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Abstract
Aims: To investigate spatial congruence between ecological niches and genotype in 
two allopatric species of desert tortoise that are species of conservation concern.
Location: Mojave and Sonoran Desert ecoregions; California, Nevada, Arizona, Utah, 
USA.
Methods: We compare ecological niches of Gopherus agassizii and Gopherus morafkai 
using species distribution modelling (SDM) and then calibrate a pooled‐taxa distribu‐
tion model to explore local differences in species–environment relationships based 
on the spatial residuals of the pooled‐taxa model. We use multiscale geographically 
weighted regression (MGWR) applied to those residuals to estimate local species–en‐
vironment relationships that can vary across the landscape. We identify multivariate 
clusters in these local species–environment relationships and compare them against 
models of (a) a geographically based taxonomic designation for two sister species and 
(b) an environmental ecoregion designation, with respect to their ability to predict a 
genotype association index for these two species.
Results: We find non‐identical niches for these species, with differences that span 
physiographic and vegetation niche dimensions. We find evidence for two distinct 
clusters of local species–environment relationships that when mapped, predict an 
index of genotype association for the two sister taxa better than did either the geo‐
graphically based taxonomic designation or an environmental ecoregion designation.
Main conclusions: Exploring local species–environment relationships by coupling 
SDM and MGWR can benefit studies of biogeography and conservation. We find 
that niche separation in habitat selection conforms to genotypic differences between 
sister taxa of tortoise in a recent secondary contact zone. This result may inform de‐
cision making by agencies with regulatory or land management authority for the two 
sister taxa addressed here.
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1  | INTRODUC TION

The relationships between the distributions of species and their 
ecological properties have long been central to biogeographic in‐
quiry (Grinnell, 1917; MacArthur, 1972). More recently, quantitative 
methods to define ecological niches have become essential toolsets 
for investigating how species are distributed in environmental and 
geographic space (Araújo & Guisan, 2006; Guisan & Zimmermann, 
2000). Species distribution modelling (SDM) is one such toolset that 
relates locations of species observations to explanatory variables 
hypothesized to influence or define a species’ Hutchinsonian niche 
(Franklin, 2010). SDM quantifies the relationships between environ‐
mental conditions at locations where a species has been observed to 
those locations where it has not in order to predict how likely it is to 
occur at unobserved locations. These relationships, hereafter “spe‐
cies–environment relationships,” are represented by model coeffi‐
cients and can range from simple linear parameters in the most basic 
form of generalized linear modelling (GLM), to complex combinations 
of basis functions (e.g., polynomials, splines) in generalized additive 
modelling (GAM) or machine learning frameworks (Franklin, 2010).

In conservation biogeography, metrics such as phylogenetic di‐
versity (Crozier, 1997; Helmus, Bland, Williams, & Ives, 2007; Scoble 
& Lowe, 2010; Vandergast et al., 2013; Wood et al., 2013) are being 
recognized as important for conservation planning and managing 
biological resources (Myers, Mittermeier, Mittermeier, Fonseca, & 
Kent, 2000; Naeem, Duffy, & Zavaleta, 2012; Rodrigues & Gaston, 
2002; Winter, Devictor, & Schweiger, 2013). Spatially structured 
variation in phylogenetic diversity may foster ecosystem resilience 
to global change through evolutionary potential (Devictor et al., 
2010; Flynn, Mirotchnick, Jain, Palmer, & Naeem, 2011; Legendre, 
Borcard, & Peres‐Neto, 2005; Tews et al., 2004), and therefore, the 
ability to map species’ distributions and their relatedness has shown 
to be a valuable tool for conservation (Moritz, 2002; Rodrigues & 
Gaston, 2002; Scoble & Lowe, 2010; Winter et al., 2013). SDM is 
widely used for mapping distributions, but also provides a frame‐
work for quantifying differences between species’ niches (Peterson, 
Soberón, & Sanchez‐Cordero, 1999; Warren, Glor, & Turelli, 2008).

For example, under conditions of allopatric speciation, SDM 
can be used to develop niche models for sister species in order to 
quantify niche differences using ecological overlap metrics (e.g., 
Broennimann et al., 2011; Godsoe, 2013; Rödder & Engler, 2011) 
and statistical tests (e.g., Nunes & Pearson, 2017; Warren et al., 
2008; Warren, Glor, & Turelli, 2010). Substantial similarity between 
niches may suggest niche conservation between the two allopatric 
species (Warren et al., 2008; Wiens & Graham, 2005), such that the 
species–environment relationships are maintained through time 
and across taxa, even in the presence of environmental change or 
speciation (Wiens & Graham, 2005). However, the assumptions nor‐
mally imposed in SDM may affect its utility for niche comparisons, 
including (a) imposing a single scale for all species–environment re‐
lationships and (b) fixing the spatial scale of those species–environ‐
ment relationships across space. The former is well understood, with 
a consensus that no single scale is most appropriate for studying 

ecological phenomena (Levin, 1992; Wiens, 1989) and that under‐
standing landscape structure and ecosystem processes may re‐
quire multi‐scale approaches (Rahbek & Graves, 2001; Seo, Thorne, 
Hannah, & Thuiller, 2009; Willis & Whittaker, 2002; Wu, 2004). 
This is evident in SDM where climate may dominate distributions at 
global to regional scales, yet topography and surface characteristics 
may influence species at regional to local scales (Beever, Swihart, & 
Bestelmeyer, 2006; Mackey & Lindenmayer, 2001).

The second constraint assumes that species–environment rela‐
tionships (and the model coefficients that define them) do not vary 
across the geographic range of each species. Mixture zones, espe‐
cially those with hybridization, may represent areas where a species’ 
niche differs from the rest of its range due to local adaptation in 
different habitats (Lenormand, 2012). In these areas, species–envi‐
ronment relationships defined from the entirety of a species’ range 
may not adequately characterize local differences, such that a single 
set of model coefficients may not represent the variation in spe‐
cies–environment relationships across space (Foody, 2004; Miller, 
2012; Osborne, Foody, & Suárez‐Seoane, 2007) because model co‐
efficients may covary with location (Atkinson, 2001; Fotheringham, 
1997). SDM practitioners have developed tools for incorporating po‐
tential spatial variation in species–environment relationships by cali‐
brating separate models on subregions of a species’ distribution (e.g., 
Peterson & Holt, 2003) or through the use of additive or multipli‐
cative indicator variables. However, these solutions require a priori 
knowledge of the configuration of any hypothesized subregions and 
therefore limit exploration of spatial patterns in model coefficients.

