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Meili R.†, Alonso-Latorre B.†, del Álamo J. C., Firtel R. A., and Lasheras J. C., 2010.
“Myosin II is essential for the spatiotemporal organization of traction forces during cell
motility,” Molecular Biology of the Cell, 21:405-417. †Co-first authors.

Lasheras J. C., Alonso-Latorre B., Meili R., Bastounis, E., del Álamo J. C., and Firtel
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Professor Richard A. Firtel, Co-Chair

Cell motility plays an essential role in many physiological and pathological processes,

yet we still lack information about the spatio-temporal coordination between regulatory

biochemical processes and mechanics of cell migration. This dissertation has investigated

the mechanics of amoeboid cell migration through intensive analysis of the traction forces

exerted and shapes adopted by single Dictyostelium discoideum cells migrating chemotac-

tically, focusing on wild-type (WT ) and contractility-defective cells lacking either protein

myosin II (mhcA−) or the myosin II essential light chains (mlcE−).

We have developed an improved traction force cytometry method to calculate cell

traction stresses which considers the finite thickness of the substrate. We have shown that

the strain energy exerted by locomoting cells on the substrate evolves quasi-periodically

and correlates with cell length, and thus it can be used as a quantitative indicator of the

cell motility cycle. The periodicity (T ) of the oscillations in the traction forces correlates

strongly with the average velocity of migration (V ) of cells according to the hyperbolic law

V T=λ, where the constant λ is independent of the strain analyzed and corresponds to the

average distance a cell travels per cycle.

Given the quasi-periodic character of both cell length and strain energy, we have

performed a phase statistical analysis to obtain a spatio-temporal representation of the

canonical motility cycle divided into four phases: protrusion, contraction, retraction, and

xxii



relaxation. This analysis has elucidated the role that protein myosin II plays in enhancing

the kinetics of the four stages of the cycle and in controlling the spatial distribution of the

traction forces regulating that process.

We have used principal component analysis to dissect the mechanics of locomotion

of amoeboid cells into a reduced set of dominant components of cellular traction forces

and shape changes. The dominant traction force component accounts for 40% of the strain

energy performed by these cells, and its temporal evolution correlates with the quasi-periodic

variations of cell length and strain energy exerted on the substrate.

Finally, we have developed two analytic assays for the calculation of cell traction

stresses in configurations of interest to further understand the mechanosensing machinery

of cells.
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Chapter 1

Introduction

Cell migration is central to many physiological processes, including wound healing,

immune response, or embryonic development [1–4]. Wound healing and the response of the

immune system comprises a series of stages, including platelet activation, vasodilatation,

and a clotting cascade leading to the formation of a fibrin and fibronectin plug, across

which neutrophils, macrophages, fibroblasts, and epidermal cells migrate to complete the

healing of a tissue [5]. During embryonic development, layers of cells migrate to establish the

foundations of tissues and organs [6]. These developmental processes take place throughout

our whole life, with different types of cells being renewed on a daily basis.

Likewise, the deregulation of cell migration contributes very importantly to serious

pathological processes, such as tumor invasion, vascular diseases, or mental retardation [7–

9]. The invasion and metastasis of tumor cells entails a complicated array of biochemical

processes tightly coupled with changes in the cell cytoskeletal structure which eventually

lead to migration of cancer cells from their primary site, reaching the blood or lymph ves-

sels, and metastasizing in distant organ sites [10]. Vascular diseases, such as atherosclerosis,

derive from the formation of lesions in the endothelium, which leads to the accumulation

over time of fats, cholesterol, platelets, cellular debris and calcium in the artery wall. As

the lesion continues developing, chemoattractant signals trigger the migration of smooth

muscle cells into the intima, contributing to the stiffening of the vascular vessels [11]. In

the case of mental retardation, it may arise as the result of defective motion and estab-

lishment of projections to form synapses by neuronal cells during brain development [12].

As these examples depict, many of the harmful effects derive from subtle misregulation

of motility rather than from its outright absence. Quantitative characterization of these

deficiencies may help to improve treatment of such conditions through precise targeting of

1
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cellular motility. Furthermore, understanding and controlling cell migration is important

for tissue engineering, a discipline which requires a detailed understanding of cell-matrix

interactions, which are fundamental for attachment, growth, proliferation, and, very impor-

tantly, migration of cell cultures, a key component in the development of tissue constructs

[3, 5].

Cell locomotion has been extensively studied using the shape of the cell as read-

out, a challenging task, given that cells are plastic and dynamic objects. Wessels and Soll

[13–21] developed a framework for the 2D and 3D analysis of morphological changes during

cell locomotion, which enabled them to track the motion of amoeboid cells [1] through the

observation of the time evolution of descriptors such as the length of the cell or the velocity

of the centroid of the cell. An additional problem is the substantial level of variability in the

properties of individual cells [22]. A common way to ameliorate this problem is to select

a limited number of cells that can represent the population. However, the identification

of such “prototypical” cells is subjective and is often lacking statistical validation. A few

different groups have developed techniques to face this inherent condition of cell motility,

such as the work by Machacek and Danuser [23], which identified different protrusion phe-

notypes using level set methods, or the works by Killich et al. [24] and Keren et al. [22],

which used Principal Component Analysis (PCA) (also known as Karhunen-Loève decom-

position or Proper Orthogonal Decomposition) to quantify cell shape changes of migrating

Dictyostelium discoideum cells and epithelial fish keratocytes respectively.

The quantification of the traction stresses is essential to the better understanding

of how the cell regulates adhesion, morphology and migration. However, because of ex-

perimental complexity, there are still important open questions regarding the mechanical

actions of migrating cells on the extracellular matrix (ECM). The development of a variety

of traction force cytometry techniques in the last 20-30 years is being one of the keys to

answer those questions. Harris et al. [25] first identified qualitatively the nature of the

stresses exerted by cells on the ECM through the observation of the wrinkling patterns cells

induced over a thin layer of silicone rubber substratum. Other approaches contemplate the

use of a substrate seeded with micropillars, where the force applied to each one is directly

proportional to the displacement of its tip [26, 27]. Dembo et al. [28] and Peterson [29] first

described the use of thick elastic substrates to calculate the traction stresses exerted by

cells attached to the surface, to be obtained from measurements of the displacement field

induced in the substrate. For the calculation of the traction stresses Dembo et al. [28] and



3

1. Protrusion 2. Contraction 3. Retraction 4. Relaxation

Figure 1.1: Sketch of the different stages of the amoeboid motility cycle. (1) Protrusion:
through actin polymerization in the cell leading edge, and formation of new attachments;
(2) Contraction: increase in the contractile forces exerted by the cell on the substrate; (3)
Retraction: the cell releases or breaks the attachments at its posterior part and retracts
through myosin-mediated actin filament contraction; (4) Relaxation: stage prior to the
beginning of a new motility cycle.

Peterson [29] used a boundary element method which expressed the classical solution of the

equation of static equilibrium for a homogeneous, semi-infinite medium found by Boussinesq

[30], involving the inversion of a large system of equations in real space, and thus proving

computationally very expensive. Using a similar experimental configuration, Schwarz et al.

[31] developed an approach consisting in the reconstruction of the traction forces from the

application of discrete point forces, which in turn requires experimental knowledge of the

location of the adhesion sites, to be obtained from fluorescence data on proteins localizing

to focal adhesions (e.g., vinculin or paxillin) [27, 31] or by reflection interference contrast

microscopy [32]. Butler et al. [33] developed Fourier traction force cytometry, which took

advantage of the fact that the inversion of Boussinesq’s solution is trivial in Fourier space,

thus greatly accelerating the calculation of the traction stresses, and allowing to analyze

long recordings of the traction forces exerted by migrating cells. Traction force cytometry

techniques using deformable substrates have been applied to study the traction stresses

exerted by many types of cells, including locomoting keratocytes [28], fibroblasts [29] and

Dictyostelium discoideum [34–36].

Cell migration over surfaces requires the orchestrated integration of transient sig-

nalling events and changes in cytoskeletal structure and its mechanical interaction with

the substrate through adhesion regions [4]. Amoeboid motility is a prototypic model of it,

which has been most extensively studied in lymphocytes [37, 38], and Dictyostelium [39–43].

Dictyostelium is a valuable model system for the investigation of cell motility with extensive

similarities to higher eukaryotes, in particular to leukocytes [44]. Despite the complexity of

the various chemical, biological, and mechanical processes involved in eukaryotic cell motil-

ity, it has been suggested that cells perform a limited repertoire of motions during their
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migration: protrusion of the leading edge, formation of new adhesions near the front, cell

contraction, and release or breakage of the rear adhesions [1] (see Fig 1.1). The exact nature

and sequence of events making possible this motility cycle are not fully understood yet.

The establishment of inherent polarity of motile cells has been studied extensively.

Upon encountering chemotactic molecules, cells reorganize into a “front”, which promotes

forward motion, and a “back”, which promotes the retraction of the cell body. This po-

larity comprises the distribution of structural proteins as well as concentration gradients

of activated intermediary signaling molecules such as PI3K, Ras, Rho, or Rac [4], which

control various cytoskeletal elements. One less clear aspect is how the initial cellular po-

larity is generated from weak external or internal cues, and subsequently maintained and

coordinated on the cellular level. Similarly, we lack reliable information about the changes

in the physical properties of the cell that result from this coordinated regulation. Further

understanding requires accurate measurements of these properties as the cell moves and

interacts with the substrate under controlled conditions. This requirement is especially

challenging in the case of Dictyostelium cells because their relatively small size and fast

migration speeds demand high temporal and spatial resolutions.

After the polarity of the cell is established, cell migration is driven by the coordi-

nation between the protrusion of the cell front and the retraction of the cell back, which

can basically be conceptualized as the balance between the turnover of filamentous actin

(F-actin) at the front of the cell and the contractile activity of the F-actin-directed motor

protein myosin II (MyoII) at the back [45–47]. The actin cytoskeleton is the basic ma-

chinery necessary for protrusion. Actin filaments (Fig. 1.2a) are polarized structures made

out of actin monomers, presenting a fast-growing “barbed” (plus) end and a slow-growing

“pointed” (minus) end, thus providing the basic drive for protrusion. Actin filaments can

basically form filopodia, thin parallel bundles of actin filaments actin as sensors to explore

the surrounding environment [48], or lamellipodia, broad dendritic structures providing the

basis for cell protrusion and movement [49, 50]. In lamellipodia, actin filaments form a

branched network which pushes the membrane forward. The Arp2/3 complex induces the

nucleation of new actin filaments from the sides of pre-existing ones, and is the origin for the

broad growth of the whole lamellipodia structure [51]. Arp2/3 complex is itself activated by

Wasp/Wave molecules, upstream receivers of Cdc42 and Rac [52, 53]. Actin filament length

is regulated by capping proteins, and the mechanical properties of F-actin are modulated

by actin binding and cross-linking proteins [2, 54, 55], among them MyoII.

In order to achieve advancement, protrusions need to attach and stabilize to a
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Head
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(-) (+)actin
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37 nm

Figure 1.2: (a) Structure of an actin filament. It is composed of two helical coils of actin
monomers (5 nm diameter), presenting a fast-growing “barbed” (plus) end and a slow-
growing “pointed” (minus) end. (b) Structure of protein myosin II. It includes two tail
domains formed by two α-helical coiled coils, ending in two globular motor domains (heads).
Two light chains, essential (ELC) and regulatory (RLC), wrap around the neck of each
myosin II heavy chain, and contribute to the regulation of the motor activity of protein
myosin II. (c) Bipolar complexes of myosin II form by interaction of antiparallel coiled coil
tail domains. The head domains attach to actin filaments, interconnecting them. The motor
activity of myosin II derives from hydrolysis of ATP, leading to the rotation of the myosin
heads, and thus sliding actin filaments with respect to each other.

certain degree in order to allow to pull the back of the cell forward through the contractile

activity of MyoII. The interaction of the cell with the substrate is achieved through integrins

in mammalian cells [56, 57], or integrin-like proteins in Dictyostelium [58], which enable

and mediate the cell to adhere to the substrate surface. This integrins (or integrin-like-

proteins in Dictyostelium) link to the actin cytoskeleton via intermediate proteins, such

as talin, vinculin, and kinases, acting as traction sites and mechanosensors [59–61]. The

specific mechanism by which this mechanosensing function takes place is still unclear and is

currently being studied intensively [62, 63]. An effective turnover of the adhesions is needed

for effective migration, requiring the stabilization of adhesions at the front and the break

or disassembly of adhesions at the back. The specific mechanisms by which this adhesion

assembly/disassembly take place, as well as its mechanosensing function, are still poorly

understood. However, it is clear that they require a precise spatio-temporal regulation

[59, 64].

The cycle is closed with the disassembly or break of adhesions at the back of the cell

and its retraction, leading to cell translocation. MyoII (Fig. 1.2b) plays as well a crucial
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role in retraction, since its contractile motor activity leads to the development of tension

between adhesion sites prior to its disassembly. The MyoII complex contains two heavy

chains (MhcA) [65], two regulatory light chains (MlcR) [66], and two essential light chains

(MlcE) [67–69]. MyoII motor activity is regulated by phosphorylation of the regulatory

light chain [70] and requires the essential light chain [71, 72]. The MyoII complexes can

assemble into antiparallel bundles with motor head groups at both ends. These bipolar

filaments bind and crosslink actin filaments (Fig. 1.2c) to form a cortical meshwork that

increases in density from the front to the rear of the cell [73]. This cytoskeletal structure

is important for the mechanical stiffness of the cell (cortical tension) [74] and can also

generate the contractile forces required for efficient cell motility [14, 75]. In addition to

motors, translocation requires cell-substrate adhesions to transmit traction forces to the

substrate [76, 77].

In migrating wild-type (WT ) Dictyostelium amoebae, both the substrate contact

area and the traction forces are coupled to the specific phase of the migration cycle [34, 35,

78, 79]. This dissertation as well as other works have shown that the traction forces have a

defined spatial organization, with a region of rearward directed stresses near the front and a

region with forward directed stresses near the back [35, 47, 79, 80]. The proper spatiotem-

poral coordination of traction forces is likely an important determinant of migration speed,

as previously suggested [34, 81] and also supported by the results in this dissertation. The

magnitude of the traction forces is important for motility on highly adhesive substrates and

in environments in which cells are unable to move if they cannot develop sufficiently large

contractile forces for rear detachment [75]. Thus, the mechanisms that control the spa-

tiotemporal organization and strength of these forces play essential roles in the regulation

of cell movement.

1.1 Outline of the Dissertation

In Chapter 2, we present the experimental methodology used for the experiments

carried out for this Dissertation. We present an exact, computationally efficient solution of

the elastostatic equation based on Fourier expansions that expresses the tractions explicitly

as functions of the deformations, which supposes an further improvement over the Fourier

traction force cytometry technique developed by Butler et al. [33]. This solution takes into

account the finite thickness of the substrate, which increases the accuracy of the Boussinesq

solution and allows for non-zero net forces. We further refine the solution by considering
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the effect of the distance between the measurement plane and the surface of the substrate.

In Chapter 3, we use this improved method to study the dynamics of WT and

mutant Dictyostelium cells moving up a chemoattractant gradient, showing that their mi-

gration is composed of a repetitive sequence of canonical steps. Our analysis shows that

the temporal evolution of cell length and the strain energy exerted on the substrate present

a quasi-periodic evolution, and that the period of the strain energy strongly correlates with

the mean migration velocity of the cells, even for mutants with adhesion and contractility

defects. Using a phase-average analysis of the cell migration cycle, we have compared the

motility characteristics of WT and mutant strains with impaired MyoII function, address-

ing the role that both the cross-linking and motor properties of MyoII plays in each of the

stages of the motility cycle.

In Chapter 4, we obtain a statistically significant characterization of the relationship

between traction forces and cell morphology in migrating amoeboid cells, using PCA as

primary tool. We identify 5 canonical traction force patterns or strain energy components

which explain most of the mechanical work exerted on the substrate by WT cells. We show

that the most important component, accounting for the contraction of the substrate from

front and back towards the center of the cell, is responsible for the largest proportion of

strain energy and its temporal evolution correlates with that of the strain energy and the

length of the cell, both of them surrogate indicators of the motility cycle of the cell. We also

use this technique to identify the most relevant strain energy components in two mutant

strains with contractility defects.

In Chapter 5, we present two Fourier traction force cytometry assays considering

experimental situations of relevance for the study of the mechanotransduction machinery of

cells. The first of them considers a substrate composed of two layers of different thickness

and mechanical properties. The second one considers a semi-infinite substrate with a smooth

spatial gradient of Young’s modulus, which can be used for the study of durotaxis.

Finally, in Chapter 6, general conclusions and specific suggestions for future work

are given.



Chapter 2

Experimental Methods and Fourier

Traction Force Cytometry for

Finite Substrates

This chapter describes the experimental methods used in this Dissertation, which

include cell culture and microscopy of Dictyostelium cells, cell segmentation techniques for

image analysis of cell shape, and the development of a Fourier traction force cytometry

technique to calculate the traction stresses exerted by cells which takes into account the

effect of the finite substrate thickness, as opposed to the commonly used technique which

considers an infinitely thick substrate [33]. We compare the discrepancies between the 2D

version of this technique (which assumes negligible vertical stresses at the substrate free

surface) and the 3D version (which requires the measurement of the vertical displacements,

and in turn provides with the vertical stresses at the surface). We study as well the influence

of the substrate Poisson’s ratio of the substrate in the calculation of the traction stresses.

2.1 Materials and Methods

2.1.1 Dictyostelium culture and microscopy

Dictyostelium cells were grown under axenic conditions in HL5 growth medium in

tissue culture plates. We used wild type (WT ) cells (Ax3), essential light chain null cells

(mlcE−) [67], myosin II null cells (mhcA−) [82], and talin A null cells (talA−) (obtained

from M. A. Titus, University of Minnesota, Minneapolis, MN). Aggregation competent cells

8
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Figure 2.1: Cell shape segmentation. (a) Instantaneous DIC image of a WT cell. (b) Image
resulting after removing static imperfections of DIC image in panel (a). (c) I(x, y), natural
logarithm of the absolute value of the image in panel (b). (d) Probability density function
(PDF) of I(x, y) (blue line); H(I), polynomial fit to that PDF (red line); Imax, location
of the global maximum of H(I) (cyan dot); I1 and I2 (green dots) define the region of
H(I) whose centroid provides the instantaneous threshold Ithr for the detection of the cell
shape (yellow square). (e) Features detected (white contours) after application to image
in panel (c) of threshold Ithr. (f) Cell shape (white contour) resulting from application of
dilation/filling/erosion with structuring element of size S0 = 6 pixels to features in panel
(e). (g) Detected cell shape (white contour) after application of dilation/filling/erosion with
structuring element of size S1 (S1 = 10 pixels is determined applying Eq. 2.3) to features
in panel (f). Scale-bar in panel (a) represents 10 µm and ≈ 60 pixels. Background image
in panels (e-g) is the same as in panel (b).

were prepared by pulsing a 5× 106 cells/ml suspension in Na/K phosphate buffer (9.6 mM

KH2PO4, 2.4 mM Na2HPO4, pH 6.3) with cAMP to a concentration of 30 nM every 6 min

for 6 h. Cells were seeded onto the gelatin substrate and allowed to adhere. A drawn glass

capillary mounted on a micromanipulator served as the source of chemoattractant (150 µM
cAMP in an Eppendorf femtotip, Eppendorf, Germany). For the image acquisition we used

a Nikon TE300 inverted microscope with high numerical aperture lenses and a cooled CCD

camera (HQ CoolSnap, Roper Scientific). The microscope was also equipped with a Z-axis

drive. A PC running the Metamorph software packet controlled the entire setup including

filter wheels.
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2.1.2 Cell shape segmentation

Cells outlines were determined from differential interference contrast (DIC) images

captured using a 40x lens at 2 s intervals for WT, mlcE− and talA− cells and at 4 sec intervals

for mhcA−. Image processing was performed with MATLAB (Mathworks Inc, Natick, MA).

The quality of these images for cell shape segmentation was not optimal in all the cases

because the image needed to be focused on the plane where the fluorescent beads were

placed, which differed slightly (≈ 0.4 µm) from the free surface of the substrate. Therefore,

it was necessary to develop a custom procedure to perform the cells shape segmentation.

The procedure used is schematized in Fig. 2.1 and consists of the following five steps:

• Static imperfections in the original DIC image (Fig. 2.1 A) are removed

I0(x, y) =
IDIC(x, y) − Iave(x, y)

Iave(x, y) + ε
, (2.1)

where IDIC(x, y) is the intensity field of the original DIC image (Fig. 2.1 A), Iave(x, y)

is the average intensity field of all the images in the experiment, I0(x, y) is the resulting

intensity field (Fig. 2.1 B), and ε is a very small positive number (ε = 10−6) to avoid

dividing by zero.

• We then take the natural logarithm of the absolute value of I0(x, y), I(x, y) (Fig. 2.1

C), and apply a threshold Ithr to it, extracting the meain features characterizing the cell

shape. A robust value of Ithr providing accurate results is given by the centroid of H(I),

the polynomial fit to the histogram of I(x, y), in the interval [I1, I2] (Fig. 2.1 D)

Ithr =

∫ I2
I1

H(I) I dI
∫ I2
I1

H(I) dI
, (2.2)

where I2 is either the intensity at which H(I) reaches its local maximum with zero

derivative for I > Imax or, in its absence, the intensity at which |dH(I)/dt| reaches a

local minimum for I > I1. Imax is the intensity for the absolute maximum of H(I), and I1

is the intensity at which H(I) presents maximum curvature in the interval [Imax, I
(i−1)
2 ]

(where I
(i−1)
2 is the value of I2 the previous instant of time). To ensure the smooth

temporal evolution of the threshold applied, Ithr at each instant of time is finally chosen

as the average of the ten most recent thresholds.

• The features detected after application of threshold Ithr (Fig. 2.1 E) are coalesced using a

custom procedure of image dilation/filling/erosion with a structuring element of small size
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S0 (S0 = 4− 6 pixels ≈ 0.7− 1 µm < 5% of the characteristic cell size, Fig. 2.1).detected

in the previous step (see Fig. 2.1 F).

• The finally determined cell shape is obtained after a second procedure of image dila-

tion/filling/erosion is applied (Fig. 2.1 G) using a structuring element whose size S1 is

determined using the semi-empirical relationship

S1(pixels) = 80 · Acell/Afeatures − (80 − S0(pixels)), (2.3)

where Acell is the average area of the cell in the three previous observations, and Afeatures

is the area of the features obtained after the initial dilation/filling/erosion in step 3, so

that the ratio Acell/Afeatures is typically larger than 1. The foundations for the determi-

nation of the size of the structuring element S1 are in percolation theory [83], a mathe-

matical theory which studies the behavior of connected clusters in a random graph, with

applications in areas such as physics, chemistry and material science.

From the cell shape determined, centroid coordinates (xc, yc) and principal axes of

each cell are calculated using standard MATLAB functions. Front and back of the cell are

determined as the two parts in which the cell is divided by its minor axis of inertia, with

the front pointing towards the direction of motion. The front can be defined as

ξ = [(x − xc)cosφ(t) + (y − yc)sinφ(t)][(dxc/dt)cosφ(t) + (dyc/dt)sinφ(t)] > 0, (2.4)

where φ is the angle between the x axis and the cell major axis.

2.1.3 Gelatin gel fabrication

A 25 mm glass coverslip was mounted to a stainless steel ring using silicon grease

(Dow Corning, Midland, Michigan). About 250 µl of a 4% solution of Nabisco Knox gelatin

was added and chilled on ice for 1 h. A 1:50 dilution of a 2% carboxylate modified yellow-

green latex beads with 0.1 µm diameter (Fluospheres, Molecular Probes, Eugene, Oregon)

was added on top of the solidified gelatin for 15 sec. The gels were air dried for 10 min

after aspiration of the beads. The gels were melted by briefly placing them on a hot plate

and chilled on ice for an additional hour. Before using, they were thoroughly washed with

buffer. The resulting gels were between 100 and 200 µm thick in the middle of the dish.

The elastic behavior of the gelatin substrate was verified by checking in all cases that the

deformation energy in any fixed region of the substrate that is crossed by a cell returns to

its baseline after the cell exits the region (see Fig. 2.2).
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WT

mhcA-

Figure 2.2: Elastic recovery of the gelatin gels used in our experiments. Each curve shows a
time history of the deformation energy of in square domain of the substrate that is crossed by
a cell. The initial value of the energy has been subtracted so that ∆US(t) = US(t)−US(0)
and the baseline level is ∆US = 0. The curves have been stacked in the Y axis with a
separation of 2 nN µm between each two of them. The data come from different cells and
different gel preparations. Initially, the domain is empty and the deformation energy is at
its baseline. When the cell enters the domain, the deformation energy rises and it finally
returns to its baseline after the cell leaves the domain.

2.1.4 Determination of horizontal substrate deformation

The substrate deformation field was obtained from the lateral displacements of 0.1-µm fluorescent latex beads embedded in the gel. The lateral displacements were determined

by comparing each instantaneous image with a reference image of relaxed substrate. The

comparison was performed by dividing the instantaneous and reference images into inter-

rogation windows and computing the cross-correlation between each pair of interrogation

windows. This procedure was performed using custom correlation procedures written in

MATLAB (The Mathworks, Natick, MA). An ensemble average of the correlation between

each image and several reference images (typically 3) increased the signal-tonoise ratio and

allowed us to reduce the size of the interrogation window to 16 × 16 pixels (compare to

the 64 × 64 pixels used in [33]), leading to a Nyquist spatial resolution of 1.37 µm. The

average signal-to-noise ratio was ≈ 20. Fig. 2.3e shows the fluorescent marker-particles in a

region containing a migrating WT cell and Fig. 2.3f shows the corresponding displacement

field. The arrows indicate the absolute value and orientation of the displacements. The

magnitude of the displacements is also mapped by the shaded contours and is typically of
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Figure 2.3: Illustration of the traction cytometry method. (a) Sketch of the experimental
configuration. (b) Example of a raw DIC image used for cell contour identification. (c) The
same DIC image corrected with the session average and a threshold applied to select the
most intense regions. (d) Final cell contours obtained. (e) Example of a GFP image used to
determine the deformation of the substrate. (f) Displacement field obtained for a crawling
Dictyostelium cell. The arrows indicate the intensity and direction of the vector data. The
color contours indicate their intensity.

the order of 0.1 µm.

