chromatin in intergenic regions that were 

associated with axon guidance and cell migration (Figure 3F). However, their effects were 

distinct in that TNF opened chromatin regions near genes associated with mitogen-

activated protein kinase (MAPK) pathway, neuronal system, and growth factor signaling, 

while IFNγ generated stronger enrichment for chromatin regions near genes involved in 

interferon response and antigen presentation (Figure 3F).  

 

Motif enrichment analysis of hyperaccessible chromatin regions following IFNγ 

and TNF exposure reveal regulators involved in dedifferentiation   

We next asked how the baseline differentiation states of the melanoma cell lines, their 

baseline epigenomic profiles and signaling network, affected their response to IFNγ 

stimulation. Although similar numbers of peaks were found to be inducible by IFNγ in 

baseline differentiated and undifferentiated cell lines, there was minimal overlap in the 

induced regions, and neither of the inducible peaks overlapped significantly with TNF 

inducible peaks (Figure 4A-B). Thus, although both TNF and IFNγ lead to a parallel 

transition to the dedifferentiated phenotype defined by similar gene programs, their effects 

on the chromatin landscape were stimulus-specific. Notably, the undifferentiated cell lines 

had minimal chromatin remodeling in response to response to TNF, despite the observed 
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changes in gene expression. In addition, when exposed to continuous IFNγ, these lines 

had comparable level of remodeling to that of the baseline differentiated cell lines 

although they do not undergo further phenotypic dedifferentiation. As the majority of the 

two groups’ IFNγ-induced peaks did not overlap (Figure 4B), the overall response to IFNγ 

seems to depend on the cell line’s baseline epigenomic state. 

 

In order to dissect out peaks that may be attributable to the differences in phenotypic 

plasticity, all the peaks that were significantly induced from baseline by either IFNγ or 

TNF were used to perform K-means clustering. While clusters of peaks that were partial 

to either baseline differentiated or undifferentiated cell lines were revealed, cell line 

heterogeneity was also evident (Figure 4C). Interestingly, the top transcription factors 

whose motifs were enriched in the induced peak regions were common across all three 

clusters for both cytokines. This suggests that, of all IRF1 or IRF2 binding sites throughout 

the genome that open in response to IFNγ, certain sites selectively open in 

undifferentiated cell lines (Figure 4C). Similarly, of all ATF3 or BATF binding sites in the 

genome, certain sites open only in the cell lines that dedifferentiate in response to TNF 

(Figure 4C).  

 

Upon IFNγ exposure, most IRF and STAT binding sites become hyperaccessible in 

baseline differentiated and undifferentiated groups except for STAT6. The binding motifs 

of STAT6 and AP-2 proteins were enriched in the peaks in dedifferentiating cells only, 

driven by either cytokine. Despite solely having exposure to type II interferon and no 

expression of IFNA or IFNB, the IFNγ-exposed samples showed chromatin remodeling 
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fitting for exposure to type I interferon. This finding supports that there is direct secondary 

activation of such factors as a result of exposure to IFNγ. Notably, there was enrichment 

for binding sites of IRFs whose activities were known to be restricted to other cell types, 

such as IRF8 in dendritic cells. Upon TNF exposure, the inducible peaks were highly 

enriched in IRFs and STATs binding sites only in the dedifferentiating group, indicating 

that the phenotypic plasticity is driven by the crosstalk with the IFN pathway or by 

secondary activation of the regulators downstream of the IFN pathway (Figure 4D).  

 

TNF is known to trigger the MAPK pathways, which lead to transcription factor activity of 

ATF and AP-1 proteins. Motif enrichment analysis revealed that the TNF stimulus lead to 

the opening of the binding sites of AP-1 factors (Fosl1, Jun-AP, JunB, AP-1, c-Jun, JunD) 

following TNF-induced dedifferentiation, with no enrichment of these motifs in the 

inducible peaks of the undifferentiated cell lines following TNF exposure. On the contrary, 

the inducible peaks from all samples treated with IFNγ, regardless of baseline 

differentiation state, exhibited enrichment of the AP-1 family protein motifs (Figure 4D). 

In addition, PRDM1 was another factor whose motif had enrichment only in TNF-induced 

peaks, while the motif for Oct4:Sox17 was only enriched in IFNγ-induced peaks. 

Altogether, these data show that the baseline epigenomic state of the melanoma cells is 

the determinant of the resultant differential chromatin landscape modifications from IFNγ 

or TNF cytokine exposure. 

