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SUMMARY

Floral initiation is regulated by various genetic pathways in response to light, temperature, hormones and

developmental status; however, the molecular mechanisms underlying the interactions between different

genetic pathways are not fully understood. Here, we show that the photoresponsive gene FOF2 (F-box of

flowering 2) negatively regulates flowering. FOF2 encodes a putative F-box protein that interacts specifically

with ASK14, and its overexpression results in later flowering under both long-day and short-day photoperi-

ods. Conversely, transgenic plants expressing the F-box domain deletion mutant of FOF2 (FOF2DF), or dou-
ble loss of function mutant of FOF2 and FOL1 (FOF2-LIKE 1) present early flowering phenotypes. The late

flowering phenotype of the FOF2 overexpression lines is suppressed by the flc-3 loss-of-function mutation.

Furthermore, FOF2 mRNA expression is regulated by autonomous pathway gene FCA, and the repressive

effect of FOF2 in flowering can be overcome by vernalization. Interestingly, FOF2 expression is regulated by

light. The protein level of FOF2 accumulates in response to light, whereas it is degraded under dark condi-

tions via the 26S proteasome pathway. Our findings suggest a possible mechanistic link between light con-

ditions and the autonomous floral promotion pathway in Arabidopsis.

Keywords: F-box protein, FOF2, FLOWERING LOCUS C, flowering, light, autonomous pathway, Arabidopsis

thaliana.

INTRODUCTION

The strict regulation of floral initiation is essential for plant

reproduction because it enables the completion of seed

development under favorable environmental conditions.

Over the past four decades, many key regulators of flower-

ing time have been identified in Arabidopsis by isolating

and characterizing early and late flowering mutants. Flow-

ering is affected by the photoperiod, ambient temperature,

plant hormones and plant age, and approximately six

genetic pathways for the promotion or repression of flow-

ering have been identified in Arabidopsis, including pho-

toperiod, temperature, vernalization, gibberellin (GA)

biosynthesis, autonomous and aging pathways. In addi-

tion, light quality and biotic and abiotic stresses can con-

tribute to floral induction in plants (Amasino, 2010; Song

et al., 2013).

The photoperiodic flowering is regulated by light signal

and circadian clock. Both of these two factors converge to

regulate the expression of CONSTANS (CO) and FLOWER-

ING LOCUS T (FT). CO is a zinc-finger transcription factor

that promotes flowering through directly activating FT

expression under long-day (LD) conditions (Samach et al.,

2000). Photoreceptors such as cryptochrome 2 (CRY2), phy-

tochrome A (PhyA), phytochrome B (Phyb), and the LOV-

domain F-box proteins FLAVIN-BINDING KELCH REPEAT 1

(FKF1), ZEITLUPE (ZTL) and LOV KELCH PROTEIN 2 (LKP2),

mediate photoperiodic and light control of CO and FT

expression and affect flowering time (Golembeski and

Imaizumi, 2015). Blue light receptors CRY2 and FKF1 have

been reported to promote FT expression by stabilizing CO

protein in the late afternoon under LD and blue light
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conditions (Zuo et al., 2011; Song et al., 2012, 2014). ZTL,

opposite to that of FKF1, destabilizes CO protein in the

morning under LD conditions (Zuo et al., 2011; Song et al.,

2012, 2014). ZTL/FKF1/LKP2 family proteins also allow CO

transcription by reducing CYCLING DOF FACTOR 2 (CDF2)

abundance (Fornara et al., 2009). The red/far-red light

receptor phyA, antagonistic to phyB, stabilizes CO protein

to facilitate the transcription of FT in the afternoon under

LD and far-red light conditions (Valverde et al., 2004).

FT is also regulated by the floral repressor FLOWERING

LOCUS C (FLC; Michaels and Amasino, 1999). FLC was first

identified genetically as an inhibitor of flowering that plays

a central role in the timing of the transition to flowering in

Arabidopsis (Koornneef et al., 1991), and is negatively reg-

ulated by prolonged cold treatment (vernalization; Sheldon

et al., 1999).

Autonomous pathway genes promote flowering by

repressing the expression of FLC (Simpson, 2004; Streitner

et al., 2008; Zhai et al., 2016). For example, FCA promotes

flowering by suppressing FLC through alternative cleavage

and polyadenylation of its embedded antisense RNAs

(Manzano et al., 2009; Liu et al., 2010). FY interacts with

FCA and is required for the negative autoregulation of FCA

expression and the function of FCA in the control of flower-

ing time. FCA and FY work together to select the proximal

polyadenylation site in antisense FLC RNAs, thereby con-

trolling the floral transition (Henderson et al., 2005). FPA

represses FLC expression through 30-end processing of

antisense FLC RNAs, although the mechanism is not clear

(Michaels and Amasino, 2001; Duc et al., 2013). FLD is a

homolog of human lysine-specific demethylase 1 (LSD1),

which was found to affect the histone acetylation state of

the FLC locus (He et al., 2003; Singh et al., 2014), and is

required for the function of FCA and FPA in the downregu-

lation of FLC (Liu et al., 2007; Baurle and Dean, 2008). FVE

is a component of a histone deacetylase complex, and inhi-

bits FLC expression by promoting the deacetylation of FLC

chromatin (Ausin et al., 2004). Arabidopsis thaliana DNA-

binding protein phosphatase (AtDBP1) and ARABIDOPSIS

THALIANA GLYCINE-RICH PROTEIN 7 (AtGRP7) promote

flowering at least partially through the repression of FLC

expression, although this mechanism is not well under-

stood (Streitner et al., 2008; Zhai et al., 2016).

