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Experimental Hematology & Oncology

Revisiting the role of mesenchymal 
stromal cells in cancer initiation, metastasis 
and immunosuppression
Yanyan Zhang1,2, Charles Wang2 and Jian Jian Li2,3* 

Abstract 

Immune checkpoint blockade (ICB) necessitates a thorough understanding of intricate cellular interactions 
within the tumor microenvironment (TME). Mesenchymal stromal cells (MSCs) play a pivotal role in cancer genera-
tion, progression, and immunosuppressive tumor microenvironment. Within the TME, MSCs encompass both resident 
and circulating counterparts that dynamically communicate and actively participate in TME immunosurveillance 
and response to ICB. This review aims to reevaluate various facets of MSCs, including their potential self-transforma-
tion to function as cancer-initiating cells and contributions to the creation of a conducive environment for tumor 
proliferation and metastasis. Additionally, we explore the immune regulatory functions of tumor-associated MSCs 
(TA-MSCs) and MSC-derived extracellular vesicles (MSC-EVs) with analysis of potential connections between circulat-
ing and tissue-resident MSCs. A comprehensive understanding of the dynamics of MSC-immune cell communication 
and the heterogeneous cargo of tumor-educated versus naïve MSCs may unveil a new MSC-mediated immunosup-
pressive pathway that can be targeted to enhance cancer control by ICB.

Keywords  Immunotherapy, Mesenchymal stromal cells, Tumor-imitating cells, Tumor microenvironment, Tumor-
associated MSCs, Immunosuppression, Radiotherapy

Background
Multiple intrinsic cascades of genomic and epigenetic 
events denoted as the hallmarks of cancer are believed to 
drive the malignant cell transformation and tumor pro-
gression [1, 2]. However, in addition to the well-defined 
cell intrinsic pre-cancer trends, increasing evidence indi-
cates a potential systemic and/or tissue environmental 

factor leading to a global pre-cancerous status [3–5]. 
Such a pre-cancerous environmental status is triggered 
by imbalanced tissue homeostasis and architecture far 
before the malignant phenotype can be noticed [6]. Con-
sistently, non-mutational epigenetic events and senes-
cent cells are suggested to play an effective role in the 
tumor microenvironment (TME) [3], and cancer origi-
nation, aggressiveness, and metastasis are indicated to 
be the result of communications between pre-cancer 
cells or tumors and the extracellular environment [7]. 
This central dogma of cancer is evidenced by the well-
defined pro-cancer chronic inflammation that generates 
pro-inflammatory cytokines and growth factors [7–9]. 
It is assumed that even at the very early tumor initia-
tion phase, a variety of cell types from local and distant 
niches are recruited into the growing neoplasm to pro-
vide stromal support for the transformed cells [10]. Such 
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a pre-cancerous stroma can further attract different regu-
latory molecules to mobilize an array of cell types to join 
in the "transforming niche," in which mesenchymal stro-
mal cells (MSCs) may guide the process.

In adult humans, MSCs are generally identified by 
detecting several non-hematopoietic markers, e.g., CD29, 
CD44, CD73, CD90, CD105, and by the characteristics 
of differentiating towards diverse cell types, including 
adipocytes, osteoblasts, chondrocytes, and connective 
tissues [11]. In addition to the homing function of circu-
lating MSCs, a vast number of tissue-resident MSCs are 
primarily located in perivascular sites and are capable 
of quickly responding to external stimuli to differentiate 
into pericytes to regulate vascular morphogenesis and 
biological functions [12, 13]. Due to their injury-homing 
properties, along with the relative enriched resources for 
isolation and in vitro expansion, priming MSCs or engi-
neered MSC/MSC-EVs are extensively investigated for 
disease treatment [14], and regenerative and drug deliv-
ery therapies [15]. MSCs-regulated immune inhibition 
offers a desirable approach in adjuvant immunomodula-
tion post-allogeneic transplantation [16, 17] and cancer 
control [18]. Companying with the wholesale clinical 
applications, MSCs from different tissue resources are 
cautioned by a potential risk of malignant initiation and 
cancer progression owning to their stem cell features and 
immunosuppressive potential. The tissue-resident MSCs 
include the TA-MSCs highlighted to be a critical ele-
ment in TME [18, 19], and targeting TA-MSCs by differ-
ent approaches including radiotherapy diminished tumor 
aggressiveness [20]. Given that myriad factors influence 
the phenotype and function of MSCs within the TME 
[21], it holds paramount significance to further elucidate 
the fundamental feature of MSCs beyond the communi-
cation and coordination with tumor and immune cells in 
the TME.