Identifying spatially varying relationships across ecological bound‐
aries (such as between two adjacent species) can highlight differences 
in data quality spanning those transition zones (e.g., differences in sam‐
pling regimes; Cheng & Fotheringham, 2013) and can provide infor‐
mation about the nature of the boundary, such as potential secondary 
contact between vicariant populations (Endler, 1977; Gay, Crochet, 
Bell, & Lenormand, 2008; Jiggins & Mallet, 2000). Through a conser‐
vation biogeography lens, boundaries and the gradients spanning them 
are key concepts that give context to phylogenetic diversity and the 
conditions that influence speciation (Hoffmann & Blows, 1994).

Tools such as geographically weighted regression (GWR; 
Fotheringham, Brunsdon, & Charlton, 2002) have been used to ex‐
plore locally varying processes and their spatial scale across bound‐
aries (Cheng & Fotheringham, 2013) and have also been used to 
investigate locally varying patterns in species richness (Bickford 
& Laffan, 2006; Foody, 2004; Holloway & Miller, 2015) and spe‐
cies–environment relationships (Kupfer & Farris, 2006; Miller, 2012; 
Miller, Franklin, & Aspinall, 2007; Osborne et al., 2007). In GWR, the 
spatial scale of species–environment relationships is represented 
with bandwidth parameters that determine the degree to which 
nearby observations are given higher weights than more distant 
ones (Fotheringham et al., 2002). Large bandwidths approximate 
classical regression with a single set of coefficients to represent 
species–environment relationships, while small bandwidths result in 
highly local models with species–environment relationships that can 
vary across the landscape. However, previous implementations of 
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GWR have required a single bandwidth for all explanatory variables 
(Fotheringham et al., 2002), thus precluding a multi‐scale approach. 
A recent development has enabled estimation of separate spatial 
scales for each explanatory variable by optimizing multiple band‐
width parameters—multiscale geographically weighted regression 
(MGWR; Fotheringham, Yang, & Kang, 2017), which allows a multi‐
scale approach to exploring species–environment relationships.

Here we develop a case study of two sister taxa to explore geo‐
graphic patterns of niche differences between them, with focus on 
their differing conservation status. These two species, Gopherus 
agassizii (Agassiz's desert tortoise) and Gopherus morafkai (Morafka's 
desert tortoise) diverged approximately 6 Ma due to geographic iso‐
lation by the Bouse embayment, a putative marine transgression of 
the ancestral Gulf of California along the lower Colorado River, which 
has resulted in allopatric speciation (Murphy et al., 2011). These two 
cryptic species were only recently distinguished phylogenetically 
and taxonomically due to differences in genetics, reproductive ecol‐
ogy and seasonal activity (McLuckie, Lamb, Schwalbe, & McCord, 
1999; Murphy et al., 2011), but are not readily distinguished morpho‐
logically. Prior to the taxonomic split, a distinct population segment 
(DPS) defined as the Mojave population (Figure 1; tortoises west and 
north of the Colorado River) was listed as threatened with extinction 
and given legal protection under the U.S. Endangered Species Act 
(ESA; Department of the Interior, 1990) and has received extensive 
monitoring yielding a wealth of georeferenced observations. The re‐
maining "Sonoran Population," later elevated as the distinct species, 
G. morafkai, does not have the same legal protection or monitoring 
effort (Murphy et al., 2011; Service, 2015).

While the Colorado River defines the geographic division be‐
tween the species, recent genetic work has identified a secondary 

contact zone where G. agassizii (the western species) occurs in a 
small population east of the Colorado River (Edwards et al., 2015; 
McLuckie et al., 1999). This secondary contact zone likely emerged 
only 2.5 ka as a result of avulsion in the Colorado River, but now 
G. agassizii in this zone are isolated from individuals occurring west 
of the Colorado River. This small population faces threats from in‐
creasing development in the region and is not legally protected. 
This situation is further complicated by evidence of natural hybrid‐
ization between G. agassizii and G. morafkai occurring in this second‐
ary contact zone, and by the lack of a clear definition of habitat for 
this population of G. agassizii east of the river. Recent work has also 
suggested that this population occupies habitat with intermediate 
characteristics to that of the pure lineages (Edwards et al., 2015). 
Habitat for G. agassizii and G. morafkai outside the contact zone 
is better defined, with known habitat ranging from valley bottoms 
and alkaline areas surrounding playas in the Mojave, to bajadas and 
alluvial fans, arroyos, rocky slopes and ridges in the upland regions 
in the Sonoran desert (Nussear & Tuberville, 2014). Differences in 
habitat characteristics between the two species span physiogra‐
phy (Nussear & Tuberville, 2014), geology (Burge, 1978), vegeta‐
tion (Bury, Esque, DeFalco, & Medica, 1994) and climate (Nussear, 
Esque, Inman, Gass, & Thomas, 2009; Tracy et al., 2004). However, 
no formal tests of niche similarity have been conducted to date, 
further complicating delineations of these two iconic species.

We use SDM and MGWR in a coupled modelling approach to iden‐
tify differences in the ecological niches of G. agassizii and G. morafkai, 
and explore spatially varying species–environment relationships in 
the recent secondary contact zone. We (a) formally test for differ‐
ences in their ecological niches, (b) identify boundaries represented 
by differences in their niches and (c) determine which of three spatial 

F I G U R E  1   Study area used to create 
pooled‐taxa species distribution models 
(light grey) and region of habitat for the 
two species of desert tortoise, Gopherus 
agassizii (Agassiz's tortoise; light orange) 
and Gopherus morafkai (Morafkai's 
tortoise; purple). The focal study area 
(thin black line) encompassing the contact 
zone was used to reduce computation 
time for local models and genotype 
assessment. The Colorado River (blue) 
separates California and Arizona and 
creates the division between the two 
species of desert tortoise. A Distinct 
Population Segment defined as the 
Mojave population includes individuals 
located west of the Colorado River. USA 
Contiguous Albers Equal Area Conic 
projection (SR‐ORG:7301)
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delineations better describes landscape patterns of genotypic varia‐
tion. These delineations include (a) the Colorado River (the current geo‐
graphic boundary defining each species), (b) the Mojave and Sonoran 
Basin and Range ecotone, and (c) geographic patterns in local niche 
differences identified in this study. The results of this study will inform 
conservation planning across the transition zone of these two species.

