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ON THE NATURAL BOUNDARY OF THE SCATTERING AMPLITUDE
Jack Wong
Lawrence Radiation Laboratory
University of California

Berkeley, California

December 1962
ABSTRACT

In some current theories of elementary particle iﬁteractions,
the elastic two-particle scattering amplitude on the second Riemann
sheet of.‘s—4m2 , ﬁ(z)(s, cos 0), possesses singularities dense
everywhere on the real negative s-axis‘for arbitrary complex cos 0,

' The real negative s-axis is therefore a natural boundary of ¢(2)(s,cosO)
for arbitrary cos 8, whereas the partial-wave amplitude qz(z)(s) is
known not to possess this natural boundary. Inspection of the inte-
gral defining ¢ (2)( ) in terms of ¢(2)(s, cos O) might lead one to
expect qx( )( ) to possess the same singularities as ¢( )(s, cosP= +h)

In the present work the integral defining ﬁ (2 )( ) is examined care-
fully, and it is demonstrated here why qg(.)(s) does not possess the

"expected" singularities.



ON THE NATURAL BOUNDARY OF TUHE SCATTERING AMPLITUDE
Jack VWong
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‘I.  INTRODUCTION

Thg'twoaéarticle;into—two—particle 5cattéring aﬁpiitude T(s,t)
iS'generally‘writFen'és a functiou-uf‘the two Lorehtz‘ihvariants
.d and t, wniéh'afe‘formed‘from fhé two inﬁtial aud the two final
&;moméntum've0£ors. In 1958,”Méndelstaﬁ1‘propdsedbthat the scatter-
:.ingvamplitude T(S;t)‘shQulq be considered as the boundary value of an
 analytic fuﬁction:df'two_compléx'vuriablcs~§imﬁ1tane0usly regular
QVer'sgecif;ed‘domains;-'Ue fﬁrthermoreyconjeétufed a representation
for T(s,t) in the form of a QOuble Cauchy integral over the so-called
‘double.specﬁral fﬁnctions,» A physi@al theory, when described in the
‘S-matrix ianguage, isldeﬁermined by the specific choice of the double
specfral functions, ‘The failu;e.of a proof Qf thé Mandelstam conjec—-
ture within the framework §f 1ocai field. theory has led Chew2 and others
to propose thebadoption of tn§ Mandelstém representation and the
unifarity conditi@n of the S Métrix:as the _theory'of strong inter-
action physics. It should be remarked at this point that the Mandelstam
representation is a’conjécture of the analyticity propertiés.of the
’scatterihg amplitude on the se¢~called physical Itiemann sheet only;
nothing is explicitl} said about the complete‘structure of the scattfer-

ing amplitude. By analytically centinuing the unitarity condition
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of the partial-wave amplitude ﬁ ( across the elastic cut, it has
recently:bhecome possibie.—j-.‘6 to define .a partialiwave scatbtering ampli-
tude on the second Riemann sheet .of Jg~:’z;§ as gé2)(s), which is
expressible entirely in terms oi ;& (s). Turthermore the unitarity
condition of the full ampl1tude relates. the scatterln" amplitude

ﬁ( )(s, cos G) on the second sheet. to. ﬁ(s,cos G) on the first'through
an integral equation. Zimmermanné'utlllzed this 1ntegral equation to
demonstrate that ﬁ( )(s, cos O) possesees infinitely many more singu-—

it

1ar1tles than ﬁ(s, cos O) does. Freund and harplus7 1nvest1"ated the

dlstrlbutlon of these 1nf1n1tely many s1ngu1ar1t1es and showed that

¢( )(s cos 0) has 51ngular1t1es that are demnse ever)where aloné the
real negatlve s-axi’s for arbltrary flxed cos G ; hence the reml nega-—

tive s-axis is a natural'boundary.of ﬁ(')(s cos 9) It is known by the

:lofoesinélsmeetEyqys that the pdrtlal wvave ﬁ (2 )( ) of ﬂ( )(s cos 9)

does not possess a natural boundary on the real nebatlve ax1s, because

¥

¢ (s) does not therefore ‘the loglcal conc1u51on to be drawn is that

‘the partlal—wave integration somehow "erases" the natural boundary.

" The present study is devoted to the del{neatioh of this phenomenon. It

“is demonstrated in this study ‘that the reason is 51mply the follow1ng

‘the partlal—wave amplltude ﬁ (2)( ) does not possess those endpoxnt
|
31ngu1arities):[see eq. (2. 23) below that would otherw1se constltute

tlhie natural boundary beédusé a spe01a1 propexty of the kernel functlon
H(g 7, z) of the above-méntiéned 1ntenra1 equatlon Eoc eqs (2 16) and

(2. 17)] enables the partlal wave prOJectlon 1ntewratlon to 1ntc"xdte

out{these singularitiés point by point: “In bectxon II avrather

*

- detailed description” ‘of the backnround materlal is prov1ded for the

sake-ofacontinuityland‘fof:pfober’persbectiGeiof this sto&y; Section

IIT is devoted to a careful demonstration of the reason vhy the

<



partial-wave ugplitude #X(z)(s) is not singular at the “expected"
.endpoint_sihgulgrities that would otherwise constitute a natural
boundary along =-®© £ s <0, Iﬁ Section IV the bartial«wave integration
of ¢(2)(s,2) on ll(z) is exactiy carried out. Then some general
remarks conclude this study. A few necéssary mathehatical formulae

and identities are recorded in the Appendix A,



II. BACKGROUND MATERL‘\Ll'—9

This sectibn, which closely follows Zimmermann's paper, ' Eden's
’and;bthers,g is devoted to a recapitulation of the;backgrbund materials
necessary for the present study and at the same time setves to .
‘estébdishfsbme of the more important notatién and formﬁlae’thai'will
be employgd in the repért. The background materjalé fall roughly into
‘fiQe groups: (A) the definition of the scattering amplitude T, (B)
thg unitarity-conditioh, (C) the analyticity property, end (D) the
combined results of (4), (B), and, (c), and (E) the notion of endpoint
Qingula}ities of definite intggrals.

(A) The definition of the scatégfing amplitude T. We choose
to deal with a pair theo;y in which two particle states are only
coupled to states wifh an even-number of particles. The scattering o
amplitude which_is a function of the two Lorentz invariants s and t

is designated by T(s,t) and is defined by

Bk riegmhyoiey) T, 1) - Tk kg [ k) =v"i(¢k1k2in. (s—1)¢k;k; )

(2.1)
where
) kl’ k2 are the incident particle 4-momenta,
] ]
kl’ k2 are the outgoing particle 4-momenta,
and _
B 2 2 2
s = (kv k) = (kg4 k) g - Uy + k)

.. (kll- k;)2_ (2.2)



The symbol S is the Heisenberg S matrix. The scattering amplitude
T(s,t), which will occasionally be written as T(s, cos @), is defined

over the physical interval

(B) The unitaritj condition., The conservation of probability
requires the Heisenberg S matrix to be unitary. Hence the scattering

amplitude T (2.1), in the elastic scattering region, satisfies

“Im T(klkglk;ké = -;-szl_ DQ2 T(k1k2 [2192) T*(flfz\k;’ k;),

4m2 < 5 < 16m2

D = a*f e(1) 8(2% -a?) . | O (2.3)

By using the definition of T(klkz‘]ki ké) in (2.1), six of the eight
integrations can be immediately carried out on account of the

§ —functions, and (2.3) simplifies to

Im T(s, cos 8)

1
Y Ir(s, cos b) - T*(s, cos 9)]

] ! ' .
. Jg— ma , 0(-K($, n,cos @ f.
e J‘“Jdv (s} ) e ),
Ie - K8, scos 0)

~1

2

« TYs,7) 3 4m® < s 216m° ,  (2.4)

where

2 2 ' '
K(S, 7» Z>5= i + 7 + z2 - 2¢ 7 z -1, -1<¢< z < + 1.