2.1.5 Measurement of the Young’s modulus of the gel

The Young’s modulus was determined by measuring the static indentation depth δz

of a tungsten carbide sphere (R = 150 µm, W = 1.898 µN, Hoover Precision, East Gramby,

CT, USA) slowly deposited on the substrate. Dimitriadis et al. [84] found the following

equation relating the Young’s modulus, E, of a slab of gel of thickness h, the indentation

depth δz and the radius R and apparent weight W of the sphere,

E =
3

4

W (1 − σ2)

R1/2δz3/2

[
1 − 2a0

π
Λ +

4a0
2

π2
Λ2 − 8

π3

(
a0

3 +
4π2

15
b0

)
Λ3

+
16a0

π4

(
a0

3 +
3π2

5
b0

)
Λ4

]−1
(2.5)

where Λ =
√

R δz/h, the material Poisson ratio is assumed σ = 0.3 [85], and the constants

a0 and b0 are functions of σ

a0 = −1.2876 − 1.4678σ + 1.3442σ2

1 − σ
, b0 =

0.6387 − 1.0277σ + 1.5164σ2

1 − σ
(2.6)

We determined δz as the depth where the beads displaced by the carbide sphere

come into focus in a z-stack of images with a distance between focal planes of ∆z = 0.4µm.

The in-focus beads were detected using the SOBEL function in MATLAB. The statistical

distribution of the Young’s moduli of the gels in our experiments presents an average of

920 Pa and a standard deviation of 570 Pa.
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δz

2R

Figure 2.4: Measurement of the Young’s modulus of the gel, calculated from the indentation
δz of a tungsten ball of radius R in the substrate.

2.1.6 Determination of the average distance, h−h0, between the displace-

ment marker particles and the free surface of the substrate

To estimate the average distance between the substrate free surface and the layer at

which the fluorescent beads are primarily located, h−h0, we used z-stacks with ∆z = 0.4 µm
recording the cells in the DIC channel and the marker-particles in the fluorescent channel.

The free surface of the gel was defined as the plane where the cell outlines have a maximum

number of in-focus pixels. The average depth of the markers was determined to maximize

the number of in-focus beads using the SOBEL function in MATLAB (Mathworks Inc,

Natick, MA) and an interpolation procedure that yields resolutions finer than ∆z. The

gaps recorded in our experiments ranged from 0 to 0.4 µm. We have used the conservative

value h − h0 = 0.4 µm in the calculation of the forces.

Distortion of the vertical position of the marker particles due to image blurring

As we show in Figs. 2.6-2.7 (in Chapter 3), the distance between the displacement

marker particles and the free surface of the substrate has an important effect on the fine-

scale features of the measured traction forces. In our experiments, this distance could be

easily defined by selecting the focal plane where the marker particles are imaged. However,

the light generated by out-of-focus particles “leaked” into the selected focal plane and

introduced uncertainties in the vertical position of the displacement markers. Hence, the

focal plane had to be selected carefully to avoid systematic errors in the vertical position

of the marker particles. Fig. 2.5a sketches this phenomenon. The intensity of a spherical

marker in an xz image obtained with a Z-stack is more similar to a “blurred hourglass”

than to an ideal circle. The blurring of the imaged marker particles leads to an apparent

profile of particles (red line in Fig. 2.5a) much more spread than their actual distribution

(blue line in Fig. 2.5a). This effect can be represented mathematically as the convolution

of the ideal image with the point-spread function (PSF) of the marker particles [86]. Here,
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N (z)B b(z)

Figure 2.5: Distortion of the vertical position of the marker particles used to measure the
traction forces due to image blurring. (a) Sketch of this phenomenon. The intensity of
a spherical marker in an xz image obtained with a Z-stack is more similar to a “blurred
hourglass” than to an ideal circle. This leads to an apparent profile of particles (b(z), red
line) that is much more spread than their actual distribution (NB(z), blue line). The peak
of the intensity profile coincides with the average of NB(z), so that the systematic error in
the vertical position of the markers is cancelled when the focal plane selected to visualize
the marker particles is z = h0. If the focal plane z = z1 6= h0 was selected, most of the
information of particle displacements would be coming from particles at a different vertical
position. (b) The black circles are intensity profiles coming from squares of size 40 µm in
our gels, represented as a function of z−h. The color curves represent our model equations
for NB(z) and b(z). The solid, blue curves have been obtained using a Normal distribution
with µ = −0.4 and σ = 0.2 µm. The dashed, red curves have been obtained using a Log-
Normal distribution with µ = −1 and σ = 0.2 µm. In both cases, the PSF is a Gaussian
with a 1/e radius of 2 µm.

we are only concerned with distortions of the brightness field, b(z), in the vertical direction

b(z) =

∫ h

0
NB(ζ)PSF(z − ζ) dζ, (2.7)

where NB(ζ) is the distribution of beads along z. The shape of the PSF along the vertical

axis is rather complex [87, 88] but for our purposes it can be roughly modeled as a Gaussian

as we will show below. To first approximation, the shape of NB(ζ) is irrelevant for our

estimations provided that NB(ζ) is much narrower than the PSF. Fig. 2.5b shows that

this condition is fulfilled in our experiments. The black circles in that figure represent

profiles of the fluorescence intensity coming from the marker particles as a function of

z − h. The intensity profile penetrates around 2 µm into the subspace z > 0, where

there are no beads, indicating that the PSF is indeed much wider than the distribution of

beads. We have chosen NB(ζ) to be a Normal distribution centered at z = h0 to provide

simple analytical estimations but similar results have been obtained numerically for other

distributions, including more realistic cases where NB(ζ > 0) = 0. Using the functions
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proposed above we have that

b(z) ≈ e
−h2

0
δ2

πδd

∫ ∞

−∞

exp

[
−(ζ − h0)

2

δ2

]
exp

[
−(ζ − z)2

d2

]
dζ =

e−
h2
0

δ2 e
(z−h0)2

δ2+d2

√
π
√

δ2 + d2
, (2.8)

which becomes

b(z) ∝ e−
(z−h0)2

d2 (2.9)

in the limit d >> δ when NB(ζ) tends to a Dirac delta. This result indicates that the

brightness distribution is approximately equal to the PSF with its origin at the average

position of the marker particles. The brightness distribution shown in Fig. 2.5b supports

this idea. Eq. 2.9 implies that the marker particles have to be imaged at the plane where

their fluorescence brightness is maximum in order to cancel systematic errors in their vertical

location. This can be understood simply by observing the diagram in Fig. 2.5a. If a focal

plane z = z1 6= h0 was selected, most of the information of particle displacements would be

coming from particles at a different vertical position. In our experiments, we have always

imaged the marker particles at the plane where their brightness is maximum to minimize

the systematic errors in their vertical position.

2.1.7 Calculation of traction forces

We computed the stress field τ = (τzx, τzy)z=h applied on the substrate surface by

a cell by solving the elasticity equation of equilibrium for a linear, homogeneous, isotropic,

3D body of finite thickness h. Fig. 2.3a shows a sketch of the problem configuration. The

boundary conditions are no slip, u = (u, v,w) = 0, at the bottom of the substrate, z = 0, and

the measured lateral displacements uh0 and vh0 at the average vertical position of the beads,

z = h0 ≤ h. We assume periodicity in the horizontal directions. The remaining boundary

condition derived from the similar densities of the cells and their surrounding buffer as well

as the predominant horizontal orientation of contractile fibers of the cytoskeleton, which

suggest that the vertical tensile stresses on the surface of the substrate, τzz(z = h), are

negligible. We therefore apply the boundary condition τzz(z = h) = 0. We solve analytically

the elastostatic equation using Fourier series,

τ (x, y, z) =
∞∑

α=−∞

∞∑

β=−∞

τ̂αβ(z) exp(iαx) exp(iβx) (2.10)

u(x, y, z) =
∞∑

α=−∞

∞∑

β=−∞

ûαβ(z) exp(iαx) exp(iβx) (2.11)
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where α and β are the x and y wavenumbers, τ̂αβ and ûαβ are the complex Fourier coeffi-

cients of τ and u. The latter are functions of the vertical coordinate and are linearly related

to the Fourier coefficients of the horizontal displacements measured at z = h0, ûh0
αβ and v̂h0

αβ .

A detailed mathematical derivation of the solution is developed in Section 2.2 and 2.2.1.

This solution provides the 3 components of the displacement vector and the 9 components

of the stress tensor at all positions inside the three-dimensional domain. We are interested

in the tangential stresses at z = h, which can be expressed in Fourier space as



 τ̂xzαβ(h)

τ̂yzαβ(h)



 = Tαβ



 ûh0
αβ

v̂h0
αβ





αβ

(2.12)

The first Nx × Ny Fourier coefficients of uh0(x, y) were computed using a fast Fourier

transform (FFT) algorithm after tapering this function with a two-dimensional Hanning

window to ensure its periodicity and thus suppress the Gibbs error [89, 90]. The tapering

window was a square of size (LB) equal to 3 times the major axis of the cell centered at

the centroid of the cell. This was the only information about the geometry of the cell

that was required to compute the stresses with our method, which is advantageous because

determining the cellular area in contact with the substrate is difficult. When LB was larger

than the distance from the center of the cell to the boundary of the image, we instead set

LB equal to that distance. The size of the tapering window and the spatial resolution ∆

of the displacement field determine N = LB/∆. When N was not suitable for the FFT

we used the immediate higher number and set the Fourier coefficients to zero for indexes

greater than N . The tapering also minimized the disturbances caused by neighboring cells.

The net force Fnet exerted on the surface of the substrate is balanced by a force of equal

strength and opposite sign applied on its base, given by

F =
E LB

2 û
h0
00

2(1 + σ)h0
, (2.13)

where E is the Young’s modulus of the gel and û
h0
00 is the average displacement vector at

z = h0. It is useful to decompose this net force into the sum of the pole forces exerted at

the front and back halves of the cell, Ff and Fb (see panels on the right of Figs. 2.7b-c),

where

Ff =

∫∫

ξ>0
τ (x, y, h) dxdy, (2.14)

where τ (x, y, h) is a vector containing the traction stress field exerted at the substrate free

substrate. The integral for ξ < 0 (see Eq. 2.4) yields Fb. The strain energy or mechanical
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work US that the cells exert on the substrate is given by

US =
1

2

∫∫∫
τ̄ · ε̄ dxdydz =

LxLy

2

∞∑

α=−∞

∞∑

β=−∞

̂̄ταβ · ̂̄εαβ dz, (2.15)

where τ̄ and ε̄ are the stress and strain field tensors respectively. If displacements and

stresses decay to zero at the boundaries of the domain, then the strain energy US can be

simply calculated as the area integral

US =
1

2

∫

A
τ (z = h) · u(z = h) dxdy (2.16)

where u(z = h) are the displacement vector field at the substrate free surface. The power

exerted by the cell to deform the substrate is then calculated as the time rate of change of

US .

2.2 Solution of the elastostatic equation in a substrate of

finite thickness

We consider a cell moving on the free surface of a linearly elastic substrate of finite

thickness h. We adopt a cartesian coordinate system with the x and y axes parallel to the

base of the substrate, which is located at z = 0. When the cell adheres to the elastic sub-

strate and migrates, it induces a displacement field u = (u, v,w) whose lateral components

are measured on a given horizontal plane by seeding the substrate with particle-markers

and tracking their displacements (Section 2.1.4). The measurement plane is located some

finite distance from the surface, z = h0. Fig. 2.3a sketches this configuration.

The equations governing the displacement field are

∇2u +
∇ (∇ · u)

(1 − 2σ)
= 0. (2.17)

The boundary conditions can be partially set up by imposing zero displacements at the

base of the substrate,

u(x, y, 0) = 0, (2.18)

since the solid glass beneath the substrate is infinitely rigid. We need a second set of

boundary conditions to solve this equation. In Sections 2.2.1, 2.2.2, and 2.2.3 we will

discuss several possibilities, depending on our experimental configuration and needs.

We sought the solution of Eq. 2.17 in term of the Fourier series of the displacements

u(x, y, z)

u(x, y, z) =

∞∑

α=−∞

∞∑

β=−∞

ûαβ(z) exp(iαx) exp(iβx) (2.19)



19

where α and β are the wavenumbers in the x and y directions, and ûαβ are the Fourier

coefficients of u. Introducing Eq. 2.19 into Eq. 2.17 we obtain the following first-order

homogeneous ordinary differential equation

d

dz




ûαβ

v̂αβ

ŵαβ

dûαβ/dz

dv̂αβ/dz

dŵαβ/dz




=
d

dz



 ûαβ

dûαβ



 = Aαβ



 ûαβ

dûαβ



 (2.20)

where matrix Aαβ is

Aαβ =




0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1
2α2(1−σ)+β2(1−2σ)

1−2σ
αβ

1−2σ 0 0 0 −iα
1−2σ

αβ
1−2σ

2β2(1−σ)+α2(1−2σ)
1−2σ 0 0 0 −iβ

1−2σ

0 0 (α2+β2)(1−2σ)
1−2σ

−iα
1−2σ

−iβ
1−2σ 0




(2.21)

Matrix Aαβ has two generalized eigenvalues, λ = ±k = ±
√

α2 + β2, with algebraic multi-

plicity equal to 3 and geometric multiplicity equal to 2. The matrix of generalized eigen-

vectors is

Pαβ =




α2 iα −β/k i iα αβ

αβ iβ α/k 0 iβ β2

−iαk 4k(1 − σ) 0 −α/k −4k(1 − σ) iβk

α2k 0 −β −ik 0 −αβk

αβk 0 α 0 0 −kβ2

−iαk2 k2(3 − 4σ) 0 α k2(3 − 4σ) −iβk2




(2.22)

and its associated Jordan form is

Jαβ = P−1
αβ Aαβ Pαβ =




k −ik/α 0 0 0 0

0 k 0 0 0 0

0 0 k 0 0 0

0 0 0 −k 0 0

0 0 0 0 −k 0

0 0 0 0 ik/β −k




. (2.23)
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The solution of the differential equation Eq. 2.20 is


 ûαβ

dûαβ



 = Pαβ exp (Jαβ (z)) P−1
αβ



 û0
αβ

dû0
αβ



 = Pαβ exp (Jαβ (z)) P−1
αβ



 0

dû0
αβ



 (2.24)

where û0
αβ and dû0

αβ are the boundary values of ûαβ and dûαβ at z = 0. The solution in

Eq. 2.24 can be rewritten as


 ûαβ

dûαβ



 =



 U0 V0 W0

dU0 dV0 dW0




[
dû0

αβ

]
(2.25)

with



 U0

dU0



 =




−1/4 α2z cosh(k z)
k2(−1+σ)

− 1/4
(3 α2−4 α2σ+4 β2−4β2σ) sinh(k z)

k3(−1+σ)

−1/4 α β z cosh(k z)
k2(−1+σ)

+ 1/4 α β sinh(k z)
k3(−1+σ)

1/4 i sinh(k z)zα
(−1+σ)k

−1/4 (4 k−4k σ) cosh(k z)
(−1+σ)k − 1/4 α2z sinh(k z)

(−1+σ)k

−1/4 α β z sinh(k z)
(−1+σ)k

1/4 izα cosh(k z)
−1+σ + 1/4 iα sinh(k z)

(−1+σ)k




, (2.26)



 V0

dV0



 =




−1/4 α β z cosh(k z)
k2(−1+σ)

+ 1/4 α β sinh(k z)
k3(−1+σ)

−1/4 β2z cosh(k z)
k2(−1+σ)

− 1/4
(3 β2−4 β2σ+4 α2−4 α2σ) sinh(k z)

k3(−1+σ)

1/4 i sinh(k z)zβ
k (−1+σ)

−1/4 α β z sinh(k z)
k (−1+σ)

−1/4 (4 k−4k σ) cosh(k z)
k (−1+σ) − 1/4 β2z sinh(k z)

k (−1+σ)

1/4 izβ cosh(k z)
−1+σ + 1/4 iβ sinh(k z)

k (−1+σ)




, (2.27)

and



 W0

dW0



 =




1/2 iα z sinh(k z)
k (−1+2 σ)

1/2 iβ z sinh(k z)
k (−1+2 σ)

1/2 z cosh(k z)
−1+2 σ + 1/2 (−3+4 σ) sinh(k z)

k (−1+2 σ)

1/2 iα z cosh(k z)
−1+2 σ + 1/2 iα sinh(k z)

k (−1+2 σ)

1/2 iβ z cosh(k z)
−1+2 σ + 1/2 iβ sinh(k z)

k (−1+2 σ)

1/2 (−2+4 σ) cosh(k z)
−1+2 σ + 1/2 k z sinh(k z)

−1+2 σ




. (2.28)
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The Fourier coefficients of the z-derivative of the displacements at z = 0, dû0
αβ , can be

determined using additional boundary conditions, which will depend on the type of experi-

ments performed. As already indicated, different possibilities for these boundary conditions

are explored in Sections 2.2.1, 2.2.2 and 2.2.3.

2.2.1 Calculation of 2D traction stresses: horizontal displacements at a

plane are known and tensile stresses at substrate free surface are

negligible

In case we measure the horizontal displacements at z = h0 ≤ h from images of

the fluorescent markers at that plane (see Section 2.1.6), the boundary conditions can be

partially set as

u(x, y, h0) = uh0(x, y) , v(x, y, h0) = vh0(x, y), (2.29)

where uh0 and vh0 are the measured horizontal displacements.

The remaining boundary condition we used is that the vertical stresses on the sub-

strate free surface are zero,

τzz(x, y, h) = 0. (2.30)

This is in principle a reasonable assumption since the weight of the cell is negligibly small due

to the similar densities of the cells and their surrounding buffer fluid, and because the force-

generating elements of the cytoskeleton have a predominant horizontal orientation. This is

the configuration for the traction force cytometry experiments analyzed in Section 3.

To impose Eq. 2.30, we use the constitutive law that relates the Fourier coefficients

of the vertical tensile stresses to those of the displacements,

τ̂zzαβ(h) =
E

(1 + σ)(1 − 2σ)

[
iσ (αûαβ(h) + βv̂αβ(h)) +

dŵαβ

dz
(h)

]
. (2.31)

Evaluating Eq. 2.25 at z = h0 and h, and using the above expression to impose the boundary

condition in Eq. 2.30, we obtain the following 3 × 3 linear system of equations,

Bαβ




dû0
αβ

dv̂0
αβ

dŵ0
αβ


 =




ûh0
αβ

v̂h0
αβ

0


 (2.32)

where (ûh0
αβ , ûh0

αβ) are the Fourier coefficients of the measured displacements at z = h0.

The solution of this system yields the three unknown coefficients needed to obtain the

displacements, effectively closing the problem. The different components in matrix Bαβ are

B
[1,1]
αβ =

−α2kh0 cosh(kh0) + [k2(−3 + 4σ) − β2] sinh(kh0)

4(−1 + σ)k3
, (2.33)
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B
[1,2]
αβ =

αβ[−kh0 cosh(kh0) + sinh(kh0)]

4k3(1 − σ)
, (2.34)

B
[1,3]
αβ =

iαh0 sinh(kh0)

k(−1 + 2σ)
, (2.35)

B
[2,1]
αβ = B

[1,2]
βα , (2.36)

B
[2,2]
αβ = B

[1,1]
βα , (2.37)

B
[2,3]
αβ = B

[1,3]
βα , (2.38)

B
[3,1]
αβ =

iα(−1 + 2σ)[−kh sinh(kh) + (−1 + 2σ) sinh(kh)]

4k(−1 + σ)
, (2.39)

B
[3,2]
αβ = B

[3,1]
βα , (2.40)

B
[3,3]
αβ =

2(1 − σ) cosh(kh) − kh sinh(kh)

2
. (2.41)

The solution of the linear system in Eq. 2.32 closes the problem by providing the unknowns

that are required to determine ûαβ(z) and dûαβ(z) in Eq. 2.25. The Fourier coefficients of

the tangential stress field on the surface of the substrate are related to ûαβ(z) and dûαβ(z)

through the constitutive equations

τ̂xzαβ(h) =
E

2(1 + σ)

[
iαŵαβ(h) +

dûαβ

dz
(h)

]
, (2.42)

τ̂yzαβ(h) =
E

2(1 + σ)

[
iβŵαβ(h) +

dv̂αβ

dz
(h)

]
, (2.43)

The inverse Fourier transform of these coefficients yields the traction field on the surface of

the substrate,

(τxz, τyz)(h) =

∞∑

α=−∞

∞∑

β=−∞

(
τ̂xzαβ, τ̂yzαβ

)
(h) exp(iαx) exp(iβy). (2.44)

We now present the asymptotic behavior of the solution for very high wavenumbers,

kh0 � 1. In this limit, the solution in Eq. 2.25 becomes


 ûαβ(z)

dûαβ(z)



 ∼ h exp(kh)



 0

dû0
αβ



 . (2.45)
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A more detailed analysis is required for Bαβ , which becomes

Bαβ ∼ h0e
kh0




α2−[(3−4σ)α2−4β2(1−σ)]ε
4k2(1−σ)

αβ(1−ε)
4k2(1−σ)

−iα
2k(1−σ)

αβ(1−ε)
4k2(1−σ)

β2−[(3−4σ)β2−4α2(1−σ)]ε
4k2(1−σ)

−iβ
2k(1−σ)

−iαh(1−σ)ek(h−h0)[1+(1−2σ)ε]
kh0(1−σ)

−iβh(1−σ)ek(h−h0)[1+(1−2σ)ε]
kh0(1−σ)

hek(h−h0)[2(1−σ)ε−1]
2h0




(2.46)

The small parameter ε = (kh0)
−1 has been kept in the above expression because Bαβ is

singular at leading order. For ε � 1, the solution of Eq. 2.32 is written as




dû0
αβ

dv̂0
αβ

dŵ0
αβ


 ∝ [h0 exp(kh0)]

−1

(
1

ε

)
= k exp(−kh0) (2.47)

Combining this expression with Eq. 2.45, we finally get a simple formula that relates

the displacements at z = h with those measured at z = h0,



 ûαβ(h)

dûαβ(h)



 ∼ kh exp[k(h − h0)]ûαβ(h0) (2.48)

in the limit kh0 � 1. This result shows that the amplitude of the small-scale features of

the displacements measured at z = h0 are smaller than those at z = h, and that the ratio

between these two increases exponentially with the wave number. Using Eqs. 2.42 and 2.43,

it follows that the traction forces exhibit the same exponential dependence on the distance

from the substrate of the gel to the measurement plane (h − h0).

2.2.2 Calculation of 3D traction stresses: three dimensional displace-

ments at substrate free surface are known

Another possible experimental configuration is to capture images of the fluorescent

markers embedded in the substrate at various z-planes close to the substrate free surface

at each instant of time. This allows for the measurement of the three components of the

displacements at z = h, uh(x, y), which can be used as boundary conditions, providing the

z-derivatives of the Fourier coefficients of the the displacements at z = 0, du0
αβ , after solving

(see Eq. 2.25)

[
dû0

αβ

]
=

[
U0 V0 W0

]−1

z=h

[
ûh

αβ

]
=




C1u C1v C1w

C2u C2v C2w

C3u C3v C3w




[
ûh

αβ

]
(2.49)
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where

C1u =

(
−4β2h2 + 2(−3 + 4σ)2 (cosh(2kh) − 1)

)
k2 + 8α2kh(−1 + σ) sinh(2kh)

(4k2h2 + 3(−3 + 4σ)2) k sinh(kh) − (−3 + 4σ)2k sinh(3kh)
+

+
−2α2 (cosh(2kh) − 1) (−3 + 4σ)

(4k2h2 + 3(−3 + 4σ)2) k sinh(kh) − (−3 + 4σ)2k sinh(3kh)
, (2.50)

C1v =
4αβk2h2 + 8αβkh(−1 + σ) sinh(2kh) + 2αβ(−3 + 4σ) (1 − cosh(2kh))

(4k2h2 + 3(−3 + 4σ)2) k sinh(kh) − (−3 + 4σ)2k sinh(3kh)
, (2.51)

C1w =
−8ikhα(−1 + σ) (cosh(2kh) − 1)

(4k2h2 + 3(−3 + 4σ)2) sinh(kh) − (−3 + 4σ)2 sinh(3kh)
, (2.52)

C2u(α, β) = C1v(β, α), (2.53)

C2v(α, β) = C1u(β, α), (2.54)

C2w(α, β) = C1w(β, α), (2.55)

C3u(α, β) =
−4iα(−1 + 2σ)kh sinh(kh)

(−3 + 4σ)2 (cosh(2kh) − 1) − 2(kh)2
, (2.56)

C3v(α, β) = C3u(β, α), (2.57)

C3w =
4(−1 + 2σ) (−kh cosh(kh) + (−3 + 4σ) sinh(kh))

(−3 + 4σ)2 (cosh(2kh) − 1) − 2(kh)2
. (2.58)

Once we have solved for du0
αβ , Eq. 2.25 provides the Fourier coefficients of the displacement

field and their z-derivatives at any given z-location, allowing for the computation of the

traction stresses (Eq. 2.42 and 2.43).

