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ABSTRACT OF THE DISSERTATION

The Exploitation and Mitigation of Flow Effects in MRI

by

Fadil Abbas Ali

Doctor of Philosophy in Physics and Biology in Medicine

University of California, Los Angeles, 2023

Professor John Paul Finn, Chair

The central theme of this thesis is the inherent signal response to flow effects in magnetic

resonance imaging (MRI). These effects can be seen as either an asset or a nuisance. The

work detailed in the first specific aim exemplifies how flow effects can be used, by using

arterial spin labeling to assess for peri-wound perfusion in and around foot ulcers of diabetic

patient volunteers. Specific aims two and three aim to mitigate troublesome outflow artifacts

in balanced steady-state free precession (bSSFP) imaging. Insight into the nature of k-space

encoding in MRI is a prerequisite to posing solutions to address the problem. Therefore, I will

review frequency and phase encoding in some detail to explain how outflow artifacts become

misregistered during standard 2D bSSFP imaging. After the foundation of signal encoding is

laid out, the work presented in the second specific aim narrates these effects as a through-slice

aliasing, and proposes applying through-slice phase-encoding (“slice-encoding”) to localize

outflowing spins from contaminating the target slice. This slice-encoding scheme provides

a proof-of-concept for removing outflowing spins, however its practicality is limited as the

breath-hold duration scales linearly with the number of encoding steps. Before discussing the

third aim, the thesis will recap key concepts in making use of the spatially-varying phased-
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array channel sensitivity in MR imaging. The third specific aim explores the use of the NMR

phased-array coil sensitivity profile to spatially encode for the outflowing spins, accelerating

image acquisition relative to the slice-encoding steps approach. Aim 3 builds on the theory

of parallel acquisition, but has novel features that are specific to goal of mitigating outflow

artifact in bSSFP.
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−mpey∆kpey harmonic fitting for mpey = 1. The last two columns correspond to channel-by-
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4.1 An overview describing our proposed sequence. (A) The slice intended to be acquired is po-

sitioned through a heart’s horizontal-long axis (HLA), which is penetrated by the descending

aorta. Any through-plane flow from the aorta will have signal tapering off via T2 decay. Having

this unaccounted for will have the out-of-slice signal corrupting the final image as indicated by

the red arrow. (B) Our proposed sequence is displayed: adding slice-encoding steps to treat

the signal as a 3D space, without any change to the 2D excitation’s profile. Upon a 3D IFFT

the final image will be found in the center-partition without any influence from the out-of-slice

spins, which will be spatially encoded to their respective locations. We published this in [3] . 63

4.2 Bloch-simulated results with the following parameters: Flip angle = 60◦, TR = 4ms, T1/T2

= 100/150 ms, off-resonance accrual per TR, ∆ϕ = [−2π, 2π], fractional spin-replacement rate

∆sϵ[0, 1], with a six-millimeter slice-thickness after 300 excitations. Right column: the approach

to steady state equilibrium for the moving spins for selected fractional spin-replacement rates

over a range of off-resonances. As Markl et al discussed [73], the moving spins on the off-resonant

bands add up coherently, leading to an out-of-slice signal-enhancement. Left: Signal profiles

from the sum of all spins (top, within the nominal slice (bottom left) and all downstream spins

(bottom right) for a range of spin-replacement rates and off-resonances. The scaling similarities

between the downstream and the total signal makes it clear that much of the bulk signal is

contributed from the downstream spins. We published this in [3] . . . . . . . . . . . . . . 65
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4.3 A visual narration describing how our Bloch simulations were carried out. The entire k-space-

segmented cardiac cine acquisition was simulated along with the time-varying through-plane

blood flow –indicated by the fractional spin-replacement rate for each TR (4ms),∆s –and the

time-varying B1 excitation (described in 4.3.1 ). The ∆s pulsatile flow waveform used during

the cardiac cycle is illustrated in Figure 4.4 and the B1 excitation for each repetition had a linear

π rad/TR phase ramp, as is standard in bSSFP acquisitions. The steps involved in simulating

the acquisition of each k-space line is shown in the bottom of the figure. After each excitation,

the spins are shifted downstream by Ns∆si, with i being the excitation’s index, to simulate

the through-plane blood flow. At mid TR, after the appropriate T2-decay, T1-recovery, and

rotations from off-resonances and slice-encoding gradients, the spins’ transverse magnetizations

were weighted by a spatial Gaussian coil-sensitivity function in a sum to fill the appropriate

k-space element. The appropriate T2-decay, T1-recovery, remaining off-resonant rotating, and

gradient refocusing were done before the start of the next excitation. The Gaussian weighting

was included to mimic a reception coil’s spatial sensitivity, artificially removing some out of slice

signal that’s further away from the slice, as in the clinical case when using localized phase-array

coils. HB: heartbeat. We published this in [3] . . . . . . . . . . . . . . . . . . . . . . . 69

4.4 Pulsatile flow Bloch simulation results. (A) The simulated velocity profile is given in terms

of the fractional spin-replacement rate, ∆s, as a function of time. (B) The simulated MRI

signal magnitude for the range of off-resonances ∆ϕ
TR ϵ[−2π, 2π]]. (C) The simulated MRI signal

magnitude for the isochromats with 0 and π rad/TR off-resonance frequencies, indicated by

the pink and red colors, respectively, are plotted on the right. Just as Markl et al discussed

[72], coherent signal enhancement is most pronounced for π rad/TR isochromats, shortly after

peak-systolic speeds. We published this in [3] . . . . . . . . . . . . . . . . . . . . . . . 71
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4.5 Bloch-simulated transverse signal magnitude of the pulsatile spin movement. The nominal slice

is indicated by the grey bars. (A) shows the ground truth transverse magnetization’s spatial

distribution at peak systole (see Figure 4.4). The figure is zoomed in to -10 to 20 mm from

isocenter. There is minimal signal upstream of the slice, whereas downstream out-of-slice spins

contribute substantial signal hundreds of mm distal from the nominal imaging slice. Parts (B)

and (C) show the signal’s spatial distribution according to the simulated acquisition outlined

in Figure 4.3 using various combinations of the number of slice-encodes and views-per-segment

(VPS). Part (B) shows single VPS results with one, eight, and twenty-four slice-encoding steps.

Notice how the transverse signal profile is more properly resolved with increasing encoding

steps; whereas using one slice-encode (i.e., conventional bSSFP) resulted in an aliased and

corrupted signal profile. The simulation results using eight and twenty-four slice encodes in

this example generated within-imaging-slice signal profiles similar to the ground truth in A.

Part (C) shows twenty-four slice-encoding results for one, eight, and twenty-four VPS. The

time-varying velocity adds an additional signal sum variability between adjacently acquired

k-space segments, resulting in a the “zipper” phenomenon discussed by Schar et al [95]. In

this example, simulations with eight and one VPS can properly resolve the within-imaging-slice

signal profile, while twenty-four VPS resulted in a corrupted in-slice signal profile. We published

this in [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
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4.6 A pulsatile flow phantom experiment, with a speed that averaged at 36 cm/s. The two tube

cross-sections are of the same hose, with one flowing into and the other flowing out of the

plane. The stationary phantom was placed to help load the coil. (A) Results that compare

the 2D bSSFP scan image to the center slice of the slice-encoding approach with three, five,

ten, fifteen, and twenty-three encoding steps, respectively. The 2D acquisition shows pulsatile

zippers (green arrow) and a readout mis-projection (orange arrow). Both of these artifacts are

reduced with increasing number of slice-encoding steps (white arrows). (B) Selected slices of

the twenty-three-slice-encoding experiment. The bottom image is the complex sum of all signals

from all non-center slices. It can be seen that the zipper is smeared along the through-slice axis

and the mis-projection is localized in the non-center slices, limiting their extent in the center

image. We published this in [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.7 A phantom experiment was done to evaluate the sequence’s performance with constant flow,

with its velocity running at a speed of approximately 140 cm/s. Just as in Figure 5’s setup, the

two tubes’ cross-sections are of the same hose, and the stationary phantom was used to load

the coil. (A) A flow corrupted 2D bSSFP comparison with five, ten, fifteen, and twenty slice-

encoding steps. The out of slice coherent sum mis-projected during the readout (orange arrow)

is the main artifact seen in this experiment’s 2D acquisition (with some minor pulsatile phase-

encoded zippers), which is significantly reduced with increasing slice-encoding steps (white

arrow). (B) Selected slices of the twenty slice-encoded experiment, with the right furthest

image being the complex sum of all non-center slices. This complex sum image shows how a
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5.2 A diagram of UNCLE SAM’s reconstruction scheme using three-channels to illustrate. (A)
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by a plot of its singular values. Proper thresholding can distinguish the “significant” from

the “insignificant” singular values, categorizing their corresponding right singular vectors as

either the row space Vcal
|| or the null space Vcal

|| , respectively. Two different filtering functions

that can achieve this are displayed here: the minimum variance filter (orange) and the hard

threshold (yellow). The filter function used will be the entries of a diagonal matrix, T. (B)

UNCLE SAM’s iterative reconstruction. The 2D k-space is treated as the kz = 0 partition of

a volumetric k-space, with all kz ̸= 0 unacquired partitions initially set to zero. In each nth

iteration, we construct An (Table 5.1, 7a). This is followed by imposing the null space of Acal

onto An, by post-multiplying An by VcalT[Vcal]H (Table 5.1, 2B), which was determined from

the calibration step, where T enforces the product of any of An’s rows with the columns of

Vcal that correspond to insignificant singular values to zero. Block Hankel structure is imposed

on the repeated k-space locations of An+1 by averaging the values of the repeated k-space

coordinates when returning to an updated multi-channel k-space (Table 5.1, 2C), followed by

enforcing data consistency with the acquired 2D k-space (Table 5.1, 2D). . . . . . . . . . . 96
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SAM and slice-GRAPPA, showing that UNCLE SAM can unfold more than slice-GRAPPA for

six SE step experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.12 Top: Slice-by-slice comparison of UNCLE SAM with slice-encoding for six encoding steps (left)

and eight (right). With Siemens’s standard chest coil for the Prisma, UNCLE SAM was better

able to achieve the six-encoding step resolved outflow profile than it was for eight encoding steps.

Bottom: a side-by-side comparison of the 2D image with the center slice of the six encoded

UNCLE SAM, the eight encoded UNCLE SAM, the six slice-encoded, and eight slice-encoded

images. Because of the improved outflow profile localization of the six encoded UNCLE SAM

experiment, six UNCLE SAM steps achieved better outflow unfolding from the center slice than

using eight UNCLE SAM steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.1 Side-by-side comparisons of 2D, UNCLE SAM, Low Rank Slice Grappa, and Slice Encoding. . 120

6.2 Preliminary results of the reduced FOV method. . . . . . . . . . . . . . . . . . . . . . . 121

A.1 The brain data sets we tested this interpretation of E-SPIRiT on. We will work with a full

FOV (left) and an aliased (right) datasets. . . . . . . . . . . . . . . . . . . . . . . . . 124

A.2 Top shows the magnitude and the phase of the individual channel images being divided by

the square root sum of squares of the entire dataset. Middle left shows the eigenvalues of the

harmonic matrix, H(x, y), of equation A.8. The middle right shows only the eigenvalues > 0.98

. Notice only the shape of the anatomy is left over. The bottom row shows the magnitude and

the phase of the eigenvectors of H(x, y). . . . . . . . . . . . . . . . . . . . . . . . . . . 125

xxi



A.3 Top shows the magnitude and the phase of the individual channel images being divided by

the square root sum of squares of the entire dataset. This time the FOV is reduced along the
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CHAPTER 1

Introduction

1.1 Motivation and Specific Aims

Magnetic Resonance Imaging (MRI) provides the highest soft-tissue contrast among the

existing imaging modalities. Signal contrast in MRI is a cumulative function of the radiofre-

quency (RF) excitation profile, how one manipulates magnetic field gradients during the

acquisition process, and the spacing of the RF pulses. This multi-parametric dependency

makes MRI a versatile choice for diagnostic imaging.

Another notable feature of the MR signal is its inherent sensitivity to flowing spins. The

most common approach to spatial encoding in MRI makes the precessional frequency a linear

function of position, implemented practically by magnetic field gradients imposed along the

direction of interest. During excitation, if the imaging slice intersects or includes vessels, the

flowing spins may be exposed to a different history of RF pulses than the target (stationary)

spins in the slice, providing a basis for signal contrast between the stationary and flowing

spins.

Blood flow in the body (both large and small vessels as well as intracardiac cavities) can be

exploited to provide image contrast or need to be mitigated to improve image quality. One

such difference in signal contrast is exploited for quantifying tissue perfusion in a family of

techniques called Arterial Spin Labeling (ASL) [126, 127, 29]. With ASL, spins in vessels

upstream of a slice of interest are excited and they carry their magnetization status with
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them as they flow into the capillary bed of the tissue of interest. The slice is imaged with

and without the upstream excitation and a subtraction leaves only the signal from spins

that have entered the slice from upstream. This family of methods is now mature for brain

imaging. The work detailed in the first specific aim applies a specific form of the technique

to assess for peri-wound perfusion in diabetic subjects with foot ulcers.

The evaluation carried out for the first specific aim exemplifies how one can exploit the

effect of inflowing spins. It is inevitable that flow effects manifest in cardiac imaging. The

workhorse sequence used in cardiac imaging [24, 35, 89, 1] is balanced steady-state free

precession (bSSFP)[84]. The ”balanced” term refers to zero net gradient induced intravoxel

dephasing by the end of a repetition between adjacent RF excitation pulses. In addition, the

RF pulses for bSSFP follow a linear π rad/TR phase ramp which refocuses most spins mid-

TR [97]. Both of these features preserve spin signal history. These two physical mechanisms

in bSSFP imaging results in π rad/TR stationary spins to have no signal intensity in steady-

state, resulting the commonly seen banding artifacts [96]. For outflowing spins, as Markl et

al [72, 73] showed, the RF phase-cycling in bSSFP imaging makes outflowing spins with π

rad/TR add coherently, resulting in a signal pileup that projects onto the target plane being

imaged. These spin outflow issues are problematic in any imaging slice that is adjacent to

pulsatile structures and severe outflow artifacts can render the image non-diagnostic. The

frequency dependence in bSSFP imaging makes these artifacts a larger concern in higher

fields, 3 Tesla and above, where field inhomogeneity becomes more pronounced.

The motivations behind specific aims 2 and 3 is to develop methods to mitigate artifacts

from outflowing spins in bSSFP imaging. The first of these is a proof-of-concept, showing

that explicitly spatially encoding these outflowing spins using through-slice phase-encoding

(”slice-encoding”, ”SE”) can unfold them from the target slice, providing a cleaner image at

the expense of increased scan time [3]. The work presented in specific aim 3 uses localized

coil channel sensitivity to unalias outflowing spins from the target slice.
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1.2 Thesis Outline

Chapter 2 provides a brief introduction in MRI. It provides the background necessary to

comprehend the methods carried out in the specific aims and includes spatial encoding,

ASL techniques, and 2D bSSFP imaging. The spatial encoding discussion will narrate a

Bloch simulation of frequency and phase-encoding, from which a conceptual basis of parallel

imaging techniques can be described.

Chapter 3 goes over our feasibility study where an arterial spin labeling technique was used to

visualize peri-wound foot perfusion of subjects with diabetic foot ulcers [85]. The discussion

of this work begins with the clinical relevance and the standard methods to assess perfusion,

emphasizing why a non-invasive MRI technique would be beneficial for diabetic foot ulcer

subjects. We then review the methods of obtaining the perfusion-weighted information,

followed by a discussion of the results obtained and their clinical implications.

The work described in chapter 4 formulates through-plane flow effects in 2D bSSFP imaging

as a volumetric imaging problem, treating outflow artifacts a s aliased signal projected onto

the imaged 2D plane. This method explicitly spatially encodes spins outflowing from a 2 D

excitation profile by implementing s lice-encoding gradient lobes [3]. The unaliased slice can

be reconstructed separately from the outflowing spins after a volumetric Fourier transform.

The cost is a substantial increase in scan time scaled by the number of slice-encoding steps.

In chapter 5, we address how to achieve the goals outlined in chapter 4 in a more practicable

way, by implementing a method that UNfolds Coil Localized Errors of a distorted slice

profile using a Structured Autocalibration Matrix. This method, abbreviated as UNCLE

SAM, captured coil-localization of the outflowing s pins in a calibration subspace to unfold

their effects from the target slice.

In chapter 6, I summarize the contributions to my work to flow effects in MRI.
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CHAPTER 2

Fundamentals of MRI

I will detail the topics that I found core to my understanding of MRI. All illustrations

of the concepts discussed in this thesis (such as Bloch simulations or reconstruction) were

implemented by me and can be found in my GitHub page https://github.com/faa5115.

The core of MRI rests in the principles of ”nuclear induction” [11, 12]. Nuclear induction

results in the precession of magnetic moments around a static magnetic field after being

perturbed by an applied radio-frequency pulse. The observed behavior is a bulk effect due

to the superposition of a large number of hydrogen nuclei within a macroscopic sample, which

we will refer to as ”spin ensembles.” Because the quantum-mechanical expectation value in

the macroscopic scale exactly follows the classical equations of motion, the underlying work

will only consider a classical description.

By default, we will consider processes in the rotating frame of reference. While describing

these processes, it’s important to distinguish between the axes of the magnet and the

image . While these are both Cartesian in 3-space, with orthonormal bases, the magnet

coordinates are fixed, whereas the image coordinates are in general rotated and displaced

relative to the magnet coordinates (depending on the orientation and position of the image

element). I will use r⃗ to denote the position vector whose tip is at coordinates < ux, uy, uz >

and whose tail is at the isocenter of the magnet with coordinates < 0, 0, 0 >.

As we will see in this chapter, matrices are a convenient tool when describing the behavior
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of the magnetization in nuclear magnetic resonance. Rotation matrices are commonly used

in describing the rotation behavior of a spin ensemble. In this writeup, Rv⃗(θ) to describe the

counterclockwise (positive) rotation of angle θ around an axis that points along of vector v⃗.

Rotation matrices around the directions ux, uy, and uz are:

Rûx(θ) =


1 0 0

0 cos(θ) −sin(θ)

0 sin(θ) cos(θ)



Rûy(θ) =


cos(θ) 0 sin(θ)

0 1 0

−sin(θ) 0 cos(θ)



Rûz(θ) =


cos(θ) −sin(θ) 0

sin(θ) cos(θ) 0

0 0 1



(2.1)

2.1 Introduction of the Fourier Transform

In order to understand the concept of spatial localization in MRI, it is important to be

familiar with the Fourier transform. Most commonly, the Fourier transform is introduced by

considering a one-dimensional time signal and its representation in the temporal frequency

domain. A fundamental postulate of Fourier theory is that any periodic time signal can be

represented as a sum of sinusoids, of appropriate amplitude and phase. The term ”sinusoid”

is equally applicable to a cosine or sine function, because one is simply a phase shifted

version of the other, where the phase shift is π
2
. A general sinusoid can be considered as a

linear combination of a sine and cosine function at the same frequency, gcos[n]cos(nω0t) +

gsin[n]sin(nω0t). This linear combination results in what is known as a phasor. This phasor

can be thought of as a vector rotating around the circumference of a circle at the frequency of
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the composite sinusoids and with a starting phase, ϕ[n] determined by the relative amplitude

of the sine and cosine coefficients, gsin(n) and gcos[n] according to ϕ[n] = arctan(gsin[n]
gcos[n]

). By

adding together all of the constituent phasors in a time signal Fourier tells us that we can

create any arbitrary periodic time signal. An alternative, and intuitive, way to represent the

combination of cosine and sine functions is to consider the motion along the circumference

of the unit circle. In this case, cosine function represents the projection along the horizontal

direction and the sine functions represents the direction on the vertical axis. These are clearly

90◦ out of phase, but their sum represents the position of a point on the circumference of

the circle at any time t. This point can also be represented by a two dimensional vector,

whose coordinates are < cos(nω0t), sin(nω0t) >. It is common practice to represent the

cosine and sine components of the unit circular motion in the two dimensional complex

plane where the horizontal axis is the ”real” axis of the complex plane and the vertical

axis is the ”imaginary” axis of the complex plane. In this notation, motion around the unit

circle is represented by cos(nω0t) + i · sin(nω0t). In what is widely regarded as the most

beautiful equation in mathematics, Euler derived a compact representation of the complex

motion around the unit circle by pointing out that cos(nω0t) + sin(nω0t) is equal to einω0t.

The proof of Euler’s equation above can be seen by considering the infinite Taylor series

expansion for the sine, cosine, and exponential functions. As mentioned above, any periodic

time signal can be expressed as the sum of its sinusoidal components. This is summarized

mathematically in the Fourier synthesis equation, which is as follows:

f(t) =
∞∑

n=−∞

[gcos[n]cos(nω0t) + gsin[n] · sin(nω0t)]

=
∞∑

n=−∞

[c[n]e−inω0t]

(2.2)

Because the left and right hand sides of equation 2.2 represent the same signal, the signal can

be expressed unambiguously as either a function of time or a function of frequency where

the transform between these two domains is described in equation 2.2. Note that so far,

our assumption is that the time signal is periodic. In practice, this is rarely the case for
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physical signals so we need a generalization for this relationship for non-periodic signals. In

practice this is done by considering the period of the signal as being extended progressively,

such that in the limit as the period approaches infinity, then the signal is no longer periodic.

This limiting process leads to the definition of the continuous Fourier transform, where the

summation in equation 2.2 becomes an integral and the discrete nω0 becomes continuous ω.

This process is summarized in:

F (ω) =

∫
f(t)e−iωtdt (2.3)

Implicit in the definition of the Fourier transform, the function is continuous. However,

when the signal is sampled in real life, the discrete sampling process unavoidably generates

a periodic representation of the non-periodic signal. This in effect produces periodic copies

of the signal, separated by a distance determined by the sampling frequency. We will discuss

this in more detail later in this chapter. A diagram illustrating these concepts is illustrated

in Figure 2.1.

We now consider the physical processes whereby a detectable MRI signal is generated and

manipulated. The fundamental interactions relating magnetic fields and radio waves in

this context are summarized in a set of equations called the Bloch equations, named after

professor Felix Bloch.