Ol



T(s, cos G)l is said to be partial-wave decomposed into Ti(s) if

1 -
 f> Ii(s) =% J (s, z) }k (z) dz.
i A
Partial—waﬁe decomposition of the unitarity condition for the full
amplitude T(s, cos 8) (2.4) results in a uhitarity condition for
the partial-wave amplitude Tx(s), which can be written, with the
" help of Lemma 2, of the Appendix A,
_ s—lima

[0 S ' * 2 £ 2
vavaK(s_) =7 = T};(_S) TX (s), 4m" & s<16m . (2.5)

It should be remarked here that the dnitarity condition for the full
'émplitude T(s, t) as in (2.4) is an integral equation relating T
and T¥*, whereas for the partial-wave ampiitude Tg(s) as in (2.5)Eit
is an algebraic relation between TX(S) and ?l*(s) . Tbese two facfs,
in conjunction with the anaiyticity of ‘T(s, t) and TZ(S) in postu-
late (CJ below, are of paramount imﬁortance. The lafter permits the
unique determination 6f the apalytiq structure of T&(s) at .
s = hn® to be 'Fk(s) + iJ;:;;E Gg(s); Qhefe El(s) and qz(s) aré
anhlytié for” Cé!s-<16m2 H hence:fhe possibility of analytic continu—~
étion from the firsﬁ sheet into the second sheet, across fhe elastic
region, The former permité the-determinatién of the singulaiities
of T(2) (s, cos 0) when suitably defined on the second Rigmann
sheet of 1s—hm2 .

(C) Analyticity. The analyticity:of the scattering amplitude
T(s, t) is provided by-. the Mandelstam conjecture, which asserts that

T(s, t) is the boundary value



T(s,t) = iim ﬁ(s+i€, t+i€’), s 2 hmg, 0<~t £s-hm
: €, 50 o o b

LA

of an analytic function of both complex variables s and t regular

everywhere except for the cuts

s»4m>, t2h4m>, u = hms - s - t3 4m°.

The full amplitude @(s, cos ©) is even in cos O because we are dealing
Qith a pair theory of one_kind of particles only. 1In terms of the par-
tial wave gg(s), Mandelstam's:cdnjeétﬁpe aééerts that Tg(s) is the
boundary value

T,(s) = lim =_’”z(‘? +;’i'.e)

€0t

of an analytic function of the complex variable s regular every-

where except for the cuts

by,

\\Y

s £0, s
St

The partial-wave amplitude qg(s) is a real analytic function,

satisfying
* .
lim ’dX (s + ie) = lim”}(ﬁz (s - ie)\ , s < s < 16m°. (2.6)
€—»o* €30t o

Or in words, j& (s) is real on the segment 0 < s < 4m2 of the real
axis, and by Schwartz''reflection principle takes'bn'éompiex conjugate

values at complex conjugate ‘s ‘points. - The discontinuity across any
/ h .



- point on the real axis is given>hy twice the imaginary part of qz(s)
at that poinf.' For»é fixed éomplex' s , not_qnsthe'cut s£0

ﬁ(s, cos 0) can be répresented by the Legendre series

[se]

g(s, cos 0) = 2 (22 + 1) 4 (s) P,(cos 0)-
| =0 A A B _
which cohverges in the cos§-plare inside an ellipse through the points

N

8m ' - s '+ k4m
z":i(l"" 'b)"i :
1 S 8 = 4m2 o s - b !
and with “foci at + 1 . This is quite easily seen from the denomi—

nators in the £ollowing_form of the Mandelstam representation, (the

pair theory)

- dt'ap(s,t') |, o du'As(s,u")
#(s,2z) = = D) ' TY + =
T g-4m t LI 2u'
, 4m (1+—7:?rﬂ -2, :  4n? (1+ . 2)+z
s=4m s=’m

=9 e

where

¢(+)(s,z) - ¢(‘)(s,_z),. | ('2.7)_

The lastlequality follows from the fact that the physical t-channel

'apd the phxsiqnl u-channel are equigglent, .A2(s,t) = A3(s,t).



(D) The combiﬁed results of (A), (B), and (C). The combiued
.resulits of (A), (B), and (C) are the possibility of the analytic con-
finuation of ﬂi(s) in s across the boundary of the physical sheet
through the elastic interval hn? < 8 < 16m2 and the determination uf

ﬁhggingularities of _ﬁ(s, cos &) in the second Riemann sheet of

(s-&ﬁg .

We start out by arbitrarily defining a function

~

§(e) - (o)

(2.8)
1+ ip(é)qz(s)

where

is defined by the following two cuts in the complex s plane:

2
) n™ £ s, Ims = 0,

1
8
N
B/}
In
=

and

P(s + i0) =

real positive for s > hm® .

Then p(s + 10)* = =p(s - 10) and (2.6) require ¢

to satisfy the'condition,

*
{1im giirr(s - die) Y =

€s o t

Furthermore, by the partial-wave unitarity condition (2.5), the
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imaginary part of y{elrr(s) in t_he elastic scattering region vanishes

identically,
Im ¢X1rr(s) = 0, hm® £ s < 16m? ;

1 9
hence ¢X 1¥T(3) is regular at s = 4m" .

. By solving Eq. (2.8), }?fx(s) is found to be

551 irr(s)
1-ip(a)f, P77 (s)

. ¢£(5) = = .Fk(s) +,i’9(s) Gﬂ(s); lunzé s <& 16m2‘

{2.9) .
where irr
F (s) = — f* (f)- (2.10)
| 1+ p2(s) £, (s)®
irr 2
6 (s) = (o) | (2.11)

1 .+92('s) ¢1 irr(s)2

Equation (2.9) exhibits clearly the fact that y&(s) has only a
Js-4m2 singularity at s = 4m2 , that connects the two Riemann sheets
of ﬁ{q(s) . The analytic continuation of -the vpartial—que yfi(s)
across the.ellastic ‘cut ltmg £ 8 < 16m2 onto the secoud Riemann sheet’

2 . . :
of Js-—’tm is ‘desxgnated by .¢)é2)(s), and is given by (2.9) as
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C(2) oy g : ) 6 (s
5,26 = 4,76 = B () - 1p(s) 6 ()
=ﬁ£ (s) - 21?(.5) G'((s), lun2 £ s < 16m2 . (2.}2)

Multiplying (2.12) by (24 + 1) Pk(cos 9) and sunming over all £ ,

we obtain .

ﬁ%(s, cos 0) = F(s, cos 8) - i?(s) G(s, cos 8)

i}

¢(2)(s, cos ©)

= ﬁ(s, cos 6) - 2i9(s) G(s, cos 8), (1.13)
where
G(s,c0s 0) = 2 (22+ 1) 6,(s) B, (cos 0).
A=o A

The Legendre series Of.G(S, cos 8) converges in general in a larger

ellipse than that of f\s,cos ©) because it is the imaginary part.of
‘.¢(s, cos 6). Hence the ngendre segies ﬁ(z)(s, cos 9)6(2.13) has

the same ellipse of convergence in cos & as that of ﬂ(s, cos 8) for

arbitrar& fixed s , provided that s _dées not assume any of the

iéélatedlpﬁiﬁts at which Gl(s) has.a pole for some { . The importance

of Eqs. k2.12) and (2.13) .lie in the fact that gl*(s) and ﬁ*(s,cos 8)

2 :
(4m® ¢ s < 16m2 <1<cos 8 = + 1) have been identified as the

=

’

boundary values of g1(2)(§) and 9(2)(5, cos 0) respectively as s

approaches the real axis from above on fhe second Riemann sheet of
43-4m2 . When these idéntifiéations are féd back into the unitarity

conditioﬁ.(2;4) and (2.5), an integral equation and an algebraic

equation relating ¢ and ¢(2) emerge:
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ﬂ(s,cos 9) - 55(2)(5, 09?9) - |
i ‘ ' ' ,CO0S8 0))
_d - oy g2, o(-K(t.p.
- 0(s >}\ g J_l o #e0) 10y ) s
ym? < s < 16m® . S (2.14)

y{q(g)(s) - : &(8) 3 wn® € s < 16m°. ) (2-15)

1+ 2if)(s) jd)((s')

The analytic continuation of 'ﬁ(z)(s,cos O)‘and ¢£(2)(s) are obtained
by the analytic continuation of ‘¢(s; cos Q),and g((s) awvay from the |
physical region, Fdr a given ﬁ(s; cos 0), the inﬁégrdi equation (2.14)
in principle yields %(2)(5’ cos 9). In summary, it is the analytic
continuation of the unitarity condition_that enables one to dbﬁain
information of the scattering amplitude on the second Riemann sheet
of s=4m .

