
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Essays in Information and Financial Markets

Permalink
https://escholarship.org/uc/item/0hc086hz

Author
Aoyagi, Jun

Publication Date
2021
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0hc086hz
https://escholarship.org
http://www.cdlib.org/


Essays in Information and Financial Markets

by

Jun Aoyagi

A dissertation submitted in partial satisfaction of the
requirements for the degree of

Doctor of Philosophy

in

Economics

in the

Graduate Division
of the

University of California, Berkeley

Committee in charge:
Professor Nicolae Garleanu, Co-chair

Associate Professor David Sraer, Co-chair
Professor Christine Parlour
Professor Chris Shannon

Spring 2021



Essays in Information and Financial Markets

Copyright 2021
by

Jun Aoyagi



1

Abstract

Essays in Information and Financial Markets

by

Jun Aoyagi

Doctor of Philosophy in Economics

University of California, Berkeley

Professor Nicolae Garleanu, Co-chair

Associate Professor David Sraer, Co-chair

The landscape of the modern financial market is rapidly changing due to innovations in
trading methods and information technologies. Do innovations in financial markets im-
prove market quality? How do traders change their trading behavior and information
acquisition? How should exchange platforms and policy makers react to financial inno-
vations? To answer these questions, I first analyze strategic information acquisition by
traders and the impact of imposing market structures with different informational environ-
ments. Chapter 1 considers the quality aspect of information (i.e., the precision of private
information), and Chapter 2 considers the speed aspect of information (i.e., how quickly
a trader can process information and act on it). Finally, Chapter 3 analyzes one of the
latest innovations in financial markets: the blockchain technology and decentralization.

In Chapter 1, I extend the canonical model of Kyle (1985) and accommodate strategic
information acquisition by an informed trader and a fair disclosure regulation. A fair dis-
closure policy tries to mitigate information asymmetry between informed and uninformed
traders by disseminating material information to all market participants. The literature
has suggested that such a policy should discourage information acquisition by a potential
informed trader, as it diminishes the value of privately possessing information. However,
my model shows that a trader may exhibit the opposite reaction. In particular, if the
disclosure policy provides a more precise public signal about asset fundamentals, it can
promote information acquisition by a potential informed trader. This effect is referred to
as the crowding-in effect. The crowding-in effect competes against the intended effect of
fair disclosure, leading to an ambiguous reaction of private information production by an
informed trader.

Chapter 2 deals with financial innovations in the speed of trading and information
processing. It analyzes high-frequency traders (HFTs) and intentional delays imposed by
exchange platforms. HFTs are ultra-fast traders who exploit sophisticated information
and communication technologies in order to acquire information and take short-term ar-
bitrage opportunities. The speed advantage of HFTs imposes an adverse selection cost on
other traders, making a market less liquid. A growing number of exchanges have adopted
intentional delays to exogenously slow down HFTs and to protect liquidity providers
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against latency arbitrage. However, analogous to Chapter 1, my model shows that in-
tentional delays have the crowding-in effect on speed acquisition by HFTs. Even though
an exchange tries to slow down HFTs by exogenously imposing a delay on their trans-
actions, HFTs may try to process information more quickly and move faster. As the
crowding-in effect competes against the intended effect of intentional delays, the reaction
of equilibrium market quality to the imposition of delays becomes ambiguous.

Chapter 3 considers the recent innovations in blockchain and decentralized exchanges.
A growing number of exchanges are built on a decentralized information management
system of the Ethereum blockchain, and they have implemented a novel market-making
algorithm called Constant Product Market Makers (CPMM) to execute transactions. I
consider the coexistence of a centralized exchange with the traditional order-book mecha-
nism and a decentralized exchange with the CPMM. Informed and uninformed traders are
endogenously differentiated between the traditional and the new market platforms and
re-configure the informativeness of order flow on each exchange. The model demonstrates
that liquidity on a decentralized exchange with the CPMM is positively associated with
that on a centralized exchange.
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Chapter 1

Strategic Information Acquisition

1.1 Introduction
Asymmetric information between traders is one of the key determinants of market

quality. Uninformed market makers tend to bear an adverse selection cost of a trade
when it is initiated by a trader with private information. To compensate for the cost,
market makers charge a wider bid-ask spread, making the market less liquid. Policy
makers have tried to mitigate asymmetric information by imposing several information
regulations. In particular, this chapter focuses on a fair disclosure policy, such as the
Regulation Fair Disclosure (RegFD) in 2000 and Sarbanes-Oxley Act (SOX) in 2002.
They try to mitigate information asymmetry between traders by promoting full and fair
disclosure of material information by issuers (e.g., firms). For example, RegFD prohibits
corporate issuers from revealing material nonpublic information to specific entities and
requires them to publicly release such information. Another example is provided by SOX,
which aims to alleviate information asymmetry by “improving the accuracy and reliability
of corporate disclosures” (Public Law, 107–204). Many other regulations and policies have
been implemented in the expectation that disseminating precise information to all market
participants improves liquidity and price efficiency by mitigating information asymmetry.

However, the existing studies on fair disclosure suggest that it may lead to some
unintended consequences.1 Specifically, the literature on market microstructure argues
that publicly revealing information diminishes private information acquisition by poten-
tial informed traders because their informational advantage dwindles when somewhat
correlated material news becomes public. The negative impact of information disclosure
on private information acquisition is called the crowding-out effect (Goldstein and Yang,
2017). Even though the crowding-out effect mitigates asymmetric information problem
between traders, it may reduce the amount of information available for the market. The

1There are some other unintended effects of fair disclosure, including erosion of trading opportunities
with risk sharing motives (Hirshleifer, 1971) and an increase in non-fundamental volatility due to the
beauty-contest type activity (Morris and Shin, 2002).
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existing models cast a doubt on the effectiveness of fair disclosure, as they predict that the
price can be less informative and less efficient due to the crowding-out effect on private
information production.

This paper studies a one-period version of Kyle (1985) model, where I introduce a
public signal (i.e., fair disclosure) and information acquisition by an informed trader. Even
though the deviation from the original environment is kept minimal, it shows that the
crowding-out effect in the existing models can be overturned due to strategic information
acquisition. Instead, fair disclosure crowds in the information-acquisition activity by the
informed trader. Thus, the unintended impact of fair disclosure can be opposite to the
existing models. In other words, fair disclosure not only provides a more precise public
signal to the market but it also encourages a potential informed trader to (privately)
discover new information. Therefore, the crowding-in effect helps fair disclosure with
promoting the market and price efficiency.

The key mechanism is hard-wired in the standard Kyle-model. The informed trader’s
expected trading profit is increasing in the precision of her private signal, as it represents
her informational advantage. Since she is strategic, however, she knows that trading on
her private information imposes an adverse selection cost on an uninformed market maker.
Then, the price impact of her order flow increases, and liquidity deteriorates. In other
words, she is aware that improving the precision of her private signal harms the market
depth and increases the trading cost. An increase in the trading cost, in turn, is perceived
as an endogenous cost of acquiring a more precise private signal for the strategic trader.
In contrast to the exogenous cost of information, the endogenous cost is affected by fair
disclosure, because it yields a new source of information to the market maker, alleviates
the adverse selection problem, and changes the price impact of informed trading.

Due to fair disclosure, the market maker’s pricing behavior depends on two sources
of information: the order flow and the publicly disclosed signal. When the public signal
becomes more precise due to a fair disclosure policy, the price impact of the order flow
diminishes, as the market maker’s inference depends more on public news and less on the
order flow. This provides the informed trader with room for increasing the precision of
private information. Even if the informed trader increases the precision of her private
signal, it does not deteriorates liquidity because the price impact (Kyle’s λ) is small.
Thus, fair disclosure decreases the endogenous marginal cost of information acquisition
for the informed trader, thereby generating the crowding-in effect.

The crowding-in effect in my model provides novel implications. Firstly, it competes
against the traditional crowding-out effect of fair disclosure. I show that the crowding-in
effect arises due to the strategic motive of the trader, while the crowding-out effect is
driven by the exogenous cost of information acquisition. Therefore, my model predicts
that fair disclosure hampers private information acquisition when searching for news takes
a relatively large cost, e.g., corporate and industry information is hard to obtain or hard
to interpret, or a trader needs to learn synthetic securities that involve complex return
structures. Therefore, depending on the cost of private information acquisition, the infor-
mativeness of the order flow (such as PIN measure by Easley, Kiefer, and O’Hara, 1997)
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exhibits a non-monotonic reaction to a fair disclosure policy.
Moreover, my model demonstrates that fair disclosure improves market quality mea-

sured by liquidity (market depth) and price efficiency. A more precise public signal directly
improves both measures of market quality. Responding to the change in market quality
(i.e., the price impact), the potential informed trader tries to acquire more or less precise
private information. Even though the crowding-in effect undermines the direct effect of
the disclosure policy on market liquidity, it is the indirect effect of disclosure and cannot
dominate the direct one. In the existing models on fair disclosure, disseminating a public
signal unambiguously improves the liquidity, as the information asymmetry shrinks, but
it crowds out the amount of information that the price can impound and harms the price
efficiency. My model implies that the crowding-in effect does not dominate the direct
impact of disclosure on asymmetric information. Thus, it not only improves the liquidity
measure but also injects more information into the price, leading to an optimistic view
on the effectiveness of fair disclosure.

A long list of studies have analyzed the impact of information regulation in financial
markets (see Dye, 2001; Verrecchia, 2001; Kanodia and Sapra, 2016 for comprehensive
reviews). The existence of fair disclosure’s crowding-out effect is pointed out by several
papers, such as Verrecchia (1982), Diamond (1985), Kim and Verrecchia (1994), Gao and
Liang (2013), Colombo, Femminis, and Pavan (2014), and Goldstein and Yang (2017).
In most papers, however, the crowding-out effect is analyzed in a competitive environ-
ment, such as the noisy rational expectations equilibrium model by Grossman and Stiglitz
(1980). In contrast, my model studies a strategic trader who knows the price impact of
her information-acquisition activity. The strategic nature imposes the endogenous cost
on information acquisition and leads to the crowding-in effect of fair disclosure.2 In the
strategic environment, Banerjee and Breon-Drish (2018) consider a continuous-time Kyle
model but their focus is on the dynamic nature of information acquisition and traders’
entry decision. They find that more volatile public information enhances information
production by informed traders, i.e., they find the crowding-out effect in a dynamic envi-
ronment.3

A couple of studies argue for the crowding-in effect of a fair disclosure policy, but
they rely on ad-hoc assumptions on information or trading environment. For example,
Bertomeu, Beyer, and Dye (2011) and Cheynel and Levine (2020) consider the mosaic
theory, in which having a more precise private signal allows a trader to better interpret
and process public information. McNichols and Trueman (1994) argue for the crowding-in
effect based on the possibility of multiple rounds of trading, i.e., trade before and after
information disclosure. In their environment, an informed trader can exploit her private

2Huddart, Hughes, and Levine (2001) and Gong and Liu (2012) consider strategic trading but dis-
closure policy in their models is dissemination of information about the trading behavior of a privately
informed trader, i.e., an informed trader must report her trading return or strategy after a trading session.

3The public signal in their model does not correspond to that in my model, because the signal reveals
information about the distribution of the fundamental value process rather than the noisy signal about
the realized value of asset.
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information to predict the information content of disclosure and the price reaction to
disclosed information. The informed trader can take an appropriate position at the pre-
announcement round in order to earn from a post-announcement trade. Finally, Han,
Tang, and Yang (2016) derive the crowding-out effect in a model à la Grossman and
Stiglitz (1980) with endogenous liquidity traders. When liquidity traders endogenously
participate in the market, a more precise public signal reduces the trading cost and attracts
a larger set of liquidity traders, which, in turn, motivate the informed trader to acquire
more information. In contrast to the above theories, the result in my model does not rely
on specific assumptions on trading environment.

The empirical literature has reported somewhat ambiguous results on the impact of
disclosure. On the one hand, Bushee, Matsumoto, and Miller (2004), Chiyachantana et
al. (2004), Eleswarapu, Thompson, and Venkataraman (2004), and Gintschel and Markov
(2004) find that the adverse selection component in bid-ask spread shrinks after fair
disclosure policies, consistent with the crowding-out effect. Also Chen and Lu (2019)
directly measure the information-acquisition activity after TRACE in corporate bond
markets and find that TRACE crowds out the information production. On the other
hand, Krinsky and Lee (1996), Coller and Yohn (1997), Straser (2002), and Sidhu et al.
(2008) report the opposite results, i.e., the asymmetric information problem worsens due
to disclosure policies. Since the existing models with crowding-out effect unambiguously
suggest a decline in asymmetric information, the crowding-in effect in my model helps
reconcile the above empirical findings.

1.2 Model
Consider a one-shot trading model à la Kyle (1985) with two additional stages. There

are three types of participants: a potential informed trader, a competitive market maker,
and a noise trader. The competitiveness in the market making sector is justified by con-
sidering multiple potential market makers who stay inactive on the equilibrium path. The
model differs from the original Kyle model only in two aspects: it involves (i) information
acquisition by the potential informed trader at t = 0 and (ii) the implementation of a fair
disclosure policy at t = 1. At t = 2, a trade takes place as in the original Kyle model.

A single asset is traded, and its ex-post liquidation value, denoted as v, follows the
normal distribution with mean p0 and variance Σ0, i.e., v ∼ N (p0,Σ0). The liquidation
value of the asset is not observable per se.

Fair disclosure policy. Following the literature (e.g., Goldstein and Yang, 2017), the
disclosure policy is described by a public signal about v. The signal is denoted as spub,
and I assume that it is linear in v:

spub = v + epub
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with epub ∼ N (0, σ2
pub). I denote the precision of the public signal as τpub ≡ σ−2

pub. The
signal is disseminated to all traders before the trading game starts.

Potential informed trader. The informed trader’s behavior involves two steps. Prior
to the disclosure of signal spub, she obtains private information s. It is also linear in v and
given by

s = v + e

with e ∼ N (0, σ2
e). I denote the precision of the private signal as τe ≡ σ−2

e . In the
information acquisition stage, τe is a choice variable of the informed trader. I assume
that obtaining a precise private signal is costly. In particular, learning s with τe takes
information acquisition cost C(τe) with C ′(·) > 0. The positive marginal cost of τe can
be seen as costs of information processing and market monitoring.

At the trading stage, the informed trader chooses the optimal trading strategy (quan-
tity) x ∈ R. With p denoting the price of the asset set by the market maker, the informed
trader’s trading profit is (v − p)x. For later use, I denote the ex-ante expected trading
profit of the informed trader as V :

V (τe; τpub) = E[(v − p)x(s, spub)], (1.1)

where x(s, spub) is the optimal trading strategy conditional on the realized value of signals
(derived in the following sections), and E denotes the unconditional expectation operator
over the random variables.

Noise trader and market maker. The noise trader’s activity is summarized by the
random order flow which is independent of (expected) asset value and the price level.
Specifically, she places a market order with quantity u ∼ N (0, σ2

u) in the trading stage.
u is also independent of other random variables.

The market maker sets the competitive price given available information to clear the
market. The set of available information for the market maker consists of the disclosed
signal spub and the aggregate order flow y ≡ x + u. Since the competition leads to the
efficient price, it holds that

p = E[v|spub, y]. (1.2)

Equilibrium. The equilibrium concept of the model is the subgame perfect equilib-
rium. The first stage involves the informed trader’s decision on the precision (τe) of the
private signal (s), and the second stage is the trading game. Figure 3.3 illustrates the
timing of events.

Definition 1.1. The equilibrium of the model is defined by the set of variables (τe, x, p)
such that the following three conditions hold:
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Figure 1.1: Timeline of the game

(i) Profit maximization: For any alternate trading strategies, x̄, and for any (s, spub), the
informed trader does not have profitable deviation, i.e.,

E[(v − p)x|s, spub] ≥ E[(v − p)x̄|s, spub].

(ii) Market efficiency: The equilibrium price, p, satisfies equation (1.2).
(iii) Information acquisition: The precision of the private signal, τe, maximizes the ex-
ante expected trading profit of the informed trader V in equation (1.1).

1.3 Solution
Following Kyle (1985), I focus on the linear equilibrium. Since the informed trader has

two sources of information, s and spub, her optimal trading strategy takes the following
form:

x = α + βs+ γspub (1.3)

with some equilibrium coefficients (α, β, γ).
The market maker observes the aggregate order flow, y = x+ u, and the public signal

spub. Note that observing these two signals is informationally equivalent to observing

(spub, y − γspub) = (spub, α + βs+ u).

Thus, for notational simplicity, I denote ŷ ≡ y − γspub. Given the linear trading strategy
of the informed trader, the standard filtering problem implies that the market efficiency
condition is given by

p = E[v|spub, ŷ]
= µ+ θspub + λŷ (1.4)

with some equilibrium coefficients (µ, θ, λ).
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Solution. Consider the informed trader’s trading strategy given p in equation (1.4).
It solves

x(s, spub) = arg max
x

E[(v − p)x|s, spub]

= arg max
x

(E[v|s, spub]− µ− θssub − λŷ)x.

