UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Situated Sense-Making: A Study of Conceptual Change in Activity-Based Learning

Permalink
https://escholarship.org/uc/item/0hf0j60\

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 15(0)

Authors
Chee, Yam San
Tan, Jee Teck
Chan, Taizan

Publication Date
1993

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/0hf0j60v
https://escholarship.org
http://www.cdlib.org/

Situated Sense-Making: A Study of Conceptual Change
in Activity-Based Learning

Yam San Chee
Jee Teck Tan
Taizan Chan
Department of Information Systems and Computer Science
National University of Singapore
Lower Kent Ridge Road
Singapore 0511
Email: cheeys@iscs.nus.sg

Abstract

Sense-making is an essential process in learning for
understanding. We describe a study of sense-making
involving two pairs of students learning basic
elements of the visual programming language
Prograph. The study emphasizes the critical role of
activity in mediating concept development and
refinement. Video protocols of leaming behavior were
recorded and analyzed. The analysis focuses on the
situated nature of the meaning construction process. It
reveals how exploration, explanation, and expectation
play important roles in the sense-making process.

Introduction

In everyday learning as well as in situations of formal
education and training, sense-making is an important
cognitive activity. In recent years, researchers such as
Carroll (1990), Clancey (1991; Clancey & Roschelle,
1991), and Roschelle (1992) have engaged in
influential attempts to probe the nature of such
activity. In the context of these efforts, this paper
reports on an empirical study of two pairs of students
learning basic elements of the visual programming
language Prograph™,

In the sections that follow, we begin by setting out
the theoretical underpinnings of this research. Next,
we describe the study approach and the study setup.
Protocol segments are then presented and analyzed.
We conclude by summarizing what has been learnt.

Theoretical background

This research is theoretically rooted in the writings of
Vygotsky (1978, 1986, 1987). An important idea of
Vygotsky's thought was that activity, especially in a
socially-laden setting, could be fruitfully used as an

306

explanatory principle in psychological study. The
stimulus-response (S-R) paradigm can thus be
modified by letting activity take the place of the
hyphen in the S-R formula to yield object
activity < subject (Kozulin, 1986). In this way,
activity is given an important role as the factor that
mediates conceptual change through a learner’s
interaction with external objects. Consequently, we
view interaction with some concrete system capable
of behavior (acting and reacting to a learner's actions
or inputs) as essential to successful sense-making.

Our attention has also been drawn to the relevance
of research by Chi and her colleagues (eg. Chi,
Bassok, Lewis, Reimann, & Glaser, 1989; Chi &
VanLehn, 1991) on self-explanations. Chi et al.
(1989) describe a self-explanation as a comment about
an example statement that contains domain-relevant
information over and above what was stated in a
worked-out example. They found that the amount that
students learned while studying worked-out examples
is proportional to the number of self-explanations
generated by the students while studying examples.
Our case study observations indicate that explanations
also play an important role in sense-making activity.
In the context of our study, however, explanations are
made not only to the self, but also to a collaborating
student. In contrast to the work of Chi et al., our
students were not learning from worked-out examples
(that is, textbook-like examples with explanations).
Rather, they only had example Prograph programs to
inspect and the Prograph environment to navigate
within,

Our empirical observations lead us to propose that
exploration and expectation also play important roles
in sense-making. When students face an entirely new
situation (the Prograph programming environment in
our study), they rely on fairly ad hoc exploration to
bootstrap the sense-making process. In addition,
expectations based on prior knowledge quickly begin
to actively shape the sense-making process. Our
protocols suggest that expectation-driven leaming is a

mailto:cheeys@iscs.nus.sg

prominent feature of sense-making in general. More
successful learners explicitly create new expectations
of system behavior, then proceed to test whether the
expectations hold in practice—a form of hypothesis
testing.

In the description of the study that follows, we
provide evidence for the phenomena of exploration,
explanation, and expectation in learning activity for
sense-making.