Zimmerma_nn6 recasts Eq. (2;14) into.a slightly more convenient

form for the investigation of the singularities of ﬁ(z)(s, cos 6),

82 (0,) = Bls,2) - —5 p(s) 7§ 5{ ay #(s.8) #2 (s,)cay0)

473
C S

(2.16)

where C 1is an ellipse encircling + 1, and



-*-l f"é» - 7' - 7 -V "1{(5"7.’ z. )‘

H(¢,y,2) sv

—

Y TN Wkl JKlty.2) I

jEZET;T;;— -z—£7 \[;z;—;j__ j

with the condition

.»u(g,v,z) = real positive at z=1, ;,7 > 1.

o
He deduces the following set of properties of ﬂ(“)(s, cos 6) -

ﬁ(z)(s, co§ 0) is analytic in s and cos @ except for

(a) the normal cuts

(1) s 2 4m

2t o,
(2) cos 6 = + [1 4+ ——-———~——i) N A A

s - 4m

for' s 1lying on tiie cut (1) . the boundary values of
¢(2)(s, cos §) are still‘analytic:in cos. 8 except for the
~cuts  (2)
(b) thé cut s £ 0

(c¢) poles

13

(2.17)

(2.18)
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o+
~(d) the domains D W defined by

+

A L 2 .
D™, : cos 8 = + cosh Ef(s,tl) b oeee + Y(s,tnﬂ; t;¥ 4n®, 0= 2,3,

2t
i

cosh‘r (s, ti

In this paper. we are only concerned with the cut (b) s = O

; t - ' , 2
and the apexes of D (i.e. D , evaluated at t, =;§m Yo

cos O = ilcosb [nV(s)] , n =1, 2, 3, tere

: o 8 2 : . T (._2"'?119)
| Y(S) = cosh -1 (1 + ——*—E——)' .

s—hm

For’a fixed cémplex s , not on the cut s < 0 ,. (2.19) gives a
partial distribution of_fhe singu1afities.of ¢(2)(S’ cos 6) at the
cos B-plane. , |

Freund and Karplus7 invert;(2.19) and obtain, for an arbitrary

but fixed complex 6 , the singularities in s ( or equivalently. in

o_' 8m2
= 1 g ——m—— ):
's—hm2
' "2 _ _
8m _ _ _
G.r;k =1+ 3 = €O0S {%4. k.’;L{n:l, 2, 3, ...
H S - Iim k:o, 1 g ey 211—1,

(2.20)



Now it is quite obvious that the interval -1 € 0 < + 1 ( or
equivalently the interval - g 55 0 ) is dense with singularities
everywhere; hence it is a natural boundary of ﬁ(g)(s, cos 8).

From crossin'g symmetry, it has been shown8 Lsee formula (IV.7)
of lef., 8] that the imaginary part of ﬁfx(s), Imy&(s), for
-—32m2 < s <. 0 canAbe expressed in terms of Legendre polynomia'ls

l:( 's and Inm ¢x(s) for s physical ,

0 -(m2+v) n“ eyt 2
.I-m ¢X(Y)= - J : dy' Pl(l + 2———7——') ; (20" + 1)«

"where J 1is restricted by
2 2 2
-m” < Y o< -m, sz 4(V+m)

Since Im ﬁi(s-.) is analytic in 4m® < s < 16m2 (or 0 = VYV < 3mz)
[see Eq. (2.9)], $henefore the above equation implies that Im %(s)

is analytic in -12m2< s< 0 ( or —4m2< J < —m2) . DBy writing a

Cauchy integral reﬁres'entaiion for Q&(s),

2
+ R(s), -12m” < s < 0,

. o 2
where R(s) is analytic at -12m" < s <« 0 , one easily deduces by
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analytically deforming the contour of‘idtegraﬁien that gQ(S) 1s
analytlc in —12m2 < s <90 'bccduoe‘ im qz(sj ie’unélvtic there.
Belng Va ratlonal function of ﬁ ( ) ﬁ (2)( : cannet have avndtdral
'boundary‘at_least along -12m. <s < O (or-—1< G;<‘l){ Althounh |
’it hasvnetleeee dedonstrated here that j%(o) dqesnoeuheye a‘patural
boundary along 'g'< o<1, But the indieaiiods are(that it»deeédot;
whether it does or dotvwe.elready have 4 phedomenon td explaln: So
from now on, for 31mp11c1ty,‘we tdlk as if gz(z)( ) doesnot possess
a natural boundary along -1< 6 < 1. Therefore, it is of interest
to ascertain the reason for the absence of the natural boundary when
ﬁ( )(s,'cos Q) is progected on’ ﬂ~(cos 6). The presentatlon of this
reason has to be temporarily postponed until after the notion of
vendpoint singularities of integral trausform is introduced in the
next peragraph; o

| (E) The nofion‘of endpoint singularities of definite'integralé?

This notion can be éimply illustrated by the following definite .

integral:
| !
: - dz o -
w(c) = ff(c,z)dz = -2 l~ — F -1 -~ je + 1. (2.21)
.;' ) AL " C~2Z S . S : Lo LE )

The integrand'f(e,d) as‘a.function of two eomplex vd;iaeiee'is

singular at ¢ = z for an arbitfery‘fixed.3z .'“Siece ;he ineegra—
tion of =z is over the closed interval (—1 +1] it is conceivable
that w(c) be singular at every p01nt of the closed 1nterval [ 1, + 1]
But Eq. (2.&1) demonstrates that this is not the case, w(c) is singular
only at ¢ =+ 1 ., These two points of singularities in ¢ coincide

with the singularities of the integrand f{(c, z = + 1) evaluated at



the endpoints of integration. This phenomenon is summed up in Leuma
1A of Tarski paper9 as follows
Lemma 1A, Let an arc A be given in the éompléx’z"

plane as a contour of integration, let N denote a

neighbofhood of tue contour A, and let D be a démain

in the complex ¢ plane. Let f(z,c) be regular in either
variable, except for a finite numbér of isolated singu;
larities or branch points, for any value of the other
variable; when zeN, ceD..(We have to include the possi-
bility tha%&he domains D and N extend over more than

one Riemann sheet of f.) Then

w(c) = J'f(z,c)dz
A ,

can be singular at ¢ = c,¢eD only if one of the following

0

two conditions hoids:

(1) f(z,co) as a function of‘z has a singularity at an
endpoint of the contour, or

(2) for"c1 in a neighborhood ofbcd, f(z,cl) is singular at
7z = ZO * 9y and at z = ZO.—72 ,

where z; +y énd zo'; /E lie on opposite sides of the

contour A, zq is a point of the contour, and 71,72.;7 0

as ¢, —» ¢

0.
Since the condition (2) of tle Lemma 1A is not encountered in our
sfudy, we do not wish to discuss it here,

Applying the.notion of endéoint singularities of.the.preceding

paragraph (£) to the singularities of ¢(2)(6, cos &) as enumerated

in Eq. (2.20), we expecf gz(z)(U)

17



o .
2 : L ‘(2) . (o oo
5’52( )(5) = 5 [ yr=/(o,z) Px(z)da | o (2.22)

to have endpoint singularities at (i.e. the singularities of

#D(s, aar1)

q
. P
L}
N
i

fn‘k(O =) = cos( k g ), n=1,2,3,... (2.23)
» : . k=0,1,...,2n=1.

whicﬁ;ié still dense ewerywliere in U., -1 <« 0 £ lv(or ~m<es € 0).
Therefore %2(2)(6) is expected to have a natural‘boundary there. lIt
is to be shown in the (next)Section III; that due to special proper-

' ties of the function H(g,y,z), (2.17) the "expected" endpoiht singu~
larities of (2.23) in & along -1 < d‘§.+i disappear during the
partial-wave integratién._ Hehce‘the‘paftial anmplitude QK(Q)(U) does

‘not possess a natural boundary there.