2.2 The Bloch Equation

Felix Bloch [11, 12] and Edward Purcell [91] independently developed the modern concepts

of magnetic resonance. Any magnetization (the sum of magnetic dipole moments, such as

the sum of multiple hydrogen nuclei), M⃗ experiences a torque when exposed to a magnetic

field B⃗ that is described as follows:

dM⃗

dt
= γ · M⃗ × B⃗ +

M0 −Muz

T1

+
M⊥

T2

(2.4)
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Figure 2.1: A: An example function centered at time 0, with negative time coordinates being 1 and positive

coordinates being −1 in addition to n-sum Fourier series estimates for n = 0, n = 1, and n = 100. B:

On top we have a graphical illustration of a complex number. gsin(n) and gcos(n), which are shown in

equation 2.2, are the sine and cosine weights of the nth term in the Fourier series, respectively. They are

both shown in equation 2.2. The remaining four plots are individual sinusoidal terms used to estimate the

example function in its Fourier series expansion. The ”vector sum” of each of the sinusoidal terms provides

the Fourier coefficient of sinusoid n of the example function.
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where M0, Muz , and M⊥ are the equilibrium, longitudinal, and transverse magnetization

respectively. ”Longitudinal” refers to the direction along the primary external magnetic

field. γ is specific to nuclei. It is the Gyromagnetic ratio, which is a relationship constant

between a magnetization and the angular momentum of a nucleus. It is 42.57 · 106 Hz/T for

hydrogen nuclei. T1, and T2 are constants that are specific to materials and tissues and are

recovery and relaxation terms that are specific to the local environments of a magnetization.

Respectively, they are exponential terms describing longitudinal recovery and transverse

relaxation.

Intuitively, equation 2.4 tells us that the magnetization will rotate around the magnetic

field it perceives in a given reference frame at a frequency γ · |B⃗|, while simultaneously

having its longitudinal component recover to its equilibrium and its transverse component

decay. The cross product term can be described by a rotation matrix during a time ∆t as

RB⃗(−2πγ|B⃗|∆t). The second two terms of equation 2.4 are exponential, describing changes

in the magnitude of the magnetization over time. Over a time ∆t the transverse decay (or

”relaxation”) is described as M⊥(t+∆t) = M⊥(t)e
−∆t/T2 and the recovery of the longitudinal

magnetization can be described as Muz(t+∆t) = M0 · (1− e−∆t/T1) +Muz(t)e
−∆t/T1 . These

two terms can be described in a matrix format as
Mux(t+∆t)

Muy(t+∆t)

Muz(t+∆t)

 =


Mux(t)e

−∆t/T2 0 0

0 Muy(t)e
−∆t/T2 0

0 0 Muz(t)e
−∆t/T1 +M0 · (1− e−∆t/T1)



=


e−∆t/T2 0 0

0 e−∆t/T2 0

0 0 e−∆t/T1



Mux(t)

Muy(t)

Muz(t)

+M0


0

0

(1− e−∆t/T1)


M⃗(t+∆t) = AR(∆t, T2, T1)M⃗(t) +M0BD(∆t, T1)

(2.5)

where AR(∆t, T2, T1) and BD(∆t, T1) are used as a to describe the T2 decay and T1 recovery.

11



Incorporating all effects will therefore describe the magnetization precession over a time ∆t

as M⃗(t+∆t) = RB⃗(−2πγ|B⃗|∆t)AR(∆t, T2, T1)M⃗(t) +M0BD(∆t, T1).

MRI deals with hydrogen nuclei primarily coming from water and fat molecules that are

exposed to the strong static field of the bore B⃗0 that points along its axis, ûz. The behavior

described in equation 2.4, conveys that the nuclei exposure to this field polarizes most of

the spins along the bore’s axis. The signal in an MR image is a result of manipulating

the net magnetic moment such that a component lies in the transverse plane. Any tempo-

rary perturbation to this magnetic field could cause the magnetization to be ”excited” or

”tip” from the longitudinal axis, resulting in a transverse component. This will cause the

transverse component of the magnetization to precess around the static field of the bore, ûz

at frequency γB0, which is referred to as the ”Larmor frequency.” The magnetization will

simultaneously exhibiting relaxation and recovery characterized by the rate constants 1/T2

and 1/T1 respectively.

2.3 Resonance Frequency

The local field felt by a spin ensemble determines its resonant frequency according to γ · |B⃗|,

where B⃗ is the vector sum of B⃗0 and local off-resonance effects. These local off-resonance

effects include imperfections in how the scanner system preserves field homogeneity, suscep-

tibility induced off-resonant effects, and chemical shifts. These sources of off-resonance are

present once the subject enters the bore. In addition to these, applied magnetic field gradi-

ents also induce off-resonance, which can be turned on or off with time-varying amplitudes.

I will use ∆B0(r⃗) to refer to the spatially varying, cumulative B-field inhomogeneity of the

first three sources mentioned, and use ∆B(r⃗) to refer to the cumulative B-field effect of all

four sources. By definition, spin ensembles with ∆B0 = 0 are referred to as ”on resonant.”
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2.3.1 Hardware Imperfections

Once a magnet is assembled in a hospital or research center, its field uniformity is impacted

by the presence of nearby equipment along with imperfections in its own assembly. The

process of countering these imperfections is called ”shimming” which stems from the name

of the hardware used: a wedge shaped sheet metal being fixed at various locations of the

bore to preserve field uniformity [5, 94] . This has been referred to passive shimming. Active

shimming refers to the use of currents to generate additional fields to compensate for the

inhomogeneity.

2.3.2 Magnetic Susceptibility

Every subject will be magnetized when exposed to to an external magnetic field. Magnetic

susceptibility is a measure of how much the object magnetized. Paramagnetic objects

polarize in the direction of the external field, while diamagnetic objects polarize opposite to

the field. These two classes of magnetization refer to objects only when they are exposed to an

external field. Ferromagnetic objects polarize along the direction of the external field and

maintain their magnetization when no longer exposed. Different tissues and regions within

the tissue magnetize differently, and therefore contribute to the local field inhomogeneity

[98].

2.3.3 Chemical Shift

Chemical shift refers to the local field a hydrogen nucleus is exposed to as a result of its

molecular chemical environment. Because it is a phenomenon in the localized molecular

level, hydrogen nuclei in the same molecule may have different chemical shifts. These lo-

cal environments are called functional groups. The chemical shift of a functional group is

described in a relative sense as:

δ =
[fsample − fref ][Hz]

fref [MHz]
(2.6)
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where fsample and fref are the resonant frequencies of the hydrogen nucleus residing in the

functional group of interest and reference functional group, respectively. The units of the

difference in the numerator is in Hz and the unit for the denominator is MHz, giving chemical

shift the unit ”parts-per-million”, or ppm. This is a convenient metric because it is invariant

to field strength. The imaging community uses γ|B⃗0| as the reference.

2.3.4 Magnetic Field Gradients

Spatially linear magnetic field gradients provide another source of off-resonance. Unlike

the previous sources, these are deliberately imposed onto the imaged subject. Unlike the

previous sources, these are induced onto the imaged subject. The off-resonance applied by

gradients only are described as

∆B⃗(r⃗) = G⃗ · r⃗ (2.7)

where Gx(t) = dBz(r⃗,t)
dx

, Gy(t) = dBz(r⃗,t)
dy

, and Gz(t) = dBz(r⃗,t)
dz

Time-varying magnetic field

gradients are used to guide spatial encoding in the image acquisition, which we will discuss

later. These gradients will be described in the context of the orthogonal axes of an image.

In MR imaging, these off-resonance effects can be characterized as rotations around the axis

of the bore, Rûz(θ) for θ = γ∆B(r⃗, t)t. For a single ensemble located at r⃗ at some reference

time t = 0, the transverse magnetization of the ensemble will behave as:

M⃗⊥(r⃗, t) = M⃗⊥(r⃗, t) · e
−t

T2(r⃗) · eiγ∆B(r⃗,t)t (2.8)

It must be noted, and will be discussed in the next section, that signal reception is the vector

sum of all spins. Therefore, the transverse signal is the integral sum of over all space:∫
M⃗⊥(r⃗, t)dr⃗ =

∫
M⃗⊥(r⃗, t) · e

−t
T2(r⃗) · eiγ∆B(r⃗,t)tdr⃗ (2.9)
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2.4 Rotating Reference Frame

It is easier to interpret magnetic resonance behavior in the reference frame of Larmor fre-

quency, the ”rotating frame.” As distinct from the laboratory frame, the rotating frame is

at rest relative to spins rotating at the Larmor frequency. The Larmor frequency is defined

as the central frequency at a given field strength as γB0. Figure 2.2 illustrates this for three

spin ensembles with the following resonant frequencies — -3.5, 0, and 3.5 ppm — displayed

for 0.1T (a low field was used to easily illustrate the advantage of interpreting in the Larmor

frame). The top half of the figure shows the transverse precession in the stationary frame

while the bottom show their precession in the rotating frame. Both abide by the Bloch

equation, 2.4, because it considers the magnetic field perceived in the particular frame of

reference. The stationary reference frame perceives B⃗perceived = B⃗0 +∆B⃗0 for each spin en-

semble. Because B⃗0 >> ∆B⃗0, it is difficult notice off-resonance. For this reason it is easier

to interpret the MR signal in the rotating reference frame, which only perceives magnetic

field causing off-resonant effects. Throughout this thesis, I will be referring to the Larmor

rotating frame, unless mentioned otherwise.

2.5 Spatial Encoding

Magnetic field gradients are pivotal for spatial localization. The first image from gradient

encoding was carried out by Lauterbur [62] and independently by Mansfield [71]. Gradients

impose a spatial distribution of frequencies that can be used to encode the spins along the

axis of the gradient. Unless otherwise mentioned, our discussion on spatial encoding will

only feature gradient-induced off- resonance. That is ∆B0 = 0. This section will discuss the

mechanisms of using gradients for spatial encoding.
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Figure 2.2: An illustration using Bloch simulation results to illustrate the convenience of visualizing in the

rotating (bottom) frame instead of the stationary (top, for 0.1 T) frame. These results describe the time-

varying magnetization on spin ensembles with T2/T1 = 300/500 ms the following relative off-resonances:

-3.5, 0, and 3.5 ppm. Despite only having a difference of ±15Hz, it is difficult to even distinguish the three

ppm in the top plots because they have not been demodulated by the Larmor frequency, γ|B⃗0|, unlike in the

bottom three plots.
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2.5.1 Slice Selection

2.5.1.1 B1 Excitation

Slice selection refers to exciting the spins in the physical region to be imaged [36]. A radio

frequency (RF) field is applied in the transverse plane that tips the bulk magnetization

away from the bore’s axis, providing a transverse magnetization component that can induce

an electromotive force in the receiver coil and therefore a detectable signal. We will first

discuss excitation for a single ensemble only being exposed to a time-varying B1 field. Such an

excitation process can be visualized in Figure 2.3. In the rotating frame this spin-ensemble

only perceives a (time-varying) B1 component as the total magnetic field, B⃗perceived = B⃗1(t).

According to 2.4, during each infinitesimal time, dt,the magnetization will rotate around the

B⃗1(t) by frequency γ · |B⃗1(t)|. In this setting the fact that B⃗1(t) lies in the transverse plane

will rotate the longitudinal magnetization into the transverse plane such that its projection

into the transverse plane will be orthogonal to B⃗1(t). The rotation of the longitudinal

magnetization around the axis of the B1 field will continue for as long as the B1 field persists.

If relaxation and recovery effects are ignored during the excitation process, then the flip

angle, α, represents the cumulative rotation of the magnetization caused by the B1 field and

is expressed as:

α = γ ·
∫ TRF

0

|B⃗1(t)|dt (2.10)

2.5.1.2 Slice Selective Excitation

In the presence of off-resonance, an observer in the rotating frame would now perceive a

total magnetic field given by

B⃗perceived = B⃗1(t) + ∆B⃗(r⃗, t) (2.11)

where ∆B⃗(r⃗, t) = |∆B⃗(r⃗, t)|ûz. Spins with γ|∆B⃗(r⃗, t)| >> γ|B⃗1(t)| will primarily rotate

around ûz, and therefore have little (if any) tip. Conversely, spins with γ|B⃗(r⃗, t)| << γ|B⃗1(t)|
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Figure 2.3: A Bloch (along ûz) simulation of a time-varying B1 envelope function (top) being applied to

a magnetization vector that is initially in thermal equilibrium. The bottom plot shows the behavior of the

magnetizations’ components as the B1 tips the magnetization onto the transverse plane.

will be tipped into the transverse plane. This means that the B1(t) field has a frequency

dependent signal response, which is core to selecting the imaged slice (for 2D applications)

or slab (for 3D applications). In the absence of other off-resonance contributions (∆B0 = 0),

externally applied controlled gradients can be used to impose off-resonance conditions in a

linear, direction-dependent fashion. Denoting this arbitrary direction by ûs, a linear spread

of frequencies along ûs is imposed according to

fs = γG⃗s · r⃗ (2.12)

where G⃗s is the gradient pointing along ûs. Earlier we noted that an arbitrary position

vector has its tail at coordinate < 0, 0, 0 >. Therefore, at isocenter the magnitude of r⃗ is 0,

such that 2.12 evaluates to zero. This means that there is no frequency offset at isocenter,

and in the presence of a linear gradient, the spins at isocenter are on-resonance. This is

illustrated by Bloch simulation in Figure 2.4 for two cases in the rotating frame: where the

B⃗1(t) doesn’t change direction (selecting a slice at isocenter) and where the direction of B⃗1(t)

changes linearly over time to target a slice off isocenter. This Bloch simulation illustrates

the Fourier shift property described in Pauly’s k-space interpretation of the RF excitation
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[88]: where a linear time-dependent phase in B1 results in a spatial shift in the excited slice.

By the end of RF excitation, a phase dispersion across the width of the slice occurs according

to

ϕ0,slice = 2πγ

∫ TRF

Tpeak,RF

G⃗s(t) · r⃗dt (2.13)

where Tpeak,RF is the time the peak B1(t) of the RF pulse is delivered. Figure 2.5, illustrates

the complex (vector) transverse magnetization profile along the slice direction from the sinc

pulse previously shown in Figure 2.4. Because the MR signal is a vector sum of all spins,

refocusing gradient must be applied in order to minimize signal loss. The resulting profile

after a gradient refocusing lobe is shown in the bottom plots of Figures 2.5A and 2.5B.

Imaging can start after slice refocusing.

2.5.1.3 Repetition

As we will see later in this chapter, multiple excitation pulses are required as the signal is

acquired to generate an image. The time in between adjacent excitation pulses is called the

”repetition time” and is often denoted as TR.

2.5.1.4 Transverse Magnetization after Excitation Pulse

If generalized to any B-field inhomogeneity term, ∆B, the transverse magnetization behavior

at at time t from the peak RF can be expressed as:

M⃗⊥(r⃗, t) = M⃗⊥,0(r⃗) · e−
t
T2 · e−i2πγ∆B(r⃗,t) (2.14)

where M⃗⊥,0(r⃗) is the transverse magnetization immediately after excitation. The imagi-

nary exponential term captures the transverse magnetization rotating around the perceived

magnetic field in the rotating frame, ∆B(r⃗, t)ẑ, as according to 2.4:

ϕ(r⃗, t) = e−i2πγ∆B(r⃗,t) (2.15)

19



Figure 2.4: Bloch simulation of a time-varying B1 envelope function with a 90◦flipangle. In (A) B⃗1(t) =

B1(t)ûx leading to the excitation profile being along the isocenter, whereas in (B) there B⃗1 has a time-varying

phase, which in this case resonates with spins 10mm away from isocenter.
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Figure 2.5: Transverse magnetization profiles from the same Bloch simulations shown in Figure 2.4, re-

spectively, with (A) showing the excitation at isocenter and (B) showing the excitation 10mm off isocenter.

For both, the top shows the transverse profile immediately before gradient refocusing and the bottom shows

immediately after gradient refocusing.
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2.5.2 MR Readout

Transverse spins induce signal in the receivers by Faraday’s law of induction. The signal

readout during this measurement is time-varying and each timepoint consists of the vector

sum of all transverse spins. If the maximum off-resonance present in the pool of excited

spins is termed ∆Bmax, then the range of all frequencies present in the rotating frame is

±γ ·∆Bmax.

2.5.2.1 Spatial Localization of the MR Signal by Frequency Encoding

In section 2.1, we discussed the time-domain and temporal frequency-domain representation

of a signal. We will now revisit this concept, but in the context of spatial-domain and

spatial-frequency domain to perform spatial localization of the MRI signal. Up until now,

we followed the process of generating transverse magnetization in a given slice of interest.

However, we now need a method to localize the MR signal from different spatial locations

within that 2D plane. We will now explore the process of how the spins within the plane

can be made to declare their unique location.

The most widely used approach to spatial encoding within the plane is to use methods known

as frequency encoding and phase encoding respectively. As we will see, these methods define

the Cartesian coordinates of spins within the plane independently and using orthogonal

bases. The directions of these orthogonal bases are termed the frequency encoding and

phase encoding directions. At this point it is helpful to note that these coordinates have a

well-defined relationship to the physical coordinates of the object in 3D space and to the

direction of the main magnetic field, but they can be arbitrarily defined by the direction

of imposed magnetic field gradients as we will discuss. The three orthogonal axes defining

the directions of the frequency-encoding, phase-encoding, and slice-encoding gradients are

termed the logical gradient directions, denoted by < uro, upey, us > as noted earlier.

If the MR signal is acquired during or in the presence of a constant magnetic field gradient,
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G⃗ro, along a particular direction, ûro, then the signal will become distributed over a range of

frequencies that depend on the strength of the gradient and the location of the spins along

the gradient direction by, γG⃗ro · r⃗. Therefore, the Fourier transform of the acquired time

signal should generate a one-to-one correspondence between time frequency and position.

This gradient is named the frequency encoding or readout gradient.

If the receivers were able to capture the continuous signal, its continuous Fourier Transform

would display peaks of each (demodulated) frequency, γ∆B, present with the amplitude of

each peak being the vector sum of all transverse spins precessing at the given frequency.

However, the requirement for discrete signal sampling means that we have to use the discrete

Fourier transform. The sampling process discretizes and digitizes the signal by sampling at

an interval, ∆td, which is often referred to as the dwell time. A given sampling rate, fs =
1

∆td

encodes unambiguously for a bandwidth of frequencies in the range ±Bwro

2
, Bwro = 1

∆td
.

The discrete Fourier transform is periodic and as a consequence any spin ensemble with

frequency greater than ∆td
2

will be folded into the sampled bandwidth [− 1
2∆td

, 1
2∆td

]. This

phenomenon is known as aliasing and has profound implications for the entire field of MRI

and signal processing. Mitigating the consequences of aliasing is central to much of the work

in my thesis.

No spatial localization along ûro can be made in the absence readout gradient. Without this

gradient being played during the readout, the signal will manifest as a single peak centered

around 0 Hz. Every spin in the object will share the same frequency such there is no spatial

localization. This is illustrated in Figure 2.6 for an ACR phantom.

2.5.2.2 The Concept of k-Space

Up until now, we have considered the Fourier transform of a time-varying signal, which

is expressed in temporal frequency. Because of Gro provides a linear relationship between

frequency and projection of spin ensembles along uro, then the gradient must actually be
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traversing the spatial frequency of the spin distribution during the MR readout. This spatial

frequency is referred to as ”k-space.” In terms of equation 2.9, where ∆B = G⃗ro · r⃗+ δB0(r⃗),

each sampled timepoint in the readout, nro can be expressed as:

S(nro) =

∫
M⃗⊥(r⃗, Trostart) · e−

nro∆td
T2 · e−i2πγnro∆td(G⃗ro·r⃗+∆B0(r⃗))dr

≈
∫

M⃗⊥(r⃗, Trostart) · e−i2πγnro∆td(G⃗ro·r⃗+∆B0(r⃗))dr

(2.16)

where the readout starts at a time Trostart after excitation and the second line serves as

an approximation for Nro∆td << T2. The exponential term describes the phase accrual of

the transverse receives from the gradient and off resonance. By inspection, one can see the

following as the Fourier inverse for the spatial distribution of spins along uro:

kro[nro] = nroγGro∆td (2.17)

Therefore, the time during the readout acts as a ”dummy” variable k-space sampling. More

generally, the application of gradients to manipulate spins for spatial encoding can be de-

scribed as a function of time while any or a set of gradients, G⃗ is turned on:

k(τ) = γ

∫ τ

0

G⃗(t)dt (2.18)

In Fourier sampling theory, the resolution of one domain corresponds to the encoded field of

view (FOV) of its inverse. From equation 2.17, the encoded FOV along the uro can then be

described as:

∆kro =
1

FOVro

= γ∆tdGro (2.19)

However, during the acquisition, most vendors actually sample twice as fast as the prescribed

dwell time, ∆td, encoding for twice of the FOVro. This oversampling the readout does not

impose any penalty on the acquisition time, and therefore provides a convenient way to avoid

aliasing along ûro.
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Figure 2.6: The left is a picture of an ACR phantom which consists of a homogenous solution. The

readout encoding direction is indicated by the white arrow. The top right shows the frequency response in the

acquisition if no gradient is used to distinguish the spins off of their location along the readout direction. With

proper shimming on a homogenous solution, all nuclei have essentially the same frequency during the readout

without the presence of a frequency encoding gradient. The bottom shows the result if a frequency encoding

gradient is used, which is a projection along the readout direction. An image can be formed if multiple readout

projections are made (as initially done by Lauterbur [62]) or by using phase-encoding gradients [107].

Up until now, we have seen that the MR readout consists of the sum of sinusoidal, or

spatial-harmonic, functions, being provided by the frequency encoding gradient. For cases

when |γ∆B0(r⃗)| < Bwro

Nro
, the Fourier transform of this gradient-induced frequency-encoded

signal is a projection of the transverse signal distribution along the designated ûro, with a

spatial resolution of FOVro

Nro
. If |γ∆B0(r⃗)| > Bwro

Nro
, errors in frequency encoding are observed,

mis-mapping the anatomy along the readout direction.

2.5.2.3 Readout Prephaser

The frequency-encoding gradient causes a phase dispersion across the readout FOV according

to
ϕro(nro)

FOVro

= 2πγnro∆tdGro (2.20)
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By n = Nro

2
, the dephasing caused by Gro vectorially cancels transverse components across

the readout FOV. This effectively contributes very little signal to the final reconstructed

projection beyond nro∆td/2, leaving the second half of samples to be dominated by noise.