Study approach and setup

The method adopted for this study is that of video
protocol analysis. It is similar to that employed in
Clancey & Roschelle (1991) and Roschelle (1992).
The analysis focuses on verbal as well as gestural
protocols. It includes some element of conversation
analysis (Goodwin & Heritage, 1990; Schegloff,
1991).

Programming language and learning
environment

This study is based on the learning of basic elements
of the Prograph™ programming language. Prograph
is a language developed by The Gunakara Sun
Systems for the Macintosh computer. It is a high-
level, pictorial, object-oriented programming
environment. The focus of our study has been
restricted to the dataflow and notational aspects of the
language.

Subjects

Our subjects were two pairs of first-year computer
science undergradautes. They had completed a
semester of Pascal and Cobol programming.
However, they had never before encountered the
notions of dataflow languages or visual
programming. The first pair of students comprised
Luke (L) and Charles (C); the second pair comprised
Jason (J) and Benny (B) (all names are fictitious).

Task

Each pair of students was provided with a set of basic
instructions for valid manipulations in the Prograph
interface (eg. how to add new nodes and links, how to
delete nodes and links, how to double-click on a node
to get more information on that node, etc.). The
students were then asked to study six already-coded
Prograph programs (methods in Prograph parlance) of
increasing complexity. They were informed that they

307

would later be required to code a subprogram to an
existing program. They were, therefore, to study the
six programs with a view to completing that task at
the end. Students were given no information on the
meanings of the (visual) language notations. They
were expected to interact with the programming
environment to make sense of the given programs.

Presentation and analysis of
protocols

In this section, we analyze two protocols to illustrate
the features of exploration, explanation, and
expectation in the sense-making process. We do not
attempt to examine these features one at a time
because they usually co-occur within episodes.

Protocol 1

In this protocol excerpt, we examine how Luke and
Charles try to make sense of program Third (see
Figure 1).

Third 2:2
it

Case amows

You get rubb...

ET== @@ Third 1:2 =RTTHEAE

SISSSSSSLSSSSSISSSSSSISSSISSS

Figure 1. The program Third.

When program Third executes, a dialog pops up
telling the user, "Enter 1 for ice cream, others for
rubbish." (see window "Third 1:2"). The program
then checks whether the user's input is a "1". If it is,
it shows the user a dialog saying, "You get ice
cream!".1 If the input is not 1 (the X symbol next to
the operation node denotes not), control passes to the
code in the next case (see window "Third 2:2") and a

1 The link between the operation icons “ask” and
“show” is called a syncro. It specifies that the
operation “ask” should execute before the operation
“show”.

dialog stating “You get rubbish!” appears. The labeled
buttons are case arrow buttons that allow the user to
switch the active window from one case to the other.

A protocol excerpt between Luke and Charles
relating to the above program follows. Notations
employed in the protocols are explained in the
Appendix.

1. L: How did this [points at the node "=" in
window "Third 1:2"]
come here? [points at the node "You get
rubb . . ." in window "Third 2:2"]

2. C: With some link ...
Down here::: [points to the case arrow
buttons]

3. L: No, that's the programming, but the
programming . ..

4., C: Thewhat=

5. L = the programming link.

This [points at window "Third 1:2" and
then to window "Third 2:2")

is just input text.

Go to control. [points at "Controls” menu
item)

After two additional exchanges, the protocol
continues:
6. L: How you link from here [points at node
"=
to here? [points at node "You get rubb . . ."
and remains pointing to that node]

You do the checking here::: [points at node
"=" with the mouse]

Come to here first. [points at node "1" in
window "Third 1:2"]

[Moves finger away from the node "You get
rubb . ..", and refers to instructions on the
interface.)

This::: [draws circles with his left index
finger around the node "=" and the node "1"]
The checking part ...

Hm::: You go here ... [points at node

10. L:

You delete the link, see what happens?

[still pointing at node "="]

What do you mean?