19

_ o)
III. THE ABSENCE OF TUE NATURAL BOUNDARY OF yiﬁ( >(6")

We have seen that thg partial-wave amplitude ﬁg(g)(a) does.nup
possess a natural boundary for -1 ¢ g +i; nevertheleuss, its dgfining
integral does seem tﬁ have sufficiently many endpoint singularities
(2.23) along -1 <0< +1 so a§ to cohstitute a natural boundar& ﬁhere.
" The aim of this section is to work out in detail the rgsolution_of
this seemingly incompatible situation. The explanation turps out to
be as follows: the kernel function H(§,7,z)v[§ge (3.9) and (2.16)],
for suitable values of §{ and 7 yhas certain special properties at
z = +1 such that when it is integrated in the neighborhoods of z = +1
and the resulting integral is evaluated exactly at z = +1, the
resulting integral is an analytic functiop of Zi and 7 . This remar-
kable property of H(é,q,z) enables us to demonstrate inductivély how
the "expected" endpoint singularities (2.23) except for ¢ ?'i 1, are |
integrated out point by point; hence thé absence of the natural
goundary for ﬁx(z)(ﬁ) élong -Isr€é;r1 as concluded from crossing
symmetry. Since we are going to treat the infinite setof singularities
(2.23) point-byiboint, it is cogent to inﬁroduce fir;t a classifica-
tion séheme that pinpoints the origin of +the singularities of the
full amplitude ¢(2)(6]z). Probably the most natural classification
scheme for the singularities (2.19) and (2.20) of ¢(2)(0,z) is fﬁe
Liéuville series, qnd this scheme is introduced in Subsection (III.A).
The n" term of the Liouville series ¢(2)(s,z) is singular only at
the 2nr(a finite number) points of (2.é0) corresponding to the.integer'

n. Consequently, the partial-wave projection of the nth term of the

Liouville series contributes to the partial—wave-ﬁé?)(oj’(2.22)

a finite number of the "expected" endpoint singularities of (2.23)



corresponding fo fhe integer'n.k Alébydiscﬁsséd iﬁ‘SubSeciion(III.A),
arc some detailed properties of the kernel funetion (%, 7 ,2). In
subsection (III B), we employ the mater1al of (III.A) to show that thc
partlal—wave projection of the ‘'second L10uv111e term is not slngular
at two of the four "expected" endpoint sin&ularitiés. In'(III.C) the
'argument of (III.B) is repeated on the thlrd term of the L1ouv1lle
series toibrlng out its generalxzatlon to the arbltrary nth tcrm .
In (III.D), wé'demonétrate that the paftial—wéve projectibﬁ Af:£he
’nth term of the Liouville series is éinéﬁlﬁr‘only at & ;‘il,vﬁﬁt
“regular at thel"expected"'endboint sihguléritiés of (2.23) corféépond—
ing to the integer n, = cos(igk)‘;‘k'% O,n:' Hence the partial-wave
amplitude %ég)(ﬁ) (2.22) does not poésesé the &eXpeétéd":nat;rﬁiu
boundary in ~1¢ 6= +1.'[¢&(2)(6) is singular at 6’=’111 |
o ) : | o
" IILLA, The "Expected" Endpoint smgularitie; of %(2) (6)

and the Kernel Function H(§,7,z)

A classification scheme for the 31ngu1ar1t1es of the dmplltudes

2
¢( )(U,Z) will be glven presently. As remarked before this report is
qnly concerned with the following set of singularities of ¢(2)(s,z):

[see (2.19) and (2.20ﬂ

for a fixed 0(s)= 1 + ———— * 3 coé 6 = +cos n cosflﬁ,

)

n=1,2,... or

|

for a fixed (complex) 6 y O

n,k

le .
(8) = cos[a ¥
n = 1,2.,...
k 0,1,...2n-1.

sl

1] .. (3.1)

ft



Zimmermann derivesb this set (3.1) of singularities‘by ap'itprative
procedure, therefore it is most natural to classify this same set by

the Liouville series of ¢(2)(Uj z) which is obtained by ipgrating the

integral éqgatiqn (2.16):

62 (5,2) = #(a,2) +;>0(s)<fds dy $(e.5) H(Ep.2) o)

¢ °y

n

;‘ B)O(S-Z}n'l Mn.(ﬁ‘,Z), k‘{l(U,z)Eg(O‘,z),Fo(s ;____._.._3_)._.\)

=¢(6,z)+...+(fd)n'%(u d7¢(Gyg)H(g,y,z)Mn_1(037)+...

C&
Vi \
‘(302)

The nth term of the Liouville series (3.2),is singular only at the
finite sét of singular points of (B.i) corresponding to the-integer
n, The vaiidity of this statement is simply illustrated by the second
term Mg(c}z) of the Liouville series. For'a fixed 0 , #(0,f) and
ﬁ(v;y) are singular at §= + o and 7: + g respectively, therefore.
ﬁhe coptours of integration VC(S and C7 can not be analytically
deformed about these points respectively. Next the kernel function
H($,7,z) [see detailed properties of H(f,7,z) below] conbines these
four pairs of points, (;, ) = (I.G: i(y)‘into two distinct pointsvin
z = % cqs(2 cos_lﬁ)which is (3;1) for n = 2. . The singularifies'of
all other terms of the Liouville series (3.2) can be similarly built

up. At this point it is advisable to make a momentary detour and

enumerate some relevant properties of the kernel function H(z,y;i)



so that their repeated use froum now on may be madeleasier.

For computations carried out in this study,nWe ~ecast the func-
tion’U($;7,z) (2.17) into a moru-suitahle form, whoée.multi¥vu1ued-
ness is enumerated by the arhitrary négative as well as positive

-integer n,

2w IR;.+JR:
k. fe (R;-'f'?._

+ 2% i(n)} 5

(pao branch.for‘(2416»

mn

z - cos(o(+p)‘

2 - .[i»,-{l -3t {1 —711
z —'[%7 +(1_~£‘ [1-m J

z - cos(x -p)

%=

cos &

cos@ ’ zx’p may be complex (3.3)

~
T

',-The-choice of cosine instead of the hyperbolic-cosine for the variables

~'§ . and 7~vfsfmotiyated-by.the_fact thdt-wé”drevlater mainly concerned

with 2,-or57—§éiues in neighborhoodsHof the real line scgment‘[—1,+{]

because the natural boundary ';qngéfg.o'ﬂis mapped onto =-1¢ U(s)vs +
All'brﬁnches (except °ne):of~£ﬁe'?gh§t£§n'ﬁ(g,?;z) (3.3) associated
with all arbitfary'integéré én(eyééﬁt'h<=.0 ). possess douhie-yalued
(square-root type) branchlpbiﬁt#j#tugizvcos(u-+ﬁ), cds(usjﬁ), and
an infinitely many—valued (logarithmic t&pe) branch point at z =00,

The appropriate branch of the function H(g,y,z) (3.3) for the

10

unitarity relation or the integral cquation (2.16) is the one corres—



ponding to n = 0 , which is regular at z = cos («-—ﬁ).

One important property of the Kernel function H(é,7,z) to be
recorded here is that the kérﬁgl function H(£,7,z) is Singular at
zZ = cos(q=#ﬁ) for a,given>pair of’Qalués,éscoso<,-and yscos@
(this is called the "addition" property). Or stated differently, if
we designate an ellipse of semi-major axis cosh b, b>1, by E(b),

then for fixed values of § and 7 such that

it

! = cos is on or outside of E(a) a = |Im«x| >1

= cosp is on or outside of E(b) b = [Impg]> 1,
] P f

then the function H{cosx , cosg z) of (3.3) is regular in 2z where
z. is inside of E(a + b), , | " (3.4)

because K+ of (3.3) cannot vanish., This "addition" property of
H(g,y,z)'is of great importance to (fhis) Section III;‘

We record another important property of the function n(f;y,z)
in this paragraph, Let a @eighborhpod \Nz(ZO) of a point z, be

defined as the following open set;

\

Then if the variables =z, $ and 7 are restricted to the following

|z - z, <é9@asma11 positive numbef}.' (3.5)

set of‘neighborhoods;



on

;'c.o-s g | - fin‘_‘v‘_Nz(coxs'(o<,+[;°) )

N
S

e

= cos o _. T, “in - 'N$(0¢sg,);

o
(i

l§°§‘@ >?f. in }_Ny(éOSP;?  . :1 7

m

such that

COS(Nkf +‘ﬂa‘) ~ 1. » e T T I
cos(w, =g, ) A1, o (3.6)

| thejkérhel fuhcfion H({,y,z) of (3.3) can be‘dppro#imatéd as,

‘  .H(§,7,i) ? — — o S o
Az ees(w4g) N

In particular , if «,4g,= 27 and %, g, # 0 or 27, then the

indefinite‘integrai»of the approximatioh (3.7), evaluated at z = 1,

is a remarkable function of the variables § and'7 ;

-—

. : | i | |
G(Q:ﬁ)s fdz H(;,y‘,z) 3} 7 ’,é S _
o L . z=\ J*;._ cos(« +8 ) Z=1J 1 - cés(u +ﬁ).

O(+ﬁ

> sin( 5

)., an entire function of & andﬁ.. (3.8)

Or in terms of the variables £ and 7(, G is aﬁalytic in ¢ and 7



o
Ui

(x= cos-l-g y (= cos—17 ),

G(O(,F)E G2( §,7), agalytic in ¢ and 17

except for § =+ 1 o 17= + 1, (3.9)

“and this is the other crucial property of the function: H(§,7,z)
used in explaining fhe absence of the natural boundary of the par-
tial-wave ampiitude gk(g)(cj'ﬁ2.22) and (2.23{].. We have recorded
the twd important properties of the kernel function_H(E,v,z), hereby
end our‘little detour, and return to the continuation of the main
text.