In case our experimental configuration allow us to obtain only the horizontal dis-

placements at the substrate free surface, another possible set of boundary conditions are to

impose known horizontal displacements and zero vertical displacements at z = h.
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2.2.3 Calculation of 3D displacements: three dimensional traction stresses

at substrate free surface are known

For analytical purposes, it may be of practical use to obtain the displacement field

generated by a specific traction force field at the substrate free surface. Assuming that

we know the distribution of traction stresses at z = h, τh(x, y) = (τh
xz, τ

h
yz, τ

h
zz)(x, y), their

Fourier coefficients are related to du0
αβ as

D
[

dû0
αβ

]
=




τ̂xz
h
αβ

τ̂yz
h
αβ

τ̂zz
h
αβ




z=h

(2.59)

where

D = E



 U0 V0 W0

dU0 dV0 dW0





z=h

(2.60)

and

E =




0 0 Eiα
2(1+σ)

E
2(1+σ) 0 0

0 0 Eiα
2(1+σ) 0 E

2(1+σ) 0

Eiασ
(1+σ)(1−2σ)

Eiβσ
(1+σ)(1−2σ) 0 0 0 E(1−σ)

(1+σ)(1−2σ)


 (2.61)

from the constitutive equations relating traction stresses and displacements. The solution

for the system of equations in Eq. 2.59 is

[
dû0

αβ

]
= D−1




τ̂xz
h
αβ

τ̂yz
h
αβ

τ̂zz
h
αβ


 =




C1u C1v C1w

C2u C2v C2w

C3u C3v C3w







τ̂xz
h
αβ

τ̂yz
h
αβ

τ̂zz
h
αβ


 (2.62)

with

C1u =
C1uN

C1D
(2.63)

where

C1uN =
(
−8h2k4 + 8 sinh(2kh)(−1 + σ)hk3 + 4(−1 + 2σ)2 (cosh(2kh) − 1) k2

)
β2 −

8 sinh(2kh)(−1 + σ)hk5 − 16(−1 + σ)2 (cosh(2kh) + 1) k4

and

C1D =
(
8iβ(−1 + σ) (cosh(2kh) + 1) hk4 + 8iβ(−1 + 2σ)(−1 + σ) sinh(2kh)k3

)

C1v =
C1vN

C1D
(2.64)
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where

C1vN =
(
8h2k4 − 8 sinh(2kh)(−1 + σ)hk3 − 4 (−1 + 2σ)2 (cosh(2kh) − 1) k2

)
βα

C1w =
C1wN

C1D
(2.65)

where

C1wN = 8iαk3 (kh cosh(2kh) − (1 − 2σ) sinh(2kh) + kh) (1 − σ)

C2u(α, β) = C1v(β, α) (2.66)

C2v(α, β) = C1u(β, α) (2.67)

C2w(α, β) = C1w(β, α) (2.68)

and

C3u =
C3uN

C3D
(2.69)

where

C3uN = (1 + σ)(1 − 2σ)
(
4ih cosh(kh)k4 − 4i sinh(kh)(−1 + 2σ)k3

)
α

and

C3D =
(
2k6h2 + ((3 − 4σ) cosh(2kh) + 4(−1 + 2σ)(−1 + σ) + 1) k4

)

C3v(α, β) = C3u(β, α) (2.70)

and finally

C3w =
C3wN

C3D
(2.71)

where

C3wN = (1 − 2σ) (1 + σ)
(
4k5h sinh(kh) − 8 cosh(kh)(−1 + σ)k4

)

Again, once we have solved for du0
αβ , Eq. 2.25 provides the Fourier coefficients

of the displacement field and their z-derivatives at any given z-location, allowing for the

computation of the traction stresses (Eq. 2.42 and 2.43).
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2.3 Effect of the finite thickness of the substrate in the cal-

culation of the traction stresses

The traction force cytometry method in Sections 2.2 and 2.2.1 relies on the analytic

solution of the equation of static equilibrium for substrates of finite thickness which assumes

negligible vertical stresses at the substrate free surface are negligible, and considers non-

zero distances between the measurement plane and the substrate free surface. These two

effects were usually neglected in previous works [28, 31, 33, 91–93]. Fig. 2.6 shows the errors

associated with the approximations in the Boussinesq’s solution. The color curves represent

the first and second invariants of the transfer matrix that converts the Fourier coefficients

of the measured displacements into those of the tangential stresses on the substrate surface

(see Eq. 2.12). The data have been plotted as a function of the modulus of the wave

number vector k =
√

α2 + β2 for the representative case when α = β. The color curves

represent the Frobenius norm of the transfer matrix that converts the Fourier coefficients

of the measured displacements into those of the tangential stresses on the substrate free

surface (see Eq. 2.12):

RT (α, β) =
√

tr(T ∗
αβTαβ)/E, (2.72)

where ()∗ denotes Hermitian transposition (conjugate transposition), and tr() is the trace

of a matrix. The data have been plotted as a function of the modulus of the wave number

vector k =
√

α2 + β2 for the representative case when α = β.

Our exact solution differs substantially from Boussinesq’s for kh < 3 (by & 10%).

In this spectral range, the stresses generated by a unit displacement on the surface of the

substrate decay slowly with the distance from it and “feel” the bottom of the domain. This

is especially clear at k = 0, where our solution yields a positive first invariant that is consis-

tent with a non-zero net force (see Eq. 2.13). The semi-infinite thickness approximation was

justified previously by the small displacements of the beads relative to h [31, 91, 93]. How-

ever, this assumption is not correct since the relevant lengthscale to be compared with h is

the horizontal lengthscale of the deformation field. There are multiple plausible candidates

for this lengthscale, i.e., the typical size of the cell-to-substrate adhesions, the characteristic

distance between these adhesions, the size of the cell, the distance between nearby cells, or

the horizontal dimensions of the domain in which the deformations are measured. Several

of these lengthscales were proposed before [33] but in absence of experimental evidence, it

was not possible to identify the proper one. Fig. 2.6 shows that the appropriate lengthscale

to compare with h is the length of the cell. The black curve is the spectral energy density
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Figure 2.6: Spectral analysis of our 2D solution for substrates of finite thickness and Boussi-
nesq’s solution of the elastostatic equation. The color curves follow the left vertical axis
and represent the Frobenius norm of the matrix that converts the Fourier coefficients of the
measured displacements into those of the tangential stresses on the substrate free surface
(see Eq. 2.72) for Poisson’s ratio σ = 0.3. Green, Boussinesq’s solution; blue, our solution
with h = h0; red, our solution with h = 1.003h0. The black curve follows the right vertical
axis and shows the spectral energy density of the displacements field in Fig. 2.7a.

of the displacements measured for an example cell, shown in Fig. 2.7a. The spectrum spans

the wavenumber range 10 ≤ kh ≤ 100 and peaks at kh ≈ 30, which is equivalent to a length

of 26 µm for the corresponding gel thickness, h = 125 µm. This characteristic length is

approximately the cell length, L, in Fig. 2.7a, and the same correlation is observed for all

other cells investigated. Therefore, in order for the infinite-thickness approximation to be

valid, the cell length, L, must be much smaller than the thickness of the substrate, which

was not always the case in earlier studies [28, 31, 33, 91].

The limit of kh ≈ 3 implies that if the substrate is thicker than ≈ λ/2, the cell will

not be able to sense the infinite rigidity of the bottom substrate. Although the ultimate

answer to this question depends on the sensitivity of the mechanotransduction machinery

of the cell, a critical value around kh ≈ 3 agrees with experimental evidence [94, 95].
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(a)

(b)

(c)

Figure 2.7: Analysis of the mechanics of locomotion of a Dictyostelium WT cell migrating
up a gradient of the chemoattractant cAMP emitted from a micropipette (see Section 2.1.1).
The arrows indicate the intensity and direction of the vector data. The color contours in-
dicate their intensity according to the color bars. The black arrow indicates the direction
of motion of the cell. (a) Instantaneous displacements in micrometers. (b) and (c) Instan-
taneous stresses in Pa; the diagrams on the right show the cell principal axes and the front
(Ff ) and back (Fb) pole forces. (b) h − h0 = 0.4 µm; |Ff | = 624 pN, |Fb| = 648 pN. (c),
h = h0; Ff = 572 pN, Fb = 596 pN. In this specific experiment, the Young’s modulus E
was 631 Pa and the Poisson’s ratio σ was 0.3.

2.4 Effect of the gap between the free surface of the substrate

and the displacement marker particles in the calculation

of the traction stresses

Boussinesq’s solution also underestimates the stresses at high wavenumbers because

it neglects the non-zero distances between the beads and the free surface of the substrate,

h− h0. This introduces a low-pass filter that has the form exp[−k(h− h0)] for kh � 1 (see

Section 2.2) and significantly damps all features shorter or narrower than 2π/ log 2 ≈ 10

times h − h0. The exponential filter is important at high wavenumbers even when the gap

between the beads and the substrate surface is small, as shown in Fig. 2.6.

The experimental displacement spectrum in Fig. 2.6 is high in the wavenumber

interval where the corrections to the Boussinesq’s solution because of the gap between the

imaged plane of beads and the substrate surface are considerable. This fact is confirmed by

Figs. 2.7b-c, which depicts examples of instantaneous tangential stresses on the surface of
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Figure 2.8: Spectral analysis of our 2D solution (solid lines) (see Section 2.2.1) and Boussi-
nesq’s solution (dashed lines) of the elastostatic equation for different Poisson’s ratios. Spec-
tral distribution of the Frobenius norm of the matrix that converts the Fourier coefficients
of the measured displacements at the substrate free surface into those of the tangential
stresses at the substrate free surface (see Eq. 2.72) for σ = 0 (black), σ = 0.3 (blue), and
σ = 0.49 (red).

the substrate, τxz(x, y, h) and τyz(x, y, h), computed from the displacements in Fig. 2.7a for

positive and zero values of h−h0. Fig. 2.7b displays the results obtained by using the finite

thickness solution for h−h0 = 0.4 µm, showing three localized areas of traction in the front,

middle, and back of the cell. The magnitude of the stresses in these areas is ≈ 50 Pa and

decays rapidly with distance. Fig. 2.7c shows the same results when using the condition

h− h0 = 0. Although the patterns in the stress field are similar to those in Fig. 2.7b, their

intensity is reduced by 50%. In our experiments, h−h0 was estimated to be between 0 and

0.4 µm (see Section 2.1.6), so the true tangential stresses applied by the cell are in between

the values shown in Figs. 2.7b-c.

2.5 Effect of the Poisson’s ratio in the calculation of the trac-

tion stresses

Poisson’s ratio, σ, the ratio of transverse contraction strain to longitudinal extension

strain in the direction of stretching force, is required for the calculation of the traction

stresses. However, not much attention is payed to its experimental determination in traction

force cytometry assays. We aim to provide a quantification of the effect of Poisson’s ratio

in the calculation of the traction stresses exerted by cells.
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Figure 2.9: Spectral analysis of our 3D solution (solid lines) (see Section 2.2.2) and Boussi-
nesq’s solution (dashed lines) of the elastostatic equation for different Poisson’s ratios. Spec-
tral distribution of the Frobenius norm of the matrix that converts the Fourier coefficients of
the measured displacements at the substrate free surface into those of the tangential stresses
at the substrate free surface (see Eq. 2.72) for σ = 0 (black), σ = 0.3 (blue), σ = 0.45 (red),
and σ = 0.49 (green).

Fig. 2.8 shows the spectral analysis of our 2D solution and Boussinesq’s solution for

different values of σ. This analysis shows that inaccuracies in the determination of σ leads

to small errors for kh & 3 (≈ 5%), becoming maximal for kh . 1 (≈ 20 − 30%).

Fig. 2.9 shows the spectral analysis of our 3D solution and the 3D Boussinesq’s

solution, showing that the calculation of the 3D traction stresses is very dependent on a

good characterization of the Poisson’s ratio of the substrate for wavenumbers kh . 3. This

dependence on the Poisson’s ratio is specially relevant for materials close to incompressible

(σ ≈ 0.5). For instance, there is a 300% difference between the norms of the conversion

matrices for σ = 0.45 and 0.49 for kh . 3.

Altogether, these results indicate that for wavenumbers kh . 3 (that is, when cell

length L ≈ λ > 2h) and when vertical traction stresses are comparable to horizontal stresses

(that is, when vertical stresses are non-negligible and the 3D solution is required), the

accuracy of the calculated traction stresses is strongly dependent on a good characterization

of the Poisson’s ratio of the substrate, σ.
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Figure 2.10: Spectral analysis of our 3D, 2D solution for substrates of finite thickness, and
Boussinesq’s solution of the elastostatic equation, for Poisson’s ratio, σ = 0 (panel a), 0.30
(panel b), 0.45 (panel c), and 0.49 (panel d). The curves represent the Frobenius norm of
the transfer matrix (see Eq. 2.72) of our 2D (circles) and 3D (triangles) solution for finite
thickness substrates, and Boussinesq’s solution (squares).

2.6 Effect of the assumption that vertical traction stresses

are negligible in the calculation of the traction stresses

Most of the works studying the traction forces exerted by cells on a flat substrate

assume that the vertical stresses at the free surface are negligible, that is, that cells only

exert tangential stresses [28, 33–35]. However, there is recent evidence in the literature

showing that the vertical stresses exerted by cells can in some cases be comparable to the

tangential stresses [96–98]. Given the wide use of 2D traction force cytometry techniques,

we will proceed in this section to quantify the error that these methods involve with respect

to 3D techniques.

Fig. 2.10 displays the spectral analysis of the 2D and 3D solutions of the elastostatic
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Figure 2.11: Comparison between our 3D, 2D solution for substrates of finite thickness
and Boussinesq’s solution of the elastostatic equation for a synthetic displacement field.
(a) Synthetic displacement field applied at the substrate free surface: u (left panel), v
(central panel), w (right panel). (b) For Boussinesq’s solution, (c) our 2D solution, and (d)
our 3D solution for finite thickness substrates: traction stresses at substrate free substrate
associated with the displacement field in panel a. The separation between adhesion regions
is 2∆x, substrate thickness h = 0.5∆x, and Poisson’s ratio σ = 0.45 (∆x = 1).

equation for finite thickness substrates. This figure shows that, as expected, the 2D and 3D

solutions differ for all wavenumbers, given that the determination of the vertical stresses is

absent in the 2D method. For high wavenumbers, kh > 3, the relative difference between

these two solutions remains constant, decreasing as the Poisson’s ratio σ approaches 0.5,

corresponding to an incompressible material. For low wavenumbers, kh . 3, the differences

between the 2D and the 3D solution increase, being maximal as σ approaches 0.5.

Fig. 2.11 shows a comparison between these three methods for a synthetic displace-

ment field representative of the 3D displacement pattern exerted by cells [96–98]. The pat-

tern of tangential stresses in the longitudinal direction, τzx, obtained from each of the three

methods do not differ substantially from each other (Fig. 2.11b-d, left panel). Quantification
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of the relative differences in peak stresses shows that Boussinesq’s solution underestimates

τzx in 12%, and our 2D solution in 6% with respect to our 3D solution. The pattern of

tangential stresses in the lateral direction, τzy, shows larger discrepancies (Fig. 2.11b-d,

central panel). Boussinesq’s and our 2D solution underestimate the peak in τzy by 23% and

16% respectively, but since the magnitude of the lateral stresses is small compared with

the longitudinal and vertical stresses (see colorbars in Fig. 2.11b-d) these differences have

a reduced effect in the overall stress pattern. As expected, the error in the vertical stresses

is 100%, since Boussinesq’s and our 2D solution do not capture them (Fig. 2.11b-d, left

panel).

2.7 Discussion

Several methods have been used in the past to calculate the traction forces exerted

by cells during locomotion over flat substrates [27–29, 31, 33]. Since its introduction by

Butler et al. [33], Fourier traction cytometry has been one of the most popular ones. As

an improvement over Butler’s method, we have presented in this section a Fourier traction

cytometry method which considers the effect of the finite thickness of the substrate.

Both the thickness, h, and the Poisson’s ratio, σ, of the substrate significantly affect

the calculation of the cell traction stresses for lengthscales larger than 2h. This implies their

relevance for the study of collective cell migration, since an important component of the

traction forces exerted by a layer of cells corresponds to the size of the layer [99], typically

much larger than the substrate thickness, h.

Our study shows that, regardless of the inaccuracy in the assumption that vertical

traction stresses at the substrate free surface are negligible, the calculation of the tangen-

tial traction stresses using our 2D Fourier traction cytometry technique does not deviate

significantly from our 3D technique (≈ 10% error in magnitude, and similar stress pattern).

However, the presence of significant vertical stresses unveils an additional level of complex-

ity in the mechanical interactions cell-substrate. The results by Hur et al. [96], Maskarinec

et al. [97] and del Álamo et al. [98], which show that a cell pushes the substrate at its center

and pulls it at its periphery, support the existence of a scaffold of actin fibers going over the

cell nucleus [100] and attaching to the substrate at the periphery of the cell [101] at a certain

angle. The presence of this type of actin structure is in agreement with studies which relate

cell shape, nucleus deformation, and the actin cytoskeleton [102], and would explain the

exertion of vertical forces, suggesting that it is the cell nucleus, reported to be stiffer than
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the cell body [101, 103, 104], which pushes the substrate downwards, suffering deformation.

The deformation of the cell nucleus has been related to signalling processes altering cell

behavior [105–107], and its consequences for cell migration will need to be understood.

Chapter 2, in part, have been published in the Proceedings of the National Academy

of Sciences of the United States of America, “Spatio-temporal analysis of eukaryotic cell

motility by improved force cytometry,” by J. C. del Álamo, R. Meili, B. Alonso-Latorre,

J. Rodriguez-Rodriguez, A. Aliseda, R. A. Firtel, and J. C. Lasheras (2007) 104:13343-

13348, in the Conference Proceedings of the IEEE Engineering in Medicine and Biology

Society, “Distribution of traction forces associated with shape changes during amoeboid

cell migration,” by B. Alonso-Latorre, R. Meili, E. Bastounis, J. C. del Álamo, R. A.

Firtel, and J. C. Lasheras (2009) 2009:3346-3349, and is in preparation for submission for

publication, “Three-dimensional traction cytometry in amoeboid cells,” by J. C. del Álamo,

R. Meili, B. Alonso-Latorre, Álvarez B., R. A. Firtel, and J. C. Lasheras (2011). The thesis

author is a co-author in the first publication and the primary investigator in the second and

third publications.

Experiments were performed by Dr. R. Meili in the Section of Cell and Develop-

mental Biology, University of California, San Diego. This investigation was partially funded

by the U.S. National Institutes of Health.



Chapter 3

Quantitative Study of the

Mechanics of Amoeboid Motility

Despite the enormous recent advances in our knowledge about the biochemical pro-

cesses controlling cell motility, our understanding of the spatiotemporal coordination of the

mechanical processes on the cellular scale remains limited. Current approaches to this ques-

tion are based on the measurement of parameters such as cell shape or traction forces and

the analysis of their changes in different mutant strains with altered biochemical properties

[20, 21, 34, 47, 79, 108–110]. Cells are plastic and dynamic objects, which makes capturing

and describing their entire range of motion and shapes challenging [15]. Additionally, there

is a substantial level of variability in the properties of individual cells, even in a clonal

population [22]. A common way to ameliorate this problem is to select a limited number of

cells that can represent the population. However, the identification of such “prototypical”

cells is subjective and is often lacking statistical validation.

In the present chapter, we use the improved Fourier traction cytometry method pre-

sented in Chapter 2 to study the underpinnings of the motility cycle of single Dictyostelium

cells moving up a chemoattractant gradient for three strains: WT (wild type, KAx-3), My-

oII essential light chain null (mlcE−; with altered MyoII motor function, see Section 3.12),

MyoII null (mhcA−; lacks MyoII cross-linking and motor function), and talin A null cells

(talA−) (obtained from M. A. Titus, University of Minnesota, Minneapolis, MN). We find

that these cells produce much larger contractile forces than needed to overcome the resis-

tance from their environment. We show that the chemotactic migration of single, isolated

Dictyostelium cells is made up of a repetitive sequence of canonical steps. Our analysis of

36



37

the temporal evolution of the length of the cell and the strain energy transmitted to the

substrate as well as of the area fluxes (defined in Section 3.1.5) shows that these quanti-

ties vary periodically. Taking advantage of the periodicity of the cell migration cycle we

have implemented a novel statistical methodology that systematically allows us to dissect

the motility cycle into four canonical phases (protrusion, contraction, retraction and relax-

ation), and compute average maps of traction forces for each phase. We have also applied

this analysis to the area fluxes that arise when the cells move. The development of this

conditional sampling technique enabled us to systematically compile large data sets of high-

resolution time-lapse recordings of shapes and traction forces during chemotaxis and obtain

a statistically-significant quantification of the spatiotemporal distribution of the traction

forces the cell exerts at the different stages in the motility cycle. We have used this ap-

proach to compare the motility characteristics of WT and mutant strains with impaired

MyoII function. We then relate the molecular properties of MyoII with the spatiotemporal

organization of the traction stresses, and analyzed how these stresses govern the motility

cycle [40, 65, 71, 73, 75, 111–113]. We also demonstrate a remarkably strong correlation

between the mean velocity of the cells and the period of the strain energy cycle, which

persists for mutants with adhesion and contraction defects. Our studies provide new in-

sight into the molecular basis of MyoII function for cellular organization, in particular, how

the cross-linking and motor properties of MyoII affect the spatiotemporal distribution of

traction forces and the ability of cells to move. These insights should be applicable to a

wide range of cell types.

3.1 Statistical tools

We used conditional statistics to characterize the average traction stresses exerted

by WT, mlcE−, and mhcA− cells during different phases of their motility cycles. These

phase averages were calculated from instantaneous maps of traction stresses after arranging

the experimental time-lapse data series by phases.

3.1.1 Dissection of the different phases of the motility cycle

The sorting procedure of the different stages of the motility cycle had three steps as

sketched in Fig. 3.10a. First, we recorded the quasi-periodic time evolution of the length of

the cell, L(t). Second, a human user selected the peaks and valleys of each time history of

L(t). Third, a computer algorithm automatically divided each cycle of L(t) into the phases
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during which the cell length is increasing (phase 1, protrusion), is near to a local maximum

(phase 2, contraction), is decreasing (phase 3, retraction), or is near to a local minimum

(phase 4, relaxation). This algorithm worked by applying the following adaptive threshold

on L(t)

Phase(t)

=






1 if γ(Lmax − Lmin) < L(t) − Lmin < (1 − γ)(Lmax − Lmin) and tmin < t < tmax,

2 if |L(t) − Lmax| < γ(Lmax − Lmin),

3 if γ(Lmax − Lmin) < L(t) − Lmin < (1 − γ)(Lmax − Lmin) and tmax < t < tmin,

4 if |L(t) − Lmin| < γ(Lmax − Lmin),

(3.1)

where tmin and tmax are the instants of time associated with the nearest local minimum

and maximum of L(t), and Lmin = L(tmin) and Lmax = L(tmax). Once a phase had

been assigned to each time-point of our time-lapse experiments, we calculated the average

maps of traction stresses based on the conditions that Phase(t) = 1, . . . , 4. Note that the

threshold needs to be 0 < γ < 0.5 in order to avoid overlap of adjacent phases. Figs. 3.10,

3.13 and 3.15 were calculated using γ = 0.2. The selection of a threshold for separating

the motility cycle into stages was shown to have a negligible effect on the phase-averaged

traction maps. To check whether our results are independent of γ, we re-calculated Fig. 3.14

for values of the threshold parameter lower and higher than γ = 0.2. The resulting stress

maps (Fig. 3.14) are highly similar to those in Fig. 3.13, confirming that our results are

robust irrespective of the threshold.

3.1.2 Phase-averaged traction stresses

Mathematically, we define the average map of traction stresses corresponding to the

i-th phase of the motility cycle of a set j = 1, . . . , N of cells, using Mj temporal observations

for the j-th cell, as

〈τ 〉Ni (ξ, η) =

∑N
j=1

∑Mj

k=1 W j
i (tk) τ

j(ξ, η, tk)
∑N

j=1

∑Mj

k=1 W j
i (tk)

(3.2)

where, (ξ, η) are the spatial coordinates and τ j(ξ, η, tk) is the instantaneous traction stress

field generated by the j-th cell at time tk. The weight function W j
i (tk) is set equal to 1

when the j-th cell is in the i-th phase of the motility cycle at time t = tk and equal to zero

otherwise. In the results section, we show that, when N becomes sufficiently large, 〈τ 〉Ni
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Figure 3.1: Representation of the cell-based reference system in which both traction stresses
and shape of the cell are expressed. The black contour indicates the instantaneous contour
of the cell, of length L(t). The laboratory reference frame is indicated by axes (x, y). The
axes of the cell-based reference frame (ξ, η) are centered at the instantaneous centroid of
the cell (xc(t), yc(t)) and are aligned with its minor and major axes, which lie at an angle
φ(t) with respect to (x, y). The colormap and arrows indicate respectively the strength, in
Pa, and the direction of the traction stresses exerted by the cell on the substrate. The thick
black arrow indicates the direction of motion of the cell, moving with velocity V (t). The
scale bar indicates 10 µm.

converges to a uniquely defined function characteristic for each cell line, independent of the

particular cells used to compile the average.

3.1.3 Cell-based coordinate system

Before computing the phase averages, we converted the instantaneous traction stress

fields into a cell-based, dimensionless coordinate system (ξ, η) that took into account that

the shape and the orientation of the cells was changing and could adapt to these changes

(Fig. 3.1). The cell-based representation involves aligning the longitudinal axis of the cell

with the horizontal (ξ) axis and re-scaling the coordinates with the half-length of the cell.