In addition to the autonomous pathway, genes involved

in pathways for temperature, abiotic stresses or other

parameters also control FLC expression. The cold-activated

INDUCER OF CBP EXPRESSION 1 (ICE1) induces FLC

directly by binding to its promoter, thereby resulting in

delayed flowering (Lee et al., 2015). ABSCISIC ACID-

INSENSITIVE 4 (ABI4) is a key component of the ABA

signaling pathway, and it promotes FLC transcription by

binding directly to its promoter and negatively regulates

the floral transition (Shu et al., 2016). AGAMOUS-LIKE 6

(AGL6) is a floral promoter that negatively regulates FLC,

although the mechanism is unclear (Yoo et al., 2011).

These results suggest that FLC is a common key regulator

of the flowering pathway.

As members of the SCF (Skp1/Cullin or CDC53/F-box pro-

tein) complex, F-box proteins mediate protein degradation

via the 26S proteasome by specifically identifying and com-

bining with target proteins, and they also play essential

roles in plant growth and development (Sadanandom et al.,

2012). For example, Arabidopsis SLEEPY1 (SLY1) and its

homolog SNEEZY (SNE)/SLY2 are involved in gibberellic

acid (GA) signaling and mediate the degradation of DELLA

proteins (Fu et al., 2004; Ariizumi et al., 2011), and TIR1 tar-

get auxin/indole-3-acetic acid (AUX/IAA) factors to control

the transcriptional responses to auxins (Maraschin et al.,

2009). In addition, F-box genes have been shown to regu-

late self-incompatibility (Ushijima et al., 2003; Entani et al.,

2014) and floral development (Ni et al., 2004). It has been

demonstrated that ZTL, FKF1 and LKP2 play vital roles in

circadian regulation and flowering time control (Han et al.,

2004; Baudry et al., 2010; Song et al., 2012). There are more

than 700 F-box genes in the Arabidopsis genome (Gagne

et al., 2002), although it is unclear whether direct links

occur between other F-box genes and flowering.

Here, we identified an F-box gene At1 g55660 named

FOF2 (F-box of flowering 2) that regulates the floral transi-

tion in Arabidopsis. We demonstrate that FOF2 is a pho-

toresponsive gene, regulated by the autonomous pathway,

and promotes FLC expression to inhibit flowering. Our

results suggest a possible mechanistic link between light

conditions and the autonomous floral promotion pathway.

RESULTS

FOF2 overexpression delays flowering

To identify novel F-box genes that regulate flowering, we

conducted large-scale gain-of-function screening by clon-

ing approximately 664 F-box genes (Gagne et al., 2002)

into Myc-tagged pEarleyGate203 (N-Myc) vectors under

the control of the cauliflower mosaic virus (CaMV) 35S pro-

moter. By surveying the phenotypes of transgenic lines,

we identified two F-box genes, FOF1 (F-box of flowering 1;

Wang, 2012) and FOF2, which were named according to

the order of their discovery. FOF2 expression under the

control of the CaMV 35S promoter resulted in later flower-

ing under both long-day (LD) and short-day (SD) condi-

tions (Figure 1a and b). The mRNA and protein levels of

FOF2 accumulated in the transgenic lines (Figure 1c

and d), demonstrating that FOF2 was overexpressed. Here-

after, the transgenic lines are named MycFOF2ox. The

MycFOF2ox lines flowered with an average of 23 leaves

under LD conditions and 71 leaves under SD conditions

(compared with 11 and 53 leaves under LD and SD condi-

tions for the wild type, respectively; Table S1), and pro-

duced visible inflorescences approximately 10 and 35 days
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later under LD and SD conditions, respectively, compared

with that of the wild-type controls (Figure 1e; Table S1).

These results indicated that MycFOF2ox lines flowered

much later under SD conditions compared with LD condi-

tions; thus, FOF2 transgenic plants retain a photoperiodic

response.

Mutation both of FOF2 and its homolog FOL1 accelerates

flowering in Arabidopsis

The derived FOF2 protein contains at least three different

domains (Figure S1a), and its N-terminal domain exhibits

homology with F-box proteins (Figure S1b). The T-DNA

insertion mutants fof2-1 (SALK_016168C) and fof2-2

(SALK_061523C), which were identified to be null mutants,

exhibit no phenotypic alterations compared with wild-type

Col-0 (Appendix S1; Figure S2). This could be because of

functional redundancy with other F-box protein(s). There-

fore, we used a typical dominant-negative mutation

approach (Margottin et al., 1998; Hart et al., 1999;

Risseeuw et al., 2013). This strategy exploits the role of the

F-box domain as a major protein–protein interaction

domain of F-box proteins; therefore, the overexpression of

an F-box deletion mutation could cause a dominant-nega-

tive loss-of-function phenotype. We prepared transgenic

lines overexpressing the F-box deletion mutant of FOF2,

named MycFOF2DF (Figure S3a–d). The MycFOF2DF lines

flowered earlier and produced less leaves at flowering rela-

tive to the wild type under LD and SD conditions (Fig-

ure S3e; Table S2). These results suggest a role for FOF2

in regulating floral initiation, and that FOF2 might function

redundantly with other F-box protein(s).

A blast search showed that Arabidopsis has two closely

related homologs At4 g00315 (= 0.0) and At4g15060

(= 1e�28), named FOL1 (FOF2-LIKE 1) and FOL2 (Figure S4).

The T-DNA insertion mutants fol1-1 (CS26289) and fol1-2

(CS26467), which were identified to be null mutants, did

not show any phenotypic alterations compared with wild-

type Ler (Appendix S1; Figure S5). Because the null mutant

of fof2 and fol1 are in the Col and Ler backgrounds, respec-

tively, we therefore generated the double mutant of FOF2

and FOL1 by using the clustered regularly interspaced

short palindromic repeats (CRISPR)/CRISPR-associated pro-

tein 9 (Cas9) (Figure 2a), which allows multiplex genome

editing (Li et al., 2013). Target mutations induced by Cas9

in the target regions were a one-nucleotide (1-nt) insertion

in FOL1 and FOF2, or a 4-nt deletion in FOF2 and a 1-nt

deletion in FOL1 (Figure 2b). Both of these, named CR-fof2-

fol1-m1 and CR-fof2fol1-m2, had an early flowering pheno-

type, as measured by the number of leaves or by days to

flowering at bolting (Figure 2c, d; Table S3). These results

suggested that FOF2 functions with FOL1 at lest partially

redundantly in regulating flowering time.