2  | METHODS

2.1 | Study area

Our study area included the known range of G. agassizii and 
G. morafkai across 68,323 km2 in the Southwestern United States, en‐
compassing parts of California, Arizona, Nevada and Utah (Figure 1). 

This region is characterized as the Mojave Basin and Range Level III 
Ecoregion and Sonoran Basin and Range Level III Ecoregion (Wiken, 
Nava, & Griffith, 2011), hereafter the Mojave Desert and Sonoran 
Desert, respectively. The subregion encompassing the genetic sam‐
pling locations used by Edwards et al. (2015), hereafter referred to 
as the focal study area (Figure 1), offered an opportunity to explore 
spatial patterns in species–environment relationships across the ec‐
otone between the Mojave and Sonoran deserts and in the second‐
ary contact zone between G. agassizii and G. morafkai.

2.2 | Modelling overview

We developed a two‐step modelling approach drawing on the 
strengths of both SDM and MGWR (Figure 2) to explore spatial 

F I G U R E  2   Modelling Overview. Two‐step modelling approach using species distribution modelling (SDM) and multiscale geographically 
weighted regression (MGWR) to explore spatial patterns in species–environment relationships of Gopherus agassizii and Gopherus morafkai. 
In step 1, we use SDM to develop range‐wide ecological niche models for each species separately and test hypotheses of niche equivalency. 
We also pool both species to develop a single model of their combined ecological niche and use the mapped residuals from this pooled 
model as a measure of local deviation. In step 2, we use MGWR to explore spatial patterns in the relationships between these residuals and 
explanatory variables that may enumerate differences between the two species and their hybrids within the focal study area
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patterns in species–environment relationships of G. agassizii and 
G. morafkai across this secondary contact zone. In the first step, we 
use SDM to develop range‐wide ecological niche models for each 
species separately and test hypotheses that the niches of these two 
species are more different than would be expected by chance. We 
then pool location data for both species and develop a single model 
of their combined ecological niche and use the mapped residuals 
from this pooled model as a measure of local deviation. We assume 
that if the two species exhibit different ecological niches, residu‐
als from a pooled model will represent how poorly their combined 
niche predicts the probability of presence at a given location. In the 
second step, we use MGWR to explore spatial patterns in the re‐
lationships between these residuals and hypothesized explanatory 
variables that may enumerate differences between the two species 
and their hybrids within the focal study area.

2.3 | Species distribution modelling

We used MaxEnt v. 3.4.0 (Phillips, Dudik, & Schapire, 2018) to create 
distribution models for each species separately and for a combined 
pooled model in a presence–background framework. The latest ver‐
sions of Maxent software (e.g., version 3.4.0) produce an estimate 
of occurrence probability based on the complementary log–log 
function (Phillips, Anderson, Dudik, Schapire, & Blair, 2017) which 
we use as the probability of presence. We allow inclusion of all fea‐
ture classes (linear, quadratic, product and hinge). Observational 
data spanning 1970–2013 from 23 datasets encompassing the U.S. 
portions of the two species’ known ranges were compiled from 
Nussear et al. (2009) and augmented with additional observations 
from the Arizona Game and Fish Department. Occurrences with 
spatial precision worse than 1 km were discarded, and the remain‐
der were limited to one per each 1 km2 grid cell, resulting in 8,728 
observations for the two species available for model calibration. To 
reduce the effects of spatial sampling bias, we implement a back‐
ground weight correction with the FactorBiasOut algorithm (Dudik, 
Phillips, & Schapire, 2005) and use a bias grid as an estimate of the 
sampling bias by creating a kernel density raster of observations for 
each species. The bandwidth for each kernel was estimated using 
cross‐validation to minimize mean square error (Baddeley, Rubak, & 
Turner, 2015) and was linearly rescaled to 1–20 range to give greater 
background selection probability to areas with higher densities of 
observations (Elith et al., 2011).

In order to compare niches of G. agassizii and G. morafkai, a com‐
mon set of explanatory variables is needed; we therefore considered 
a set of 13 explanatory variables (Table 1) that represented a suite of 
physiographic, vegetative and climatic characteristics hypothesized 
to influence the distribution of both species (Edwards et al., 2015; 
Inman et al., 2014; Nussear et al., 2009). These variables were cho‐
sen from among 18 by removing variables with Pearson's correlation 
values greater than 0.6 to reduce multicollinearity. Variable selection 
started with a single model including the 13 remaining explanatory 
variables and sequentially removing those contributing the least to 
model fit using a step‐wise jackknife test of training gain (Elith et 

al., 2011). We stopped removing variables when a decrease of 0.05 
in the area under the receiver operating characteristic curve (AUC; 
Fielding & Bell, 1997) was observed with 20% withheld test data. 
The selected set of explanatory variables was used to calibrate mod‐
els for each species separately using a bootstrap framework with 
100 iterations and also to create a pooled model by treating the two 
species as a single taxon and pooling observations. We report the 
test AUC for each model, as well as relative contributions for each 
explanatory variable on training gain.

2.4 | Niche comparisons

We hypothesized that the niches of the two species would show 
similarities due to relatedness and niche conservation, but that dif‐
ferences would also be apparent due to geographic isolation over 
the past 6 million years. We therefore compared their niches using 
three methods: (a) correlation of explanatory variable contributions, 
(b) correlation of species–environment relationships, and (c) rand‐
omization tests of niche similarity. In the first, we used Pearson's 
correlation coefficient to compare the contributions of the explana‐
tory variables across species. Variable contributions were assessed 
as the relative per cent contribution to model training gain and can 
be used as a measure of variable importance (Phillips & Dudik, 2008). 
We asked if the explanatory variables had the same importance to 
each species, such that high correlation of these contribution scores 
across species would indicate niche overlap and provide additional 
evidence that these two species share niche properties, whereas low 
correlation would suggest that some explanatory variables are more 
important to one species than the other.