MSCs as the potential cancer‑initiating cells
Animal MSCs self‑transformation
Observations that lower organisms can regenerate multi-
ple tissues and organs have led to the proposal of somatic 
stem cells (SCs) [22], which are generally believed to be 
a small fraction of somatic cells capable of self-renewing 
and are responsible for tissue regeneration and homeo-
stasis [23, 24]. Experimental data suggest that SCs share 
some essential features with the clonogenic tumor cells 
or the tumor-initiating cells (TICs) illustrating the simi-
larity between the two types of cells [25]. With this 
hypothesis, MSCs are assumed to be the original cel-
lular resources holding the pre-cancerous trends when 
a certain level of cancer hallmark gene mutation is 
achieved through accumulated cell division times [26, 
27]. Additionally, it has been identified that a single 

passage in culture extensively alters MSCs molecular 
signatures associated with cell cycling, differentiation, 
and immune response, highlighting the need to clarify 
the consequence of the transition [28]. However, unlike 
fully transformed cancer cells, MSCs demonstrate both 
pro- and anti-tumor functions [29], thus, the precise 
biological connections between MSCs and TICs remain 
to be further elucidated. Although vast evidence illus-
trates that mouse bone marrow-derived mesenchymal 
stromal cells (mBMSCs) promote tumor growth in can-
cer-carrying mice, the confidence level of true transfor-
mation of MSCs in  vivo is still under debate, and DNA 
fingerprinting is suggested in such experimental settings 
[30–33]. Nonetheless, the following reports are cited 
supporting the concept that mMSCs can spontaneously 
undergo transformation in  vitro and generate sarcoma 
in vivo [34, 35] (Fig. 1A). Using the tracing approach in 
aged mice, Houghton’s group demonstrates that MSCs 
were able to spontaneously transform with p53 mutation 
leading to fibrosarcoma generation. Of note, the trans-
formed MSCs not only rooted the tumor mass but also 
generated the tumor-associated vasculature and stromal 
supports [36]. Similarly, CD44+/CD29+ mBMSCs trans-
planted into myocardial infarction and diabetic neuropa-
thy mice resulted in the formation of malignant sarcoma 
with chromosomal aberrations including fusion, frag-
mentation, and ring formation [37]. mBMSCs can also 
acquire immortality with transformation behavior and 
fibrosarcoma formation via altered telomerase activity, 
c-myc expression [38], and Notch+/Hh−/Wnt− signaling 
pathway[39]. In addition, MSCs derived from cynomol-
gus monkeys were tumor-generative after long-term 
in vitro expansion [40]. Such pro-transformative tenden-
cies in MSCs could be unique, as they are not observed 
in most other mouse stem cells, including hematopoietic 
and embryonic stem cells [41]. A recent report further 
demonstrated that with single-cell RNAseq and lineage 
tracing approaches mMSCs can undergo mesenchymal-
epithelial transition (MET) and be incorporated into the 
re-epithelialized luminal surface of the repaired tissue 
[42]. However, it remains to be further characterized and 
verified how cancer cells could at least in part result from 
a potential intermediate cell type derived from mMSCs 
via MET.

Human MSCs self‑transformation
Similarly, to animal models, the idea of human MSCs 
(hMSCs) being the original source of both epithelial 
and non-epithelial malignancy is still a topic of debate. 
Long-term in  vitro expansion of hMSCs can induce 
senescence-associated phenotype with chromosomal 
alterations including aneuploidy and polyploidy but 
no self-transformation is detected [43, 44]. However, 
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variable aneuploid clone proportions were identi-
fied in a large group of hMSCs suggesting a poten-
tial transform trend [45]. A pioneer work by Wang’s 
group provided the first in  vivo evidence that BMSCs 
are the potential cancer originating cells in a mouse 
gastric tumor model [46]. Such evidence has been 
further strengthened by a series of studies support-
ing that the spontaneous transformation of hBMSCs 
can be enhanced by LIN28B expression leading to sar-
coma formation in immunocompromised mice, sug-
gesting a prognostic factor for clinic sarcoma patients 

[47]. The potential hMSCs tumorigenic potential was 
achieved as high as 45.8% by in  vitro expansion [48] 
with a significantly proliferative capacity [48, 49]. In a 
set of 46 independent cultures of hMSCs, four batches 
of transformed MSCs were able to generate sarcoma-
like tumors in immunodeficient mice [48]. The patho-
logical features of the transformed cells include cells 
with spherical, cuboidal to spindly in shape, adherent, 
and exhibited contact-independent growth. Cytoge-
netic analysis showed chromosome aneuploidy and 
translocations with a higher level of telomerase activity 