FOF2 is a nuclear protein

To determine the cellular localization pattern of the FOF2

protein, transiently transformed Nicotiana benthamiana

(tobacco) expressing GFP-FOF2 or FOF2-GFP fusion pro-

teins were analyzed. In transgenic tobacco, a GFP signal

was detected in the nuclei of epidermal cells (Figure 3a),

suggesting that FOF2 might form an Skp, Cullin, F-box con-

taining complex (SCF complex) in which the FOF2 protein

provides a binding site to regulate the protein levels of tar-

get transcription factors, which then regulate the transcrip-

tion of target genes.

FOF2 interacts with the ASK14 protein

The F-box protein interacts with Skp1 in the SCF complex

(Gagne et al., 2002). There are 21 Skp1 homologs, ASKs, in

the Arabidopsis genome. It was reported that proteins

Figure 1. Overexpression of FOF2 results in later flowering. (a) Expression

construct of the FOF2 gene under the control of the CaMV 35S promoter.

35S, CaMV 35S promoter; Myc, Myc tag. (b) 35- and 145-day-old FOF2 trans-

genic plants grown under long days (LD; 16-h light/8-h dark) or short days

(SD; 8-h light/16-h dark), respectively. (c) Immunoblots showing the expres-

sion of MycFOF2 fusion protein in FOF2 transgenic plants and the wild type

(Col); Ponceau staining was used as a loading control. (d) The mRNA

expression level of FOF2 in FOF2 transgenic plants and the wild type (Col).

FOF2 expression was normalized to ACTIN 2 (ACT2) expression. Bars repre-

sent the standard deviations of three independent experiments. (e) The days

to flower and the number of rosette leaves at the day floral buds became

visible. Standard deviations (n ≥ 20) are shown. Significant differences

between the wild-type and the transgenic lines are indicated: ***P ≤ 0.001

(Tukey’s least significant difference test).

© 2017 The Authors
The Plant Journal © 2017 John Wiley & Sons Ltd, The Plant Journal, (2017), 91, 788–801

790 Reqing He et al.



carrying leucine rich repeat (LRR) and FBD domains

showed a preference for ASK3 and ASK4, followed by

ASK1, ASK2 and ASK11–ASK14 (Kuroda et al., 2012). FOF2

contains the LRR and FBD domain (Figure S1), and we

therefore checked the interaction of FOF2 with ASK1–ASK4
and ASK11–ASK14 by bimolecular fluorescence comple-

mentation (BiFC) assay. FOF2 interacts with ASK13 and

ASK14 in nucleus Arabidopsis protoplasts (Figures 3b and

S6). FOF2 with an F-box domain deletion can nullify these

interactions (Figure 3b), suggesting that the F-box domain

is required for the interaction of FOF2 with ASK13 and

ASK14. Consistent with the BiFC result, FOF2 interacts with

ASK14 in the coimmunoprecipitation experiment (Fig-

ure 3c); however, ASK13-Flag was not pulled down by

Myc-FOF2, although ASK13 and FOF2 combined show a

strong BiFC signal (Figure 3b and c). Because many fac-

tors, such as protein expression levels, protein folding effi-

ciency and protein stability, may lead to false-positive/-

negative BiFC results (Lalonde et al., 2008; Kudla and Bock,

2016), further studies are needed to confirm the interaction

with ASK13 and FOF2.

Expression of FOF2 during floral transition

Because FOF2 is involved in the control of flowering time,

we examined FOF2 expression in developing seedlings

under LD conditions and found that FOF2 expression levels

decreased at day 7 after germination, and then remained

at lower levels from days 7 to 19 during floral transition

(Figure 4a). The FOF2 homolog, FOL1, showed a similar

expression pattern in developing seedlings (Figure S7a). A

similar result was also observed in the FLC (Shen et al.,

2014; Figure S7b). We then examined the protein level of

FOF2 in developing seedlings using transgenic plants

expressing the MycFOF2 fusion protein, because none of

the antibodies we prepared against FOF2 recognized the

endogenous FOF2. The immunoblot results showed that

the protein level of FOF2 remained unchanged during

days 4–8 after germination, and then decreased during the

floral transition that occurred 10–14 days after germination

in our study (Figure 4b and c); however, the mRNA expres-

sion of the MycFOF2 (35S::Myc-FOF2) transgene was

nearly unchanged in the developing seedlings (Fig-

ure S7c), which suggests that FOF2 is regulated by devel-

opmental stages at both the transcriptional and protein

levels under the conditions tested. The expression pattern

of FOF2 in developing seedlings is well correlated with its

negative role in floral transition.

FOF2 acts as a positive regulator of FLC mRNA expression

To determine the molecular mechanism by which FOF2

regulates flowering, we compared the gene expression

profiles of the wild-type Col4 and the MycFOF2ox plants

using RNA-seq (Appendix S2). Expression of FOF2 in the

transgenic plants was higher than that in the wild-type

plants (Table S4), which is consistent with our qRT-PCR

results (Figure 1d). A number of repressors of flowering in

Figure 2. Double mutants with FOF2 and FOL1 gen-

erated by targeted gene editing showing early flow-

ering. (a) Structure of the CRISPR/Cas9 vector. The

expression cassette of hSpCas9 is driven by the

YAO promoter, whereas sgRNA is driven by the

AtU6-26 promoter. (b) Sequences of single mutant

alleles of FOF2 and FOL1 identified from CR-fof2

fol1-m1 and CR-fof2 fol1-m2 transgenic plants. The

wild-type sequence is shown at the top, with the

PAM sequence highlighted in red and the target

sequence highlighted in blue. +, insertion; D, dele-
tion. (c) 27-day-old transgenic plants of CR-fof2

fol1-m1 and CR-fof2 fol1-m2 grown under long days

(LD). (d) The days to flower and the number of

rosette leaves at the day floral buds became visible.