Because of this, it is advantageous to include a readout prephaser that opposes the dephasing

before the frequency-encoded readout begins. Including the prephaser will allow sampling

to take place with the readout gradient induced intravoxel dephasing to satisfy |ϕro(nro)
FOVro

| <
ϕro(nro=

Nro
2

)

FOVro
, while still acquiring the Nro samples needed to satisfy the desired frequency

encoding resolution. The refocusing of the spins during the readout from the dephasing of

the spins caused by the readout prephaser is called a gradient recalled echo, or ”gradient

echo”, or ”GRE.” Applying the prephaser before the readout changes to formulation of

equation 2.16 to the following:

S(nro) =

∫
M⃗⊥(r⃗, Trostart) · e−i2πγTpre(G⃗rop·r⃗) · e−i2πγnro∆td(G⃗ro·r⃗+∆B0(r⃗))dr⃗

=

∫
M⃗⊥(r⃗, Trostart · e−i2πk⃗pre·r⃗) · e−i2πnro∆k⃗ro·r⃗dr⃗

(2.21)

Tpre refers to the duration of any prephasing done before frequency encoding begins and

∆B0 ≈ 0. In the second line of equation 2.21, krop = γG⃗ropTpre, serving as the k-space

trajected by the readout prephaser. The ∆B0(r⃗) and T2 decay components during Tpre are

absorbed into M⃗⊥(r⃗, Trostart) according to equation 2.14. For Gro to unwind the effects of

the prephaser, it must have a polarity opposite to Grop.

2.5.3 Phase Encoding

Frequency encoding the readout only provides the projection of the transverse magnetiza-

tions after an IFFT is applied, which isn’t enough to provide an image for their 2D or 3D

arrangement. T his readout signal is a sum of multiple spatial harmonic functions where

all harmonic functions of the same ûro coordinate have the same frequency, γG⃗ro · r⃗. This

does nothing to localize different spins along ûpey that are located along the same ûro, as

illustrated in the frequency encoded plot of Figure 2.6. In order to distinguish N harmonic

signals, N observations must be made with each observation having a different phase offset
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between between the signals. In the case for MR imaging, if Npey and Nse different local-

izations are needed to be made along ûpey and ûs respectively, frequency encoding must be

repeated Npey × Nse times with each having its own spatially-varying phase offsets along

these two directions. This is illustrated in Figure 2.7 for a varying number of phase en-

coding steps. The phase offsets needed is achieved by applying a phase encoding gradient

along ûpey or (ûpey and ûs if 3D imaging is being done), with the phase-encoding gradient

achieving a different phase dispersion along the phase-encoding FOV for each readout. The

gradient-induced dispersion is described by:

M
npey

⊥ (r⃗) = M⊥(r⃗) · e−i2πγnpey∆GpeyTprey (2.22)

where ∆Gpey is a gradient along the ûpey direction and npey is any integer such that npey ∈

[−Npey

2
, Npey

2
]. Equation 2.22 shows that applying a phase-encoding gradient before the read-

out creates an npey factored harmonic across the ûpey direction, as illustrated in Figure 2.8.

The same can be applied for the ûs direction in which case the notations for the gradient

and number of phase-encoding steps are G⃗se and Nse where se stands for ”slice-encoding”.

This updates the signal equation of 2.21 to the following:

S(nro, npey, nse) =

∫
M⃗⊥(r⃗, Trostart)·e−i2πγTpre((G⃗rop+npey∆G⃗pey+nse∆G⃗se)·r⃗)·e−i2πγnro∆td(G⃗ro·r⃗+∆B0(r⃗))dr

(2.23)

If only one partition is desired along the slice direction, as in for 2D imaging, then nse = 1.

Gse is often merged with the slice-select refocusing gradient. Given the phase-dispersion

relationship in equation 2.22, equation 2.23 can be simplified if written in the k-space for-

malism. Adopting the k-space formalism alluded to in equation the k-space trajected during

prephasing is:

kpre = γ · (G⃗rop +∆G⃗pey +∆G⃗se) · Tpre (2.24)

where the amplitudes of ∆G⃗pey and ∆G⃗se are defined as

∆G⃗pey =
∆kpey
γTpre

=
1

γTpreFOVpey

∆G⃗se =
∆kse
γTpre

=
1

γTpreFOVse

(2.25)
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Given this (cookie-cutter) k-space formalism, assuming ∆B0(r⃗) effects are negligible, 2.23

can be simplified to 2.21 to the following:

S(nro, npey, nse) =

∫
M⃗⊥(r⃗, Trostart) · e−i2π(k⃗rop+npey∆k⃗pey+nse∆k⃗se)·r⃗) · e−i2πnro∆k⃗ro·r⃗dr (2.26)

which is equivalent to

S(kro, kpey, kse) =

∫
M⃗⊥(r⃗, Trostart) · e−i2π(k⃗ro+k⃗pey+k⃗se)·r⃗dr (2.27)

where k⃗ro = k⃗rop + nro∆k⃗ro, k⃗pey = npey∆k⃗pey, and k⃗se = nse∆k⃗se and nroϵ(
−Nro

2
, Nro

2
],

npeyϵ(
−Npey

2
, Npey

2
], and nseϵ(

−Nse

2
, Nse

2
].

2.6 Parallel Imaging

MR imaging uses localized receivers in the form of a phased array. This results in significantly

improved SNR from using the receiver within the bore. For a given array with Nc channels,

each channel will have its own spatial arrangement Cl(r⃗), l ∈ [1, Nc]. Based off of 2.26, the

k-space readout of each channel can be described as:

Sl(kro, kpey, kse) =

∫
Cl(r⃗)M⃗⊥(r⃗, Trostart) · e−i2π(k⃗ro+k⃗pey+k⃗se)·r⃗dr (2.28)

In this section and throughout this thesis, Ij(r⃗) will describe the complex value of the image

of channel j at location r⃗. Sj(k⃗) will describe the complex k-space value at coordinate k⃗ of

channel j. The vectors I⃗(r⃗) and S⃗(k⃗) are Nc × 1 vectors, where each entry are the channels

image or k-space values. We will use cj(r⃗) to refer to a channel’s sensitivity at r⃗, and use

c⃗j(r⃗) to refer to the vector of all channel sensitivities.

In this section, we will whitening the data, combining the multi-channel data, and then how

one could use localized channel sensitivity profiles to reduce the scan time.
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Figure 2.7: Caption on next page.

.
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Figure 2.7: Multiple readouts are needed, with each following a different phase dispersion along the upey

direction (white arrow) in order to distinguish two different points along its direction that have the same

uro coordinate, such as points A (blue) and B (red) in this illustration, as seen in Figure 2.6. This pro-

vides different phase shifts between spins at different upey locations during frequency encoding. Therefore,

Npey different phase dispersions along upey (phase-encoding steps) are needed to distinguish Npey different

points, with the greater value of Npey resulting in higher resolution along upey. This is shown in the bottom

(magnitude on top and phase in the bottom) for cases where Npey = 24, 48, and 128. The plot in Figure 2.6

corresponds to Npey = 1 where sampling is done at kpey = 0.

2.6.1 Whitening

Mutual inductance is inevitable for channels in the phased array. This has subtle effects in

the noise power amplitude of the combined image from the Nc channels, Icom(r⃗) and results

in each channel having its own noise variance. Whitening the data will decorrelate the data

from the channels and result in the same noise variance for each channel.

Before an acquisition begins, a ”noise” scan is done, where Nτ (usually Nτ = 512) timepoints

are sampled without any excitation. This acquisition leaves us with an Nτ ×Nc dimensional

noise matrix, N . The correlation between the channels can be seen by multiplying the noise

matrix by itself:

Ψ(N) = NHN (2.29)

where the H superscript indicates the Hermitian transpose. This correlation is shown in the

top half of Figure 2.9 as noticeable off-diagonal entries. A whitened noise matrix, Nw, will

satisfy Ψ(Nw) = Id,Nc where Id,Nc is an Nc × Nc identity matrix. A whitening transform,

W , can be defined such that Nw = NW . Using the eigenvalue decomposition of the noise

covariance matrix can be used to determine W . This decomposition is described by Ψ(N) =

VNΛNV
H
N where ΛN is a diagonal matrix of the eigenvalues and the corresponding columns of

VN hold the corresponding eigenvectors, normalized to value one. The whitening transform
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Figure 2.8: Top row: magnitude and phase of the ACR phantom with the phase-encoding direction indicated

by the white arrow. Beneath the magnitude image is a map depicting the log of k-space with the k⃗pey pointing

vertically. The spatial harmonic phase-dispersion, induced by Gpey, across the phase-encoding direction is

shown, with the color of the box corresponding to its indicated phase encoding step in the k-space map.

.
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can be determined below

NH
w Nw = Id,Nc

(NW )H(NW ) = Id,Nc

WHNHNW = Id,Nc

WHVNΛNV
H
N W = Id,Nc

WHVNΛ
1
2
NΛ

1
2
NV

H
N W = Id,Nc

(Λ
1
2
NV

H
N W ) = Id,Nc

W = VN(Λ
− 1

2
N )

(2.30)

Multiplying I⃗l
T
(r⃗) by by W = VN(Λ

− 1
2 ) transforms the data to a whitened vector space,

where T is the transpose. The same can be done in k-space by post-multiplying S⃗l

T
(k⃗) by

W . To have the whitened data in the original channel vector space, the whitening transform

would have to be W = VN(Λ
− 1

2 )V H
N . For the rest of the thesis, any reference to channel data

or noise data is assumed to have already been pre-whitened, unless otherwise mentioned.

That is, all channel image/k-space data would have already gone through the whitening

transformation. The whitened noise covariance matrix, Ψ(Nw) is illustrated in the bottom

half of Figure 2.9.

2.6.2 Combination

Roemer et al carried out an in depth evaluation of the SNR optimal phased array arrangement

[117] and combination of the channel signals. The two methods he describes are the square-

root sum of squares (SOS) and the spatial matched filter. The square root SOS is given

by:

Isos(r⃗) =

√
|I⃗l(r⃗)H I⃗l(r⃗)| (2.31)

The spatial matched filter provides SNR optimal combination while removing the greatest

extent of local channel shading by using the distribution of the magnetic field generated
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Figure 2.9: Top the noise covariance matrix of raw noise data directly out of the scanner. The mutual

inductance between channels in the phased array causes correlation between any two channels [117]. The

whitening process described in equation 2.30 uncorrelates or whitens the receivers (bottom).

.
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by each channel (the sensitivity profile of each channel). Using the sensitivity profiles to

estimate for a combined channel image preserves the relative phase the voxels. The weights

for the spatial matched filter can be described as:

m⃗(r⃗) = Ψ−1(N)c⃗(r⃗) (2.32)

where c⃗(r⃗) is anNc×1 complex vector giving the sensitivity for each channel. This ultimately

gives a combined channel image as

Imf (r⃗) = m⃗(r⃗)H I⃗(r⃗) (2.33)

Properly estimating c⃗(r⃗) is difficult. One could do so by dividing the individual channel

images by the square root sum of squares image or by dividing by an image from the body

coil. An adaptive method to estimate for the optimal matched described by Walsh [122].

It borrows from the stochastic matched filter formulation of temporal signal processes com-

monly described in radar [121]. For each location r⃗, the weights needed to sum the channel

entries are determined from a patch of voxels across all channels. A side-by-side comparison

of Walsh and square root sum of squares is illustrated in Figure 2.10.

2.6.3 Parallel Imaging for Accelerated Acquisitions

In this section, we will go over common methods to reduce an acquisition in MRI that exploits

multi-channel redundancy. In many cases, the acquisitions could be too long. Because the

scan time scales linearly with the number of acquired phase encoding steps, Npey · Nse,

reducing the number of encoding steps would provide a means of reducing the scan time.

Skipping every R k-space lines along a phase-encoding direction reduces the FOV by a

factor of R, resulting in aliasing. Unaliasing is impossible with a single channel. However

localized channel sensitivity profiles can be exploited to unalias as long as there is a significant

difference in channel sensitivity profiles between superimposed pixels. This is illustrated in

Figure 2.11.

Parallel imaging acceleration techniques rely on the use of a fully sampled, low resultion
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Figure 2.10: Adaptive method from Walsh [122] on the left and square root sum of squares [117] on the

right.

.

calibration as a means of obtaining sensitivity profiles of each channel. For simplicity, and

to save space, I will only discuss undersampling along the kpey direction. This can be easily

generalized to the kse. For non-Cartesian cases (which I don’t plan on discussing), a lot of

the techniques can be generalized across all three k-space coordinate axes.

2.6.3.1 Sensitivity Encoded Unaliasing

A common method to unalias the image is by explicitly exploiting the localized channel

sensitivity, called sensitivity encoding (SENSE). SENSE is a generalization of the spatial

matched filter of equation 2.33 [90]. For generous simplicity when narrating SENSE, let’s

assume the noise covariance matrix is Ψ(N) = Id,Nc . Then the matched filter becomes:

Icomb = c⃗H(r⃗)I⃗(r⃗) (2.34)
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Figure 2.11: Caption on next page.

.
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Figure 2.11: (A) Coil combined images fully sampled data on the left and the same data with even num-

bered phase-encoding lines skipped (R=2) on the right. (B) The individual aliased channel images of the

undersampled data. Pixels
FOVpey

R apart superimpose on each in the aliased image with noticeable channel

sensitivity differences (C). Localized sensitivity profiles of the individual channels (D) must be used to unalias

the image. These sensitivity profiles can be determined from a low resolution calibration acquisition. As we

will see later, channel sensitivities are explicitly used in image-based unaliasing, and they are implicitly used

in k-space based unaliasing. Details of how the sensitivity profiles in (D) was calculated can be found in

Appendix A.

Equation 2.34 can be expanded into matrix form as:

I1(r⃗1)

I1(r⃗2)

...

I1(r⃗Nvox)

I2(r⃗1)

I2(r⃗2)

...

I2(r⃗Nvox)

...

INc(r⃗1)

INc(r⃗2)

...

INc(r⃗Nvox)



=



c1(r⃗1) 0 ... 0

0 c1(r⃗2) ... 0

... ... ... ...

0 0 ... c1(r⃗Nvox)

c2(r⃗1) 0 ... 0

0 c2(r⃗2) ... 0

... ... ... ...

0 0 ... c2(r⃗Nvox)

... ... ... ...

cNc(r⃗1) 0 ... 0

0 cNc(r⃗2) ... 0

... ... ... ...

0 0 ... cNc(r⃗Nvox)




Icomb(r⃗1)

Icomb(r⃗2)

...

Icomb(r⃗Nvox)




I1(r⃗)

I2(r⃗)

...

INc(r⃗)

 =


C1(r⃗)

C2(r⃗)

...

CNc(r⃗)

 Icomb(r⃗)

I(r⃗) = CsenseIcomb(r⃗)

(2.35)
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where Nvox = Nro ·Npey ·Nse is the total number of voxels in an image and r⃗j, with jϵ[1, Nvox]

refers to the location of each voxel. The second line of 2.35 is written in a block matrix

format to conserve space. Each block matrix, Ci(r⃗), is a diagonal matrix with each being

the complex channel sensitivity of location r⃗j.

Equation 2.35 can be generalized as the following to describe aliasaing when skipping each

R kpey line (see Figure 2.11):
I1(r⃗)

I2(r⃗)

...

INc(r⃗)


=


C1(r⃗) C1(r⃗ +

FOVpey

R ûpey) ... C1(r⃗ +
(R−1)FOVpey

R ûpey)

C2(r⃗) C2(r⃗ +
FOVpey

R ûpey) ... C2(r⃗ +
(R−1)FOVpey

R ûpey)

...

CNc(r⃗) CNc(r⃗ +
FOVpey

R ûpey) ... CNc(r⃗ +
(R−1)FOVpey

R ûpey)




Icomb(r⃗)

Icomb(r⃗ +
FOVpey

R ûpey)

...

Icomb(r⃗ +
(R−1)FOVpey

R ûpey)


(2.36)

I(r⃗) = Csense,RIcomb(r⃗)

Where Icomb(r⃗) can be solved for by least-squares. A common way to estimate for the entries

of the sensitivity matrix is to simply divide the image of each channel by their sum of

squares (equation 2.31), followed by some filtering to smooth the data and threshold only

for voxels with anatomical support. Figure ?? illustrates an example of unaliasing using

SENSE. Another way to generate the sensitivity maps using principles described in the next

subsection is detailed in appendix A.

As mentioned earlier, the channel sensitivity profiles are explicitly used to achieve the nec-

essary spatial encoded to unalias the image. Although this narration featured a simplified

explanation of the spatial matched filter, a thorough investigation on the ideal channel sen-

sitivities used for the matched filter has the potential to achieve an SNR optimal parallel
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Figure 2.12: SENSE reconstruction of R=2 using the sensitivity profiles shown in Figure 2.11 on the left

[90] and fully sampled coil combining (”Walsh” [122]) on the right.

.

imaging scheme.

2.6.3.2 Estimating Phase Encoding Spatial Harmonics

Another point of view of unaliasing is to mimic the phase-encoding steps. These family of

methods are ”SMASH” based, which stands for simultaneous acquisition of spatial harmonics

[104, 55, 52, 103, 75, 17]. As we recall from equation 2.22 and Figure 2.8 a single phase-

encoding step, npey∆Gpey, disperses the spin ensembles along ûpey to form npey harmonics of
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the transverse magnetization. Equation 2.28 can be re-written as the following:

Sl(kro, kpey)

=

∫
Cl(r⃗)M⃗⊥(r⃗, Trostart) · e−i2π(k⃗ro+k⃗pey)·r⃗dr

=

∫
Cl(r⃗)M⃗⊥(r⃗, Trostart) · e−i2π(k⃗ro+(k⃗pey+mpey∆k⃗pey))·r⃗ · e−i2π(−mpey∆k⃗pey)·r⃗dr

=

∫
e−i2π(k⃗ro+(k⃗pey+mpey∆k⃗pey))·r⃗ · Cl(r⃗)M⃗⊥(r⃗, Trostart) · e−i2π(−mpey∆k⃗pey)·r⃗dr

(2.37)

This implies that if Sl(kro, kpey) is not explicitly acquired, it can be determined from an

acquired k-space Sl(kro, kpey +mpey∆k⃗pey, kse) if a −mpey harmonic function weighted by the

signal distribution is known. The channels are used in these SMASH based methods to

mimic the spatial harmonics needed to complete the k-space grid. Based off of equation 2.37

the set of linear weights should be estimated from the following linear equation [103, 75]:

Nc∑
l=1

[
n
(mpey)
l ·

(
Cl(r⃗)M⃗⊥(r⃗, Trostart)

)
pey

]
=

[
n
(mpey)
l ·

(
f(r⃗))

)
pey

]
· e−i2π(−mpey∆k⃗pey)r⃗

Nc∑
l=1

[
n
(mpey)
l ·

(
Icall (r⃗)

)
pey

]
=

[
n
(mpey)
l ·

(
f(r⃗)

)
pey

]
· e−i2π(−mpey∆k⃗pey)r⃗

(2.38)

where
(
Cl(r⃗)M⃗⊥(r⃗, Trostart)

)
is the calibration image of the channel, Icall (r⃗), and f(r⃗) is a

spatial target fitting function.
(
Icall (r⃗)

)
pey

and
(
f(r⃗)

)
pey

are the projection of the channel

image and the target fitting function onto the phase-encoding axis, respectively. n
(mpey)
j

describes the linear weights from channel l to estimate the mpey ordered spatial harmonic.

These weights form a convolution kernel that works to estimate one k-space entry from

neighboring entries across all channels. The target fit function should suitably describe a

”ground truth” distribution of the transverse magnetization, M⃗⊥(r⃗, Trostart). However it is

difficult to find a composite signal profile without avoiding destructive interference from the

multiple channels. Because of this it was later shown that one could use the transverse

magnetization distribution perceived by each channel [75]. Therefore, it makes more sense

to treat each individual channel image, Icall (r⃗) as the fitting function [75] where the k-space
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Figure 2.13: An illustration of channel-by-channel SMASH fitting, where missing k-space indices of all

channels are estimated as a linear combination of all channels. The top shows selected channel images,

with the white line indicating the phase-encoding direction, ûpey. The second row shows their projection

onto the phase-encoding direction. The third row shows the fitting function the weights from equation 2.39,(
Icalj (r⃗)

)
pey

· e−i2π(−mpey∆k⃗pey)r⃗. For this example we are fitting to harmonic mpey = 1. The fourth row

shows the estimation of the harmonic profile of each channel when doing the weighted sum of all channels.

.

entry of a single channel is estimated from neighboring entries across all channels. This

expands equation 2.38 to channel-by-channel fitting as follows:

Nc∑
l=1

[
n
(mpey ,j)
l ·

(
Icall (r⃗)

)
pey

]
=

(
Icalj (r⃗)

)
pey

· e−i2π(−mpey∆k⃗pey)r⃗ (2.39)

The weight, n
(mpey ,j)
l describes the coefficient to fit from channel l to channel j. Figure 2.13

illustrates the harmonic functions achieved when doing a weighted sum of (Icall (r⃗))pey. These

weights can then be used to estimate an unacquired k-space entry of a given channel as a

linear combination of surrounding entries across all channels:

Sj(k⃗
′
ro, k⃗

′
pey) =

Nc∑
l

[
n
(mpey ,j)
l · Sl(k⃗

′
ro .⃗k

′
pey +mpey∆k⃗pey)

]
(2.40)

Seeing this relationship in equation 2.40 makes it more convenient to solve for the weights

from the calibration k-space: [55, 52]:

Scal
j (k⃗′

ro, k⃗
′
pey) =

Nc∑
l

[
n
(mpey ,j)
l · Scal

l (k⃗′
ro .⃗k

′
pey +mpey∆k⃗pey)

]
(2.41)
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k-Space estimations are improved when using both directions for fitting, such that mpey =

0,±1, ..±Mpey [17, 43]:

Sj(k⃗
′
ro, k⃗

′
pey) =

Nc∑
l

[
Mpey∑

mpey=−Mpey

[
n
(mpey ,j)
l · Sl(k⃗

′
ro .⃗k

′
pey +mpey∆k⃗pey)

]]
mpey ̸=0

(2.42)

where mpey ̸= 0 because mpey = 0 corresponds to k⃗′
pey and 2Mpey is the total number of

k-space neighbors used. In its current form, equation 2.42 only considers channel variations

along the ûpey. Despite the readout direction being fully sampled, this formulation can be

extended by exploiting channel sensitivity variation along the ûro direction when estimating

for missing k-space entries. This will provide a more accurate estimate of the missing sample

(k⃗′
ro, k⃗

′
pey):

Sj(k⃗
′
ro, k⃗

′
pey) =

Nc∑
l

[
Mro,Mpey∑

mro=−Mro,
mpey=−Mpey

[
n
(mro,mpey ,j)
l · Sl(k⃗

′
ro +mro∆k⃗ro, k⃗

′
pey +mpey∆k⃗pey)

]]
mro

∧mpey ̸=0

(2.43)

where mro and mpey cannot both simultaneously equal zero because that corresponds to the

unacquired target k-space coordinate, k⃗′
ro, k⃗

′
pey and 2Mro × 2Mpey is the kro × kpey kernel

dimension for the neighborhood. This formulation is known as commonly used for General-

ized Autocalibrating Partial Parallel Acquisition (GRAPPA) [43]. A comparison of forward

(+mpey), negative (−mpey), two-sided (±mpey), and GRAPPA (±mro,±mpey) are shown in

Figure 2.14. Equation 2.43 implies that when using a phased-array that has coils with lo-

calized sensitivities at different regions across the imaging FOV, any element in k-space of

a particular channel can be described as a linear combination of its surrounding neighbors

across all channels.