Fig. 1  MSCs serve as cancer-initiating cells via self-transformation and/or pro-cancerous niches. A In animal models, MSCs can spontaneously 
transform vitro and in vivo (sarcoma formation) by cytogenetic abnormalities, chromosomal aberrations, telomerase activity alterations, c-myc 
expression, p53 mutation, MET and Notch( +)/Hh(−)/Wnt(−) signaling pathway. In human, MSCs self-transformation depends on chromosome 
aneuploid, altered telomerase activity, LIN28B/LET-7, hTERT/H-ras, c-myc, p16, DNA hypomethylation, MET. B Different genotoxic and cellular 
stress conditions including UV, ionizing radiation, virus infection, and chemical carcinogens, lead to a pro-cancer niche with the recruitment 
of inflammatory cells, and the resident and/or circulating MSCs. Damages or loss of homeostasis of the local epithelial tissue enhance the homing 
of MSCs followed by attraction of an array of the inflammatory cells and their derived cytokines that triggers the oncogenic transformation 
of stem cell or progenitor cells initiating a malignant proliferative cancer niche in which the precise cellular resource of the pre-tumor cells remains 
unelucidated (cc, cancer cells)
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compared with typical MSCs, which led to multiple 
solid tumors when transplanted into immune compro-
mised host [30]. Furthermore, the transformation of 
hMSCs could be induced by the exogenous expression 
of hTERT, H-ras [50, 51]. In the course of transforma-
tion, senescence is avoided via upregulation of c-myc 
and repression of p16 which was accompanied with 
reduced mitochondrial metabolism and DNA damage 
repair capacity [52]. DNA hypomethylation was also 
indicated to occur late during stepwise MSCs transfor-
mation and was not indispensable during the process 
of transformation in vitro [53]. While MSC-originated 
tumorigenesis is mainly limited to sarcoma, it is pos-
sible that MET observed in cancer metastasis may be 
acquired during MSC self-transformation, leading to 
different epithelial source malignancy [46, 54–56]. Like 
the animal syngeneic MSC cancer model, it remains 
to be investigated whether human epithetical cancers 
could be rooted from hMSCs or hMSC-like intermedi-
ate forms of pre-cancer cell types via MET.

MSCs identified in the pro‑cancerous niches
Cell transformation is tightly associated with chronic 
inflammation or induces an inflammatory response 
(tumor-elicited inflammation), both supporting that 
chronic inflammation is an extrinsic factor for malignant 
cell transformation in the pre-cancerous tissue niche 
[57]. Probably by a similar cluster of attractors, MSCs are 
shown to migrate to the tumor site resembling the migra-
tion toward injured tissue. MSCs gathered from the local 
tissue and/or the circulating MSCs are recruited and 
reside in the so-called inflammatory niche (Fig. 1B) gen-
erated from different injuries, including virus infection 
and mechanical stress such as cut and ionizing radiation, 
which is documented to be a pre-cancer environment. 
Inflammatory cytokines such as TNF-α and IL-1β confer 
MSCs the ability to release high levels of CCL2, CXCL8 
and CCL5, which lead to exacerbated inflammatory and 
pro-cancerous profiles [58]. These results demonstrate 
the possibility that the circulating MSCs are actively 
involved in creating the pro-malignant inflammatory tis-
sue environment motivating a favorable condition for cell 
transformation. It remains to be examined if an unknown 
transition type of MSCs could be the original TICsin the 
pre-cancerous niches. In addition, MSCs could regulate 
the ecological dynamics leading to the transition of the 
pre-cancerous niches to the fully transformed malignant 
tumor microenvironment.