The FOC implies that

x(s, spub) = E[v|s, spub]− µ− (θ − γλ)spub
2λ , (1.5)

where the standard filtering problem yields

E[v|s, spub] = Σ−1
0

Σ−1
0 + τe + τpub

p0 + τe
Σ−1

0 + τe + τpub
s+ τpub

Σ−1
0 + τe + τpub

spub. (1.6)

By defining wi ≡ σi/σpub for i ∈ {e, u}, equations (1.5) and (1.6) imply that the optimal
trading strategy is characterized by equation (1.3) with

α = − 1
2λ

(
µ− τ−1

e

τ−1
e + Σ0(1 + w2

e)
p0

)
, (1.7)

β = 1
2λ

Σ0

τ−1
e + Σ0(1 + w2

e)
, (1.8)

γ = 1
λ

(
Σ0w

2
e

τ−1
e + Σ0(1 + w2

e)
− θ

)
. (1.9)

Next, consider the market efficiency condition given the linear trading strategy (1.3).
Once again, the standard filtering problem leads to

p =p0 +
[

Σ0(β2w2
e + w2

u)
Σ0(w2

u + σ2
u) + β2[Σ0(w2

e + 1) + τ−1
e ] (spub − p0)

+ βΣ0

Σ0(w2
u + σ2

u) + β2[Σ0(w2
e + 1) + τ−1

e ] (ŷ − α− βp0)
]
. (1.10)

Thus, the efficient price is characterized by equation (1.4) with

µ = Σ0σ
2
u + β2τ−1

e

Σ0(w2
u + σ2

u) + β2[Σ0(w2
e + 1) + τ−1

e ]p0 − λα, (1.11)

λ = βΣ0

Σ0(w2
u + σ2

u) + β2[Σ0(w2
e + 1) + τ−1

e ] , (1.12)

θ = Σ0(β2w2
e + w2

u)
Σ0(w2

u + σ2
u) + β2[Σ0(w2

e + 1) + τ−1
e ] . (1.13)

Now, the explicit solution for the equilibrium is given by solving equations (1.7)-(1.13):
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Proposition 1.1. There exists a unique linear equilibrium in the trading stage, in which
the trading strategy of the informed trader and the asset price are given by (1.3) and (1.4)
with

α = − 1
Σ0τpub + 1βp0,

β =

√√√√ Σ0w2
u + σ2

u

Σ0(1 + w2
e) + τ−1

e

,

γ = −β Σ0w
2
u

Σ0w2
u + σ2

u

,

µ = σ2
u

Σ0w2
u + σ2

u

p0,

λ = 1
2

Σ0√
(Σ0w2

u + σ2
u)(Σ0(1 + w2

e) + τ−1
e )

,

θ = Σ0

2

(
w2
e

Σ0(1 + w2
e) + τ−1

e

+ w2
u

Σ0w2
u + σ2

u

)
.

Note that the above equations converge to the original one-period Kyle model if σpub →
∞ and σe → 0 (i.e., a model with a perfectly informed trader and no public disclosure).

1.3.1 Equilibrium in the trading stage
Liquidity, market depth, and price impact. Proposition 1.1 implies that λ is decreas-

ing in the precision of the public signal, τpub = σ−2
pub, and increasing in the precision of

the informed trader’s private signal, τe = σ−2
e . That is, the price impact of order flow

weakens when (i) the informed trader has a less precise private signal and (ii) the public
signal is more precise. Intuition follows the standard Kyle-model, because high τe and
low τpub both induce severe asymmetric information between the informed trader and the
market maker. In such a situation, the market maker renders the market less liquid (i.e.,
increases λ) to compensate for the adverse selection cost that stems from trading with
the informed trader (Bagehot, 1971; Glosten and Milgrom, 1985).

Behavior of the informed trader. The informed trader trades based on the private
and the public signals, s and spub, where β and γ represent the weight on each signal.
Firstly, the weight on the private signal β is increasing in its precision (τe), because the
informed trader optimally acts more on the private signal. Since the weight on the public
signal (γ) is the complement of β, γ is a decreasing function of τe, i.e., the informed trader
takes the weight away from spub and reallocates it to s when τe increases.

Interestingly, however, the impact of the precision of disclosure (τpub) on β and γ is
not trivial. Firstly, a more precise public signal makes the informed trader rely more



9

heavily on it. Thus, τpub = σ−2
pub has a negative impact on β and a positive impact on

γ. By the same token, however, the market maker’s behavior (i.e., the execution price)
becomes more dependent on the public signal. Since trading on the same information
is not profitable for the informed trader, she has an incentive to lean more toward the
private signal, i.e., she reduces γ and increases β. Put differently, a more precise public
signal alleviates the asymmetric information problem and reduces the price impact of
order flow, λ, which generates room for the informed trader to act more on her private
signal s.

Although τpub has the above-mentioned two competing effects, the following result
suggests that the second channel is dominant:
Corollary 1.1. β is increasing in τpub, and γ is decreasing in τpub.

Proof. Taking the first-order derivative of β and γ with respect to τpub yields the result.

Corollary 1.1 implies the following: when the fair disclosure policy provides a more
precise signal on the asset value, the informed trader avoids trading on that public infor-
mation. That is, the strategic trader prefers to trade based on the information that other
traders (i.e., the market maker) do not know, and this behavior becomes strong when
the market maker has more precise information. This result highlights the key ingredient
in information acquisition: the informed trader relies more heavily on the private signal
when the public signal is more precise.

1.3.2 Ex-ante expected profit
With the solution in Proposition 1.1, the ex-ante expected profit of the informed

trader, gross of the cost of information, is given by

V = E[(v − p)x(s, spub)]

= 1
4λE

[
(E[v|s, spub]− µ− (θ + γλ)spub)2

]
. (1.14)

By using the optimal conditions for x (equation [1.5]), the inside of the parentheses is
rewritten as

E[v|s, spub]− µ− (θ + γλ)spub = 2λx(s, ssup),

= 2λ(β + γ)
(
v + β

β + γ
e+ γ

β + γ
epub + α

β + γ

)
.

From Proposition 1.1, it holds that

v + β

β + γ
e+ γ

β + γ
epub + α

β + γ
∼ N

0,Σ0 +
(

β

β + γ

)2

σ2
e +

(
γ

β + γ

)2

σ2
pub

 . (1.15)

Therefore, V is explicitly calculated by taking the variance of (1.15). With the explicit
solution for (α, β, γ) in Proposition 1.1, I obtain the following result:
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Proposition 1.2. With bpub ≡ (Σ0τpub + 1)−1, the ex-ante expected profit of the informed
trader, gross of the information acquisition cost, is given by

V = bpub
2

√√√√ Σ2
0σ

2
u

τ−1
e + bpubΣ0

. (1.16)

Acquiring a more precise private signal (i.e., a higher τe) has two competing effects on
V . On the one hand, it provides the informed trader with a larger informational advantage
and a higher expected profit. On the other hand, it worsens the asymmetric information
problem, liquidity diminishes, and the profit margin declines (i.e., the endogenous cost of
τe). However, equation (1.16) implies that the first positive impact of a higher precision
(τe) is dominant. This is because the illiquid market arises as a consequence of a better
informed trader, i.e., the negative impact is the indirect effect of a higher τe and cannot
dominate its positive direct impact.

1.3.3 Information acquisition
To make the problem well-defined, I introduce a linear exogenous cost of information

acquisition, C(τe) = cτe . It can be thought of as the cost of collecting and processing a
large amount of information or an increasing monitoring cost. It can be easily checked
that a quadratic cost function yields the same results.

Then, the optimal precision of the private signal solves the following problem:

τ ∗e ≡ arg max
τe≥0

[V (τe)− C(τe)] = arg max
τe≥0

bpub
2

√√√√ Σ2
0σ

2
u

τ−1
e + bpubΣ0

− cτe

 . (1.17)

By denoting the net profit as V̄ ≡ V − C, the FOC is given by
dV̄ (τe)
dτe

= bpub
4

√
Σ2

0σ
2
u(τ−1

e + bpubΣ0)− 3
2 τ−2
e − c = 0. (1.18)

The SOC is easy to check: dV̄ (τe)
dτe

is decreasing in τe. Since limτe→0
dV̄ (τe)
dτe

= ∞ and
limτe→∞

dV̄ (τe)
dτe

= −c < 0, the FOC has a unique positive solution.

1.3.4 Crowding-in effect versus crowding-out effect
Consider the partial derivative of the FOC with respect to τpub to understand the

effect of fair disclosure on τ ∗e . Firstly, note that the FOC contains τpub only via bpub =
(Σ0τpub + 1)−1. Since bpub is a monotone transformation of τpub, I compute the partial
derivative of dV̄

dτe
with respect of bpub at the optimal τe:

∂

∂bpub

(
dV̄

dτe

)
|τe=τ∗e = c

τ−1
e − 1

2bpubΣ0

bpub(τ−1
e + bpubΣ0) . (1.19)

Equation (1.19) implies that the impact of bpub on τ ∗e can be both positive and negative.
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Crowding-out effect. On the one hand, when the public signal becomes precise (σ2
pub

and bpub decline), the expected profit of the informed trader shrinks because the precise
disclosure harms the informational advantage of the informed trader. The first coefficient
bpub in equation (1.16) captures this effect. Therefore, the informed trader knows that the
return from obtaining a more precise private signal is now smaller due the precise public
signal. Since increasing τe takes the exogenous cost C(τe), she is less willing to acquire a
higher τe. This channel represents the traditional crowding-out effect of fair disclosure on
information acquisition, which is analyzed in the literature (Verrecchia, 1982; Diamond,
1985; Kim and Verrecchia, 1994; and others). Even if the informed trader obtains private
information, the public signal diminishes the informational advantage, and paying the
cost for the private signal becomes less worthwhile.

Crowding-in effect. On the other hand, equation (1.19) shows that there also exists
the crowding-in effect on information acquisition. When the public signal becomes more
precise, the market maker’s pricing behavior depends more heavily on it, diminishing
the price impact of the order flow (λ). In other words, the price becomes insensitive to
a change in the order flow y = x + u because the market maker has another reliable
source of information, spub, to predict v. Since a higher price impact λ can be seen as
the endogenous cost of being more informed, a decline in λ means that the marginal
endogenous cost of obtaining a higher τe diminishes. Namely, even if s becomes more
precise, market liquidity and the price impact (λ) worsen only slightly. This reduction in
the sensitivity of the market impact λ allows the informed trader to trade more intensively
on her private information, generating additional room for her to exploit the informational
advantage. As a result, the informed trader finds it optimal to increase the precision of
the private signal, on which she can act and derive an additional profit.

Thus, the crowding-in effect emerges from the strategic motive of the informed trader,
i.e., she is aware of the endogenous cost of acquiring a precise private signal. The introduc-
tion of fair disclosure and a precise public signal reduces the endogenous marginal cost of
being better informed, thereby promoting the informed trader’s information acquisition.

From equation (1.19), we can analyze when the crowding-in effect becomes dominant:

Proposition 1.3. The optimal precision of the private signal τ ∗e takes a hump-shaped
curve against the precision of fair disclosure τpub. The tipping point is given by

τ ∗pub ≡
[

1
6

(
c

σu

)− 3
2
− 1

Σ0

]+

, (1.20)

where n+ ≡ max{0, n}.

Proof. From equation (1.19), τ ∗e is increasing in bpub if, and only if,
(1

2bpubΣ0

)−1
> τ ∗e .
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Since the optimal τ ∗e is the solution of (1.18), and the SOC is satisfied, the above inequality
holds if and only if

bpub
4

√
Σ2

0σ
2
u

[(1
2bpubΣ0

)
+ bpubΣ0

]− 3
2
(1

2bpubΣ0

)2
− c < 0.

By rearranging this inequality in terms of τpub, it is equivalent to τpub < τ ∗pub where τ ∗pub is
given by (1.20).

Proposition 1.3 shows that the crowding-in effect of fair disclosure dominates (resp. is
dominated by) the crowding-out effect when τpub is small (resp. large).

Consider a marginal increase in the precision of the public signal, denoted as ∆τpub > 0.
When the level of τpub is small, the impact of ∆τpub on the market maker’s belief updating
is large, while it has only an incremental impact on the belief updating when she already
has a precise public signal (i.e., τpub is already high). Therefore, the reduction in the
marginal endogenous cost due to ∆τpub > 0 is strong in a small-τpub region, making the
crowding-in effect more salient.

The tipping point τ ∗pub is decreasing in the marginal cost of private information c
but increasing in the volatility of noise trading σ2

u and the initial uncertainty regarding
the asset value Σ0. A higher c magnifies the crowding-out effect of τpub because a large
c implies that increasing the precision τe takes a larger cost. Knowing that some of the
informational advantage is washed out by the public signal, the informed trader’s incentive
to increase τe declines more when its cost is large. In this case, it becomes more difficult
for the crowding-in effect to be dominant. Thus, τ ∗e tends to be a decreasing function of
τpub, and τ ∗pub becomes smaller.

In contrast, a more volatile noise trading σu and larger initial uncertainty Σ0 promote
the crowding-in effect. Both parameters make it harder for the market maker to infer v
from the aggregate order flow. Then, the market maker becomes more dependent on the
public signal. In this situation, the price p becomes more responsive to an increase in the
precision of the public signal, leading to a larger decline in the marginal cost of increasing
τe.

Proposition 1.3 implies that an attempt to create a level playing field by publicly
and fairly disclosing information on v may promote the private information production
by the informed trader. This result goes counter to the existing models on information
disclosure, such as those cited by Goldstein and Yang (2017), because they only focus
on the crowding-out effect. In my model, the key ingredient that drives the crowding-in
effect is the strategic motive of the informed trader, which is absent in the existing studies
that deal with competitive models. Moreover, my model shows that the crowding-in effect
arises even in my basic model, as long as the trader is strategic. The existing models rely
on some specific assumptions to derive the crowding-in effect, such as the mosaic theory
with correlated private and public signals (Cheynel and Levine, 2020) and the possibility
of resale after disclosure (McNichols and Trueman, 1994). In contrast, Proposition 1.3
depends solely on the “within-period” strategic motive with conditionally independent
signals (s, spub).
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1.4 Market quality
This subsection investigates how fair disclosure affects market quality, such as market

depth (i.e., Kyle’s λ) and price efficiency.

Price efficiency. Firstly, I derive the variance of v conditional on the price informa-
tion. Since p = µ+ θspub + λ(y − γspub), it becomes

V ar(v|p) = Σ0 −
(λβ + θ)2Σ2

0
(λβ + θ)2Σ0 + λ2β2σ2

e + λ2σ2
u + θ2σ2

pub

= Σ0

1 + Σ0η
,

where
η ≡ (λβ + θ)2

λ2β2σ2
e + λ2σ2

u + θ2σ2
pub

= τpub + 1
2τ−1
e + bΣ0

. (1.21)

The second equality in (1.21) is derived by substituting equilibrium variables in Proposi-
tion 1.1.

Then, the price informativeness is measured by the signal-to-noise ratio of the price:

Σ ≡ V ar(v)
V ar(v|p) = 1 + Σ0η,

Σ represents how much uncertainty in v is resolved by observing the equilibrium price.
Proposition 1.4. The price informativeness, measured by Σ, is increasing in the preci-
sion of the public signal τpub = σ−2

pub.
Proof. Firstly, the optimal τ ∗e solves the FOC in (1.18). Therefore, the implicit function
theorem yields

dτ ∗e
dbpub

= τ ∗e
bpub

1
τ∗e
− 1

2bpubΣ0
1
2

1
τ∗e

+ 2bpubΣ0
. (1.22)

Secondly, we can rewrite

η = 2 τ ∗−1
e + bpubΣ0

bpubΣ0(2τ ∗−1
e + bpubΣ0) − Σ−1

0 .

Thus, I analyze the behavior of G(τe, bpub) ≡ τ−1
e +bpubΣ0

bpubΣ0(2τ−1
e +bpubΣ0) in the following. It holds

that
dG(τ ∗e , b)

db
= ∂G(τ ∗e , b)

∂b
+ dτ ∗e

db

∂G(τ ∗e , b)
∂τe

∝ −
(1

2 + 2bpubΣ0τ
∗
e

) [
2 1
τ ∗e

(
1
τ ∗e

+ bpubΣ0

)
+ b2

pubΣ2
0

]
+ bpubΣ0

(
1
τ ∗e
− 1

2bpubΣ0

)
< 0.

Therefore, η is an increasing function of bpub, meaning that it decreases with τpub.



14

As suggested by (1.21), the precision of the public signal τpub directly improves the
price informativeness, as it allows the market maker to know more about v by observing
spub. Moreover, a higher τpub triggers the crowding-in and the crowding-out effects on
the information-acquisition activity of the informed trader (Proposition 1.3), making the
order flow y more or less informative. When the crowding-in effect is dominant, both the
direct and indirect effects improve the price efficiency. When the crowding-out effect is
dominant, the indirect effect reduces the amount of private information that the price can
impound. However, even in this case, the crowding-out effect is indirect consequence of
a change in τpub and cannot dominate the positive direct effect, leading to a more precise
price information.

Note that the positive impact of τpub on Σ is robust due to the crowding-in effect. As
suggested by Goldstein and Yang (2017), this result goes counter to most of the existing
models, as they show that the crowding-out effect generates the ambiguous reaction of the
price informativeness. In contrast, even though the crowding-out effect can be dominant
in my model, there always exists the crowding-in effect, thereby (partially or completely)
offsetting the crowding-out effect. Thus, the crowding-out effect cannot be sufficiently
strong to harm price efficiency.

Market depth, liquidity, and the price impact. Consider the reaction of the price
impact λ to an increase in the precision of the public signal τpub. As we have seen in
Proposition 1.1, τpub reduces λ because it alleviates the asymmetric information problem
between the market maker and the informed trader. However, it also affects the precision
of the private signal τe: the informed trader becomes more or less informed, generating a
non-trivial impact on λ.

From Proposition 1.1, and by using the definition of bpub, the equilibrium λ is rewritten
as

λ = Σ0bpub
2

1√
(τ−1
e + bpubΣ0)σ2

u

. (1.23)

In (1.23), the negative impact of τpub on λ via bpub = 1
Σ0τpub+1 represents the direct impact

of τpub through a reduction in the informational problem. At the same time, λ is increasing
in τe, as it worsens the asymmetric information problem. Thus, τpub may or may not
increase λ by affecting τe at the equilibrium.

Once again, the following result shows that the indirect effect cannot dominate the
direct effect of τpub, making the equilibrium λ a decreasing function of τpub.

Proposition 1.5. Market liquidity, measured by 1/λ, improves when the public signal
becomes more precise (τpub increases).