Standard deviations (n ≥ 40) are shown: **P ≤ 0.01

(Tukey’s least significant difference test).
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Arabidopsis, including the key floral repressor FLC and its

close homologs MADS AFFECTING FLOWERING 4 (MAF4)

and MAF5 (Ratcliffe et al., 2003) were upregulated, and

integrators that promote flowering, including FT and

SOC1, were downregulated in the MycFOF2ox plants

(Table S4), and their expression levels were then con-

firmed by qRT-PCR. Consistent with the RNA-seq results,

upregulation of FLC and downregulation of FT and SOC1

were observed in the MycFOF2ox plants under LDs, and

the same expression profile was also observed under SDs

(Figure 5a). MAF4 and MAF5 were only moderately

induced under LDs, and no difference was observed

between the wild-type and MycFOF2ox plants under SDs

(Figure S8a). FT and SOC1 have been reported to be tar-

gets of FLC, and their expression was repressed by FLC

(Helliwell et al., 2006). Thus, we predicted that FOF2 could

delay flowering by inducing FLC expression, which sup-

presses the expression of FT and SOC1.

To further investigate the genetic interaction between

FOF2 and FLC, the effect of an flc mutation on the pheno-

type of MycFOF2ox was determined. Accordingly, we

crossed the flc-3 mutant, which lacks full-length FLC but

has a functional FRI (Michaels and Amasino, 2001), into

Figure 3. FOF2 expressed in nucleus and interacts with ASK14. (a) FOF2

expressed in nucleus. Subcellular localization of fused GFP-FOF2 or FOF2-

GFP in Nicotiana benthamiana epidermal cells. The GFP and 40,6-diamidine-

20-phenylindole dihydrochloride (DAPI) fluorescence images were taken

from the same cell and merged by the MERGE program in PHOTOSHOP (Merge).

Scale bar: 50 lm. (b) Bimolecular fluorescence complementation (BiFC)

experiment showing the interactions of ASK13 and ASK14 with FOF2, but

not with FOF2DF in Arabidopsis protoplasts. The GFP and chloroplast fluo-

rescence images were taken from the same protoplasts and merged by the

MERGE program in PHOTOSHOP (Merge). Scale bar: 10 lm. (c) Coimmunoprecip-

itation (Co-IP) experiment showing the interactions of FOF2 with ASK14, but

not with ASK13. Co-IP was performed using tobacco. Immunoprecipitates

against anti-Myc antibody (IP) or crude extracts (Input) were analyzed via

immunoblots using anti-Myc or -Flag antibody.

Figure 4. Expression of FOF2 in a developing seedling of Arabidopsis. (a)

Temporal expression of FOF2 in wild-type developing seedlings grown

under long days (LD). Gene expression was normalized to ACT2 expression.

Bars represent the standard deviations of three independent experiments.

(b) Immunoblots showing the expression of the MycFOF2 fusion protein in

MycFOF2ox seedlings grown under LD conditions. The anti-HSP90 antibody

was used as the loading controls. Levels of protein expression are shown

as the representative immunoblots. (c) The relative protein expression level

of FOF2 (mean � SE) was calculated from triplicate independent reactions.

The error bars represent SDs.

© 2017 The Authors
The Plant Journal © 2017 John Wiley & Sons Ltd, The Plant Journal, (2017), 91, 788–801

792 Reqing He et al.



Figure 5. flc-3 mutation can rescue the late flower-

ing phenotype of MycFOF2ox plants. (a) FLC is

upregulated and FT and SOC1 are downregulated

in MycFOF2ox plants. (b) 35- and 114-day-old

MycFOF2ox/flc-3 plants grown under long days (LD)

or short days (SD). (c, d) The time to flowering and

the number of rosette leaves at the time of flowering

of the indicated photoperiods: LD (c) and SD (d). Sig-

nificant differences are indicated, ***P ≤ 0.001

(Tukey’s least significant difference test). (e, f) The

mRNA level of FT and SOC1 expression in 12-day-

old seedlings under LD (e) or in 26-day-old seedlings

under SD (f). Samples are collected every 4 h for

1 day. The white/black bars indicate light/dark

phases. The time (hour) of light on at sample collec-

tion is set as zero. Bars represent the standard devia-

tions of three independent experiments.

© 2017 The Authors
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the MycFOF2ox plant background (Figure S9) and analyzed

its flowering time under LD and SD conditions. The late

flowering phenotype of MycFOF2ox was suppressed by

the flc mutation, and MycFOF2ox/flc-3 flowered with a sim-

ilar number of rosette leaves at flowering and days to bolt-

ing as the flc-3 mutant under both photoperiods

(Figure 5b–d). These results are consistent with a model in

which FOF2 and FLC act in the same pathway, with FOF2

acting upstream of FLC and presenting FLC expression-

dependent flowering regulation.

To test whether FOF2 suppresses FT and SOC1 expres-

sion via FLC, the expression of FT and SOC1 in the MycFO-

F2ox/flc-3 plants were analyzed. As shown in Figure 5, the

transcripts of FT and SOC1 increased significantly in the

MycFOF2ox/flc-3 plants, and there were similar levels of FT

and SOC1 transcripts in both the MycFOF2ox/flc-3 and flc-3

plants under both LDs and SDs (Figure 5e and f), showing

that the ability of FOF2 to suppress the expression of FT

and SOC1 is mainly dependent on the promotion of FLC

expression. Taken together, these results demonstrated

that the late flowering phenotype of MycFOF2ox plants is

genetically controlled by the promotion of FLC mRNA

expression.