MSCs contribute to pro‑tumor ecological 
environment
The ecological dynamics of TME feature the evolution 
of tumor cells related to the host stromal environment 
[59–62]. Although it is unknown how MSCs contributed 
to the overall ecology of TME, increasing evidence indi-
cates that MSCs promote tumor proliferation. Tumor 
growth is boosted by administration of MSCs into the 
systemic circulation of tumor-bearing animals [63]. 
Orthotopic gastric tumors can be enhanced if the host 
mice receive transplantation of syngeneic mBM-MSCs 
[64]. The tumor-boosting function is also observed by co-
injection of tumor cells with MSCs isolated from human 
head and neck carcinoma [65], gastric cancer [66], and 
gliomas [67], which is potentially related to the immuno-
suppressive function of MSCs [68]. The MSC-attracting 
functions of TME are generated by the multiple tumor-
secreted chemokines, cytokines, and growth factors 
(Fig.  2) for recruiting MSCs from bone marrow or adi-
pose tissue towards tumor xenografts. VEGF [69], FGF2 
[69], PGF [70], IL-6 [71], IL-8 [72], HGF [73], SDF-1 [74], 
IGF-1 [75], MCP-1 [76], uPA [77], PGE2 [78], TGF-β1 
[79] among others have been identified as the tumor-
MSC recruiting factors. Such MSC-attracting dynamics 
function to recruit MSCs and educate the MSCs in the 
TME. Liu et  al. found that MSCs mediated C26 colon 
cancer growth with enhanced angiogenesis if MSCs were 
pre-stimulated with both IFN-γ and TNF-α rather than 
with either IFN-γ or TNF-α alone [80]. When arriving 
to TME, MSCs may acutely or chronically differentiate 
into TA-MSCs or cancer-associated fibroblasts (CAFs) 
by the tumor-guided education, further assisting the 
malignant progression [81]. Tumor-educated MSCs can 
further activate and release the chemoprotective and 
immunomodulatory factors including CXCL1, CXCL2, 
and IL-8, favoring tumor progression [82] in which 
MSCs generated CXCL2, VEGF, TGF-β, and IL-6 can 
further raise tumor aggressive phenotype by boosting 
tumor angiogenesis [83]. MSC-mediated tumor ecologic 
dynamics are also related to MSC-related TME immu-
nosuppression [84]. MSCs co-injected with inflamma-
tory breast cancer cells can stimulate the secretion of 
IL-6 from macrophages which is required for the colo-
nization of the inflammatory breast cancer [85]. Such 
pro-tumor ecology is further illustrated by the commu-
nication between tumor cells and stromal cells with a 
feed-forward loop generating a metabolic synergy for 
tumor energy consumption demands [86]. The tumor-
educated MSCs are actively involved in the metabolic 
reprogramming in the TME in which the mitochondria 
of MSCs play a central role in driving the MSC-boosted 
tumor progression via an energy-transferring mechanism 
[87], thereby increasing cell proliferation and invasion of 
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breast cancer and glioblastoma cells [88, 89]. Suppres-
sion of MSCs migration capacity inhibits MSC-enhanced 
tumor aggressive phenotype [90] in which miR-126 is 
shown to inhibit SDF-1α expression and diminish MSC 
recruitment into TME [91]. Further elucidation of the 
mechanistic insights and key elements required for MSC 
recruitment is mandatory for the invention of therapeu-
tic approaches to reverse the proliferative tumor ecology.

MSCs enhance tumor cell metastatic capacity 
and enrich metastatic tissue niche
MSCs enhance tumor metastatic capacity
The tumor cells capable of colonization into the meta-
static site can be boosted by MSC-derived cytokines 
(Fig. 3A). TA-MSCs and CAFs accelerate the progres-
sion of tumor cells towards a more aggressive phe-
notype, including invasive and pro-metastatic states 

[92, 93]. Myeloma cell-educated MSCs demonstrate 
altered differentiation and transcriptomics which 
fit into an efficient niche to support the survival and 
proliferation of the myeloma cells [94, 95]. Tumor-
educated MSCs can promote epithelial-mesenchy-
mal transition (EMT) for tumor metastasis [96, 97]. 
Breast cancer MDA-MB-231 cells pre-treated with 
mouse and human MSCs significantly increased lung 
metastasis [98]. CXCL16 is indicated to play a criti-
cal role in MSC-boosted tumor metastasis by facili-
tating MSC recruitment and conversion to CAFs that 
secrete CXCL12 to regulate EMT in tumor cells [99]. 
MSCs-derived CCL5 can raise tumor cell invasion and 
metastasis [100], while MSCs-released TGF-β leads to 
the force-dependent directional migration of invasive 
breast cancer cells [101]. Breast cancer metastasis is 
enhanced by HIF-dependent CXCL10 upregulation in 

Fig. 2  MSCs recruitment by tumor-secreted elements accelerate tumor proliferation. Tumor-secreted bioactive elements including chemokines 
(CXCL12, MCP-1), cytokines (IL-6, IL-8), growth factors (VEGF, FGF2, HGF, IGF-1, TGF-β1, PGF), and other factors (uPA, PGE2) favor the recruitment 
of MSCs into TME. In TME, MSCs can be further educated into TA-MSC and/or CAF, both promoting tumor cell proliferation via mitochondrial 
transfer and secreting factors including CXCL-1, CXCL-2, VEGF, TGF-β, IL-8, and IL-6. Simultaneously, immune cell response activated by inflammatory 
factors in TME is inhibited by recruited MSCs by cell–cell contact, soluble factors, miRNA, and EVs approaches, leading to the establishment 
of the immunosuppressive TME. accelerates
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MSCs [102], or by DDR2 expression in MSCs [103]. 
Human colorectal cancer-derived MSCs enhanced 
the growth and metastasis of colorectal cancer cells 
in vitro and in vivo via the IL-6/JAK2/STAT3 signaling 
pathway [104]. In addition to EMT, growth-accelerat-
ing genes including integrin α5 [105] and ionotropic 
purinergic signaling pathway [106] are enhanced in 
MSCs-mediated tumor cell metastatic potential.