Our second method compared the marginal species–environ‐
ment relationships of each explanatory variable from the calibrated 
niche models of each species. We again used Pearson's correlation 
coefficients to compare the predicted probability of presence at 
100 intervals spanning the range of background values between 
the two species. Marginal species–environment relationships ex‐
press the predicted probability of presence across the range of 
background values of each explanatory variable while keeping all 
other explanatory variables at their mean value (Phillips & Dudik, 
2008). Differences in the shape of species–environment response 
curves suggest niche differences between the two species. We hy‐
pothesized that differences due to prolonged geographic isolation 
over the past 6 million years would be limited to physiographic vari‐
ables as a result of the substantial differences in terrain between 
occupied habitats. For example, G. agassizii occurs more often in 
valley bottoms and gentle slopes with smaller sediment size, while 
G. morafkai occurs more often in rockier slopes and bajadas (Nussear 
& Tuberville, 2014). We also assumed that differences in their re‐
sponses to temperature would be minimal because these species 
have evolved in comparable climates.

Our third method to compare the species’ niches used ran‐
domization tests of niche equivalency and asymmetrical similarity 
proposed by Warren et al. (2008). Here we ask: (a) if the niches of 
the two species are equivalent? and (b) are they more similar than 
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would be expected if each species selected habitat at random within 
their ranges? To address the first question, we compared the actual 
similarity between G. agassizii and G. morafkai to a null distribution 
of similarity scores generated from niche models calibrated on ran‐
dom partitions of the pooled observations with sample sizes pro‐
portional to the species’ observation datasets. This null distribution 
represents hypothetical conditions where the two species are com‐
pletely intermingled throughout their combined ranges, such that 
they share identical niches. The second question was addressed by 
comparing the similarity score between G. agassizii and G. morafkai 
to a distribution of scores obtained by comparing the probability 
of presence of G. agassizii to the probability of presence from niche 
models calibrated with random locations within the known range 
of G. morafkai. This null distribution (G. agassizii → G. morafkai) rep‐
resents hypothetical conditions where G. morafkai occupies slight 
permutations of its current niche, such that any differences in the 
niches between the two species are due to local variation in environ‐
mental conditions, not geographic differences between their ranges. 
We repeated this test for G. morafkai (G. morafkai → G. agassizii) and 
implemented these tests in GRASS 7.4 (Neteler, Bowman, Landa, & 
Metz, 2012) and R 3.5.1 (R Core Team, 2016) with 100 replications. 
For each of these randomization tests (equivalency and asymmet‐
rical similarity), we define niche similarity with the expected frac‐
tion of shared presences overlap metric (ESP; Godsoe, 2013), which 
measures the degree to which two probability of presence surfaces 
agree.

2.5 | Local niche models and spatial scale

In order to further investigate differences in species–environment 
relationships between G. agassizii and G. morafkai, we calibrated 
local species–environment relationships within our focal study area 
around the secondary contact zone to estimate local variation that 
may exist across this region. We hypothesized that if differences 
in species–environment relationships were evident between the 
two species, then spatial gradients in those relationships may also 
be evident in the ecotone between them. We expected that these 
species–environment relationships would be expressed at different 
spatial scales due to differences between climatic and topographic 
constraints on distributions, where climate may affect distributions 
at regional scales, while topography may influence local scale pat‐
terns (Beever et al., 2006; Mackey & Lindenmayer, 2001). To identify 
spatially varying environmental responses that we expected to be 
multi‐scale, we developed a local regression model with MGWR and 
explored spatial patterns in species–environment relationships as 
expressed in locally varying model coefficients. We calibrate MGWR 
on the model residuals of the pooled niche model. The pooled niche 
model represents the combined niche of both species, such that 
model residuals can be interpreted as local measures of how poorly 
the pooled niche model explains local patterns of each species’ niche.

Local regression, including MGWR, can be more suscepti‐
ble to multicollinearity than ordinary least squares regression 
(Fotheringham et al., 2002), and a carefully chosen set of explanatory 

variables is less likely to cause erratic behaviour in model coeffi‐
cients. Because our goal was to explore local variation in the model 
coefficients (i.e., species–environment relationships), we therefore 
developed composite, uncorrelated predictors from the explanatory 
variables considered for the pooled niche model. These predictor 
variables were the principal component axes summing to at least 
80% of the component eigenvalues based on four principal compo‐
nent analyses (PCA; Abdi & Williams, 2010) conducted separately 
for the physiographic, climatic, soils and vegetation variables (see 
Tables S1.1–S1.4 in Appendix S1) in GRASS GIS with the “i.pca” mod‐
ule using normalization. We explore eigenvalues and their weight 
loadings to determine which explanatory variables contributed the 
most to a given principal component axis, in order to relate MGWR 
model coefficients for PCA axes to underlying explanatory vari‐
ables. An additional variable representing non‐habitat land cover 
was derived from the 2011 National Land Change Database (NLCD) 
Percent Developed Imperviousness layer (Fry et al., 2011) and the 
National Hydrography Dataset (Simley & Carswell, 2010), and repre‐
sented the per cent of each grid cell covered by impervious surfaces 
(such as paved roads and parking lots) or large water bodies (such as 
lakes and reservoirs).