This coordinate system allowed us to compile statistics coming from different cells at dif-

ferent instants of time. The origin of the cell-based coordinate system was located at the

instantaneous centroid of each cell, whose instantaneous coordinates in the laboratory frame

were (xc(t), yc(t)). The (ξ, η) coordinates were expressed mathematically as

ξ = [(x − xc(t)) cos φ(t) + (y − yc(t)) sin φ(t)]/[L(t)/2]

η = [(y − yc(t)) cos φ(t) − (x − xc(t)) sin φ(t)]/[L(t)/2] (3.3)
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where x and y were the coordinates in the laboratory reference frame, and φ(t) was the

angle between the longitudinal axis of the cell and the x axis of the laboratory reference

frame. Because the distances were scaled with the instantaneous half-length of the cell,

L(t)/2, in the cell-based reference frame, the longitudinal axis of the cell always spanned

from ξ = −1 to ξ = 1. The dimensions of the traction stresses in this coordinate system

need to be consistent with the fact that their surface integral is a force. Because ξ and η

are non-dimensional, these traction stresses are scaled with (L(t)/2)2 and therefore, they

have dimensions of force (e.g. pN per unit non-dimensional area).

3.1.4 Phase-averaged cell shape

In order to calculate the phase-averaged contour of the cell, we applied the pro-

cedures described above (phase conditioning, aligning, scaling and averaging) to a scalar

function pj(ξ, η, t) so that, at each instant of time, p = 1 inside the two-dimensional pro-

jection of the cell and p = 0 outside of it. The conditional average of this function for a set

j = 1, . . . , N of cells (calculated similar to the average traction stresses of Eq. 3.1, 〈p(ξ, η)〉Ni ,

yielded the probability that a given point belonged to a cell during the i-th phase of the

motility cycle in cell-based coordinates. We defined the phase-averaged contour of the cell

as the iso-contour 〈p(ξ, η)〉Ni = pavN
i that enclosed an area equal to the average area of the

cell during the same phase. Fig. 3.2 illustrates the calculation of the average cell outline by

showing a contour map of 〈p(ξ, η)〉Ni measured for the protrusion phase of WT cells, and

the resulting average cell contour, which corresponds to the probability level that encloses

an area equal to the average area of all cells in this case, pavN
i = 41%. Because pavN

i cor-

responds to a non-zero probability, it is expected that the instantaneous contour of a given

cell does not match the average cell contour due to variability in cell shape. In particular,

the instantaneous contour of a given cell often exceeds the average cell contour in some

locations. When this occurs, the cell may instantaneously exert traction stresses outside

of the average cell outline, which can account for the small, non-zero values of the average

stresses outside the average contour observed in Figs. 3.13 and 3.14. This statistical effect is

caused by the natural variability of cell shape and is observed even when the instantaneous

traction stresses outside of the instantaneous cell outline are forced to be zero by using a

constrained traction cytometry method (see Section 3.11).
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Figure 3.2: Determination of the phase average contour of the cell. (a) Two-dimensional
contour map of the probability 〈R(ξ, η)〉Ni that a point belongs inside a WT cell in cellbased
coordinates (Eq. 3.3) for N = 31 cells and i = 1 (protrusion phase). The dashed lines
represent the probability levels 0% and 95%. The solid line represents the probability
level that encloses an area equal to the average area of WT cells during the protrusion
stage, which in this case is pavi N = 41%. Because it conserves the average area of the
population, this contour has been chosen as the average outline of the cell. The labels
“F” and “B”indicate respectively the front and back of the cell. (b) Three-dimensional
representation of the probability map shown in (a). The arrows shown at zero level indicate
the magnitude and direction of the average traction forces and have been included for
reference.

3.1.5 Area fluxes

The differential area flux at each element of area of the plane is defined as the rate

of change of the probability that the considered element belongs inside a cell weighted with

the differential area of the element

dAF =
p(ξ, η, tk) − p(ξ, η, tk−1)

tk − tk−1
[L(tk−1)/2]

2 dξ dη (3.4)

where (ξ, η) are calculated from Eq. 3.3 with respect to xc(tk−1) and yc(tk−1) and L(tk−1)

both for p(ξ, η, tk−1) and p(ξ, η, tk). According to the definition of p given above, p(ξ, η, tk)−
p(ξ, η, tk−1) will be equal to 1 wherever the cell has gained area, -1 wherever the cell has

lost area, and 0 if the cell was present at both times tk−1 and tk. Therefore, the integral

AF =
∫

dAF in a region of the (ξ, η) plane represents the change of cell area measured in

that region per unit time: if AF > 0 in a certain region of space, then the cell is adding

material at that region and vice versa.

3.2 Quantitative evidence for a regulated motility cycle

Fig. 3.3 shows a characteristic time series of images exemplifying the distinct stages

that constitute one representative motility cycle of WT Dictyostelium cells. The strain
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Figure 3.3: Sequence of images of a moving WT Dictyostelium cell. The black contour
is the outline of the cell. The color contours map the magnitude of the stresses produced
by the cell relative to their maximum value. The red arrows indicate the magnitude and
direction of these stresses. The plot at the upper right corner of each panel indicates the
strain energy of the substrate for the selected images. The red circle in that plot indicates
the instant of time that corresponds to each panel: (a) t = 0 s; (b) t = 18 s; (c) t = 48 s;
(d) t = 84 s; (e) t = 100 s; ( f) t = 112 s. (Scale bars: 10 µm.) The arrow indicates the
direction of motion of the cell.

Figure 3.4: Sequence of images of a chemotaxing mhcA− Dictyostelium cell, similar to
Fig. 3.3. (a) t = 0 s. (b) t = 28 s. (c) t = 64 s. (d) t = 100 s. (e) t = 216 s. (f) t = 308 s.
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energy imparted by the cell on the substrate (denoted US , see Eqs. 2.15 and 2.16) is also

shown on each panel. Note that US is approximately periodic, showing successive peaks

and valleys (also see Fig. 3.5). While quasi-periodic behaviors in the velocity and shape of

migrating Dictyostelium cells have been reported previously [79, 114] our findings provide

strong evidence that the level of force transmitted by the cell to the substrate reflects the

regulation of the cell motility cycle.

In Fig. 3.3a, the cell is transmitting its internal tension to the substrate through

two discrete attachment regions at A and B, while it protrudes a pseudopod at C without

producing discernable stresses underneath. The convergence of stresses from two principal

areas is a prevalent pattern (Figs. 2.7 and 3.3b-f) indicating that the cell is prestretched,

consistent with the basic motility model of Lauffenburger and Horwitz [1]. The pseudopod

at C then attaches to the substrate ≈ 20 s later (Fig. 3.3b), leading to an increase of

the stresses and US . The increase in US seems to trigger the detachment of the back of

the cell at A (Fig. 3.3c), which starts a gliding retraction with a subsequent decrease in

strain energy. At the same time, a new pseudopod forms at D and glides forward over

the substrate. During this phase, which lasts ≈ 30 s, the attachment at B weakens, and

US decreases further (Fig. 3.3d). When the cell finally detaches from B (Fig. 3.3e), the

pseudopod at D attaches to the substrate and US rises steeply. Following this event, the

cell detaches from C and starts a gliding retraction (Fig. 3.3f) that leads to a sudden decrease

in US , similar to the transition between Figs. 3.3b and c. This quasi-periodic sequence of

cell attachment/detachment and force generation is observed in all moving, WT cells and

correlates well with the time evolution of the strain energy. Consistent with this result,

Uchida et al. [79] observed correlation between the cyclic variation of the cell area and

the displacement patterns of beads embedded in the substrate. These authors proposed a

motility cycle consisting of two phases in which the cell contracts and extends the substrate

alternatively. However, in our experiments we never observed any expanding stress pattern,

just contractile ones. This discrepancy may be due to permanent deformations of their

substrates.

Fig. 3.4 shows a sequence of images representing the motility cycle of mhcA− cells

together with the evolution of US . A first comparison of Figs. 3.3 and 3.4 suggests that

the stages of the cycle are less distinct in mhcA− cells than in WT cells. This is observed

in all of our experiments. In Fig. 3.4a, the cell is attached weakly to the substrate along

its periphery between the front (A) and back (B), and begins to extend a pseudopod at C.

The strength of the existing adhesions increases during the following 30 s (Fig. 3.4b), while
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Figure 3.5: Typical time evolution of the strain energy for a WT (blue), a mlcE− (green),
and a mhcA− (red) cell.

pseudopod C extends and B retracts. Consequently, US increases. At the same time, the

cell grabs weakly to the substrate near A and protrudes a new pseudopod (D) at its front.

Pseudopodia A-D continue gliding while the attachment regions weaken and US decays

(Fig. 3.4c). After the strain energy has reached a local minimum, pseudopodia A, C, and

D continue extending for 40 s in what seems to be a competition to become the dominant

protrusion. Eventually, pseudopod A prevails, and the cell slowly retracts pseudopodia B,

C, and D (Fig. 3.4e). The strain energy peaks again when A attaches to the substrate.

The stress pattern in Fig. 3.4e indicates that the cell is clamping the substrate locally

at A. This type of pattern is observed repeatedly in the front of all of the mhcA− cells

studied, and differs from the typical stress distribution observed in WT cells, which is more

coordinated along the whole cell body. In the latter case, the stresses transmitted to the

substrate at each attachment region are generally unidirectional and compensate for the

stresses transmitted by a different pseudopod (Fig. 3.4). Fig. 3.4f shows the instant when

the cell loosens its adhesion to the substrate, and US returns to its baseline.

3.3 Effects of cytoskeletal mutations on the strain energy,

and magnitude of the pole forces, and migration speed

The statistical analysis of the motility parameters of single WT, mlcE−, and mhcA−

cells yields interesting results (Table 3.1 for Whole cycle). Consistent with previous works

[67, 111], we find that the average translation velocity V of both mlcE− and mhcA− cells

is about half than that of WT cells (Table 3.1). The speed of single cells shows little or no

correlation with either pole force (see Eq. 2.14) or strain energy (see Eqs. 2.15 and 2.16)

(Fig. 3.6). Because the external and inertial forces acting on the cells are much smaller
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Figure 3.6: Scatter plots of the average velocity of each cell (V ) versus the average value of
the strain energy (US , panel a) or the average magnitude of the pole forces (FP , panel b).
Blue symbols represent WT (N = 30), green symbols mlcE− (N = 14), and red symbols
mhcA− cells. (N = 25). The data show little correlation between V and US or FP .

than the traction forces measured in our experiments, the front and back pole forces always

have approximately the same magnitude. They are generally oriented along the direction of

polarization and always display a converging or contractile pattern (see panels on the right

of Figs. 2.7b-c). Therefore, they can be used to quantify the level of cytoskeletal tension

of the cell along the direction of polarization. The average magnitude of the pole forces

transmitted at the attachment regions in the front and back of the cells is Fp ≈ 346 pN

for WT, and mlcE− and mhcA− are still able to produce Fp ≈ 350 pN and Fp ≈ 280 pN

respectively. Not surprisingly, the pole forces and strain energy correlate well with cell

area (Fig. 3.7). These results differ from [79], who reported that mhcA− cells exert much

stronger forces on the substrate than WT cells.

Figs. 3.3 and 3.4 demonstrate that the time evolution of the strain energy is a simple,

quantitative indicator of the stages of their motility cycle. The graph in Fig. 3.5 compares

three representative, 10-min-long time histories of US for a WT, a mlcE−, and a mhcA− cell.

The three curves show a quasi-periodic behavior, but the periods of US differ. Although

US rises and decays about 7 times for the WT cell, it only does so about 4 times for both

mutant cells. MhcA− cells have in average longer strain energy periods than both WT and

mlcE− cells, and WT cells present the shortest periods in average.

The average values of US for WT, mlcE−, and mhcA− cells are similar (Table 3.1),

although the standard deviations indicate a high variability from cell to cell within the three

strains. Together with the different magnitudes observed for the pole forces, this suggests

that force production in mhcA− cells is less coordinated with polarization than in both WT
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Figure 3.7: Scatter plots of the average projected area of each cell (Ac) versus the average
value of the strain energy (US , panel a) or the average magnitude of the pole forces (FP ,
panel b). Blue symbols represent WT (N = 30), green symbols mlcE− (N = 14), and red
symbols mhcA− cells. (N = 25). The data show strong correlation between Ac and US or
FP . The gray lines are least square fits to the data: US(pNµm) = 10−1.084 Ac(µm2)1.1527,
and FP (pN) = 100.4918 Ac(µm2)0.8501.

and mlcE− cells. Under such conditions local stresses may cancel each other out and thus

reduce the pole forces while local strain energies always add up in the calculation of US (see

also Fig. 3.13).

3.4 The mechanical process of amoeboid cell motility is char-

acterized by quasi-periodic changes of cell length and

strain energy exerted on the substrate

The quasi-periodic time evolution of both cell length, L, and total strain energy

exerted by the cell on the elastic substrate, US (Eqs. 2.15 and 2.16), suggests that stereo-

typical elements of chemotactic cell movement like protrusion or contraction are repeated

sequentially (Figs. 3.3, 3.4, 3.5, and 3.8b), consistent with previous observations of other

groups on a range of cell types [1, 111, 115].

The existence and degree of periodicity of a force-regulated motility cycle were

studied in more detail by analyzing the autocorrelations and crosscorrelation of L and US

(Fig. 3.8c). The autocorrelation of US , RUSUS
, and the crosscorrelation between L and

US , RLUS
, show a high degree of periodicity and can be used to more unambiguously

determine the period of the motility cycle, T . Another important aspect is the duration
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Figure 3.8: Periodicity of amoeboid motility. (a) Outline of a WT cell moving left to right
at three different instances of time and the corresponding traction stresses it imposes on the
elastic substrate. The graph in (b) shows the quasi-periodic time evolution of the length
of such a cell (L) in blue and the time evolution of the total strain energy it deposits into
the substrate in red (US). The graph in (c) further illustrates the periodic nature of the
cellular motility process by plotting the cross-correlation between cell length and strain
energy (RUSL) in black and the autocorrelation of the strain energy in red (RUSUS

). (d)
Histograms of the correlation coefficients between US and L within each motility cycle for
WT (blue, N = 31 cells, 122 cycles), mlcE−(green, N = 14 cells, 46 cycles), and mhcA−

(red, N = 27 cells, 119 cycles) cells. (e) Histograms of the phase shift between the peaks
of RUSL and RUSUS

, measured in seconds. The histograms in (d) and (e) are normalized to
integrate to unit area.

of the correlation which, in the case of the cell presented in Fig. 3.8, is maintained for 4

complete cycles as indicated by the sustained magnitude of the peaks of RUSUS
and RLUS ,

instead of rapidly decaying to zero as would be expected for an irregular signal. The observed

correlations are consistent with the notion that the oscillations in L and US are caused by

a recurring organized process rather than by random fluctuations. The magnitudes of the

peaks for both RUSUS
and RLUS

are very similar, meaning that US is correlated as closely

with itself as it is with L. Physically, this means that the cell length and the level of

stresses transmitted to the substrate are highly correlated. Although the analysis shown

in Fig. 3.8 is for a single WT cell, similar periodicity was statistically confirmed for three

strains studied. The histograms of the correlation coefficient between US and L, rUSL, for

the three strains (Fig. 3.8D) indicate that L and US are strongly correlated for the majority
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of the WT, mhcA−, and mlcE− cells analyzed. The percentage of cells showing a correlation

coefficient RLUS
> 0.5 is 44% for WT, 58% for mlcE−, and 55% for mhcA− cells. Further

evidence is provided by the statistics of the probability of the null hypothesis that US and L

are independent versus the alternative that they show positive correlation. The percentage

of cells with a p-value lower than 0.05 is 58% for WT, 89% for mlcE−, and 72% for mhcA−

cells, which confirms that in the vast majority of cases US and L are positively correlated.

The histograms of the time delay between the peaks of RLUS
and RUSUS

, shown in Fig. 3.8e,

are narrow and symmetric with respect to zero, indicating that the time evolutions of cell

length and strain energy are statistically in phase.

3.5 The average speed of migration of Dictyostelium cells is

determined by the period of their motility cycle

Fig. 3.9a provides quantitative evidence that the average velocity of migration V

of a cell is determined by the frequency at which it is able to perform the motility cycle.

The relationship between the average velocity of the cell (V ) and the period of the strain

energy cycle (T ) is well approximated by the hyperbola V T = λ, where λ is a constant with

units of length (Fig. 3.9a). The correlation coefficient between V and 1/T is R = 0.71. The

probability of the null hypothesis that V and 1/T are independent versus the alternative that

they show positive correlation, p = 2.3×10−14, is extremely low. One important aspect of

this empirical relationship is that it holds for a wide range of velocities (2−20 µm/min) and

is conserved in mutants we have tested with contractility defects. WT cells (p = 0.0045)

have the fastest velocities and shortest periods, while mhcA− cells (p = 0.011) have the

slowest velocities and the longest periods and mlcE− cells (p = 0.0029) have velocities and

periods falling between the ones measured for WT and mhcA− cells.

To test the robustness of the above empirical relationship across these three strains,

a non-parametric, one-way ANOVA test was performed on the values of λ measured for

the WT, mlcE−, and mhcA− cells. The resulting p-values of the null hypothesis that the

distributions of λ from different strains have different averages (p=0.36 for WT/mlcE−,

p=0.22 for WT/mhcA− and p=0.97 for mlcE−/mhcA−) indicate that these distributions

are similar. Fig. 3.9b depicts a box-plot of the distributions of λ for WT, mlcE−, and

mhcA− cells. The measured average and standard deviations of λ for WT, mlcE−, and

mhcA− cells are λ = 19.5 ± 6.0 µm, 17.6 ± 6.2 µm, and 17.4 ± 4.0 µm, respectively. These

values are of the order of the length of the cells, indicating that on average, during each
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Figure 3.9: Dictyostelium motility on gelatin substrates is pace limited. (a) Scatter plot of
the average velocity of N = 74 chemotaxing Dictyostelium cells versus the period of their
motility cycle (determined from the time evolution of L). The data points come from four
different cell lines: N = 31 WT cells (blue squares), N = 14 mlcE− cells (green circles),
N = 27 mhcA−, and N = 2 talA− cells (cyan triangles). The dashed magenta hyperbola
(V = λ/T ) is a least square fit to the data, yielding λ = 18 µm. The V − T plane has
been divided into tiles that have been colored according to the number of cells whose speed
and motility period lie within each tile. Darker tiles contain more cells, as indicated in the
color. (b) Box plot of the product V − T for WT, mhcA−, and mlcE− cells. (c) Scatter
plot of the continuous translocation velocity Vtrans (see Eq. 3.7) of the same cells as in (a)
versus the period of their motility cycle. The dashed magenta hyperbola (Vtrans = λ/T ) is
a least square fit to the data, yielding λ = 12 µm.

motility cycle these cells move a distance comparable to their length. This similarity in

values of λ suggests that, despite their differences, the implementation of the motility cycle

of these three strains should not differ substantially.

We have included in Fig. 3.9a two cells lacking talin A (talA− cells), a conserved

protein that mediates cell adhesion [116], showing that their speed is also well described by

the same hyperbolic law. The speed of talA− cells is comparable to that of WT cells, even

though their average pole forces transmitted to the substrate (≈ 200 pN) are lower than

those transmitted by mhcA− cells.
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3.6 A phase statistical analysis of the motility cycle provides

a unified description of the behavior of WT and mutant

cells

We developed a statistical method that enables us to determine the spatiotemporal

mechanical organization of the average cell during locomotion (Section 3.1). The method

first divides the motility cycle into a number of canonical stages (or phases) and then

computes the phase-average maps of the traction forces. For this purpose, we developed

an unbiased, automatic procedure that is capable of identifying the canonical stages of

the motility cycle in each experimental time-lapse record. This is possible for amoeboid

cells because they move following a series of well-defined steps that translate into periodic

oscillations of L and US , as previously discussed. We employed a cell-based reference system

with the origin at the instantaneous centroid of each cell and the horizontal axis coinciding

with the longitudinal major axis of the cell (see Section 3.1). Comparing sequential time

points enabled us to determine the shape changes. We divided the motility cycle into four

stages (or bins) according to the criteria indicated in Fig. 3.10a and named these stages

based on the properties of the cell at each stage: 1) Protrusion, defined as the fraction

of each cycle during which the cell length is increasing; 2) Contraction, defined as the

fraction of each cycle during which the cell length is near a local maximum (our force

measurements have shown this phase to coincide with maximum strain energy; Fig. 3.8);

3) Retraction, defined as the fraction of each cycle during which the cell length decreases;

and 4) Relaxation, defined as the fraction of each cycle during which the cell length is at a

minimum (our force measurements have shown this phase to coincide with minimum strain

energy; Fig. 3.8). We used the assigned phases to sort the data obtained from different

cells at different instants of time and to compile average maps of stress and cell shape.

More information about this methodology, including the algorithm for the dissection of the

motility cycle into phases and other statistical tools employed in this study, can be found

in Section 3.1. Our method is robust, and relatively insensitive to the algorithm used to

sort out the four phases of the motility cycle (see Section 3.8.1).

The changes in cell shape during the cycle can be analyzed by determining the area

fluxes (for the definition see Section 3.1.5). Fig. 3.11 shows that the described cycle-sorting

algorithm is able to dissect the motility cycle of Dictyostelium cells into the succession

of leading-edge protrusions, formation of new adhesions near the front, cell contraction,

release of the rear adhesions, and retraction that has been described phenomenologically
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Figure 3.10: Analysis of the four phases of the motility cycle using phase statistics. (a)
Assignment of individual time points to the four phases of the motility cycle based on
increasing length (black), maximal length (red), decreasing length (green), and minimal
length (blue). Normalization yields average stress maps (color map) and cell shape (black-
white-black outline) for each phase. The bar plots in (b) show average area fluxes during
each phase as determined by phase statistical analysis. The insert sketch represents the
contour of a cell at time t (solid line) and at time t + ∆t (dashed) and illustrates the origin
of each of the different area fluxes represented in the bar plots in this panel. Red stands
for area increase in the front and yellow for increase in the back. Dark blue stands for area
decrease in the back and light blue for area decrease in the front. (c) Area flux due to cell
shape change (see Eq. 3.5) in yellow; area flux attributable to continuous translocation in
dark blue (see Eq. 3.6).

elsewhere [1]. Fig. 3.11 shows phase-averaged maps of the fluxes (gain/loss) of cell area

that occur during cell migration. The red and blue areas in the figure indicate the locations
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Figure 3.11: Spatiotemporal mapping of the area fluxes in WT and MyoII mutant cells.
Phase-averaged area fluxes and cell shape corresponding to the four stereotypical stages
defined in Fig. 3.10 for WT (first column, N = 31), mlcE− (second column, N = 14), and
mhcA− (third column, N = 27) cells. The contour maps show the average area flux field,
measured in a reference frame rotated to coincide with the instantaneous principal axes of
the cells and scaled with their half-length, L(t)/2. The colors indicate the magnitude of the
area fluxes in µm2/s (red: positive area flux or gain of cell area; blue: negative area flux or
loss of cell area. The black contours show the average shape of the cells in this reference
frame. The front “F” of the cell corresponds to ξ > 0 and the back “B” corresponds to
ξ < 0.

where area is being added (red) or depleted (blue) respectively during each of the stages of

the motility cycle. The bar plot in Fig. 3.10b shows the integrated positive area flux in the

front, AF+
front, the integrated negative area flux in the back, AF−

back, the integrated negative

area flux in the front, AF−
front, and the integrated positive area flux in the back, AF+

back.

The inset sketch in Fig. 3.10b is a graphical representation of each of these contributions.

The absolute values of the integrated area fluxes vary between 1 and 5 µm2/s, and are

in good agreement with previous measurements of average and instantaneous area gain or

loss for single cells ([15, 109, 111, 117]). If a cell simply moved forward while maintaining

a constant shape, then AF+
front and AF−

back would have the same magnitude and opposite

signs, and the sum of AF−
front and AF+

back would be equal to zero. In reality, amoeboid

motility involves an additional component of deformation. To distinguish kinematically

between shape preserving translocation and the component of the cell movement that is

associated with deformation, we define the area flux of deformation, AFdefor, and the area
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flux of translocation of the cells, AFtrans, as:

AFdefor = (|AF+
front| − |AF−

back|) − (|AF−
front| − |AF+

back|) (3.5)

AFtrans = 1/2 (|AF+
front| + |AF−

back|) − 1/2 (|AF−
front| + |AF+

back|) (3.6)

These parameters are defined so that AFdefor = 0 when a cell is undergoing shape preserv-

ing translocation and AFtrans = 0 when the front and back area fluxes are balanced so

that the centroid of the cell does not change position. Fig. 3.10c shows a bar plot with the

values of AFdefor and AFtrans for WT, mlcE−, and mhcA− cells during the four stages of the

motility cycle. This plot confirms that our stage-sorting methodology captures the physical

events defining the motility cycle for the three cell lines under study. AFdefor indicates that

during protrusion, cells, on average, mainly deform by gaining area at the front, while they

lose area at the back during retraction. Conversely, the cells undergo little deformation

during contraction and relaxation. The substantial contribution of AFtrans to each phase

means that part of the locomotion of Dictyostelium cells occurs independent of deformation

or area change on the time scale of the period T . This could potentially be due to events

of protrusion/retraction with a period much shorter than T . However, considerably shorter

period fluctuations of cell length are absent from the time-lapse movies of individual migrat-

ing cells , which suggests a shape preserving translocation due to continuous contraction of

the actomyosin network at the back of the cell ([111, 117–119]). To isolate the component of

the velocity coming from continuous translation of the cell rather than from its deformation,

we have estimated the average velocity of continuous translocation, by dividing the area

flux of translocation with the average width of the cell, W . This estimation is expressed as

Vtrans =
∣∣∣
AFtrans

W

∣∣∣ =
∣∣∣
(|AF+

front| + |AF−
back|) − (|AF−

front| + |AF+
back|)

2W

∣∣∣ (3.7)

Fig. 3.9c illustrates that Vtrans shares the same correlation with the period of the motility

cycle as the total cell velocity. This result is expected, as we find that continuous translo-

cation is a substantial contributor to the total velocity of the cell. However, this correlation

suggests the existence of a coupling mechanism through which the period T of the cell defor-

mation cycle for the inchworm-like contribution to cell motility is linked to the continuous

translocation.