Proof. Note that it is sufficient to analyze the behavior of λ̄ ≡ bpub(τ−1
e + bpubΣ0)− 1

2 at
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τe = τ ∗e to obtain the result. By using (1.22), it holds that

dλ̄

dbpub
∝ 1
τ ∗e

+ 1
2bpubΣ0 +

1
τ∗e
− 1

2bpubΣ0

1 + 4bpubτ ∗eΣ0
> 0.

Therefore, λ is increasing in bpub, meaning that it is decreasing in τpub. .

Overall, Propositions 1.4 and 1.5 provides an optimistic prediction: both the mar-
ket liquidity and the price efficiency improve when fair information disclosure provides
a precise signal about the asset fundamentals. The existing studies have casted doubt
on the effectiveness of fair disclosure, because disclosure unintendedly crowds out the
private information production by the trader. In my model, fair disclosure has the other
unintended impact that manifests in the opposite way—disclosure crowds in private infor-
mation acquisition—and overturns the existing results on the reaction of market quality.

1.5 Conclusion
In this chapter, I study a model of strategic information acquisition and investigate

whether a fair disclosure policy mitigates information asymmetry between traders. My
model shows that disseminating material information to all traders in financial markets
can promote private information acquisition by a potential informed traders, which I call
the crowding-in effect. The existing studies on fair disclosure policies argue that public
information should discourage such an information acquisition activity. Thus, my model
proposes the possibility of the opposite result compared to the literature: a regulation
that intends to discourage information acquisition may unintendedly encourage it.

The model in this chapter can be seen as the simplest building block to analyze the
impact of innovations in information processing and regulations on information. That is,
an informed trader may pay some cost to adopt new information technologies to acquire
better information, while policy makers impose a regulation that reduces the marginal
value of private information. My result indicates that a strategic trader may try to
countervail the negative impact of the regulation by acquiring more information.

Prior to the recent innovations in ultra-fast information technologies, the above discus-
sion has been enough because information acquisition is mostly about information quality,
i.e., how precise information a trader can privately learn. However, high-frequency traders
(HFT) add a new dimension to information acquisition: speed. In the next chapter, I pro-
vide a model of HFT to analyze the speed aspect of information acquisition and the impact
of information regulations in terms of speed. The question is whether the crowding-in
effect in this chapter survives even if we consider the speed aspect of information ac-
quisition and trading, as well as whether market quality improves or deteriorates due to
restrictions on traders’ speed.
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Chapter 2

The Dark Side of Delaying Order
Execution

2.1 Introduction
Creating a level playing field is the centerpiece of financial regulation. Traditionally,

it is designed to mitigate asymmetric information by requiring firms to disclose material
news so that all traders obtain information of equal quality (e.g., Sarbanes–Oxley Act of
2002). In recent years, technological innovations have added a new dimension to traders’
information acquisition—speed. Traders called high-frequency traders (HFTs) exploit
sophisticated communication tools to learn information and act on it at the speed of
light. On the one hand, their market-making behavior contributes to rendering markets
more liquid. On the other hand, HFTs can quickly learn news and snipe standing limit
orders at stale prices before liquidity providers update them based on new information.
Thus, their speed advantage as liquidity takers exposes liquidity providers to adverse
selection risk and tends to harm market liquidity.

Some exchange platforms try to slow down HFTs’ liquidity-taking behavior by impos-
ing delays on their order execution.1 One of the most widely adopted forms of delays is
so-called a speed bump. It imposes an intentional delay on the arrival or execution of
trading orders at an exchange, aiming to protect liquidity providers against being sniped
by HFTs. For example, Aequitas NEO and TSX Alpha, both Canadian exchanges, apply
a few milliseconds of random delay to slow down liquidity-taking orders. As summarized
by Table 2.1 (see Appendix A for more details), many other exchanges have also adopted
or proposed adopting speed bumps. Reflecting their primary purpose, all speed bumps
(except for those at IEX) are asymmetric, meaning that only liquidity-taking orders are
delayed.

1Budish, Cramton, and Shim (2015) propose frequent batch auctions (FBA) as an alternative solution.
However, adopting FBA needs considerable structural changes in the current continuous markets. In
contrast, speed bumps are easier to adopt and has become a more popular tool to restrict HFT.
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Table 2.1: Design of speed bumps

Exchange Date Targets of delay Length of delay

In
op

er
at
io
n

IEX Octber 2013 All but pegged orders 350 microseconds
Thomson Reuters* June 2016 Non-cancellation 0-3 milliseconds
Aequitas NEO* March 2015 Liquidity takers 3-9 milliseconds
TSX Alpha* September 2015 Liquidity takers 1-3 milliseconds
Eurex Exchange* June 2019 Liquidity takers 1 or 3 milliseconds
EBS Market* July 2013 Liquidity takers 3-5 milliseconds
ParFx* March 2013 Liquidity takers 10-30 milliseconds
Moscow Exchange* April 2019 Liquidity takers 2-5 milliseconds

Pr
op

os
ed

CHX Proposed Liquidity takers 350 microseconds
EDGA (Cboe) Proposed Liquidity takers n/a
NASDAQ OMX PHLX Proposed Liquidity takers 5 microseconds
ICE Futures Proposed Liquidity takers 3 microseconds
Interactive Brokers* Proposed Liquidity takers 10-200 milliseconds
NYSE American** July 2017 All but pegged orders 350 microseconds

Note: * indicates random speed bumps. **In December 2019, ICE announced removal of speed bumps
from NYSE American based on their finding that speed bumps worsen liquidity and the trading share of
the exchange. As of May 2020, exchanges with random speed bumps do not announce the distribution
funcsion of random delays.

Although the intentional delays are growing popular, the study on the impact of delays
is still in its infancy. This is the first study that considers it by incorporating strategic
speed acquisition by HFTs. As the main contribution, this chapter shows that delaying
execution of liquidity-taking orders (i.e., asymmetric delays) has a crowding-in effect on
the HFTs’ speed acquisition, meaning that asymmetric delays can endogenously increase
the equilibrium speed of HFTs. The crowding-in effect undermines or even dominates
the intended impact of delays. Thus, delaying order execution is not as effective as the
literature has argued, and depending on market structures and parameters, it can worsen
adverse selection and contribute to creating an “uneven playing field.”

The first part of the chapter provides a simple benchmark model of a quote-driven
market (à la Glosten and Milgrom, 1985) with a single HFT. In the model, an HFT as
a liquidity taker acquires speed, and a competitive market maker sets a bid-ask spread
that reflects the adverse selection cost. A speed-up by the HFT makes it easier for her
to snipe a stale limit order and increases her expected profit. However, it also widens
the bid-ask spread and reduces HFT’s profit margin because a faster HFT imposes more
severe adverse selection on the market maker (e.g., Biais, Foucault, and Moinas, 2015;
Budish, Cramton, and Shim, 2015). Intentional delays in order execution affect the HFT’s
optimal speed level by altering the above tradeoff of being faster.

Delays in order execution bring about two positive impacts on the HFT’s speed ac-
quisition. Firstly, the intentional delays exogenously discount the arrival frequency of the
HFT. Then, the market maker downplays the HFT’s speed-up, making the equilibrium
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bid-ask spread less responsive to the HFT’s speed acquisition. That is, the price impact of
speed weakens, and it becomes easier for the HFT to exploit her speed advantage without
adversely affecting the bid-ask spread. This effect can be seen as a decline in the endoge-
nous marginal cost of being faster. Secondly, the intentional delays induce the market
maker to tighten the spread by exogenously curbing the arrival of the HFT. It reduces the
HFT’s trading cost, boosts the sniping reward, and increases the marginal benefit of being
faster. These are the equilibrium channels through which intentional delays strengthen
the HFT’s speed acquisition.

As the existing models argue, however, the intentional delays also have a negative
equilibrium effect on speed acquisition, which I call a crowding-out effect. It arises because
the intentional delays make it more difficult for the HFT to successfully snipe a stale limit
order. As the chance of obtaining a reward declines, paying exogenous sunk costs for a
speed-up becomes less worthwhile, making the HFT reluctant to increase her speed level.

I investigate when and why one of the crowding-in and crowding-out effects becomes
dominant. A switch occurs depending on some observable parameters, such as the (ex-
ogenous) marginal cost of increasing speed, the expected length of delays, and the asset’s
volatility, measured by the arrival frequency of arbitrage opportunities and their size.
For example, if the asset becomes more volatile, the HFT anticipates a more frequent
arrival of sniping opportunities. It magnifies the expected sniping profit and reduces the
effective exogenous cost of a speed-up (i.e., the cost per sniping opportunity), weakening
the crowding-out effect. Thus, my model suggests that the imposition of delays tends to
promote HFTs’ trading speed when the volatility of assets is expected to be high (and
vice versa).

In Section 2.3, I generalize the baseline model to accommodate multiple HFTs. It
analyzes speed competition among HFTs —an “arms race”— and they serve both as
snipers and high-frequency market makers. I show that an arms race can involve strategic
complementarity, i.e., speed begets speed. An increase in market makers’ speed has the
same effect as an extension of order execution delays, as both of them reduce market
makers’ risk of being picked off. Therefore, a speed-up by an HFT as a market maker can
promote other HFTs’ speed acquisition, triggering a positive externality. The externality
amplifies the original effect of order execution delays on speed acquisition and causes a
substantial change in the equilibrium speed of HFTs.

Due to several competing effects, the impact of intentional delays on the adverse
selection problem (i.e., the bid-ask spread) and market liquidity is ambiguous. Firstly,
intentional delays exogenously reduce the bid-ask spread by directly hampering HFTs’
arrival. Secondly, they endogenously affect the bid-ask spread through HFTs’ equilibrium
speed acquisition, the sign of which is ambiguous due to the crowding-in effect versus the
crowding-out effect. Since an arms race involves the amplification effect, the endogenous
impact of delays can even dominate their direct mitigating impact on the bid-ask spread
when the crowding-in effect is dominant. Therefore, the attempt to slow down HFTs can
not only encourage their speed acquisition but also harm market liquidity by imposing
more severe adverse selection on market makers.
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Section 2.4 analyzes welfare implications of the intentional delays, and I show that
aggregate welfare can decrease due to the imposition of delays. Since the competitive
market maker breaks even, the bid-ask spread is just a transfer between the HFT and
a liquidity trader with exogenous trading motives. Thus, the intentional delays do not
affect aggregate welfare via the bid-ask spread or the adverse selection cost for the market
makers. The only remaining factor that affects aggregate welfare is the realized cost of
speed investments that the HFT incurs. It is consistent with the literature and the real
financial markets, where the most speed technologies are not general-purpose investments
and distort social welfare. As the realized cost of speed is positively associated with the
HFT’s optimal speed, aggregate welfare declines when the crowding-in effect of order
execution delays promotes the HFT’s speed acquisition. Therefore, the crowding-in effect
can be seen as a dark side of delaying order execution both in terms of the adverse selection
problem (market liquidity) and aggregate welfare.

Section 2.5 provides extended discussions. For instance, it analyzes why an exchange
platform has an incentive to introduce intentional delays when they have the crowding-in
effect and can promote HFTs’ speed acquisition. In reality, intentional delay is a self-
imposed market structure that a for-profit exchange platform voluntarily adopts. Also,
an exchange platform earns a large portion of profits by supplying speed services to
HFTs (Budish, Lee, and Shim, 2018). Therefore, if the intentional delays have only
the crowding-out effect, as argued by the literature, the adoption of delays cannot be
explained by the profit-maximization behavior of an exchange: it reduces the demand
for speed services and can harm exchange’s profits. In contrast, the crowding-in effect of
intentional delays promotes the demand for speed services and can increase exchange’s
profits. Hence, the intentional delays with the crowding-in effect can be consistent with
the profit-maximization incentive of an exchange platform, allowing us to explain the
adoption of delays in the real financial market.

This chapter contributes to the literature on HFT and market structure (see Jones,
2013; O’Hara, 2015; Menkveld, 2016 for reviews). The speed acquisition problem of HFT
has been analyzed in the existing studies, such as Foucault, Roell, and Sandas (2003),
Liu (2009), Foucault, Kadan, and Kandel (2013), Foucault, Kozhan, and Tham (2016).2
However, the existing models study the problem in the absence of either a strategic motive
of HFTs in speed acquisition or a slow market structure (i.e., order execution delays). My
model integrates both factors and provides an insight into how intentional delays affect
HFTs’ speed acquisition and equilibrium market quality.

Moreover, my model shares the same interests as the studies on slow market structures,
such as frequent batch auctions (Budish, Cramton, and Shim, 2015; Haas and Zoican,
2016) and speed bumps (Baldauf and Mollner, 2017; Brolley and Cimon, 2017; Aldrich
and Friedman, 2018).3 They highlight the benefits of slow market structures by focusing

2For the studies on high-frequency market making, see Aït-Sahalia and Saglam (2013), Han, Khapko,
and Kyle (2014), Hoffmann (2014), and Conrad, Wahal, and Xiang (2015), Bongaerts and Van Achter
(2016).

3The speed and frequency of order executions by a trading platform are also analyzed by Du and Zhu
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on a particular design of delay that perfectly eliminates sniping by HFTs.4 Also, they take
speed of HFTs as given or a binary choice variable, while HFTs in my model strategically
choose their speed with a continuous domain. Due to the above differences, my model
uncovers a crowding-in effect of delays on speed acquisition.5 It complements the literature
by demonstrating that the impact of delays can be positive, negative, and ambiguous
depending on the design of delays and other parameters.

The scope of the literature extends to empirical findings.6 Hu (2018) and Chakrabarty,
Huang, and Jain (2019) analyze the SEC approval of IEX with speed bumps as a National
Securities Exchange (NSE) and find a net improvement in market quality measured by
spreads. Shkilko and Sokolov (2016) exploit the interruptions of messaging caused by
precipitation and find a reduction in quoted spreads.7 In contrast, Chen, Foley, Goldstein,
and Ruf (2017) analyze a speed bump at TSX Alpha and find an increase in quoted
spreads. NYSE American (2019) also reports a decline in market quality and liquidity
after the introduction of speed bumps and has decided to remove speed bumps from the
exchange. Anderson, Andrews, Devani, Mueller, and Walton (2018) report that a change
in the market-wide effective spread and the price impact is insignificant. Consistent
with my model, a recent experimental study by Khapko and Zoican (2019) finds that
a marginally longer speed bump stimulates the traders’ investment in speed when the
execution price is endogenous.8

2.2 Benchmark model
This section proposes a simple benchmark model to separate the main mechanism.

Consider a one-shot exchange of an asset between three types of market participants: a
single HFT, a competitive market maker, and a liquidity trader. As in the literature, the
competitive market maker is justified by considering multiple potential market makers

(2017), Kyle and Lee (2017), Menkveld and Zoican (2017), and Pagnotta and Philippon (2018).
4Brolley and Cimon (2017) is an exception; they consider the possibility that a delay cannot eliminate

sniping due to the randomness in sniping race and the length of a speed bump.
5Baldauf and Mollner (2017) consider information acquisition by investors by separating informed

investors from HFTs, i.e., informed investors are assumed to be slow. Brolley and Cimon (2017) show
that the equilibrium spread takes a hump-shaped reaction to a speed bump due to traders’ migration
between Slow and Fast exchanges. However, information acquisition in their model always weakens if a
speed bump kicks in, and the speed of HFTs is an exogenous parameter.

6Other empirical studies on HFTs include, for example, Hendershott and Moulton (2011), Hasbrouck
and Saar (2013), Riordan and Storkenmaier (2012),Ye, Yao, and Gai (2013), Frino, Mollica, and Webb
(2014), Boehmer, Fong, and Wu (2015), and Brogaard et al. (2015).

7Although the interruption by precipitation may have a similar effect to a speed bump, this phe-
nomenon is not paid much attention by financial institutions. In contrast, traders anticipate a speed
bump and take it into their decision making.

8Khapko and Zoican (2019) find that a speed bump diminishes equilibrium investments into speed
technologies when the price and trading profit for liquidity takers are exogenously fixed. This is also
consistent with my model, as it suggests that an endogenous reaction of the spread to a speed bump
contributes to the crowding-in effect.
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who are inactive on the equilibrium path.9 When the market opens at time t = 0, the
asset has value v = v0 = 0, which is common knowledge. v = 0 can be thought of as a
situation where no mechanical arbitrage exists.

Innovations to the fundamental value arrive at a Poisson rate z. Conditional on a
jump in the asset value, it becomes v = v0 ± σ with equal probability. It can be thought
of as a new arbitrage opportunity triggered by a jump in the asset’s price that is not yet
reflected by prices of other highly correlated assets (Budish, Cramton, and Shim, 2015).10
I focus on the very short time interval in which innovations to v occurs at most once and
denote the timing of the jump as t0 ∼ Exp(z).

Following the convention of market microstructure (e.g., Glosten and Milgrom, 1985),
I assume that a trade size is restricted to one unit.

2.2.1 Traders
Market maker. There is a risk-neutral competitive market maker. When the market

opens, she posts a single-unit limit order (LO) by quoting ask and bid prices (s,−s) and
commits to trade at these prices. The market maker revises or cancels her initial quote if
private information arrives or a liquidity taker takes her LO (defined below).11 In what
follows, price s is referred to as the (half) spread.

After posting a limit order, the market maker starts monitoring the market, antici-
pating a jump in the asset value. When the asset’s value jumps at t = t0, the market
maker’s learning process is put in motion, and she obtains news on true v with a Poisson
process. Specifically, it takes stochastic time TM ∼ Exp(γ) to learn v after the jump. TM
can be thought of as the shortest necessary time for the market maker to learn v and act
on it, and γ represents the speed of the market maker.12

Upon privately learning v, the market maker re-prices her initial limit order by quoting
new bid and ask prices (v, v) to avoid being picked off at stale prices. If her limit order is
taken by a taker (as specified below), the market maker exits the market.

