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Abstract

Geometric Interpretation of Donkin’s Tensor Product Theorem

by

Yixuan Li

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor David Nadler, Chair

This thesis gives a geometric interpretation of the Donkin’s Tensor Product Theorem, whose
original proof is purely algebraic.
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Chapter 1

Quantum Group at Roots of Unity

1.1 Notations

• Let G be a connected complex simply connected semisimple algebraic group, G∨ be its
Langlands dual group which is of adjoint type.

• Let g be the Lie algebra of G, t ⊆ g be the Cartan subalgebra. Let R ⊂ t∗ be the root
system of G, with {αi}i∈I being the simple roots. Let ρ = 1

2

∑
i∈I αi. Let R∨ ⊂ t be

the coroot system and {α∨
i }i∈I be the simple coroots. Hence aij = ⟨α∨

i , αj⟩ gives the
Cartan matrix.

• Let X = {µ ∈ t∗| ⟨α∨
i , µ⟩ ∈ Z,∀i ∈ I} be the weight lattice of G. Let X+ = {µ ∈

X| ⟨α∨
i , µ⟩ ≥ 0,∀i ∈ I} be the dominant integral weights of G. Let Y = Σi∈IZαi ⊆ X

be the root lattice of G. Let Y + = X+ ∩ Y be the positive root lattice of G. Let
Y ∨ = Hom(Y,Z) be the coweight lattice of G.

• Choose a Killing form (·, ·) such that (αi, αi) = 2di, di ∈ {1, 2, 3}. Note that we’ll

always have the Cartan matrix aij =
(αi,αj)

(αi,αi)
back.

• Choose a borel subalgebra b ⊆ g. Let g = n+ ⊕ t ⊕ n− be the induced triangular
decomposition.

• Let C(q) be the field of rational functions in q. Let Uq(g) be the Drinfeld-Jimbo
quantum group generated by the Chevalley generators Ei, Fi and Kµ∨ , where i ∈ I
and µ ∈ Y ∨ is a coweight. They satisfy the following relations:

Kµ∨
1
Kµ∨

2
= Kµ∨

1 +µ∨
2
, Kµ∨EiK

−1
µ∨ = q⟨αi,µ

∨⟩Ei, Kµ∨FiK
−1
µ∨ = q−⟨αi,µ

∨⟩Fi,

EiFj − FjEi = δij
Kdiα∨

i
−K−1

diα∨
i

qdi − q−di
,

They also satisfy the quantum Serre relations.
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• Let UZ
q (g) ⊂ Uq(g) be Lusztig’s integral form[10], which is a subalgebra generated over

C[q, q−1] by the quantum divided powers E
(n)
i =

En
i

[n]di !
, F

(n)
i =

Fn
i

[n]di !
and

[
Kµ∨ ,m
n

]
di

,

where [n]d! =
∏n

j=1
qdj−q−dj

qd−q−d .

• Fix an odd positive integer l which is greater than the Coxeter number of R, l should
also be coprime to 3 if G contains a factor of type G2. Fix a primitive l-th root of unity

ξl. Define the quantum group at l-th root of unity as Uξl(g) = UZ
q (g)⊗C[q,q−1]

C[q,q−1]
(q−ξl)

.

• Once the choice b of Borel is fixed, there are the following induced triangular decom-
positions:

UZ
q (g) = UZ,+

q (g)⊗C[q,q−1] U
Z,0
q (g)⊗C[q,q−1] U

Z,−
q (g),

Uξl(g) = U+
ξl
(g)⊗C U

0
ξl
(g)⊗C U

−
ξl
(g)

1.2 Review of the Representation Theory of Uξl(g)

The category of finite dimensional complex representations of Uξl(g) is not semisimple. How-
ever, simple objects are still labelled by the dominant integral weights µ ∈ X+ of G. We
denote the simple object of highest weight µ as L(µ). This category also has the structure of
a highest weight category, with standard objects ∆(µ), costandard objects ∇(µ) and tilting
objects T (µ).

Let Fr : Rep(G) → Uξl(g)-mod be the quantum Frobenius functor sending the irreducible
complex representation Vλ with highest weight λ ∈ X+ to the irreducible representation L(lλ)
of highest weight lλ.