Finally, it should be noted that, although the magnitudes of AFtrans and AFdefor

are lower in mhcA− and mlcE− cells than in WT cells, the time evolution of the parameters

for all of the cell lines parallel each other, indicating that the cells from the three strains
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Figure 3.12: Percentage of error (two-dimensional L2 norm) of the phase averaged traction
fields as a function of the number of cells compiled in the statistics. Blue, WT cells;
red, mhcA− cells; green, mlcE− cells. The plots show the standard deviations, σN

µ , of the

distributions of phase-averages µN obtained for all possible combinations of N cells that can
be formed within a population of NTOT > N cells. The results are normalized with the total
average, µN

TOT , and represented as a function of N . The straight lines are projections of the
data from each cell strain. The color crosses on the projections correspond to N = NTOT

(NTOT = 31, 14, and 27 for WT, mlcE− and mlcE− cells, respectively). These crosses
therefore estimate the uncertainty of the phase averages in Fig. 3.13.

implement the motility cycle in a similar manner, despite the defects in actomyosin con-

tractility of the mutants. This result is consistent with the observation noted above that

all of the cell lines have similar values of λ, the distance moved per cycle (Fig. 3.9).

3.7 Measurements of individual cells are variable but the

phase averages converge rapidly and reproducibly

For any sample of cells, the statistical significance of the cell-based phase averages

introduced in Section 3.1 is limited by sources of uncertainty such as cell-to-cell variability,

measurement errors, or the reproducibility of the experimental conditions. These random

contributions eventually cancel out as one increases number N of measured cells. Fig. 3.12

quantifies the relative uncertainty of the phase-averaged traction stresses defined in Eq. 3.2

as a function of N . We estimate this uncertainty from the ratio

νN
i =

σN
i

µi
=






∑K
l=1

∫ [{
〈τ 〉Ni (ξ, η) − 〈τ 〉NTOT

i (ξ, η)dS
}]2

K
∫ [

〈τ 〉NTOT

i (ξ, η)
]2

dS






1/2

(3.8)
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where 〈τ (ξ, η)〉Ni is the average traction stress field for the i-th phase of the motility cycle,

and
∫

()dS represents a surface integral in the cell-based coordinate system. The numerator

of Eq. 3.8, σN
i , is the standard deviation of the distribution {〈τ (ξ, η)〉Ni } of the i-th-phase

average traction stresses obtained for all the subsets of N cells (a total of K) that exist within

in a set of NTOT > N cells [i.e. for N = 2 cells and NTOT = 3 cells, we would calculate

K = 3 partial averages with cells (1, 2), (2, 3), and (1, 3), and compare them with the total

average obtained with cells (1, 2, 3)]. We note that σ1
i is the standard deviation of the

distribution of instantaneous traction stresses observed on single cells. The denominator

of Eq. 3.2, µI , represents the average traction stresses for the i-th phase and is used to

normalize σN
i , so that νN

i indicates the variability of 〈τ (ξ, η)〉Ni relative to its expected

value.

Eq. 3.2 is a precise estimation of the uncertainty of the measurements only when

NTOT � N and the average, 〈τ (ξ, η)〉NTOT

i , can be considered as “exact” in comparison

with 〈τ (ξ, η)〉Ni . However, NTOT is necessarily limited in practice by the finite number of

experiments performed, which in our case is NTOT = 31, 14 and 27 for WT, mlcE−, and

mhcA− cells. For this reason, we have only plotted νN
i for N < NTOT/2 in Fig. 3.12. Even

for these moderate numbers, the combinations that need to be considered for the calculation

of σN
i are overwhelmingly large, so we have estimated this quantity by performing a Monte-

Carlo simulation with n = 1000 iterations. The result shows that the relative uncertainty

of 〈τ (ξ, η)〉Ni decreases with the number of cells as σN
i /µi ∝ N−1/2, as expected for the

standard deviation of the sum of independent statistical distributions [120]. The accuracy

of the phase-averaged traction stresses given in this paper can be estimated by extrapolating

the νN
i ∝ N−1/2 behavior to N = NTOT . This extrapolation yields the colored crosses in

Fig. 3.12, which correspond respectively to νN
i = 10% for the three cell lines. A similar

extrapolation can also be carried out to estimate the number of cells that would be necessary

to reach any desired level of statistical convergence. For instance, Fig. 3.12 indicates that

νN
i = 30% − 70% for N = 1, implying that observations made on the basis of single-cell

traction maps have a high inherent uncertainty, which makes the need for statistical analysis

obvious.
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3.8 MyoII is required for the proper spatial organization of

the traction stresses

Comparison of the contour and traction stress maps of WT, mlcE−, and mhcA−

cells should provide insights into the different function of MyoII in controlling the distri-

bution of traction forces during the chemotaxis motility cycle. Fig. 3.13a includes contour

maps of the phase averaged traction stresses generated by these three strains during the

four stereotypical phases as defined in this study: protrusion, contraction, retraction, and

relaxation. In all strains, the cells contract from the periphery inward towards the cell cen-

ter throughout the cycle, as indicated by the black arrows. It should be noted that Fig. 3.13

shows average maps of traction forces and average cell contours. Because the instantaneous

contour of the cell does not need to be equal to the average contour, it is perfectly possible

to observe non-zero average traction stresses outside of the average cell contour (for more

details, Section 3.11).

WT cells produce the highest traction stresses (see colormap), which are concen-

trated in two well-defined areas in the front and the back of the cell and which most likely

correspond to the two discontinuous regions of cell substrate adhesion observed by [78].

The overall spatial distribution of stresses in mlcE− cells is similar to that of WT cells,

although their magnitude is lower by a factor of ≈ 2. MyoII motor activity has been pro-

posed to be mostly abrogated in mlcE− cells [67], but MyoII still can crosslink F-actin

[121]. The integrated pole forces for WT and mlcE− present similar values, indicating, as

visible also in Fig. 3.13, that the traction stresses in mlcE− are less focused than in WT,

suggesting a growth in their area adhesion to compensate for the reduced motor activity

of protein MyoII. The stresses produced by mhcA− cells, which lack the myosin II heavy

chain and thus all MyoII functions, are similar in magnitude to those of mlcE− cells. We

therefore suggest that the loss/reduction of MyoII-mediated contraction results, unexpect-

edly, in only modestly depressed peak values of stress, suggesting that similar stress levels

can be maintained by other mechanisms. In mhcA− cells, the stress pattern is qualitatively

different due to not being focused in two separate areas and being situated closer to the cell

boundaries than in WT or mlcE− cells. The differences between the mhcA− and mlcE−

strains suggest that the lack of organization in the stress patterns of the mhcA− cells may

result from the loss of MyoII’s F-actin crosslinking function, and not due to an inability

to generate shape-preserving forces which play a role during mitosis [122]. The importance

of MyoII for the organization of the stresses is even more evident in a different view of
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Figure 3.13: Spatiotemporal mapping of the traction stresses exerted by WT and MyoII
mutant cells. (a) Phase-averaged traction stresses and cell shape corresponding to the four
stereotypical stages defined in Fig. 3.10 for WT (first column, N = 31), mlcE− (second
column, N = 14), and mhcA− (third column, N = 27) cells. The contour maps show
the average traction stress field, measured in a reference frame rotated to coincide with the
instantaneous principal axes of the cells and scaled with their half-length, L(t)/2. The colors
indicate the magnitude of the stresses in pN per unit area and the arrows indicate their
direction. The white contours show the average shape of the cells in this reference frame.
The front “F” of the cell corresponds to ξ > 0 and the back “B” corresponds to ξ < 0.
(b) Components of the traction stresses parallel and perpendicular to the major axis of the
cell averaged over the entire motility cycle. An estimation of the average stresses in Pa
(=pN/µm2) (with a 10% error) can be obtained by dividing the values of traction stresses
shown in this figure (in pN) by the squared average of L(t)/2 (in square micrometers).
Average values for the length of each cell line during each phase of the motility cycle are
given in Table 3.1.

the traction stress data presented in Fig. 3.13b. Here, the vectors of traction stress fields

averaged over the entire cycle period are decomposed into their components parallel and
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perpendicular to the main cell axis. This view emphasizes that in WT and mlcE− cells,

the contribution of the parallel stress components to the total stress field is much higher

than that of the perpendicular components. This is not true for mhcA− cells, in which the

proportion of the perpendicular components is much larger, consistent with a key role of

the MyoII F-actin-crosslinking function in regulating the spatial organization of the stress

forces.

3.8.1 Selection of threshold for separating motility cycle into stages has

negligible effect on phase-averaged traction maps

The algorithm applied to separate and sort the different stages of the motility cycle

according to the temporal evolution of cell length, L(t), applies a threshold on L(t) as

shown in Eq. 3.1, which depends on a threshold parameter, γ, that can vary between 0 and

0.5. Figs. 3.10, 3.13 and 3.15 were plotted using γ = 0.2. To check whether our results

are independent of γ, we re-calculated Fig. 3.13 for values of the threshold parameter lower

and higher than γ = 0.2. The resulting stress maps shown in Fig. 3.14 are highly similar to

those in Fig. 3.13, confirming that our results are robust irrespective of the threshold.

3.9 The mechanical cycle of traction stresses and cell shapes

remains similar but is slowed down when MyoII function

is lost

We then applied the phase averaging method to examine the forces that cells exert

during each stage of the motility cycle, enabling us to compare the mechanics of their lo-

comotion. In Fig. 3.13a, each strain is represented by four distinct phase-averaged stress

maps and cell shapes. Table 3.1 contains the measured average speed and duration corre-

sponding to each phase and strain described in Fig. 3.13a. Remarkably, the WT and the

two mutant strains that affect MyoII function move continuously during all phases with

relatively small changes in speed, as shown in Fig. 3.10b and discussed above. In addition,

the cells always contract. Comparison of the three strains shows that while the magni-

tudes of the traction forces in the cell-based reference system are different, the overall time

evolutions of the stress patterns during the phases of the motility cycle are similar: they

are minimal during the relaxation phase (minimal cell length), increase during protrusion,

reach their maximum during contraction (maximal length), and decrease during retraction.
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Table 3.1: Numeric values obtained from the statistical analysis of the motility cycle of WT,
mclE−, and mhcA− cell lines. The table lists the averages and standard deviations for each
phase of the motility cycle as well as for the whole cycle. Values are given for cell length
(L) , cell aspect ratio (AR), cell speed (V ), translational component of area flux (AFtrans),
component of area flux attributable to deformation (AFdefor), total duration of motility
cycle (T ) and duration of individual phases (T1, T2, T3 and T4), pole force (FP ), and strain
energy (US). The number N of cells used for this statistical analysis: WT (N = 31), mlcE−

(N = 14), and mhcA− (N = 27).

L
AR

V AFtrans AFdefor T FP US

(µm) (µm/min) (µm2/s) (µm2/s) (s) (pN) (pN µm)

WT Whole Cycle mean 21.85 2.53 12.71 1.27 0.01 94.10 345.8 54.86

std 4.51 0.66 3.12 0.41 0.10 29.15 203.3 41.02

Protrusion mean 22.14 2.56 15.11 1.65 0.65 22.01 331.3 51.2

std 4.57 0.60 4.00 0.54 0.50 11.52 213.4 38.0

Contraction mean 24.88 3.14 14.40 1.38 -0.03 23.19 414.5 69.2

std 5.14 0.80 4.19 0.59 0.26 14.00 268.8 58.8

Retraction mean 22.10 2.55 11.47 1.02 -0.56 22.93 381.3 58.8

std 4.52 0.70 3.12 0.40 0.42 10.84 264.5 53.7

Relaxation mean 19.13 2.02 10.97 1.05 0.04 29.96 292.6 46.9

std 3.64 0.52 2.65 0.35 0.21 14.93 162.8 39.5

mlcE− Whole Cycle mean 22.32 2.03 7.62 1.01 0.02 143.64 348.5 38.2

std 3.31 0.29 2.30 0.36 0.09 36.22 132.9 19.1

Protrusion mean 22.34 2.02 8.55 1.14 0.41 32.80 344.3 38.5

std 3.17 0.29 2.70 0.50 0.27 12.09 142.0 23.0

Contraction mean 24.76 2.39 8.50 1.13 -0.02 38.01 416.6 47.5

std 2.98 0.35 2.58 0.40 0.18 7.75 162.1 25.9

Retraction mean 22.62 2.09 7.03 0.94 -0.31 39.30 363.1 40.4

std 3.15 0.31 2.33 0.42 0.26 16.97 140.3 23.2

Relaxation mean 19.98 1.68 6.70 0.86 0.05 42.54 265.7 26.4

std 3.55 0.29 2.23 0.39 0.11 18.76 119.2 14.4

mhcA− Whole Cycle mean 19.98 2.08 5.64 0.58 0.00 190.81 284.6 48.8

std 5.72 0.39 1.68 0.33 0.04 83.29 159.9 50.0

Protrusion mean 20.47 2.16 7.21 0.87 0.41 35.50 302.8 53.1

std 5.78 0.44 2.08 0.40 0.25 19.27 205.4 61.1

Contraction mean 22.95 2.54 6.27 0.61 -0.03 41.22 364.4 64.5

std 6.41 0.53 1.93 0.31 0.15 21.10 222.0 59.8

Retraction mean 20.24 2.13 4.90 0.40 -0.21 50.01 281.8 47.0

std 5.41 0.38 1.62 0.34 0.24 28.14 174.8 51.6

Relaxation mean 17.57 1.72 5.20 0.56 -0.02 58.81 241.6 40.0

std 5.11 0.32 1.65 0.41 0.12 30.83 141.3 48.3
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Figure 3.14: Spatiotemporal mapping of the traction stresses exerted by WT and MyoII
mutant cells showing phase-averaged traction stresses and cell shape corresponding to the
4 stereotypical stages defined in Fig. 3.10. This figure is similar to Fig. 3.13a but in this
case the stages have been separated using a value of the threshold γ = 0.14 (panel (a)) and
γ = 0.33 (panel (b)) in Eq. 3.1, instead of the value γ = 0.2 used in Fig. 3.13a.

Theses observations support the hypothesis that WT, mlcE−, and mhcA− cells move by

implementing a similar motility cycle in which the cell length and the mechanical energy

deposited by the cell on the substrate evolve similarly in time, which is consistent with the

data presented in Figs. 3.9 and 3.10.

Despite these overall similarities, we observe differences between the three cell lines

that can be correlated with the molecular properties of the MyoII complex. One of the
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Figure 3.15: Box plot of the durations T1, T2, T3, and T4 of the stereotypical stages of
the motility cycle defined in Fig. 3.10: 1) protrusion, 2) contraction, 3) retraction, and 4)
relaxation.

most obvious differences between WT and MyoII mutant strains is the increased duration

of all four phases T1, T2, T3, and T4 (Fig. 3.15). The durations of each of the four phases of

WT cells are considerably shorter than those of mhcA− cells and are also far shorter than

those of mlcE− cells for protrusion, contraction, and retraction and slightly shorter for the

relaxation phase. This finding suggests that the contractile function of MyoII is important

during all phases of motility and is an important factor in determining the overall speed.

We then examined the mechanical function of MyoII during each stage of the motility

cycle in more detail by comparing the stress patterns and cell shapes. In WT cells, we

observe that the region of concentrated stresses at the front is close to the centroid of the

cell during protrusion, suggesting that the frontal part of the cell (the pseudopod) glides

over the substrate (consistent with previous studies [15]). During contraction, this region

of concentrated stresses seems to have moved closer to the front edge of the cell, suggesting

the formation of new adhesion regions. Likewise, the region of concentrated stresses in

the posterior part of the cell is located closer to the centroid of the cell during retraction,

consistent with the back of the cell gliding forward. During protrusion, mhcA− cells produce

comparatively low, spread-out traction stresses at their back, which indicates a dilated

shape compared to WT and mlcE− cells. These differences could be due to an inability

of mhcA− cells to compensate for the increase in cytoskeletal compression in response to
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F-actin polymerization at the front through myosin contraction at the back of the cell.

Instead, the bulge that appears at the back of mhcA− cells during this phase suggests

that this compression is compensated for by an increase in membrane tension at the back.

This implies that mhcA− cells are less effective in controlling the stability of protruding

pseudopodia, which may explain the reduced frequency of pseudopod protrusion in mhcA−

cells observed by Wessels et al. [111]. Consistent with these ideas, Fukui et al. [118] reported

reduced stability of protruding pseudopodia in mhcA− cells subjected to centrifugal force.

During retraction, the shape of WT and mlcE− cells becomes much wider at front than at

the back due to the accumulation of mass coming from the retraction of the rear part of

the cell. This shape is consistent with the cortical tension being lower at the front than

at the back, probably due to MyoII contracting at the back and generating a pressure

gradient. A similar, although less pronounced, frontal dilation is observed in mlcE− cells

during retraction, suggesting that these cells can still partially control their cortical tension,

presumably through the cross-linking action of MyoII. However, this mechanism seems to be

less efficient in cells with reduced or modified MyoII-based motor function since this phase is

prolonged in mlcE− mutants compared to WT cells (Fig. 3.15). Cells lacking MyoII cannot

take advantage of either of these two mechanisms. They display a reduced dilatation of

their front and their retraction is prolonged considerably. The relaxation time in mlcE−

cells is longer than that in WT cells but shorter than that in mhcA− cells, indicating that

both the contractile and the non-contractile activities of MyoII help to determine how fast

a cell can finish retraction and protrude again to start the next motility cycle.

3.10 Our traction cytometry method is consistent with New-

tonian mechanics

In our experiments, the cells are submerged in buffer and crawl on a substrate. At

any time during migration, the product of cell mass and acceleration (inertia) must be equal

to the difference between the forward traction force produced by the cell and the viscous drag

exerted by the surrounding fluid. The drag is estimated using Stokes law, D = S µ V /d,

where µ is the viscosity of water, d the gap between the cell and the substrate, and S the

area of the horizontal projection of the cell. Assuming a typical value for the gap given by

[123], d ≈ 100 nm, the estimated value S ≈ 100 µm2, and the average velocity measured in

our experiments, we estimate that D ≈ 0.1 pN. From our shape and velocity measurements,

we estimate that the inertia is at least 3 orders of magnitude lower than D. Therefore, the
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Table 3.2: The magnitude of net traction is negligible. The left column contains the net
forces measured in pN (|Fnet|, see Eqs. 2.13 and3.9). The right column contains the ratio
between the net forces and the average magnitude of the forces exerted by the cell at different
locations, |Fnet/FR| (for a mathematical definition of FR, see Eq. 3.10). Histograms of the
instantaneous values of the magnitudes represented in this table are shown in Fig. 3.16.

|Fnet| (pN) |Fnet/FR|(%)

WT mean 7.70 1.62

std 4.51 1.19

mlcE− mean 11.29 2.03

std 7.48 0.93

mhcA− mean 10.39 1.85

std 9.36 1.14

cells in our experiments must exert a non-zero but very small net force on the substrate

while moving. Previous methods developed by others were designed to yield a zero net

traction forces regardless of the actual measurements [28, 33]. These methods are based

on the Boussinesq solution of the elastostatic equation, which assumes an infinitely thick

gel. Our method takes the finite thickness of the substrate into account, which enables the

determination of these non-zero net traction forces. The net force exerted by a cell on an

elastic substrate of Young modulus E, Poisson ratio σ and thickness h is

Fnet =

∫ ∫
[τxz(x, y), τyz(x, y)] dx dy =

E

2(1 + σ)h

∫ ∫
u(x, y) dx dy, (3.9)

where u(x, y) is the horizontal vector deformation field measured at the surface of the

substrate and τ (x, y) = [τxz(x, y), τyz(x, y)] are the stress (force/area) exerted by the cell

on the substrate. Fig. 3.16 shows histograms of the net traction force’s magnitude measured

for all cells studied, as well histograms of the ratio between the net traction force and the

average magnitude of the force exerted by the cell at each location, which was defined as

FR =

∫ ∫ √
τ2
xz(x, y) + τ2

yz(x, y) dx dy. (3.10)

Table 3.2 shows the average and standard deviation of |Fnet| and |Fnet/FR| for the three cell

lines used in this study. The results indicate that the measured net forces are approximately

10 pN, which is rather small if one considers that a single myosin II head can generate a

force stroke of about 5 pN (Finer et al., 1994). Fig. 3.16 and Table 3.2 also show that the

measured net forces are between 50 and 100 times smaller than the average magnitude of
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Figure 3.16: Histograms of the net forces measured for all cells studied. Panels (a), (c) and
(e) show histograms of the magnitude of the net forces measured in pN (|Fnet|, see Eq. 3.9).
Panels (b), (d) and (f) show histograms of ratio between the magnitude of the net forces
and the average magnitude of the forces exerted by the cell at different locations, |Fnet/FR|
(for a mathematical definition of FR, see Eq. 3.10). Panels (a) and (b) correspond to WT

cells. Panels (c) and (d) correspond to mlcE− cells. Panels (e) and (f) correspond to mhcA−

cells. The averages and standard deviations corresponding to each of the histograms of this
figure are shown in Table 3.2.

the contractile forces exerted by the cell, which is within the error of our measurements.

The discrepancy between the measured net forces and our theoretical estimations of 0.1 pN

may either be due to the simplified assumptions used for the estimation of the drag or

be due to experimental noise. In summary, the net traction forces we measure and our

estimates are consistent with Newtons second law of mechanics.

3.11 Some traction forces are expected to fall outside the

average cell shape contour in our phase averages

Fig. 3.13 shows non-zero average traction forces outside of the average cell contours.

A priori, this result may appear counter-intuitive because the cell can only apply traction

forces inside its two-dimensional outline at each instant of time. However, as discussed

in the Materials and Methods, when one plots the averaged distribution of traction forces

superposed on the averaged cell contour the variability in cell shape leads to nonzero average

forces outside of the average cell contour. This effect is illustrated in Fig. 3.19a, which shows

the average force map obtained from the three snapshots shown in Fig. 3.17. This figure
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Figure 3.17: Steps taken in the calculation of the average distribution of traction forces.
(a) Snapshots (three) of the trajectory of a WT cell in the laboratory reference frame. The
black contours are the measured cell outlines. The color shades and arrows indicate the
magnitude and direction of the traction stresses exerted by the cell on the substrate. The
dashed red lines represent the major and minor axes of the 2D projection of the cell (outline
of the cell). The blue line represents the trajectory of the centroid of the cell. (b-d) Same
three snapshots aligned and scaled into cell-based coordinates (Eq. 3.3). The cells have
been aligned so that their major axes always coincide with the horizontal axis, and their
dimensions scaled with the length of the each cell. The dashed black line in these panels
represents the average contour of WT cells. The labels “F” and “B” indicate respectively
the front and back of the cell.

shows that the solid black lines, which represent the instantaneous cell contours, extend

beyond the dashed blue contour that represents the average cell contour at some locations.

This explains why we should not expect the average traction stresses to be constrained to

the inside of the average cell contour.

In contrast to the methods of others [28, 33], our method does not constrain the

stresses to the cell outline and a small proportion of the stresses we calculate for individual

cells are localized outside their contour. We therefore want to show that even we when

eliminate this small contribution, the statistical variability of cell shape alone leads to non-

zero traction stresses outside of the average cell contour. For that purpose, we re-calculated

the average traction stress map of Fig. 3.17 using the constrained Fourier transform trac-

tion cytometry method proposed by Butler et al. [33]. This method iteratively solves the

elastostatic equation for the substrate and corrects the measured deformations to yield zero
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Figure 3.18: Same as Fig. 3.17 when the traction forces are calculated using the constrained
iterative method proposed by Butler et al. [33], which imposes the forces to be zero outside
of the instantaneous cell outline.

traction stresses outside of the cell upon convergence. Figs. 3.18 and 3.19b are obtained

with the constrained method and are equivalent to Figs. 3.17 and 3.19a. By the design of the

constrained method, the obtained stresses are generally inconsistent with the experimen-

tally measured deformation field [28], and are known to be sensitive to small errors in the

identification of the cell contour [124]. Additionally, methods that constrain the forces out-

side the cell to zero, can lead to artificially elevated stresses near the cell periphery. Despite

these caveats, the stress fields shown in these plots are qualitatively similar. As expected,

in the three snapshots of Fig. 3.18 the traction stresses are zero outside of the instantaneous

cell contour. However, the averaged traction stress map of these three cells in Fig. 3.19b

shows non-zero stresses in some locations outside of the average cell contour because there

is a non-zero proportion of the cell outlines outside the average contour generating these

stresses.

3.12 Discussion

There have been several attempts to model the underlying physical processes in cell

motility by using continuum mechanics approaches [116, 125, 126]. However, quantitative

measurements of the cellular traction forces are still challenging because of the necessary
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Figure 3.19: Average map of traction force resulting from: (a) the three snapshots shown
in Fig. 3.17, (b) the three snapshots shown in Fig. 3.18 (calculated using the constrained
iterative method proposed by Butler et al. [33], which imposes the forces to be zero outside
of the instantaneous cell outline). The solid black lines are the instantaneous cell contours
coming from the three snapshots and the dashed blue contour is the average cell contour
for WT cells. The labels “F” and “B” indicate respectively the front and back of the cell.
Note that, in both panels (a) and (b), because the instantaneous cell contours may exceed
the average cell contour at some locations, the average traction stresses are not necessarily
zero outside of the average cell contour.

temporal and spatial resolutions. These requirements become especially demanding in the

case of Dictyostelium cells because of their relatively small size and high migration speeds.