High-frequency trader. There is a risk-neutral high-frequency trader (HFT). Before
she enters the market, the HFT invests in a speed technology that provides speed φ ≥
0. It could be colocation services, high-bandwidth connectivity, direct data feeds, or a

9Multiple market makers exist on the sidelines on-path. One of the inactive market makers may
become active in an off-path event such that the market maker who is active on the equilibrium path
deviates from the equilibrium spread.

10Innovations in the asset value could also stem from some public news, such as Fed announcements
and the release of government statistics, or execution of Intermarket Sweep Orders (Baldauf and Mollner,
2017).

11The market maker does not have an incentive to revise her quote prior to the above events because
the model is homogeneous in time due to Poisson distributions.

12Section 2.3 considers an endogenous choice of γ by high-frequency market makers.
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sophisticated trading algorithm.13 The HFT also monitors the market and, when the jump
in v occurs, her learning process is put in motion. It takes stochastic time TH ∼ Exp(φ)
for the HFT to learn v. Upon learning v, the HFT immediately submits a market order
to “snipe” a limit order on the limit order book (LOB).14

The Poisson arrivals of traders are in line with the literature, such as Budish, Cramton,
and Shim (2015) and Brolley and Zoican (2019). For example, the HFT’s arrival intensity
(φ) can be seen as the amount of computer power or the information processors that
the HFT controls at a given point in time, making the learning/arrival rate of the HFT
proportional to φ. Also, aside from the “speed,” we can think of φ as the monitoring
intensity, as in Foucault, Kozhan, and Tham (2016).

Liquidity trader. There is a liquidity trader (LT) who is exposed to a liquidity shock.
The shock exogenously makes her submit a buy or sell market order with equal proba-
bility. Thus, her trading behavior conveys no information. The LT captures slow passive
investors with no material information in the real world. Her behavior stems from some
exogenous reasons, such as hedging motives. Let TL ∼ Exp(β) be the stochastic timing
that the liquidity shock hits and the LT places an market order. Parameter β captures
the frequency of the liquidity shock, and I set β > γ

3 to make the model well defined.15
Since her trading motive is independent of the asset value and its price, the LT is exposed
to the shock from t = 0 onward.

In what follows, all random variables, (t0, v, {Ti}i=M,H,L), are assumed to be indepen-
dent. Also, for simplicity, I suppose that there is no mechanical latency per se other than
those mentioned above.

2.2.2 Asymmetric delay in order execution
A market imposes an asymmetric delay on order execution (e.g., speed bumps) and

delays all market orders by the same length of time δ̃ ≥ 0.16 An asymmetric delay means
that it is imposed only on liquidity takers, whereas liquidity-providing orders (i.e., limit

13The ex-ante choice of speed is in line with the literature, e.g., Foucault, Kadan, and Kandel (2013)
and Brolley and Zoican (2019). Also, it is consistent with the real-world speed acquisition, as speed
services are provided via pre-determined monthly subscriptions, and computer algorithm for fast trading
must be set up before a trader starts trading.

14HFT does not intentionally delay the timing of the order submission: if she gets information at t,
she immediately places an order at t. She might be motivated to put a time lag between information
arrival and order placement, as it can reduce a spread and increase her sniping profit. However, without
a commitment device, this cannot be an equilibrium since it is always optimal for the HFT to snipe
immediately upon learning given a time lag she previously announces, i.e., there is a time inconsistency.

15This inequality implies that the liquidity trader arrives at the market at a sufficiently high frequency.
If β becomes sufficiently small, the market maker anticipates a trade with the HFT almost surely and
needs to charge a wide bid-ask spread, leading to market break downs.

16The model gives qualitatively the same (and simpler) results if delays are imposed only on the HFT.
See also Internet Appendix B for the case that a delay is applied only to in an iid manner.
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orders my the market maker in this model) are not restricted.17 As shown by Table 2.1,
asymmetric delays reflect the speed bumps in the real financial markets.

The model can describe both random and deterministic delays, but the primary focus
of the model below is on the random ones. The case with a deterministic delay is analyzed
in Section 2.5, where the results are qualitatively the same as those with random delays.
When a delay is random, I assume that δ̃ follows the exponential distribution with δ = E[δ̃]
and is independent of other random variables.18 Appendix B.7 shows that the following
results are robust to generalizing the distribution of δ̃ with some parameter restrictions.

2.2.3 Equilibrium
The model is conceptualized as a sequential game with two stages, and the equilibrium

concept is the subgame perfect equilibrium. Figure 2.1 visualizes the timeline of the game.
In the first stage, the HFT chooses the level of speed φ. In the second stage, the market
maker submits a limit order with competitive prices, and traders move as specified in
Subsection 2.2.1. The end of the game is triggered by one of the three possible events:
execution of a liquidity taking order by the HFT or the LT, or repricing by the market
maker.

17My model is not an appropriate workplace to analyze symmetric speed bumps, such as those at IEX.
It delays execution or arrival of all orders (both from takers and makers) with an exemption provided to
a specific type of undisplayed pegged orders. As Appendix A explains in detail, the pegged orders cannot
be analyzed by limit orders in my model.

18When a delay is random, the HFT is prohibited from sending multiple orders at any two points
of time that are infinitely close, i.e., the HFT cannot send an order at time t and another order at t′
for |t − t′| < ε with infinitely small ε. As in Baldauf and Mollner (2017), this restriction rules out the
possibility that the HFT sends redundant orders, in the expectation that one of them can trade faster
than others due to the randomness in a delay. It allows the model to avoid unnecessary complications.
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Figure 2.1: Timeline of the game

2.2.4 Equilibrium behavior of a market maker
Unless otherwise mentioned, I consider a random delay. Without loss of generality, I

analyze how the ask price (s) is determined when v = +σ.19
The expected profit of the market maker from posting s is given by

VM(s) =Eδ̃,t0

liquidity trader takes LO︷ ︸︸ ︷[
s
∫ ∞
δ̃

βe−β(t−δ̃)e−γ(t−t0)+
e−φ(t−t0−δ̃)+

dt

+ (s− σ)
∫ ∞
t0+δ̃

φe−β(t−δ̃)e−γ(t−t0)e−φ(t−t0−δ̃)dt
]

︸ ︷︷ ︸
HFT takes LO

, (2.1)

where Eδ̃,t0 denotes the expectation operator with respect to δ̃ and t0, andX+ ≡ max{X, 0}.
The profit and the cost from market making stem from trading with the liquidity trader
and the informed HFT.

The first line in (2.1) captures a trade with the liquidity trader, which happens from
time δ̃ and onward (given δ̃). It takes place at t if the liquidity shock hits at TL = t − δ̃
but learning by the market maker and the HFT’s trade do not happen until time t. Thus,
given the liquidity trader arrives at t, she can fulfill her trading needs with probability

19The model is symmetric around zero, and the symmetric argument gives the results for the bid-side
of the market.
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density e−γ(t−t0)+
e−φ(t−t0−δ̃)+ . For the market maker, the expected profit from this trade

is s− E[v] = s since the liquidity trader does not bring new information.
In contrast, the second line in (2.1) represents a trade with the HFT, which happens in

t ≥ t0 + δ̃ (given δ̃ and t0). The integrand shows the density function for the HFT’s order
execution at time t, given that the market maker’s learning and the liquidity trading do
not happen before t. The market maker’s expected profit from trading with the HFT is
s− σ because the HFT buys the asset if and only if v = +σ.

By incorporating the randomness in δ̃ and t0, the overall expected profit from market-
making is given by equation (2.1). Note that an intentional delay (δ̃) makes the market
maker less likely to be picked off by the HFT given the innovation in the asset value, as the
HFT’s order execution is delayed and happens only after t0 + δ̃. This is the direct effect
of an intentional delay in order execution that mitigates the adverse selection problem.

Since the market maker is competitive, her expected profit shrinks to zero, as in
Glosten and Milgrom (1985). The break-even condition yields the following equilibrium
spread.

Proposition 2.1. (i) With λ(δ) ≡ z−1(1+δ)+δ
1+zδ , the equilibrium (half) spread is given by

s =
φ

1+λ(δ)(φ+β+γ)
φ

1+λ(δ)(φ+β+γ) + β
σ. (2.2)

(ii) s is monotonically increasing in φ and decreasing in δ (with φ fixed).

Proof. See Appendix B.1 for point (i). Point (ii) is obvious from (2.2).

Note that λ(δ) is monotonically increasing in the expected length of a delay, δ = E[δ̃].
Thus, in equation (2.2), the direct effect of a delay appears in the form of discount on the
arrival rate of the HFT (φ). This is because, conditional on a jump in v, a delay in order
execution makes a trade less likely to happen in interval [t0 + δ̃,∞) before the market
maker learns v, reducing the market maker’s risk of being picked off by the HFT.20

We can think of the term φ
1+λ(δ)(φ+β+γ) as the effective arrival rate of the HFT. Ceteris

paribus, the spread shrinks when the expected length of a delay becomes longer, as the de-
lay mitigates adverse selection risk and reduces the HFT’s effective arrival rate. However,
this channel only captures the direct effect of a delay, and it is premature to conclude
that it is effective. In particular, the HFT’s speed (φ) is endogenous and depends on δ.

20An intentional delay also delays the liquidity trader’s order execution, but equation (2.2) implies
that it reduces the adverse selection cost more than it reduces the profit from liquidity trading. This
is because the liquidity trader’s trading motive is independent of the innovation in v. Given that an
innovation in v occurs, the intentional delay reduces the arrival rate of the HFT and the liquidity trader
by the same magnitude in expectation, thereby reducing the adverse selection cost and the profit from
liquidity trading. However, even if a jump in v does not happen, the liquidity trader can be hit by the
shock and trade with the market maker, in which case the HFT and market makers are inactive due to
the absence of a jump in v. In this case, the intentional delay does not affect the market maker’s expected
profit from liquidity trading. As a result, the intentional delay mitigates adverse selection more than it
reduces the profit from liquidity trading.
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2.2.5 Speed acquisition by an HFT
Consider the HFT’s optimal speed acquisition problem to investigate how φ depends

on the expected length of a delay, δ.
Firstly, the following lemma provides the ex-ante expected probability that the HFT

can snipe a standing limit order:
Lemma 2.1. When the HFT has speed φ, and the expected length of a delay is δ, the
HFT’s expected sniping probability (as of t = 0) is given by

π(φ, δ) =

 φ

φ+ β + γ︸ ︷︷ ︸
≡πND

× 1
1 + γδ︸ ︷︷ ︸
≡h

 1
1 + β

z

(2.3)

Proof. With δ̃ and t0 fixed, the HFT can snipe the standing LO at time t+ δ̃ if she learns
v and places her order at time TH = t, while the market maker does no learn v or exits the
market prior to t. These events happen with density πt(φ, δ̃) = φe−φ(t−t0)e−βte−γ(t−t0+δ̃)

for t > t0. Then, by taking the expectation with respect to δ̃ and t0, the expected sniping
probability is given by computing π(φ, δ) = Eδ̃,t0

[∫∞
t0
πt(φ, δ̃)dt

]
.

Since the learning process of the HFT (TH) is independent of a random delay (δ̃), the
sniping probability in (2.3) can be decomposed into three factors. The first component,
denoted as πND(φ) in equation (2.3), is the no-delay sniping probability. It represents
the probability of sniping (conditional on the occurrence of the jump in v before the
liquidity trading) when no intentional delays are imposed in expectation. The second
component, denoted as h(δ), is the delay effect that discounts π, i.e., sniping the standing
LO becomes harder if the expected length of a delay grows longer. The last coefficient,

1
1+β

z

, in (2.3) represents the discount of the expected sniping probability that emanates
from the possibility that the liquidity trader takes the LO before the asset value jumps

The HFT chooses the optimal speed φ∗ to maximize the following ex-ante expected
profit net of the cost of speed:

WHFT (φ) = 1
1 + βz−1πND(φ)h(δ)(σ − s(φ))− C(φ), (2.4)

s.t. s =
φ

1+λ(δ)(φ+β+γ)

β + φ
1+λ(δ)(φ+β+γ)

σ.

In equation (2.4), C(φ) denotes the cost of investing into the speed technology. Although
I assume that C is weakly increasing in φ (C ′ ≥ 0), I do not bring a specific form of C
unless otherwise mentioned.

The FOC of (2.4) is given by

0 = dWHFT (φ)
dφ

= σ

1 + βz−1h(δ)
[(

1− s(φ, δ)
σ

)
dπND
dφ

− πND
d

dφ

s(φ, δ)
σ

]
− C ′(φ). (2.5)
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Firstly, φ increases WHFT because the HFT with faster speed technologies is more likely
to snipe, i.e., dπND

dφ
> 0. Secondly, a speed-up reduces the HFT’s profit margin because

trading cost s increases, i.e., d(1− s
σ

)
dφ

< 0. Put differently, the equilibrium spread involves
the positive price impact and can be seen as an endogenous cost of being faster,21 with
ds
dφ
> 0 measuring the endogenous marginal cost of a speed-up. In what follows, I denote

the solution of the FOC as φ∗ and call it the optimal speed for the HFT.

2.2.6 Impact of delay in order execution
I first analyze how a longer expected delay (a larger δ) affects the optimal speed of

the HFT. As equation (2.5) suggests, δ affects the FOC and φ∗ via three channels: the
level of the spread (s), the slope of the spread ( ds

dφ
), and the delay effect in the sniping

probability (h). Regarding the second channel, the following lemma holds:

Lemma 2.2. In the equilibrium, the price impact of speed is decreasing in δ, i.e., ∂
∂δ

(
ds
dφ

)
<

0.

Proof. The result is derived by evaluating ∂
∂δ

(
ds
dφ

)
at the equilibrium speed in equation

(2.7) below.

Lemma 2.2 implies that a longer expected delay renders the spread less sensitive to
the HFT’s speed-up. A longer delay is more likely to protect the market maker against
sniping by the HFT. In other words, the market maker’s risk of being picked off grows
insensitive to φ. Consequently, even if the HFT becomes faster, the market maker widens
the spread only slightly. A decline in the price impact of speed makes it easier for the
HFT to increase her speed without reducing her profit margin.

Now, consider the partial derivative of dWHFT

dφ
with respect to the expected length of

a delay (δ) to understand the impact of δ on the optimal speed. From equation (2.5), it
holds that

∂

∂δ

(
dWHFT

dφ

)
|φ=φ∗ = σ

1 + βz−1h(δ)


effect (i)>0︷ ︸︸ ︷

∂(1− s
σ
)

∂δ

dπND(φ∗)
dφ

+

effect (ii)>0︷ ︸︸ ︷
πND(φ) ∂

∂δ

(
d(1− s

σ
)

dφ

)
(2.6)

+ C ′(φ∗)
h(δ)

dh(δ)
dδ︸ ︷︷ ︸

effect (iii)<0

.

21Aquilina, Budish, and O’Neill (2020) show that more than 80% of sniping races are played by top 6
high-frequency trading firms. Thus, incorporating the strategic motive of HFTs is natural.
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Increasing the expected length of a delay (δ) has two positive effects and one negative
effect on φ∗, where the last term becomes proportional to C ′ due to the FOC (i.e., the
envelope condition).

1. An intentional delay exogenously mitigates adverse selection, reduces the spread,
and increases the (normalized) profit margin 1 − s

σ
(Proposition 2.1). As a result,

being faster and increasing the sniping probability become more worthwhile, as
effect (i) in equation (2.6) shows.

2. The spread becomes less responsive to the speed-up by the HFT, as Lemma 2.2
attests. This reduces the marginal cost of being faster for the HFT. Effect (ii) in
(2.6) captures this channel.

3. A longer delay makes it difficult for the HFT to snipe, and h(δ) declines. It reduces
the marginal benefit of being faster, as shown by effect (iii) in equation (2.6).

If C ′ = 0 (i.e., investments in speed technologies take only a fixed cost), effect (iii)
disappears. As a result, the first two positive effects become dominant, and a longer
expected delay (δ) unambiguously encourages the HFT to invest in the speed technology
(φ) rather than thwarting it. If C ′ > 0, in contrast, effect (iii) disincentivizes speed
acquisition. Intuitively, increasing the speed level involves the exogenous marginal cost
C ′, but it pays out only if the HFT can snipe an LO. Since a longer delay makes it
difficult to snipe, it becomes less worthwhile to increase the speed. Effect (iii) competes
with effects (i) and (ii), and the result becomes ambiguous.

Proposition 2.2 (Crowding-in effect). (i) If the exogenous cost of speed is constant
(C ′ = 0), the HFT’s optimal speed is given by

φ∗ =


√
β(β+γ)(1+λ(δ)(β+γ))

1−λ(δ)
√
β(β+γ)

if λ < 1√
β(β+γ)

∞ otherwise.
(2.7)

Moreover, φ∗ is increasing in δ (when φ∗ is bounded).
(ii) When the exogenous marginal cost of speed is positive (C ′ > 0), the optimal speed is
increasing in δ if C ′ and β are small, and z and σ are large (and vice versa).

Proof. Solving W ′
HFT = 0 with C ′ = 0 yields φ∗. It is increasing in δ because λ′(δ) > 0.

See Appendix B.2 for point (ii).

Proposition 2.2 demonstrates the existence of a crowding-in effect, i.e., an intentional
delay can increase the HFT’s equilibrium speed. The only negative effect of δ, which I
call a crowding-out effect, stems from effect (iii) in equation (2.6) and is effective only if
C ′ > 0, i.e., investments in speed technologies take an increasing variable cost.

Whether the crowding-in effect dominates the crowding-out effect (negatively) depends
on the effective marginal cost of speed, i.e., the cost per sniping opportunity. First of
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all, C ′ > 0 is the driving force of the crowding-out effect (see effect [iii] in equation
[2.6]). However, the marginal cost of speed, C ′, is amortized over the expected trading
opportunities. Thus, a more frequent jump in v (parameterized by z) and a larger jump
size (σ) dwarf the marginal cost of speed. They weaken the crowding-out effect, and the
optimal speed of the HFT tends to be an increasing function of the expected length of a
delay. The liquidity trader’s arrives frequency (β) also matters, as less frequent liquidity
trading makes sniping easier for the HFT, magnifying the crowding-in effect.