We selected a subset of these variables for MGWR by remov‐
ing those with variance inflation factors greater than 10 based on 
OLS regression, and by using Akaike's information criterion (AIC; 
Burnham & Anderson, 2002) to select a single parsimonious set. The 
selected set of variables was then used to explain the spatial pat‐
tern of residuals from the pooled niche model using MGWR (https ://
sgsup.asu.edu/sparc/ multi scale‐gwr), implemented in Python 2.7.10 
(Python Software Foundation; http://www.python.org) with the 
“mgwr” package (Oshan, Li, Kang, Wolf, & Fotheringham, 2018) with 
adaptive bandwidths. MGWR uses an iterative back‐fitting algo‐
rithm that is computationally intensive (Fotheringham et al., 2017). 
We therefore thinned the calibration data to 3 per 10 km2 to reduce 
computation time, resulting in a dataset with 2,156 records. This 
thinning also created a uniform density of observations across the 
study area to minimize bias towards the more heavily sampled spe‐
cies, G. agassizii. MGWR can use adaptive bandwidths as estimates 
of spatial scale, and therefore, we use a Gaussian spatial kernel for 
each explanatory variable to allow each variable to converge on a 
separate bandwidth using AIC with small sample correction to avoid 
overfitting (Fotheringham et al., 2017). Non‐linear regression coef‐
ficients were not considered as they have not been implemented in 
MGWR, and because at very local scales, species–environment re‐
lationships are expected to approximate linear responses due to the 
limits in the local range of each explanatory variable (Fotheringham 
et al., 2002). Bandwidths and their approximate spatial scale are re‐
ported for each explanatory variable along with local parameter esti‐
mates and model R2. We report the spatial scale of each explanatory 
variable as the product of the average distance between locations 
in our calibration dataset and the bandwidth, and use inverse dis‐
tance weighted interpolation to create regression coefficient maps 
from local parameter estimates for areas that were thinned prior to 
running MGWR.

https://sgsup.asu.edu/sparc/multiscale-gwr
https://sgsup.asu.edu/sparc/multiscale-gwr
http://www.python.org
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2.6 | Habitat–genotype association

We hypothesized that landscape patterns in the interpolated MGWR 
coefficient maps (representing spatially varying species–environ‐
ment relationships) would be congruent with previously reported 
phylogenetic differences found in the secondary contact zone iden‐
tified by Edwards et al. (2015). We represented the phylogenetic 
structure of sampled populations using the admixture proportion (Q) 
of a pure G. agassizii genotype from STRUCTURE 2.3.4 (Pritchard, 
Stephens, & Donnelly, 2000). This index, hereafter genotype asso‐
ciation index, represents the probability that an individual contained 
G. agassizii genotypes (Edwards et al., 2015) and was interpolated 

across our study area using inverse distance weighting to create a 
map for the Mojave genotype. We used Kendall's rank correlation 
coefficient (tau) for paired samples to assess correlations between 
each explanatory variable's local regression coefficients and the 
genotype association index. A nonparametric test was chosen be‐
cause our genotype association index did not meet assumptions of 
normality.

We then asked if natural divisions in the local species–environ‐
ment relationships exist, and if present, do they coincide spatially 
with the genotype association index. We identified divisions with 
K‐medoids optimal partitioning in multivariate space of the local 
regression coefficient maps for all explanatory variables using the 

F I G U R E  3   Probability of presence for (a) the pooled species, (b) Gopherus agassizii (Agassiz's tortoise and (c) Gopherus morafkai 
(Morafkai's tortoise). Areas with high probability of presence are shown in red, low in blue. Probability of presence was estimated with 
Maxent v. 3.4.0. The Colorado River (purple) separates California and Arizona and creates the division between the two species of desert 
tortoise. USA Contiguous Albers Equal Area Conic projection (SR‐ORG:7301)
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package “cluster” (Maechler, Rousseeuw, Struyf, Hubert, & Hornik, 
2016) in R (R Core Team, 2016). The optimal number of clusters was 
estimated by minimizing within‐cluster variance (Hennig & Liao, 
2013). Cluster assignments were mapped back to geographic space 
and compared to the genotype association index. Here we used 
spatial autoregressive lag models (SAR lag; Anselin, 2001) with the 
package “spdep” (Bivand & Piras, 2015) in R (R Core Team, 2016) 
to determine which of three delineations best explained the gen‐
otype association index: (a) geographic boundary (Colorado River) 
for G. agassizii and G. morafkai, (b) the ecotone between the Mojave 
and Sonoran Basin and Range U.S. EPA Level III Ecoregions or (c) the 
cluster assignments that had been mapped back to geographic space. 
The SAR lag model is well suited for making spatial predictions when 
spatial dependencies exist among the values of the dependent vari‐
able, as is the case for the genotype association index. Three SAR lag 
models, each with a single explanatory variable of the (a) geographic 
division, (b) ecoregional division or (c) mapped clusters of species–
environment relationships, were calibrated with a random subset of 
2,000 locations to reduce processing time and were compared using 
AIC to identify the most parsimonious model.

3  | RESULTS

3.1 | Species distribution modelling

The single set of variables selected to describe the ecological niche 
of each species included the following: precipitation of the driest 
month (Ppt_dry), precipitation seasonality (Ppt_CV), surface texture 
(Surf_Text), soil moisture (S_moist), temperature evenness (Isotherm), 
photosynthetic activity (Veg_Amp), topographic position index (Topo_
Index) and surface material (Surf_Mat; see Table 1 for descriptions), 
and resulted in models for G. agassizii and G. morafkai with test AUC 
scores of 0.733 and 0.875, respectively (Figure 3). The pooled model 
showed reduced performance, with a test AUC score of 0.697, sug‐
gesting that the ecological niches of each species were different from 
one another and not well represented with a single, pooled model.

3.2 | Niche comparisons

Relative contributions of explanatory variables were not cor‐
related between species (ρ = 0.432, p = 0.286; Table 2). For ex‐
ample, the explanatory variable Ppt_dry contributed the most 
(40.5%) for G. agassizii, but for G. morafkai, Ppt_CV provided the 
greatest contribution (38.8%). Correlation in the shape of the spe‐
cies–environment relationships between the two species ranged 
from 0.033 (Veg_Amp) to 0.904 (S_moist), indicating that G. agas-
sizii and G. morafkai differed most in their selection of vegetation 
greenness, but selected for similar soil moisture characteristics 
(Table 3). G. agassizii and G. morafkai showed non‐identical niches 
based on the niche equivalency test (p < 0.0001), with an observed 
similarity score (ESP = 0.328) significantly lower than would be ex‐
pected under identical niches. In contrast, the asymmetrical niche 
similarity tests suggested that G. agassizii and G. morafkai occupy 

niches that are more similar than would be expected if they occu‐
pied their respective ranges randomly, with an observed similarity 
(ESP = 0.328) significantly higher than the null distributions for 
the G. agassizii → G. morafkai comparison (�=0.311,�=0.006) or 
the G. morafkai → G. agassizii comparison (�=0.236,�=0.002). This 
suggests that while these two allopatric species do not occupy 
identical ecological niches, they do share niche characteristics and 
are more similar than would be expected if either species selected 
habitat at random within their ranges.