Therefore, only a few studies to quantify the dynamics of the migration of these cells have

been performed to date [79, 80, 127]. In this dissertation, we have measured the evolution

of the forces and strain energies produced by Dictyostelium cells with high temporal and

spatial resolution (Figs. 3.3 and 3.4). This approach has enabled us to record the quasi-

periodic oscillations of these variables and validate the generally accepted cycle of pseudopod

protrusion, adhesion, contraction, and retraction of the back [1]. Our traction cytometry

method has allowed us to compute the traction field when the net force exerted by the cell

is not zero (see Eqs. 2.13 and 3.9). In our experiments, the contractile forces produced

by Dictyostelium cells were found to be much higher than the viscous drag force they

need to overcome to move. Because the cell inertia is negligible, these forces always show a

converging pattern and largely cancel each other out at any given time, so that the resultant

net thrust force is too small to be measured reliably with our method. There are, however,

other conditions in which this net force could be much higher, and the calculation of the

net thrust force could greatly benefit from our improved method, i.e., cells under external

flow shear [128, 129] or under centrifugal forces [118].

We have expanded previous descriptions of the amoeboid motility cycle [1] and

have elucidated the functions that MyoII plays in controlling the spatial distribution of

traction forces that regulate this process. We have used a new phase-averaging statistical
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method to analyze the measurement of the temporal evolution of the traction forces and

cell shapes changes during chemotaxis that does not depend on the subjective identification

of representative cells. Our statistical analysis provides a quantitative representation of

the motility cycle of the average cell with detailed spatial and temporal information and

provides statistically significant evidence for the existence of a coherent motility cycle, as

was proposed previously based on microscopic observations [37, 78, 130]. Our analysis of

the area fluxes of the plane view of the cells undergoing chemotaxis clearly shows that the

overall cell movement is the result of a combination of a continuous translocation with a

superimposed periodic cycle of front protrusion and rear retraction. These results provide

clear evidence against an alternative possibility in which cells move continuously, undergoing

random changes in cell shape, traction stresses, and length.

We show that when amoeboid cells undergo chemotaxis on elastic substrates, the

largest fraction of the variations in the strain energy transmitted to the substrate are “pe-

riodic” and coordinated with the changes in cell length, rather than the superposition of

chaotic “random” changes. Owing to the periodic nature of this process, we have been

able to implement a novel statistical methodology that dissects the motility cycle into four

“canonical” stages and to compute average maps of traction forces for each stage of the

cycle. This phase-average analysis has allowed us to quantify the main differences in the

cell shape changes and generation of traction forces among WT, mlcE−, and mhcA− strains.

These maps provide new insights into how MyoII crosslinking and contractility functions

contribute to the generation of the traction forces that cells exerts on the substratum as

they move. We show that WT cells and cells with altered MyoII function exhibit important

and significant differences, providing insight into the complex roles MyoII plays in regulat-

ing these forces. We note that there are specific differences between WT and mlcE− cells.

In vitro, MyoII lacking the essential light chain, while retaining ATPase activity, lacks mo-

tor activity, although it still binds and cross-links F-actin (for discussion, see Chen et al.

[67], Xu et al. [121]). However, the behavior of this myosin has not been fully character-

ized, particularly the force-velocity relationship and how this myosin behaves in response to

mechanical stress. For example, the MyoII complex lacking the essential light chains may

behave similar to MyoIIS456L in that it is able to undergo translocation under conditions

when mechanical stress is applied [131]. The differences between the strains can at least

partially be explained by a possible altered responsiveness of the MyoII motor activity or

reduced motor activity in mlcE− cell, while retaining the ability to cross-link F-actin or,

in mhcA− cells, the absence of MyoII function [111]. Comparison of phase-averaged con-
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tours of WT or mlcE− cells to those of mhcA− cells show that mhcA− cells are overall of

more rounded shape at all stages of the motility cycle. More importantly, we show that

mhcA− cells are still able to contract continuously, but unlike the other cell types, mhcA−

cells do not mainly contract by exerting opposing pole forces front to back, but rather they

contract all around the cell periphery. This difference in the stress distribution reveals an

important role of MyoII for cytoskeletal integrity through its F-actin cross-linking function.

In addition to the loss of myosin motor activity, which impairs rear retraction, this reduced

organization of the stress forces may contribute to the observed increase in the periods of

the motility cycle of mhcA− cells. Additional evidence for the role of MyoII in cytoskeletal

integrity becomes apparent in the protrusion phase in which, in mhcA− cells, the back is

wider than the front, suggesting that the cytoskeletal integrity at the back of the cell may be

insufficient to balance the backward, forces produced by actin polymerization during protru-

sion [45–47]. A reduced ability to compensate for these forces also may be connected with

the reduced frequency of pseudopod protrusion in mhcA− cells, which has been reported

previously [46, 111, 118]. Our detailed analysis of the temporal and spatial distribution of

stress forces also suggests that both MyoII actin cross-linking and contractility functions

play an important role in increasing the level of intracellular tension at the back of the cell

to promote retraction.

It should be noted that MyoII may determine the stresses transmitted to the sub-

strate not only by setting the level of cytoskeletal tension through its cross-linking and

contraction functions but also by modulating the number and area of the cell substrate

adhesions. Therefore, a more detailed dissection of the mechanical function of MyoII would

require measuring jointly the cell traction forces and substrate attachment regions. Never-

theless, our pole force measurements (Table 3.1), which represent the integrated effect of

the stresses in the front and back of the cell [35], provide a quantification of the overall

level of cytoskeletal contraction in the cell independent of the number and area of the ad-

hesions. These pole force measurements show no significant differences between WT and

mlcE− cells but are 27% lower in mhcA− cells, consistent with prior observations that the

cortical resistance to compression is reduced by 32% in mhcA− cells [132], and support-

ing an important role of MyoII for cytoskeletal integrity through its F-actin cross-linking

function. In contrast, these data indicate that roughly 70% of the magnitude of cellular

stresses comes from molecules other than MyoII. For example, we know that other actin

cross-linking proteins, including α-actinin, cortexillin, and gelation factor (ABP120), make

a significant contribution to maintaining cytoskeletal integrity and cortical stiffness [133–
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135]. It is therefore reasonable to assume that in mhcA− cells, where our measurements

show that contractile forces are more uniformly distributed throughout the cortex, some of

these cross-linkers are relocalized and possibly partially compensate for the lack of MyoII

crosslinking function.

We gained further insight into the conserved motility cycle by decomposing our

measurements of the movement of Dictyostelium cells into two distinct kinematical compo-

nents: an inchworm-like motility component consisting only of protrusion and retraction and

a shape-preserving component consisting only of continuous translocation. These events are

not necessarily driven by different biochemical processes but are characterized by a different

level of spatial and temporal coherence. We argue that the shape-preserving component is

the result of continuous contributions from events occurring at a length scale much shorter

than the cell length and at a time scale much shorter than the measured period of the

motility cycle (T ), possibly at the level of a single protein or molecular complex. Our My-

oII mutant data suggest a direct involvement of continuous actomyosin contraction in this

component and therefore indicate that MyoII makes an important contribution to cell speed

during all phases of motility. Such a contribution may be related to its previously described

role in frontal blebbing, which is sometimes observed in highly motile Dictyostelium cells

[117, 119] and other cell types [136, 137]. Interestingly, both the total migration speed

and its inchworm-like and shapepreserving components are inversely proportional to the

period of T . This dependence on the period of the cycle for the shape-preserving portion

is unexpected and strongly suggests the existence of a coupling mechanism. The “inch-

worm” component presumably modulates the overall shape of the cell as well as other

cellular properties like the global level of stress that drives the continuous, shape-preserving

translocation of the cell. Recently, two components have also been found to play a role in

leukocyte motility, but, rather than contributing to motility simultaneously, they have been

described as a switch from deformation to gliding when MyoII activity is suppressed, or

when substrate adhesiveness is increased [138]. Further work is needed to understand the

exact relationship between our results and this observation, but the two findings suggest

the existence of evolutionarily conserved mechanical aspects of amoeboid motility.

Our phase-averaged maps also shed light on the mechanical process of motility and

reflect on the role of MyoII in this process. Our traction cytometry measurements reveal

that cells migrating under conditions of normal adhesiveness generate opposing traction

“pole forces” much greater than those required to overcome the external resistance of the

environment [35]. Basic mechanical principles suggest that the speed of amoeboid cells is
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limited by the amount of propulsive power that they are able to generate through their trac-

tion forces. The average propulsive power generated per motility cycle can be represented

as P = F v ∼ Fλ/T , where F is the characteristic traction force, λ is the distance traveled

per cycle, and T is the characteristic period or duration of the cycle. Two extreme regimes

of motion can arise when the propulsive power is limited either by the strength of the forces

that the cells can produce to overcome the resistance of their environment (strength limited

motility) or by the pace at which they can repeat their motility cycle (pace limited motil-

ity). Strength limited motility is realized experimentally in highly adhesive substrates, in

restrictive environments such as multicellular aggregates or under an agar overlay, or when

cells are moving against an external force generated by a micropipette. Previous studies

have established the importance of MyoII for cell motility under these conditions [75, 111–

113, 122, 135, 139]. Our study provides an analysis of the role of MyoII in motility under

nonrestrictive conditions and helps define specific roles for MyoII functions in controlling

traction forces and cell motility.

Because the net traction forces required to drive the motion of the cell were measured

to be much smaller than the forces that the cell applies locally to the substrate in all of cases

that we studied (Table 3.2 and Fig. 3.16), we suggest that the motility of WT and mutant

cells on flat surfaces is not strength limited, in contrast to the case of cells moving in highly

adhesive substrates, in restrictive environments, or against external forces. Instead, we

propose that amoeboid motility on flat surfaces is pace limited. Consistent with this regime,

we measure that a cell mean velocity of migration V and the period T of its motility cycle are

related by a rather simple proportionality as V = λ/T , where λ ≈ 18 µm is a “stride” length.

Furthermore, we find that the stride length is conserved between WT cells and strains with

modified MyoII contractility or even in cells with reduced adhesion. The finding that,

for WT cells and these specific mutants, regardless of the speed of migration, a cell on the

average advances a fixed length per cycle, suggests that the mechanochemical processes that

define λ are conserved in all of these strains. Consistent with the above findings, we propose

that the stride length may be controlled by the regulation of F-actin polymerization either

via intrinsic properties of F-actin polymerization, such as an average duration controlled

by biochemical feedback loops, or via adaptable sensors of physical parameters. We further

postulate that such a control mechanism is more likely than the determination of a set stride

length by direct physical constraints such as membrane stiffness, because WT and MyoII

mutant strains differ greatly in their cytoskeletal properties [140–142], yet vary little in their

characteristic step length. Moreover, in agreement with previous reports [34, 35, 79, 111], we
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find that the period T of the motility cycle is partially determined by altered properties of

actomyosin contractility (lacking in mlcE− and mhcA− cells) and by the actin crosslinking

function of MyoII (lacking in mhcA− cells). In particular, we show quantitatively that

the actomyosin contractility is important for efficient progress through all of the phases

of the motility cycle. We find that the F-actin crosslinking by MyoII is as important for

the initiation of the protrusion of the front as for the retraction of the rear, possibly by

indirectly stabilizing the cytoskeletal organization along the lateral sides and posterior of

the cell where cortical MyoII is distributed along an anterior-posterior gradient [40].

Chapter 3, in part, have been published in the Proceedings of the National Academy

of Sciences of the United States of America, “Spatio-temporal analysis of eukaryotic cell

motility by improved force cytometry,” by J. C. del Álamo, R. Meili, B. Alonso-Latorre,

J. Rodriguez-Rodriguez, A. Aliseda, R. A. Firtel, and J. C. Lasheras (2007) 104:13343-

13348, in the Conference Proceedings of the IEEE Engineering in Medicine and Biology

Society, “Distribution of traction forces associated with shape changes during amoeboid

cell migration,” by B. Alonso-Latorre, R. Meili, E. Bastounis, J. C. del Álamo, R. A. Firtel,

and J. C. Lasheras (2009) 2009:3346-3349, in Molecular Biology of the Cell, “Myosin II is

essential for the spatiotemporal organization of traction forces during cell motility,” by R.

Meili R., B. Alonso-Latorre B., J. C. del Álamo, R. A. Firtel, J. C. and Lasheras (2010)

21:405-417, and has been accepted for publication in the International Journal of Transport

Phenomena, “Distribution of traction forces and intracellular markers associated with shape

changes during amoeboid cell migration,” by J. C. Lasheras, B. Alonso-Latorre, R. Meili,

E. Bastounis, J. C. del Álamo, and R. A. Firtel (2010). The thesis author is a co-author in

the first publication and the primary investigator in the last three publications.

Experiments were performed by Dr. R. Meili in the Section of Cell and Develop-

mental Biology, University of California, San Diego. This investigation was partially funded

by the U.S. National Institutes of Health.



Chapter 4

An Oscillatory Contractile

Pole-Force Mode Dominates the

Traction Forces Exerted by

Migrating Amoeboid Cells

Amoeboid cell migration requires the coordinated regulation of many molecules, but

occurs through a small repertoire of shape changes consisting mainly of anterior protrusions

and posterior retractions [6]. There is ample evidence indicating that these morphological

changes are mechanically coupled to the biochemical modulation of the adhesions via the

traction stresses exerted by the cell on the extracellular matrix (ECM) [36, 143–146]. How-

ever, there is a need to better understand the coupling of the global cell shape changes, the

distribution of traction stresses and the associated biochemical processes.

The objective in this chapter is to refine the spatiotemporal description of motility

by obtaining a statistically significant characterization of the relationship between traction

forces and cell shape in migrating amoeboid cells, using PCA as primary tool. For this

purpose, we carried out simultaneous measurements of the time evolution of cell shape and

traction forces exerted by Dictyostelium cells migrating individually over a flat substrate.

We then applied a modified version of PCA to the measurements of the traction forces

which maximized the strain energy accounted by each component. This analysis provided

the principal traction force patterns and shape changes implemented by migrating cells

in terms of strain energy production. These patterns have a clear physical interpretation

73
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because the strain energy represents the amount of mechanical work performed by the cell

against its surroundings while it is moving.

PCA effectively “compressed” the mechanics of locomoting Dictyostelium cells by

finding a minimal set of degrees of freedom that accounted the work performed by the cells.

We found that a set of five canonical principal components, exhibiting a high degree of

repeatability from cell to cell, accounted for most of the traction work exerted by WT cells.

The most important of these components accounted for ≈ 40% of the traction work, and

contracted the substrate from front and back towards the center of the cell. Its temporal

evolution was oscillatory and correlated well with that of the strain energy and the cell

length. We also identified the most relevant principal components in two mutant strains

with contractility defects: MyoII Essential Light Chain Null (mlcE−) and MyoII Heavy

Chain Null (mhcA−) cells.

The identification of the most relevant strain energy components could aid to semiem-

pirical modeling approaches [147–150] by providing a reduced set of parameters that describe

the motion of the cell. This framework can be readily applied to other problems such as cell

migration inside 3D matrices [151–154], or to the study of the spatio-temporal distribution

of relevant cytoskeletal proteins [155–158].

4.1 Analytical methodology

Experiments using the methodology described in Chapter 2 were carried out for WT,

mlcE−, and mhcA− cells, tracking at each instant of time both cell shape (see Section 2.1.2)

and cell traction stresses exerted on the substrate free surface, τ = (τzx, τzy), calculated

from measurements of the horizontal displacements at the substrate free surface, u = (u, v),

and assuming negligible vertical tensile stresses at the substrate free surface (τzz(z = h) ∼ 0)

(see Sections 2.1.7 and 2.2.1).

This section describes the analytical tools, applied to the recordings of cell shape and

cell traction stresses, which have led to the dissection of the different components through

which migrating Dictyostelium cells exert mechanical work.
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4.1.1 Cholesky decomposition of the strain energy US exerted on a flat

substrate

The strain energy exerted by the cell on the surface of the substrate at a given

instant of time was [33]

US(t) =
1

2

∫

A
τ (x, t) · u(x, t) dx = {τ ,u} , (4.1)

where (·) represents scalar product,
∫
A dx represents a surface integral in a box enclosing

the cell, and { } represents an inner product. Note that US is equivalent to the mechanical

work the cell is exerts on the substrate.

We applied PCA to obtain a reduced set of traction force patterns which the cell

used to exert mechanical work on the substrate. PCA works by optimizing the modal

decomposition of a set of observations according to the norm associated to a predefined

inner product. We then rewrote the strain energy as the norm US = {θ,θ}, where θ(x) is

the strain energy square root or US-square root. This decomposition is called the Cholesky

decomposition and is easier to perform in the Fourier domain,

US =
L2

B

2

∞∑

α=−∞

∞∑

β=−∞

û∗
αβ Aαβ ûαβ, (4.2)

where ûαβ are the Fourier coefficients of the lateral displacement vector, Aα,β is the Fourier

norm matrix and ()∗ denotes Hermitian transposition. In Fourier space, the problem of

finding the functional Cholesky decomposition of the norm operator is reduced to finding

the algebraic Cholesky decomposition of the norm matrix, Aαβ = Q∗
αβ Qαβ , where Qαβ

is a lower-triangular matrix. Introducing this decomposition in Eq. 4.2, one obtains that

θ̂αβ = Q∗
αβ ûαβ , and inversion of the Fourier transform yields

θ(x) = F−1
(
θ̂αβ

)
= F−1

(
Q∗

αβ ûαβ

)
. (4.3)

Prior to applying PCA, we mapped the US-square root θ(x) in the dimensionless

cell-based coordinate system (ξ, η) defined in Section 3.1 (see Eq. 3.3), which takes into

account the changes in cell shape and orientation (see Fig. 3.1). In order to ensure that

the magnitude of both the traction forces and the strain energy were conserved upon trans-

formation of reference frame, the traction stresses and the US-square root were redefined

respectively as τ ?(ξ) = L2 τ (ξ)/4 and θ?(ξ) = Lθ(ξ)/2. The size of the computational box

where traction forces were calculated was 6 dimensionless units, and was discretized using

129 × 129 nodes.
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Figure 4.1: morphology in the context of the PCA methodology applied. Functions used
to study the dynamics of traction stresses and cellular shape. For a WT cell at a certain
instant of time: (A) 2D function of the cell shape (p(ξ)). (B) 2D continuous function of
the cell shape (s(ξ)). The white line is the contour of the cell. At the free surface of
the substrate: (C) Horizontal displacement field exerted by the cell (u(ξ)), (D) Traction
force field associated (τ (ξ)), (E) Associated field of the function strain energy square root

(θ(ξ)). In panels (C-E): the colormap and arrows indicate respectively the magnitude and
direction of the variable represented, and the black contour the contour of the cell. (F)
We applied PCA over a set of observations combining θ(ξ) and s(ξ) (s(ξ) multiplied by a
very small factor ε, so that its weight in the optimization process is negligible), and as a
result we obtained a set of strain energy components (ϕ(ξ)) and the cell shape associated
to each component (χ(ξ)). Scale bars in panels (A) and (F): 1 dimensionless unit of length
(=half-length of the cell).

4.1.2 Scalar field mapping of the shape of the cell allows relating shape

to traction forces

The instantaneous cell shape is mapped using the dimensionless cell-based coordi-

nate system defined in Eq. 3.3 as a 2D function p(ξ) such that p(ξ) = 1 if ξ laid within

the contour of the cell, and p(ξ) = 0 otherwise (Fig. 4.1a). This function was discontinuous

at the contour of the cell, which could lead to undesired spurious oscillations in its modal

decomposition (the Gibbs phenomenom, see [89]), and deteriorates the convergence of PCA.

This was avoided by using a continuous scalar field s(ξ) to represent cell shape

s(ξ) = p(ξ) c(ξ)/max
ξ

[c(ξ)], (4.4)

where c(ξ) was the distance from each point inside the cell ξ to the cell contour (see

Fig. 4.1b).
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Because our aim was to determine how the cell shape associates with strain en-

ergy and traction forces at each instant of time, we applied PCA on the composite three

dimensional function

w(ξ, t) = (θ , εs) (ξ, t), (4.5)

which grouped both the US square root and the shape of the cell. The value of parameter

ε was set very low (ε = 10−9 − 10−12) to ensure that the results from PCA only depended

on the strain energy and were independent on shape variance. We verified that the use of

the small parameter ε, as well as its selected magnitude, did not affect the calculation of

the components of θ(ξ).

4.1.3 Principal component analysis (PCA) on the strain energy square

root and asssociated cell shape

Given a set of N experimental recordings of cell shape and traction forces (i.e. at

times t = tk for k = 1...N), we applied PCA [159, 160] to the composite function w(ξ, t)

(Eq. 4.5), which allowed us to express it as the weighted sum of principal components

w(ξ, t) =

N∑

k=1

ak(t)ψk(ξ), (4.6)

where the basis functions ψk(ξ) = (ϕ(ξ) , ε χ(ξ))k , contain the spatial structure of cell

shape and traction forces of each principal component and are denoted principal functions,

and ak is the weight coefficient for each component. To facilitate the interpretation of the

principal functions, we transformed them into their traction force equivalents,

Ξ(ξ) = [2/〈L〉]F−1(Aαβ QT∗−1
αβ ϕ̂αβ)(ξ), (4.7)

where 〈 〉 denotes temporal average and 〈L〉 is the average cell length.

The principal functions are mutually orthonormal with respect to the inner product

(i.e. {ψi,ψj} = 1 if i = j and zero otherwise), so that the total strain energy is given by

US(t) =

N∑

k=1

|ak(t)|2 =

N∑

k=1

Uk
S(t). (4.8)

This property allows us to evaluate the instantaneous contribution of each term of the sum

to the strain energy, Uk
S(t) = |ak(t)|2. The time-averaged contribution of each component

is usually referred to as the principal value associated to the component, λk. The prin-

cipal components are arranged in decreasing order of λk, (i.e. λk+1 < λk). The relative
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contribution of each principal component to the strain energy is obtained from the ratio

νk = λk/〈US〉. The defining property of PCA is that, when applied to the US square-root

(Eq. 4.3), it distributes the maximum amount of strain energy in the fewest possible number

of principal components [160].

It is important to point out that other PCA methods involve the subtraction of the

average of the observations prior to computation. This subtraction can be motivated by

inaccuracies in the baseline of the observations, which is not our case, since both τ (x) and

u(x), and thus θ(x), decay to zero far from the cell (Fig. 4.1). Thus, we have performed

PCA without subtracting the average of the observations, a procedure already reported in

the literature [161], and which in our case leads to the maximization of the strain energy

accounted for by each component. We have tested PCA using both approaches (subtracting

and not subtracting the average), and found similar components, although their order could

in some cases be shifted. The correlations between components are unaffected.

4.1.4 Individual and Global PCA

We applied PCA to the time history of θ(ξ, t) for 1) each single cell (individual

PCA), and 2) for a pooled set of observations coming from all the cells recorded in our

experiments (global PCA). The high computational cost of performing global PCA to all

the cells (10468 observations from N = 24 cells) led us to consider 10 different sets, each

of them containing 600 observations evenly distributed among each cell. Comparing the

principal components obtained from individual and global PCA allowed us to determine

the cell-to-cell reproducibility of the principal components of shape and strain energy.

4.2 Traction force components in wild-type cells and repro-

ducibility

We applied PCA (see Materials and Methods) to determine the dominant strain

energy components exerted by WT Dictyostelium cells migrating chemotactically. These

principal components were found to be reproducible from cell to cell, as well as representative

of the cell line. We identified a set of five strain energy components which consistently

appeared among the most important ones in a very large proportion of cells for individual

PCA and in a 100% of the pools of observations considered for global PCA (Fig. 4.2b). We

will refer to these dominant components as canonical principal components of the strain

energy, or CPCs. Altogether, the five CPCs accounted for ≈ 60% of the strain energy
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Figure 4.2: Contribution and degree of repeatibility of each canonical principal component
(CPC) of the strain energy to the total strain energy US for WT cells. (A) Box-plots of the
fraction of US accounted for by each CPCk, νk (k = 1 − 5), in individual and global PCA.
(B) Percentage of the cells (for individual PCA) and percentage of the pools of observations
(for global PCA) in which each CPCk was identified (k = 1 − 5). For individual PCA:
N = 24 cells. For global PCA: N = 10 pools of data with 600 observations each.

exerted by migrating WT cells. Each CPC presented a similar average value of νk in

both individual and global PCA (Fig. 4.2a). The narrow distribution of νk for global PCA

indicated that each of the pools considered were representative of the whole cell line.

The spatial distributions of the five CPCs are shown in Fig. 4.3. The most important

canonical principal component, CPC1, accounts for ≈ 40% of the total strain energy exerted

by WT cells (Fig. 4.2a). Fig. 4.3a displays CPC1 as a1|50 Ξ1(ξ), where Ξ1(ξ) is the traction

force corresponding to CPC1 (see Eq. 4.7) and a1|50 is the median of its weight coefficient.

CPC1 depicts the cell attaching at both its anterior and posterior parts and contracting the

substrate inwards towards the centroid of the cell. The coefficient a1, which modulated the

magnitude of the traction forces in CPC1, was skewed towards positive values in 98.5% of

the observations (see Fig. 4.4a), indicating that CPC1 accounted for a persistent contraction

of the substrate from front and back.