Overall, the baseline model demonstrates that the attempt to slow down high-frequency
trading by imposing an intentional delay can encourage HFT’s endogenous speed acqui-
sition. The next subsection analyzes the reaction of the adverse selection problem to the
imposition of a delay by incorporating the crowding-in and the crowding-out effects.

2.2.7 Adverse selection and liquidity
Hereafter, I use the equilibrium half spread (s) as a measure of adverse selection

and market liquidity.22 An order execution delay directly mitigates adverse selection by
delaying the HFT’s arrival (Proposition 2.1) but it can promote speed acquisition by the
HFT (Proposition 2.2), thereby worsening adverse selection.

Proposition 2.3. (i) If the cost of speed investments is constant (C ′ = 0), the effective
arrival rate of the HFT is constant in the equilibrium, i.e.,

Effective arrival rate of HFT ≡ φ∗

1 + λ(δ)(φ∗ + γ + β) =
√
β(β + γ). (2.8)

Moreover, the equilibrium spread is independent of the expected length of a delay, i.e.,
ds(φ∗,δ)

dδ
= 0.

(ii) If the cost of speed investments is increasing in φ (C ′ > 0), the equilibrium spread is
decreasing in the expected length of a delay, i.e., ds

dδ
< 0.

Proof. See Appendix B.3 for (i) and Appendix B.2 for (ii).

Firstly, if the marginal cost of speed is absent, the expected length of a delay is
irrelevant to the HFT’s effective arrival rate and the equilibrium adverse selection problem.
Although the crowding-in effect (Proposition 2.2) fuels speed acquisition, the strategic
HFT knows that a higher φ exacerbates adverse selection and reduces her profit margin.
Since she is a monopolistic HFT facing no externalities, and there is no exogenous cost
of adjusting φ, she can freely choose the level of φ such that her effective arrival rate
stays constant at the optimal level in equation (2.8) regardless of δ. Since that the

22Since my model does not have trading fees and commissions, the bid-ask spread corresponds to the
price impact measure and reflects the adverse selection cost for the market maker.
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spread in equation (2.2) depends on the effective arrival rate of the HFT, it also becomes
independent of the expected length of a delay.23

However, as suggested by result (ii), the irrelevance result holds only with C ′ = 0 in
the benchmark model. More precisely, it rests on the environment with a single HFT and
no adjustment costs of speed (C ′ = 0). By applying the chain rule to the equilibrium
spread, we have

ds∗(φ∗, δ)
dδ

= ∂s∗

∂δ︸︷︷︸
<0

+ dφ∗

dδ

∂s∗

∂φ︸ ︷︷ ︸
≷0

. (2.9)

The first term is the negative direct impact of a delay on the spread, while the second
term is its impact through HFT’s speed acquisition. When the cost of speed is constant
(C ′ = 0), the second term is unambiguously positive due to the crowding-in effect and
completely offsets the negative first effect. In contrast, C ′ > 0 generates the crowding-out
effect and weakens the second channel, i.e., dφ∗

dδ
|c=0 >

dφ∗

dδ
|c>0. Since C ′ does not directly

affect s
σ
, the expression in (2.9) becomes negative.

Overall, the baseline model with a single HFT proposes the crowding-in effect of
delaying order execution, but delays are still effective in reducing the spread, as long as
increasing φ takes some exogenous costs with C ′ > 0. However, the following section
with an arms race generalizes this result, showing that delays can backfire in terms of the
spread in some parameter regions.

2.3 Multiple HFTs and high-frequency market mak-
ers

In reality, both liquidity snipers and liquidity providers adopt high-frequency trading
technologies. To accommodate this fact with minimal deviations from the benchmark
model, I consider the case with N = 3 HFTs, indexed by i = 1, 2, 3.24

As in the baseline model, HFTs choose the speed level φi before the market opens.
The flow of the subsequent events for HFTs in the generalized model are given by the
following.

23Proposition 2.3 resembles the result in Kyle (1985) that shows that an increase in the volatility of
noise trading does not affect the market depth. In Kyle (1985), the monopolistic insider knows that
more volatile noise trading reduces the price impact of the order flow (Kyle’s lambda), and she tries
to exploit her informational advantage more intensively. At the same time, however, she knows more
intensive informed trading increases the price impact. Thus, she picks the trading intensity so that more
aggressive informed trading just offsets the impact of more volatile noise trading.

24In reality, the number of trading firms (N) that participate in a sniping race tends to be small. For
example, Aquilina, Budish, and O’Neill (2020) show that more than 80% of sniping races are played by
the top 6 HFT firms, meaning that a race is highly concentrated (see also Table ?? in Internet Appendix
??). Thus, considering a relatively small N reasonably reflects a sniping race in the real financial markets.
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1. Upon entering the market, one of the HFTs is randomly selected as a high-frequency
sniper (HFS; i = S),25 while the other two HFTs become high-frequency market
makers (HFMs). The random selection of role by nature can be thought of as a sit-
uation where HFTs are “registered (or designated) market makers” at an exchange.26

2. At t = 0 (when the market opens), both HFMs post a single-unit limit order with
(half) spread si. At this stage, they engage in strategic competition for liquidity
provision à la Dennert (1993).

3. Conditional on a jump in asset value, HFT i learns v with stochastic latency Ti ∼
Exp(φi). If HFT i is a sniper, she instantly places a market order to snipe all
available limit orders (i.e., two units) provided by HFMs. If HFT i is an HFM,
she reprices her limit order so that bid and ask prices become (v, v). Also, at time
TL ∼ Exp(β), the liquidity shock hits a liquidity trader, and she posts a single unit
buy or sell market order to fulfill her trading needs at the best price.

In order to describe strategic competition between high-frequency market makers, I follow
Dennert (1993) and Baruch and Glosten (2019) and relax the assumption on a unit trading
size for an HFS: she takes all available liquidity on the LOB (i.e., two units) as long as
they are profitable, while a liquidity trader trades only one unit due to an exogenous
capacity constraint. This is consistent with the literature (e.g., Easley and O’hara, 1987)
that shows that informed traders tend to trade larger quantities than other traders. Other
structures of the game, including an order execution delay, stay the same.

2.3.1 Strategic liquidity provision
Suppose that HFT i and j become HFMs. Since HFMs are strategic, posting the

competitive spread is no longer an equilibrium.
HFM i knows that an HFS tries to snipe her limit order as long as si ≤ σ, as the

sniper takes all available liquidity. In contrast, a liquidity trader tries to trade one unit
at the best price. Thus, HFM i can compensate for the loss from adverse selection only if
she posts a better price than her rival (HFM j). In the case of a tie (si = sj), I assume
that HFM i trades with a liquidity trader with probability gi ∈ (0, 1).27

After posting her initial limit order, there are three possible events that trigger further
action by HFM i. Firstly, if the HFS takes liquidity, then both HFMs exit the market,
as the HFS takes both limit orders. Secondly, if the liquidity trader takes HFM i’s limit

25Internet Appendix of Aoyagi (2020) considers more than one snipers.
26If a financial institution is a registered (or designated) market maker, she is assigned a particular

stock that she must make markets. Thus, if a jump occurs in a security price which HFT i must make
markets, she serves as an HFM. If a jump occurs in other assets’ prices, then HFT i may serve as a sniper.
NYSE is the most famous exchanges that adopt designated market making, and NASDAQ is another
example of exchanges that adopt registered market maker (“NASDAQ member” firms). For example,
GETCO was one of the HFTs serving as a designated market maker on NYSE.

27The tie-breaking rule, gi, does not affect the following results.
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order, HFM i exits the market. If, in contrast, the liquidity trader trades with HFM j,
then HFM i can realize the arrival of the liquidity trader by looking at the LOB. This
is because a single unit limit order disappears from one side of the LOB only if the LO
is taken by the liquidity trader. Then, HFM i updates her quote to (ask, bid) = (σ,−σ)
because the liquidity trader no longer arrives. Finally, if one of the HFMs obtains her
private news and updates her quote to (v, v), then the other HFM also learns v by looking
at her rival’s new quote, i.e., the LOB is observable.

Due to the last point, learning by the HFMs takes place if one of them learns and
updates her LO. By exploiting the property of the exponential distribution, each HFM
learns v with intensity φM ≡ φi + φj. This property simplifies the competition between
HFMs, as they become homogeneous regarding the learning process.28

2.3.1.1 HFMs’ expected profit

In the following, I denote the speed level of the HFS as φS. Since the structure of
the trading game is the same as the benchmark model, HFM i’s expected profit from
market-making, given her rival’s quote sj, is analogous to equation (2.1):

VM,i(si, sj) =Eδ̃,t0
[
θ(si, sj)si

∫ ∞
δ

βe−β(t−δ̃)e−φM (t−t0)+
e−φS(t−t0−δ̃)+

dt

+(s− σ)
∫ ∞
t0+δ̃

φSe
−β(t−δ̃)e−φS(t−t0−δ̃)e−φM (t−t0)dt

]
(2.10)

∝ φS
1 + λ(δ)(φM + φS + β)(si − σ) + θ(si, sj)βsi (2.11)

with
θ(si, sj) ≡ I{si<sj} + gI{si=sj}.

θ(si, sj) represents the probability that HFM i can trade with the liquidity trader when
the posted prices are si and sj, conditional on the liquidity shock.

Also, λ(δ) = z−1(1+δ)+δ
1+zδ is the same as that in the baseline model. Thus, equation

(2.11) indicates that the arrival rate of the HFS (φS) is discounted by the impact of a
delay, λ, while the probability of trading with the liquidity trader is also discounted by θ
due to competition for liquidity provision.

To solve the model, I introduce the following variable:

s0 ≡
φS

1+λ(δ)(φM+φS+β)
φS

1+λ(δ)(φM+φS+β) + β
σ. (2.12)

s0 represents the break-even spread for HFMs when θ(φk, φ−k) = 1 for k = i, j.
Due to the strategic liquidity provision, the following result holds.

28The simplification relies on the assumption that limit orders are “displayed.” When the LOB is
undisplayed, one HFM cannot learn v from her rival’s update. Although this modification complicates
the equilibrium equations, we can show that the following results stay (qualitatively) the same.
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Figure 2.2: HFM i’s profits

Note: This figure illustrates the expected profit of HFM i as a function of her quote si.

Lemma 2.3. In the liquidity-provision stage, there exists no equilibrium in pure strategies.

Proof. See discussions below.

The result is analogous to Dennert (1993) and Baruch and Glosten (2013, 2019), and
the mechanism is explained by Figures 2.2 and 2.3. Figure 2.2 draws HFM i’s profit from
market-making, VM,i, as a function of her strategy, si. Figure 2.3 shows the best-response
function of HFM k (k = i, j), denoted as s∗k, to her rival’s quote.

Figure 2.2 shows that it is optimal for HFM i to slightly undercut sj as long as sj > s0
because a better price attracts a profitable order flow from the liquidity trader. Thus, in
Figure 2.3, the best-response price of HFM i for sj > s0 is s∗i = sj − ε with ε→ +0. Once
sj hits s0, however, quoting si ∈ [0, σ) generates negative profits. Since placing si = σ
always grantees zero profit, HFM i’s best response price jumps to s∗i = σ. Symmetric
arguments provide the best response of HFM j, denoted as s∗j in Figure 2.3.

Figure 2.3 shows that price competition between strategic HFMs does not result in
equilibrium in pure strategies. This is because HFMs comprehend how prices (si, sj) affect
their profit and try to exploit discontinuity at si = sj.

Hence, I turn to mixed strategy equilibrium.

Proposition 2.4. (i) There is a unique mixed strategy equilibrium, in which HFM k(=
i, j) randomizes her quote sk over the support [s0, σ] according to the following cumulative
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Figure 2.3: Best response and equilibrium

Note: This figure illustrates the optimal quote of each HFM as a function of her rival’s quote.

distribution function.

F (s) ≡ Pr(sk ≤ s) = 1− 1
β

φS
1 + λ(δ)(φM + φS + β)

σ − s
s

, (2.13)

where φS is the sniper’s speed, and s0 is given by (2.12).
(ii) In the equilibrium, HFMs earn zero expected profits: E[VM,k(sk, s−k)] = 0.
(iii) The expected spread posted by HFM k is given by

s̄(φS, φM) = E[sk] = −σ 1
β

φS
1 + λ(δ)(φM + φS + β) log s0. (2.14)

(iv) The expected spread (2.14) is monotonically increasing and concave in φS and is
decreasing in δ (with φS fixed).
Proof. (Derivation of the mixed strategy): Suppose that HFM i earns expected profit
V ∗M,i when HFM j randomizes quote sj over [sj, σ] with distribution Fj. The goal is to
find three unknowns (V ∗M,i, sj, Fj) that constitute a mixed strategy equilibrium. Firstly, θ
in (2.11) is replaced by

θ(si, Fj) = 1− Fj(si) (2.15)
leading to

V ∗M,i ∝
φS

1 + λ(δ)(φM + φS + β)(si − σ) + β (1− Fj(si))︸ ︷︷ ︸
Prob(trade w/ liq.trader)

si.
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For the mixed strategy to be an equilibrium, V ∗M,i must be independent of si. Since si = σ
is feasible, we have V ∗M,i = 0. By solving the above equation with V ∗M,i = 0 for Fj, we
obtain (2.13). Finally, the lower bound of the distribution sj is derived from Fj(sj) = 0,
leading to sj = s0.

For uniqueness and other properties, see Appendix B.4

Due to the mixed strategy, posted spreads are random. Thus, the average spread s̄,
which is increasing in sniper’s speed (φS), works as the expected trading cost for HFTs
in the speed acquisition stage.

2.3.2 Speed acquisition
Consider HFT i’s speed acquisition problem before her role is determined. Since

the indifference condition drives her expected profit from market-making zero, the ex-
ante expected gains come only from sniping. Thus, in the symmetric equilibrium, she
chooses φi for the case that she becomes an HFS and the other HFTs serve as HFMs with
symmetric speed φj = φl (for j, l 6= i). Accordingly, I denote φ−i ≡ φM = 2φj.

HFT i solves

max
φi

Wi = 2
3π(φi, φ−i, δ)

(
1− s̄(φi, φ−i)

σ

)
− C(φi), (2.16)

subject to s̄(φi, φ−i) in equation (2.14) and the sniping probability that is given by

π(φi,φ−i,δ) =

 1
1 + δφ−i︸ ︷︷ ︸
=h(δ,φ−i)

× φi
φi + φ−i + β︸ ︷︷ ︸
=πND(φi,φ−i)

 σ

1 + β
z

. (2.17)

Note that the expected sniping probability is almost the same as that in the baseline
model, while it contains the rival’s speed φ−i instead of γ (the exogenous speed of the
market maker). Also, the profits from market making do not show up, as E [VM,i(si, sk)] =
0 from Proposition 2.4. Since the coefficient does not qualitatively affect the result, I
ignore 2/3 on Wi in the following.

The FOC is given by

0 = dWi

dφi
= σ

1 + β
z

h(δ, φ−i)
(
dπND
dφi

(1− s̄)− πND
ds̄(φi, φ−i)

dφi

)
− C ′(φi). (2.18)

It captures the marginal benefit and cost of being faster, as in the benchmark model
(see [2.5]). That is, a speed-up increases HFT i’s profit by improving the probability of
sniping, but it also harms her profit because it reduces her profit margin by widening the
spread and by increasing the marginal cost of speed. I denote the solution of (2.18) as
φ∗i = BRi(φ−i) and call it the best response speed of HFT i to her rivals’ speed φ−i.
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2.3.3 Crowding-in effect
As we have established in the previous section, the exogenous marginal cost C ′ drives

the crowding-out effect of delays on speed acquisition: if C ′ = 0, only the crowding-in
effect is at play. As the first step, the following discussion considers the case with C ′ = 0 to
highlight the crowding-in effect and to obtain analytical solutions. Afterwards, I retrieve
the positive marginal cost to obtain full characterizations.

Optimal speed Although the explicit formula for φ∗i = BRi is hard to obtain, the
following proposition analytically shows that the crowding-in effect in the benchmark
model is robust. Moreover, it uncovers the strategic nature of an arms race.

Proposition 2.5. If the exogenous cost is constant (C ′ = 0);
(i) An order execution delay has a positive impact on the best response function, i.e.,
∂BRi(φ−i)

∂δ
> 0.

(ii) The arms race exhibits strategic complementarity, i.e., dBRi(φ−i)
dφ−i

> 0.

Proof. See Appendix B.4.

Intuition for point (i) is the same as the crowding-in effect in the benchmark model
(i.e., equation [2.6]). Moreover, point (ii) indicates that the rivals’ speed also has the
crowding-in effect on HFT i’s speed acquisition. Intuitively, an increase in φ−i makes
HFMs less likely to be picked off by HFT i, leading to a narrower and less sensitive
average spread. Thus, a speed-up by HFMs and an extension of a delay have (almost)
the same impact on HFT i’s speed acquisition, i.e., the crowding-in effect. As a result,
the speed arms race involves strategic complementarity.29

2.3.3.1 Equilibrium speed

The solution of φ∗ = BR(φ∗) determines the speed level in the symmetric equilibrium,
in which all HFTs take the same speed level, φi = φ−i = φ∗.

Proposition 2.6. If the exogenous cost is constant (C ′ = 0), the equilibrium speed φ∗ is
monotonically increasing in the expected length of a delay, δ.

Proof. See Appendix B.6.

Figure 2.4 illustrates the symmetric equilibrium and the impact of increasing δ. As
in the benchmark model, the crowding-in effect of a delay shifts BRi upward. On top of
that, the effect is amplified by the strategic complementarity, which is captured by the
upward-sloping best response functions, generating a positive feedback loop, i.e., speed
begets speed.