Any highest weight can be uniquely written as µ = λ0 + lλ1, where λ1 is a dominant
integral weight and λ0 belongs to the set of l-restricted dominant integral weights X+

1 =
{λ ∈ X|0 ≤ ⟨λ, α∨

i ⟩ < p for all simple roots αi}.
Now the Steinberg tensor product theorem [9] states that in the category of finite dimen-

sional modules of Uξl(g), if µ = λ0 + lλ1 as above, we have

L(µ) = L(λ0 + lλ1) = L(λ0)⊗ Fr(Vλ1)

Since the category is not semisimple, we’re interested in the block decomposition such
that representations belonging to different blocks do not have any non-zero derived homomor-
phisms between each other. We’re primarily interested in the principal block Block0(Uξl(g))
containing highest weight 0, which is one of the biggest blocks.

To label the he highest weights in this block, we need more notations. LetWaff = W⋉X
be the affine Weyl group. A group element in this semi-direct product is denoted by wtλ,
where w ∈ W and λ ∈ X. Define an action of Waff on X centered at −ρ given by

(wtλ) · µ = w(lλ+ µ+ ρ)− ρ
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The highest weights that belong to the principal block containing highest weight 0 are
exactly in the set [9] X+ ∩Waff · 0. They are in bijection with the set of right W -minimal
elements in Waff . Let’s denote a right W -minimal element by waff,R. Therefore the simple
objects in the principle block Block0(Uξl(g)) are precisely L(w

−1
aff,R·0). Each rightW -minimal

element can be uniquely written as xtλ, where x is a restricted rightW -minimal element and
λ ∈ −X+ is a weight of G in the opposite of the dominant integral cone X+. Each restricted
element x can be uniquely factored as wtλ′ , where w ∈ W and ⟨λ′

, α∨
i ⟩ = 0 for a simple

coroot α∨
i of G if w(α∨

i ) is still a positive coroot, ⟨λ′
, α∨

i ⟩ = −1 if not. As a result there
are exactly |W |-many restricted elements. Therefore with the notations above, the highest
weights in Block0(Uξl(g)) are in the form (xtλ)

−1 · 0.
For quantum group at roots of unity there’s a Donkin’s tilting tensor product theorem

for tilting modules that resembles the Steinberg tensor product theorem:

Theorem 1. [2] Suppose λ0 is l-restricted (in X+
1 ) and µ is dominant integral, we have

T ((l − 1)ρ+ λ0 + lµ) ∼= T ((l − 1)ρ+ λ0)⊗ Fr(Vµ).

If we restrict this theorem to the case where (l− 1)ρ+ λ0 belongs to the principal block,
we can rewrite it using the notations introduced above as:

T ((xt−ρ+w0µ)
−1 · 0) ∼= T ((xt−ρ)

−1 · 0)⊗ Fr(Vµ)

Here µ is dominant integral and w0 is the longest element in W .
In the next chapter we’ll give a geometric interpretation of this formula with the help

of the Geometric Langlands Correspondence, which provides a different way to understand
this theorem apart from the existing algebraic proof.
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Chapter 2

Perverse Sheaves on the Affine
Grassmannian and the Principal
Block

In this chapter we use Langlands Duality and the geometry of the affine grassmannian of G∨

to study tilting representations of the principal block.

2.1 Sheaves on the Affine Grassmannian of G∨ and

Representations of G

Let K = C((t)) be the field of Laurent power series in t and O = C[[t]] be the subring
of power series. The affine grassmannian of G∨ is defined as GrG∨ = G∨(K)/G∨(O).
Let Db

c(G
∨(O)\G∨(K)/G∨(O)) be the equivariant derived category of constructible sheaves

with complex coefficients. There is a perverse t-structure [4] on this dg category and the
heart Perv(G∨(O)\G∨(K)/G∨(O)) ⊂ Db

c(G
∨(O)\G∨(K)/G∨(O)) is the Abelian category of

equivariant perverse sheaves, with simple objects being equivariant intersection cohomology
sheaves on the closure of each stratum.

To work with perverse sheaves, we will frequently use the geometric notion of a semi-small
map and the decomposition theorem.