Unlike the first principal component, the weight coefficients of CPC2-5 were centered

around zero (see Fig. 4.4b-e). This result motivated the distinction between (+) and (−)
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for all panels. Scale bars: 1 dimensionless unit of length = half-length of the cell (see panels
indicated). Letters ”F” and ”B” denote the front (anterior region) and back (posterior
region) of the cell respectively.
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Figure 4.4: (A-E) PDF of the weight coefficients of each canonical principal component
CPCk, ak (k = 1 − 5), for the pool of all the observations (Nobservations = 10468) coming
from individual PCA applied over each WT cell (N = 24).

configurations of these components (see Fig. 4.3b1-f1 and b3-f3). Because of both the high

proportion of US accounted for by CPC1 and the marked skewness of its weight coefficient

towards positive values, it was useful to determine the perturbation effect that each CPCk

(k=2-5) had on the first principal component. Fig. 4.3b2-f2 displays the addition of CPCk

(+) to CPC1 as

a1|50 Ξ1(ξ) + ak|90 Ξk(ξ), (4.9)

and Fig. 4.3b4-f4 displays the addition of CPCk (−) to CPC1 as

a1|50 Ξ1(ξ) + ak|10 Ξk(ξ) ≈ a1|50 Ξ1(ξ) − ak|90 Ξk(ξ). (4.10)

The percentiles 10 and 90 of ak were chosen to facilitate the visualization of the effect that

CPC2-5 had in the overall traction force pattern, which was dominated by CPC1.

CPC2 and CPC5 were respectively responsible for ≈ 6% and 3% of the strain energy

exerted by WT cells (Fig. 4.2a) and accounted for lateral asymmetries in their traction

forces. These components were associated with the bending of cell shape due to projection

of pseudopods not aligned with the longitudinal axis of the cell (Fig. 4.3b and e respectively).

The overall effect of CPC2 (+)/(−) (Fig. 4.3 b1/b3) was to displace the region of application

of traction forces towards the right/left at the back of the cell, and towards the left/right

at the front. At the front, the cell shape displaced towards the right/left, not exerting

significant forces, thus suggesting that the front was not attached. CPC5 (+)/(−) was

similar to CPC2 (+)/(−), but presented an net enhancement of the contractile traction
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forces at the front (Fig. 4.3 e2 and e4), which suggests that the front was attached to the

substrate, in contrast to CPC2.

CPC3 was responsible for ≈ 6% of the strain energy exerted by cells (Fig. 4.2a).

The (+)/(−) configuration of CPC3 depicted the contraction/stretch of the substrate from

center to back and stretch/contraction of it from front to center (Fig. 4.3 c1/c3). The

effect of CPC3 on the traction force pattern was easier to understand when added up to

CPC1 (Fig. 4.3c2/c4). CPC3 (+)/(−) displaced the areas of contraction of the substrate

towards the back/front of the cell. The cell shape associated with CPC3 (+)/(−) was a

slight elongation/dilation (see dashed black line in Fig. 4.3c).

CPC4 (Fig. 4.3d) accounted for ≈ 5% of the total strain energy (Fig. 4.2a). The

(+)/(−) configuration of CPC4 accounted for an increase/decrease in the strength of the

contractile forces at front and back, and a decrease/increase of the contractile lateral forces

at the sides of the cell. CPC4 (+)/(−) was associated with the elongation/dilation of the

cell shape.

4.3 The temporal modulation of one component captures the

temporal dynamics of both the strain energy US exerted

by cells and cell length L

Previous studies showed that US and L are positively correlated [35, 36], uncover-

ing a link between cell shape and the traction work exerted by motile cells. However, the

specific mechanical actions that the cell performs on the substrate, and which originate this

relationship remained unclear. The aim of this section to dissect the potential connections

between global cell shape, strain energy and each of the principal components determined

with PCA. For this purpose, we analyzed the Spearman’s rank correlation coefficient be-

tween the weight coefficient of CPCk, ak, and either US or L (rUS−ak
or rL−ak

, k = 1 − 5),

computed from individual PCA (see Fig. 4.5).

The PDF of rUS−a1 was clearly displaced towards high positive values (〈rUS−a1〉 ≈
0.9, p< 10−5, Fig. 4.5b), indicating that the temporal evolution of US was accurately

described by the temporal dynamics of CPC1. The weight coefficients ak for components

k = 2− 5 showed no correlation with US, collapsing to zero for the asymmetric components

k = 2 and 5. The PDF of rL−a1 showed a statistically significant positive correlation

(p=0.007, Fig. 4.5c), which together with the high correlation between US and CPC1,
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Figure 4.5: The weight coefficient of CPC1, a1, correlates with both the strain energy
exerted US and the cell length L. (A) For a WT cell, temporal evolution of a1 (top
panel), US (middle panel), L (bottom panel), as an example of the correlation between
these functions. (B) Box-plot of the Spearman’s rank correlation coefficient between the
weight coefficient of the 5 CPCs identified, ak(t) (k = 1 − 5), and US . (C) Box-plot of the
Spearman’s rank correlation coefficient between ak(t) (k = 1 − 5) and L. Legend of the
sign test of the null hypothesis that the statistical distributions in panels (A-B) have zero
median: ∗ = p<0.01.

indicates that the modulation of the inward contraction of the substrate from front and

back of the cell was responsible for the positive correlation between US and L [35, 36].

Weight coefficient a4 and L were also positively correlated (p= 4 × 10−5), due to the fact

that CPC4 was an aspect ratio component that accounted for changes in traction forces

related to the dilation and elongation of the cell (Eq. 3.3, Fig. 4.3 d). The 2D-PDFs of

ak (k = 2 − 5) versus a1 (Fig. 4.6) showed that the weight of CPC2-5 was bounded by
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Figure 4.6: The weight of canonical strain energy components (CPC) 2 to 5 is bounded by
the weight of CPC1. (A-E) 2D-PDFs of the weight coefficient of CPCk, ak(t) (k = 2 − 5),
versus the weight coefficient of CPC1, a1, for the pool of all the observations (Nobservations =
10468) coming from individual PCA applied over each WT cell (N = 24). Solid lines
represent the contours containing 40% (dark red), 60% (red), 80% (yellow), 90% (light blue)
and 99% (blue) of the data. The dashed black lines indicate the approximate envelope of
each 2D-PDF for ak-a1 (k = 2 − 5).

the weight of CPC1. This result confirmed that the first principal component governed the

mechanics of amoeboid motility.

4.4 Temporal and spatial coherence are captured by the first

strain energy component and degraded in higher compo-

nents

We analyzed the temporal behavior of the principal components of the strain energy,

finding that its coherence decreased and eventually became random from low- to high-order

components (that is, for components with decreasing values of νk).

Temporal coherence was quantified for individual PCA using the autocorrelation

of the weight coefficients of each component, Rak
(τ) = 〈ak(t) ak(t + τ)〉. We obtained

the parabolic fit to the first 10 s of positive lag of Rak
, and calculated the time tR0 at
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Figure 4.7: Loss of temporal (in A-D) and spatial (in E) coherence in high components
(in individual PCA). (A) For a WT cell, autocorrelation of the weight coefficient of strain
energy component k (Rak

) represented as lines with circles for k = 1 (blue), 2 (red), 10
(green) ad 25 (light blue). Dashed lines represent the parabola fitting to Rak

for time lag
0-10 s. The intersection of the parabola with the axis Rak = 0 determines the scale for
temporal decay of component k (tR0(k)). (B) For the same cell, tR0(k) (black line with
circles). The dashed grey line is the power law fit to tR0(k) (pR0). The dashed red lines and
cross mark the component for which pR0 has decayed to a threshold of 22 s (k22), providing
with a quantification for the component for loss of temporal coherence for this cell. (C)
Box-plot of k22 for WT cells (N = 24). (D) Box-plot of the percentage of strain energy
exerted with components 1 to k22,

∑k22
j=1 νk, for WT cells (N = 24). (E) Loss of spatial

coherence. Traction force components 8, 10, 14, 18, 22 and 26 for the same global PCA of
WT used to represent CPCs in Fig. 4.3. Compare to CPCs (Fig. 4.3) to appreciate the
decrease in size and directional coherence in higher strain energy components.

which that parabola crossed the axis Rak
= 0, providing with an estimated time for loss

of temporal coherence for component k (Fig. 4.7a). We then calculated the component k22

above which tR0(k) becomes lower than 22 s using a power law fit (Fig. 4.7b). The temporal

threshold of 22 s was chosen because it is the average duration of the shortest phase of the

motility cycle for WT cells [protrusion, see ref. 36]. Analysis of k22 indicated that temporal

correlation is lost in average for principal components with k = 5 and higher (Fig. 4.7c).

We also computed statistics of the proportion of US exerted with strain energy components

1 to k22,
∑k22

j=1 νk, showing that ≈ 70% of US was exerted with components presenting a
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Figure 4.8: Analysis of the temporal coordination between cell shape bending and the two
asymmetric canonical principal components of the strain energy, CPC2 and CPC5. (A)
For a WT cell, cross-correlations between the bending of the cell (weight coefficient as

b),
CPC2 (weight coefficient a2) and CPC5 (weight coefficient a5), used to quantify the delay
between the signals (indicated with solid circles). (B) Box-plot of the Spearman’s rank
correlation coefficient between: a2 and as

b, and a5 and as
b. (C) Box-plot of the time delay,

in s, between different weight coefficients, as extracted from their cross-correlations (see
panel (A)) (ax → ay = time delay of ay with respect to ax). Legend of the sign test of the
null hypothesis that the statistical distributions in panels (B-C) come from a continuous
distribution with zero median: ∗ = p<0.05 and ∗∗ = p<0.01.

temporally coherent evolution (Fig. 4.7c). Thus, the remaining ≈ 30% of US was exerted

without a clear temporal signature and may be considered as temporally random, due either

to intrinsic noise in the system under study, experimental noise, or the occurrence of fast

events we could not capture in our experiments. According to these estimations, ≈ 85%

of the fraction of US exerted with a coherent temporal pattern is captured by the first five

CPCs (Fig. 4.3), and ≈ 60% of it is captured by CPC1 alone.

Parallel to the loss of temporal coherence, we observed that the spatial features of

the strain energy components became smaller and lacked a clear structure for increasing

components (Fig. 4.7 e). This decrease in both temporal and spatial coherence for higher

strain energy components reinforces the argument that the five CPCs presented in the last

subsection (Fig. 4.3), and specially CPC1, are enough to account for most of the mechanical

work exerted by migrating cells on the ECM.

4.5 Temporal coordination between traction forces and lat-

eral protrusions

The two asymmetric canonical principal components, CPC2 and CPC5, were found

to be associated with lateral protrusion of pseudopods. CPC5 accounts for the cell attaching



87

the lateral protrusion to the substrate (Fig. 4.3b), whereas in CPC2 the lateral protrusion

is not attached (Fig. 4.3b). The aim of this section was to analyze the possible temporal co-

ordination between these two components, and how they are coordinated with the resulting

bending of cell shape. The results from this analysis showed that the protrusion of lateral

pseudopods takes about 12 s in average, starting with the lateral protrusion leading to the

bending of cell shape and finishing with the attachment of the pseudopod to the substrate.

Application of PCA only to cell shape, similar to Killich et al. [24] and Keren et al.

[22], provided with a set of cell shape components. One of them accounts directly for

cell bending and is temporally described by its weight coefficient as
b(t). The PDFs of the

Spearman’s rank correlation coefficient between as
b and either a2 or a5 (Fig. 4.8 b) proved

that the association between cell shape bending and both CPC2 and CPC5 was positive

and statistically significant. We studied the temporal coordination of cell shape bending,

CPC2, and CPC5 through analysis of the cross-correlation of their weight coefficients and

their temporal delays (Fig. 4.8a and c), showing that CPC5 is delayed ≈ 12 s with respect

to CPC2 (p=0.004) (Fig. 4.8a and c, first boxplot) and that the physical bending of the cell

precedes CPC5 by ≈ 7 s (p=0.0015) (Fig. 4.8a and c, third boxplot). Although Fig. 4.8c

(third box-plot) suggests that CPC2 precedes the bending of the cell by ≈ 4 s, the statistical

significance was marginal (p=0.09), probably because this delay was close to the temporal

resolution of our experiments, 2 s.

4.6 Traction force components in contractility mutants are

similar to those in wild-type cells

To investigate the role that MyoII contractility plays in the strain energy components

we applied PCA to recordings of 1) MyoII essential light chain null cells with altered MyoII

motor function [67] (mlcE−, N=13), and 2) MyoII null cells lacking MyoII cross-linking and

motor function [82] (mhcA− N=19).

Applying both global and individual PCA (see Materials and Methods) to record-

ings of traction forces and cell shape for both mhcA− and mlcE− cells, we identified five

CPCs for each mutant cell line. These principal components, specially in mlcE−, were re-

markably similar to those identified for WT cells (Fig. 4.11 for mlcE−, and 4.12 for mhcA−

in the Supporting Material), and accounted for ≈ 55% of US exerted by mlcE− and mhcA−

(Fig. 4.10a in the Supporting Material).

As in WT cells, CPC1 accounted for a substantial proportion of the strain energy (≈
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Figure 4.11: Canonical principal components of the strain energy (CPC) identified in mlcE−

cells. The panels in this figure come from a particular pool of observations over which
global PCA was applied and represent the traction force equivalents to each strain energy
component (Eq. 4.7). CPC1 is represented in (A) and CPCk (k=2-5) in (B-E). (B1/3-E1/3)
(+)/(-) configuration of CPC2-5. (B2/4-E2/4) Overall ffect of CPC2-5 (+)/(-) on CPC1.
The colormap indicates the magnitude and the arrows the direction of the traction forces
(colorbars for each panel in top-right corner, in pN). The solid black contour indicates the
cell shape associated with each CPC. The dashed black contour indicates the median cell
shape associated with component 1. In top-right corner: x and y are the dimensionless axes
for all panels. Scale bars: 1 dimensionless unit of length = half-length of the cell (see panels
indicated). Letters ”F” and ”B” denote the front (anterior region) and back (posterior
region) of the cell respectively.
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Figure 4.12: Canonical principal components of the strain energy (CPC) identified in mhcA−

cells. The panels in this figure come from a particular pool of observations over which
global PCA was applied and represent the traction force equivalents to each strain energy
component (Eq. 4.7). CPC1 is represented in (A) and CPCk (k=2-5) in (B-E). (B1/3-E1/3)
(+)/(-) configuration of CPC2-5. (B2/4-E2/4) Overall ffect of CPC2-5 (+)/(-) on CPC1.
The colormap indicates the magnitude and the arrows the direction of the traction forces
(colorbars for each panel in top-right corner, in pN). The solid black contour indicates the
cell shape associated with each CPC. The dashed black contour indicates the median cell
shape associated with component 1. In top-right corner: x and y are the dimensionless axes
for all panels. Scale bars: 1 dimensionless unit of length = half-length of the cell (see panels
indicated). Letters ”F” and ”B” denote the front (anterior region) and back (posterior
region) of the cell respectively.
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40%) in both mlcE− and mhcA− cells, indicating that temporal evolution of the mechanical

interaction between contractility mutants and their substrate was also dynamically simple

in these mutants. However, the principal components with k > 1 were less reproducible

from cell to cell (Fig. 4.10b in the Supporting Material) than in WT, indicating the difficulty

to define a clear “mechanical phenotype” for this cell line.

The first principal component in mlcE− was very similar to that in WT cells

(Fig. 4.3a1 and 4.9 a), with traction forces focused at two areas at the posterior and

anterior parts of the cell. However, this was not the case in mhcA− cells, where CPC1

presented a large amount of lateral forces (Fig. 4.9b). The prominent exertion of lateral

forces by mhcA− is present throughout all the components (Fig. 4.12 in the Supporting

Material).

4.7 Discussion

Shape changes in motile cells are strongly related with the modulation of cell adhe-

sions to the substrate via the forces they exert on it [36, 143–146]. In order to study this

modulation, we measured the traction forces and cell shape of Dictyostelium cells migrating

chemotactically over a flat elastic substrate. We then applied a tailored formulation of PCA

that optimized the mechanical work exerted by these cells. In addition, we used a cell-based

coordinate system and a 2D mapping of cell shape to obtain the different shape changes

associated with each strain energy component, thus allowing for a physical interpretation

of the dominant strain energy components.

This analysis determined a set of five canonical principal components of the strain

energy (CPCs) that were reproducible from cell to cell, and which captured ≈ 60% of

the total mechanical work exerted by cells. The time evolution of these components was

observed to remain temporally coherent for a period of time equal to the duration of pseu-

dopod protrusions and retractions. The most important component accounted for ≈ 40%

of US , presenting an oscillatory temporal evolution which correlated with both the strain

energy and global cell shape. This component depicted the cell attaching at front and back,

contracting the substrate inward towards its center, consistent with previous traction force

measurements [34–36]. The rest of the components were substantially less important in

terms of mechanical energy, accounting for less than 7% each.

Keren et al. [22] showed that a low number of components described the shape

variability of migrating keratocytes within a population. In their cells, the most important
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component behaved steadily in time. The present study illustrates that PCA is also able to

compress the more complex dynamics of amoeboid migrating cells using a reduced number

of degrees of freedom with coherent temporal evolution. For instance, PCA identified two

modes related with the initiation and termination of lateral protrusions. These components

were separated by a period of ≈ 12 s, during which an increase of traction forces revealed

the formation of new adhesions.

The canonical principal components were found to be similar in the case of mutants

with contractile deficiencies (mlcE− and mhcA−), although these components were less

reproducible in mhcA− cells, indicating they have a less clear “mechanical phenotype”.

The first component in mhcA− cells presented high lateral forces, suggesting a cortical

origin of the traction forces in the absence of MyoII.

By compressing the mechanics of motile cells into a reduced set of temporally re-

solved degrees of freedom, the present study may contribute to refined models of cell mi-

gration [147–150] that incorporate mechanical cell-substrate interactions. For instance, the

model of adhesion and contraction developed by Buenemann et al. [149] for Dictyostelium

cells, could benefit from the present empirical description. Models that were originally for-

mulated for other cell types [147] could potentially be adapted to amoeboid cells based on

the principal components identified in this study.

Chapter 4, in part, has been submitted for publication in the Biophysical Journal,

“An oscillatory contractile pole-force mode dominates the traction forces exerted by mi-

grating amoeboid cells,” by B. Alonso-Latorre, J. C. del Álamo, R. Meili, R. A. Firtel, and

J. C. Lasheras (2010). The thesis author is the primary investigator in this publication.

Experiments were performed by Dr. R. Meili in the Section of Cell and Develop-

mental Biology, University of California, San Diego. This investigation was partially funded

by the U.S. National Institutes of Health.



Chapter 5

Advanced Fourier Traction Force

Cytometry Assays for the Study of

Mechanosensing

In the last years, abundant evidence has demonstrated that cell behavior is affected

by the mechanical properties of the surrounding environment. For instance, it has been

reported that mesenchymal stem cells differentiate according to substrate elasticity [162],

or how cells increase their spread area as the substrate stiffness increases [95, 162]. In the

recent years, an array of proteins localized at cell-substrate adhesions and playing a role in

the mechanotransduction machinery have been identified (integrin, talin, α-actinin, FAK,...)

[163], as well as candidate mechanical processes allowing cells to “feel” their mechanical

environment [164]. However, we are still far from understanding comprehensively how cells

probe the mechanical properties of the substrate (mechanosensing), how they transduce the

output of that process into chemical signals (mechanotransduction), and how those chemical

signals lead to a certain action or response (mechanoresponse).

In this chapter, we present the derivation of two different analytical solutions of the

elastostatic equation (Eq. 2.17) under conditions of interest for the study of mechanosensing.

Section 5.1 presents the solution of the elastostatic equation for a two-layered substrate.

Observations on the obtained solution indicate that this configuration could be used to

answer questions such as what is the lengthscale at which cells measure the mechanical

properties of the substrate, or how deep they “feel” the bottom substrate in different con-

ditions. Section 5.2 presents the solution of the elastostatic equation for a substrate with a

93
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Figure 5.1: Sketch of the analytic assay of a two-layered substrate.

shallow spatial gradient of Young’s modulus, which can be used for the analytical and ex-

perimental study of durotaxis, or the directed cell movement up or down a rigidity gradient

[165, 166].

5.1 Solution of the elastostatic equation for a two-layered

substrate

To study how cell traction forces are modified when a secondary substrate is located

below the substrate to which the cell is attached, we solved the elastostatic equation for a

two-layered substrate (1=upper layer, 2=lower layer) with thicknesses, h1 and h2, Young’s

moduli, E1 and E2, and Poisson’s ratios, σ1 and σ2, respectively (Fig. 5.1). Layer 2 is

assumed to be attached to an infinitely rigid substrate, and thus presents zero displacements

at z = 0. Displacements are measured at z = h1+h2 = h in layer 1. We adopted a Cartesian

coordinate system with the x and y axes parallel to the base of the substrate, located at

z = 0.

The equation of static equilibrium are the ones governing the displacement field

∇2u +
∇ (∇ · u)

(1 − 2σ)
= 0. (5.1)

which is exactly the same as Eq. 2.17. Boundary conditions for layer 1 are partially imposed

using the displacements measured at the substrate free surface

u1(x, y, h) = uh(x, y). (5.2)
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For layer 2, we imposed zero displacements at the base of the substrate

u2(x, y, 0) = 0. (5.3)

The set of neccessary boundary conditions is completed by imposing that both displacements

and stresses are continuous across the interface between layers 1 and 2, located at z = h2

u1(x, y, h2) = u2(x, y, h2), (5.4)

τ1,xz(x, y, h2) = τ2,xz(x, y, h2),

τ1,yz(x, y, h2) = τ2,yz(x, y, h2), (5.5)

τ1,zz(x, y, h2) = τ2,zz(x, y, h2).

The solution to Eq. 5.1 was obtained obtained in Section 2.2 in terms of the Fourier

series of the displacements. For convenience, we re-express this solution (see Eq. 2.24) as a

function of z − z0 as:



 ûαβ

dûαβ



 = Pαβ exp (Jαβ (z − z0)) P−1
αβ



 û
z0
αβ

dûz0
αβ



 =



L M

N O







 û
z0
αβ

dûz0
αβ



 (5.6)

where ûz0
αβ and dûz0

αβ represent the Fourier coefficients of the displacements and their z-

derivatives at a certain z-coordinate, z0, respectively, and the components of the 3 × 3

matrices L, M , N , and O, expressed as functions of Z = z − z0 are

L[1,1] = cosh(kZ) − 1/2
α2Z sinh(kZ)

k(−1 + 2σ)
, (5.7)

L[1,2] = −1/2
αβZ sinh(kZ)

k(−1 + 2σ)
, (5.8)

L[1,3] = 1/4iα
kZ cosh(kZ) − sinh(kZ)

k(−1 + σ)
, (5.9)

L[2,1](α, β) = L[1,2](β, α), (5.10)

L[2,2](α, β) = L[1,1](β, α), (5.11)

L[2,3](α, β) = L[1,3](β, α), (5.12)
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L[3,1] =
−1/2iα (−kZ cosh(kZ) + sinh(kZ))

k(−1 + 2σ)
, (5.13)

L[3,2](α, β) = L[3,1](β, α), (5.14)

L[3,3] = cosh(kZ) + 1/4
kZ sinh(kZ)

−1 + σ
, (5.15)

M [1,1] = −1/4
α2Z cosh(kZ)

(−1 + σ)k2
+ 1/4

(
−3k2 + 4k2σ − β2

)
sinh(kZ)

k3(−1 + σ)
, (5.16)

M [1,2] = 1/4
αβ (−Z cosh(kZ)k + sinh(kZ))

k3(−1 + σ)
, (5.17)

M [1,3] =
1/2i sinh(kZ)Zα

k(−1 + 2σ)
, (5.18)

M [2,1](α, β) = M [1,2](β, α), (5.19)

M [2,2](α, β) = M [1,1](β, α), (5.20)

M [2,3](α, β) = M [1,3](β, α), (5.21)

M [3,1] =
1/4iαZ sinh(kZ)

k(−1 + σ)
, (5.22)

M [3,2](α, β) = M [3,1](β, α), (5.23)

M [3,3] = 1/2
Z cosh(kZ)

−1 + 2σ
+ 1/2

(−3 + 4σ) sinh(kZ)

k(−1 + 2σ)
, (5.24)

N [1,1] = −1/2
α2Z cosh(kZ)

−1 + 2σ
+ 1/2

(−2k2 + 4k2σ − α2) sinh(kZ)

k(−1 + 2σ)
, (5.25)

N [1,2] = −1/2
αβZ cosh(kZ)

−1 + 2σ
− 1/2

βα sinh(kZ)

k(−1 + 2σ)
, (5.26)
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N [1,3] =
1/4i sinh(kZ)kZα

−1 + σ
, (5.27)

N [2,1](α, β) = N [1,2](β, α), (5.28)

N [2,2](α, β) = N [1,1](β, α), (5.29)

N [2,3](α, β) = N [1,3](β, α), (5.30)

N [3,1] =
1/2i sinh(kZ)kZα

−1 + 2σ
, (5.31)

N [3,2](α, β) = N [3,1](β, α), (5.32)

N [3,3] = 1/4
k2Z cosh(kZ) + k(−3 + 4σ) sinh(kZ)

−1 + σ
, (5.33)

O[1,1] = cosh(kZ) − 1/4
α2Z sinh(kZ)

k(−1 + σ)
, (5.34)

O[1,2] = −1/4
βα sinh(kZ)Z

k(−1 + σ)
, (5.35)

O[1,3] =
1/2iZ α cosh (k Z)

−1 + 2σ
+

1/2iα sinh(kZ)

k(−1 + 2σ)
, (5.36)

O[2,1](α, β) = O[1,2](β, α), (5.37)

O[1,1](α, β) = O[2,2](β, α), (5.38)

O[2,3](α, β) = O[1,3](β, α), (5.39)

O[3,1] =
1/4iZα cosh(kZ)

−1 + σ
+

1/4iα sinh(kZ)

k(−1 + σ)
, (5.40)

O[3,2](α, β) = O[3,1](β, α), (5.41)
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O[3,3] = cosh(kZ) + 1/2
kZ sinh(kZ)

−1 + 2σ
. (5.42)

For layer 1, the solution in Eq. 5.6 can be expressed as


 û1,αβ

dû1,αβ



 =



L1 M1

N1 O1







 ûh
αβ

dûh
αβ



 (5.43)

where ûh
αβ and dûh

αβ represent the Fourier coefficients of the measured displacements at

z = h and their z-derivatives respectively, and matrices L1, M1, N1, and O1 are matrices

L, M , N , and O evaluated at z0 = h and σ = σ1. 3 × 3 matrices L1, M1, N1, and O1 are

For layer 2, the solution in Eq. 5.6 can be expressed as


 û2,αβ

dû2,αβ



 =



M2

O2




[
dû0

αβ

]
(5.44)

where dû0
αβ represents the z-derivatives of the Fourier coefficients of the displacements at

z = 0, and matrices L2, M2, N2, and O2 are matrices L, M , N , and O evaluated at z0 = 0

and σ = σ2. Notice that this expression includes the boundary condition in Eq. 5.3.