Until now, we only determined unacquired k-space elements from their acquired neighbors.

SPIRiT [67] was developed to estimate k-space elements from all members of the neigh-

borhood by treating equation 2.43 as a constraint for the proper solution of k-space. That

means, convolving the complete k-space with the kernel should output itself. This constraint,
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along with consistency with acquired k-space data, is enforced iteratively until a solution for

the complete k-space converges.

2.6.3.3 Low Rank Modelling of Multi-Channel k-Space

Moving all terms of equation 2.42 to the same side results in the following

Nc∑
l

[
Mro,Mpey∑

mro=−Mro,
mpey=−Mpey

[
n
(mro,mpey ,j)
l · Sl(k⃗

′
ro +mro∆k⃗ro, k⃗

′
pey +mpey∆k⃗pey)

]]
mro

∧mpey ̸=0

− Sj(k⃗
′
ro, k⃗

′
pey) =

Nc∑
l

[
Mro,Mpey∑

mro=−Mro,
mpey=−Mpey

[
n
(mro,mpey ,j)
l · Sl(k⃗

′
ro +mro∆k⃗ro, k⃗

′
pey +mpey∆k⃗pey)

]]
= 0

(2.44)

When mro and mpey = 0 (written as mro∧mpey = 0), n
mro,mpey ,j
l = −1 when l = j and equals

0 for all other values of l.

One could structure an autocalibration matrix, Acal, as the kernel convolves through k-

space, with each row of Acal being the vectorized entries of the kernel at each k-space

location. Because each row of Acal is the vectorized entries of a local k-space neighborhood,

the linear dependence of local k-space neighbors described in equation 2.44 guarantees that

there exists a null space of the entries of reach row of Acal [129, 100]. The vectorized weights

from GRAPPA [43] and SPIRiT [67] reside in this null space, V⊥:

AcalVcal
⊥ = 0 (2.45)

This null space can be determined from the singular value decomposition (SVD) of Acal,

where the singular vectors corresponding to the insignificant singular values are the null

space. More of this is discussed in chapter 5.

The earliest approach that determined a null space from the calibration data these nullspace

based methods include PRUNO [129], SAKE [100], LORAKS [48, 46, 47, 49], E-SPIRiT

[118], ALOHA [63], and GIRAF [83].
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Figure 2.14: A comparison of different fitting for SMASH-based parallel imaging. The top row shows the

fully sampled image next to the aliased (R=2). The second row of images shows the following parallel imaging

schemes from left to right: GRAPPA [43] fit from equation 2.43 with Mro = Mpey = 1, bi-directional SMASH

from equation 2.42 where Mpey = 1, +mpey∆kpey harmonic fitting, and −mpey∆kpey harmonic fitting for

mpey = 1. The last two columns correspond to channel-by-channel SMASH fitting [75]. The fitting in the

right column is equivalent to the fitting seen in Figure 2.13. The target entries in the kernel is indicated

by the black dot, while the neighbors used in the fitting are colored blue. The purpose of this figure is to

illustrate the progression in harmonic fitting parallel imaging, which can be seen by the reduced difference in

the difference map when scrolling from right to left.
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CHAPTER 3

Arterial Spin Labeling Magnetic Resonance Imaging

Quantifies Tissue Perfusion Around Foot Ulcers

3.1 Introduction

Foot ulcers are a prevalent source of morbidity in diabetic patients and may lead to major

amputation. Patients with diabetes have a 25% risk of developing a foot ulcer over their

lifetime, leading to major amputation in 17% of them by one year [69, 102, 13, 79, 80].

Although neuropathy is the dominant etiology of foot wounds in the diabetic population,

ischemia impacts 65% of these wounds [77]. A key factor in determining the healing potential

of these wounds is the perfusion deficit in the limb. The physiologic assessment of limb

perfusion is now a recommended standard practice for evaluation of patients with chronic

limb threatening ischemia[110]. Yet the tools to quantify limb perfusion are deficient. The

current tools to assess perfusion are either indirect or qualitative, not providing a quantitative

assessment of perfusion. The use of indirect tools like ankle-brachial index and toe-brachial

index are widespread and have been included in recent disease grading classification systems

[54, 28]. However, these tools are limited by medial calcinosis and do not provide a localized

assessment around a wound [93]. Transcutaneous oxygen measurement is another widely

used tool whose sensitivity and its specificity for predicting wound healing in the diabetic

population is higher than the aforementioned indirect tools [124]. However, this tool provides

averaged data over large regions of the limb and is limited by tissue factors like edema
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and vasoconstriction [42]. More recent qualitative methods including hyperspectral imaging

and indocyanine green angiography can detail local tissue perfusion throughout the foot

[27, 86, 116]. However, these tools limit their assessment to a superficial level and do

not provide information on deeper tissue layers including muscle. Arterial spin labeling

(ASL) is a non-invasive magnetic resonance imaging (MRI) technique that quantifies tissue

perfusion at various tissue depths, without intravenous contrast. Clinically, it has been used

in neuroimaging to quantify brain tissue perfusion [115, 53]. Briefly, it tags protons in blood

with radio frequency pulses upstream from the tissue of interest. Images of the tissue of

interest are acquired before and after perfusion with this labeled blood. Their subtraction

yields a spatial map of perfusion throughout the imaged tissue. This has been applied to

skeletal muscle in the extremities and more recently to the diabetic foot [130, 128, 33, 113].

The objective of this study is to investigate the novel application of ASL to assess foot

perfusion in both healthy volunteers without wounds and diabetic volunteers with foot ulcers.

This pilot study aims to quantify peri-wound foot perfusion at various tissue depths and

compare this to foot perfusion in healthy volunteers.

3.2 Methods

3.2.1 Study Volunteers

To conduct this pilot study, 20 healthy volunteers were recruited from a university health

campus and 10 diabetic volunteers were recruited from a university affiliated wound care

center. All volunteers were required to be at least 18 years of age and be capable to undergo

an MRI study. Additionally, diabetic volunteers were required to have an active foot wound,

formally diagnosed diabetes mellitus via hemoglobin A1c or serial blood glucose examina-

tions, and an objective physiologic assessment of macrovascular peripheral arterial disease

with duplex ultrasound, ankle-brachial index, or toe-brachial index. Exclusion criteria for

the healthy volunteers included structural or functional heart disease, diabetes, history of

46



Figure 3.1: A diagram illustrating the positioning of the tagging pulse targeting a slab upstream (arterial

flow) from the target slice in ASL imaging. Once spins are tagged, they flow into the capillary bed where

they exchange with water molecules in the tissue. Because the spins leaving the capillary bed into the target

slice have already been perturbed by RF excitation from the tag, the NMR signal in the image acquisition

is different from if they were entering the slice, completely unsaturated. This difference is how perfusion

measurements are captured in (classical) ASL.
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peripheral arterial disease, claudication or rest pain in any extremity, arterial injuries of the

lower extremities, active tobacco use, or an abnormal ankle-brachial index (less than 0.9).

This study was approved by the Institutional Review Board of the University of California

Los Angeles. Written consent was obtained from all volunteers prior to participation in the

study.

3.2.2 Study Design

After obtaining consent and screening volunteers, the ankle-brachial index was measured

in healthy volunteers. Since the diabetic participants already had objective assessment of

macrovascular disease, ankle-brachial index was not measured at the time of the study.

Next the participants were positioned supine on the MRI table with the foot of interest

in a foot coil. All volunteers were allowed to rest for 5 minutes on the MRI table prior

to commencing imaging. For healthy volunteers, the dominant foot was imaged while in

diabetic volunteers, the foot with the wound was imaged. All imaging was performed on

a 3.0T Siemens Magnetom Skyra MR system (Siemens Healthineers, Erlange, Germany).

Scout images were initially obtained in the axial and sagittal planes. Then a high resolution

T2-weighted image was obtained throughout the foot to discern soft tissue anatomy including

wound edges. Finally, the arterial spin labeling sequence was performed using the same

slice number and thickness. The ASL images were registered over the T2-weighted image,

providing an anatomically aligned perfusion map. Healthy volunteers underwent a second

round of imaging during sustained toe flexion. This imaging sequence was used to confirm

the ability to detect changes in perfusion in an expected location in the foot. They were

asked to plantarflex their toes such that they reduced the distance between the metatarsal

head and the heel. This published method reduces the medial longitudinal angle of the

foot and activates the intrinsic muscles of the foot especially the abductor hallucis muscle

[57, 131]. The exercise was demonstrated and volunteers were allowed to practice. The

volunteer’s foot was once again placed in the foot coil. They were asked to flex their toes as
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far as possible and hold the position throughout the duration of the study. Although they

were asked to exert maximal force, there was no measure of the effort they exerted.

3.2.2.1 Arterial Spin Labeling Technique

We specifically used pseudo-continuous ASL to measure tissue perfusion [29] Briefly, ASL

administers two acquisitions: a control and tagging. Prior to either acquisitions, an inversion

process is applied upstream to the tissue of interest. For pseudo continuous ASL, this in-

version is only sensitive to flowing spins, borrowing from concepts of flow-induced inversion.

Furthermore, the inversion is split into a series of low flip angle Hanning shaped radiofre-

quency pulses, having a lower energy deposition than a continuous adiabatic inversion. The

inverted spins in the blood stream will enter the capillary bed and exchange with the water

molecules in the tissue. What distinguishes the tagged from the controlled images are the

net effects of the RF and gradients on the flow spins. For the tagging pulse, gradients are

left turned on in between to cause a phase dispersion along the flow direction, which equal to

the phase accumulation from a single continuous selective flow-induced in continuous ASL

[126]. The cumulative effect of these pulses yields an inversion of the arterial flow spins.

The control scan uses a similar pulse train, however each consecutive pulse tips the spins in

the opposite direction and the slice select gradient is also balanced. This in zero net tip in

the control pulse, while also having the same magnetization transfer effects as the tag pulse,

leading to the difference between the tag and control images to not have any magnetization

transfer effects.

After the control or tagging pulses, the upstream spins will flow into the capillary bed of

the slice intended for imaging and exchange with tissue water. The inversion of the tagged

spins limits the amount of excitable water molecules in the tissue of interest. Therefore, the

signal difference between the control and tagged images is proportional to perfusion.
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3.2.2.2 Parameters

Our pseudo-continuous ASL acquisitions were based on a 3D Turbo Gradient Spin Echo’s

(TGSE) pulse sequence. It was employed with ten spin echo trains, a sixty-three echo-planar

factor, a 38.44 ms effective echo time, 4300 ms repetition time, a fat saturation pulse, and an

1800 ms inversion time. We had an in-plane 192 x 192 mm field of view with a corresponding

64 x 64 in-plane matrix. A single slab was sampled which featured eight 3-mm slices parallel

to the plantar foot or plane of the wound. With thirty averages, our scan was achieved in

8:40 minutes per foot.

3.2.2.3 Perfusion Maps

An estimate of perfusion is proportional to the difference between the tag and control images

and is based off the two compartment model between vascular and tissue components [4,

123].

∆M =
2M0fα

λR1α

[e−wR1α − e−(τ+w)R1α ] (3.1)

where τ is the labeling pulse duration, R1a is the longitudinal recovery rate of the blood, M0

is calf equilibrium magnetization, w describes the delay time, f is the tissue blood flow, λ is

the blood-tissue water partition coefficient, and α is the tagging efficiency. Modified to get a

more accurate measure, the image acquisition was interleaved between labeling and control

pulses. The assumed parameters values were 2 sec delay time, 1.5 sec label time, 0.8 tagging

efficiency, 0.83 sec-1 longitudinal recovery rate, and a 0.8 g/mL blood-tissue water partition

coefficient. We would subtract the control image from the label image for each voxel (∆M ′),

and then solve for the tissue flow with the parameters mentioned above.

3.2.3 Outcome Measurements and Data Analysis

For diabetic patients, the wound size, presence of infection, and vascular assessment were

gathered during the pre-scan exam or from the electronic chart. Using this data, the Wound,

Ischemia, and Foot Infection (WIfI) grades of the wounded limbs were calculated according
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to previously published guidelines [77]. After imaging, a perfusion map was generated using

custom image analysis software (MATLAB, MathWorks, Natick, MA) that implemented the

FEAST perfusion calculation. A perfusion map was generated for each imaged ASL slice.

Then a region of interest (ROI) was created around the foot at each slice on the T2-weighted

images. The foot ROI for healthy volunteers was subdivided into lateral and medial plantar

and calcaneal regions (Figure 3.2A). The medial and lateral division was between the 2nd

and 3rd metatarsal while the plantar and calcaneal division was at the transverse tarsal joint.

For the volunteers with wounds, the ROI (unique to each image slice) was sectioned into

4 areas: wound, proximal border zone, distal border zone, and remote zone. The proximal

border zone is an area surrounding the wound that is 125 percent of the wound area while

the distal border zone is 150 percent, both centered around the wound (Figure 3.2B). The

remote zone is the tissue outside the distal border zone. When comparing diabetic and

healthy volunteers, the entire ROI of the plantar foot in healthy volunteers corresponded

to the remote zone in volunteers with wounds. In healthy volunteers, regional perfusion at

rest and during sustained toe flexion were compared. The average remote zone perfusion in

diabetic volunteers was compared to that in healthy volunteers at rest. Lastly, we compared

the average perfusion amongst peri-wound zones.

3.2.4 Data Analysis

All perfusion values are expressed as mL/100g of tissue/min. Descriptive statistics are

expressed as mean +/-standard error for quantitative variables and frequency (percentiles)

for categorical variables. WIfI grades are expressed as median (range). Continuous variables

were analyzed with regression using generalized linear mixed models, which can perform

differences in means analysis for 2 or more group while accounting for both fixed and random

effects. In each analysis, the individual was held as a random variable. The R Statistical

package was used to perform all statistical analysis (Version 3.5.1, R Core Team, Vienna,

Austria) [114].
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Figure 3.2: The plantar foot of healthy volunteers (A) was segmented into the medial and lateral plantar

and calcaneal regions while that of the diabetic foot (B) was segmented into the following peri-wound region:

wound, near border, far border, and remote zones. We published this figure in [85]

3.3 Results

3.3.0.1 Volunteer Demographics and Wound Characteristics

The diabetic group of patients were older and had higher rates of smoking compared to

the healthy volunteer group (Table 3.1). The ABI between the two groups were similar

(1.0+/- 0.3 versus 1.1 +/- 0.03). Three patients in the diabetic group had undergone a

transmetatarsal amputation in the past for infection. The diabetic group had a median WIfI

stage of 2 (range: 1-3). The median wound grade was 2 (range: 1-3), ischemia grade was 0

(range: 0-1), and foot infection grade was 0 (range: 0-1). There was one volunteer with an

ischemia grade of 1; the others had grades of 0. There were 3 volunteers with a foot infection

grade of 1; the others had grades of 0. The mean duration of the wounds was 14.1+/-3.0

months and size was 4.3+/-1.9 cm2, at the time of the study. Wounds were located at the

metatarsal head (5), heel (2), and at the transmetatarsal amputation stump (3).
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Figure 3.3: Regional foot perfusion in healthy volunteers during rest and sustained toe flexion. We published

this in [85]

3.3.0.2 Perfusion in the Plantar Foot

In healthy volunteers the average tissue perfusion in the plantar aspect of the foot at rest

was 27.3+/- 2.7 mL/100g/min. There was no gradient of perfusion across the foot at rest

(3.3). During sustained toe flexion the average foot perfusion was 43.9+/-1.7 mL/100g/min

and was significantly different compared to rest (p¡0.001). The most substantial increase in

perfusion occurred over the medial plantar foot during toe flexion compared to the resting

state (64.3+/-5.3 vs 29.6 +/-2.6 mL/100g/min, p¡0.001). This increase in perfusion was

detected throughout the thickness of the foot and most prominent superficially (Figure 3.4).

The perfusion in the healthy plantar foot tissue was significantly higher in diabetics with

wounds compared to healthy volunteers at rest (62.8+/-2.7 versus 27.3+/- 2.7 mL/100g/min,

p<0.001).
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[scle=0.5]

Figure 3.4: Plantar foot perfusion at various depths in healthy volunteers during rest and sustained toe

flexion. We published this in [85]

3.3.0.3 Peri-wound Perfusion

There was a distinct perfusion gradient around the wounds in diabetic volunteers (Figure

3.5). Perfusion in the wound (96.1+/- 10.7 mL/100g/min) and the proximal border zone

(92.7 +/- 9.4 mL/100g/min) was significantly higher than that in the remote zone tissue

(62.8+/-2.7 mL/100g/min, p¡0.001 and p=0.002 respectively). There was no significant

difference between the wound and proximal border zone perfusion (p=0.984). Perfusion at

the distal border zone (73.4+/-8.2 mL/100g/min) was higher than the remote zone but not

significantly (p=0.549). In Figure 3.6, the peri-wound perfusion pattern at various tissue

depths can be seen. Tissue perfusion in the wound and proximal border zones are highest

superficially. Furthermore, the difference in perfusion between peri-wound zones and the

remote zone are not significant at greater tissue depths (Table 3.2). There was a marked

decrease in perfusion at 60 percent of the wound depth in the wound region and proximal

border. When comparing the wound and remote regions, the variation in perfusion at 60

percent is not significantly different (76.6 +/- 23.7 vs 56.7 +/- 6.7 mL/100g/min, p=0.403).
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Figure 3.5: Regional foot perfusion around nonischemic diabetic foot ulcers. We published this in [85]

Figure 3.6: Regional foot perfusion around nonischemic diabetic foot ulcers. We published this in [85]
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3.4 Discussion

Although adequate perfusion is paramount to healing diabetic foot ulcers, the tools to quan-

titatively and directly assess foot perfusion are currently lacking. This pilot study assesses

the feasibility of using ASL, an MRI technique without the use of intravenous contrast, to

measure foot perfusion both in healthy volunteers and diabetics with neuropathic wounds.

Using ASL, we measured regional foot perfusion in the healthy foot as well as peri-wound

perfusion. In healthy volunteers, there was a detectable increase in perfusion with activation

of intrinsic foot muscles. In diabetics with neuropathic, non-ischemic wounds, we show that

the foot is hyperemic relative to healthy volunteers at rest and that the peri-wound tissue is

hyperemic compared to the tissue far from the wound.

Perfusion measurements of the plantar foot during toe flexion are in line with previously

reported values, yet observed variations can be attributed to testing conditions and image

processing. There was an expected increase in perfusion with maximal sustained toe flex-

ion, compared to rest, with the largest increase at the medial plantar foot from 30 to 64

mL/100g/min. Zheng et al similarly found that plantar foot perfusion during subjective

toe flexion (volunteers were told to flex and hold) was highest on the medial aspect at 93

mL/100g/min [130]. Edalati et al also found the greatest perfusion in the medial plantar

foot during toe flexion in an MRI compatible dynamometer at 20% of their maximal effort,

increasing to 17 from 9.8 mL/100g/min [33]. Though the type of exercise used to activate in-

trinsic foot muscles was similar, the degree of effort was variable in these studies. The image

processing protocols also differed both in creating the region of interest used to average the

imaging voxels and the thickness of imaging slices used to average perfusion. Lastly, the type

of tissue included in the perfusion measurement also varied as some studies included only

muscle while our study included all tissue. The variations in results suggests that perfusion

measurements using ASL require consistency in imaging protocol and conditions to obtain

reproducible measurements. In this study, we also described a quantitative peri-wound per-
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fusion pattern that builds upon currently published qualitative perfusion patterns. We found

that perfusion in the wound bed and the tissue immediately adjacent to the wound bed is

hyperemic with an approximate 50% increase in perfusion compared to the tissue far from

the wound. The peri-wound perfusion pattern is in line with qualitative perfusion patterns

measured by other tools including near infrared imaging and laser speckle contrast imaging

[7, 92, 59, 105]. The surprising result of increased perfusion does not agree with the recently

published results of peri-wound perfusion analyzed by ASL. Edalati et al found that per-

fusion around the wound was reduced compared to tissue far from the wound (9.5 vs 8.6

mL/100g/min) [33]. However, this group only included skeletal muscle perfusion in their

region of interest. In contrast, we included all tissues in the foot including superficial soft

tissue, which is the tissue perfusion primarily measured by the aforementioned qualitative

tools. This specific pattern of peri-wound perfusion is known to occur in healing wounds

instead of stalled non-healing wounds where the perfusion pattern indicates a hypoperfused

peri-wound region compared to the remote region [7, 41]. It is likely that the perfusion

profile of these patients actively undergoing wound care, would reflect the perfusion pat-

tern of healing instead of a stalled non-healing wound. However, this increased blood flow

around a wound may not be sufficient to heal the wound, underlining the importance of a

perfusion deficit. Currently, the perfusion threshold that would lead to wound healing has

not been quantified nor are the factors that modulate this threshold known. Although, the

pattern of perfusion is important, yet the quantification of perfusion provides more insight

on the wound. Ultimately, a tool to quantify tissue perfusion will allow for the exploration

of a wound’s perfusion deficit and its implications on healing. The perfusion pattern along

the wound depth may provide a more complete picture of the perfusion status of a wound.