The partial-wave projection (2.2é) of the full amplitude ¢(2)(cﬂﬁ
on ?K(z) [or ip brief, the partial wave or the partial amplitude of
¢(2)(G,zﬂ in terms of the Liouville series (3.2) results in tﬁe

partiél wave Mn K(U) of the individual term of the series;
? . .

! ' r |
My (o= d (M,,(W.z) P (2z)dz = [Mn(c,z) PX{Z) d.z : (3.10)

wvhere Mn(r,é) and Ik(z) are both even in =z in the "pair" theory of
this study. Since the nth term Mn(U}Z) of the Liouville series is
singular only at the.singular points of (3.1) corresponding te the
integer n , the partial wa;e Mn’i(d) of (3.10) is "expected" to be
singular only at the endpoint singularities of (2.23) also correspond-
ing t? the integef n . It is the aim of this section to show that
Mn’x(G? of (3.10) is regular at the “éxpected" endpoint singularities

of (3.23) ( exceﬁt for 6 =+ 1),



W

F = cos { E-k), ‘ k 0,n, : - (3.11)

Now we proceed to examine the functional behavior of the partial wave
M 1(G} of (3.10) in neighborhoods of the C-points of (3.11). For

H . . .
~the variable 0 restricted to any of the neighborhoods of the

points eof (3.11),

0 in Nﬁ(cos k g-) R k% 0, n, o (3.12)
the.integrand' Mn(v,z) of the integral (3.10) has two singular
z-points in the neighborhoods of 2z = + 1,

_ e 1 T . ;

Z = + €0OS N CoOs cos k o ) =+ cos kw =+ 1 . (3.1))

Hence for ¢ as restricted in (3.:12), the integral (3.10) can be

conveniently split up into two parts,

I-€
M, (6) = [ i +I ] M (o) Bp(z) dz, (e small) (5.14)

- €

such that the first integral is regular at ¢ . Since the € is

quite arbitrary, the function that really determines whether or not
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M 1(67 is singular at . 0 of (3.12) is precisely the following

integral,

JMn(U',z) Pz(z)dz g1 . (3.15)

-
o~
o
e
n

Furthermore, the polynomial Hl(z) can be dropped in so far as the
ascertainment of whether or not Mn ﬂ(0') is singular at ¢ of (3.12) is
. ’

concerned,
Y”I;‘(a)a [jdzh[n(f,z) ] b1 " | (3.16)

In the integral (3.16) the z-dependencé of M (U}z) reéides entirely
in the kernel function H(Z, 7 VZ) wh1ch was discussed between qu (3.5)
to (3.9). |

The expression (3.16) and the two important propertieS.qf'the
kernel fuhctipn_H(g,y,z)‘will be used repeatedly in the re@aihdef of
this seéfion to demonstrate the absence of the "expeéted" natural

boundary (2.23) of the partial wave gz(z)(oﬁ along -1 <0< 1,

-
=

III. B. M, 1(0’) is Regular at 0= cos £ k, k £ 0, 2
’
We are going to demonstrate in this subsection that the partial-
vave projection of the second Liouville term M, (G.z) doesnot contri-
bute two of the four endp01nt slngularltles to qz(g)(d) Ve start byl

rewrltlng from hq. (3. 2) the second term of the llouVLIIe series,

C

Ny(a,2) = §dacj{>a7- g(e,g) n(a;y,z) $le,n)- (3.17)

g Oy



Its associated singularities are .

for a fixed © , 2;=.3 cos 2 cosﬁlé' S or,
for a fixed 6 0“2.1‘(0)-‘;’&05( % + g"k);,*-' K=0,1,2,5.  -(3.18).
The contourv Cg (and s1m11ar1y the contour ‘;7 ) ls an elllpse

genc1rcllnu the closed 1nterva1 [— ’ + 1] wzth two 1ndentat10ns at

=% 0,
S

/"‘ "K'\ I

T - - /’ C(G)—\/TU \\
Figure 1. : _ ! s

s L N (=) L f4l)/"

~_ (7Y cco R

~ iy - —""M,C/

[the little loops encircling ¢ = +5-are des1gnated as C( +5-),and '
(3.19)

the dotted portions of C§ - - T are de31gnated ag C'.
Now if the contour (and C ) is d1v1ded into’ three parts according

(3 19), or- symbolllcally,

Cy =¢(0) + c(-0) + C . e .
. 7 ' 1 (c! consists of two disjoint arcs),
.cv' = C(6) + C(-=0) + C*J * ~ A
(3.20)
the express1on M, (¢, ) of (3. 17) éan'be wfiitén as a sum of nine
1ntegrals assoclated w1th the nxne comb1nat1ons in (; 7) contours

vof (3.u0) The nine combinations of Jntegratxon in 5,7) can be

compactly written3with'the“syhbélié'mnltiﬁiiéﬁtiﬁn'sfgn'(x);



c,xC

¢

= c(a)' x C(o) + c(’a)x\c('-a) +' c(o‘)xc + | “(i3.2'1)

Furthermore, for case of reference, the associated nine integrals of
Mz(v,z) ar: designated by the following rather sélf~expldndiofy‘

notation :

o

}»12(6’,2) | §x2 [cr,zlc(o') X c-(o')] +

i

i fe(o) x e(@)] & ...
where for example

M[C‘(O’)XC“(O')JE [ d;JdV) ¢(U,;)__H(£n},z) yﬁ(zr,g])_, o (3.22)
o) co) o
. . : . . B (—) . .' §
The ﬁ's in Eq. (3.22) can be replaced by %(+) or f according to
whether the assocated contour of integration ?s C(§) or C(~0) because

the Mandelstam representation can be written as a sum of two terms

(2 7) | For example, 1f the 1nteﬂrat10n is- carrled over C(U) then _

ﬁ( ) is integrated to zero. Henco (3.22) can be rewritten as

ME?(G')XC(G‘)] = M[+,4]= f -dzgf a4 ?f(+)(5,£)II(€,7'ZW(‘+)(°37)*

Clo)  clo) e (3-'37

The singularities as enumerated in (3.18) can not arise from any
one of the five integrals of (3.22) where at least one of the
integration in either g or 7 is'carﬁed dvewa' because of the

"addition" property of H(§,7,z), as discussed in £hé‘paragfaph



vt
<

containing (3.4), Also due to a symmetry property of the funciicn
N '
11\577)"’)1

P E (5.214)
H(gi7,z) = H(f§,~7,z}. S - . . N

0f the remaining four integrals of (3.22), only two are distincty,

it

: ‘.[VM[‘}-’_{‘.‘ ‘:I\I [_’_] o B SR ! . }
"\YKM'[M.J. - M[-—‘,-»-_] . T o L B ,I S (3.25)

lience for a fixed 6 ,

: o —1
+C0s & cos ~ O ,

¥

M L+,+] gives rise to the singularity  z

M [+,—] gives rise to the singularity z = -cos 2 cos-lﬁj. (3.26)

Now the origin of the singularities‘of.Ho(oyz) 1g¢ isolated anpd

identified in (3.26). VWe proceed to examine the expressions (3.26)

in terms of the partial-wave integration {3.106). It is the goal of
‘this subsection to show that two of the four "expecied" endpoint

singularities

0 = cos k g , k £ 0,2 or
: ) fomoay N
U- = 4+ i0. N ] . \,ﬁ".;’.'l/
are absent in the partial-wave awplitude Hg 0(6). Therefore, we will
. s v L
. . . - - ~ R . . PN n
wvork in small neighborhoods (3.5 of thesc points {H5.57). TFor vuluo.

Z and ¥ restricted to the followins neighborhoods:



rbz in Nz(l)

\(T in N¢(+i0), o (3.28)

the expression M [+,-] of (3.26) is the appropriate one to use in

the partial wave projection,

12((7) =szM[+,-—] = [d{ jd') g(*‘)(v,'g)ﬁ“)(r,?) (dz];(s’?,z).
221 ' c(6) c(-o) z=1 :
(g~ +i0), (3.29)

It should be pointed out here that the order of intégrations between

dz. and d;d? has been interchanged ; and this interchange needs
justification, We emphagize here that as long as ¢ = +i¢ ,€>0,
the integrand of Eq. (3.29) is analytic in the product region in

the variables (2,5,7,)

[ze Nz(1)]®[§ec(cr)}® (7 GV,C(—W)]

so that the interchange of the order of‘integration in (3.29) is

justified. The function 12(0) at 0= i0 is defined by the analytic

continuatidn of I.(c¢) at o= i€ as calculated from (3.29). And
this is the only meaningful definition of 12(6) at g= i0 (or equi-
valently the only meaningful definition of the partial—wave§% (s)

on the negative s-axis) since the integfal defining IO(C) of Eq.