 

Inferred regulator activity analysis suggests common regulator activity changes 

between TNF- and IFNγ-induced dedifferentiation 
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Given the similar binding motifs within families of transcription factors, such as within 

several IRFs, the NFκB family proteins, and MAPK-activated transcription factors, we next 

explored the inferred activity of these candidate immune-signaling transcription factors. 

Using ARACNe (Algorithm for the Reconstruction of Accurate Cellular Network), which 

uses mutual information to connect regulators and target genes, we constructed reverse-

engineer melanoma-specific, IFNγ-response-specific transcriptional networks. We next 

employed VIPER (Virtual Inference of Protein Activity by Enriched Regulon) to infer the 

differential activity of over 9000 regulators in cytokine treated versus baseline cell lines. 

In both TNF- and IFNγ-exposed cell lines, the regulators TFAP2C (AP-2gamma), SOX9, 

IRF3, and HMGA1 had high inferred activity only with dedifferentiation, confirming the 

ATAC-seq data. On the other hand, MITF, beta-catenin, and SOX10 had decreased 

inferred activity only in the dedifferentiating cell lines. In addition, transcription factors 

PRDM1, NFKBIA, RXRB, and POU2F2 had positive change in activity in both groups, 

albeit having higher activity in the dedifferentiating group (Figure 5A and 5B). In addition, 

the comparison of this gene expression level-derived inferred activity of regulators 

between TNF and IFNγ-exposed samples showed strong overlap of inferred activity 

changes in response to each cytokine (Figure S4A-D). 

 

Changes in lipid, ribosomal, mitochondrial, and adhesion processes distinguish 

the TNF- or IFNγ-induced responses in baseline differentiated versus 

undifferentiated cell lines 

To increase our understanding of this new effect of IFNγ on melanoma cells, we 

performed analysis of the molecular and cellular changes defining pro-inflammatory 
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cytokine-driven dedifferentiation. We used GSEA-squared analysis on gene expression 

signatures for differentiated and undifferentiated cell line groups exposed to IFNγ or TNF, 

and looked for the enrichment of programs and processes of interest. As expected, 

immune-related terms were highly enriched in all groups. Both differentiated and 

undifferentiated TNF-treated cell lines displayed enrichment of NFκB and immune 

response genes. However, while differentiated lines displayed strong downregulation of 

ribosomal and mitochondrial genes and upregulation of adhesion-related genes, 

undifferentiated cell lines did not, or in the case of mitochondrial genes, not to the extent 

observed in the differentiated cell lines. In contrast, undifferentiated lines showed stronger 

upregulation of lipid gene sets. Thus, as all lines upregulate immune and inflammatory 

programs, but the undifferentiated cell lines do not change phenotype with TNF, the 

differences in TNF-induced chromatin remodeling observed between differentiated and 

undifferentiated lines is correlated with control of lipid, ribosomal, mitochondrial and 

adhesion gene programs (Figure 6A). 

 

For IFNγ, in the both the differentiated and undifferentiated samples, immune response 

gene programs are commonly upregulated, while ribosomal and mitochondrial gene sets 

were downregulated. Consistent with differentiated and undifferentiated lines exhibiting 

more equal magnitude of IFNγ-induced chromatin accessibility changes, there were also 

fewer divergent gene set categories between these two groups under IFNγ exposure. 

(Figure 6B). 
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Enrichment of the IFNγ-induced dedifferentiation signature during anti-PD-1 

therapy is associated with response  

Dedifferentiation of melanoma has been considered a form of resistance to therapy and 

associated with worse survival of patients (Konieczkowski et al., 2014; Müller et al., 2014; 

Tirosh et al., 2016; Rambow et al., 2018; Tsoi et al., 2018). However, because we 

observed the opposite correlation between high AXL to MITF ratio in biopsies of patients 

who were responding to anti-PD-1 therapy, we sought to further investigate whether the 

full IFNγ-driven dedifferentiation signature correlated with therapeutic response. From the 

seven signatures (four main signatures, three transitional signatures) spanning the four 

previously defined melanoma subtypes obtained from a previous study (Tsoi et al., 2018), 

the melanocytic subtype was excluded, and the remaining genes were filtered for the 

genes with log2(fold change) of greater than 1 with IFNγ treatment. These select 

upregulated genes henceforth comprised our IFNγ-induced dedifferentiation signature 

and was used to interrogate the CheckMate 038 biopsy cohort. Increase in the expression 

of the signature was found following anti-PD-1 therapy in the patients with objective 

response (CRPR), with no significant changes from baseline in non-responders (Figure 

7A). Therefore, biopsies of patients taken while responding to PD-1 blockade therapy 

show phenotypic dedifferentiation, while non-responding biopsies did not change their 

differentiation state. 