Currently, the direct assessment of tissue perfusion beyond the superficial layer is limited to

indirect measures of perfusion like optical coherence tomography. Although these types of

tools have been used in documenting angiogenesis at the wound edges along a tissue depth,

their implications on wound healing are unknown [105]. In this feasibility study, we showed
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that the peri-wound hyperemia diminishes along the tissue depth and nearly normalizes at

the base of the wound. Increased wound depth has been associated with higher amputation

rates and is used in wound clinical severity scores [77, 112, 6]. The implication of this per-

fusion pattern along the wound depth and the quantitative differences between superficial

and deep tissue perfusion are unknown. There were several limitations in this feasibility

study. The study group was small and recruited during a recurring wound care clinic day

where there are a large number of diabetic patients with neuropathic wounds. The lack

of patients with ischemic wounds limits the conclusions of this feasibility study. It is un-

known whether the perfusion pattern seen in this cohort would be observed around ischemic

wounds. Additionally, the conclusions drawn from the comparison between the healthy and

diabetic groups were limited since their demographics were different. Furthermore, all of the

diabetic patients were male further narrowing the applicability of its findings. The cohort

demographics and lack of matching between the healthy and diabetic volunteers required

study resources that were not available for this small feasibility study. Other seemingly fea-

sible comparison groups like using the contralateral foot in diabetics as a control group were

not possible secondary to logistical constraints of this feasibility study and went beyond the

study’s scope. Other features of the imaging modality that limited the study included image

processing. There were small movements in the foot during the scan that we were unable

to correct and may have contributed to measurement error. Lastly, the novel application

of this imaging study precluded a standardized manner of imaging volunteers. Though we

imaged all of the volunteers in the same fashion, there were some parameters that were not

controlled such as the room temperature in the imaging suite, the volunteer’s activity prior

to the scan, or avoidance of substances that may affect perfusion. The significance of these

uncontrolled factors on perfusion assessed by ASL is unknown at this time.
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3.5 Conclusion

We have demonstrated the feasibility of using ASL MRI to quantify foot perfusion both in

healthy volunteers and diabetic volunteers with neuropathic wounds. This imaging modality

provides a non-invasive means of quantifying perfusion with standard medical equipment

rendering granular of detail of foot perfusion throughout the volume of tissue. We have

demonstrated that the perfusion around a non-ischemic diabetic foot ulcer is 1.5 times greater

than perfusion tissue far from the wound and that the foot is hyperemic relative to the

non-diabetic foot without a wound. The application of ASL to quantitative foot perfusion

assessment is promising, yet requires larger study to elucidate its clinical implications on

wound healing and the exploration of a wound’s perfusion deficit.
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Characteristics Diabetic Wounds (n=11) Healthy Volunteers (n = 20)

Male sex 11(100%) 14(70%)

Age, years 60.1± 3.1 26.8± 0.8

Diabetes mellitus 11(100%) 0

Current smoking 7 (65%) 0

Ankle-brachial index 1.0± 0.3 1.1± 0.03

wound duration,

months 14.1± 3.0 —

Wound Location:

Metatarsal head,

plantar 5(45%) —

Wound Location:

Mid foot, planter 1(9%) —

Wound Location:

Transmetatarsal

amputation stump 3(27%) —

Wound location: Heel 2(18%) —

Wound area. cm2 4.3± 1.9 —

Wifi classification score: Wound 2(1-3) —

Wifi classification

score: Ischemia 0(0-1) —

Wifi classification

score:

Foot infection 0(0-1) —

Table 3.1: Volunteer demographics and wound characteristics. Wifi stands for Wound, Ischemia, and Foot

Infection. Data are presented as number (%), mean (standard error), or median (range). We published this

table in [85].
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% Depth 20 40 60 80 100 p Value

(20%vs.

100%)

Region

Wound 141.7± 33 115.5± 23.6 76.6± 23.7 72.6± 14.6 61.7± 10.3 0.015

Near

border 124± 35.6 105.2± 19 81.5± 15.8 77.9± 16.2 69.9± 10.1 0.006

Far

border 96.7± 27 84.4± 17.5 60.4± 16.8 68.5± 16.7 58.1± 9.4 0.27

Remote 72.1± 6.1 62.3± 5.5 56.7± 6.7 58.1± 4.5 63.4± 7.5 0.27

p-value

(wound,

remote) 0.0116 0.0115 0.403 0.322 0.322

Table 3.2: Volunteer demographics and wound characteristics. Wifi stands for Wound, Ischemia, and Foot

Infection. Data are presented as number (%), mean (standard error), or median (range). We published this

table in [85].
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CHAPTER 4

Slice Encoding for the Reduction of Outflow Signal

Artifacts in Cine Balanced Steady State Free

Precession Imaging

4.1 Introduction

Balanced Steady-State Free Precession (bSSFP)[84] is the workhorse in cardiac cine MRI for

a wide spectrum of clinical indications [24, 35, 89, 1]. Of the broad family of “steady-state”

sequences–those whose kernel demands repetitions to be short and frequent enough to achieve

eventual equilibrium between the magnetization’s relaxation and recovery [87, 125, 45, 44]

bSSFP has become the imaging technique of choice for many cardiac MRI applications.

The kernel in bSSFP lacks any net gradient-caused intravoxel phase dispersion and has a π

rad/TR incremental RF-phase ramp, causing off-resonance induced dephasing to be almost

completely refocused midway between pulses [97, 96]. This effect credits bSSFP readouts

with relatively high signal-to-noise ratio (SNR) and T2/T1 signal-dependence, both of which

are useful for enhancing blood-myocardium contrast [35, 34, 101].

Unfortunately, the features providing bSSFP with the aforementioned benefits also make

it vulnerable to flow-effects. With balanced gradients, excited spins leaving the slice linger

on, tapering-off via T2-decay to ultimately contribute to the bulk signal [73]. Therefore, a

signal profile originally intended for 2D space spans a 3D volume. This outflowing signal
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Figure 4.1: An overview describing our proposed sequence. (A) The slice intended to be acquired is positioned

through a heart’s horizontal-long axis (HLA), which is penetrated by the descending aorta. Any through-plane

flow from the aorta will have signal tapering off via T2 decay. Having this unaccounted for will have the out-

of-slice signal corrupting the final image as indicated by the red arrow. (B) Our proposed sequence is displayed:

adding slice-encoding steps to treat the signal as a 3D space, without any change to the 2D excitation’s profile.

Upon a 3D IFFT the final image will be found in the center-partition without any influence from the out-of-

slice spins, which will be spatially encoded to their respective locations. We published this in [3]

aliases along the axis it is projected on, as illustrated in Figure 4.1, causing commonly seen

outflow artifacts in cine imaging [72]. These artifacts include a coherent out-of-slice (OOS)

contribution mis-projected onto the intended slice during the readout, often appearing as

an erroneous signal pileup, and “ghosts” or “zippers” that run along the phase-encoding

direction [111].

The extent of the outflowing spins’ impact on the images depends on their off-resonances.

Markl et al. called this coherent sum of the OOS spins “frequency offset-dependent outflow

effects” [72, 73]where outflowing spins exhibit noticeable signal enhancement. This is most
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particular for isochromats with π rad/TR phase accumulation and is visualized in Figure

4.2. The on-resonance spins, by definition, don’t have added phase accrual in the rotating

frame. The π rad/TR RF-phase ramp will therefore cause adjacently excited inflowing on-

resonance spins to cancel, while causing adjacently excited π rad/TR spins to add coherently.

Outflowing spins are still subject to the MRI bore’s gradients. As such– as long as they are

in the receivers’ sensitivity region–they are prone to be mis-frequency-encoded, causing their

mis-projection onto the resulting slice15. Further complications arise if the flow is pulsatile:

inconsistent spin-inflow contributes to signal phase variations between adjacently acquired

k-space lines, causing mis-encodings (“zippers”) along a Cartesian grid’s phase-encoding

direction [95]. This provides three main “ingredients” for the flow artifacts in bSSFP cardiac

cine imaging: existence of outflowing spins, those spins having off-resonance, and them

having pulsatile time-varying velocities [72, 73, 111, 95, 108]. The first two ingredients pose

issues for the frequency-encoding direction because any tipped spin in the receiving coils’

proximity contributes to the bulk signal during the readout [72]. The third contributes to

phase-encoding issues because the pulsatile spin-inflow between adjacent k-space lines varies

the bulk signal’s phase between readouts [95].

Schar et al. carried out an in-depth evaluation on 3T cine-bSSFP imaging, emphasizing

the importance of localized shimming [95] to mitigate off-resonance effects. This was sim-

ilar to Deshpande et al’s 1.5T work on coronary artery imaging, which proposed pursuing

pre-scans to find the appropriate central frequency to limit the outflow artifact’s extent [32].

Unfortunately, this method requires a “trial and error” approach for acquiring an image with

minimal outflow corruption. Datta et al. proposed having a net through-plane dephasing

gradient in the bSSFP acquisition in an attempt to cancel out the outflowing spins [30]. The

overall outflow signal intensity from the bSSFP stopbands is reduced as a result; however,

the range of off-resonances showing noticeable outflowing signal is widened. The dephasing

gradient also does not discriminate between in-slice versus out of slice, corrupting the slice’s

actual signal. Bieri et al. carried out work to reduce mis-phase-encoding in bSSFP imag-
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Figure 4.2: Bloch-simulated results with the following parameters: Flip angle = 60◦, TR = 4ms, T1/T2 =

100/150 ms, off-resonance accrual per TR, ∆ϕ = [−2π, 2π], fractional spin-replacement rate ∆sϵ[0, 1], with

a six-millimeter slice-thickness after 300 excitations. Right column: the approach to steady state equilibrium

for the moving spins for selected fractional spin-replacement rates over a range of off-resonances. As Markl

et al discussed [73], the moving spins on the off-resonant bands add up coherently, leading to an out-of-slice

signal-enhancement. Left: Signal profiles from the sum of all spins (top, within the nominal slice (bottom

left) and all downstream spins (bottom right) for a range of spin-replacement rates and off-resonances. The

scaling similarities between the downstream and the total signal makes it clear that much of the bulk signal

is contributed from the downstream spins. We published this in [3]
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ing. Originally intended for eddy current-induced phase-offsets in bSSFP imaging [10], he

attempted to null the bulk-signal’s flow-induced phase offsets with adjacent readouts. The

method assumed adjacent k-space lines would have similar in-flow induced phase-accrual

[9]. Therefore, bSSFP’s linear RF phase ramp would contribute to cancelling their phase-

accumulation if their readouts were consecutively acquired, minimizing the appearance of

zipper artifacts. However, this method does not address the fact that there is still unlocalized

signal beyond the imaged slice, letting it contribute to the acquisition’s readout. Because

outflowing spins gives the signal a 3D profile, we hypothesized that their associated artifacts

can be reduced if they are spatially encoded for. As such, we propose adding through-slice

phase-encoding steps (“slice-encoding”) to increase the acquisition’s through-slice field of

view (FOV) beyond the nominal slice-thickness to localize this outflowing signal. We tested

this hypothesis with Bloch-simulations, phantom scans, and on nineteen healthy volunteers.

4.2 Theory

4.2.1 Outflowing Signal

To conceptualize outflowing signal, imagine a system of through-plane flowing spins moving

at a velocity v and has already achieved steady equilibrium. Each ensemble of spins has

its own specified off-resonant phase-accumulation per TR ϕ and will leave the slice with its

magnitude decaying according to [73]

AϕOS(t) = Aϕ0e
−t
T2 (4.1)

where t is the elapsed time from when it left the slice, with magnitude Aphi0. This equation

can be expressed in terms of distance downstream from the slice, r⃗s = vs · t. However, to

get a sense of how impactful the OOS signal is to the entire acquisition, it makes sense to

convey Equation 1 in terms of fractional spin-replacement rate, ∆s [72]. This describes the

number of spins inflowing at each TR as a fraction of the slice’s full capacity. With a nominal
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slice-thickness, ST , the flow’s velocity is related to ∆s as:

vs =
∆sST

TR

(4.2)

The out of slice amplitude from Equation 1 can then be expressed in terms of r⃗s:

AϕOS(r⃗s) = Aϕ0e
−|r⃗s|TR
∆sST T2 (4.3)

This relationship (Equation 4.3) argues for a more powerful case of the OOS spins’ severity

than a mere |r⃗s|
vs

substitution for t, showing that even slow ensembles could significantly

corrupt the image if its nominal thickness is small.

It must be noted that this conceptualization is brief in that it discusses only a single outflow-

ing ensemble. This narration does not analytically define the total acquired signal as a sum

of all the spin ensembles within and outside of the imaging slice; however, the phenomenon

it conveys is the cause of the image artifacts we aimed to remove with experiments detailed

in the Methods section.

4.2.1.1 Flow Compensation

Bieri et al. proposed two flow-compensation based techniques to limit flow effects in bSSFP

[9]: the k-space pairing technique and M1 nulled gradient waveforms. Both aimed to elim-

inate the variable bulk signal phase when imaging with pulsatile flow. Eliminating this

velocity-induced phase accumulation does well to minimize the bulk signal’s phase variabil-

ity from line-to-line in k-space, however it does not eliminate the outflowing signal.

4.2.2 Pulse Sequence

We propose the pulse sequence illustrated in Figure 4.1B to mitigate the aforementioned

artifacts, which includes Fourier spatial encoding along the slice-select’s direction. The

resulting data has a through-slice resolution, ∆z, typically chosen as the nominal slice-

thickness. With NSE total partitions, the effective through-slice FOV is expanded to NSE∆z,
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describing the through-slice k-space resolution as ∆ks =
1

NSE∆z
. According to equation 2.25

incremental gradient-lobe amplitude needed to achieve such a k-space resolution can be

solved as ∆GSE = 2π
γNSE∆zTSE

, with TSE being its duration. These slice-encoding steps would

give the raw data three spatial dimensions, unlike two for the standard bSSFP sequence.

After a 3D inverse Fourier transform is performed on k-space, the final image unfolded from

the outflow artifacts will be held in the center slice. The additional up-and-downstream

slices of the 3D space will serve as a buffer to tolerate outflow-induced aliasing, before the

target image is contaminated.

4.3 Methods

4.3.1 Bloch Simulation

Much of the following was based off of the Bloch simulation designed by Markl et al [72].

The Bloch simulations made for this study investigated the physical effects involved and

sought to assess how those effects impact the acquisition. This is illustrated in Figure 4.3.

The physical effects included in this investigation were through-plane flow, an imperfect

slice excitation-profile, and coil sensitivity. An array of equally spaced spin ensembles was

arranged along the slice-select’s direction. The excitation profile’s full width at half maximum

(FWHM) –the imaging slice– was divided into Ns subslices. The flow’s motion was modeled

by a downstream shift of the ensembles by ∆s Ns subslices per TR. This simulation had to

include all measurable transverse magnetizations in their complex sum for the bulk signal.

Therefore, estimating an appropriate number of downstream subslices, Nos, must consider

the spins’ T2 relaxation. The transverse magnetization loses relevance beyond 3 T2 time

constants after excitation, suggesting Nos = ∆sNs4T2/TR.

Parameters were set to have Ns = 20, TR = 4ms, and bloodlike relaxation properties of

T1/T2 = 1000ms/150 ms. The number of upstream subslices was made equal to the down-
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Figure 4.3: A visual narration describing how our Bloch simulations were carried out. The entire k-

space-segmented cardiac cine acquisition was simulated along with the time-varying through-plane blood flow

–indicated by the fractional spin-replacement rate for each TR (4ms),∆s –and the time-varying B1 excitation

(described in 4.3.1 ). The ∆s pulsatile flow waveform used during the cardiac cycle is illustrated in Figure

4.4 and the B1 excitation for each repetition had a linear π rad/TR phase ramp, as is standard in bSSFP

acquisitions. The steps involved in simulating the acquisition of each k-space line is shown in the bottom of

the figure. After each excitation, the spins are shifted downstream by Ns∆si, with i being the excitation’s

index, to simulate the through-plane blood flow. At mid TR, after the appropriate T2-decay, T1-recovery,

and rotations from off-resonances and slice-encoding gradients, the spins’ transverse magnetizations were

weighted by a spatial Gaussian coil-sensitivity function in a sum to fill the appropriate k-space element.

The appropriate T2-decay, T1-recovery, remaining off-resonant rotating, and gradient refocusing were done

before the start of the next excitation. The Gaussian weighting was included to mimic a reception coil’s

spatial sensitivity, artificially removing some out of slice signal that’s further away from the slice, as in the

clinical case when using localized phase-array coils. HB: heartbeat. We published this in [3]
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stream amount, having Ns + Nos = 6000 total subslices with the target slice positioned at

the array’s center. The simulated spins were exposed to an 800µ s sinc-functioned RF-pulse

designed for a 6-mm slice-thickness, a 60◦ nominal flip-angle, a 3 time-bandwidth-product

(TBW), and an incremental π rad/TR RF phase-ramp. The imperfect excitation profile was

determined using a detailed Bloch simulation by dividing the sinc-pulse into TPRF = 120

time-points. This excitation pulse was carried out on the array of spins, with each spin’s

motion being calculated during each of the pulse’s TPRF timepoints.

The Bloch simulations investigated effects of a constant flowrate with ∆s ranging from 0

to 1, and pulsatile flow effects with the ∆s waveform displayed in Figure 4.4. For a six

mm slice-thickness, ∆s=1 corresponded to a 1500 mm/s velocity. This was chosen as our

maximum flow velocity because it is amongst the fastest seen in the thoracic area [120].

To fill up the k-space along the slice-encoding/select direction, kse, an excitation was ded-

icated to each of the NSE k-space “lines” after NPrep equilibrium-preparation excitations.

NPrep was arbitrarily chosen to be 300 for the stationary spin, and 1000 for the pulsatile

case. This led to four total cycles (“heartbeats”) for preparation before an acquisition for

the pulsatile-flow Bloch simulation. The acquisitions were done at TE = TR/2. Each en-

semble’s phase accumulation along the slice-encoding axis, r⃗s, included the slice-encoding

gradient lobe’s induced dephasing and the ensemble’s inherent off-resonance. Based off of

equation 2.22, this phase accumulation is:

θSE,TE
= 2πk⃗SE,TE

· r⃗s +∆ϕOff,TE
(4.4)

where kSE and ∆ϕOff,TE
are the slice-encoding’s k-space coordinate and the off-resonance

phase accumulation by TE, respectively. Each k-space element would be the complex sum

of all spin-ensembles, weighted by a Gaussian receiver-sensitivity function [68] that had a

10mm standard deviation. This sensitivity function was included to mimic the effects local

phased-array receivers have on an image’s acquisition, where only transverse spins proximal
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Figure 4.4: Pulsatile flow Bloch simulation results. (A) The simulated velocity profile is given in terms of

the fractional spin-replacement rate, ∆s, as a function of time. (B) The simulated MRI signal magnitude

for the range of off-resonances ∆ϕ
TR ϵ[−2π, 2π]]. (C) The simulated MRI signal magnitude for the isochromats

with 0 and π rad/TR off-resonance frequencies, indicated by the pink and red colors, respectively, are plotted

on the right. Just as Markl et al discussed [72], coherent signal enhancement is most pronounced for π

rad/TR isochromats, shortly after peak-systolic speeds. We published this in [3]
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to the coils make significant contributions to the k-space readouts. The rest of the TR would

be completed with the slice-encode refocusing lobe to balance the gradients before the next

excitation, remaining off-resonant rotation, and the remaining T2-decay and T1-recovery.

The Bloch simulation’s acquisition scheme worked with a temporal resolution defined as

TRes = VPSTR, with VPS being the views per segment (VPS). For a given acquisition time,

TAcq, the number of frames acquired was NF =
TAcq

TRes
. Single VPS experiments were done with

one, eight, and twenty-four encoding steps for a theoretical proof of concept of the sequence.

When investigating pulsatile flow effects, it was important to make sure that there was no

outflow aliasing corrupting the nominal slice’s signal. In order to achieve this, we slice-

encoded for a large enough through-slice FOV such that outflow-induced aliasing would not

be an issue. As such, we worked with twenty-four encoding steps because it has multiple

factors to evenly segment the acquisition. Three simulated acquisitions were carried out

with one, eight, and twenty-four VPS to investigate the pulsatility effects on the proposed

sequence as the VPS was increased. All published simulation results were carried out for the

π rad/TR isochromats.

4.3.2 Phantom Experiments

Flow-phantom measurements were performed on a 3 T scanner (Prisma; Siemens Medical

Solutions, Erlangen, Germany) using a birdcage head-coil. bSSFP was performed with

a 6-mm slice thickness, 330 × 196mm2 FOV, 256 x 146 in plane samples, 977 Hz/pixel

readout bandwidth, 3.61 ms TR, and a sixty-degree nominal flip angle. The scans used

linear top-to-bottom k-space increments. A custom rotary pump pushed tap water through

the tubing. This pump had a time-averaged constant velocity of approximately 36 cm/s,

but because of the pump’s frequency, the fluid behavior was similar to rapid pulses. The

FOV was positioned so that it would intersect perpendicularly with the tube’s ascending

and descending directions. No gating was done in order to see the proposed sequence’s
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capability in limiting the zipper artifacts. To investigate slice-encoding’s effectiveness, images

were acquired with twenty-three, fifteen, ten, five, and three slice-encoding steps and were

compared with the 2D bSSFP image. This respectively left us with the following scan times:

12.1s, 7.9, 5.3, 2.6, and 1.6 seconds.

An additional scan was done with a faster pump in order to evaluate how the sequence

performs for near-peak systolic velocities observable in patients. This pump’s velocity profile

was less pulsatile than the custom rotary pump and it generated an approximate velocity of

140 cm/s. We compared the standard scan with five, ten, fifteen, and twenty slice-encoding

steps. All other scan parameters were the same as the previous phantom’s scan.

4.3.3 Human Studies

Nineteen healthy volunteers were scanned on a 3T system (Prisma; Siemens Medical Solu-

tions, Erlangen, German) using cardiac chest and spine coils. The healthy volunteers, whose

ages ranged from 23-35 years, were asked to hold their breath for two TrueFISP cardiac-gated

cine evaluations: one 2D bSSFP acquisition and the other being our proposed technique, us-

ing six slice-encoding steps. Horizontal long axis (HLA) and short axis (SA) views were

selected as they have known vulnerabilities to outflowing signal in bSSFP imaging [73, 30].

The imaging plane had a six-millimeter nominal slice thickness with a 256 × 184 in-plane

acquisition matrix, 1.4 × 1.4mm2 in plane resolution, fifty-degree flip angle, 977 Hz/pixel

readout bandwidth, and TE/TR of 1.805/3.61 ms. With 2X GRAPPA, 6/8 partial-Fourier,

and 16 views per segment, scans were achieved in under about a twenty-two second breath-

hold for the slice-encoded acquisition and in about 3.66 seconds for the 2D sequence. An

additional 2D scan with six averages, which shared the same duration as the slice-encoded

experiment, was done on one volunteer to see what impact the averaging effect provided by

the added slice-encoding steps had on the resulting image.
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4.3.3.1 Statistical Analysis

Nineteen 2D and slice-encoded cine pairs were randomly selected to have their quality as-

sessed by an expert radiologist–who had more than eight years of experience–for two statis-

tical evaluations. She first performed a rank comparison test, where she compared each pair

in a blinded fashion to deem if one had a superior quality over the other, or if they simply

showed “no visual difference.” In the second evaluation, she graded each individual cine’s

quality on a scale from 1 to 5 with the following criteria: 1: poor image quality; flow artifact

obscures cardiac structures and distant structures such as chest wall structures. 2: fair image

quality; artifact from vessel flowing perpendicular to the plane of the image obscures cardiac

structures adjacent to the vessel without extending to the chest wall. 3: mild obscuration

of cardiac structures intimate and adjacent to the vessel flowing perpendicular to the image.