29See Appendix B.5 for more rigorous discussions and intuition regarding point (ii).
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Figure 2.4: Impact of an extention of delays on BR

Note: This figure illustrates the best-response speed of HFTs. The dashed line in the middle represents
the 45-degree line. The shifts from the solid lines to the upward-sloping dashed lines show the impact of
increasing δ = E[δ̃]. The equilibrium evolves from the lower black dot to the upper black dot according
to the dotted arrows.
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2.3.3.2 Market quality

Adverse selection. In the benchmark model with constant C, the irrelevance result
holds (ds

dδ
= 0) because the single HFT can exploit her monopolistic power to set φ∗. By

contrast, an arms race between multiple HFTs generates positive externality that amplifies
the crowding-in effect. Thus, the equilibrium speed, φ∗, becomes substantially high and
dominates the direct impact of δ on the spread.

Proposition 2.7. If the effective exogenous cost is constant (C ′ = 0), an order execution
delay widens the average spread, i.e., ds̄(φ∗)

dδ
> 0.

Proof. See Appendix B.6.

The introduction of an order execution delay or a longer expected delay can backfire,
increasing the equilibrium speed of HFTs and worsening adverse selection. In the equi-
librium, not only a sniper but also market makers increase their speed, responding to a
longer delay. However, the average spread deteriorates because there is a liquidity trader
whose speed is unchanged.30

This result highlights the fact that fast informed trading by liquidity takers harms
liquidity provision whether liquidity providers are fast or slow. Since, in reality, the
primary purpose of delaying order execution is to mitigate adverse selection, Proposition
2.7 indicates that it may lead to unfavorable consequences due to the crowding-in effect.

Moreover, what matters to the crowding-in effect and amplification is the fact that
the market making is done by HFTs with endogenous φi. Also, if their role is fixed (e.g.,
HFT i always serves as an HFM), the amplification effect does not arise. Thus, as in
the real markets, the fact that HFTs are serving both as snipers and market makers is
another important factor to derive the above results.

Price discovery. How fast does the equilibrium price incorporate new information?
For information to be reflected by the price, a stale quote must be removed from the market
or repriced by a taker or a maker. It is triggered at stochastic time τ ≡ min{T ∗+δ̃, T ∗, T ∗}
with T ∗ ∼ Exp(φ∗) where φ∗ denotes the symmetric equilibrium speed. By exploiting the
property of the exponential distribution, the expected length of time until price discovery
from a jump in v is computed as

E[τ ] = 1
3φ∗

(
1 + δφ∗

1 + 2δφ∗

)
. (2.19)

30The easiest way to understand why the existence of a liquidity trader (or a slow trader, in general)
leads to ds̄

dε > 0 is to consider two extreme cases. One the one hand, when φ∗ → 0 (i.e., both the HFS
and HFMs do not invest in speed), HFMs are almost sure that an arriving market order is sent from the
liquidity trader, so that they post s∗ = 0. On the other hand, when φ∗ → ∞ (i.e., both the HFS and
HFMs have very fast speed technologies), market makers are almost sure that the liquidity trader falls
behind the HFS, leading to a strictly positive spread. Since the impact of φ∗ on the spread is monotonic,
the global argument above can be applied to analyze the impact of increasing φ∗ for φ∗ ∈ (0,∞).
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Figure 2.5: Expected time until price discovery

Note: This figure illustrates the price discovery measure against the length of delays by using parameters
value β = z = 1.00.

Figure 2.5 plots E[τ ] against δ = E[δ̃] in comparison with φ∗. Initially, a longer
delay remarkably expedites the price discovery process, while it starts to slow down as δ
becomes longer. On the one hand, a delay crowds in the speed level (φ∗). Therefore, the
price can impound information more swiftly, leading to a lower E[τ ]. On the other hand,
it hampers the price discovery process because an intentional delay directly restricts the
sniper’s trading behavior. As a result, E[τ ] takes a U-shaped curve.

2.3.4 Introducing crowding-out effect
As in the benchmark model, C ′ > 0 is the source of the crowding-out effect (see

[2.6]). Thus, I retrieve the increasing cost with C(φ) = c
2φ

2 for illustrative purposes.
In the following, I deal with different values of c to describe the crowding-in versus the
crowding-out effects, but the similar results hold when I change other parameters, such
as the frequency of jumps in asset value (z), the size of a jump (σ), and the arrival rate
of the LT (β).

Figure 2.6 illustrates the best response function (BRi) with different c. The left
column shows that an arms race involves strategic complementarity (dBRi

dφ−i
> 0) when c

is small, while strategic substitution arises as c increases. The best response function
becomes hump-shaped if c is intermediate, as these two competing effects offset each
other. The right column establishes that analogous results hold for the reaction of BRi

to the expected length of delays, δ = E[δ̃]. Figures exhibit the crowding-in effect versus
the crowding-out effect, where an increase in c magnifies the crowding-out effect relative
to the crowding-in effect.

Figure 2.7 shows the impact of a longer expected delay (δ = E[δ̃]) on the equilibrium
speed φ∗ (the left column), the expected spread s̄∗ = s̄(φ∗, φ∗) (the middle column), and
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Figure 2.6: Best response function: BRi(φ−i)

Note: This figure is illustrated by using the following parameter value. β = z = 1.0, δ = 10−3 (the left
column), and φ−i = 1.0 (the right column).



41

Figure 2.7: Equilibrium speed, spread, and price discovery

Note: This figure is illustrated by using the following parameter value: β = z = 1.0.
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the price discovery process E[τ ] defined by (2.19) (the right column).
The case with small c follows the analytical result in Propositions 2.6 and 2.7, i.e., φ∗

and s̄∗ are increasing in δ. If c is relatively large, a higher δ reduces the sniping probability
π, and the exogenous cost C stands out more. Thus, it tries to hamper the HFTs’ incentive
to be faster, leading to competition between the crowding-out effect and the crowding-in
effect. With intermediate c, the reaction of the equilibrium speed becomes hump-shaped.

The reaction of the expected spread (s̄∗) to the expected length of delay (δ) in the
middle column shows that a higher φ∗ does not necessarily promote s̄∗ because the nega-
tive direct impact of δ on s̄∗ is also at play (see equation [2.9]). Thus, the spread becomes
hump-shaped with intermediate c and monotonically decreasing in δ if c becomes suffi-
ciently large. Finally, the right column indicates that the U-shaped configuration of the
price discovery process, measured by E[τ ], survives even if the exogenous cost is intro-
duced.

Overall, considering the crowding-in effect with multiple HFTs generates the non-
monotonic reaction of equilibrium variables to the mean length of order execution delays
due to the crowding-in effect versus the crowding-out effect. The expected spread can
deteriorate because the arms race between multiple HFTs involves complementarity and
amplifies the original effect of order execution delays.

2.4 Welfare
To conduct welfare analyses, I define the utility of the liquidity trader (LT). Remember

that the liquidity shock makes the LT need to buy or sell one unit of asset. I assume that
the LT obtains the following net utility if she trades at prices p = (ask, bid).

u(v, p) =

α + v − ask if buys at ask price ask
α + bid− v if sells at bid price bid.

(2.20)

α represents net private utility from trading. It could be some exogenous private value
of trading that stems from hedging motives, margin constrains, borrowing/lending needs,
and so on. In what follows, I set α > σ to avoid market breakdowns.

Since the arrival frequency of the LT and her trading size are the same as the previous
section, so are the equilibrium spread and the optimal speed of the HFTs. In the following,
I derive LT welfare by using the multiple-HFT model in Section 2.3 but the results for
the single-HFT model can be derived by the symmetric argument. Once again, I focus
on the case with v = +σ (i.e., a positive jump in asset value).

2.4.1 Ex-ante expected utility of liquidity trader
Suppose that HFTs i and j are serving as HFMs. I denote a set of the best ask and bid

prices on the top of the LOB at time t as pt = (smin,−smin). Before the HFMs update
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their quote (either by learning private news or trading with the HFS), the best ask price
is smin = min{si, sj}, where si is the random spread that follows cdf F in equation (2.13).
After the HFMs learn v, it becomes pt = (v, v).

The expected trading utility of the liquidity trader (when HFTs i and j are HFMs) is
given by

W i,j
LT = EY

[∫ ∞
0

βe−βTLu(v, pTL+δ̃)dTL
]
. (2.21)

EY denotes the expectation operator regarding a set of random variables Y = (TS, TM , t0, δ̃, p).
Firstly, if the liquidity shock hits before the asset’s value jumps (TL < t0), the prices on

the LOB at TL are not updated yet. However, due to a delay, the order is executed either
at pTL+δ = (smin,−smin) or (v, v), depending on the timing of market maker’s learning.
By incorporating this uncertainty, it holds that

EY
[∫ t0

0
βe−βTLu(pTL+δ̃)dTL

]
= (α− s̄min)

Pr(trade before MM learns v)︷ ︸︸ ︷
Et0,δ̃

[∫ t0

0
βe−βTLe

−φM (TL+δ̃−t0)I{δ̃>t0−TL}dTL

]

+ α

Pr(trade after MM learns v)︷ ︸︸ ︷
Et0,δ̃

[∫ t0

0
βe−βTL(1− e−φM (TL+δ̃−t0)I{δ̃>t0−TL})dTL

]
= β

z + β

[
α− s̄min

(
1− φMδ

1 + φMδ

δ

δ + z−1

)]
, (2.22)

where s̄min = EF [min{si, sj}] denotes the expected best ask price. The coefficient of the
brackets amounts to the probability of TL < t0. Inside the brackets, the coefficient on s̄min
represents the probability that the LT’s order is executed at prices (smin,−smin) before
the market maker learns v.

As the second case, suppose that the liquidity shock hits after the jump in asset value
(TL ≥ t0). In this case, there are two scenarios: (i) the LOB at time TL still displays
pTL = pmin ≡ (smin,−smin) or (ii) it has already updated to pTL = pv ≡ (v, v). In case (i),
the expected utility is either α− stop or α, while case (ii) yields α for sure. Incorporating
these possibilities, the expected utility is

EY
[∫ ∞
t0

βe−βTLu(pTL+δ̃)dTL
]

=Et0,δ̃
[∫ ∞
t0

βe−βTL Pr(pTL = pmin)

×
(
α− s̄min Pr(pTL+δ̃ = pmin|pTL = pmin)

)]
(2.23)

+ αEt0,δ̃
[
Pr(pTL+δ̃ = pv)

]
= z

z + β

(
α− s̄min

1
1 + φMδ

β

β + φM + φS

)
. (2.24)

The first coefficient represents the probability that TL ≥ t0 holds. As the first term in
parentheses shows, the LT obtains α in any cases. The second term shows the case that
the LT observes pTL = pmin = (smin,−smin) upon hit by the shock and executes her trade
at these prices.
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Since the selection of HFTs’ role is random, equations (2.22) and (2.24) imply the
following result.

Proposition 2.8. Let φ∗ denote the symmetric equilibrium speed of HFTs. LT welfare is
given by

WLT ≡ Ei,j[W i,j
LT ] = α− ws(δ, φ∗)s̄min, (2.25)

where
s̄min = EF [min{si, sj}] ,

the random spread is such that sk iid∼ F in (2.13) with φS = 1
2φM = φ∗, and

ws(δ, φ∗) = β

z + β

(
1− 2φ∗δ

1 + 2φ∗δ
δ

δ + z−1

)
+ z

z + β

β

(1 + 2φ∗δ)(β + 3φ∗) .

ws represents the probability that the LT trades at pre-learning prices (smin,−smin)
and pays the positive spread smin > 0. From (2.25), the best spread has a negative direct
impact on LT welfare because it increases the trading cost for the LT. In contrast, all
else equal, a faster HFT (φ∗) and a longer delay (δ) improve the LT’s utility by reducing
ws. A faster HFT promotes the price discovery process and allows the LT to trade at
updated prices with zero spread. The direct impact of an intentional delay is also positive
because it delays the LT’s order execution and makes it more likely to fall behind the
market maker’s learning.

In the single-HFT model, the following analytical result holds.

Corollary 2.1. (i) In the single-HFT model, WLT = α− wss where

ws = β

z + β

(
1− γδ

1 + γδ

δ

δ + z−1

)
+ zβ

(z + β)(1 + γδ)(β + γ + φ∗) ,

and s is the equilibrium spread in (2.2).
(ii) LT welfare is increasing in the expected length of a delay when C ′ and β are small,
and z and σ are large.

When the effective marginal cost is small, the crowding-in effect of delays dominates
the crowding-out effect. Thus, the HFT’s speed is an increasing function of the length of
delays. We also know from Proposition 2.3 that the spread is decreasing in δ. Therefore,
the imposition of intentional delays improves LT welfare.

Figure 2.8 plots the reaction of LT welfare to δ for a wide range of c, showing that
the result in Corollary 2.1 is robust in the multiple-HFT model. The figures establish
that the positive impact of a delay on WLT is robust even if the crowding-out effect is
dominant. Also, the multiple-HFT model makes the average spread increasing in δ when
c is relatively small (Proposition 2.7). Even though a wider average spread increases the
trading cost for the LT, it cannot decrease WLT (the right panel). This is because faster
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Figure 2.8: Impact of delays on LT welfare

Note: The figures are illustrated with β = γ = 0.5, z = 0.1, a = σ = 1.0

HFTs make the LT more likely to trade at the updated prices (v, v) rather than the pre-
learning best prices (smin,−smin), i.e., an HFS’s sniping and HFMs’ learning are more
likely to occur before the LT’s arrival. Thus, the negative impact of a wider spread on
WLT is limited.

Overall, the reaction of the LT’s indirect utility to the imposition of order execution
delays can be analyzed through the lens of the tradeoff between adverse selection and
price discovery. The tradeoff has been a central issue and an open question in the context
of informed trading, market quality, and trader welfare (see Glosten and Putnins, 2016;
Rosu, 2018). The above discussions show that the benefit of a faster price discovery
process dominates the negative impact of adverse selection in terms of LT welfare.

2.4.2 Aggregate welfare
Aggregate welfare is defined by

W = 3WHFT +WLT ,

where WHFT represents individual HFT welfare, i.e.,

WHFT = 2
3

1
1 + β

z

φ∗

3φ∗ + β

1
1 + 2δφ∗︸ ︷︷ ︸

=π(φ∗,δ)

(σ − s̄)− C(φ∗). (2.26)

WHFT is identical to equation (2.16) in Section 2.3.
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Note that the equilibrium spread si with the mixed strategy F satisfies the break-even
condition in expectation. Specifically, if HFT i becomes an HFM, her expected profit in
the liquidity provision stage (given si) is rewritten as

0 = Esj [VM,i(si, sj)]

= 1
1 + β

z

π(φ∗, δ)(si − σ) + Esj [Isi<sjsi]ws(δ, φ∗).

By taking average over si and summing up to the symmetric equation for HFT j, it holds
that

0 = 2 1
1 + β

z

π(φ∗, δ)(s̄− σ) + EF [smin]ws(δ, φ∗)

= −3 [WHFT + C(φ∗)] + (α−WLT ). (2.27)

The first two terms in the brackets show the adverse selection cost that market makers
bear due to the informed trading, and it corresponds to the (gross) sniping profit of the
HFS. The last term is market makers’ (positive) profit from trading with the LT before
they learn v. This term captures the LT’s trading cost when her order is executed at the
pre-learning best spread smin. The break-even condition implies that market makers set
the spread s so that the adverse selection cost is perfectly compensated by the revenue
from trading with the LT.

From Lemma 2.8 and equation (2.27), we have the following result:

Proposition 2.9. (i) In the multiple-HFTs case, aggregate trader welfare is given by

W = α− 3C(φ∗). (2.28)

(ii) When the crowding-in (resp. crowding-out) effect of order execution delays on φ∗ is
dominant, aggregate welfare is decreasing (resp. increasing) in the length of delays.

Firstly, equation (2.28) shows that the equilibrium (pre-learning) spread s has no
impact on aggregate trader welfare. This is due to the break-even condition of market
makers: the spread is just a transfer of money from the LT to an HFS. What remains
after the transfer is the LT’s private utility from trading (α) and the exogenous realized
cost of the speed investment (C). As a result, the behavior of W is perfectly traced by
analyzing the HFTs’ optimal speed, as suggested by point (ii) in Proposition 2.9. When
the parameter values make the crowding-in effect dominant, order execution delays can
harm aggregate trader welfare, and vice versa. Also, the same result as Proposition 2.9
holds in the single-HFT model:

Corollary 2.2. In the single-HFT model, the result in Proposition 2.9 holds with W =
α− C(φ∗).
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Table 2.2: Impact of imposing a longer delay

Effective marginal cost
Varibles small intermediate large

Si
ng

le
H
FT

HFT speed increasing* ambiguous* decreasing*
Adverse selection (spread) mitigated* mitigated* mitigated*
Price discovery faster ambiguous slower
LT welfare increasing* increasing* increasing
Aggregate welfare decreasing* ambiguous* increasing*

M
ul
tip

le
H
FT

s HFT speed increasing* ambiguous* decreasing*
Adverse selection (spread) worse* ambiguous mitigated
Price discovery faster ambiguous slower
LT welfare increasing increasing increasing
Aggregate welfare decreasing* ambiguous* increasing*

* Note: This table tabulates the reaction of equilibrium variables to the introduction of
order execution delays or their extension. * represents analytical results. Variables with
no * report numerical results.

2.4.3 Welfare implication of order execution delay
The literature on the slow market structure has sought a solution for the problem

of the optimal length of delays. However, there is no consensus on the objective of the
imposition of delays. For example, Brolley and Cimon (2017) analyze speed bumps that
maximize aggregate trader welfare or trading volume.31 Baldauf and Mollner (2017) take
the efficient frontier of information production and LT welfare as their objective function,
where LT welfare is perfectly determined by the equilibrium spread (i.e., ws = 1 in my
model). Moreover, in reality, most exchanges with speed bumps and other delays claim
that their primary purpose is to protect liquidity providers, meaning that the adverse
selection cost for market makers is the target variable.