 

Baseline dedifferentiation in melanoma associates with response to anti-PD-1 

therapy and improves outcomes 
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Finally, we analyzed if the IFNγ-induced dedifferentiation signature could be a baseline 

prognostic or predictive marker in the CheckMate 038 biopsy cohort and in the melanoma 

The Cancer Genome Atlas (TCGA) repository. There was a significant spread in the 

expression of the IFNγ-induced dedifferentiation signature at baseline in the CheckMate 

038 biopsy cohort, but separation of these 101 baseline biopsies according to response 

to therapy showed that the biopsies of patients who went onto respond were more likely 

to have an increased IFNγ-induced dedifferentiation signature (p = 0.06 by Wilcoxon test, 

Figure 7B). Moreover, the IFNγ-induced dedifferentiation signature also correlated 

positively with overall survival in the TCGA melanoma dataset. Patients whose 

melanomas had high or intermediate expression of the IFNγ dedifferentiation signature 

displaying improved overall survival than those with low expression of the signature 

(Figure 7C).   
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Discussion 

 

Here we report a previously unobserved facet of IFNγ, whereby continuous exposure to 

IFNγ propels melanoma cells toward an altered phenotype with diminished expression of 

melanosomal markers and increased expression of neural crest markers. Moreover, we 

demonstrate that melanoma cells exposed to IFNγ and TNF reach two distinct 

epigenomic states of dedifferentiation despite displaying similar phenotypic 

dedifferentiation. IFNγ elicited pronounced remodeling of the chromatin landscape in all 

tested melanoma cell lines regardless of the baseline differentiation status. 

 

We observed in our data a number of regulators that have been implicated in melanocyte 

differentiation, and it is possible that the change in the activity of these regulators may 

facilitate the backward trajectory. For one, beta-catenin activity was inferred to be 

decreased in response to TNF- and IFNγ-induced dedifferentiation based on our VIPER 

analysis, and Wnt/beta-catenin signaling is known to play a role in human melanocyte 

development from neural crest cells (Bellei, Pitisci, Catricalà, Larue, & Picardo, 2011). 

AP-1 has been linked to dedifferentiation in the setting of TNF-induced dedifferentiation 

in mouse models (Riesenberg et al., 2015), and we observed that it was one of the top 

enriched motifs in the chromatin regions opened in TNF-dedifferentiated cells and also in 

IFNγ-dedifferentiated cells, albeit to a much lesser degree. On the other hand, our 

analyses also reveal transcription factors with previously unknown involvement in the 

phenotypic plasticity of human melanomas. 
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Contrary to the conventional belief that dedifferentiation is a state of therapeutic 

resistance (Konieczkowski et al., 2014; Müller et al., 2014; Tirosh et al., 2016; Rambow 

et al., 2018; Tsoi et al., 2018), we show that the consequence of this phenotypic plasticity 

depends on the context of the therapy. While it is a resistance mechanism against 

adoptive cell transfer using T cells against a specific melanosomal antigen (Landsberg et 

al., 2012; Mehta, Kim et al., 2018), we show that it is a surrogate marker for positive 

response to immune checkpoint blockade therapy. Tumor infiltration by tumor-specific T 

cells results in triggering their T cell receptor (TCR) and downstream IFNγ production 

upon antigen encounter, which is the mechanistic basis of responses to anti-PD-1 therapy 

and favorable prognostic factors. One of the advantages of IFNγ signaling in cancer cells 

is the reactive expression of the PD-1 ligand 1 (PD-L1), which provides a mean for the 

cancer cells to protect themselves from tumor antigen-specific T cell killing (Ribas & 

Wolchok, 2018). These T cells continue to be present in specific regions of the tumor 

(Tumeh et al., 2014), and their production of IFNγ is a favorable prognostic factor that can 

be detected by a transcriptome of IFNγ response genes (Ayers et al., 2017; Cristescu et 

al., 2018; Grasso et al., under review). Once the negative interaction between PD-1 and 