To investigate how FOF2 stimulates FLC expression, we

first performed chromatin immunoprecipitation assays

using MycFOF2ox seedlings (Appendix S3). The prelimi-

nary results revealed that FOF2 does not associate with the

FLC genomic sequence (Figure S10), suggesting that FOF2

is not a transcriptional co-factor for flowering regulation.

Another possibility is that the FOF2 protein stimulates FLC

expression via proteasome-mediated degradation of its

negative regulators, such as FPA, FCA, FLD, FLK, FVE, LD

and FY, which promote flowering by suppressing FLC

expression in the autonomous pathway (Simpson, 2004).

To test this hypothesis, we examined the interactions with

FOF2 and these negative regulators using the yeast two-

hybrid (Y2H) assay (Appendix S4). FOF2 did not interact

with any of these regulators (Figure S11), suggesting that

FOF2 might interact with one of the regulators in vivo or

regulate other unknown negative regulators. Because FLC

is a potent negative integrator of flowering, multiple regu-

lators of FLC have been continuously identified in recent

years (Lee et al., 2015; Shu et al., 2016).

Regulation of FOF2 mRNA expression by conventional

flowering pathways

The expression of FOF2 was not affected in the mutants of

the important flowering regulator genes, including the

photoperiodic pathway genes (CO, GI and ELF3), tempera-

ture pathway genes (SVP and AGL24) and genes that inte-

grate flowering signals from various genetic pathways (FT,

SOC1, FD and FLC) (Blumel et al., 2015; Figure S12a–c).
Interestingly, FOF2 expression was altered in the fca-1

mutant (Figure 6a), but not in the other autonomous

pathway mutants (Figure S12d). The expression level of

FOF2 was elevated in the fca-1 mutant, which is late flow-

ering under both LD and SD conditions and in response to

vernalization (Koornneef et al., 1991). Subsequently, the

transcription level of FCA was measured in MycFOF2ox

plants to determine whether FOF2 affects its expression;

however, FCA expression was not affected in the MycFO-

F2ox plants (Figure 6b). These results suggest that FOF2 is

likely to function downstream of FCA in the autonomous

pathway.

A vernalization response is a feature of autonomous

pathway mutants (Martinez-Zapater and Somerville, 1990).

Therefore, we determined whether FOF2-overexpressing

lines respond to vernalization. As expected, after vernaliza-

tion the MycFOF2ox lines flowered with similar leaf num-

bers and exhibited the same number of days to flowering

as the wild-type plants (Figure 6c and d). Moreover, the

expression of FLC decreased and the expression of FT and

SOC1 increased in the wild type (Col) and MycFOF2ox lines

(Figure 6e–g), indicating that vernalization can overcome

the flowering defects of FOF2 transgenic lines. Further-

more, similar to FLC, the FOF2 response to vernalization

and its expression decreased after long periods of cold

treatment (Figure 6h). Taken together, these results sug-

gest that FOF2 is regulated by the autonomous pathway.

Light regulates FOF2 mRNA and protein expression

Interestingly, our analyses showed that although FOF2

appears to be a regulator of the major floral repressor gene

FLC, FOF2 itself is photoresponsive. The FOF2 mRNA

expression was approximately 5-, 20- and 80-fold higher in

the blue, red and far-red light-grown seedlings than in the

etiolated seedlings, and the light-induced FOF2 expression

was impaired in the cry1 cry2, phyB and phyA mutants,

respectively (Figure 7a). Consistent with observations

under continuous light conditions, the expression of FOF2

is transiently induced and increases immediately after light

treatment; however, FOF2 showed reduced blue, red or far-

red light induction in the cry1 cry2, phyB or phyA mutants,

respectively (Figure 7b). These results indicated that cryp-

tochromes, phyB and phyA are the major blue, red or far-

red light receptors required for the light induction of FOF2

expression. Because FOF2 expression is higher in light

than in dark conditions, it was of interest to determine the

dark regulation of FOF2 expression. As expected, the tran-

scription levels of FOF2 decreased dramatically after the

dark treatment, and decreased 11-fold after 2 h of dark

treatment (Figure 7c).

We next analyzed the protein level of FOF2 under differ-

ent light conditions. Consistent with the steady-state

mRNA expression of FOF2, the FOF2 protein level was

more abundant under light than under dark conditions

(Figure 7d). Interestingly, the FOF2 protein levels

decreased in response to transient dark treatment and then

© 2017 The Authors
The Plant Journal © 2017 John Wiley & Sons Ltd, The Plant Journal, (2017), 91, 788–801

794 Reqing He et al.



increased when exposed to light (Figure 7e and f); how-

ever, the mRNA expression of the MycFOF2 transgene

showed little change in response to light or dark treatment

(Figure S13), suggesting that FOF2 protein expression is

regulated at the post-transcriptional level.

Because FOF2 is regulated by light at both the mRNA

and protein levels, we determined whether protein degra-

dation or synthesis is a key regulatory step that results in

the differential abundance of FOF2 under light and dark

conditions. The level of FOF2 decreased within 5 h under

both light and dark conditions in the presence of the cyto-

plasmic protein synthesis inhibitor cycloheximide,

although the rate of decrease was significantly greater

under dark conditions (Figure 7g). The reduced levels of

FOF2 in the dark could have been caused by the degrada-

tion of pre-existing proteins. Therefore, to investigate how

the FOF2 protein is degraded in darkness, we examined

the FOF2 protein levels in MycFOF2ox plants treated with

the proteasome inhibitor MG132. The levels of the FOF2

protein decreased quickly in the absence of MG132 (Fig-

ure 7h), although its degradation was inhibited to a large

extent in the presence of MG132 after the transfer to dark

conditions, suggesting that the FOF2 protein could be

degraded via the 26S proteasome pathway in the dark.