Table 2.2 summarizes the impact of a longer expected delay on different target variables
when the effective marginal cost of speed is large, intermediate, and small. The top
half of the table shows the results with a single HFT, and the bottom half shows those
with multiple HFTs. In the literature, delaying order execution of high-frequency traders
always discourages their speed acquisition (i.e., only the crowding-out effect has been
highlighted). If the crowding-out effect is the only mechanism at play, the impact of
delays is fully analyzed by focusing on the right column of the table (relatively large

31Brolley and Cimon (2017) argue that trading volume is the objective function of an exchange, as
it can be seen as the proxy for the exchange’s fee revenue. In contrast, Budish, Lee, and Shim (2018)
analyze the impact of FBA on HFTs’ demand for speed because exchanges earn a large portion of profits
from fees for speed services.
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effective marginal costs). In this situation, adopting order execution delays (or extending
the length of delay) may improve most of the target variables. For example, a speed bump
slows down HFTs, reduces the investment into speed technologies, improves both LT and
aggregate welfare, and protects liquidity providers by mitigating the adverse selection
problem.

In contrast, my model points out that delays in order execution have the crowding-
in effect on HFTs’ speed acquisition. Due to this new and opposing effect, the first two
columns (small and intermediate effective costs) must be added to the table. In particular,
when the effective marginal cost is relatively small, a longer delay increases the speed of
HFTs, reduces aggregate welfare, and worsens the adverse selection problem. The only
variable that shows a positive reaction is LT welfare, causing a tradeoff between these
objective functions.

Therefore, due to the crowding-in effect of delays, normative discussions on the op-
timal length of delays become more nuanced. Not only does it require policy makers or
exchanges to tradeoff between the above objective variables, but it also makes measuring
parameter values for the effective speed cost important. In conclusion, the crowding-in
effect can be seen as the dark side of delaying order execution because my model suggests
that it can harm liquidity providers (i.e., the adverse selection problem), in contrast to
its intended purpose, as well as aggregate trader welfare.

2.5 Discussion

2.5.1 Deterministic delay in order execution
In reality, asymmetric speed bumps in operation are all random, while several ex-

changes have proposed asymmetric and deterministic speed bumps. A deterministic delay
can be analyzed by slightly modifying the benchmark model with a random delay.

As in the benchmark model, a deterministic delay of length δ̃ is imposed on all market
orders, but it is constant δ̃ = δ̄ ≥ 0. By replacing a random delay in the benchmark
model by constant δ̄, the break-even spread (denoted as sdet) is

sdet =
φ

1+λ(δ̄)(φ+β+γ)
φ

1+λ(δ̄)(φ+β+γ) + β
σ

with
λ(δ̄) = z

z − γ
(
z − γe−(z−γ)δ̄

)
. (2.29)

Note that λ is monotonically increasing in δ̄. Moreover, the objective function of the HFT
is

φ∗ = arg max
φ

e−γδ̄
φ

φ+ β + γ
(1− sdet

σ
)− C(φ).
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Thus, by denoting h(δ̄) = e−γδ̄ and using λ in (2.29), the model becomes identical to the
benchmark model with a random delay. The identity confirms the robustness of my main
arguments in the previous sections.32

2.5.2 Will for-profit exchanges introduce delays in order execu-
tion?

One of the normative discussions is related to the question “Will the market fix the
market?” put forth by Budish, Lee, and Shim (2018) in the context of frequent batch auc-
tions (FBA). They analyze whether competing exchanges have an incentive to introduce
an FBA that aims to mitigate adverse selection caused by HFTs.

Exchange platforms, in reality, earn a large portion of their profits from fees for fast
data/exchange access, such as direct data feeds. Budish, Lee, and Shim (2018) argue that
exchanges do not have an incentive to introduce FBA.33 Since their model does not have
the crowding-in effect, introducing FBA always invalidates the speed advantage of HFTs.
Then, HFTs stop purchasing fast data/connection services from exchanges, undermining
exchanges’ profits from speed fees. This pessimistic result holds because the previous
studies focus on the crowding-out effect of FBA on speed acquisition and its beneficial
impact on adverse selection.

Although adopting multiple exchanges and competition between them is beyond the
scope of my model, incorporating the crowding-in effect of an intentional delay into the
above question can provide a new implication. Specifically, the following claim is derived
from my model:
Claim 2.1. With appropriate design of delays (e.g., value of δ = E[δ̃]) and the schedule of
a speed fee (C ′), order execution delays promote speed acquisition by HFTs and mitigate
the adverse selection problem at the same time.

One of the examples comes from Propositions 2.2 and 2.3 in the single-HFT model
that shows

∃(δ, c) s.t., dφ
∗

dδ
> 0 and ds∗

dδ
< 0.

There is a region of δ and c such that the crowding-in effect dominates the crowding-out
effect, leading to a faster HFT (dφ∗

dδ
> 0), whereas the direct effect of a delay on the spread

32Appendix A discusses an advantage of random speed bumps over deterministic ones. Briefly, a
random delay makes it harder to synchronize the arrival of “sprayed” orders across multiple exchanges,
allowing market makers to learn from execution of a part of sprayed orders in other exchanges.

33Budish, Lee, and Shim (2018) show that, in equilibrium, exchanges charge positive fees on speed but
no fees on transaction services. Such an equilibrium arises due to the trading rule in the US, such as
RegNMS and UTP. On the one hand, trading services are homogeneous goods across exchanges, meaning
that exchanges are fungible in terms of trading. On the other hand, traders need to purchase exchange
specific speed technologies (ESST), making an exchange a monopolistic supplier of her ESST. In this
situation, even if an exchange who deviates and adopts FBA earns profits by increasing trading fees, the
profit margin easily disappears since other competing exchanges can imitate the FBA structure, resulting
in lower profits compared to the status-quo structure.
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dominates the speed-up by the HFT (ds∗
dδ

< 0). Such parameter regions also exist in the
general models with multiple HFTs (e.g., see Figure 2.7 in Section 2.3).

As long as parameters (δ, c) satisfy the condition in Claim 1, an exchange can charge a
higher price for speed by delaying order execution, as HFTs try to compensate for the loss
from a delay and demand more speed services. Simultaneously, the exchange can achieve
its intended goal, i.e., alleviating the adverse selection problem. Of course, we need to
formalize the environment and the objective function of exchanges, but the above claim
leads to the following prediction:

Conjecture 2.1. Suppose that an exchange’s objective function consists of (i) maximizing
fee revenues paid by HFTs for fast access to the exchange and (ii) alleviating the adverse
selection problem. Then, an exchange has an incentive to adopt order execution delays
with appropriate design.

My model’s crowding-in effect shows that a slow market structure does not always
diminish HFTs’ demand for speed. It can be seen as a dark side of delaying order execution
per se but proposes a more optimistic prediction once we consider exchanges’ incentive:
they will introduce a new market design that contributes to creating a level playing field.

2.5.3 Cost of speed and asset volatility
Discussions so far indicate that the effective marginal exogenous cost of speed C ′(φ)

is one of the important determinants of the effectiveness of delays. In reality, typical
high-frequency trading firms pay separate (monthly) subscription fees for physical and
logical connectivity to an exchange, an additional connectivity charge to receive market
data through acquired connectivity, and for the content of market data itself.

My model provides some testable predictions, as the impact of a delay can be sub-
stantially different depending on the marginal cost of speed.

Conjecture 2.2. All else equal, if the exogenous marginal cost of increasing speed is low,
introduction of a delay or its extension is accompanied by an increase in spread (and vice
versa).

However, high-frequency trading firms are notoriously secretive regarding their costs,
and measuring the marginal cost of speed is not easy. Toward a remedy of this issue,
considering the effective cost may provide an alternative prediction.

My model restricts HFTs’ trading volume and assumes that the asset’s volatility, σ,
and the frequency of the Poisson jumps in asset value, z, are fixed. These parameters
have been measured in empirical literature, such as Aquilina, Budish, and O’Neill (2020).
Variations in these parameters shrink or magnify the cost of speed per sniping opportunity,
leading to different consequences.

For example, Virtu Financial, Inc., the one of the largest HFT firms, reported spending
approximately $209 million on communication and data processing and $383 million on
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employee compensation and payroll taxes in 2019.34 Although the aggregate cost looks
large, it represents the annual amount. In contrast, according to the analysis by Laughlin
(2014) and Bloomberg, Virtu conducts 2.5-3.5 million trades per day across all venues
and all asset classes in the United States. The large number of transactions dwarfs the
above operational cost, making the cost per transaction amount to $0.67-$0.94. Of course,
the above back-of-envelope calculation cannot separate the cost for sniping from that for
market making. Yet, what matters is the fact that a more frequent arrival of arbitrage
opportunities reduces the cost per sniping and leads to a strong crowding-in effect (and
vice versa). This discussion is translated into a change in z (i.e., the frequency of a Poisson
jump in asset value) that negatively affects the effective cost of speed.
Conjecture 2.3. All else equal, if the volatility of asset (measured by the frequency of a
jump in asset value z and its size σ) is high, delaying order execution is accompanied by
an increase in spreads (and vice versa).

2.5.4 Application to general information design
My result can fit into the discussion on more general information regulation in financial

markets. For example, one of the closest market structures to a speed bump is “Last Look”
in foreign exchange markets (FX): after a liquidity taker trades on a market maker’s posted
price, the market maker obtains a small “latency buffer” in which she has an option to
reject the trade. The design of the Last Look options is custom-tailored and differs across
all Electronic Communication Networks and OTC (Over-the-Counter) markets. Thus,
it is not as standardized as speed bumps. However, the primary goal is to mitigate
adverse selection and other structural frictions for market makers that stem from the
speed/informational advantage of liquidity takers in the highly fragmented FX markets.
A couple of theoretical papers have studied the Last Look feature (e.g., Oomen, 2017;
Cartea, Jaimungal, and Walton, 2019), but the speed acquisition by liquidity takers is
not taken into account.

In general, financial markets have been experienced many forms of informational reg-
ulation that try to mitigate information asymmetry between traders, such as Regulation
Fair Disclosure (2000), Sarbanes–Oxley Act (2002), and Dodd-Franc Act (2010). The
theoretical literature has argued that attempts to mitigate asymmetric information by
disseminating public information can hammer private information acquisition by poten-
tial informed traders (i.e., the crowding-out effect; Verrecchia, 1982).35 If the crowding-out
effect is the only force at play, fair disclosure policies unambiguously mitigate asymmetric
information and tighten the spread. However, “the empirical evidence [...] is still incon-
clusive” (Beyer et al., 2010). Even though my model focuses on speed acquisition, the
mechanism for the crowding-in effect should survive in a general regulatory framework.

34The expenditure in 2019 is the largest in these past 8 years. Virtu’s SEC filings are available at
https://ir.virtu.com/financials-and-filings/sec-filings/default.aspx.

35The studies that propose the crowding-out effect include Diamond (1985), Gao and Liang (2013),
Colombo, Femminis, and Pavan (2014), and Banerjee, Davis, and Gondhi (2018).

https://ir.virtu.com/financials-and-filings/sec-filings/default.aspx
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For example, in the benchmark model, parameter φ governs the learning process of the
HFT. In the context of fair disclosure, we can re-interpret φ (or φ/(φ+β)) as the measure
of traders with perfect private information about v. Also, parameter γ captures the
arrival frequency of public news—fair disclosure—that tells all traders v. An intentional
delay δ makes public disclosure more likely to happen before informed traders may take
liquidity. Therefore, δ can be seen as the regulation that requests and promotes the swift
dissemination of public news.

Following the discussion in Section 2.2, the regulation generates an additional oppor-
tunity for the informed trader to exploit her informational advantage. As a result, fair
disclosure may promote traders’ information acquisition activity, i.e., the crowding-in ef-
fect. Although the formal analyses are left as a future research topic, my model predicts
that the crowding-in effect should exist as long as regulations try to mitigate asymmetric
information, whereas traders can strategically decide on the quality (speed and precision)
of their private information.

2.6 Conclusion
Order execution delays, such as speed bumps, have been widely adopted in many

exchanges as one of the simplest and easiest ways to slow down fast informed trading.
The purpose of a delay is to slow down HFT and mitigate adverse selection for liquidity
providers by imposing an intentional delay on HFTs’ order execution. In contrast to
its intended purpose, however, my model shows that a longer delay can facilitate the
equilibrium speed acquisition of HFTs, i.e., it has a crowding-in effect. The crowding-in
effect competes against a delay’s intended effect, and the equilibrium speed acquisition and
adverse selection exhibit rich reactions to a longer delay. Thus, this chapter complements
the literature by theoretically showing that order execution delays can have a positive,
negative, and ambiguous impact on the market.

This chapter describes how fast HFTs obtain private information and act on it. Al-
though this follows the literature and provides a tractable framework, it ignores another
dimension of information acquisition, namely, the precision of a signal. Several studies,
such as Huang and Yueshen (2018) and Dugast and Foucault (2018), argue that the pre-
cision of private information and the information processing speed may have a negative
relationship. Hence, analyzing the impact of a delay on information acquisition, both in
terms of speed and precision, would be a good extension of my model to capture a more
holistic view on the impact of an exogenous speed restriction.

This chapter discusses the optimal length of delays but does not analyze the market
design problem, i.e., the optimal structure of delays to improve market quality or trader
welfare. The question regarding the optimal design is important, as we have seen a large
variety of speed bumps in reality. For example, A-NEO in Canada classifies traders into
HFTs and non-HFTs by using their IDs and latency-(in)sensitive trading behavior and
imposes speed bumps only on HFTs. Some other exchange platforms have proposed ran-
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domizing the distribution of a speed bump by using AI to prevent HFTs from forecasting
the pattern of delays. Also, the model’s prediction regarding exchanges’ incentive to adopt
a speed bump is optimistic, and modeling the exchange competition with a speed bump
is another topic of the future research.
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Chapter 3

A Model of a Decentralized
Exchange with Constant Product
Market Makers

3.1 Introduction
The limit order book has been a core trading mechanism in the modern electronic

financial market. Traders called market makers provide trading opportunities by placing
limit orders—a price quote at which they are willing to buy or sell a certain amount of
an asset. Limit orders are stored on a book (i.e., the limit order book, LOB) and publicly
displayed. If other traders find a good deal on the book, they try to consume the trading
opportunities by placing marketable limit orders or market orders. An incoming market
order is matched with standing limit orders on the book, and a trade is executed at the
proposed price.

The recent hype surrounding cryptocurrencies and blockchain, however, changes the
landscape of market structure. In particular, many exchange platforms have been built
on the smart contract on the Ethereum blockchain, and transactions are executed in
a decentralized manner. Those platforms are called decentralized exchanges (DEXs).
They are built on a trustless record-keeping system run by the network of innumerable
computer nodes on the blockchain and robust to cyber attacks and a single point of
failure. Moreover, from the market-microstructure perspective, DEXs have proposed and
implemented trading via a novel mechanism for trade execution called automated market
makers (AMMs).1

1The example of decentralized exchanges (DEXs) for cryptocurrency includes Uniswap, Curve, IDEX,
0x, Waves, EtherDelta, dYdX, Balancer, Sushiswap, and so on, where all transactions are settled P2P
through users’ wallets and smart contracts. In the traditional centralized exchanges (CEXs), such as
Coinbase, Bittrex, and Binance, a centralized authority manages trader information and funds. Although
CEXs have achieved large liquidity and trading volume, they are vulnerable to cyber-attacks and single
point of failures. In contrast, information on DEXs is recorded on the blockchain with KYC (Know Your
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The upper panel of Figure 3.1 illustrates the exponential growth in trading volume on
DEXs. It hits the record high in February 2021 (about $74B monthly volume), obtaining
more than 10% of trading share to the traditional centralized exchanges for cryptocur-
rency. The figure also plots trading volumes on DEXs with the traditional order book sys-
tem compared to those with AMMs, showing that AMMs have considerably contributed
to the recent hype in decentralized exchanges.

The automated market maker is a single-function algorithm that determines asset
prices or exchange rates. It does not require the physical presence of active market mak-
ers or dealers for order execution and pricing. Before the advent of AMMs, DEXs have
operated with the traditional order-book mechanism and had a hard time to attract suffi-
cient liquidity. This is because trade execution with an order book involves a complicated
matching mechanism, and embedding a large amount of information in a smart contract
on the blockchain is extremely costly. In contrast, AMMs require much smaller memory
than the traditional order-book algorithm and allow a substantial part of trades to be on
the blockchain. There are several types of AMMs but, as shown by the lower panel of
Figure 3.1, the Constant Product Market Makers proposed by Uniswap (and also adopted
by Sushiswap) have been a dominant market structure—more than 70% of transactions
on the DEXs with AMMs are handled by the Constant Product Market Makers. As for-
mally described below, the CPMM is a simple algorithm that derives an execution price
by requiring the (squared) geometric mean of the pools size to stay constant.

In this chapter I study the liquidity impact of the Constant Product Market Makers
(CPMMs) on the traditional centralized exchange (CEX). Liquidity on the DEX is mea-
sured by the amount of assets “locked” in the platform, while CEX liquidity is measured
by the bid-ask spread, as in the traditional microstructure theory. I find that DEX liq-
uidity is positively associated with CEX liquidity, i.e., they complement each other. The
result arises because the novel market-making algorithm of the CPMM triggers asymmet-
ric behavior of information-driven order flow and noise trading across the CEX and the
DEX.

In my model, a DEX with the CPMM operates in parallel with a CEX with the limit
order book. There are informed for-profit traders, liquidity traders, and market makers,
and they are endogenously differentiated between two trading venues: the CEX and the
DEX. As the traditional theory of market microstructure suggests, the bid-ask spread on
the CEX reflects the cost of asymmetric information for uninformed market makers. I
first analyze the consequence of an exogenous variation in the DEX liquidity for traders’
behavior—in particular, their venue choice—and its impact on the CEX liquidity. I then
endogenize liquidity provision by market makers on the DEX and describe how market
liquidity on the DEX and the CEX jointly reacts to a more severe informational friction.