3.3 | Local niche models and spatial scale

The reduced set of nine principal components identified to investi‐
gate spatial patterns in local species–environment relationships in‐
cluded the 1st and 3rd components of the physiographic PCA (PHYS), 
the 1st and 3rd components of the climate PCA (CLIM), the 2nd and 
3rd components of the soils PCA (SOIL), the 1st and 3rd components 
of the vegetation PCA (VEG) and the land cover variable (LC). The 
resulting MGWR model based on these nine explanatory variables 
had an R2 of 0.722 and showed local R2 values that ranged from near 

TA B L E  2   Percent (relative) contributions of each explanatory 
variable used to define the ecological niche of Gopherus agassizii 
(Agassiz's tortoise; MDT) and Gopherus morafkai (Morafkai's 
tortoise; SDT)

Variable Name MDT (%) SDT (%)

Veg_Amp 2.4 11.3

Surf_Text 17.0 19.6

Isotherm 18.6 1.3

Ppt_dry 40.5 18.3

Ppt_CV 16.0 38.8

S_moisture 6.6 4.4

Surf_Mat 0.0 6.1

Topo_Index 0.7 0.2

Note: Percent contribution represents the average proportion of the 
change in regularized training gain across the 100 bootstrap replicates 
for each variable (see Table 1 for descriptions).

TA B L E  3   Pearson's correlation coefficient between species–
environment relationships for Gopherus agassizii and Gopherus 
morafkai ecological niche models for each explanatory variable (see 
Table 1 for descriptions)

Variable name Estimate (ρ) p‐Value

Veg_Amp 0.033 0.742

Surf_Text −0.390 0.000

Topo_Index 0.426 0.000

Ppt_CV 0.679 0.000

Isotherm 0.686 0.000

Surf_Mat 0.714 0.000

Ppt_dry 0.886 0.000

S_moist 0.904 0.000
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0 to 0.999 (Figure 4). The approximate spatial scales (bandwidths) for 
each explanatory variable were estimated as 68.7 km (87) for PHYS1, 
77.2 km (110) for PHYS2, 48.8 km (44) for CLIM1, 341.6 km (2154) 
for CLIM3, 48.8 km (44) for SOIL2, 48.8 km (44) for SOIL3, 336.7 km 
(2092) for LC, 86.2 km (137) for VEG1 and 99.6 km (183) for VEG3. 
Local regression coefficient maps are provided in Figure S1.1.

3.4 | Habitat–genotype association

Kendall's tau values representing the degree to which local regression 
coefficient maps from MGWR were correlated with our genotype as‐
sociation index, ranged from −0.43 to 0.40 (Table 4) and indicated a 
modest overall agreement between any given species–environment 
relationship and genotype. However, when considered together, we 
identified two multivariate clusters in these local regression coef‐
ficient maps, which, when mapped back to geographic space, were 
largely coincident with the boundary separating G. agassizii and 
G. morafkai (Figure 5). However, this division between the two clus‐
ters did not exactly coincide with the Colorado River, instead sug‐
gesting a boundary approximately 40 km to the east of the Colorado 
River in the northern portion of the focal study area (Figure 5). The 
mean genotype association index for the two clusters was 0.98 and 
0.15 for the Mojave and Sonoran clusters, respectively, indicat‐
ing that the Mojave cluster was most strongly associated with the 
Mojave genotype and the Sonoran cluster was not. The mapped clus‐
ters of local species–environment relationships were better able to 
predict the genotype association index than either the ecoregions or 
the geographic delineation between the species, with a ∆AIC score 
of >2 between the next best SAR lag models (Table 5). Overlap be‐
tween the mapped clusters and the Mojave and Sonoran ecoregions 

suggested that the Mojave cluster was more closely aligned with the 
Mojave ecoregion than with the current geographic delineation of the 
Mojave population of G. agassizii (Table 6). In contrast, the Sonoran 
cluster most closely aligned with the current geographic delineation 
of G. morafkai, indicating that the current geographic delineation of 
G. morafkai is a better representation of Sonoran habitat in the focal 
study area than the Sonoran ecoregion alone (Table 6).

4  | DISCUSSION

We explore ecological niche differences between two allopat‐
ric species of conservation concern, G. agassizii and G. morafkai, 
and find that while these two species occupy broadly similar 

F I G U R E  4   Local R2 from selected 
multiscale geographically weighted 
regression model of pooled species SDM 
residuals. The Colorado River (purple) 
separates California and Arizona and 
creates the division between Gopherus 
agassizii (Agassiz's tortoise) and Gopherus 
morafkai (Morafkai's tortoise). USA 
Contiguous Albers Equal Area Conic 
projection (SR‐ORG:7301)
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TA B L E  4   Kendall's rank correlation value (Tau) for each local 
parameter surface of the multiscale geographically weighted 
regression model with the genotype association index

Variable τ p

SOIL2 0.169 0.001

SOIL3 0.406 0.001

VEG3 −0.411 0.001

PHYS1 −0.437 0.001

PHYS2 −0.030 0.001

CLIM1 0.048 0.001

CLIM3 0.065 0.001

Note: Environmental variables are physiographic PCA (PHYS), climate 
PCA (CLIM), soils PCA (SOIL) and vegetation PCA (VEG), with numbers 
indicating the component number. Descriptions of component loadings 
and weights can be found in Tables S1.1–S1.4 in Appendix S1.
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ecological niches in their respective ecoregions, they differ sub‐
tly in their selection of habitat. Moreover, spatial scale differed 
among key species–environment relationships, confirming ex‐
pectations that climate may dominate species’ distributions at 
coarse scales, while responses to topography and land surface 
characteristics may be more apparent at fine scales (Pearson & 
Dawson, 2003). Habitat barriers such as water and developed 
surfaces (i.e., lakes, road and cities) had negative effects on habi‐
tat at coarse scales independent of location, while soil conditions, 
vegetation and physiographic characteristics exhibited local ef‐
fects that varied across the region encompassing the recent 
secondary contact zone. We also find that local variation in spe‐
cies–environment relationships provided greater support for the 
phylogenetic differences observed among individuals than does 
the current geographic delineation between the two species. Our 
results contribute additional evidence that G. agassizii and hybrid‐
ized individuals east of the Colorado River and west of Kingman 
AZ (Figure 5) exhibit ecological niches that are more similar to 
G. agassizii in the rest of its range than to their proximal sister 
taxa, G. morafkai.