The light regulation pattern of FOF2 expression

observed here is similar to that of transcription factors,

such as HYH and HY5, which are accumulated in light and

degraded in darkness at the mRNA and protein levels

(Osterlund et al., 2000; Holm et al., 2002). It has been

reported that COP1 mediates the light regulation of HYH

and HY5 (Osterlund et al., 2000; Holm et al., 2002). There-

fore, we investigated whether COP1 mediates the light reg-

ulation of FOF2. In this experiment, we introduced

MycFOF2 into the cop1-6 mutant and examined the protein

level of the MycFOF2 transgene. The immunoblot results

showed that the MycFOF2 protein was still degraded in

darkness (Figure S14), suggesting that its light regulation

was not mediated by COP1. Additionally, the hypocotyl

length of the MycFOF2ox seedlings was equivalent to that

of the wild-type seedlings grown under both light and dark

conditions (Appendix S5; Figure S15a–c). Together, these

results indicate that FOF2 could function as a flowering

pathway-specific regulator.

DISCUSSION

The F-box protein FOF2 is involved in regulating flowering

Here, we characterized the flowering regulator FOF2, which

was previously identified as a member of the F-box protein

family in Arabidopsis (Gagne et al., 2002). Transgenic lines

overexpressing FOF2 exhibited delayed transitions to flow-

ering under both LD and SD conditions (Figure 1), whereas

the transition to flowering was unaffected in the T-DNA

Figure 6. The mRNA expression of FOF2 is upregulated in the fca-1 mutant,

and vernalization can overcome the late flowering phenotype of MycFOF2ox

plants. (a, b) FOF2 expression in 12-day-old fca-1 plants (a) and FCA expres-

sion in 12-day-old MycFOF2ox plants (b). Samples are collected every 4 h

for 1 day. The white/black bars indicate light/dark phases. The time (hour)

of light on at sample collection is set as zero. Bars represent the standard

deviations of three independent experiments. (c) 23- and 63-day-old plants

with vernalization treatment grown under LD or SD conditions. After

7 weeks of vernalization treatment, the seedlings were transferred to soil

and grown under LD or SD conditions. (d) The time to flowering and the

number of rosette leaves at the time of flowering of the indicated photoperi-

ods: LD and SD. Standard deviations (n ≥ 20) are shown. (e–h) FLC (e), FT

(f) and SOC1 (g) mRNA expression in MycFOF2ox and wild-type (Col)

plants, and FOF2 (h) mRNA expression in wild-type (Col) plants with (VL)

and without (NVL) vernalization treatment. Seeds were sown on MS med-

ium and vernalized at 4°C in the dark for 7 weeks. The 12-day-old seedlings

grown under LD conditions were harvested for qRT-PCR analysis. Bars rep-

resent the standard deviations of three independent experiments.
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insertion mutant of FOF2 (Figure S2). These observations

may have been related to the functional redundancy of

FOF2 with other homologous F-box protein(s) because the

MycFOF2DF plants with an F-box deletion mutant showed

early flowering under both LD and SD conditions (Fig-

ure S3). F-box proteins with deleted F-box domains cannot

Figure 7. Light regulation of FOF2 expression. (a–c) The mRNA expression level of FOF2 in response to different light conditions: (a) 6-day-old seedlings grown

under continuous light or darkness; (b) 6-day-old etiolated seedlings were exposed to blue, red or far-red light for the indicated times; (c) seedlings grown under

white light (100 lmol m�2 sec�1) for 6 days, and then transferred into darkness for the indicated times. Samples were collected and examined by qRT-PCR. Bars

represent the standard deviations of three independent experiments. (d–f) Immunoblots showing levels of the FOF2 protein in response to different light condi-

tions. (d) Plants were grown in continuous white light or in the dark for 6 days. (e) 6-day-old seedlings grown in continuous white (100 lmol m�2 sec�1), blue

(20 lmol m�2 sec�1), red (30 lmol m�2 sec�1) or far-red light (20 lmol m�2 sec�1) were transferred to dark for the indicated times, and then exposed back to the

indicated light for various time periods. Levels of protein expression are shown by representative immunoblots. (f) The relative protein expression level of FOF2

(mean � SE) was calculated from triplicate independent reactions. The error bars represent the SDs. (g) Immunoblots showing levels of the FOF2 protein treated

with or without cycloheximide. Ponceau staining was used as a loading control. The indicated cW samples are without cycloheximide treatment. (h) Immunoblots

showing levels of the FOF2 protein in the absence or presence of the proteasome inhibitor MG132. anti-CRY1 antibody was used as the loading control.
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interact with ASK proteins (Maldonado-Calderon et al.,

2012); therefore, they were unable to form the SCF ligase

and failed to mediate the degradation of substrates by the

26S proteasome, which results in a dominant-negative

effect on substrate degradation, and allows for the accu-

mulation of substrates in cells (Margottin et al., 1998; Hart

et al., 1999; Risseeuw et al., 2013; Yumimoto et al., 2013).

Thus, we postulated that the opposite flowering pheno-

types of the FOF2DF and FOF2 overexpression plants might

have been caused by a similar mechanism. As expected,

FOF2 interacted with ASK14 in vivo, and their interaction

was dependent on the F-box domain (Figure 3b and c).

Based on these results, a possible explanation for the flow-

ering phenotype of MycFOF2DF plants is that the highly

expressed FOF2DF protein may compete with FOF2 and its

homologs to interact with substrates, which would lead to

the accumulation of the substrates of FOF2 and its homo-

logs, thereby promoting flowering. The double mutation of

FOF2 and its homolog FOL1 accelerates flowering time in

Arabidopsis to some extent (Figure 2), which confirmed

that FOF2 functions redundantly with FOL1 at least partially

in regulating flowering.

Consistent with the late flowering phenotype, the flower-

ing gene FLC, which is a central flowering repressor in the

vernalization and autonomous pathways (Michaels and

Amasino, 1999; Sheldon et al., 1999), was upregulated,

and the flowering genes SOC1 and FT, which are Ara-

bidopsis flowering pathway integrators that promote flow-

ering (Lee and Lee, 2010; Pin and Nilsson, 2012), were

downregulated in plants overexpressing FOF2 (Figure 5a).