(3.29) is meaningless at 0= 10, We illustrate the abongeemingly

¢ .
obsure but important remarks by the following integral,

0

#(s) = J’dzs»e"ZS , Re s > 0.

Q



i
[$

The integral ¢{s) is meaningless for Re s = 0. (for that matter

ﬁe s £0) But ¢#(s)=1 identically, hence #(s) is defined for s,

Re 5.50 by the analytic continuation of g(s) at s, ke s>0, Now
we return to the subject matter proper.. For 2z as restricted in
(3.28), and for ¥ and 7 restricted to following neighborhoods

(because of . the contours C(5) and ¢(-6) ):

$ in ) N;(+iO) } = cos«,qz:g \
7 in | Ny(—iO) j or ’? = cosg, z—%-'B s (3.30)
z in Nz( 1) z = c0s9,0=2T

the function H(f,q,z)fin (3.29) satisfies the conditions of (3.0).
)
Hence all the results of that paragraph are applicable here, Thus

Eq.(3.29) can be rewritten as;

12'(0) = _fdg ja,] ¢(+,)(0-,§) g(-)('o,y) G2(£,7), | (3.31)

c(o) c(-0)

where Gé({,y)’is defined in (3.9) and is analytic in } and 7
restricted to-the neighborhoods of (3.30). The analytic property of
Gz(g,y)'i% § and 7 implies thﬁt I;(s? is regular at 0= +i0
because tﬁe integration contours C(0) and ¢(-¢) can now be analytically
deformed to avoid the advancing ;ingularities &= +1i0 and 7 = -10
respectively as 0 approaches +10,

ﬁ} entirel& analogous argument, one can show that 12(6) is also
regular at 0 = -i0. Hence the partial-wave projection Man(J) of
the second Liouville term Mz(ayz) is regular at 0= cos g k ,

k # 0, 2.

/



In summary, the "expected” endpoint singularity of Mz,L(D') at
= +i0 is absent because of the analytic form of the kernel func-
tion H(i,7,z;)a In particular, the factor [Zn‘- cos(o('-e-‘g ﬂ of
H(E,7,z), when integrated and .evalu'atedl at z = 4+ 1 becomes an

entire function in o and (3 ,[see Eq.(3..85‘]

Jl - cos(q#(}) - (E sin =

Or in terms of { and 7 ) it is an analytic function of (& ,7)
except for {= ¢ i or .7- +.1. Consequently the two conto@rs of
integration C(+ ¢") can be analytically deformed to avoid the two
advanlcing singular points in & .@ and 7 as o approaches +i0,
This property persists aq g characteristic feature for all Mn'Q((T)

terms to be discussed later. We now go on to treat ihe “3(-0—’2)

term in analogous fashion, so as to arrive at the generalization for

the arbitrary 2t term Mn( 6 ,z). of the Liouville series.

III, C. M, (0) is Regular O= cos , kA0, 3

3.0

Al =]

The treatment of the term M (G’,z) follows closely that of

-Mz‘(.O’ z). We start out by writing M (6‘ z) in full;

Ms(0,2) = -&d{i %dyﬂ(o‘,%)ﬂ(fl.?,z} éézg‘ a & ,0(0,8,)«

C .
$ C C
¢ 7 él . zs

9 jl <+ cos(e(q.p) .,fé'.;coa 2:2_@___, ©

33

« wg, ;,397)16(6.;3). | (3.32)

The singularities of the term M3( U,2) are:



3h

-1
[for a fixed 0, z.= 4 €08 J cos O or

4 -

. (3.33)
i,fo a fixed © G. (O)mcoa[gq-" k] k = 0,1,...5.
r ’ 3,1( 3 ’ 3 : ydy |

3

Again the contours \.C'gi "i{i = 1,2,3) are chosen as in (3.19) and

(3.20),
Cg, = c(o').+_cb-¢) + C (i = 1,2,3) . (3.34)

The expression (3.32) for M}( ¢ ,z) can now be written as a sum of 27
integrals corresponding to the 27 combinations of integration in

§(ia 1,2,3)'of (3.34),
Cg X CgpnC 4y = c(er) » c(o)=c(o) + ... - (3.35).

However, any integral invelving an integration in any of the three
-variables §,(i = 1,2,3) over C' is analytic at the points (0,2) of
'(3,33) again because of the "addition™ property of H(vg,r),z) [sée the
discussion that leads to (3.&)] . The.x-"efore, as far as the study of
the aingnlgriﬁiea of MB(T,Z) (3.33) is concerned, it suffices to |

discuss only 8 of the total 27 integrals,

M:,’(o'.z)s Mjf_o-,z i c(e) x C(?) ® c(é‘)] .
.¢.-¢.M3[v,zlc(_0')%c(c)_i'“c(e-u‘)} +oerees
= YM‘.’ £+,+,+] + Hj&,-&,-] + sse o (3..36)

Furthemore, due to:the symmetry of the function H(E,y,z) (3.24),

only four 0f the eight integrals are digtinct,
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My [+2404] =My [+,-,-)

Mo [+a49=] = Mg [+m04] (3.37)
M3 [-,+,+] = Mj [=,-,=]
T N

In any of the ).(3 - integrals of (3.37), the integration over i is
still over a closed contour Cv[see (3.32)] . For a fixed pair of

($2, §3) -values of (say) C(6) xC(6);

£2 = cos « on C(0)

(3.38)

£y = o8 0(3 on C(0o),

then the closed contour C,7 can be broken up into two pieces, [see

definition (3.19)]
C7 = C(cosfx, + o<3] ) +{C‘7 - C(cos («, + % 5] )} . (3.39)

Again by the "addition" property of the function H(§2, 3 3'7) (3.4)

only the integral involving the integration in 7} over the contour
C(cos [«2 + 0(3] ) contributes to the aingularity of (3.33). Hence
keeping this in mind and remembering the replacement of ﬂ by yf(*)

or ¢(') as done in (3.22) to (3.23), we write a typical integral of

(3.37) in detail as :

M3[+,+,+]E Jd?l I df2) dz} Id7¢(+)(mil)¢(+)(¢v §1)¢(‘%€,§3)¢.

©) o) eof € (cosLopraty3)

H(E, g2, b ) . (3.40)
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According to the expressions (2.23) and (3.33), we wish to show that

the partial-wave amplitudeM3 L(F) of the third Liouville term is
$

regular at,

G},k = €08

Wi

k, k= 1p'2oi‘p5 (k )‘ 013)- (3'1‘1)
. For definiteness, we choose to approach the point

d' =0'3’2 = CO8 (-1-'-;-0 2) ‘- ‘- 3 in o (3.42)
‘in the éxpression (3.10), then both M3{+,+.+] and M3[-’+'-] of (3.37)
contribute to the integral (3.16) because of the "addition" property
of the function H(E,q,z). But we will illustrate the procedure by
working out the consequence due to the integral M'[f,¥,4]onlyd'

~ For Ei (i =1,2,3), z' and 7 restricted to the fdllowing

neighborhoods:

- - , L. T
§, = cos *i_ ~in Np(-F +i0) or &, = 32
z =. cos & in ‘Nz(l) '  oF Cex aw o (3.43)

= cosf  in "N7(-%_;-ioz)' = 01.' | ﬂg‘ 13-" .24‘...

the following approximations for the two H's in (3.40) are walid;

H(EI,V'Z) = b
2 - cos [CH +p)

. | | (3.44)

;‘(32’53.7)' =

M- cos(Xo+ o ;) L
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Again the discussion from (3.5) to (3.9) is applicable, the integral
13(0) of (3.16) with M3 [+;+,+J of (3.40) substituted can be

rewritten as

13(0') = fdz M [+,+,+]

Zml

- [dfl [a2, [arg o808 0 )8 @105, g, 1),

c(o) c(s) c(o)

where

62(81;7)

G3(£1"2'23)E : d” .
4 ‘{7- 008(0(2 +o(3)
C(cos['.(2 +°(3]) - ,

- [dx 62(21,0.08("(2 "'°<3) +X )e (3.45)

C(o) r):-

The interchange of the order of integration is again justified by
entirely analogous arguments that justifies Eq. (3.29) previously.
Because of the analytic property of G2(£1,7 ) (3.9), the integral

of (3.45) integrates to an analytic function G3(E1 t, gj)'
’ $

63(£1’§2,§3) is analytic in Zi(il. 1,2,3)

provided : ' (3.46)

£i ;‘11,(i=1,2,3), or cos(o(2 *’°<3)".";1

since the loop contour C(0) can be made arbitrarily small, For
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Ei (i = 1,2,3) as restricted in the neighborhoods of (3.43), the
conditions of (3.46) are satisfied; hence I (0‘) of (3.45) is regular
at 0= - 3%+ 10 (3.42) because the contours C(0) can now be
analytically deformed to avoid the advancing singularities

13 e 1410 (i = 1,2,3) as O approaches (- %4 +: 10)
The other three points of (3.41) can be similarly treated so that M3’ g (@)
is regular at ¢~ = cos Tk, k#0, 3.