PD-L1 is released by checkpoint therapies, the antitumor T cells proliferate and produce 

increased IFNγ leading to an amplification of the antitumor immune response that 

mediates the clinical benefits (Ribas & Wolchok, 2018; Tumeh et al., 2014; Grasso et al., 

under review). Therefore, our observation that responding melanoma biopsies undergo 

dedifferentiation is highly concordant with our discovery that continuous exposure to IFNγ 

in differentiated melanomas leads to this phenotypic change.  
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Moreover, both in the anti-PD-1 treated cohort and in the TCGA melanoma database we 

noted that the IFNγ-induced dedifferentiation transcriptional signature was associated 

with improved outcomes. In both cases, it is likely that the dedifferentiation is an indirect 

reflection of IFNγ produced by tumor antigen-specific T cells. However, as only 

melanomas that are originally phenotypically differentiated can undergo dedifferentiation 

upon chronic IFNγ exposure, in these two series the baseline dedifferentiation group is 

likely to include both melanomas that were originally dedifferentiated independent of a T 

cell response, and originally differentiated melanomas that dedifferentiate upon T cell 

recognition and IFNγ production. This dual mechanism leading to dedifferentiation results 

in difficulty in interpreting the patient biopsy data.  

 

It has been shown that IFNγ from skin-infiltrating CD8+ cytotoxic T cells can inhibit 

expression of MITF in normal melanocytes (Yang et al., 2015), indicating that this 

phenotypic response to pro-inflammatory cytokines may be conserved from melanocytes 

to melanomas. Therefore, the ability to change the phenotype upon cytokine exposure 

may have biological advantages that are independent of the malignant transformation of 

melanocytes. The specific mechanism of how IFNγ leads to the loss of MITF and gain of 

neural crest lineage markers is unknown; nonetheless, this study helps to elucidate the 

epigenetic landscape that characterizes the new phenotypic endpoint driven by IFNγ and 

the transcriptional regulators that may be partaking in eliciting this change. In summary, 

melanoma dedifferentiation can be induced by chronic IFNγ exposure and is associated 

with improved outcomes in patients with melanoma.  
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Figure Titles and Legends 

 

Figure 1. Human melanoma dedifferentiation is associated with response to anti PD-1 

therapy and is induced by exposure to IFNγ. A) MITF, MLANA, and AXL gene expression 

levels in pre- and post-treatment biopsies from patients with progressive disease (PD), 

stable disease (SD), and complete or partial response (CRPR). B) Flow cytometry data 

for MART1 and NGFR on M262 (baseline differentiated) and M370 (baseline 

undifferentiated) in response to TNF or IFNγ. C) Projection of cytokine-treated cell lines 

onto melanoma M series differentiation PCA (Tsoi et al.). Diff = baseline differentiated, 

undiff = baseline undifferentiated. D) Expression of melanoma differentiation genes for 

0hr, IFNγ, and TNF across cell lines (U= Undifferentiated, U-NC= Undifferentiated-Neural 

crest-like, NC= Neural crest-like, NC-T= Neural crest-like-Transitory, T= Transitory, T-M= 

Transitory-Melanocytic, M= Melanocytic). Colors represent z scores. E) Common 

melanoma mutations across cell lines studies. Nonsense or missense JAK/STAT 

mutations were not observed.  

 

Figure 2. IFNγ and TNF stimulation induce common genes across cell lines to generate 

comparable MART1-low/NGFR-high dedifferentiation states. A) Varimax-rotated PLSR 

on IFNγ-exposed compared to 0 hour (untreated) samples. B) (left) Genes contributing to 

common IFNγ response across samples. (right) K-means clustering of top 300 gene 

loadings. Left column is untreated and right column is post-IFNγ exposure for each cell 

line. C) Varimax-rotated PLSR on TNF compared to untreated samples. D) (left) Genes 

contributing to TNF response across samples. (right) K-means clustering of top 300 gene 
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loadings. Left column is untreated and right column is post-TNF exposure for each cell 

line. E) Overlap of IFNγ and TNF induced gene expression by ranked loadings. F) 

Concordant gene ontology term overlap (normalized enrichment scores) between IFNγ 

and TNF-induced gene expression. G-H) Enrichment of gene sets involving pigmentation, 

mitosis, transcription, interferon signaling, and cytokines following IFNγ or TNF exposure. 

 

Figure 3. IFNγ compared to TNF alter the chromatin landscape in a stimulus-specific 

manner. A) Examples of hyperaccessible peaks upon cytokine stimulation. B) Total 

number of hyper and hypoaccessbile peaks called for each listed comparison (U = 

Undifferentiated at baseline, D = Differentiated at baseline). C) PCA of peaks differentially 

hyperaccessible from baseline after cytokine treatment. D) K-means clustered heatmap 

of induced ATACseq peaks across any stimulation condition for differentiated and 

undifferentiated melanomas (sub-columns are in the order 0 hr, IFNγ, and TNF for each 

cell line). E) Motif enrichment of IFNγ compared to TNF induced genes. F) Top divergent 

gene ontology terms of nearby genes for IFNγ compared to TNF-specific peaks.  