Recall that a stratified map π : (X, {Xα}) → (Y, {Yβ}) is a map between varieties with
Whitney stratifications such that π(Xα) is a union of stata Yβ on Y and that π is a smooth
fibration over each Yβ with fiber Fβ. π is called stratified semi-small if

2 dimFβ ≤ dimXα − dimYβ

holds for all strata Xα and Yβ such that π(Xα) contains Yβ.
If π is proper and stratified semi-small, then the pushforward functor π∗ = π! preserves

the perverse t-structure on the derived category of constructible sheaves [4]. Moreover if the
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inequality is strict whenever dimFβ ̸= 0, the map is called stratifed small and

π∗(ICX) = ICY

Simple objects in Perv(G∨(O)\G∨(K)/G∨(O)) are intersection cohomology sheaves ICλ

labeled by the cosets in G∨(O)\G∨(K)/G∨(O), i.e. the dominant cocharacters of G∨ or the
dominant integral weights λ ∈ X+ of G. Moreover the convolution on G∨(O)\G∨(K)/G∨(O)
induces a monoidal structure on Db

c(G
∨(O)\G∨(K)/G∨(O)). This monoidal structure pre-

serves the perverse t-structure because the convolution map is stratified semi-small [8] [11].
Therefore we have a monoidal abelian category

(Perv(G∨(O)\G∨(K)/G∨(O)), ∗)

whose simple objects are labeled by the dominant integral weights λ ∈ X+ of G. We then
have the following Geometric Satake equivalence:

Theorem 2. [8] [11] There exists an equivalence of monoidal Abelian categories

Sat : (Perv(G∨(O)\G∨(K)/G∨(O)), ∗) → (Rep(G),⊗)

sending ICλ to Vλ.

Besides constructible sheaves on the complex affine grassmannian, one can also consider
etale constructible sheaves on the affine grassmannian defined over Fp.

We shall also make use of a variant of the Geometric Satake equivalence called the
Iwahori-Whittaker model. For convenience we will consider etale constructible sheaves. Let
N∨

− ⊂ G∨ be the unipotent subgroup corresponding to the negative roots. Let I∨u,− denote
the preimage of N∨

− in G∨(O). Consider a generic additive character

ψ : I∨u,− → N∨
− → N∨

−/[N
∨
−, N

∨
−] → Ga

The convenience of using etale sheaves is such that the category Db(G∨(O)\G∨(K)/(I∨u,−, ψ))
of sheaves on G∨(O)\G∨(K) which are right twisted equivariant with respect to the character
(I∨u,−, ψ) is a subcategory of etale constructible sheaves on G∨(O)\G∨(K), thanks to the
existence of Artin-Schreier local systems on Ga in etale topology.

The cosets in G∨(O)\G∨(K)/(I∨u,−) that can support an equivariant local system twisted
by ψ are labelled by the subset of elements in Waff that are left W -maximal and right
W -minimal. Such kind of elements are precisely t−ρ−λ for λ ∈ X+. Therefore the simple
perverse sheaves are again in one to one correspondence with irreducible representations of
G. Let w0 ∈ W be the longest element. Then the simple perverse sheaves are denoted by

ICG∨(O),IW (t−ρ+w0(µ)) ∈ Perv(G∨(O)\G∨(K)/(I∨u,−, ψ))

where µ runs through all dominant integral weights of G.
Note that Perv(G∨(O)\G∨(K)/G∨(O)) acts on Perv(G∨(O)\G∨(K)/(I∨u,−, ψ)) via convo-

lution on the left. The following theorem, called the Iwahori-Whittaker model of Geometric
Satake, states that ICG∨(O),IW (t−ρ) is the generator of Perv(G∨(O)\G∨(K)/(I∨u,−, ψ)) as a
rank one free left module category of Perv(G∨(O)\G∨(K)/G∨(O)).
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Theorem 3. [6] There exists an equivalence of Abelian categories

Perv(G∨(O)\G∨(K)/G∨(O)) → Perv(G∨(O)\G∨(K)/(I∨u,−, ψ))

given by convolution with ICG∨(O),IW (t−ρ).

From this theorem we get the following useful formula:

ICµ ∗G∨(O) ICG∨(O),IW (t−ρ) ∼= ICG∨(O),IW (t−ρ+w0(µ)).