MycFOF2DF plants and the fof2 fol1 double mutant

showed decreased FLC and increased SOC1 and FT expres-

sion, however (Figure S8b and c). According to these phys-

iological and molecular data, we conclude that the F-box

protein FOF2 plays a negative role in regulating flowering

time in Arabidopsis.

FOF2 is subject to autonomous pathway regulation

Plants overexpressing FOF2 showed a strong short-day

period response and flowered much later than those under

LD conditions (Figure 1b and e; Table S1), indicating that

FOF2 transgenic plants retain a photoperiod response.

Additionally, FOF2 expression was downregulated by ver-

nalization (Figure 6h) and FCA (Figure 6a), which is an

important regulator of the autonomous pathway (Koorn-

neef et al., 1991), although it was not regulated by CO (Put-

terill et al., 1995) and SVP (Lee et al., 2007) (figure S12a

and b), which are the central regulators of the LD and ther-

mosensory pathways, respectively. Moreover, the late

flowering phenotype of the MycFOF2ox plant was com-

pletely abolished by vernalization (Figure 6c and d), and

this effect was observed in the fca-1 mutant (Koornneef

et al., 1991). We therefore hypothesized that FOF2 is sub-

ject to autonomous pathway regulation, which needs

further confirmation from additional genetic and biochemi-

cal data.

Possible mechanism for FOF2 regulation of flowering

Our molecular and genetic data indicate that FOF2

represses flowering through the promotion of FLC

expression. One important question is that how FOF2

stimulates FLC expression. It has been reported that

F-box protein UNUSUAL FLORAL ORGANS (UFO) func-

tions together with the transcriptional co-factor of LEAFY

(LFY), and their interaction recruits UFO to AP3 promoter

elements, which in turn promotes AP3 transcription

(Chae et al., 2008). Unlike UFO, FOF2 does not associate

with the FLC genomic sequence (Figure S10). We there-

fore speculated that the FOF2 protein might promote FLC

expression by proteasome-mediated degradation of its

negative regulators; however, our Y2H assay results

showed no interaction between FOF2 and the indicated

negative regulators (Simpson, 2004; Figure S11). Future

studies should aim to test whether FOF2 interacts with

one of the regulators in vivo or to identify additional sub-

strates.

Another important question is how FOF2 regulates FT

expression. FOF2 overexpression downregulates FT and

SOC1 expression (Figure 5a), indicating that FT and

SOC1 function downstream of FOF2. Because the tran-

scription of CO, the major activator of FT, was unaffected

in the MycFOF2ox plants (Figure S8a), we proposed that

the decreased FT and SOC1 expression might have been

caused by the elevated FLC expression in the MycFOF2ox

plants because FT and SOC1 are regulated by the floral

repressor FLC via direct binding (Helliwell et al., 2006).

As expected, the transcriptional levels of FT and SOC1

were elevated in MycFOF2ox/flc-3 plants without func-

tional FLC, and were increased to similar levels in flc-3

mutants (Figure 5e and f). These results strongly suggest

that FOF2 regulates FT and SOC1 expression mainly

through FLC.

FOF2 is photoresponsive

In this study, we showed that FOF2 is a photoresponsive

gene regulated by light at both the transcriptional and

post-translational levels. Although the expression pattern

of FOF2 is similar to that of the transcription factors HYH

and HY5 (Osterlund et al., 2000; Holm et al., 2002), FOF2

is neither regulated by COP1 nor involved in photomor-

phogenesis (Figures S14 and S15). Furthermore, COP1

was recently shown to be involved in the regulation of

light input to the circadian clock via the modulation of

circadian rhythms and flowering (Xu et al., 2016). There-

fore, we hypothesized that the light signal may control

the level of the FOF2 protein to affect the autonomous

pathway regulating floral initiation in Arabidopsis

(Figure S15d).
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EXPERIMENTAL PROCEDURES

Plant materials and growth conditions

All Arabidopsis mutants used in this study were in the Columbia
(Col) background, unless otherwise noted (Table S5). fof2-1
(salk_016168), fof2-2 (salk_061523), fol1-1 (CS26289) and fol1-2
(CS26467) seeds were obtained from the Arabidopsis Biological
Resource Center (http://www.arabidopsis.org). fol1-1 and fol1-2
mutants are in the Landsberg erecta (Ler) background. The Myc-
FOF2ox/flc-3 plant was prepared by crossing MycFOF2ox and flc-3
mutants. The genotyping of the flc-3 alleles was performed as
described by Michaels and Amasino (1999).

For flowering analysis, plants were grown on soil in a culture
room at 22°C. The photoperiod was 16 h of light and 8 h of dark
for the LD conditions, and 8 h of light and 16 h of dark for the SD
conditions. The flowering time was determined by counting the
number of rosette leaves after bolting and the days from sowing
to floral bud formation, as described (Mockler et al., 2003).

For studies of light-regulated mRNA expression, the samples
were prepared as described in our previous study (Zhao et al.,
2007). Seedlings were grown on MS medium in the dark for
6 days before transfer to various light conditions. For light-regu-
lated protein expression analysis, 6-day-old seedlings grown on
MS medium in various light conditions were transferred to the
dark for the indicated times, and then exposed back to light condi-
tions for various periods of time.