The boundary condition on the stresses at z = h2 in Eq. 5.5 can be expressed as

Γ û
h2
αβ + Θ dûh2

2,αβ + Υ dûh2
1,αβ = 0 (5.45)

where ûh2
αβ are the Fourier coefficients of the displacements at the interface at z = h2, and

dûh2
1,αβ and dûh2

2,αβ are the z-derivatives of the Fourier coefficients of the displacements at

z = h2 in layer 1 and 2 respectively, and

Γ =




0 0 iα
(
Er

1+σ1
1+σ2

− 1
)

0 0 iβ
(
Er

1+σ1
1+σ2

− 1
)

iα
(
Er

(1+σ1)(1−2σ1)
(1+σ2)(1−2σ2)σ2 − σ1

)
iβ

(
Er

(1+σ1)(1−2σ1)
(1+σ2)(1−2σ2)σ2 − σ1

)
0


 ,

(5.46)

Θ =




Er
1+σ1
1+σ2

0 0

0 Er
1+σ1
1+σ2

0

0 0 Er
(1+σ1)(1−2σ1)
(1+σ2)(1−2σ2)(1 − σ2)


 , (5.47)

and

Υ =




−1 0 0

0 −1 0

0 0 −(1 − σ1)


 , (5.48)



99

where Er represents the ratio of Young’s moduli E2/E1.

We then solve Eq. 5.43 for dûh2
1,αβ

dûh2
1,αβ =

[
N1 − O1 M−1

1 L1

]
z=h2

ûh
αβ +

[
O1 M−1

1

]
z=h2

ûh2
αβ , (5.49)

and Eq. 5.44 for dûh2
2,αβ

d̂u
h2

2,αβ =
[
O2 M−1

2

]
z=h2

û
h2
αβ (5.50)

Substitution of Eqs. 5.49 and 5.50 into Eq. 5.45 leads to a system of three equations whose

three unknowns are the components of ûh2
αβ . We then can solve for dûh

αβ from Eq. 5.43

evaluated at z = h2,

dûh
αβ =

[
M−1

1

]
z=h2

(
ûh2

αβ − [L1]z=h2
ûh

αβ

)
, (5.51)

and we apply the constitutive equations to calculate the traction stresses at z = h,




τ̂xz
h
αβ

τ̂yz
h
αβ

τ̂zz
h
αβ


 =

E

2(1 + σ1)




0 0 iα 1 0 0

0 0 iβ 0 1 0

2σ1iα
(1−2σ1)

2σ1iβ
(1−2σ1) 0 0 0 2(1−σ1)

(1−2σ1)






 ûh
αβ

dûh
αβ



 (5.52)

The inverse Fourier transform of these coefficients yields the traction field on the substrate

free surface,

[τxz, τyz, τzz]z=h =

∞∑

α=−∞

∞∑

β=−∞

[
τ̂xz

h, τ̂yz
h, τ̂zz

h
]

αβ
exp(iαx) exp(iβy). (5.53)

5.1.1 Use of the two-layered substrate assay to study cell mechanosensing

Fig. 5.2 presents the spectral analysis of the solution for a two-layered substrate,

and it shows that for wavenumbers kh & 3 the solution for the two-layered substrate

collapses with Boussinesq’s solution for an infinitely thick substrate (as expected from the

results in Section 2.3). Interestingly, when the bottom layer (layer 2) is less stiff than

the top layer (layer 1), that is, when Er < 1 (Fig. 5.2b), the comparison between the

Frobenius norm of the transfer matrices for the two-layered substrate (thin solid lines) and

Boussinesq’s solution (dotted line) indicates that the apparent Young’s modulus will be

larger or smaller than the Young’s modulus of layer 1, E1, depending on the lengthscale

at which the stresses are applied. As the wavenumber decreases below kh ≈ 3, the norm

of the transfer matrix of the two-layered substrate separates from Boussinesq’s solution.

In particular, for h2/h1=1, 10, and 100 (see legend) the norm of the transfer matrix goes

below the one for Boussinesq’s solution, indicating a lower apparent Young’s modulus.
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Figure 5.2: Spectral analysis of the solution for a two-layered substrate. The curves rep-
resent the Frobenius norm of the transfer matrix (see Eq. 2.72) of the solution: (a) for an
infinitely thick bottom substrate (h2 → ∞), and different ratios of Young’s moduli, Er (see
insert legend); (b) for Er = 0.1 and different ratios of thicknesses h2/h1 (see insert legend);
(c) for Er = 1 and different ratios of thicknesses h2/h1 (see insert legend in (b)); (d) for
Er = 10 and different ratios of thicknesses h2/h1 (see insert legend in (b)). All the curves
have been calculated for σ = 0.48.

As the wavenumber keeps decreasing, the norm of the transfer matrix for the two-layered

substrate approaches Boussinesq’s solution again, due to the transition to a regime in which

the infinitely stiff substrate to which layer 2 is attached at z = 0 starts playing a role. For

wavenumbers low enough, the apparent Young’s modulus increases over E1.

As of today, it is not clear whether cells sense the mechanical properties of the

surrounding environment at the scale of the adhesions [162], or at a larger scale of the size

of the cell [167]. The reported differences in apparent Young’s modulus depending on the

lengthscale of application of the traction stresses (for a two-layered substrate with Er < 1)

could be used to identify the lengthscale at which cells sense the mechanical surrounding
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environment, taking as well advantage of the well documented increase in the spread area

of the cell as the substrate Young’s modulus increases [95, 162].

5.2 Solution of the elastostatic equation for a substrate with

a shallow gradient of Young’s modulus

We obtained the solution of the elastostatic equation for a substrate with a shallow

spatial gradient of Young’s modulus, a configuration of interest for the study of durotaxis,

or cell motion guided by gradients of ECM stiffness. We consider a cell attached to the

substrate free surface of a linearly elastic semi-infinite substrate. We adopt a Cartesian

coordinate system with the x and y axes parallel to substrate free surface at undisturbed

state, located at z = 0. The cell adheres and exerts stresses at the substrate free surface,

inducing a deformation field which is measured through application of correlation techniques

to images of fluorescent beads embedded in the substrate. Fig. 5.3 sketches this experimental

configuration. We then solved the elastostatic equation

∂τik

∂xk
= 0, (5.54)

where the components of the stress tensor τik can be expressed as a function of the strain

tensor uik, the Young’s modulus of the substrate E and its Poisson’s ratio σ as

τik =
E

2(1 + σ)

(
uik +

σ

1 − 2σ
ull δik

)
. (5.55)

Notice that the combination of Eqs. 5.54 and 5.55 leads to Eq. 5.1.

We formulated the solution to Eq. 2.17 in the framework of regular perturbation

theory [168], with E as the perturbed quantity

E = E0 (1 + εf(x)) , (5.56)

where E0 is the leading order of E, ε is the perturbation parameter, and f(x) is the per-

turbation function of E.

We thus decomposed the displacement field uk into leading order, u0, and pertur-

bation, u1, as

uk = u0,k + ε u1,k (5.57)

which we substituted in Eqs. 5.54 and 5.55, together with the definition of the strain tensor

as a function of the displacements:

uik =
1

2

(
∂ui

∂xk
+

∂uk

∂xi

)
. (5.58)
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Figure 5.3: Sketch of the analytic assay of a substrate with a spatial gradient of Young’s
modulus for durotaxis.

We then decomposed the problem into a leading order and a first-order problem.

The leading order problem, expressed in vector notation, is thus

∇ (∇ · u0)

1 − 2σ
+ ∇2u0 = 0, (5.59)

with boundary conditions

u0(x, y,−∞) = 0,

u0(x, y, 0) = uM (x, y), (5.60)

where uM (x, y) are the measured displacements at the free surface of the substrate, z = 0.

The leading order problem is equivalent to solving the elastostatic equation for a substrate

of uniform Young’s modulus, E0, and its solution can be obtained in terms of the Fourier

series of the displacements (see Section 2.2) as


 û0,αβ

dû0,αβ



 (z) = Pαβ exp(Jαβz)P−1
αβ



 ûM
αβ

dûS
αβ



 = Qαβ



 ûM
αβ

dûS
αβ



 , (5.61)

where ûM
αβ and d̂u

S

αβ are the Fourier coefficients of the measured displacements and of the

z-derivative of the displacements at the free surface respectively. Obtaining d̂u
S

αβ as a

function of ûM
αβ was already derived in Section 2.2 for the more general case of a substrate

of finite thickness.

The ε-order or first-order problem is

∇2u1 +
∇ (∇ · u1)

1 − 2σ
= −1 + σ

E0
∇ [f(x) τ0] . (5.62)
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with boundary conditions

u1(x, y,−∞) = 0,

u1(x, y, 0) = 0. (5.63)

Notice that the ε-order problem in Eq. 5.62 differs from the leading order problem in Eq. 5.59

only in the forcing term in its right hand side (RHS). The components of the leading order

of the stress tensor, τ0 (or τ0,ik in Einstein’s notation), are given by

τ0,ik =
E0

2(1 + σ)

(
u0,ik +

σ

1 − 2σ
u0,llδik

)
. (5.64)

We expressed the solution to Eq. 5.62 in terms of the Fourier series of the perturbation of

the displacements

u1(x, y, z) =

∞∑

α=−∞

∞∑

β=−∞

û1,αβ(z) exp(iαx) exp(iβx), (5.65)

where α and β are the wavenumbers in the x and y directions, and û1,αβ are the Fourier

coefficients of the perturbation of the displacements. Introducing Eq. 5.65 into Eq. 5.62 we

obtain the following first-order non-homogeneous ordinary differential equation

d

dz




û1,αβ

v̂1,αβ

ŵ1,αβ

dû1,αβ/dz

dv̂1,αβ/dz

dŵ1,αβ/dz




=



 û1,αβ

dû1,αβ



 = Aαβ



 û1,αβ

dû1,αβ



 + Gαβ , (5.66)

where matrix Aαβ was already defined in Eq. 2.21 and Gαβ is given by

Gαβ =




0

0

0

−2 i (1 + σ)
(
αF̂xx,αβ + βF̂xy,αβ − idF̂xz,αβ/dz

)

−2 i (1 + σ)
(
αF̂yx,αβ + βF̂yy,αβ − idF̂yz,αβ/dz

)

[−i (−1 + 2σ)(1 + σ)/(−1 + σ)]
(
αF̂zx,αβ + βF̂zy,αβ − idF̂zz,αβ/dz

)




, (5.67)

The different components of the tensor F̂αβ are related to the forcing term in Eq. 5.62 (its

RHS) as

F̂αβ =
1

E0
F [f(x) τ 0] , (5.68)
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where F stands for two-dimensional Fourier transform.

The solution to Eq. 5.62 is given by (see [169])



 û1,αβ

dû1,αβ



 = Qαβ

∫

0
Q−1

αβ Gαβ dz, (5.69)

providing with the first-order of the displacements and their z-derivatives, which can be

evaluated at z = 0 (substrate free surface) to obtain the exerted traction stresses.

The traction stresses can be decomposed in physical space as leading order and

perturbation as

τik = τ0,ik + ε τ1,ik = τ0,ik + ε [ f(x) τ0,ik + τ?
1,ik ], (5.70)

where

τ?
1,ik =

E0

2(1 + σ)

(
u1,ik +

σ

1 − 2σ
u1,ll δik

)
, (5.71)

and the Fourier coefficients of the stress tensor in Eq. 5.70 are

τ̂ik,αβ = τ̂0,ik,αβ + ε [E0 F̂ik,αβ + τ̂?
1,ik,αβ ], (5.72)

We can ease the computation of the perturbation of the displacements and their

z-derivatives, û1,αβ and dû1,αβ respectively, by choosing the perturbation function as the

sinusoidal function f(x) = sin(2πx/Lx), where Lx is the size in the x-direction of the box

where we compute stresses. Eq. 5.68 then simplifies to

F̂αβ =
i

2E0

(
τ̂0,α+∆α β − τ̂0,α−∆α β

)
∆α ∆β (5.73)

where ∆α = ∆β = 2π∆
LB

, which in turn greatly simplifies the calculation of Eq. 5.69.

Finally, the inverse Fourier transform of the Fourier coefficients τ̂ik,αβ (Eq. 5.72) at

z = 0 yield the traction field on the substrate free surface (see Eq. 5.53).

5.2.1 Assay for the study of durotaxis

We present in this section a methodology for the calculation of the cell traction

stresses in a substrate with a shallow linear gradient of Young’s modulus (Fig. 5.4).

As explained in Section 5.2, the calculation of the traction stresses in a substrate

with a shallow spatial gradient of substrate elasticity E is simplified if we assume the

perturbation in E is sinusoidal (Eq. 5.73). We can make use of this feature if we substitute

the displacement field exerted by a cell, enclosed in a box of size LB (Fig. 5.4a), in the center
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Figure 5.4: Assay for the study of durotaxis. (a) Three-dimensional displacement field,
u(x, y), at the free surface of a substrate with a shallow linear gradient of Young’s modulus,
E, in the x-direction (leading order of E is E0 = 1000Pa) (see top panel). The synthetic
displacement field used is representative of the traction displacements typically exerted by
migrating amoeboid cells. The colormap indicates the magnitude of the vertical displace-
ments and the arrows the magnitude and direction of the horizontal displacements. The
size of the box enclosing the displacements is LB . (b) The displacement field in panel (a) is
substituted in the center of a larger rectangular box of size Lx × LB, presenting a shallow
sinusoidal perturbation (ε = 0.15) on E0 in the x-direction (see top panel), which matches
with the linear Young’s modulus field in panel (a) in the region where the box of size LB

is located . (c) Leading order of the traction stresses, τ 0(x, y), for the displacement field
in (a). The colormap indicates the magnitude of the vertical stresses and the arrows the
direction and magnitude of tangential stresses. (d) First-order perturbation of the traction
stresses, τ 1(x, y), for the displacement field in (a). The colormap indicates the magnitude
of the vertical stresses and the arrows the direction and magnitude of tangential stresses.
(e) Leading order (solid line) and first-order perturbation (dashed line) of the tangential
stresses in the x-direction along the centerline, τzx(x, y = 0). (f) Leading order (solid line)
and first-order perturbation (dashed line) of the vertical stresses (in the z-direction) along
the centerline, τzz(x, y = 0). A Poisson’s ratio of σ = 0.49 has been used for the calculations.
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of a larger computational box, of size Lx × LB, with a shallow sinusoidal perturbation on

the leading order of E, E0 = 1000Pa, in the x-direction (Fig. 5.4b), so that the gradient

is nearly linear ( f(x) = sin(2πx/Lx) ≈ 2πx/Lx ∼ x ) in the region where the smaller box

(LB) is located. We pad with zero displacements the rest of the field, which will not affect

our calculation, provided that LB is large enough for both displacements and stresses to

decay to zero at the boundaries of the smaller box.

This methodology, together with the solution in Section 5.2, enables us to calculate

both the leading-order of the traction stresses (Fig. 5.4c) and their first-order perturbation

(Fig. 5.4d). Figs. 5.4e shows the leading order and the first-order perturbation of the

tangential traction stresses, τzx, along the centerline of the cell (y = 0). Figs. 5.4f is a

similar figure but for the vertical traction stresses, τzz. As expected, they show that in the

region where E > E0 (x > 0), the magnitude of the stresses required to deform the substrate

is larger than in the region of E < E0 (x < 0). We’d like to point out that the perturbation

in the stresses, τ 1, is not simply proportional to the relative increase in Young’s modulus

with respect to E0 , but there is an additional term (τ?
1,ik in Eq. 5.70) which accounts for

the presence of the gradient in E, and which this method allows to calculate.

5.3 Discussion

In the last years there has been a notable increase of interest in the mechanical

actions that cells implement in their surroundings, and how cell behavior is affected by the

mechanical properties of the extracellular matrix or tissue and by the non-linearities and

inhomogeneities in those [27, 144, 162, 170]. One of the key questions is how cells are able

to sense the changes in mechanical environment. Numerous models have been proposed as

possible cell-substrate transducer mechanisms [164, 171–174], most of them assuming that

the deformation of protein complexes located at cell-substrate adhesions leads to certain

chemical changes which in turn lead to cell response [163]. Despite all the advances in this

direction, it is still not well established what are the mechanisms by which mechanosensing

takes place. For instance, it is still unresolved whether cells implement mechanosensing

at the scale of cell-substrate adhesions [162], at the scale of the size of the cell [167], or

maybe a combination of both of them. The analytic assay presented in this chapter for the

calculation of traction forces exerted by cells on top of a substrate composed of two layers

could be used to answer that question.

A process clearly ruled by mechanosensing is durotaxis [165, 166]. There have been
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recent modelling attempts trying to understand the nature of durotaxis [175]. However

valuable these approaches may be, we need to increase our level of understanding of this

process. A possible direction would include a better characterization of force organization

during durotaxis, trying to identify front-back asymmetries in traction stresses or sub-

strate displacements. The study of durotaxis could be used as a model problem of cell

mechanosensing and mechanotransduction. In this respect, the solution of the elastostatic

equation developed in this chapter for a substrate presenting a shallow gradient of substrate

elasticity and the proposed analytical assay could serve very well this purpose, which we aim

to pursue, possibly in combination with the rest of techniques developed in this dissertation.

Chapter 5, in part, is in preparation for submission for publication, “Advanced

Fourier traction cytometry techniques for mechanotransduction studies,” by B. Alonso-

Latorre, J. C. del Álamo, R. Meili, R. A. Firtel, and J. C. Lasheras (2011). The thesis

author is the primary investigator in this publication.



Chapter 6

Concluding Remarks and

Recommendations

A brief summary of the main conclusions achieved in this dissertion is presented in

this chapter, as well as the presentation of possible directions for future investigation. A

detailed discussion can be found at the end of Chapters 2 to 5.

In this dissertation, we have analyzed in detail the spatio-temporal coordination

between cell shape and traction forces exerted by migrating amoeboid cells, that is, between

kinematics and dynamics of amoeboid cell migration. For that purpose, we have developed

an improved analytical Fourier method for the calculation of the traction stresses exerted

by cells which considers the finite thickness of the substrate, and allows to study long

recordings of the migration of single cells.

Throughout all of our experiments we have observed a pattern of traction stresses

consisting on the cell attaching at a reduced number of regions (typically two or three) and

contracting the substrate inwards, consistent with the cytoskeleton being always subject to

internal tension [176]. The developed methodology has allowed us to show that the strength

of the traction forces exerted by cells follows a quasi-periodic temporal evolution, which is

correlated with the changes in cell shape during the amoeboid motility cycle, consisting of

pseudopod protrusion and creation of new attachments at the front of the cell, followed by

the contraction of the cell body, leading to the detachment and retraction of the posterior

part of the cell [1].

The temporal evolution of cell length, a surrogate indicator of the changes in cell

shape, has been used to identify the different stages of the motility cycle: protrusion, con-

108
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traction, retraction, and relaxation. This dissection of the motility cycle has allowed us to

compute phase-average statistics, quantifying the main differences in the cell shape changes

and generation of traction forces in WT, mlcE−, and mhcA− strains. The combination of

this approach together with a tailored implementation of PCA has allowed us to identify a

reduced set of 5 canonical traction force patterns or components accounting for most of the

mechanical work or strain energy that cells exert in the substrate during migration. The

prevalent component is responsible for approximately 40% of the mechanical work exerted

by both WT and contractility mutants, and its temporal modulation is responsible for the

observed quasi-periodicity in traction forces and strain energy, and the correlation with cell

length. This prevalent canonical component consists for WT cells in the attachment to the

substrate at two well-defined regions at front and back, contracting the substrate inwards

with a strength modulated in time. This dominant force pattern remains similar when

MyoII contraction is impaired (in mlcE− cells), but it is modified when both actomyosin

contractility and crosslinking are abrogated, in mhcA− cells), which distribute the traction

forces around the cell periphery, suggesting that origin of contractility in the absence of

MyoII function is cortical. A candidate motor protein to take over the function of MyoII is

protein myosin I, reported to localize at the cell cortex [68, 177], and thus consistent with

the results obtained.

We have also shown that the average speed of migration, V , of amoeboid cells, is

determined by their ability to implement the motility cycle in a fast and coordinated way,

according to a hyperbolic law V T=λ, where T is the period of the motility cycle, and λ

is the average displacement per cycle of the cell, or step length. The step length λ is the

same for WT and contractility mutants (mlcE− and mhcA− cells), which suggests that

the implementation of the motility cycle is not substantially modified due to alterations

in F-actin crosslinking or contractility. Understanding what determines the step length

λ may as well answer what regulates the cyclic evolution of both cell shape and traction

forces, for which F-actin polymerization is a very good candidate. In this direction, a very

promising approach would be to alter F-actin polymerization through manipulation of the

SCAR/WAVE complex [178–181], an upregulator of the Arp2/3 complex [182].

Our results show that the timing of the motility cycle, its period T , is partially con-

trolled by actomyosin contractility (mlcE− and mhcA−) and crosslinking (mhcA−). Statis-

tics of the duration of each phase of the cycle show that MyoII contractility is important for

an efficient development of all the stages, and not only retraction. Actomyosin crosslinking

has an impact in both pseudopod protrusion and uropod retraction, possibly through the



110

stabilization of the cell cytoskeletal structure along the side of the cell and its rear.

Analysis of the area fluxes exhibited by migrating cells shows that amoeboid loco-

motion results from the simultaneous combination of the continuous translocation of the

cell body (accounting for ≈ 70% of cell movement) and a superimposed periodic cycle of

front protrusion and rear retraction (accounting for ≈ 30% of cell movement). These two

contributions are very possibly coupled, as indicated by the fact that migration speed due

both to translocation and to the deformation of the cell are inversely proportional to the

period of T , the same as the average velocity of migration, V . They are possibly driven

by similar biochemical processes, regulated at different scales of both space and time. The

deformation component presumably modulates cell shape and regulates other processes,

such as the level of stress driving the continous translocation of the cell.

All the methods to calculate cell traction stresses exerted have typically assumed

that vertical stresses exerted by cells are negligible. Recent evidence shows that vertical

stresses are in many instances comparable to tangential stresses [96, 97, 183]. It is then of

an important practical interest to quantify the influence that the assumption that vertical

stresses are negligible has in the calculation of the cell traction stresses. Our estimations in-

dicate that the tangential stresses calculated with the 2D method do not differ substantially

from the 3D method (≈ 10%), which means that studies of the cell traction stresses up to

date are indeed meaningful, and that the 2D technique may provide with useful information

even if vertical stresses are exerted. However, the presence of significant vertical stresses

(typically consisting in the cell pushing down the substrate at its center and pulling it from

the sides) indicates the need of a more refined interpretation of the mechanical interaction

cell-substrate, which possibly involves signalling processes triggered through the deforma-

tion of the cell nucleus [105–107]. Both experimental and modelling efforts will be required

to ascertain these questions.

We have also developed two analytic assays for the study of aspects related to cell

mechanosensing. There is a certain degree of knowledge about how cells may sense the

mechanical properties of the surrounding environment [164]. However, there are more ques-

tions than answers. Our assays developed can be used for instance to study the lengthscale

at which cells measure the mechanical properties of the surrounding substrate: whether

they do it at the scale of the cell-substrate adhesions [162] or at the scale of the whole cell

[167]; or in the investigation of traction force organization in durotaxis. One of the benefits

of the presented assays is their analytical character, which allows the combination of both
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experimental and modelling approaches.

In the same line as the study of the 3D traction stresses exerted on a planar substrate,

a natural evolution of the work in this dissertation would be to move from the study of

cell migration over flat substrates to cell migration across 3D matrices [153, 184], in an

effort to reflect the migration of tumor cells or fibroblasts across surrounding tissue and

ECM. Although of a tremendous potential impact and importance, the experiments of cell

migration across 3D matrices pose also a list of challenges that need to be addressed (or

at least partially avoided), such as the mechanical characterization of a matrix which may

be remodeled due to the degrading activity of enzymes segregated by cells [185], non-linear

mechanical properties [186], or the breakage of the assumption of a continuous medium,

since physiological relevant matrices are fibrous and usually present a relatively large void

fraction [153, 184, 185].

Finally, and following the same spirit of trying to move towards more applied sce-

narios, another possible extension of this work would be to study collective cell migration.

Collective cell migration is a very important mechanism in morphogenesis, tissue repair

and cancer, and involves the regulation of cell-cell junctions, adding an additional layer

of complexity to cell locomotion [187, 188]. Recent works have investigated traction force

organization [99, 189] and have identified coherent motions during the migration of cell

monolayers. These are just the first steps in understanding in detail the rules of collective

cell migration, for which we still need to obtain detailed information about the coupling

between the dynamics of cell-cell and cell-substrate interaction.
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