2.2 The ABG Equivalence

In the seminal work [3] the authors identified the Abelian category Perv(I∨u \G∨(K)/G∨(O))
with Block0(Uξl(g)). First note that both categories are highest weight categories with simple
objects indexed by right W -minimal elements in Waff . The simple objects in Block0(Uξl(g))
are L((xtλ)

−1·0) and the simple objects in Perv(I∨u \G∨(K)/G∨(O)) are denoted ICI∨u ,G∨(O)(xtλ).
The indecomposable tilting representations and tilting perverse sheaves are denoted respec-
tively by T ((xtλ)

−1 · 0) and TI∨u ,G∨(O)(xtλ).
Moreover, both categories are module categories of Rep(G). V ∈ Rep(G) acts on

Block0(Uξl(g)) by sending a moduleM toM⊗Fr(V ). Rep(G) ∼= Perv(G∨(O)\G∨(K)/G∨(O))
acts on Perv(I∨u \G∨(K)/G∨(O)) by convolution on the right.

Theorem 4. [3] There exists an equivalence of highest weight Abelian categories be-
tween Perv(I∨u \G∨(K)/G∨(O)) and Block0(Uξl(g)). In particular the equivalence matches
T ((xtλ)

−1 · 0) and TI∨u ,G∨(O)(xtλ). This equivalence also commutes with the Frobenius twisted
action of Rep(G) on both sides as described above.

Hence after the ABG equivalence, we can translate the Donkin’s tensor product theorem
in Chapter 2 into a statement of tilting perverse sheaves:

Corollary 1. The Donkin’s tensor product formula is equivalent to the following isomor-
phism of perverse sheaves:

TI∨u ,G∨(O)(xt−ρ)∗G∨(O)ICµ
∼= TI∨u ,G∨(O)(xt−ρ+w0(µ))

in Perv(I∨u \G∨(K)/G∨(O))

In the next section we’ll recall the notion of monoidal Koszul Duality which exchanges
indecomposable tilting sheaves and IC sheaves, to help us justify the isomorphism above.
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2.3 Koszul Duality of Loop Groups and Gaitsgory’s

Central Sheaves

Studying tilting representations or tilting perverse sheaves directly is not easy, luckily for
sheaves with characteristic zero coefficients we have the Koszul duality exchanging tilting
sheaves and intersection cohomology sheaves, which are easier to work with.

Bezrukavnikov and Yun [5] proved a Koszul Duality between the free monodromic com-

pletion of the I∨-bimonodromic mixed derived category D̂b
mix

bim
(I∨u \G∨(K)/I∨u ) and the I∨

bivariant derived category Db
mix(I

∨\G∨(K)/I∨). Under this equivalence, free monodromic
indecomposable mixed tilting perverse sheaves on the left hand side corresponds to in-
decomposable mixed IC sheaves on the right. This Koszul duality is an equivalence of
monoidal categories. Moreover, they also showed that there’s a Koszul duality between
Db

mix(I
∨
u \G∨(K)/G∨(O)) and Db

mix(I
∨\G∨(K)/(I∨u,−, ψ)) which sends mixed tilting sheaves

to mixed IC sheaves and that Koszul duality preserves the left module structures induced
by convolution on these two categories. Here (I∨u,−, ψ) is again a generic Iwahori-Whittaker
equivariant condition as discussed in section 1.

In [7] Gaitsgory constructed certain objects called central sheaves inDb
mix(I

∨\G∨(K)/I∨).
Let Zmix(ICµ) be the mixed central sheaf inDb

mix(I
∨\G∨(K)/I∨) obtained from applying the

nearby cycle functor of the central degeneration to the mixed perverse sheaf δB∨\B∨/B∨⊠ICµ

in Pervmix(B∨\G∨/B∨ × G∨(O)\G∨(K)/G∨(O)). Let Ẑmix(ICµ) be the mixed central

sheaf in D̂b
mix

bim
(I∨u \G∨(K)/I∨u ) obtained from applying the nearby cycle functor of the

central degeneration to the mixed free monodromic perverse sheaf ˜δN∨\B∨/N∨ ⊠ ICµ in
Pervmix,bim(N∨\G∨/N∨ ×G∨(O)\G∨(K)/G∨(O)).

We have the following conjecture, which is the key to the geometric interpretation of
Donkin’s tensor product theorem.

Conjecture 1. Under the Koszul duality of Bezrukavnikov and Yun [5],

Ẑmix(ICµ) corresponds to Z
mix(ICµ)

.

Before proceeding to the last section where we deduce Donkin’s theorem assuming this
conjecture, let’s recall some properties [7] of these central sheaves that are useful.