Plasmid construction and plant transformation

To identify F-box genes regulating flowering, the full-length CDS
of about 664 F-box genes (Gagne et al., 2002) were first cloned in
the pDONR/ZEO Gateway donor vector, and then transferred to
Myc-tagged pEarleygate203(N-Myc) vector under the control of
the CaMV 35S promoter via recombination-based cloning, as
described in our previous study (Peng et al., 2012). The constructs
were then transformed into Col-4 wild-type Arabidopsis using the
floral-dip method (Clough and Bent, 1998). The T1 seeds were har-
vested, sown on compound soil submerged in the herbicide
Basta, as described by Zhao et al. (2007), incubated in a cool room
for 4 days and then transferred into LD conditions. The herbicide-
resistant transgenic lines that showed earlier or later flowering
than that of wild type Col-4 plants were selected as putative F-box
of flowering (FOF) lines, which were subjected to further genetic
analysis. The MycFOF2ox/cop1-6 plant was prepared by introduc-
ing MycFOF2 into the cop1-6 mutant. The plasmid MycFOF2DF
was prepared by cloning the fragments with a deletion of
residues 2–100 into the pEarleygate203(N-Myc) vector.

To generate the CRISPR/CAS9 system targeting both FOF2 and
FOL1, the binary vector pCambia-bar plasmid was used as the
backbone. The pYAO:hSpCas9 cassette fragments were amplified
from pYAO:hSpCas9 plasmid (Yan et al., 2015) with the primers
pYAO-F and NOS-R, and cloned into EcoRI and HindIII sites in the
pCambia-bar vector to generate the pYAO:hSpCas9-bar construct.
Subsequently, the AtU6-26 promoter (Yan et al., 2015) was ampli-
fied from Arabidopsis Col-4 genomic DNA using the primers
AtU6-26-F and AtU6-26-R. The guide RNA and scaffold-infused
fragment (target-sgRNA) was obtained by PCR with pU3-gRNA
(Shan et al., 2013), using the sense primer target-F, containing
guide RNA sequences targeting both FOF2 and FOL1, and the anti-
sense primer scaffold-R, containing the In-fusion reaction adaptor.
The AtU6-26-target-sgRNA cassette was prepared by infusing the
AtU6-26 promoter and target-sgRNA fragment using the primer
pairs AtU6-F and scaffold-R, and then inserted into the SpeI and

MluI sites in the pYAO:hSpCas9-bar construct by using the In-
Fusion cloning system (Clontech, https://www.clontech.com). The
primers used are listed in Table S6.

Vernalization treatment

Seeds were grown on MS medium at 4°C for 7 weeks in the dark.
Post-vernalization samples continued to grow for 7 days on plates
under LD or SD conditions at 22°C. All plant samples were pre-
pared after 16 h of light under LD conditions for RNA analyses, or
transferred to normal growth conditions (22°C, LDs or SDs) on soil
until flowering.

mRNA and protein expression analyses

For mRNA analysis, total RNAs were extracted using RNAiso Plus
(TaKaRa, http://www.takara-bio.com), and reverse transcribed
using PrimeScript RT reagent Kit with gDNA Eraser (TaKaRa),
according to the manufacturer’s instructions. Both the semiquanti-
tative RT-PCR and quantitative RT-PCR (qRT-PCR) was performed
as described in our previous study (Peng et al., 2012). The mRNA
level of ACTIN2 was used as the internal control. The primers are
listed in Table S6.

For protein analysis, total proteins were extracted and sepa-
rated on 10% SDS-PAGE gels and transferred to nitrocellulose
membranes for immunoblots. The blots were probed by anti-MYC
antibody, anti-HSP90 or anti-CRY1 antibody for the loading con-
trol. The immunoblot signals were quantified using IMAGEJ (http://
rsb.info.nih.gov/ij/).

Subcellular localization analysis

The full-length coding regions of FOF2 were cloned into pEGAD-
GFP or pCAMBIA2300-GFP vectors using primers listed in
Table S6 to generate GFP-FOF2 and FOF2-GFP constructs, respec-
tively. The constructs were infiltrated into 3-week-old N. ben-
thamiana (tobacco) leaves as described previously (Sparkes et al.,
2006; Meng et al., 2013). The GFP-FOF2 or FOF2-GFP signal was
observed using a confocal microscope (Nikon, http://www.nikon.c
om).

BiFC assay

For the BiFC assay, the FOF2 and FOF2DF encoding sequences
were inserted into pSAT1-cCFP-N to form a C-terminal in-frame
fusion with cCFP, and ASK encoding sequences were introduced
into pSAT1-nVenus-N to generate a C-terminal in-frame fusion
with nVenus using primers listed in Table S6. BiFC was performed
as described by Yoo et al. (2007). The fluorescence emission of
GFP was observed under a confocal microscope (Nikon).

Coimmunoprecipitation (Co-IP) assay

The full-length coding regions of ASK13 and ASK14 were cloned
into pCAMBIA1300-Flag using the primers listed in Table S6 to
generate ASK13-Flag and ASK14-Flag constructs, respectively.
Transient co-expressions of both Myc-FOF2 and ASK13-Flag or
ASK14-Flag proteins in tobacco were performed as described pre-
viously (Sparkes et al., 2006; Meng et al., 2013). Total proteins
were extracted and incubated with Red anti-c-Myc Affinity Gel
(Sigma-Aldrich, https://www.sigmaaldrich.com) overnight for
immunoprecipitation. The beads were washed three times with
wash buffer, and protein complexes were eluted from beads with
19 SDS loading buffer and subjected to immunoblot analysis.
The blots were probed by anti-Myc and anti-Flag antibody,
respectively.
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Cycloheximide and MG132 treatments

Cycloheximide and MG132 treatment experiments were carried
out as described in our previous study, with minor modification
(Yu et al., 2007). For MG132 treatment, 6-day-old seedlings grown
on MS medium in white light were excised into 2–5-mm-long sec-
tions and incubated in 50 lM MG132 (Sigma-Aldrich) or in mock
solution (0.1% DMSO) for 5 h and then placed under white light or
in darkness for the indicated time before sampling. For cyclohex-
imide treatment, the seedlings were incubated in 300 lM cyclo-
heximide (Sigma-Aldrich) or in mock solution (0.1% DMSO), and
placed under white light or in darkness for the indicated time
before sampling.
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