MSCs enrich metastatic niche
The pre-metastatic niche (PMN) forms a permissive 
environment facilitating the metastatic cell implantation 
and providing a context for the selection of cells capa-
ble of surviving and thriving in the new tissue environ-
ment [107]. PMN is established by modulation of the 
local ecological conditions including cell repopulation 
and nutrient adjustment and by preconditioning BMSCs 
that migrate and prepare the parenchyma for cancer cell 

Fig. 3  MSCs boost tumor metastasis in both seed-to-soil and soil-to-seed cascades. A TA-MSCs and CAFs enhance the “seed” tumor cells 
by releasing cytokines including CCL12, CCL5, TGF-β, CXCL10, DDR2, IL-6, integrin α5, and MSCs-derived macrovesicles, conferring tumor 
cells with metastatic potential mainly by EMT, which boosts local recurrence and distant metastasis. B Meanwhile, MSCs in TME provide 
the adaptive “soil” to fit into the metastatic niche for the homing tumor cells. Firstly, paracrine factors and EVs secreted by primary tumor recruit 
MSCs to the pre-metastatic niches (PMN) where a mature niche is developed for the anchoring of homing tumor cells which is followed 
by MSCs-secreted factors facilitating the cancer cell colonization at PMN
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colonization [108]. The MSCs in the PMN provide the 
tissue-specific pro-transformation status of BRCA1/2-
mutant mediated breast and ovary cancers [60]. Mes-
enchymal gene expression has been observed in tumor 
bone metastases, indicating that mesenchymal signals 
from the primary tumor stroma may promote distant 
metastasis [109]. In this regard, the MSCs already edu-
cated by the primary tumor cells may travel in the system 
and function to sustain and promote the PMN [82, 110]. 
Paracrine factors and EVs secreted by the primary tumor 
are involved in recruiting the BMSCs to the second site 
to develop a mature niche for tumor cell metastasis [111]. 
In prostate cancer bone marrow metastasis, the PMN is 
assumed to be established via exosome pyruvate kinase 
M2 to promote metastasis [112]. Exosomes secreted by 
prostate cancer cells enhance the activity of matrix met-
alloproteinase in the PMN leading to extracellular matrix 
remodeling required for the recruitment of bone mar-
row cells to the PMN [113]. BMSCs play an essential role 
in bone homeostasis; failures in their functionality can 
cause osteolysis [114] which favors PMN [115] to home 
circulating tumor cells [116]. A CXCL12-enriched bone 
marrow PMN is identified to enhance the clonal seeding 
of triple-negative breast cancer metastasis [117]. BMSCs-
secreted IL-6, IL-8, LIF, GM-CSF, ICAM-1 and MMP-3 
are involved in bone remodeling which further supports 
the metastatic cell colonization [111]. Together, these 
findings indicate that MSCs and circulating tumor cells 
and their released immunosuppressive cytokines, coordi-
natively create PMN for tumor metastasis (Fig. 3B).

MSCs contribute to immunosuppressive TME
MSCs target immune cells
In addition to the well-defined immunosuppressive cells 
including Tregs, M2 macrophages, and MDSCs [118], 
the immunosuppressive tumor microenvironment is sig-
nificantly influenced by TA-MSCs or CAFs that release 
molecules to inhibit immune surveillance or induce the 
EMT of tumor cells, resulting in tumor migration and 
invasion [99]. MSC-derived cytokines and growth fac-
tors promote an immunosuppressive environment that 
leads to inhibition of the adaptive immune system [63]. 
This immunosuppressive function of MSCs can be fur-
ther enhanced in the TME through re-education, which 
could sustain a high level of various inflammatory fac-
tors and further recruit circulating MSCs and immu-
nosuppressive cells. About 1–5% of MSCs were found 
in endometrial cancer and the population of MSCs in 
tumor tissues was correlated with the progressive status 
and expression level of the programmed death ligands 
PD-L1 and PD-L2 [119]. The MSCs residing in the TME 
can stimulate tumor growth by promoting immuno-
suppression [120], which is supported by many studies 