4.1 | In support of phylogenetic boundaries: Local 
species–environment relationships

We found evidence for two, but not three, multivariate clusters in 
the local regression coefficient maps. A third category, if coinciding 

F I G U R E  5   Two multivariate clusters 
of habitat selection identified from local 
regression coefficient maps of species–
environment relationships. The Mojave 
cluster (dark grey) includes a region 40 km 
east of the Colorado River (blue) where 
Gopherus agassizii (Agassiz's tortoise) 
individuals have been identified but are 
not protected under the U.S. Endangered 
Species Act. The Sonoran cluster (light 
grey) includes a small region west of the 
Colorado River, though this area contains 
only marginal habitat. The Mojave Desert 
and Sonoran Deserts are outlined with 
dashed line. USA Contiguous Albers Equal 
Area Conic projection (SR‐ORG:7301)

TA B L E  5   Spatial autoregressive (SAR) lag models fit to the genotype association index

SAR lag model ∆AIC AIC Rho Rho p Wald Statistic Wald p

Mapped cluster 0 −5.808 0.74198 <0.001 46.367 <0.001

Geographic (taxonomic) 2.7 −3.148 0.79395 <0.001 68.039 <0.001

Ecoregion 3.5 −2.301 0.75718 <0.001 51.007 <0.001

Note: Each model used one of three explanatory variables (rows) and were compared with AIC.

TA B L E  6   Overlap (km2 and percent area) between each mapped 
cluster of habitat use with the current geographic delineations 
between Gopherus agassizii (Agassiz's desert tortoise) and Gopherus 
morafkai (Morafka's desert tortoise), and the Mojave and Sonoran 
Basin and Range U.S. EPA Level III Ecoregions

Mojave cluster Sonoran cluster

km2 % km2 %

G. agassizii 
(geographic)

21,769 91.2 1,523 3.4

G. morafkai 
(geographic)

2,091 8.8 42,956 96.6

Mojave ecoregion 22,215 93.1 4,818 10.8

Sonoran ecoregion 1,645 6.9 33,521 75.4
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with regions containing hybrids, might suggest that hybridized indi‐
viduals select habitat in ways that are locally different than either 
of the two pure genotypes. Previous work has shown that these 
hybrids do occupy habitats with characteristics that span those of 
both their Mojave and Sonoran parental lineages in terms of topo‐
graphic, surface textural and vegetation characteristics (Edwards et 
al., 2015). Our delineation of two categories does not counter these 
findings because here we explore local niche differences, that is local 
differences in species–environment relationships, rather than differ‐
ences in occupied habitat as was explored by Edwards et al. (2015). 
For example, consider individuals in one region that occupy areas 
with values near 10 on a hypothetical environmental gradient (on a 
scale of 1–10). If surrounding areas have values near 5, these indi‐
viduals will exhibit positive local species–environment relationships 
because locally available environments have lower values on this 
hypothetical gradient. However, in another region, individuals occu‐
pying areas with values near 5 may also show positive local species–
environment relationships if nearby environments show values of 1. 
In this simple example, these two groups show similar positive local 
species–environment relationships even though they occupy differ‐
ent regions of this hypothetical gradient (i.e., values of 10 vs. 5).

Using a coupled approach with species distribution modelling 
and multiscale geographically weighted regression, we find that in‐
dividuals in the secondary contact zone exhibit habitat preferences 
that are more akin to G. agassizii than G. morafkai even though some 
of them occupy habitats that are only marginally different from ei‐
ther parental lineage. This is where coupling SDM with local mod‐
elling methods such as MGWR departs from traditional habitat 
assessments—differences in local habitat selection are uncovered 
rather than differences in local occupied habitat. Local habitat selec-
tion is evaluated in context of nearby environments, while occupied 
habitat is a measure of differences between occupied areas.

In the case of G. agassizii and G. morafkai, regional differences 
in occupied habitat are clearly evident. Differences span climate, 
vegetation, physiography and geology (Nussear & Tuberville, 2014) 
and are consistent with the subtle differences we found in their 
ecological niches when quantified with SDM based on range‐wide 
species–environment relationships. For example, when we mod‐
elled distribution of each species separately, we found differences 
in species–environment relationships for seasonal vegetation ampli‐
tude (Veg_Amp; Figure S1.2), an explanatory variable describing the 
seasonal vegetation green‐up potential (Meier & Brown, 2014). We 
also found subtle differences in the range‐wide relationships for sur‐
face texture (Surf_Text; Figure S1.2) and topographic position index 
describing physiographic relief (Topo_Index; Figure S1.2). G. agassizii 
tend to occupy regions with finer surface textures such as alluvial 
soils, while G. morafkai occur more often in rocky soils and bajadas 
(Van Devender, 2006). In contrast, both species share similar range‐
wide unimodal species–environment relationships for summer soil 
moisture content (S_moist; Figure S1.2), thereby avoiding very dry 
and very wet soils. Similarly, both G. agassizii and G. morafkai ap‐
pear to have range limits defined by cold winter temperatures, as 
each can tolerate high summer temperatures through behavioural 

aestivation (Nussear & Tuberville, 2014). This suggests that while 
the two species occupy different habitats, they exhibit similar selec‐
tion for certain environmental conditions.