The link from here [points at node "="]

to here::: [points at node "You get rubb
|

11. C:
12, L:

In the above excerpts, the students were puzzling
over how the flow of program control passed from the
window "Third 1:2" (henceforth referred to as
"Window1") to the window "Third 2:2" (henceforth
referred to as "Window2") when the input was not
equal to one. (This concern with control flow is not
surprising in light of prior experience with procedural

308

programming languages only.) Having become
accustomed to the way in which program execution
moves from node to node and how the nodes are
connected by links, they formed the expectation
(through generalization) that there must also be a link
between Window1 and Window?2. Consequently, they
expended considerable time and effort, including
exploratory effort, trying to find it. (In actual fact,
there is no such link.)

The protocols reveal that the students’ concept of a
link at this point in time was still hazy.
Consequently, they failed to “connect” while
conversing with one another. While Luke was talking
about program control flow (and confusing physical
data links with the idea of flow of control), Charles
was responding with how Window?2 could be obtained
from Window1 by clicking on the right-pointing case
arrow (something he had discovered by accident
earlier).

It is unclear what Luke meant by the statement
"This is just input text." in segment 5. Possibly, he
was suggesting that the code in Window2 simply
allows the programmer to "input" the appropriate text
for display.

To get out of the understanding impasse, Luke
suggested exploring the “Controls” menu item. This
attempt at exploration appears to be entirely ad hoc.
Inspection of the items on the menu did not provide
any useful information, and the students reverted to
their discussion of the hypothesized link.

Segment 10 of the protocol illustrates a further
instance of exploration. Being unable to form a
coherent understanding of how to establish the
"missing link" between Window1 and Window2, the
students decided to engage in further exploration ("see
what happens"). This time, Luke suggested deleting
the missing link. Charles tried to use the same
procedure for deleting a link between two icons
within a window but encountered difficulty because he
was trying to delete a nonexistent link between
windows. As this attempted exploration was based on
confused thinking and the absence of any clear
expectation of what would happen, it is not
surprising that the attempt yielded nothing useful in
terms of conceptual understanding. This excerpt
illustrates how exploration in the absence of
expectation can lead to failure in sense-making.

Protocol 2

In this protocol, we explore the features of
expectation and explanation occurring in a highly
situated learning context. The two students here,
Jason and Benny, were puzzled about the order in
which the different nodes were highlighted when they
traced through the execution of program Second using
the environment's code tracing facility (see Figure 2).

When this program is executed, a dialog box pops
up saying, “Enter something”. The dialog box
contains a user response area that contains the default
response “default”. After the user types in some
input, the show operation on the left-hand side
executes and the message “First Hello: default” (or
whatever the user typed in for “default™) appears,
followed by a second message “Second Hello:
default”. The syncro link dictates that First Hello will
execute before Second Hello.

e A

e 4]

Figure 2. The program Second.

A protocol excerpt related to the students’ study of
program Second follows:

1. I: [Traces through the program from the
beginning, then retraces program.]
Hm:: ... What's going on?

2. B: Youdon't (enter) ... You don't enter,
(it's) like anything will be default.

3. J: OK. [hits return; node "First Hello . . ." is
highlighted]
First hello.

4. B: Yah

5. J: How come some of the lines is? ... Don't

think so ... [may have noticed that the
color of links from executed nodes changes
from green to blue]

First hello [hits return; node "default" is
highlighted]

Default [hits return; node "Enter someth
..." is highlighted]

enter something [hits return; node "ask" is
highlighted; hits return; prompter window
is displayed; types in characters; hits return;
prompter window is closed; node "show" is
highlighted]

Show ...

Press (enter) ...

[Hits return; dialog window is displayed.]
That's what you entered . . .

First hello. [points at the centre of the
dialog window and slides finger to the top
left corner of the screen]

Because that's what you entered.

bl =
bl - Rl

309

11.] [Hits return; dialog window is closed; node
"Second Hello . .." is highlighted.]
Show there::: [points to the node "show"
on the left]

First hello::: [points to node "First Hello
i)

12. B: Yah ...

13. J;: Then what's the next one? Second hello.
[points at node "Second Hello . . .", then
points to node "show" on the right]

14, B: Yah, second hello.