 

Figure 4. The basal chromatin landscapes of differentiated and undifferentiated lines 

result in distinct epigenomic responses upon cytokine stimulation. A) Overlap of induced 

IFNγ and TNF ATACseq peaks. B) Overlap of peaks separated by cell line baseline state 

(Diff = baseline differentiated, Undiff = baseline undifferentiated). C) Heatmap of 

differentially IFNγ inducible peaks for baseline differentiated and undifferentiated lines, 

with top motif of each cluster listed (sub-columns are in the order 0 hour, IFNγ, and TNF 

for each cell line). D) Heatmap of differentially TNF inducible peaks for baseline 
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differentiated and undifferentiated lines, with top motif of each cluster listed. D) Motif 

enrichment of IFNγ compared to TNF inducible peaks for baseline differentiated and 

undifferentiated lines separately (U= baseline undifferentiated, D = baseline 

differentiated). Colors represent q values.  

 

Figure 5. Differentiated and undifferentiated lines respond to cytokine stimulation with 

differences in inferred activity of both signal-dependent and lineage determining 

transcription factors. A-B) VIPER analysis showing inferred TF activity for baseline 

differentiated versus undifferentiated lines following (A) TNF or (B) IFNγ exposure. 

Regulators such as PRDM1, HMGA1, SOX9 have high inferred activity only in the 

baseline differentiated group.  

 

Figure 6. Gene expression differences between differentiated and undifferentiated lines 

may be attributed to lipid, ribosomal, mitochondrial, and adhesion processes. A-B) 

Enrichment of gene set groups (C5: GO gene sets) based on ranked lists of differentially 

expressed genes, for TNF or IFNγ.   

 

Figure 7. The enrichment of IFNγ-induced dedifferentiation gene signatures in 

melanomas correlate with response to anti-PD-1 and better overall survival. A) 

Enrichment of the dedifferentiation signature in the paired pre- and post-treatment 

biopsies (n=68) of responders and non-responders from the Checkmate 038 biopsy 

cohort. B) Enrichment of the dedifferentiation signature in the baseline biopsies of the 

Checkmate 038 biopsy cohort, including the paired and unpaired biopsies (n=101), from 
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responders and non-responders. C) Correlation of baseline enrichment of the 

dedifferentiation signature with overall survival in the TCGA melanoma dataset. 
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Supplemental Figure Legends 

 

Figure S1. Related to Figure 1. IFNγ and TNF drive loss of MART1 and gain of NGFR 

expression in baseline differentiated cell lines and baseline differentiation status of cell 

lines is not governed by their mutation status. A) Flow cytometry plots of baseline 

differentiated cell lines (left) and baseline undifferentiated cell lines (right) upon IFNγ or 

TNF exposure. B) Mutation status of the eight cell lines for select relevant genes.  

 

Figure S2. Related to Figure 2. A) PCA of gene expression on all genes. B) Signature 

score of each sample based on genes in “GO_Interferon-gamma mediated signaling 

pathway” shows all samples upregulated IFNγ-related response genes. C) TNF samples 

(left) for IFNγ signature genes. D) IFNγ samples (right) for TNF signature genes.  

 

Figure S3. Related to Figure 3. A) K-means clustering of the induced ATAC-seq peaks, 

with their positions relative to the transcriptional start sites. B) Top enriched motifs in the 

hyperaccesible ATAC peaks of TNF- and IFNγ-exposed cell lines.  

 

Figure S4. Related to Figure 5. A-B) VIPER analysis plots showing inferred TF activity 

for differentiated versus undifferentiated lines for (A) TNF or (B) IFNγ. C-D) TNF and IFNγ 

comparisons of each baseline differentiation status. 
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Methods 
 

Patient Biopsy Samples and RNA-Sequencing 

Study CheckMate 038 (NCT01621490) was a multi-arm, multi-institutional, prospective 

study to investigate the effects of nivolumab (3 mg/kg every 2 weeks) single agent, or the 

combination of nivolumab (1 mg/kg every 3 weeks) plus ipilimumab (3 mg/kg every 3 

weeks) given for four doses and followed by nivolumab (3 mg/kg every 2 weeks) single 

agent. The protocol and its amendments were approved by the relevant institutional 

review boards, and the study was conducted in accordance with the Declaration of 

Helsinki and the International Conference on Harmonization Guidelines for Good Clinical 