The first property is that for any sheaf F in Db
mix(I

∨\G∨(K)/I∨),

F ∗I∨ Zmix(ICµ) ∼= Zmix(ICµ) ∗I∨ F

The second property is that

π∗(Z
mix(ICµ)) ∼= ICµ

where π is the left projection π : I∨\G∨(K) → G∨(O)\G∨(K) or the right projection.
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The third prperty is that for any sheaf F in Db
mix(I

∨
u \G∨(K)/I∨),

F ∗I∨ Zmix(ICµ) ∼= Ẑmix(ICµ) ∗I∨u F

2.4 Geometric Interpretation of Donkin’s formula

In this section let’s finish the proof of the main theorem:

Theorem 5. Assuming Conjecture 1, the isomorphism from section 3.2

TI∨u ,G∨(O)(xt−ρ)∗G∨(O)ICµ
∼= TI∨u ,G∨(O)(xt−ρ+w0(µ))

holds in Perv(I∨u \G∨(K)/G∨(O))

To prove this isomorphism, we take the preferred lift of both sides in the mixed category
and apply Koszul duality. By the centrality of central sheaves (the first property) and the fact
that central sheaves averages to IC sheaves on the affine grassmannian(the second property),

Ẑmix(ICµ)∗I∨u T
mix
I∨u ,G∨(O)(xt−ρ) ∼= Tmix

I∨u ,G∨(O)(xt−ρ)∗G∨(O)ICµ

. Therefore, after applying Koszul duality and our first theorem, it suffices to show that

Zmix(ICµ)∗I∨ICmix
I∨,IW (xt−ρ) ∼= ICmix

I∨,IW (xt−ρ+w0(µ))

in Db
mix(I

∨\G∨(K)/(I∨u,−, ψ)) Since the preferred lift is possible and unique, it’s enough to
show the non-mixed version.

Thus we want to show that

Z(ICµ)∗I∨ICI∨,IW (xt−ρ) ∼= ICI∨,IW (xt−ρ+w0(µ))

in Db(I∨\G∨(K)/(I∨u,−, ψ)).
Since l(xt−ρ) = l(x) + l(t−ρ) and t−ρ is left W -maximal, by the decomposition theorem

the left hand side is a direct summand of

Z(ICµ)∗I∨ICI∨,G∨(O)(x)∗G∨(O)ICG∨(O),IW (t−ρ)

. Here ICI∨,G∨(O)(x) is the IC sheaf in Db(I∨\G∨(K)/G∨(O)) lebelled by the right W - min-
imal element x and ICG∨(O),IW (t−ρ) is the IC sheaf in Db(G∨(O)\G∨(K)/(I∨u,−, ψ)) labelled
by the element t−ρ which is both left W -maximal and right W -minimal.

We plan to show that this triple convolution product is an indecomposable IC sheaf, so
that its summand will also be an indecomposable IC sheaf.

By centrality and the fact that central sheaves averages to IC sheaves, we can move the
central sheaf to the middle:

Z(ICµ)∗I∨ICI∨,G∨(O)(x)∗G∨(O)ICG∨(O),IW (t−ρ) ∼= ICI∨,G∨(O)(x)∗G∨(O)ICµ∗G∨(O)ICG∨(O),IW (t−ρ).
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Then, applying the Iwahori-Whittaker model of the Satake category, ICG∨(O),IW (t−ρ) is
the generator of Perv(G∨(O)\G∨(K)/(I∨u,−, ψ)) as a rank one free left module of
Perv(G∨(O)\G∨(K)/G∨(O)). We have

ICµ ∗G∨(O) ICG∨(O),IW (t−ρ) ∼= ICG∨(O),IW (t−ρ+w0(µ)).

Therefore, it suffices to show that ICI∨,G∨(O)(x)∗G∨(O)ICG∨(O),IW (t−ρ+w0(µ)) is an inde-
composable IC sheaf, which is a corollary of the following theorem.

Theorem 6. [1] The convolution functor

∗ : Pervres(I∨u \G∨(K)/G∨(O))×Perv(G∨(O)\G∨(K)/(I∨u,−, ψ)) → Perv(I∨u \G∨(K)/(I∨u,−, ψ))

is fully faithful on both factors, with coefficients in any field. The notation res in the first
factor means the subcategory of sheaves supported on restricted strata. Therefore when we
convolve two indecomposable objects, the endomorphism algebra of the result is the tensor
product of the endomorphisms of the two objects, which is again a local algebra.
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