15. J: Sois... [hits return; node “show" is
highlighted]
second hello [points to the node "Second
Hello . . ."]
will be showing also [hits return; dialog
window is displayed; hits return; window is
closed]

16. B: Never ask you again?

The above excerpt illustrates how the students tried,
without much success, to make sense of the order in
which program execution proceeded (as reflected by
the order in which different nodes become
highlighted). Unfortunately, the order in which
Prograph selects nodes for execution is largely
indeterminate. The basic rule is that a node is ready to
execute when all necessary data inputs to it are
available. Consequently, the order in which the nodes
were highlighted was rather puzzling for the students.

In addition, Benny expressed surprise that the
program did not ask for a new input before displaying
the Second Hello dialog (segment 16). This behavior
is probably the result of having become accustomed
to paired input-output sequences in prior
programming experience.

Some fifteen minutes later, the students experienced
the same puzzlement when they studied program
Fourth. This program includes a loop (see Figure 3)
as part of a larger program that performs a countdown
from a number input by the user.

[EJ== 22 Fourth's loop 1:1 EEQIEHETE
af

R e i

Figure 3. The loop code of program Fourth.

In the execution of the program loop, the “="
operation node is always executed first because it
involves a comparison operation. The input to the
loop is compared with the number zero, If the number
is zero, execution terminates (indicated by the tick
with a bar above it); if not, the node “show” is
executed, followed by the node “~1" which decrements
the current number entering the loop by one.

The protocol excerpt follows:
17. J: { How come its lateral?

{ [slides finger from node "show" to node
It_ l"]

{ How come it’s moving sideways?
{ [moves left hand from right to left]

{ I think the order is like that
([waves hand from top to bottom of the
screen]

(from top down:::
([waves hand from top to bottom of the
screen|

(from top going down
{ [points finger at the input of the loop,

w_n

slides finger down to node "="]

{ That's why you ...
{ [points finger at the input of the loop,
slides finger down to node "="]

{ you have to go to this thing first.
([points finger at the input of the loop,
slides to node "="]

(I think it is like that
([waves right hand from right to left]

(like that
{ [waves right hand from top to bottom]

{ like that ...
{ [waves his hand from right to left]

No, no, no.
18. B: One more time, one more time.

The above excerpts show how the students were
trying to build coherent explanations of the program's
behavior for themselves. As collaborators, their
explanations are mutual and for the benefit of both
themselves and their partner. However, the
explanation activity is deeply entwined with building
and testing expectations in order to determine whether
tentative suppositions made are supportable (see

310

segments 2—4, segments 7-12, and segment 17). For
example, in segments 7-12, when the dialog window
appears, Benny notices (as he expected) that the words
typed in by Jason appear in lieu of the word “default”,
In segment 10, he explains that this outcome is the
consequence of what Jason entered (“Because that’s
what you entered.”).

Segment 17 illustrates the highly situated nature of
sense-making activity. It was purely coincidental that,
in the code for Fourth's loop, node "=" was positioned
highest, and node "show" was positioned just slightly
above node "-1". However, these chance positionings
were sufficient to cause Jason to hypothesize that
program execution proceeded in a top-to-bottom and
right-to-left direction. As mentioned previously, the
comparison node is always executed first. In addition,
the show operation executes before the operation to
decrement by one because of the syncro link.

The final excerpt shows how Jason eventually
succeeded in acquiring the concept of Prograph as a
dataflow language. Here, the students were studying a
program that computes the factorial of a number
using iteration. The loop portion of this program is
shown in Figure 4. There are three operations
involved: a comparison with zero that terminates if
true, an operation to decrement an incoming number
by one, and an operation to multiply two numbers.

iterative factorial loop 1:1 BRINIEEDY

R e e e d s a s ia s

Figure 4. The loop code of program [terative
Factorial.

The protocol excerpt follows. In this excerpt, all
pointing is carried out with the tip of a pencil. The
verbalization was uttered as a statement of expectation
before the code was traced.