4: minimal obscuration of cardiac structures intimate to the vessel flowing perpendicular to

the plane of the image. 5: no obscuration of cardiac structures by flow perpendicular to the

plane of the image. These image-quality scores were used for a nonparametric-paired evalu-

ation, a Mann-Whitney Test for independent samples, to answer if there was any statistical

difference between the slice-encoded and the 2D bSSFP cines. The two-sided evaluation was

done for α = 0.05 for significance.

4.4 Results

4.4.1 Bloch Simulations

Figure 4.4 shows pulsatile flow Bloch simulation’s results, using the plotted velocity-waveform.

The results confirm Markl et al’s labeled “frequency offset-dependent outflow effects”, with

the π rad/TR isochromats contributing the most to the OOS signal [72]. This out of slice con-

tribution and variable in-flow have signal-reception related consequences, as shown in Figure

4.5’s Bloch simulated cine acquisition scheme. This figure displays the simulated signal of an

array of spins with π rad/TR off-resonance, using the velocity profile shown in Figure 4.4A.
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Figure 4.5A shows the transverse magnetization’s spatial profile at the simulation’s peak

systolic velocity for the π rad/TR spins, for space within and out of the intended imaging

slice. The simulated slice-encoded acquisition results, for a single VPS, are shown in Figure

4.5B which displays the peak systolic frames for one, eight, and twenty-four slice-encoding

steps. With one slice-encode (i.e., 2D imaging), the out-of-slice signal shown in Figure 4.5A

are aliased into the imaging slice, corrupting the signal profile within the intended slice.

Figure 4.5B’s in-slice profile becomes more similar to Figure 4.5A’s as the number of slice-

encoding steps increases, because the out-of-slice contributions are better localized. Figure

4.5C displays the spatial profile at peak systolic velocity for a simulated acquisition with 24

slice-encodes for one, eight, and twenty-four VPS. The pulsatile spin inflow adds bulk signal

variability for adjacent k-space lines, impacting the spins’ localization. With 24 VPS (single

shot), the spins are smeared (or “zippered”) along the slice’s axis, impacting the in-slice

signal. The intended slice’s profile becomes more similar to Figure 4.5A’s as the temporal

resolution increases to a single VPS, because the amount through-slice zippering is heavily

reduced.

4.4.2 Phantom Experiments

The custom rotary phantom results are displayed in Figure 4.6. Figure 4.6A compares the

standard 2D bSSFP image to the three, five, ten, and twenty-three slice-encoded images.

This motor’s noticeable pulsatility made the acquisition prone to substantial in-flow vari-

ability in the time between adjacent k-space readouts, causing visible zippers in the one,

three, and five slice-encoded experiments (green arrow). Another clinically common outflow

artifact seen in the 2D bSSFP scan is the spatial mis-registration along the readout’s direc-

tion (orange arrow), which is expectedly reduced with increasing slice-encoding steps. By

ten slice-encoding steps, both of the artifacts are barely noticeable in the target slice and

are eliminated from the twenty-three slice-encoded experiment’s center slice (white arrows).

To get a sense of the outflowing signal’s extent, selected slices from the twenty-three slice-
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Figure 4.5: Bloch-simulated transverse signal magnitude of the pulsatile spin movement. The nominal slice

is indicated by the grey bars. (A) shows the ground truth transverse magnetization’s spatial distribution at peak

systole (see Figure 4.4). The figure is zoomed in to -10 to 20 mm from isocenter. There is minimal signal

upstream of the slice, whereas downstream out-of-slice spins contribute substantial signal hundreds of mm

distal from the nominal imaging slice. Parts (B) and (C) show the signal’s spatial distribution according to

the simulated acquisition outlined in Figure 4.3 using various combinations of the number of slice-encodes and

views-per-segment (VPS). Part (B) shows single VPS results with one, eight, and twenty-four slice-encoding

steps. Notice how the transverse signal profile is more properly resolved with increasing encoding steps;

whereas using one slice-encode (i.e., conventional bSSFP) resulted in an aliased and corrupted signal profile.

The simulation results using eight and twenty-four slice encodes in this example generated within-imaging-

slice signal profiles similar to the ground truth in A. Part (C) shows twenty-four slice-encoding results for

one, eight, and twenty-four VPS. The time-varying velocity adds an additional signal sum variability between

adjacently acquired k-space segments, resulting in a the “zipper” phenomenon discussed by Schar et al [95].

In this example, simulations with eight and one VPS can properly resolve the within-imaging-slice signal

profile, while twenty-four VPS resulted in a corrupted in-slice signal profile. We published this in [3]
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encoded experiment are shown in Figure 4.6B, with the thirteenth being the center partition.

The complex sum of all non-center slices (bottom right) properly showed all of the artifacts.

In addition to seeing how the readout mis-projections are localized outside of the slice, Fig-

ure 4.6B shows that the sequence’s through-slice encoding scheme opens another avenue for

the artifacts to “zipper” through.

Figure 4.7A displays flow phantom results with a faster flow velocity of 140cm/s. The readout

mis-projection is the dominant artifact seen in these experiments (orange arrow), which is

significantly reduced as the number of slice-encoding steps increases. Figure 4.7B displays

images from selected outer partitions and the absolute value of all non-center partition’s sum

from a scan with 20 slice-encoding steps.

4.4.3 In Vivo Experiments

Figure 4.8A displays three columns comparing slice-encoded (top) and 2D (middle) peak-

systolic images from three volunteers, each displaying a particular common outflow artifact

that was reduced in the corresponding slice-encoded image. The third row displays the ab-

solute value of the complex sum of all non-center slices. Each image-set was normalized

and adjusted to the same level and window-width. The middle row shows the two com-

monly seen outflow-related artifacts in bSSFP imaging that Schar et al discussed [95]: “out

of plane coherence artifacts” (red arrow) and the “through-plane flow transient artifacts”

(green arrows). These both hamper the blood-myocardium contrast and reduce myocardial

visualization. The coherence artifacts contribute to a readout mis-projection or as signal

pileups, as shown in columns II and III respectively. Column I’s 2D image shows a heart’s

SA view with a green arrow pointing to a zipper. The corresponding slice-encoded image has

the zipper significantly reduced and it better demonstrates the endocardial border of the left

ventricular septum. The third row shows that the zipper was mostly captured through the

outer slices. Column II’s 2D scan shows what appears to be some “false-anatomy”, indicated

by the red arrow, which is properly eliminated in its slice-encoded scan. It is evident that
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Figure 4.6: A pulsatile flow phantom experiment, with a speed that averaged at 36 cm/s. The two tube

cross-sections are of the same hose, with one flowing into and the other flowing out of the plane. The

stationary phantom was placed to help load the coil. (A) Results that compare the 2D bSSFP scan image to

the center slice of the slice-encoding approach with three, five, ten, fifteen, and twenty-three encoding steps,

respectively. The 2D acquisition shows pulsatile zippers (green arrow) and a readout mis-projection (orange

arrow). Both of these artifacts are reduced with increasing number of slice-encoding steps (white arrows).

(B) Selected slices of the twenty-three-slice-encoding experiment. The bottom image is the complex sum of

all signals from all non-center slices. It can be seen that the zipper is smeared along the through-slice axis

and the mis-projection is localized in the non-center slices, limiting their extent in the center image. We

published this in [3]
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Figure 4.7: A phantom experiment was done to evaluate the sequence’s performance with constant flow, with

its velocity running at a speed of approximately 140 cm/s. Just as in Figure 5’s setup, the two tubes’ cross-

sections are of the same hose, and the stationary phantom was used to load the coil. (A) A flow corrupted 2D

bSSFP comparison with five, ten, fifteen, and twenty slice-encoding steps. The out of slice coherent sum mis-

projected during the readout (orange arrow) is the main artifact seen in this experiment’s 2D acquisition (with

some minor pulsatile phase-encoded zippers), which is significantly reduced with increasing slice-encoding steps

(white arrow). (B) Selected slices of the twenty slice-encoded experiment, with the right furthest image being

the complex sum of all non-center slices. This complex sum image shows how a significant portion of the

readout’s mis-projection was localized in the non-center slices, relieving that artifact from the center image.

We published this in [3]

79



this is false anatomy as this is preserved in the out of slice’s complex sum. Column III shows

two severe outflow-related artifacts. The first, marked with a green arrow, is a misregistered

signal between the aorta and the para-aortic fat, caused by the zipper. A red arrow points to

an apparent wave-like, outflow-enhanced blurring centered within the right atrium, obscur-

ing evaluation of the interatrial septum and tricuspid valve. These are complicated outflow

artifacts, but their impacts are all substantially reduced in the slice-encoded image. The out

of slice complex sum’s row shows how these artifacts are localized in the outer slices.

Figure 4.8B shows the outer-slice’s images from Figure 4.8A’s third column. The fourth

partition is the center, with the higher slices being downstream and the lower three being

upstream. Some of the flow wraps around, however the upstream slices protect the center

partition from the aliased signal. Most of the descending aorta’s corruption in the 2D

acquisition was captured in the two downstream slices and the corruption originally around

the right atrium was mostly captured in the upstream slices.

To see how this technique performs in cine imaging, the previous example’s first eight of

fifteen cardiac phases are displayed in Figure 4.9. The outflow artifacts are obviously cardiac-

phase dependent, and only have moderate myocardial-wall definition after the fifth frame.

On the contrary, the corresponding slice-encoded images show clear septal, lateral-wall, and

left-ventricular apex definition with minor variations through each frame.

The proposed technique with six slice-encoding steps was compared to the 2D technique

averaged six times in a comparison to see what impact the technique’s inherent averaging

had on the outflowing signal’s presence in the resulting image. Figure 4.10 shows their

comparison along with the 2D technique, convincing that simple averaging does not reduce

the flow artifacts.
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Figure 4.8: (A) Peak systolic image comparison between three six slice-encoded experiments (top) and their

corresponding 2D bSSFP scan (middle). The bottom row of 4.8A is the image of the non-center slices’

complex sum. The slice-encoded image shows significant reduction in outflow artifact across short axis,

vertical long axis, and horizontal long axis imaging. Green arrows point to Schar et al’s “through-plane

flow transient artifacts” (“zippers”) and the red arrows point to the coherent sum outflow artifacts [19],

resulting in readout mis-projections. (B) All of panel III’s image partitions. Partitions five and six capture

the downstream slices. Notice how partitions five and six capture much of the 2D acquisition’s artifacts. We

published this in [3]
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Figure 4.9: The first eight out of fifteen cardiac phases of Figure ?? III’s acquisition. The proposed sequence

produces cine results with fewer outflow disturbance. Much of the 2D acquisitions’ artifacts are captured in

the outer partitions. We published this in [3]
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Figure 4.10: Comparisons between the 2D acquisition with six averages, six slice-encoding steps, and the 2D

bSSFP sequence. Minimal changes between the added averages and the 2D technique shows that the feature

of the slice-encoding sequence reducing the artifact’s extent is a result of the outflow’s localization instead of

signal-averaging. We published this in [3]

4.4.3.1 In Vivo Experiments: Statistical Analysis

The rank comparison test indicated that all of the slice-encoded images had quality superior

to the 2D method. Despite the prolonged breath-hold, we did not observe any added issues,

most likely because we scanned middle-aged, healthy subjects.

The nonparametric test involved the quality-score distribution of the 2D bSSFP and of the

slice-encoded cines, with a null hypothesis that the two cine populations had the same score

distribution. The test came to a 0.01 significance, suggesting to reject the null hypothesis.

The reassurance from the rank-comparison test made it clear that the slice-encoded images

provided a superior image quality than the 2D bSSFP cines.
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4.5 Discussion

In this study, we sought to reduce flow artifacts in cardiac cine imaging by introducing slice-

encoding steps in order to spatially localize the outflowing spins. As excited spins leave the

slice, the signal profile no longer spans a 2D space, spreading over a 3D volume. Instead

of having a planar data set we resolve up to an effective 3D FOV along the slice-select’s

direction with the anticipated slice positioned at the center. This treatment is similar to a

3D acquisition, but without any change to the 2D excitation profile.

This technique was greatly inspired by Lu et al’s SEMAC sequence [65] as well as Glover

et al’s 3D z-Shim method [39], which were proposed to resolve through-plane metal-induced

field inhomogeneities. The SEMAC technique uses the slice-encoding technique to correctly

encode 2D excitation slices that are distorted in the slice-select direction by metallic objects.

In our case, the 2D excitation’s slice profile is not necessarily distorted; however, the same

strategy is effective in reducing or eliminating image artifacts caused by OOS signal that

persist throughout successive TR’s, such as from outflowing spins.

Our Bloch simulations established a theoretical basis of our proposed method effectively

reducing much of the outflow-related artifacts by localizing the OOS spins, given a large

enough encoding FOV. The phantom and the in vivo images show significant alleviation

from the outflow-related artifacts.

The Bloch simulations showed that the sequence isn’t immune to what causes the “zip-

pers”, however this artifact’s significance is reduced with increasing temporal resolution.

Fortunately, temporal resolution isn’t the only avenue for reducing this artifact’s occurrence.

Encoding through the slice’s axis allows the zipper-smearing to occur along that direction

as well, reducing their extent on the center slice. This is evident with the in vivo scans of

Figures 4.8, 4.9, and 4.10, all of whom had a 57.76 ms temporal resolution. Their OOS

complex sum images show much of their zippers being localized in the outer slices.
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Both, the Bloch simulations and the phantom experiments were done more for demonstrative

purposes rather than for figuring proper scanning parameters. The Bloch simulations were

done with an arbitrary pulsatile flow waveform and receiver coil sensitivity. The phantom

experiments were done with tap water, whose T1 and T2 are much larger than blood’s. To

get a sense of the difference, consider cerebral spinal fluid, which is predominantly water. It

has a 3T longitudinal recovery time of over 4s [26] and a T2 decay around 1.6s [106], while

adult blood has T1 and T2 estimated at around 1-2 seconds and 150 ms respectively [64].

Therefore, one cannot make any inferences on the number of slice-encoding steps needed

to resolve much of the outflowing signal from the intended image in the in vivo studies

from these experiments. However, these studies did provide a useful proof of concept free

of any external or unwanted variables, including limited breath-hold duration, motion, and

susceptibility issues.

Our in vivo results proved the proposed method to be of promising use. The SA acquisition’s

zipper of Figure 4.8’s column I disturbs much of the left ventricle and corrupts anatomical

detail of the septum and right ventricular lumen. In a clinical sense, myocardial contraction,

and therefore blood ejection is greatest at peak systole, and the heart’s SA view is often

used for determining ejection fraction. Clear delineation of the endocardial and epicardial

contours is critical for accurate volumetric and mass quantification. Artifacts like these would

impose a barrier for such an evaluation, especially for young-adult subjects. Overall, the

slice-encoded images benefit from improved visualization of the interatrial septum, tricuspid

valve, descending aorta and para-aortic soft tissues.

An argument could be made in favor of 3D-bSSFP imaging with the same slice-thickness

and number of slice-encoding steps as a means to resolve the outflowing signal from the

slice of interest. However, 3D through-slice imaging is known to result in a reduced blood-

myocardium contrast due to reduced fresh blood enhancement that 2D cardiac cine imaging

typically relies on [82, 61]. Another reason for the reduced blood-myocardium contrast in 3D
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cine bSSFP imaging is because blood-signal of various spin histories mixes in the acquisition

[74, 81]. Our technique preserves the blood-myocardium contrast of 2D cardiac cine imaging

while removing the outflowing signal artifacts.

We chose to work with six encoding-steps in our in vivo experiments thanks to our Bloch

simulations’ results (Figure 4.5). This choice was made knowing that our simulation took

account for a 1500 mm/s peak systolic velocity that is typically seen in healthy young adults

[120] recruited in our study. If this were to be used in the clinical case, the number of

necessary encoding steps would need to be adjusted based on the approximate flow velocity

of each patient. If the flow velocity is expected to be substantially lower than 1500 mm/s,

then reducing the number of slice-encoding steps would result in significant acquisition time

savings.

Our results from Figure 4.10 indicate that no averaging effects are assisting the removal of

outflow artifacts. However, all three of the experiments were done with a 57 ms temporal

resolution, which provides ample opportunity for pulsatile through-plane flow transient arti-

facts. A 2D cine acquisition with six-times higher temporal resolution may reduce the extent

of the transient artifacts, as indicated by Figure 4.5C, however will not be immune to the

coherent out-of-slice sum projecting onto the image.

Regarding the three “ingredients” to outflow artifacts, the proposed sequence localizes the

artifacts from the outflowing signal, thereby reducing the extent of readout mis-projections

and signal pileups in the intended slice. The added slice-encodes provides an additional

dimension for pulsatile-induced zippers to smear along, also reducing their extent in the

intended image.

Using our proposed technique, scan time will be longer due to the slice-encoding steps. In this

work, our goal was to demonstrate the technique using relatively conservative acceleration

rates. Further developments to accelerate the scan are clearly warranted. Because this
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involves encoding in three directions, one could exploit a radial means of undersampling and

spread the incoherence in the transform domain into three dimensions [66]. There has been

work in a similar domain, using 3D radial bSSFP for whole heart coronary imaging [109]

that is compatible with our slice-encoded 2D method. This application of the undersampling

technique is intriguing for two reasons - not only could this serve as a potential means of

reducing the scan time, but it could do so with an expanded effective through-slice FOV,

further minimizing aliasing effects.

4.6 Conclusion

We propose a slice-encoding technique for 2D bSSFP cardiac cine imaging to effectively

reduce or eliminate several types of commonly seen flow-dependent artifacts. The types

of flow-related artifacts are not seen on every clinical case at our center, but occur with

enough frequency, particularly in younger patients, and at higher field imaging, to warrant

development of a pulse sequence to correct for these artifacts. Therefore, our technique

would be a useful supplemental technique for patients whose blood flow results in artifacts

on 2D cardiac cine images.
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CHAPTER 5

Unfolding Coil Localized Errors from an imperfect

slice profile using a Structured cAlibration Matrix

(UNCLE SAM): An Application to outflow effects in

cine bSSFP Imaging

5.1 Introduction

As discussed in the previous chapter, 2D bSSFP imaging is core to cardiac MR, but is

vulnerable to excited outflowing spins from being misprojected onto the target slice. By

applying slice-encoding steps to encode for a FOV beyond the target slice, we were able

to unfold the outflowing spins from the target slice, guaranteeing that the artifact spans a

volumetric signal profile. This is summarized in 5.1. Unfortunately, its prolonged duration

makes it unlikely to be used for patients with severe outflow effects or to be integrated with

research sequences, such as MOLLI [76]. A means of reducing the extent of outflow signal

corruption from the target slice without too much of an increase in scan time would be

beneficial for subjects with severe outflow effects. Because the outflowing spins are away

from the target slice, there could conceivably be enough localized coil sensitivity to use

parallel imaging methods to unfold them from the image.

Working to unfold these outflowing spins from the target slice without explicitly slice-

encoding makes the problem in the signal profile similar to the problem faced in simultaneous
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multi-slice (SMS) imaging. In this sub-field of magnetic resonance imaging, slices are ex-

cited simultaneously, with each slice excitation phase having a different RF phase-ramp per

phase-encoding step, shifting the FOV of each slice by a different amount [40]. This required

spatially encoding for a larger in-plane FOV along the phase-encoding direction. As parallel

MR imaging methods developed, the nominal FOV of slice was prescribed, resulting in the

slices to add onto each other [14, 15]. Shifting the FOV of simultaneously acquired slices is

called ”controlled aliasing in parallel imaging” (CAIPI), and is beneficial because it causes

overlap of slice regions with different channel sensitivity profiles [14]. The slices can then be

unfolded by traditional parallel imaging means, i.e. SENSE [90] or GRAPPA [43], given the

sensitivity profile of each slice.

For the case of outflow effects, we excite a single slice, and signal is leaking into the adjacent

downstream slices, not making it feasible to achieve CAIPI conditions. An alternative family

of approaches that does not require CAIPI are based off of the ”slice-GRAPPA” concept [99,

25]. Specifically, slice-GRAPPA fits the k-space entries of the superimposed slice to the k-

space entries of the individual slice calibration data. Because the fitting is done from k-space

of the collapsed slices to the k-space of individual slices, this type of fitting is not working

to estimate the spatial harmonics of missing k-space lines. Rather, this fitting determines

the weights needed to cancel the signal of all other slices, keeping only the target slice.

This approach works well — even without FOV shifts — for discretely positioned slices,

but destructive interference begins to impact the target slice for for cases if other slices are

adjacently spaced which is the case for outflowing spins.

In this chapter, we propose a means of unfolding the outflowing spins from the target slice

using the localized coil sensitivity difference between the target slice and outflowing spins

titled Unfolding Coil Localized Errors from an imperfect slice profile using a Structured

cAlibration Matrix (UNCLE SAM). Rather than explicitly slice-encoding for the duration

of the acquisition, we acquire a 2D acquisition with a separate slice-encoded calibration
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scan in the same breath-hold. By regarding the acquired 2D data as the center partition

of a volumetric k-space having NSE partitions, the non-center partitions are imposed to

be linearly consistent with a subspace defining the linear relationship of the local k-space

neighbors of the slice-encoded calibration. This means we use the slice-encoded calibration to

help use estimate the non-center k-space partitions needed for one to unfold most outflowing

spins from the target slice. This approach of unfolding out of slice signal from the target

slice was inspired by the following low rank parallel imaging based methods: PRUNO [129],

SAKE [100], and LORAKS [48, 46, 47, 49].

5.2 Theory

In this section, we will briefly recap outflow artifacts and review the foundation behind low

rank modeling of local k-space neighborhoods before detailing our proposed reconstruction

scheme.