indicating that all immune cells, including T cells, B cells, 
macrophages, NK cells, and DC, can be targeted by 
MSCs leading to the immunosuppressive tumor status 
(Fig. 4, Table 1). In the TME of breast and prostate can-
cers, MSCs can defend tumor cells by upregulating Treg 
cells, promoting M2 polarization, and downregulating 
NK cells and cytotoxic T lymphocyte (CTL) [121, 122]. 
The immunosuppressive effect of MSCs is predominantly 
elicited by IFN-γ and the concomitant presence of any 
of TNFα, IL-1α, or IL-1β, which induce a high expres-
sion of inducible nitric oxide synthase by MSCs, inhib-
iting T cell response [123]. Furthermore, TA-MSCs can 
inhibit DCs’ ability to promote the expansion of naïve 
CD4+ and CD8+ T cells, the secretion of IFN-γ, and the 
cytotoxic functions of T cells on tumor cells through an 
IL-10-STAT3 dependent pathway [124]. Immunosup-
pressive TA-MSCs are indicated to promote M2 polari-
zation limiting the phagocytotic attack on tumor cells 
and favoring tumor progression [82]. TA-MSCs are also 
involved in educating macrophages by manipulating met-
abolic programs in differentially polarized macrophages 
[125]. Moreover, transferring MSCs-derived mitochon-
dria to T cells caused Treg generation restricting the 
inflammatory response [126]. These results demonstrate 
that different immune functions are activated in the TME 
by targeting varied immune cells or subtypes of immune 
cell populations. Intriguingly, low-dose radiation-treated 
MSCs have been shown to reduce immune suppression, 
favoring the anti-tumor action of the immune system 
in mouse glioblastoma [127]. Together, TME-recruited 
MSCs generally create a pro-tumor immunosuppressive 
environment, and targeting TA-MSCs is an attractive 
approach to raising tumor response to ICB. In addition, 
TA-MSCs are specifically expanded by metastatic tumor 
cells and are more powerful than MSCs not educated by 
cancer cells in promoting tumor progression and dissem-
ination accompanied by immune suppression [85, 128]. 
Further elucidation of the secretomics from circulating 
MSCs versus resident MSCs of normal and tumor tissues 
may provide more insights into MSCs-regulated tumor 
immunosuppression.

Immunosuppressive MSC‑EVs
MSC-EVs are nano-sized double-membraned vesicles 
acting as paracrine effectors of MSCs. The cargo of MSC-
EVs contains a diverse range of bioactive molecules, 
such as proteins, miRNAs, and lipids with great poten-
tial in immune modulation, including targeting innate 
and adaptive immune cells like macrophages, granulo-
cytes, mast cells, NK cells, DCs and lymphocytes [154, 
155]. MSC-EVs are actively involved in cell–cell com-
munication within the TME. Exosomes (EXOs) being 
the major type of EVs, play a critical role in regulating 
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Fig. 4  MSCs regulating TME immune cells. A Schematic is generated with the data of MSCs-mediated bioactive signals that are 
demonstrated to regulate specific clusters of immune cells and the consequences. B Experimental and clinical information were collected 
regarding the therapeutic approaches targeting the immune cells in TME of the cancer located in the indicated organs
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tumor proliferation, aggressive behavior of metastatic 
tumors, and chemoresistance and thus the potential 
therapeutic targets [156–160]. Increasing secretomics 
analysis has revealed a wide scale of immune regulating 
molecules in the cargo of MSC-EVs, including non-cod-
ing RNAs, miRNAs, long ncRNAs, transcription factors, 
and nucleic acids. EXOs secreted by tumor-educated 
MSCs can enhance breast cancer progression by induc-
ing MDSC differentiation into immunosuppressive M2 
macrophages. Inquiringly, MSC-EXOs but not EXOs 
from tumor cells contain TGF-β, C1q, and semaphorins, 
increasing the myeloid tolerogenic activity with PD-L1 
overexpression in immature myelomonocytic precur-
sors and committed CD206+ macrophages [143]. This 
result indicates that MSC-EXOs can promote MDSCs 

differentiation into protumor M2 macrophages leading to 
tumor immune evasion. Another study has revealed that 
MSC-EVs are capable of transporting miR-222 targeting 
ATF3, leading to AKT1 transcriptional suppression, and 
consequently enhancing malignant aggressiveness and 
immune escape [130]. Elevated delivery of miR-21-5p by 
MSC-EVs following hypoxia pre-challenge fosters lung 
cancer development through apoptosis reduction and 
facilitation of macrophage M2 polarization [145]. Hya-
luronic acid (HA) secreted from TA-MSC-EVs is associ-
ated with GBM aggressiveness [159, 160]. Bioengineered 
MSC-EXOs are currently in pre-clinical and clinical test-
ing stages [161, 162]. The development of more effective 
MSC-EV targets relies on further characteristics of the 
in  vivo MSCs and the high heterogeneity including the 