In contrast, we found substantial differences in species–envi‐
ronment relationships at local scales, where soils (SOIL2, SOIL3), 
precipitation (CLIM1) and vegetation (VEG1, VEG3) variables were 
optimized with short bandwidths. This suggests that local varia‐
tions in the species–environment relationships of these explana‐
tory variables contribute to overall niche differences between the 
two species. For example, the SOIL2 PCA showed a spatial scale of 
~50 km and was most influenced by summer and winter potential 
evapotranspiration. The local regression coefficient map for this 
variable tended to show positive species–environment relation‐
ships west of the Colorado River, and negative relationships east 
of the River, suggesting that individuals west of the Colorado River 
tended to select habitat with higher potential evapotranspiration 
given locally available conditions (Figure S1.1). Differences in 
these local species–environment relationships, such as precipita‐
tion (e.g., summer and winter; CLIM1), terrain (e.g., slope and rock‐
iness; PHYS1) and vegetation (e.g., phenology and canopy growth; 
VEG1 and VEG3), may drive local adaptation and help maintain 
population structure of genotypes for G. agassizii and G. morafkai. 
Ongoing work suggests that genotypic structure within the Mojave 
population (those west of the Colorado River) may be maintained 
by selective pressure on key genes from local environmental dif‐
ferences (Sánchez‐Ramírez et al., 2018). Such environmental dif‐
ferences include a pronounced precipitation seasonality gradient 
across the combined ranges of G. agassizii and G. morafkai, with 
western areas exhibiting high winter (November to March) pre‐
cipitation and few summer monsoonal storms, whereas eastern 
and southern areas are prone to intense monsoonal storms but 
little winter precipitation. Local adaptation resulting in local niche 
differences may help maintain population structure and provide 
an opportunity for selection to result in speciation. Our analyses 
comparing local species–environment relationships to the geno‐
type association index lend additional support for this hypothesis. 
Here, we find that the most parsimonious spatial model explaining 
the landscape pattern of genotype association was the two multi‐
variate clusters of local species–environment relationships rather 
than the Mojave and Sonoran ecoregions or the current geo‐
graphic delineation of the two species and their protection status.

4.2 | Importance for conservation

Efforts to preserve biodiversity have placed new empha‐
sis on measures of biodiversity beyond taxonomic diversity. 
Understanding landscape patterns in phylogenetic diversity is es‐
pecially important to conservation goals aimed at maximizing the 
resilience of biodiversity in the face of rapid global change (Flynn 
et al., 2011; Legendre et al., 2005), and for identifying conditions 
where recent lineage divergence has contributed to local niche 
differences that may aid in adapting to changing environments 
(Ackerly et al., 2010; Crandall, Bininda‐Emonds, Mace, & Wayne, 
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2000; Moritz, 2002). Identifying spatially structured variation in 
habitat selection, coupled with an understanding of genotypic 
structure, is therefore important for predicting potential out‐
comes of spatial conservation decisions (Ferrier & Drielsma, 2010; 
Whittaker et al., 2005). Often, conservation prioritization focuses 
on hotspots (Myers et al., 2000; Naeem et al., 2012; Winter et al., 
2013) delineated on the basis of taxonomic diversity (Ferrier et al., 
2004; Myers et al., 2000), phylogenetic diversity (Crozier, 1997; 
Helmus et al., 2007; Scoble & Lowe, 2010; Vandergast et al., 2013; 
Wood et al., 2013) or measures of evolutionary potential, such as 
sequence diversity (Tamura & Nei, 1993) or divergence (Nei & Li, 
1979). However, the ability to compare landscape measures of ge‐
netic diversity to measures of local niche differences and habitat 
selection (e.g., species–environment relationships) presents new 
opportunities to investigate the confluence of genetics and ecol‐
ogy in context of conservation biogeography.

Conservation managers tasked as stewards of healthy and 
sustainable ecosystems often request spatially explicit informa‐
tion that supports management objectives. Lake Mead National 
Recreation Area, a unit within the National Park Service, is the unit 
responsible for stewardship of ~6 million ha of land in southern 
Nevada and northwest Arizona. Park managers seek information 
on tortoise distributions and lineages in order to prioritize pro‐
tection and restoration of tortoise habitat impacted by invasive 
weeds, fire, road disturbance, recreation and development (Brooks 
& Esque, 2002; Esque et al., 2010; Lovich et al., 2011). Our work 
lends additional evidence that the current geographic boundary of 
the Mojave Distinct Population Segment (DPS; Department of the 
Interior, 1990) does not capture the full extent of G. agassizii and 
its niche, and further suggests that local habitat selection in and 
around the secondary contact zone may contribute to the unique‐
ness of G. agassizii currently residing on the eastern side of the 
Colorado River. Protection and restoration of these areas could 
further park goals of managing and maintaining tortoise habitat.

4.3 | A novel coupled modelling approach

The use of local regression to explore spatial variation in species–en‐
vironment relationships is not new to SDM but has been difficult to 
apply given the widespread reliance on binary (presence–absence or 
presence–background) calibration data necessitating logistic regres‐
sion. Local models using a logistic regression framework can suffer 
from complete separation of response classes at fine spatial scales 
(Fotheringham et al., 2002), thereby forcing models to use large 
bandwidths approximating range‐wide models (Miller, 2012). This 
is especially problematic when calibration datasets exhibit extreme 
sampling bias. We mitigate against this problem by calibrating a local 
MGWR model on the residuals of a pooled niche model from both 
taxa to explore local deviation in species–environment relationships. 
Modelling residuals enable the use of local Gaussian models, and 
multiscale local regression methods allow more flexible application 
of the method to ecological data where relationships between re‐
sponse and explanatory variables may be apparent at varying scales.

Cases of allopatric speciation are especially well suited to these 
coupled methods because gradients in ecological niche conserva‐
tion across two taxa can be explored at a local level within hypoth‐
esized mixture zones. Moreover, delimiting small regions of interest 
is necessary when computationally intensive MGWR models require 
extreme processing times due to their use of iterative back‐fitting 
algorithms to fit optimal bandwidth vectors (Fotheringham et al., 
2017). In contrast, presence–background SDM methods assume 
that the entirety of a species’ range is sampled (Elith & Leathwick, 
2009; Franklin, 2010) and require large study areas. This coupling 
approach allows each method to use an appropriate spatial domain 
for its respective model assumptions and computation limitations. In 
this way, MGWR can be used in a subregion of the species’ distribu‐
tion to explore local variation in species–environment relationships 
as expressed in deviations from these predictions, that is residuals.
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