The 2D acquisition of a specific channel, j, in a setting of outflowing, through-plane spins

can be described as the following:

Sj(kro, kpey) =

∫∫∫
Cj(rro, rpey, rs)M⊥(rro, rpey, rs)e

−i2π·(krorro+kpeyrpey)drrodrpeydrs

=

∫
Cj(r⃗) ·M⊥(r⃗)e

−i2π(k⃗ro+k⃗pey)·r⃗dr⃗

(5.1)

Because a 2D acquisition only acquires the kse = 0 partition, the gradient encoding scheme

described in Equation does nothing to distinguish in-slice spins from outflowing spins, ul-

timately leaving the outflowing spins projected — or aliased — onto the imaged slice. To

avoid the time-penalty from slice-encoding, we sought to take advantage of the coil sensitiv-

ity profiles to spatially unfold the out of slice spins. As discussed in chapter 2.6.3.2, an entry

of multi-channel k-space is linearly dependent on all of its neighbors across all channels:
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Sj(k⃗l) =
Nc∑
c

Nb∑
b

nj
c(b)Sc(k⃗l,b (5.2)

where equation 5.2 is generalization of equation 2.43. Here, k⃗l,b refers to the neighbors

surrounding k-space coordinate k⃗l, and nj
c(b) is the weight of k-space neighbor b from channel

c. In this scenario, the kernel defining the k-space neighborhood has Nb+1 k-space members,

whose width along the kro, kpey, and kse directions are wro, wpey, and wse respectively, such

that wro · wpey · wse = Nb + 1. According to equation 5.2, sliding the kernel through the

multi-channel k-space and vectorizing its entries each position to be their own row of a data

matrix, A, will result in linearly dependent columns of that matrix [100]. Furthermore,

constructing A from a sliding kernel will result in repeated k-space entries, giving it block

Hankel structure [100]. The ”forward” operation going from the multi-channel k-space to

the structured data matrix will be denoted as HF . For any set of multi-channel k-space, x,

A = HF (x).

For a kernel staying within the bounds of a k-space matrix of size Nro ×Npey ×NSE ×Nc,

the dimensions of the resulting A matrix will be (Nro − wkro + 1)(Npey − wkpey + 1)(NSE −

wks + 1) × (Nb + 1)Nc. Moving the terms of Equation 2 to the same side would result in a

net zero weighted sum of all multi-channel k-space elements in the neighborhood with −1

being the target entry’s (Sj(kl)) weight. Arranging these weights as a vector just as how the

kernel entries were vectorized when constructing a row of A would give a vector v⃗⊥ such

that:

Av⃗⊥ = 0 (5.3)

This implies that the row space of A is low rank [24-32] and has a null space V⊥ such that:

AV⊥ = 0 (5.4)

where each column vector of V⊥ has length (Nb + 1)Nc. This null space defines linear
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Figure 5.1: (A) An illustration of the outflow effect problem in bSSFP imaging. Blood flow going through

the target slice carries excited spins downstream, ultimately being projected onto the intended image. The

pulse sequence in (B) uses Gss phase encodes for a volume beyond the slice to localize the outflowing spins,

without any change to the 2D excitation. (C) shows all slice-encoded partitions of an example that otherwise

would have had outflow artifacts, with center slice — number 4 — showing the target slice unfolded from

these effects. The 2D example with flow artifacts is shown in (D) and is compared against the slice encoded

example from (C) and the magnitude of the complex sum of all but the center slice. The artifact in the image

can be seen captured in the outer slices.
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dependence of multi-channel k-space entries within the neighborhood defined by the kernel

used to construct A. This subspace can be determined from a calibration matrix, Acal,

that is constructed from a fully sampled low resolution calibration k-space, xcal, such that

Acal = HF (xcal).

This was first shown in detail and taken advantage of by Zhang et al’s work with PRUNO

[129]. The unacquired k-space samples can then be determined by imposing they be consis-

tent with these null space constraints [129, 100, 48, 46].

Because of the repeated entries from the block Hankel structure of A, a transformation

from A to the multi-channel k-space requires enforcing consistency of the entries of A cor-

responding to the same k-space coordinates for each channel. This is often done by taking

their mean [100, 48, 47, 49], which was what we used, or their median [20]. This “backward”

linear operation will be referred to as HB, which enforces block Hankel structural consistency

as a result.

5.2.1 Determining the Subspace of the Slice-Encoded Calibration

To unfold the signal from a target slice onto NSE − 1 other slices, a slice-encoded calibra-

tion was acquired which encoded for a through-slice FOV of NSEST . If the calibration was

acquired as a cine, matching the excitation profile of the 2D acquisition and temporal res-

olution, then the calibration readout will capture the same signal profile as the acquisition

cine. Having the acquisition and the calibration in the same breath-hold will let us safely

assume both having similar localized channel sensitivity profiles for each frame. These two

features, reading out the same signal profile and sharing the same channel sensitivity profiles,

are necessary for the two acquisitions sharing a subspace describing the linear relationship

of local k-space neighbors.

The null space of Acal, which is what determines the linear relationship of local k-space
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neighbors, can be determined from its SVD:

Acal = UcalScal[Vcal]H (5.5)

where the columns ofVcal provides the basis of the rows ofAcal and Scal is a diagonal matrix of

Acal’s singular values. The columns of Vcal corresponding to the significant singular values

define Acal’s row space, Vcal
|| , and the columns of Vcal corresponding to the insignificant

singular values correspond to its null space, Vcal
⊥ . A diagonal matrix, T, can be determined

to filter between significant from non-significant singular values, forcing the lower singular

values to zero, and thereby designating the corresponding singular vectors as the null space.

A reasonable estimation of the null space would be the singular vectors correspond to singular

values less than the noise floor of the SVD of Acal, σfloor [8, 37, 119, 56, 16]. The shrinkage

operator being applied to the κth singular vector of Vcal— which corresponds to singular

value σκ — can be a hard threshold or some other filter. The minimum variance filter [119,

56, 31, 37]:

fκ = max(1−
σ2
floor

σ2
κ

, 0)

T = diag(fκ)

(5.6)

has been shown to generate the closest approximate to Acal — in the Frobenius norm [119,

56]. This has been used as a shrinkage operation by Bydder et al [16, 20, 19, 18] to avoid

explicit rank determination in MRI applications. An illustration of the construction of Acal

from the slice-encoded calibration, along with examples using minimum variance and hard

threshold filters to distinguish Vcal
|| from Vcal

⊥ is displayed in Figure 5.2A.

5.2.2 Iterative Reconstruction Algorithm to Reduce Outflow Corruption

A 2D acquisition is equivalent to an NSE - partition volumetric k-space that has all NSE − 1

ks ̸= 0 partitions unacquired, with the 2D k-space placed at the ks = 0 plane. Let x2D
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Figure 5.2: Caption on next page
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Figure 5.2: A diagram of UNCLE SAM’s reconstruction scheme using three-channels to illustrate. (A) The

calibration step: Determining Vcal and T. The kernel (in this case a 3x3 < kxy, kz >) slides through the

multichannel k-space with the entries of each kernel being vectorized to form a row of a structured autocal-

ibration matrix, Acal. The linear dependence of local k-space neighbors implies that the rows of the Acal

reside in a low-rank subspace, which can be verified by a plot of its singular values. Proper thresholding can

distinguish the “significant” from the “insignificant” singular values, categorizing their corresponding right

singular vectors as either the row space Vcal
|| or the null space Vcal

|| , respectively. Two different filtering func-

tions that can achieve this are displayed here: the minimum variance filter (orange) and the hard threshold

(yellow). The filter function used will be the entries of a diagonal matrix, T. (B) UNCLE SAM’s iterative

reconstruction. The 2D k-space is treated as the kz = 0 partition of a volumetric k-space, with all kz ̸= 0

unacquired partitions initially set to zero. In each nth iteration, we construct An (Table 5.1, 7a). This is

followed by imposing the null space of Acal onto An, by post-multiplying An by VcalT[Vcal]H (Table 5.1,

2B), which was determined from the calibration step, where T enforces the product of any of An’s rows

with the columns of Vcal that correspond to insignificant singular values to zero. Block Hankel structure is

imposed on the repeated k-space locations of An+1 by averaging the values of the repeated k-space coordinates

when returning to an updated multi-channel k-space (Table 5.1, 2C), followed by enforcing data consistency

with the acquired 2D k-space (Table 5.1, 2D).
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1 Calibration (Figure 5.2A)

1A Acal = HF (xcal)

1B Acal = [Ucal][Scal][Vcal]H

1C Estimate σfloor

1D fκ = max(1− σ2
floor

σ2
κ

)

1E T = diag(f)

1F x0 = DHx2D

2 Iterative Reconstruction. Start with n = 0 (Figure 5.2B)

2A An = HF (xn) — Construct data matrix.

2B An+1 = An[V
cal][T][Vcal]H — Impose the null space of Acal

2C xn+1 = HB(An+1) — Enforce structural consistency

of repeated k-space coordinates.

2D xn+1 = (Id −D)T (Id −D)xn+1 +DTx2D — Data consistency

Table 5.1: A description of the iterative, singular value filtering, algorithm used for UNCLE SAM.

describe this volumetric, multi-channel k-space, with its center partition being the acquired

2D data and zeros in all non-acquired partitions. Allow to x to be the volumetric multi-

channel k-space that we are trying to solve for. With A = HF (x), one can impose the

null space constraints of Acal onto the unacquired entries of x by post-multiplying A with

VcalT[Vcal]H . As a result, the following can be formulated to solve for the unacquiredNSE−1

k-space partitions[129, 46, 47]:
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min||AVcalT[Vcal]H −A||2F ,

st.A = HF (x),

x2D = Dx,

and x = HB(A)

(5.7)

where D is a matrix that selects the sampled locations from the entire volumetric k-space.

Equation 5.7 was solved using a POCS algorithm [22, 21, 23, 38] and whose steps are shown

in Figure 5.2 and illustrated in Figure 5.2B. Iterations continued until a convergence of

||An−An−1||2
||An−1||2 < 10−4 was achieved.

5.3 Methods

This study was approved by our institutional review board (IRB) and all nine healthy sub-

jects obtained written and approved consent. All acquisitions were carried out on a 3T

system (Prisma; Siemens Medical Solutions, Erlangen, Germany). The reconstruction was

implemented in MATLAB (Mathworks, Inc.) on an 8GB GPU (Nvidia Titan X; Santa

Clara, CA). An implementation algorithm and examples can be found at www.github.com/

faa5115/uncle_sam_recon.

5.3.1 Acquisition

The acquisition parameters were like the previous aim’s [3]. They are as follows: 256×184 in-

plane samples, 1.4×1.4mm2 in-plane resolution, 977 Hz/pixel readout bandwidth, 50-degree

nominal flip angle, 1.8/3.6 TE/TR, in-plane GRAPPA 2X (12 kpey calibration lines for 2D),

6/8 partial Fourier, 12 views-per-segment (VPS). This resulted in a 26 second scan for six-

slice-encoded experiments and 4.3 second scan for 2D acquisitions. Because the UNCLE

SAM acquisition required having a 2D acquisition being acquired along with a 12 in-plane

phase-encoding and 6 slice encoding steps, the prospective UNCLE SAM acquisition required

98



increasing the breathhold to 10.3 seconds.

5.3.2 UNCLE SAM Parameters

A 3 × 3 × 3 < kro, kpey, ks > kernel was used when structuring the multichannel k-space

when creating the Acal and A data matrices. This kernel size was chosen because, adjacent

elements in a kernel have the best spatial harmonic estimation for a target k-space entry

[35], in addition to the fact that it was within the limitation of our GPU’s memory.

5.3.3 UNCLE SAM Evaluation

We used the slice-encoded acquisition as a reference to compare UNCLE SAM with the

flow corrupted 2D image on a frame-by-frame basis. This was done to see if UNCLE SAM

significantly reduces the extent of outflowing spins corrupting the target slice. We evaluated

the residual flow artifacts on the UNCLE SAM reconstructed images, noting that its best

performance can only be as good as what slice-encoding can unfold for a given number of

slice-encoding steps. The difference of either the center slice of the UNCLE SAM image or of

the 2D image with the center slice of the slice-encoded image gives the residual flow artifact

in the 2D plane. The L2 norm of either of these differences was calculated and normalized

against the L2 norm of the center slice of the slice-encoded image. This gave a quantitative

measure of the residual outflow artifact in both images:

∆FSE(ImTest) =
||(ImTest − ImSE(Cslice))sos||2

||(ImSE(Cpart))sos||2
(5.8)

ImSE is the slice-encoded image with Cslice refers to its center slice index and Imtest refers to

either the center slice of the UNCLE SAM reconstruction or the flow corrupted 2D slice. The

difference in the ()sos is a complex subtraction. This was done for each frame on each patient.

In this manuscript, this evaluation will be referred to as the ”relative L2 norm difference with

slice-encoding.” We carried out a two-sided Mann-Whiteny U test for independent samples
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to investigate the null hypothesis, which is if there is no statistical difference between the

norm of the residual flow effects between the UNCLE SAM reconstructed image and the flow

corrupted 2D for α = 0.05 significance.

Because the flow artifact manifests as a confounding signal, overshadowing or impacting how

the anatomy appears, we compared the structural similarity index measures (SSIM) between

the center slices of the UNCLE SAM reconstruction and slice-encoding with the SSIM of the

2D acquisition with the center slice of slice-encoding for each subject. For each of the nine

subjects, a Mann-Whitney U test for independent samples was done to answer whether is

no statistical difference between the flow corrupted 2D and the UNCLE SAM reconstructed

SSIMs. The two-sided evaluation was done for α = 0.05 significance.

Lastly, we wanted to evaluate how UNCLE SAM reduction of the outflowing spins from

the target slice correlates with the outflow reduction from slice-encoding. The difference of

either the center slice of the UNCLE SAM image or of the slice-encoded image with the

flow corrupted 2D image results in the flow artifacts subtracted from center slice of either

methods. For both, we calculated the L2 norm of the difference of the center slice of UNCLE

SAM or of slice-encoding with the 2D acquisition:

∆F2D(ImTest) = ||(ImTest − Im2D)sos||2 (5.9)

where ImTest is either ImSE(Cslice) or ImUS(Cslice), which is the center slice of the UNCLE

SAM reconstruction, and Im2D is the flow corrupted 2D image. This difference was calcu-

lated for each frame of each subject of the UNCLE SAM and slice-encoded cines. The null

hypothesis was that correlation coefficient between F2D(ImSE(Cslice) and F2D(ImUS(Cslice)

was 0 for α = 0.05 significance.

5.3.4 Noise Amplification Evaluation

Because we are unfolding signal that spans NSE − 1 slices from the target slice, we antici-

pate noise amplification along the through-sice direction. Because of this we carried out a
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geometric factor noise analysis (g-factor) on the reconstruction [90]. For a given dataset,

the iterative UNCLE SAM algorithm was run until convergence was achieved. The number

of iterations required to reach convergence is denoted as Nconv. The Vcal and T operators

were then used on a multi-channel k-space matrix of pure noise entries. This simulated

k-space was initialized to have 2X undersampling and partial Fourier in-plane, with the 2D

”noise” k-space being the center partition of a volumetric multi-channel k-space with all

non-center partitions initialized to zero, just as the UNCLE SAM acquisition described in

5.2.2 and 5.3.1. For slice-encoded, this volumetric mask would be 2X undersampling and

partial Fourier in-plane with fully acquisition of all six slice-encoding steps.

The pre-acquisition noise scan is done at a pre-defined bandwidth that is out of the user’s

control. To determine the noise standard deviation, we added a separate 0 degree flip angle

scan to run in the same breathhold the acquisition ran on, with a readout bandwidth the

acquisition used in order to determine the noise-standard deviation, σnoise. An expression

for a line of k-space of Nro readout points is (randn(Nro,1)+i·randn(Nro,1))·σnoise√
2

.

The noise simulated UNCLA SAM reconstructions were repeated Nsim times. The noise

amplification factor was calculated for each spatial voxel as the standard deviation of the

voxel entry across across all Nsim simulations. For a standard error of 5%, Nsim = 201.

5.4 Results

5.4.1 Outflow Artifact Reduction with UNCLE SAM

Figure 5.3 displays a side-by-side comparison of the flow corrupted 2D (left, ”2D”), UNCLE

SAM (middle, ”US”), and slice-encoded (right, ”SE”) acquisitions for three subjects. The

bottom row of each is the square root SOS of the of the complex difference for each channel of

SE−2D and SE−US. UNCLE SAM and slice-encoding both displays significantly reduced

outflow effects. These subtractions treat the slice-encoded images as a reference, because it
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explicitly encodes for the volume beyond the target slice to unfold these artifacts, leaving

its target slice with no (or minimal) out of slice spins. This results in the SE − US image

with only the the flow artifacts UNCLE SAM could not unfold and all outflow artifacts in

the SE − 2D image. The extent of the residual outflow effects in the UNCLE SAM images

are noticeable, however they show a significant reduction compared to the SE − 2D.

A quantitative metric for the residual outflow effects in UNCLE SAM and the flow corrupted

2D image is the relative L2 norm difference with slice-encoding, shown in equation 5.8. This

was calculated for each frame of the center slice of UNCLE SAM and the 2D cine for of each

volunteer. A pair of box and whisker plots for each subject is shown in Figure 5.4 with the red

box plot corresponding to the relative L2 norm difference with each UNCLE SAM frame and

black corresponding to the relative L2 norm difference with each 2D frame for a subject. The

p-values for each subject’s Mann-Whitney U-Test were all ¡ 0.01, suggesting a rejection of the

null hypothesis that the two relative L2 norms come from the same statistical population.

This implies that UNCLE SAM has less residual outflow effects than a corresponding 2D

image, and therefore makes a noticeable improvement in reducing the outflow effects.

There is an obvious skew noticed of the relative L2 norm difference from slice-encoding of

the 2D data sets. A histogram of all relative L2 norm differences with slice-encoding for 2D

and UNCLE SAM also shows this skew on the 2D data sets. These pairs of histograms are

shown in Figure 5.5. These large differences in the 2D data correspond to the extreme out

of slice effects seen for peak systolic frames of the subjects. The relative L2 norm difference

with slice-encoding for UNCLE SAM is much less skewed, showing its capability to unfold

most outflowing spins, even in extreme cases. Across all frames of all subjects, there is

a statistically significant difference in relative norm of the residual outflow effects between

UNCLE SAM and 2D, as indicated by a p-value < 0.01.

The noticeable outflow artifact reduction seen in UNCLE SAM was further confirmed with

the SSIM results comparing UNCLE SAM and 2D with slice encoding. Box plots of these
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Figure 5.3: Example images of peak systole from three subjects, with two rows each. Top row (left to right):

flow corrupted 2D image (”2D”), center slice of the image from UNCLE SAM (”US”), and the center slice of

the slice encoded (”SE”) image. Bottom row: the sum of squares image of the channel by channel subtraction

of the center slice of the slice-encoded image from the 2D image (right, ”SE − 2D”) and from the center

slice of the image from UNCLE SAM (”SE - US”). The 2D acquisition shows an outflowing signal pileup

that is significantly reduced in slice-encoding’s and UNCLE SAM’s images. SE–2D shows the complex sum

of all outflowing spins + slight residual difference from the imperfect excitation profile. The SE–US image

shows some residual outflow effects that UNCLE SAM could not capture.
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Figure 5.4: Box and whisker plots showing the summary of the relative L2 norm difference (equation 5.8)

with slice-encoding of each frame for each of the nine subjects. Red box plots display the summary of the

range of the relative L2 norm difference with UNCLE SAM, and the black box plots show the relative L2

norm difference with the flow corrupted 2D images. The wide range seen in the relative L2 norm difference

of the 2D images result because the peak systolic frames have much more through-plane outflow effects than

the diastolic frames. p-Values of Mann-Whitney U-Tests were all ¡ 0.01, indicating that the relative L2 norm

difference between UNCLE SAM and 2D have with slice-encoding is significantly different when imaging in

the presence of through-plane flow effects.
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Figure 5.5: A histogram of the relative L2 norm difference with SE for UNCLE SAM (red) and 2D (black)

for all frames, across all volunteers.

results are shown for each subject in Figure 5.6. All p-valeus were ¡ 0.01, showing that there

is a significant difference between each of there structural comparison with the slice-encoded

image.

Results comparing UNCLE SAM’s slices to slice-encoding’s are shown in Figure 5.7 The top

displays all slice-encoded slices while the bottom shows the recovered six UNCLE SAM slices.

The center slice for both is slice number four, and is indicated with an orange and yellow

box for slice-encoding and UNCLE SAM, respectively. Although the recovered UNCLE

SAM slices show similar outflow profiles as the slice-encoded acquisition, its unfolding of

the outflowing spins from the adjacent slices (3 and 5) was not as good as the unfolding of

slices further away. We suspect that this likely contributed to the residual effects seen in

the SE–US subtractions in Figure 5.3. This shortcoming is likely to occurred as a result of

limited channel sensitivity variation between slice 4 and either of its two adjacent slices.
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Figure 5.6: A histogram of the SSIM with with SE for UNCLE SAM (red) and 2D (black) for all frames,

across all volunteers. p-Values of Mann-Whitney were all less than 0.01 for each subject, indicating that the

SSIM relative to slice-encoding between UNCLE SAM and 2D is significantly different when imaging in the

presence of through-plane flow effects. SSIM values close to 1 indicate structural similarity
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Figure 5.7: All six slices of the slice-encoded (top) and UNCLE SAM(bottom) images, with the center slices

indicated with brown and yellow boxes of the two respective methods. UNCLE SAM performed much better

in unfolding the outflow effects seen in slices further away from the target, noticeably slices 1 and 2, than the

slices directly adjacent.

This limitation of UNCLE SAM’s is further shown in the bottom two rows of Figure 5.8.

The columns in this figure correspond to peak systolic frames of a subject. The top three

rows show the center slice of UNCLE SAM (”US”), center slice of slice-encoding (”SE”),

and the 2D (”2D”) frames respectively. The bottom two rows show the sum of squares of

the images that result from a complex subtraction of the individual channels of the 2D data

from the respective UNCLE SAM (”US − 2D”) and slice-encoded (”SE − 2D”) frames.

Subtracting these images from the flow corrupted 2D data show a 2D plane projection of the

outflow effects they were able to unfold from the target slice. Because slice-encoding removes

most outflowing spins from the target slice, SE − 2D gives us the projection almost all of

the outflow artifacts present in the acquisition. These projections show that UNCLE SAM

could only most of the outflow artifacts present in the acquisition. The amount of outflow

effects vary for each frame, as does the amount of unfolded spins from UNCLE SAM, which

means that the unfolding of UNCLE SAM scales with the amount of artifacts present. This
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Figure 5.8: Top three rows show the systolic frames (5, 6, 7, and 8) of a subject’s UNCLE SAM (”US”),

slice-encoding (”SE”), and flow corrupted 2D (”2D”) images. The next two rows show the sum of squares

of the complex subtraction of the 2D images subtracted from the UNCLE SAM (”US− 2D”) and from slice-

encoding (”SE − 2D”) images respectively. These bottom two rows show the outflow effects unfolded from

the target slice projected on a 2D plane.

is verified by the correlation between the L2 norm of the 2D subtraction from UNCLE SAM

and from slice-encoding. The R value for each is shown in Table 5.2.