Table 1  MSCs interaction with immune cells in TME

Target immune cell Cancer type Function Mechanism involved Refs

T cell Head neck squamous Proliferation inhibition IDO dependent [129]

T cell Prostate cancer Proliferation inhibition PD-L1/PD-L2 upregulation [122]

T cell Melanoma Proliferation inhibition DC cysteine export via IL-10-STAT3 [124]

T cell Colorectal cancer Tumor-recruitment reduction MSC-EV derived miR-222 [130]

T cell Colorectal cancer Activation inhibition Sialyltransferase expression, sialic acid, 
and Siglec ligands

[131]

T cell Glioma Proliferation inhibition MSC-EV derived miR-503 [132]

T cell, B cell Melanoma and lymphoma Tumor-infiltrating reduction IDO dependent [133]

CTL Cervical cancer Antigen-specific T cell recognition inhibi-
tion

HLA class I downregulation [134]

CTL Cervical cancer Proliferation/activation inhibition Adenosine dependent [135]

CTL Cervical cancer Proliferation/activation inhibition TGF-β1 mediated PD-L1 [136]

Treg Acute myeloid leukemia Treg induction IFNγ induced IDO1 [137]

Treg Breast cancer Expansion IL-10 and TGF-β dependent [138]

Treg/Th17 Gastric cancer Treg/Th17 balance disruption N/A [139]

Treg/Th17 Breast cancer Treg/Th17 balance disruption TGFβ and IL-17 dependent [140]

Treg/NK/CTL Breast cancer Treg expansion; NK/CTL inhibition TGF-β1 dependent [121]

NK cell Lung cancer Activity blockade PGE2 and IL-6 dependent [141]

NK cell Neuroblastoma Cytotoxicity/proliferation inhibition Kynurenine and PGE2 dependent [142]

Macrophage Breast cancer M2 polarization MSC-derived exosomes containing TGF-β, 
C1q, semaphorins

[143]

Macrophage Pancreatic cancer Alternative polarization IL-6 and IL-10 dependent [144]

Macrophage Lung cancer M2 polarization MSC-EV derived miR-21-5p [145]

Macrophage Cervical cancer M2 polarization M-CSF and IL-10 dependent [146]

TAM Neuroblastoma Survival TGF-β/IL-6 pathway [147]

TAM Breast cancer Tumor recruitment CCL5/CCR5/CSF1/CSF1R loop [148]

Monocyte Follicular lymphoma Recruitment and TAM differentiation CCL-2 dependent [149]

Monocyte Ovarian cancer M2 macrophage polarization CXCL1/2 and IL-8 dependent [82]

Monocyte, macrophage Ovarian cancer Ccr2+ monocyte/TAM recruitment CCL-2, CX3CL1, TGF-β1dependent [150]

Monocyte, macrophage Lymphomas Tumor recruitment CCL-2, CCL-7, CCL-12 dependent [151]

G-MDSC Chronic myeloid leukemia Activation TGFβ, IL-10, IL-6 dependent [152]

G-MDSC Multiple myeloma Induction PTGS2, TGFβ, NOS2, IL-10, IL-6
dependent

[153]
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great scale of various contents carried by the MSC-EVs 
from tumor-educated and non-educated MSCs. These 
studies will provide critical information to invent new 
therapeutic targets for enhancing cancer control by ICB.

Fusion of MSCs with other cells
It remains unclear why MSCs are fusing with other 
somatic cells under physiological and pathological con-
ditions, although such fusion is an infrequent event. 
In  vitro settings, fusion between MSCs and human 
breast epithelial MCF10A cells can be boosted by TNF-α 
mediated apoptotic response [163], whereas, EMT and 
malignant transformation are initiated from the fusion 
of MSCs with gastric epithelial cells [164]. The fusion 
of hMSCs delivered to the damaged murine heart is 
detected in the target organ and surrounding organ sys-
tems. The migration of hMSCs fusion products to distal 
organs is primarily located close to the vasculature, indi-
cating that cell fusion requiring cell mobility is linked 
with the blood vessel velocity [165]. Experimental evi-
dence also shows that the occurrence of cell fusion mainly 
depends on the density of the cells, the cell ratio of the 
parental populations, the components of the medium, 
and culture conditions [166]. In contrast, MSC-tumor 
cell fusion has been extensively studied. Spontaneous 
hybrid cells are identified in hMSCs co-cultured with an 
array of cancer cells. The hybrids seem to acquire a mixed 
property of functions inherited from both parental cell 
types (MSCs and cancer cells), including the expression 
of specific markers of the two cells, increased prolifera-
tion, migration capacity, and stemness [167]. The engulf-
ment of MSCs by MDA-MB-231 breast cancer cells can 
enhance breast cancer cell metastatic potential, result-
ing in hybrid cells with mesenchymal-like, invasion, and 
stem cell traits [168]. In  vivo tests further demonstrate 
that such MSC-cancer cell hybrids have elevated tumo-
rigenicity and metastatic potential with enhanced tumor 
heterogeneity in breast cancer [168–171]. Interestingly, 
microarray-based mRNA profiling of the hybrids defined 
a cluster of genes for EMT and metastasis-associated 
S100A4 and ZEB1, with decreased expression of CK-18 
[168, 171]. The MSC-engulfed breast cancer MDA-
MB-231 cells demonstrated enhanced EMT and invasive 
potential [168]. Although the precise mechanisms under-
lying MSC-tumor cell fusion remain to be elucidated, 
hypoxic condition-induced cell apoptosis could be a pre-
requisite for the fusion [172], thus the phenomenon of 
MSC-tumor cell fusion could indicate a form of adaptive 
prosurvival function of tumor cells. The physiological 
and pathological fusion of MSC-normal and MSC-tumor 
cells require further investigation.