Now the essentijl element for the generalization to the arbitrary nt
term, of the Liouville series is present in the functiop G3(E i) (i=1,2,3) of
(3.46) or (3.45). For the general nth term Mn (-, z), analogous tre;tment
will lead to an analytic function Gn(€ i) (i=1,2, ....,n), instead of
G3(€;)(i=1,2,3) as here. The function will be analytic in § (i=1, ...,n)

provided that Ei;f:tlor cos(od, ... + O{n)#:l:l, etc.

III. D. M st(0‘) is Regular at @ = cos E k, k # 0,n
) .

The general 2*® term of the Liouville series of ¢(2)(6',z) is

given as : (3.2)

“ M,;(tr.z) - ggdslfdvl 4(0,8)) 5%, n, 2) Mn_l(.f.yl)"

Cc

& O,
= <§dg1... §dsn§a71...(§d7n_2 yf(o-,zl)...ﬂ(t)‘,in)
Cg, Ce,, Cy, 6‘7.‘_1

H('E1’72’z") H($2'72'71) .. ‘"(fn-1,£n,’] no2) (3.47)

The singularities of Mn'(O".z) are,
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for a fixed @ , Z = + €08 N cos 0 or

. ‘ 4 W _
for a fixed 9 , 0;,k(0) = COB [E-+ % k], k = 0,...,2n-1,
(3.48)

We want to show as before that the partial-wave Mn X(0‘) of Mn(v,z)
]

is regular at

T = G;’;(O) -‘cos ['% k] . k 4 0,n. | (3.49)

Therefore the steps taken from (3.34).to,(3.45) for the Mj(dyz) case
can be exactly‘repeated"here for the Mn(Uyz) case except for the
complication in retaining the appropriate portions of the contours

.07. Fof illustration, we examine the sécqnd H‘ factor of the expre§¢~
sion (3.47), H(£297)29571). For fixed £2 s cosx, and NoE coéﬁz,
only the contours C(+ °°5'[°‘2. +(32]) ‘[see (3.19) for definitiora
contribute to the ainguiarities (3.48). .Furthermore, for a chosen
pair of (0,z) values, only one of the two contours C(+ cos(a:24-@23 )
contributes, Illence by repeating the steps from-(3.34) to (3.45), we
start from the expression (3.47) for Mn(W,é), and arrive at the follow~
ing'expressioh'for the determination 6f whether or not the partiél"

wave Mn g(6’)‘is singular at the p?ints of (3.49) :
]

In(ﬁ') = [Mn [+,-’+,....,+3 dz + ..'. , (G:.cés[% k], k £ 0,n)

z=1

= [dgl... [dznﬂ(*)(r.fl)...¢(*)(0',£n) 6 (Epreeer Jounn
Cte) Cte)
(3.50)
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where

1

¢ (& --o.é’n)s [d nogt e dy.6 (¢ ) »
n' 1, Tn-2 12 %1,71 (Tr=ooslogegy)

C(cos@h_1+u6? C(cosEM2+ﬂ2])

1 1

'S o 0 0

J 72—cos(«3+ﬁ3) \Iryn_z-cos(o(n_fro(n) .

(3.51)
The integral in (3.51) involving only the integration in n L is
just the function 63(81,;2,72) of (3.45) and (3.46), whereas the
integral involving the integrations in 71 and q 9 would be
04(51,52,§3,73)" In general the integral }nyolvjpg the integrations

of 74 UP to 7j~2 inclusively will be a function Gj such that,
G, NN . is analytic in all the variable
J( 21’22“ . t:EJ"ltl ?J"l) 8 y e var U s
except for

Si = : 1' (i == 1,2,.-.,3“1.) and 7.].—1 [ 1

& = cos &,

Ny el | (3.52)

By such inductive arguments, the analytic property of Gn Eq. (3.51)
’

is the following :
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Gn(£1,”" g ) is analytic in all §; (i = 1,....,n)

except for

Ei =+1, (i=1,...,n) and

cos(:.a(2 + eeo +o(n) uvLi (3.53)

But for all the ¢ - points of (3.49), the conditions (3.53) is

satisfied by the integration domains of the integral In(G) of (3.50) :

figcos(gk),vkﬁo,n‘@ zi"i-l

n-1

k )w 4 + 1 .

.cos(o(2+...+xn) = cos(n-l)-%k, k £ ‘6,{1%008( =

- (3.54)

Therefore, In(cﬁ of (3.50) is again regular at 0= cos ( % k),

k 4 O,n. Since the infeger n is arbitrary, we havé demonstrated
that the parfial-wave projection.of all terms of the Liouville sgries
¢(2)(sz) is regular at the "expecfed" endpoint singularitieé of (2.23)
excggt"fof the two points 6'; 1. Hénce formally (or rigoropsly

if the Liouville series convefges) the partial—wavelq;(z)(Gj of
¢(2)(¢,z) does not'possess the "expecfed"-naturhl.honndary in

~-1< 0 £ + 1 because the "expected" endpoint singularities are inte-

grated out-point'by*pqint as demonstrated in this section.
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Iv, The Partial-wave Projéction of the Liouville Series of

¢(2)(W;z) and Cénclﬂsibﬂ

The explanation for the absence of the natural boundary of ﬂgz)(i)
in Section III is very explicitly given. There the singularities of
¢(2)(¢'z) are isolated and then it is shown that the "expected" end-
p01nt singularities are integrated out poxnt by point except for the
points 0= X 1. Actually,the part1a1—wave progect1on M (0) of
the grbi‘trary*nth term M (G,z) of the L1ouv111e series can be carried
duttexaétly with the help of the Lemmas in the Appendix A,

+1

“n»x““%_f dz ¥ (0,2)8 (=) [ﬂf (o)] ()

Then it is obv1ous that M 71(6‘) is singular only at (¢ = + 1 Dbecause -

| ﬂk(G) is 4 This is in agreement w1th%§es;1tsof Section III as briefly

mentxoned above in thls paragraph

| The_z - dependence~of,the‘;nd1vidua1‘terﬁ df the Liouville sériés

for ¢(2)(G}z) (3;2)'résiaés entirely in the'kerpel function H(g,q,z).

- The partial;wdve‘projéc{ibn of H(é,y,z) ?é 5 product of two Legendre

- functions {}ee Lemﬁébs3 of the jAppépaikvAJ g )
: | . S o

Hx@,?)s%(azn(;,?,-z)px(zm g (8) Q) . (42)

which agrees with the analytlc properties of the function’ G (g 7) of
(3.9). By the repeated use of Lemma 1, and Lemma 3 of the

Appendix A ,M2 (¢) , M _{6‘ and M_ (6) are integrated to;
‘ | ) Ty R (1% \
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My ¢ (1) = (=) (2 [ ()]

5, () = (+) (20° 4 ()] 7 | | (131

i, (0) = (-)“‘lv(2«-«)3(“’1) (4, (o))" .

L

:
which is the assertion of Eq. (4.1).
"~ By putting the ekpressiéns (4.3)back into (3.2), the partial-
wave ¢1(2)(G) of the full.amplitude(ﬂ(2)(6,2) formally sums back to

the partial-wave upitarity relation (2.15);

[ dzMn(o’, z)pi(z.)