Parameter Vol1 Vol2 Vol3 Vol4 Vol5

R 0.9982 0.9955 0.9954 0.9850 0.9846

Parameter Vol6 Vol7 Vol8 Vol9 X

R 0.9847 0.9896 0.9844 0.9902 X

Table 5.2: The Pearson Correlation test results for the L2 norm of the subtraction of the 2D data from

UNCLE SAM and slice-encoding for each subject. Because slice-encoding unfolds most outflowing spins,

||SE − 2D||2 provides the norm of almost all outflow effects corrupting the 2D image. The p values were all

less than 0.01. This indicate the unfolding of outflow effects using UNCLE SAM strongly correlates with the

extent of outflow artifacts in an acquisition.
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Figure 5.9: A g-factor analysis of UNCLE SAM, relative to the six slice-encoded experiment, described in

section 5.3.4. Peak noise amplification occurred at 2.5, where the outflowing spins would typically appear.

Figure 5.9 displays slice-by-slice results of a g-factor measurement, relative to slice-encoding.

g-Factor peaked at 2.5 in the targe slice in the region from where the flow artifacts unfolded.

5.5 Discussion

In this project, we sought to build upon our previous slice-encoding technique by exploit-

ing the localized channel sensitivity of the outflowing spins to substitute for slice-encoding

steps. We credit the achievements of previous parallel imaging techniques — which expressed

linear dependence of neighboring multi-channel k-space elements as a structured low-rank

block-Hankel matrix — for laying the foundation for this work. As a result of this linear

dependence, each local k-space neighborhood across all channels resides in a compact sub-

space. UNCLE SAM works by explicitly imposing a null space onto A at each iteration,

which is determined from the slice-encoded calibration data. This is like PRUNO [129] and

auto-calibrated LORAKS [46, 47]. Specifically, they enforce an equality constraint between

the acquired and not acquired k-space entries in a kernel, with each entry dotted by its

respective null space coefficients. This is equivalent to our approach, where we post-multiply

An by VcalT[Vcal]H in each n iteration, where Vcal and T are both determined from the

slice-encoded calibration before the reconstruction starts. As a shrinkage or thresholding
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operator, T forces the product of An’s rows with Vcal’s columns that correspond to Acal’s

insignificant singular values to zero, imposing Acal’s null space onto An. We used the noise

floor to threshold for the null space by employing the minimum variance filter, which is the

most proximal estimation of Acal in the Frobenius norm [119, 56]. We are not claiming

novelty over the use of this filter. Rather we used it as a pragmatic thresholding criterion for

the null space from the SVD of Acal, like other MR imaging applications [16, 20, 19, 18]. We

show a comparison between using the minimum variance filter and a manual threshold in

Figure 5.10. The left image of part A illustrates the normalized singular values (colored blue)

along with the minimum variance filter (orange) and the hard thresholding filter (yellow).

The right image shows plots of Equation 5.7 for UNCLE SAM’s first 800 iterations when

using the minimum variance filter (orange) and the hard threshold (yellow) as the diagonal

entries of T. Equation 5.7 converged after 298 iterations when using the minimum variance

filter (red vertical bar) and converged after 605 iterations when using the hard threshold.

From left to right, part B shows a side-by-side comparison of the outflow corrupted 2D

image, UNCLE SAM’s reconstruction using the minimum variance filter, UNCLE SAM’s re-

construction using hard thresholding, and the magnitude of the complex difference between

the minimum variance and hard threshold images. Both filters resulted in similar outflow

unfolded images, which makes sense because both imposed the same null space that defines

the relationship of local k-space neighbors. An in-depth evaluation of the shrinkage criteria

is beyond the scope of this project and is an active research topic [8].

Because UNCLE SAM incorporates aspects of prior parallel imaging developments, it is

important to emphasize that the novelty of this work comes from the application of exploiting

the linear dependence of slice-encoded k-space neighbors to unfold outflow effects rather

than any specific algorithm. In fact, an early version was implemented using SMASH [2].

We make of use the insight that the coils inherently encode a 3D volume even though the

sequence encodes for 2D only. Similarities can be drawn with prior simultaneous multi-slice

(SMS) methods [60, 78] , where multiple discretely positioned slices are unfolded from one
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Figure 5.10: (A) Left Image: A comparison of thresholding criterion used to determine the null space:

minimum variance threshold (orange) and hard thresholding at the noise floor (yellow). Both are plots of

the normalized singular values and the thresholding filter, f . The thresholding filter served as the diagonal

entries of the thresholding operator, T. Right Image: plots of Equation 5.7 for each iteration using the a

minimum variance filter (orange) and the hard threshold (yellow) filter as the diagonal entries of T. The

orange and yellow vertical bars indicate when Equation 5.7 evaluated to less than 10( − 4) when using the

minimum variance filter and hard thresholding for T respectively. Convergence occurred after 298 iterations

when using the minimum variance filter, while occurred after 605 iterations when using hard thresholding.

(B) A side-by-side comparison of the flwo corrupted 2D image, the center slice of UNCLE SAM using the

minimum variance filter, the center slice of UNCLE SAM using a hard threshold, and a difference of the

minimum variance and hard thresholded filter images. The thresholding operator’s significance is only to

determine the null space that defines the linear relationship between the local neighborhoods of slice-encoded

k-space entries. Because of this, both filters achieved similar outflow unfolding.
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another after being excited simultaneously. More recently developed SMS methods benefit

from controlled aliasing in parallel imaging (CAIPI) condition [14, 15], where the spins from

different slices each accumulate different FOV shifts in-plane. Unfortunately this method of

encoding is not possible for the current case, because all excited spins come out of the center

slice, making it impossible to impart slice-specific encoding. Slice-GRAPPA [99, 25] was

developed as a method that doesn’t inherently rely on, but would still benefit from, CAIPI.

In the calibration step, weights are determine to fit the multi-channel k-space weights of

the sum of all slices to the k-space of the individual slice. This k-space fitting is different

from traditional k-space weighting in parallel imaging. In parallel imaging, the weights

are estimated to miming the spatial harmonics achieved for k-space sampling. In slice-

GRAPPA, the weights are working to vectorially cancel the signal of all other slices, leaving

only the target slice, in a manner similar to beamforming[70, 58] along the slice direction.

Without CAIPI, slice-GRAPPA works best for slices separated by great lengths. Because

excited spins come out of the center slice in flow artifacts, it is difficult for slice-GRAPPA

to consistently vectorially cancel outflowing spins from slices adjacent to the target slice,

limiting the resolvable of outflow artifacts coming from the nearest slices. This is shown in

an example in Figure 5.11.

The slice-encoded raw data was used to test UNCLE SAM’s fidelity in a direct comparison

with explicit slice-encoding. Both methods unfolded similar outflow profiles (Figure 5.7).

Because the 2D image was from the ks = 0 plane of the slice-encoded data, the sum of

squares of the channel-by-channel 2D subtraction from the slice-encoded gave the projected

sum of all outflowing spins (second row of all images of Figure 5.3). In contrast, we showed in

Figure 5.3 that the complex subtraction of the UNCLE SAM image from the slice-encoded

resulted in marginal residual through-plane flow effects. Because slice-encoding explicitly

encodes for the space where most of outflowing spin reside, the complex subtraction of the

slice-encoded image from UNCLE SAM or 2D only leaves residual outflow effects. We quanti-

fied the extent of these residual outflow effects by calculating the relative L2 norm difference
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Figure 5.11: Top from left to right: 2D, UNCLE SAM, slice-GRAPPA (”SG”), and slice-encoding. Bottom

shows the sum of squares of the channel-by-channel complex subtraction of (from left to right): 2D − SE,

US − SE, and SG − SE. This is illustrates a side-by-side comparison between UNCLE SAM and slice-

GRAPPA, showing that UNCLE SAM can unfold more than slice-GRAPPA for six SE step experiments.

from slice-encoding, in equation 5.8. For each frame of each subject, this difference was sig-

nificantly less for UNCLE SAM than it was for the flow corrupted 2D image. This indicated

by p-value ¡ 0.01 for the Mann-Whitney U-Tests for each subject’s UNCLE SAM and 2D

cines, as well as for all pairs of UNCLE SAM and 2D frames for all subjects (Figures 5.4

and 5.5). It must be noted that these subtractions did introduce a bias because singular

value shrinkage does inherently denoise the UNCLE SAM images. We also carried out SSIM

evaluations for the UNCLE SAM and 2D images in comparison to the slice-encoded image

to have feature a metric that isn’t as sensitive to denoising effects. The SSIM evaluations

for the UNCLE SAM and 2D images in comparison to the slice-encoded image is a appro-

priate because outflow effects provide visual corruption of the image. These evaluations

further confirmed the significant reduction of outflow effects using UNCLE SAM. As this

was all retrospective from the slice-encoded data, these results provided a theoretical and

demonstrative evidence UNCLE SAM’s acquisition and reconstruction scheme, without any

concern of misregistration.
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We suspect that the residual through-plane flow effects of the “SE–US” images in the second

row of Figure 5.3 had to do with the limited resolution of the localized channel sensitivity

along the slice direction. Imperfections in UNCLE SAM’s unfolding can be seen in slices 3

and 5 of Figure 5.7, which are directly adjacent to the center slice. The through-slice FOV

between the center slice to either of its two adjacent slices is too small for significant channel

sensitivity differences [51]. As a result, using UNCLE SAM for the spatial unfolding of these

artifacts is best for fast moving outflowing spins, particularly for those moving along the

slice’s normal. Because of this, UNCLE SAM is unlikely to be suitable for distinguishing

stationary spins across different slices, at least without some additional phase-encoding.

Through-slice localization could be potentially improved for acquisitions featuring a phased

array system with more localized through-slice channel sensitivity [51, 50], particularly if

the center of the channel’s sensitivity profile could be positioned at each midpoint of the

unfolding slices [60, 78]. Despite this limitation, we showed that UNCLE SAM was able to

unfold most of what slice-encoding was able to achieve in Figure 5.8 by directly subtracting

the image from each of them. This complex subtraction from their center slices leaves the

artifacts they unfolded.

Better localized through-slice channel sensitivity provides better estimation of through-slice

spatial harmonics. Channel sensitivity profile sets a limit on how many through-slice en-

coding steps UNCLE SAM can achieve. Figure 5.12 shows two UNCLE SAM comparisons

with slice-encoding. The top left shows a comparison with six slice-encoding steps and the

top right shows a comparison with eight slice-encoding steps. UNCLE SAM with six encod-

ing steps achieved a better estimation of the outflow profile than it did with eight encoding

steps. Presumably this reflects the impossibility of achieving 8-fold linear acceleration across

adjacent slices.

Prospective UNCLE SAM scans, whose calibration featured 12 in-plane samples for six slice-

encoding steps, increased the total breath-hold by six seconds for 12 VPS evaluations. To put
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Figure 5.12: Top: Slice-by-slice comparison of UNCLE SAM with slice-encoding for six encoding steps

(left) and eight (right). With Siemens’s standard chest coil for the Prisma, UNCLE SAM was better able to

achieve the six-encoding step resolved outflow profile than it was for eight encoding steps. Bottom: a side-

by-side comparison of the 2D image with the center slice of the six encoded UNCLE SAM, the eight encoded

UNCLE SAM, the six slice-encoded, and eight slice-encoded images. Because of the improved outflow profile

localization of the six encoded UNCLE SAM experiment, six UNCLE SAM steps achieved better outflow

unfolding from the center slice than using eight UNCLE SAM steps.
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this increased scan time in perspective, slice-encoded acquisition times scaled by a factor of

the number of slice-encoding steps. Despite subtle channel localized imperfections, UNCLE

SAM was able to unfold most of the outflowing signal profile from the target slice with only

a marginal increase in the breath-hold duration of the 2D acquisition.

Some other limitations of the study should be noted. The reconstruction time is presently

on the order of minutes to hours, as is common with null space algorithms. Incorporating

the GIRAF framework [83] could potentially speed the computation. Alternatively, a less

sophisticated parallel imaging techniques may be implemented to obtain similar results [2]

but potentially less artifact reduction. The requirement for a calibration scan to measure

the coil sensitivities is another limitation. In our implementation the acquisition consisted

of a 2D acquisition combined with a six slice-encoded calibration, which effectively only

increased the breath-hold by six seconds. Because these two cines are acquired together

in the same breath-hold, and have the same temporal resolution, they will have consistent

channel sensitivity and transverse signal profiles for each frame. This will help guarantee the

two cines share the same subspace, even for cases with severe outflow effects. This is also how

calibration consistency in cardiac cine is guaranteed for in-house parallel imaging techniques,

including GRAPPA [43] and SENSE [90]. Because of this implementation, the issue with

severe outflow effects is more related to the number of encoding steps needed to significantly

unfold them from the center slice, which requires a sufficient channel sensitivity variation

along the slice’s direction. This is a significant improvement from increasing the scan’s time

by a factor of the number of slice-encoding steps. Different implementations could use a

separate breath-hold for calibration or internal calibration, in common with other parallel

imaging techniques.
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5.6 Conclusion

In this study, we sought to unfold most outflow effects in bSSFP imaging in a time- efficient

manner, relative to through-plane phase-encoding. We integrated concepts from recently

developed parallel imaging methods that featured a low-rank framework with our slice-

encoding approach. In retrospective and prospective acquisitions, we were able to show that

our proposed method can significantly reduce a large fraction of the outflow present in the

standard clinical protocol.
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CHAPTER 6

Summary and Future Directions

6.1 Summary

We investigated through-plane flow effects in this thesis. On one hand, these effects have

use and can be exploited for clinical purposes. In the first specific aim, we specifically used

through-plane effects in arterial spin labeling to assess for regional foot perfusion. These

initial results were promising, as they showed that ASL MRI can provide regional foot

assessment in patients with diabetic foot ulcers, detecting increased perfusion closer to the

foot ulcer than regions further away. Further investigation is needed in order to see how the

ASL measurements can help predict the healing potential of a wound.

The next two specific aims focused on a specific through-plane flow problem in MR Imaging:

outflow effects in 2D bSSFP acquisitions. In specific aim two, we treated the outflow effects

in 2D bSSFP imaging as a volumetric signal profile by applying slice-encoding steps to

spatially encode for a through-slice FOV beyond the target slice in order to unfold them

from the image. In our methods, we encoded for a through-slice FOV of NSEST . Through

thorough Bloch simulations of through-plane flowing spins, and flow phantom experiments

with through-plane flow, we should that outflow effects can be reduced with an increasing

number of slice-encoding steps, and ultimately removed if the encoding FOV covers the span

of the outflowing signal. This was tested on several healthy subjects and showed a significant

reduction of outflow effects on 2D bSSFP imaging on a 3 Tesla system.
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However, incorporating slice-encoding steps in clinical or research protocols for cases with

severe outflow effects is impractical because of the penalty in acquisition time. Because the

spins are moving through the slice, we decided to take advantage of the difference between

the localized channel sensitivities between the outflowing spins and the target slice in order

to reduce the needed breath-hold to unfold out of slice spins. In addition to the 2D cine, we

acquired a slice-encoded calibration, which only added about six seconds to the total scan

time. We used the calibration data to learn the subspace defining the linear relationship

amongst local slice-encoded k-space neighbors. By treating the acquired multi-channel 2D

data as the center slice of a volumetric k-space with zeros everywhere else, we imposed this

subspace onto the k-space to estimate the non-center k-space partitions.

6.2 Future Directions

In this section, I mention some potential future projects, along with preliminary results. I

can provide the relevant source code.

6.2.1 An UNCLE SAM implementation of Slice-GRAPPA

Slice-GRAPPA is an SMS method that estimates a k-space entry of a target slice of a single

channel as a linear combination of k-space neighbors of another slice across all channels [99].

We recently implemented a low rank interpretation of this, whose implementation is similar

to UNCLE SAM, with a preliminary result being shown in Figure 6.1. A further investigation

would include a direct comparison with UNCLE SAM, such as relative L2 norm difference

with slice-encoding, L2 norm evaluation in difference from 2D, g-factor analysis, along with

seeing if including beyond six encoding steps in the calibration would result in more outflow

unfolding.
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Figure 6.1: Side-by-side comparisons of 2D, UNCLE SAM, Low Rank Slice Grappa, and Slice Encoding.

6.2.2 A Low Rank Approach to Reduced FOV Imaging

Recent development in MRI involved the incorporation of beamforming concepts for reduced

FOV imaging [70, 58]. So far these implementations were based off of the stochastic matched

filter Walsh et al discussed [122]. Instead of reducing the noise power, which was what

Walsh discussed, they reduced the power from the signal of an unwanted region, while

maximizing the power from the signal within the desired FOV. These approaches resulted

in coil compressed (virtual coils) data.

Conceptually, the reconstruction for slice-grappa [99] operates as reduced FOV. In the cal-

ibration step, slice-grappa fits the k-space of the sum of all slices to the k-space of a target

slice. The weighted sum of the multi-slice k-space will result in the k-space of the target

image, with the signal of all other slices cancelled.

On a similar note, one should be able to fit the calibration k-space spanning a full FOV to the

k-space of a cropped FOV of that calibration image. Then the weighed sum of the acquisition

k-space should result in the reduced FOV. Preliminary results are shown in Figure 6.2.
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Figure 6.2: Preliminary results of the reduced FOV method.
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APPENDIX A

Appendix

Here we describe a simplified view of E-SPIRiT [118], coming from a spatial harmonic per-

spective. This was something I did on the side to test my understanding of the k-space based

parallel imaging methods, and was glad to see (or rediscover) that sensitivity maps could

come GRAPPA weights.

The k-space of a given channel j:

Sj(kx, ky) =

∫∫
Cj(x, y)M⊥(x, y)e

−i2π·(kxx+kyy) dx dy (A.1)

Any k-space element at position (k′
x, k

′
y) of channel j can be estimated as a linear combination

of surrounding neighbors across all channels. If we consider the neighbors that lie within a

Mx and My elements away along the x⃗ and y⃗ directions respectively, the following estimation

is carried out:

Sj(k
′
x, k

′
y) =

Nc∑
l=1

Mx,My∑
mx=−Mx,
my=−My

Sl(k
′
x +mx∆kx, k

′
y +my∆ky)n

(mx,my ,j)
l | mx

∧my
̸=0

(A.2)

mx and my cannot both equal zero at the same time because that refers to missing index.
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Expressing A.2 in terms of A.1 :

Sj(k
′
x, k

′
y) =

∫∫
Cj(x, y)M⊥(x, y)e

−i2π·(k′xx+k′yy) dx dy =

Nc∑
l=1

∫∫
Cl(x, y)M⊥(x, y)·

Mx,My∑
mx=−Mx,
my=−My

e(−i2π·((k′x+mx∆kx)x+(k′y+my∆ky)y))n
(mx,my ,j)
l | mx

∧my
̸=0

dx dy (A.3)

Rearranging A.3 gives:

Sj(k
′
x, k

′
y) =

∫∫
Cj(x, y)M⊥(x, y)e

−i2π·(k′xx+k′yy) dx dy =∫∫
M⊥(x, y)e

(−i2π·(k′xx+k′yy))·
Nc∑
l=1

Cl(x, y)·
Mx,My∑

mx=−Mx,
my=−My

e(−i2π·((mx∆kx)x+(my∆ky)y))n
(mx,my ,j)
l | mx

∧my
̸=0

dx dy

(A.4)

Equaling like terms gives us

Ĉj(x, y) =
Nc∑
l=1

Cl(x, y)

Mx,My∑
mx=−Mx,
my=−My

e(−i2π·((mx∆kx)x+(my∆ky)y))n
(mx,my ,j)
l | mx

∧my
̸=0

(A.5)

where Ĉj(x, y) is the estimated spatial sensitivity of channel j. Let’s condense the harmonic

summation:

Hj
l (x, y) =

Mx,My∑
mx=−Mx,
my=−My

e(−i2π·((mx∆kx)x+(my∆ky)y))n
(mx,my ,j)
l | mx

∧my
̸=0

(A.6)

This gives us the following dot product to estimate Ĉj(x, y):

Ĉ1(x, y) = [H1
1 (x, y), H

1
2 (x, y), ...H

1
Nc
(x, y)] · C⃗(x, y)

Ĉ2(x, y) = [H2
1 (x, y), H

2
2 (x, y), ...H

2
Nc
(x, y)] · C⃗(x, y)

...

ĈNc(x, y) = [HNc
1 (x, y), HNc

2 (x, y), ...HNc
Nc

(x, y)] · C⃗(x, y) (A.7)
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Figure A.1: The brain data sets we tested this interpretation of E-SPIRiT on. We will work with a full

FOV (left) and an aliased (right) datasets.

where Ĉ(x, y) indicates the estimated channel sensitivity. or in short:

ˆ⃗
C(x, y) = [H(x, y)]C⃗(x, y) (A.8)

This shows that the channel sensitivities can be estimated by determining the eigen vectors

corresponding to eigen value 1 of H(x, y).

We tested this on multi-channel brain data from Michael Lustig’s website (Figure A.1)

using a 7 × 7 < kro, kpey > kernel. Figure A.2 shows the result for the full FOV dataset.

Thresholding for the eigenvalues of ≈ 1 (> 0.98) provides exact outline of the brain anatomy.

The resulting eigenvector for each pixel’s first eigenvalue gives the sensitivity profile of each

channel. You can see the matching rows of the first and bottom rows.
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Figure A.2: Top shows the magnitude and the phase of the individual channel images being divided by the

square root sum of squares of the entire dataset. Middle left shows the eigenvalues of the harmonic matrix,

H(x, y), of equation A.8. The middle right shows only the eigenvalues > 0.98 . Notice only the shape of the

anatomy is left over. The bottom row shows the magnitude and the phase of the eigenvectors of H(x, y).
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Figure A.3: Top shows the magnitude and the phase of the individual channel images being divided by the

square root sum of squares of the entire dataset. This time the FOV is reduced along the ûpey direction,

resulting in aliasing. The second row shows the eigenvalues of H(x, y). Where aliasing occurs, there is

an overlap of two different anatomies, each with its own different channel sensitivities. You can think the

channel sensitivity for a voxel located at < x, y > being an Nc × 1 channel vector. For this example of

aliased anatomy, there are two distinct channel profiles for those aliased voxels. This results in two different

eigenvectors that satisfy equation A.8, as is evidenced by the thresholded eigenvalues in the right half of the

second row. The last two rows show the corresponding eigenvectors for each voxel for these two eigenvalue

maps, which shows the aliased sensitivity profiles.
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