Practice. All patients signed written informed consent prior to having any study 

procedures performed. Patients were treated until progression or for a maximum of 2 

years, or were stopped due to toxicities. Radiographic assessment of response was 

performed approximately every 8 weeks until progression. Progression was confirmed 

with a repeat CT scan at least four weeks later. Tumor response for patients was defined 

by RECIST v1.1. Response to therapy indicates best overall response unless otherwise 

indicated. All patients underwent a baseline biopsy before commencing therapy (1 to 

7 days before the first dose of therapy) and a repeat biopsy, on cycle 1, day 29 (between 

days 23–29).  

 

Baseline and on-therapy tumor tissue biopsies were stored with RNAlater (Ambion) for 

subsequent RNA extraction using Qiagen kits. Of 170 patients, 101 had enough RNA for 

RNAseq (Figure 1).  RNA-seq library was prepared using Illumina Truseq Stranded 

mRNA kit.  Sequencing was done on an Illumina HiSeq sequencer using paired end 
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sequencing of 50 bp for each mate pair. RNA-seq reads were mapped using HISAT2 

version 2.0.4 (Kim, Paggi, Park, Bennett, & Salzberg, 2019)  and aligned to the hg19 

genome using default parameters. Reads were quantified by HTSeq version 0.6.1 

(Anders, Pyl, & Huber, 2015) with the intersection-non-empty mode and counting 

ambiguous reads if fully overlapping. Raw counts were then normalized to fragments per 

kilobase of exon per million fragments mapped (FPKM) expression values.  

 

Cell Culture and In Vitro Cytokine Stimulation 

Human melanoma cell lines (M series) were established from patient’s biopsies under 

UCLA IRB approval #11–003254 and human melanoma cell line 3998mel was provided 

by Alena Gros (Gros et al., 2016). Cells were cultured in RPMI 1640 with L-glutamine 

(Mediatech), 10% fetal bovine serum (Omega Scientific), and 1% penicillin-streptomycin 

(Omega Scientific) and were incubated in a water-saturated incubator at 37°C with 5% 

CO2. Cell lines were periodically authenticated to their early passages using GenePrint® 

10 System (Promega).  

 

Human recombinant IFNγ (Milipore Sigma) and human recombinant TNF (Peprotech) 

were each reconstituted in molecular grade water to 0.5 mg/ml and diluted in 0.1% BSA 

in PBS to 0.1 mg/ml before applying to cell culture media. The cytokines were stored in -

80°C. 

 

For in vitro long-term IFNγ experiments, cell lines were expanded and seeded onto 10cm 

tissue culture-treated plates at 70% confluency. After 24 hours to allow the cells to adhere 
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to the plates, new cell culture media containing 500 U/mL of human recombinant IFNγ 

protein were added. The cells were replenished with IFNγ-containing media every 2-3 

days. Cells were seeded into multiple tissue culture plates and treated concurrently, so 

that a plate of cells could be harvested to perform flow cytometry each week without 

perturbing the rest of the cells and their ongoing exposure to interferon-gamma. For in 

vitro TNF experiments, the dose and time duration of exposure were kept same as the 

previously reported study (Landsberg et al., 2012) to use as positive control. Therefore, 

media containing 1000 U/mL of human recombinant TNF were added to plates of seeded 

cells and kept unperturbed for three days until the cells were harvested for downstream 

experiments. 

 

Flow Cytometry 

Cells were trypsinized, washed with PBS, and pelleted by centrifuging at 4°C for 5 

minutes at 1500 RPM. All subsequent steps were performed with the cells on ice. Zombie 

Violet Fixable Viability Kit (BioLegend) was used per manufacturer’s instructions. Next, 

cells were incubated in fetal bovine serum for 10 minutes to block unspecific binding. 

Cells were then incubated with anti-NGFR (PE) antibody (BioLegend) in PBS for 20 

minutes. Following a wash, Cytofix/Cytoperm Fixation and Permeabilization Solution (BD 

Biosciences) was used per manufacturer’s instructions to allow for the subsequent 

intracellular MART1 staining. All subsequent wash steps were performed using 1X 

Perm/Wash Buffer (BD Biosciences). Cells were incubated with anti-MART1 (Alexa Fluor 

647) antibody (Santa Cruz Biotechnology) for 20 minutes and washed. OneComp eBeads 

compensation beads (ThermoFisher) were used for compensation. The samples were 



 

55 

run on the FACSCelesta Flow Cytometer (BD Biosciences), and the data were analyzed 

using the FlowJo software (TreeStar, Inc.).  