¢X(2)(o')»- 1 -!: d.zgj(2)(c,z')PX(z) - nzl -[Po(éil n-ié,,

-]

- 2o [ ™4™ [ @] eyt

. |
- 4, (o) {{i——o [-2ip(s) ¢£(o)]"}

) ¢2( o) ' | .(1‘.4)

t + 2ip(s) 4, (o) |

which is the starting point of our stﬁdy. Hence our study comes to
an end,

We have carried the present study through 5 completevcyclé: we
start out with the Mandelstam representation and the partial-wave

unitarity relation (2.15) between qz(z)(s) and q((s),then go on to
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define the fuil amplitude ﬂ(z)(s,z). From the integral equation (2.16)
[}he unitarity relation befween ¢(2)(s,z) and ¢ (s,zi], én;nfinite set
‘(3.1) of singﬁlar points of ﬂ(z)'(s;z) is determined. This infinite.
set of singuldr points is‘Shbwn to cogstitute a natural boundary along‘
the real negative s - axis for arbitrary complex =z . 1IN an attempt
to understand the absence_ofvthe "expected" natural boundary for the
partial-wave amplituae ﬂj(a)(s) , the set (3.1) of singularities is
clasgified by'g:LiouQille series whose nth term is designated by
Mn(s,z). It is.tﬁen shown that the.partiai—w#ve.projection Mn'i(s).

of M (s,z) on Pﬂ(z) is slngular only at 8 =0,00 (6= 4+ 1) whereas

all other "expected” endpoxnt sxngularxtles (2.23) are integrated out.

point. by point due to a remarkahle_property of the kernel function
fK&v,z). Since each term Mn’k(s) in the infinite Liouville series
is singular only at,s = 0,00, the formal sum ¢(2)(s) is then.singula&
only at. 8 = 0,0 ; hence the absence of the "expected" ‘natural boundary
along —w<¢s< 0 for the partlalowave amplitude ¢( )( ) is understood
Furthermore, the partial-wave projection of the Liouville series of
ﬂ( )(s) sums.exactly back to the partial-wave unitarity relation (2.15),
which is the stérting point of the cycle,

‘ We conclude by making a few general remarks

(1) The demonstratxon that “the "expected" endpoint S1ngu1ar1t1es
of ¢ (2 )( ) is 1ntegrated out po1nt by point ,is carried out via the
Liouville series of ﬂ( )(s z) ~If the series converges, the demons-
tration is rigorous; if the series diverges, the demonstration iQ
then formal, | Even in the latter case, we_still believe that the
proposed explanation ip this study for the absence of the gexpected"

natural boundary of géz)(s) is correct,
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(2) A careful study of Zimmermaen's derivation 6 of this infinite
set (S.i) of singularities shows that it has its originnin the kernel
function H(E 7 R Our proposed explanation is also hased on a
remarkable property of H(g 7 ,z2) at 2z = + 1 namely, the factor

Ez - cos(d+@i] 2 which when evaluated at the endpo1nts of integration

z=+1), {Irg cos(a+ﬂ) y 1is an entire function of o and p or

s

an analytic function of ¢ and ’7 except for £ = + 1 or 7 = 41,

‘...00

o

It should be noticed that the endpoint singularities 8 = 0,
(or ¢ =%|) for Mn, (6) ‘are not integrated,out’By our proposed mechanism
because now the funceion-H(g,v,z) (3.3) can no longer be approximated
by |z - cos(dv+@ i} -3 at z = 1 ‘because K_::O also,

(3) Zimmermann's work 6 can be carried out within the frame-work
of the rigorously proved analyticity properties of the physical
amplitude ﬂ(s,z) [i.e. his work does mot need all the anelyticity
properties of the Mandelstam conjecfure], Since this study is based
on memermann s work, therefore, the result of thls study has greater
validity than thatlmplxed by the Mandelstam$ conjecture. |

(%) One possible implication of the result of this study is the
following : the amplitude;ﬂig?-(s,z) gi?envby the unitarity condition

in Freund. and Karplus® 10 paper,.fqrmula (6),

o4 Lo 0(-K(x,y,2))

¢( )(s.@) = ¢AB(s;z) -\——Egégl de Xdy ﬂAB(s,x) ' ¥
T "-'.-K('x;y;z)'

(2)

* ﬁAA (soY) ’

(2)

is &dwre expected to have a natural boundary because ¢AA (s,y) does;



there the angular integrations do not have the simplifying properties
that cause the singylaritiés to disappear. |

(5) It is mathematically interesting to continue the individugl
partial-wave amplitude ¢2(2)(s) across the real negative 8 -~ axis

and then to write a Legendre series,

We call this series a "pseudo - continuation" of ﬁ(z)(s,z) if it

converges., How is the "pseudo - continuation” ¢§§Zudo(s’z) related
o .
to ¢( )(s,z) across the natural boundary .?
(6) Lemma 5 of the Appendix A is an interesting identity

among the same Legendre‘fhnction Q 's of different arguments.

46
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* APPENDIX A MATHEMATICAL FORMULAS AND IDENTITIES11

Lemma 1. Let £f(z) be an analytic function of z in E, where E is a
nelghborhood of the interval -1<¢z'<+1, . Further, let P (z) and Qq(z)
denote the legendre functions of the first and second kind. Then

{
1

3 f £(z) B (z) dz = T 4 f(z) QK(Z) dz
it . C

where C s wholiy inside E 'and encircles the interval -1£2z2<+1,

Proof. By mubstituting the Neumann formula

- _
dz*

o) = | pyten) o (4.1)

into the right-hand side and interchanging the order of integration,
an identity results,.

Lemma 2,

8 (-k(x,y,z)) . Z_ﬁ: (2“1);"(::) P

[ 7y72) D E

where
K(X;Y.Z) = x2 + y2 + 22 -2xyz - 1,

Proof. The proof of this identity starts with the addition formula

of Legendre polynomials,



(coaa) = Pi(cos e) P (cos 6') + 2Z (l'm)'
. Pkm(cos 9) P’lm(cos 8') cos mf

where cosy = cos O cos 6' + 8in @ sin @' cos g .

We integrate in the variable ﬂvfrom 0 to %, and get

R{Y

[PX (xy+ (1 - x2 (1 - y2 cos ¢) dg =ﬁP’((x) IjQ(y). (A.2)

' . 284+ 1
Now we multiply (A.2) by I:Q(z)

) and sum, we getl ~

| b
[N e S e JOPRECLR
-1
- vg(f%l%&(x) B (y) P (2) (4.3)

The left-hand side of (A.3) simplifies to

8(-K(x,y,z © + v
r“T—‘Y( ) wy (5 (%) Bly) B(a) . (4.4)
-K(x,y,z ' {=o -

Lemma 3. Lemma 2 leads immediately to another identity,-

2rQ,\(x) Ql(y) = f P,(z) H(x,y,z) dz



50

Proof. From Neumann's formula

’ v dz'
QX(Z) = % -r .Py\(z') P

1 1

s R T Px(z) dx' dy' dz

We are led to multiply (A.4) by & o
and integrate from -1 to +1. This step results in the following
expression»_

!

A : . \l l . .
2'u‘(i (x){ Q, (¥) - 3 [P (z) dz [ = f A i
2 )R X=x' VY [X(xys2)

-t - -p

(A.5)
‘But the expression inside the bracket is nothing otlier than the
. function H(x,y,z) 6 [ref. (2.17)]’hence.
. | (
2% Q(x) Q(y) = % [Px(z) dz. H(x,y,z). (a.6)
' -t :
Lemiia 4.12
. : dw
) 2 2
Q) () f———— o v o v (B [P)
w2-1 ‘
'. .
. .6
Proof. By substituting
0
’ . dz' 1
"H(x,y,2) = 2%

z'-2z r—(————~—y
Xy +,x2-1ly2-1 K },y,?'

into (A.6) of Lemma 3, we get



2mQ (x)Q(y) = —é_f}’x(z)dzéﬁ J

LI
-t ’2 /) 2z IK(XDYtz')
xy+|x =1Jy -1

dz' 1

00

. dz! Q&(z')
=27 f : . . (A.?)
xy+ [x2-1_fy2-1 \[K(x,y,z ).

By the following change of variable,

z2' = Xy + W (;2 - 1va2 -1

(A.7) is transformed into the desired result.

'Lemma 56
n 2w 2 aw a
— 1 n
o) - [ e o [ o
1=0 b Ol 4 ’_\W12—1 / ij2_1

where xh is defined by a recursion relation,

2
] o ] - [ [} —
n " *n*p-1 ¥ Wann 1 (x n-l2 1, x

Proof. DRepeated application of Lemma 4 yields Lemma 5.
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