19 J: So, we should have two inputs::: ...
[points at the two inputs of the loop code]
This [points to node "0"]

is to check whether it's zero right?

{ Then the value will go into three places

([slides tip of pencil from left input along
the middle data link, then from left input
along the left data link, then from left
input along the right data link]

{ One place,
{ [slides tip of pencil from left input along

the middle data link]

{ two place,
{ [slides tip of pencil from left input along
the left data link]

{ three place . ..
([slides tip of pencil from left input
along the right data link]

{ The same value should go into three

places ...

([slides tip of pencil from left input along
the middle data link, then from left input
along the left data link, then from left
input along the right data link]

But::: [points to node "0", node “-1", and
node "*", and repeats pointing sequence
again]

it should have an order:::

This protocol segment illustrates how the notion of
dataflow was eventually conceived. Jason stated first
that “the value will go into three places” and then
again that “the same value should go into three
places.” This explicit articulation represents a
significant achievement in conceptual change.
However, the old vexing problem concerning the
order in which the operations should execute remains
unsolved.

Conclusion

Our study of students engaged in collaborative sense-
making reveals that the processes of exploration,
explanation, and expectation are important features of
learning. Students must engage in activity in order to
build an understanding of the domain under study.
Such an understanding usually requires the
construction a causal mental model. Only through
interacting with the objects of an external
environment can deep learning be accomplished.

References

Carroll, J. M. 1990. The Nurnberg Funnel:
Designing Minimalist Instruction for Practical
Computer Skill. Cambridge, MA: MIT Press.

Chi, M. T. H., Bassok, M., Lewis, M. W,,
Reimann, P., & Glaser, R. 1989. Self-
explanations: How students study and use
examples in learning to solve problems.
Cognitive Science 13:145-182.

311

Chi, M. T. H. & VanLehn, K. 1991. The content of
physics self-explanations. The Journal of the
Learning Sciences 1(1):69-105.

Clancey, W. J. 1991. The frame of reference problem
in the design of intelligent machines. In K.
VanLehn (Ed.), Architectures for Intelligence.
Hillsdale, NJ: Lawrence Erlbaum.

Clancey, W. J., & Roschelle, J. 1991. Situated
cognition: How representations are created and
given meaning. Paper presented at the AERA
Symposium, Implications of Cognitive Theories
of How the Nervous System Functions for
Research and Practice in Education, April 1991,
Chicago.

Goodwin, C., & Heritage, J. 1990. Conversation
analysis. Annual Review of Anthropology
19:283-307.

Kozulin, A. 1986. The concept of activity in Soviet
psychology. American Psychologist 41(3):264—
274.

Roschelle, J. 1992. Learning by collaborating:
Convergent conceptual change. The Journal of
the Learning Sciences 2(3):235-276.

Schegloff, E. A. 1991. Conversation analysis and
socially shared cognition. In L. B. Resnick, J.
M. Levine, & S. D. Teasley (Eds.), Perspectives
on Socially Shared Cogntion. Washington, DC:
APA.

Vygotsky, L. S. 1978. Mind in Society: The
Development of Higher Psychological Processes.
Cambridge, MA: Harvard University Press.

Vygotsky, L. 8. 1986. Thought and Language (A.
Kozulin, Ed.). Cambridge, MA: MIT Press.

Vygotsky, L. S. 1987. The Collected Works of L. S.
Vygotsky, Volume 1: Problems of General
Psychology (R. W. Rieber & A. S. Carton,
Eds.). NY: Plenum Press.

Appendix

The meanings of the notations employed in the
protocols are explained below.

[1 Words in square brackets describe actions and

gestures.

() Words in parantheses indicate transciber’s best
guess of what was said.

= Equals sign indicates that there is no break

between the end of a prior piece of talk and

the beginning of the next piece of talk.

Preceding sound elongated.

Pause.

Overlapping verbal utterance with action or

gesture,

Question intonation.

T —— 1

	cogsci_1993_306-311