 

RNA-Sequencing 

RNA extraction was performed using the AllPrep DNA/RNA Mini Kit (Qiagen). Library 

preparation was performed by the Technology Center for Genomics & Bioinformatics 

(TCGB) at UCLA. RNA was sequenced on the HiSeq 3000 Sequencing System (Illumina) 

for a single-end 50 base run. Data quality was checked on Sequencing Analysis Viewer 

software (Illumina), and demultiplexing was performed using the bcl2fastq2 Conversion 

Software v2.17 (Illumina). Raw FASTQ data files were aligned to the hg19 genome using 

HISAT2 v2.0.4 with default parameters and counted using HTSeq v0.6.1. The raw counts 

were normalized to fragments per kilobase of exon per million fragments mapped (FPKM). 

DESeq2 was used to perform differential gene expression analysis.   

 

Omni-ATAC Library Preparation and Sequencing 

Cultured cells were harvested by trypsinization and were checked for viability of greater 

than 90%. After the cells were counted, 50,000 cells were resuspended in 1 ml of cold 

ATAC-seq resuspension buffer (RSB; 10 mM Tris-HCl pH 7.4, 10 mM NaCl, and 3 mM 

MgCl2 in water). Cells were centrifuged at 500 RCF for 5 min at 4°C in a fixed-angle 

centrifuge. Supernatant was carefully removed using two-step pipetting to avoid the cell 

pellet. Cell pellets were then resuspended in 50 μl of ATAC-seq RSB containing 0.1% 

NP40, 0.1% Tween-20, and 0.01% digitonin by pipetting up and down three times. This 

cell lysis reaction was incubated on ice for 3-5 min, with the lysis time optimized for each 
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sample. After lysis, 1 ml of ATAC-seq RSB containing 0.1% Tween-20 was added, and 

the tubes were inverted to mix. Nuclei were then centrifuged for 10 min at 500 RCF at 

4°C in a fixed-angle centrifuge. Supernatant was carefully removed with two-step 

pipetting, and the nuclei were resuspended in 50 μl of transposition mix, which consisted 

of 25 μl of 2x TD buffer, 2.5 μl transposase (Illumina Nextera DNA Library Prep Kit), with 

16.5 μl PBS, 0.5 μl 1% digitonin, 0.5 μl 10% Tween-20, and 5 μl water. Transposition 

reactions were incubated at 37°C for 1 hour in a thermomixer with shaking at 800 RPM. 

Reactions were cleaned up with Zymo DNA Clean and Concentrator columns and eluted 

in 10ul of nuclease-free water.  

 

Following purification, the transposed DNA fragments were amplified using 1x NEBnext 

PCR Master Mix (New England BioLabs) and 1.25 µM of the Ad1_noMX primer and of 

the indexing primer (Buenrostro et al., 2013) in nuclease-free water for a 50ul reaction, 

with the following PCR conditions: 72 °C for 5 min; 98 °C for 30 s; and thermocycling at 

98 °C for 10 s, 63 °C for 30 s and 72 °C for 1 min, for five cycles. To reduce GC content 

and size bias, qPCR was performed to determine the appropriate amount of amplification 

before saturation. To do this, 5 uL aliquot of the PCR reaction was added to 10 µl of the 

above PCR cocktail with the final concentration of 0.6x of SYBR Green (Thermo Fisher). 

The qPCR cycle was run at 98 °C for 30 s followed by 20 cycles of 98 °C for 10 s, 63 °C 

for 30 s, and 72 °C for 1 min to determine the additional number of cycles needed for the 

remaining 45 µL reaction. The libraries were purified using a Qiagen MinElute PCR 

Purification Kit. All libraries met the target concentration of 20 μl at 4 nM, determined by 

the Qubit Fluorometric Quantitation (Thermo Fisher).  
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Sequencing was performed on the NextSeq 500 (Illumina) for a paired-end 75 base run, 

and at least 50 million paired reads were obtained for each sample.  