Targeting MSCs in cancer radiotherapy
A dual function of normal tissue radioprotection and 
inhibiting tumor cells by MSCs is suggested. MSCs are 
shown to repair radiation-induced normal tissue inju-
ries [173] whereas targeting TA-MSCs is an attractive 
approach for the regulation of immune status in TME 
[120]. The idea of MSCs-mediated radiation damage 
repair is encouraged by the finding that radiation can 
activate MSCs metabolism, thus enhancing MSCs func-
tional activity [174]. Preclinical studies have indeed 
demonstrated the potential of MSCs being recruited 
to the radiation-induced lesion sites, repairing tissue 
damage and supporting the regeneration of functional 
tissues [175], especially in the restoration of the radia-
tion-injured intestine [176], lung [177], and skin [178] 
as well as to mitigate premature ovarian failure [179]. 
Following the aforementioned tumor-promoting func-
tion of TA-MSCs, it is thus to be carefully balanced on 
an MSCs-targeted approach in cancer radiotherapy. It is 
already demonstrated that in TME, irradiation-induced 
cytokines secreted by 4T1 cells, including TGF-β1, 
VEGF, and PDGF-BB, can facilitate MSCs chemotaxis 
towards the tumor site [180]. Furthermore, CCL2 can act 
as a factor in the IR-induced tropism of MSCs to provide 
pro-tumor gliomas TME [181].  Conversely, irradiated 
MSC-EXOs enhanced tumor radiation response, improv-
ing the control of melanoma cell growth and metastasis 
[182]. Similarly, MSCs could potentially promote the 
effect of radiotherapy in colorectal cancer by secreting 
TNF-α and IFN-γ [183]. Based on these reports, cur-
rently, the exact activities of the tissue-resident MSCs in 
TME under therapeutic irradiation, especially the TA-
MSCs in recurrent and metastatic lesions after radio-
therapy, need to be further elucidated. The heterodetic 
MSCs sub-populations, dynamic communication, as well 
as potential MSC-tumor or other stromal cell fusion in 
the irradiated TME, are currently unknown. It is thus 
expected that a specific subtype of TA-MSCs or evolu-
tion of TA-MSC could drive tumor aggressive growth or 
metastasis.

Conclusions and perspectives
This review describes the widescale functions of MSCs 
from different resources including their potential self-
transformation and acquiring tumor-promoting func-
tions, serving as TICs. A fundamental question that 
remains unanswered is whether the original malignant 
epithelial cell(s) arise through MET of MSCs derived 
from tissue residence and/or circulation. In an age of 
multi/single genome omics and spatial transcriptomics, 
reevaluating the fundamental traits and tracking of can-
cer-initiating MSCs could represent a significant break-
through in our comprehension of cancer cell origin and 
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potential prevention [184, 185]. Increasing evidence has 
revealed an important role in tumor immune regulation 
especially the tumor-infiltrated immune cells targeted by 
both circulating and tissue-resident MSCs. In this regard, 
further characterization of the heterogeneity of MSCs 
in TME may help to clarify the clusters responsible for 
carcinogenesis and progression [186]. These insights 
will also be informative for the application of MSCs and 
MSC-EVs in the fields of regenerative medicine using 
MSCs from different tissue resources, although current 
clinical evidence doesn’t strongly suggest MSC-origi-
nated malignancy. Lastly, to enhance the effectiveness of 
cancer immunotherapy, it is imperative to gain a com-
prehensive understanding of the dynamic interactions 
between MSCs and various immune cells within the 
TME.
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