 

Omni-ATAC Data Processing  

The raw FASTQ files were processed using the published ENCODE ATAC-seq Pipeline 

(https://github.com/kundajelab/atac_dnase_pipelines). The reads were trimmed and 

aligned to hg38 using bowtie2. Picard was used to de-duplicate reads, which were then 

filtered for high quality, paired reads using samtools. All peak calling was performed using 

macs2. The optimal Irreproducible Discovery Rate (IDR) thresholded peak output was 

used for all downstream analyses, with a threshold p-value of 0.05. Other ENCODE3 

parameters were enforced with the flag --encode3. Reads that mapped to mitochondrial 

genes or blacklisted regions, as defined by the ENCODE pipeline, were removed. The 

peak files were merged using bedtools merge to create a consensus set of peaks across 

all samples, and the number of reads in each peak was determined using bedtools 

multicov (Quinlan & Hall, 2010). DESeq2 with default parameters was used to normalize 

read counts (Love, Huber, & Anders, 2014) and to determine the the hyperaccessible and 

hypoaccessible peaks following cytokine exposure. Peaks were called as hyper- or hypo-

accessible using abs (log2 fold change)>0.5 and adjusted p<0.05.  

 

PCA/PLSR and projections 

Log2 transformed fragments per kilobase per million (FPKM) of coding genes was used 

to perform unsupervised principal component analysis (PCA). This method uncovers 
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latent components which are linear combinations of the features that most strongly vary 

across the datasets. PCA was performed centered and unscaled using the prcomp 

function in R. Projections onto PCA frameworks were done using custom script by 

multiplication of the original projected sample scores by the PCA rotation matrix. PCA of 

ATACseq data was performed centered and unscaled using normalized counts of the 

union of all significantly induced peaks. Partial Least Squares Regression (PLSR) is a 

supervised version of PCA that seeks to find the latent vectors that maximize the 

covariance of the input variables (e.g. gene expression) and the response (e.g. 

phenotypes). Varimax rotation of the PLSR loadings (PLSRv) was performed on 2 

components, without Kaiser normalization and using the R package varimax, in order to 

simplify the structure of the loading matrix.  

 

Mutation Analysis 

The patient-derived human melanoma cell lines were sequenced and characterized for 

their mutational status as previously described (Atefi et al., 2014; Nazarian et al., 2010; 

Wong et al., 2014). 

 

Gene Set Enrichment Analysis and Gene Ontology 

Gene Set Enrichment Analysis (GSEA) (Subramanian et al., 2005) and GSEA-squared 

was done on pre-ranked lists of genes using the MSigDB C5 gene sets and Kolmogorov-

Smirnov (KS) statistics. GSEA-squared was performed as previously described (Balanis 

et al., 2019) . Briefly, all individual words in the genesets were collected and their 

frequencies were tabulated. Words with frequencies <5 or >500 were excluded, and all 
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gene sets were then ranked by their NES value. Keywords and their categories were 

further assigned by manual curation of the top of the ranked list of words.  

 

Rank Rank Hypergeometric Overlap (RRHO) 

Rank Rank Hypergeometric Overlap was performed for gene expression data by taking 

the rank of varimax-rotated PLSR loadings, and calculating the hypergeometric p-values 

of the TNF-d0 versus IFNγ-d0 ranked lists using the online tool and the R package RRHO. 

RRHO for genesets was performed after running GSEA on ranked gene lists, and ranking 

gene sets by their Normalized Enrichment Score.  Step size 100 was used for genes and 

gene sets (Plaisier et al., 2010). 

 
Motif Enrichment Analysis 

Differential peak analysis was first conducted using DESeq2 on normalized ATACseq 

counts. Starting from the full consensus peak set, samples were divided into baseline 

differentiated and baseline undifferentiated groups, and hypo- and hyper-accessible 

peaks were called separately for TNF vs d0, and IFNγ vs d0, at adjusted p-value < 0.05 

and log2 fold-change >2, without independent filtering or Cook’s cutoff. Motif analysis was 

done on each of these peak sets using HOMER against a whole genome background 

and searching for motifs within +/-200bp from the peak center. Raw -ln(p-values) were 

plotted for TNF-induced vs IFNγ-induced hyper accessible motifs. Overlap of significantly 

differential peaks was calculated and plotted as Venn diagrams using the R package 

Vennerable.  

 
ARACNe and VIPER Analysis 
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ARACNe (Lachmann, Giorgi, Lopez, & Califano, 2016) network connections were created 

using all genes, and then the network nodes were restricted to transcription factors (TFs) 

by combining all TF gene sets in the GO gene ontology. A single network was built using 

melanoma RNAseq samples from the M-series cohort (Grasso et al., under review). 

VIPER analysis (Alvarez et al., 2016) was performed using the R msviper function from 

the package viper, with a minimum network size of 10.  
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Figure S1. 
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Figure S2. 
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Figure S3. 
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Figure S4. 
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