To formalize traders’ venue choice, this chapter focuses on two important features
of a constant product market: its pricing algorithm and delay in transactions. On the
constant product market, market makers create liquidity pools by depositing traded assets

Customer) data and stay immutable, providing users with an efficient and robust transaction method.
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Figure 3.1: Monthly trading volume on DEXs

Source: Dune Analytics (duneanalytics.com)

https://duneanalytics.com/
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(say, cash and a token) into an exchange.2 For instance, suppose that the liquidity pools
reserve x and y unit of cash and token prior to a trade. If a trader buys δ unit of the
token by paying pδ of cash (i.e., p is the token price or the exchange rate), she subtracts
the token from the pool (y → y′ = y − δ) and adds price-adjusted cash to the pool
(x → x′ = x + pδ), triggering a change in the liquidity pools from (x, y) to (x′, y′).
The CPMM algorithm requires the (squared) geometric mean of the liquidity pools to be
constant k = xy = x′y′ with some pre-determined k. This single equation derives the
execution price (or the exchange rate) p for this trading order as a function of x, y, and
δ, as p = x

y−δ .
3 When a market maker exits the market, she withdraws and liquidates her

contribution to the pools. Thus, the accumulated gain or loss in the pools’ value caused
by trade δ (i.e., x′ − x and y′ − y) is distributed to market makers on a pro rata basis.

As the second feature, trade execution on the DEX is relatively slow compared to
the CEX because it involves validation by the blockchain miners with the limited block
capacity and infrequent creation of blocks.4 My model captures this delay in transactions
by assuming that liquidity traders’ activity is motivated by needs for immediacy (e.g.,
margin constraints and hedging requirements), and they incur a utility cost if their or-
ders are not settled immediately on the DEX (e.g., Zhu, 2014; Huberman, Leshno, and
Moallemi, 2019; Lehar and Parlour, 2019).

In this environment, my model first shows that ample liquidity on the DEX comple-
ments that on the CEX. The execution price for a market order with size δ on the DEX
is p = x

y−δ , and the additional liquidity to the DEX’s liquidity pools, represented by an
increase in x and y with k = xy, mitigates the price impact of δ. However, a change in
the price impact affects traders differently depending on their trading motive. On the one
hand, an informed trader is informed of the (future) asset fundamentals and anticipates
the trading direction of other informed traders. Thus, informed traders tend to cluster on
the same side of the DEX and to incur a large price impact. The additional DEX liquid-
ity weakens the price impact of clustered informed trading and attracts more informed
traders to the DEX. On the other hand, liquidity traders do not enjoy the reduction in the
price impact. This is because their trading behavior is random, and each liquidity trader
expects that random buy and sell orders by other liquidity traders (almost) cancel out
each other on the DEX. It results in a small expected price impact, and a deeper liquidity
on the DEX has only a limited impact on liquidity traders’ behavior. As a result, when
DEX liquidity exogenously improves, the CEX experiences a larger outflow of informed

2In the real financial markets, most traded assets on DEXs are digital tokens, and fiat currency is not
supported. One interpretation of “cash” in this context is some ERC-20 tokens pegged to USD, such as
Tether (USDA). Also, I intend to build a general model of constant product markets without restricting
our attention to exchange of tokens.

3See Section 3.2.3 for more details.
4Due to the innovations in information technologies and communication methods the average through-

put on the CEX is measured by the scale of microsecond or even nanosecond (see Budish, Cramton, and
Shim, 2015; Aquilina, Budish, and O’Neill, 2020). Compared to the ultra-fast trade processing on the
CEX, a transaction on the DEX must be validated by the blockchain miners, which takes, on average,
several seconds to a couple of minutes (see dune analytics).

https://duneanalytics.com/browse/dashboards
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traders to the DEX than outflow of liquidity traders. This implies a less severe adverse
selection problem, a narrower bid-ask spread, and a deeper liquidity on the CEX (Glosten
and Milgrom, 1985).

Secondly, I endogenize liquidity provision by market makers on the DEX with the
CPMM and relate it to the traditional market making by the order-book system. I show
that asymmetric information between informed traders and market makers brings about
the adverse selection cost for market makers on the DEX. Whenever the locked liquidity
is taken by an informed trader, the expected value of the liquidity pools deteriorates.
This is because an informed trader subtracts a more valuable asset from the liquidity
pools by adding a less valuable asset to the pools based on her private information. In
contrast, the expected value of the liquidity pools does not deteriorate when a trade is
initiated by a liquidity trader. The above logic is reminiscent of classical models of market
microstructure, such as Glosten and Milgrom (1985) and Kyle (1985). Even with the new
market-making mechanism, market makers still suffer from the cost of adverse selection
due to informed trading. I characterize the break-even condition for competitive market
makers on the DEX and pin down the equilibrium size of DEX liquidity, which is naturally
decreasing in the trading activity of informed traders relative to liquidity traders.

Finally, I characterize how equilibrium liquidity on the CEX and the DEX reacts to
changes in market conditions, such as the volatility of the asset. My model demonstrates
that informed buyers tend to cluster on the CEX, whereas informed sellers tend to cluster
on the DEX, when the asset becomes more volatile. A higher asset volatility implies a
stronger informational advantage of informed traders and exacerbates adverse selection.
Thus, the bid-ask spread widens on the CEX, and the liquidity pools shrink on the
DEX. The asymmetric reaction of buyers and sellers is hard-wired in the convexity of the
CPMM’s pricing algorithm. Namely, since the execution price is determined so that the
liquidity pools (x, y) shift along the convex curve, y = k

x
, a positive shift in x (a sell order)

requires a smaller adjustment in y than the case of a negative shift in x (a buy order).
This implies that selling the asset incurs a smaller price impact than buying the asset
(see Figure 3.4). Due to the asymmetric price impact, informed buyers suffer more from
the shallower liquidity on the DEX than informed sellers. Thus, DEX informed buyers
tend to migrate away from the DEX to the CEX, while sellers tend to stick to (or migrate
into) the DEX.

My results have several empirical implications. Due to the hard-wired asymmetric
price impact for buy and sell orders on the DEX, bid and ask prices on the CEX are also
asymmetrically distributed around the expected value of the asset. The asymmetric bid
and ask prices are well documented in the literature (e.g., Ho and Stoll, 1981; Bossaerts
and Hillion, 1991), and my model proposes the advent of the CPMM as a new source of
asymmetric bid and ask prices. Also, my model suggests that “sell” order flow tends to be
more informative than “buy” order flow on the DEX when the asset volatility increases, as
informed sellers and buyers exhibit asymmetric reactions to the asset volatility. Moreover,
in my model, adding a DEX with the CPMM algorithm tightens the bid-ask spread on the
CEX. These implications can be tested by analyzing the listing of new cryptocurrency
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pairs on a DEX, such as Uniswap. There are several ERC-20 tokens pegged to some
heavily traded cryptocurrencies. For example, Wrapped Bitcoin (WBTC) is one of the
ERC-20 tokens pegged to Bitcoin and is listed on Uniswap. My model indicates that,
for example, we observe a shrink in the bid-ask spread of BTC/ETH exchange rate on
centralized exchanges (e.g., Coinbase) when Uniswap announced that it starts to trade
WBTC/ETH.

This chapter is built on the large body of literature on market microstructure. In
particular, Glosten and Milgrom (1985) and Kyle (1985) provide models of market liquid-
ity with asymmetric information. Following the idea of Bagehot (1971), they show that
competitive liquidity providers try to countervail the adverse selection cost of informed
trading by making a market less liquid (i.e., posting a wider bid-ask spread; increasing
the price impact of order flows). This chapter applies their canonical idea to the new
context of decentralized exchanges. I show that adverse selection still plays a key role in
explaining liquidity provision in a constant product market.

Also, the modern financial market has experienced substantial fragmentation of trad-
ing exchanges, and several papers have addressed implications of coexisting exchange
platforms with different market microstructures. For example, Ye (2011), Zhu (2014),
and Ye (2016) consider the addition of so-called dark pools and analyze the reaction
of informed and uninformed traders, as well as market quality. Lee (2019) investigates
traders’ behavior when multiple exchanges have different degrees of latency and trans-
parency. More recently, exchanges impose “speed bumps” to slow down high-frequency
trading and protect market makers against latency arbitrage. Brolley and Cimon (2020)
analyze the order flow segmentation with speed bumps to address the liquidity impact of
speed bumps. My model also sheds light on the liquidity impact of heterogeneous mar-
ket structures in the era of decentralization and blockchain by incorporating endogenous
order flow segmentation.

My model also contributes to the research on the blockchain, cryptocurrency, and
decentralized exchanges. The literature is expanding (see Harvey, 2016 and Chen, Cong,
and Xiao, 2019 for comprehensive reviews), and many papers have analyzed the blockchain
protocol as a new method or a platform for value transfer, e.g., Chiu and Koeppl (2017),
Malinova and Park (2017), Cong, Li, and Wang (2018), Pagnotta and Buraschi (2018),
Schilling and Uhlig (2018), Abadi and Brunnermeier (2018), Huberman, Leshno, and
Moallemi (2019), and Lehar and Parlour (2019). However, those studies either consider
order book markets or abstract away from the formal description of matching or pricing
algorithm on the blockchain. My model complements the literature by characterizing
the equilibrium liquidity provision on a blockchain-based exchange with the automated
market making system when it coexists with the traditional exchange with the order-book
mechanism.

Formal descriptions and implementational details of decentralized exchanges are pro-
vided by, for example, Warren and Bandeali (2017), Adams, Zinsmeister, and Robinson
(2020), and Zhang, Chen, and Park (2018). Although the analyses on AMMs is in its
infancy, Angeris, Kao, Chiang, Noyes, and Chitra (2019) provide a formal model of the
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optimal arbitrage problem with constant product market makers. Also, Angeris and Chi-
tra (2020), Evans (2020), and Angeris, Evans, and Chitra (2020) analyze more general
constant function market makers. My model focuses on the CPMM and generalize the
above models by incorporating asymmetric information between traders and traders’ en-
dogenous venue choice with coexisting two different market-making algorithms (the AMM
and the LOB).

3.2 Technology review
This section is devoted to preliminary discussions. I briefly describe the blockchain

technology and trade execution/settlement on decentralized exchange platforms operated
with the Constant Product Market Makers. Readers can refer to Antonopoulos (2014)
and Antonopoulos and Wood (2018) for more details on the blockchain technology, and
Chen, Cong, and Xiao (2019) for more wholistic reviews on blockchain economics.

3.2.1 Blockchain technology
The blockchain can be seen as a novel way of managing and tracking transactions

information. In the traditional world, we typically maintain a ledger that records partic-
ipants’ state information in a centralized manner, e.g., a bank acts as an intermediary.
Bilateral transactions with no intermediation by a credible third party incur asymmetric
information and settlement risk.

In contrast, on the blockchain platform, a ledger is not held by a particular entity, but
is distributed across all participants in the network, called record keepers or blockchain
miners. The distributed ledger system requires information about blockchain users to be
a consensus among all record keepers. This highlights its first difference from traditional
transactions, in which only a centralized authority keeps track of information. Due to its
distributed nature, the blockchain is robust to a single point of failure and does not incur
costs of building credibility.

A transaction with a distributed record-keeping system by blockchain goes as follows.
Suppose that Alice wants to buy a cup of coffee at Bob’s cafe by paying Bitcoin. In-
formation about this transaction must be validated by blockchain miners for settlement.
More precisely, the transaction is added to a block by a miner. A sequence of blocks are
encrypted and become a blockchain. In the Bitcoin blockchain, for example, each miner
in the network maintains a temporary list of unconfirmed transactions, called a mempool.
Transactions in the mempool are yet to be recorded on the blockchain, and information
on the mempool is public to the network. A miner picks one of the transactions in the
pool and tries to validate it by executing costly computation following a certain algo-
rithm. The fastest miner who solves the problem adds transaction information to a block
(i.e., she mines a block). The reward for mining a block is a fee: when Alice initiates a
transaction, she attaches a fee to her transaction, and the validating miner obtains the
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attached fee.5
In general, it is extremely difficult for one miner in the network to overturn the con-

sensus. In the case of Bitcoin or Ethereum, for example, they leverage their computing
power to solve a time-consuming cryptographic problem. This process is called proof
of work (PoW), and the miner who performs it fastest is entitled to add a new block a
chain.6 Of course there can be multiple chains of blocks, because each miner can choose
to which blockchain she adds a newly mined block. Following Nakamoto (2008), however,
the longest chain is regarded as a valid chain. Therefore, if a malicious agent attempts to
add fraudulent information to the transaction history (e.g., a double-spending problem),
she must outpace all miners in the network and secretly generate a longer chain than
other chains, which requires prohibitively high computing power. That is, information on
the blockchain is (almost) free from tampering.

Moreover, Ethereum allows users to add complex scripts to the blockchain which de-
scribe the conditions under which transaction is verified and recorded. It implies that a
transaction takes place only if the conditions in the code are fulfilled, and it is done auto-
matically without any centralized third-party agencies. This type of automated contracts
are called a smart contract following Szabo (1997).

3.2.2 Decentralized exchange
Building a trading platform on the blockchain—i.e., a decentralized exchange—looks a

natural strategy to extricate financial trading from a centralized information management
and to make it robust to cyber attacks or a single point of failures. However, maintaining
a limit order book by a smart contract on the Ethereum blockchain is costly and tends
to be slow, due to the time-consuming mining process and the limited capacity of the
blockchain.

There are two major solutions: a hybrid system and the Automated Market Makers
(AMM). Many DEXs have adopted some “hybrid” mechanisms that involve both on-
chain and off-chain features for order execution and settlement. For example, 0x is built
on so-called the relayer mechanism (see Warren and Bandeali, 2017). It provides an off-
chain order book, on which traders can broadcast their trading intention and find their
counterparties, as in the traditional centralized limit order markets. Since the order book
is maintained off-chain, it refreshes swiftly. Once traders agree on a trade (i.e., trade
execution), the order is settled on the blockchain via smart contracts. Note that the
hybrid system still involves centralized protocol to a certain extent, as the relayers reserve
some centralized power.

The second type of DEXs operate with the AMM. As mentioned in the introduction,
5A miner also obtains a block reward, which is a constant amount of Bitcoin (or other cryptocurrency

in other blockchains), when she mines a block. Although the block reward incentivizes miners to leverage
their computing power, the amount of reward periodically shrinks and converges to zero in the future.

6There are several ways to reach a consensus, and different blockchains (including ETH 2.0) adopt
different processes. For example, Saleh (2018) analyzes the viability of the proof of stake (PoS).
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it is a single-function algorithm that determines a price for order execution. As it is more
simple than a limit-order matching mechanism, it requires much smaller computational
capacity, making trade execution and settlement on the blockchain easier and faster. In
this chapter, I focus on the CPMM because it attains the largest share in cryptocurrency
trading among automated markets. Also, the CPMM is relatively simple and can provide
us with clear analytical insights into the new market structures.

3.2.3 Constant Product Market Making
This section briefly explains how constant product market makers (CPMMs) determine

the execution price of a trade. It follows the specification by Zhang, Chen, and Park
(2018) and more detailed discussions are provided by, for example, Adams, Zinsmeister,
and Robinson (2020).

Consider token X and token Y. Since there are ERC-20 tokens pegged to USD, one
of the tokens can be thought of as cash. Market makers inject tokens into an exchange
following a certain rule described below. The exchange aggregates locked tokens and
creates a liquidity pool. Suppose that the exchange reserves x unit of token X and y unit
of token Y. The CPMM requires the geometric mean of the liquidity pools to be constant.
That is, with some constant k, it must hold that k = xy.

If a trader wants to buy ∆x of token X by selling ∆y = p∆x of token Y at price p, she
adds ∆y of token Y to the pool and withdraws ∆x of token X from the pool. It triggers
the following change in the pools:

x→ x′ = x−∆x,
y → y′ = y + ∆y.

Note that the price of token X in terms of token Y is p = ∆y
∆x . Since the geometric mean

of the pool must be constant, the price must satisfy the following equation.

k = x′y′ = (x−∆x)(y + p∆y).

Thus, the above equation determines p as a function of the current state of the pool,
(x, y), and the trading quantity ∆x. In particular, I obtain

p = y

x−∆x.

Thus, the larger quantity the trader wants to buy (∆x > 0), the higher price she must
pay, i.e., the price is an upward-sloping curve against the trading quantity. The price
impact is mitigated when the exchange has a large amount of tokens in its liquidity pool.

Also by considering a small trading volume, ∆x → 0, the execution price for an
infinitesimal trade is given by p = y/x, that is, the relative size of liquidity pools. Figure
3.2 shows a change in the pools’ state caused by the above transaction: the exchange rate
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Figure 3.2: Constant Product Market Makers

Note: This figure illustrates a change in the state of liquidity pools when an incoming market order
is buying ∆x unit of token X. The CPMM requires the liquidity pools to stay on the convex curve by
adjusting a change in token Y or, equivalently, the execution price p.
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for an infinitesimal trade is determined by the slope of the curve specified by k = xy.
Importantly, this implies that the price is convex in the trading volume.

When a market maker (or a liquidity provider) supplies liquidity via the CPMM, she
is required to lock both token X and token Y. The amount of supplied liquidity must be
adjusted following the current asset price on the DEX. For instance, suppose that the
liquidity pools have x and y. Then, the price of token X in terms of token Y for an
infinitesimal trade is y

x
. If market maker i wants to supply xi unit of token X, she must

also supply the corresponding amount of token Y so that the slope of the CPMM does
not change, meaning that she also locks yi such that y+yi

x+xi = y
x
or, equivalently, yi = y

x
xi.

According to this rule, market makers inject liquidity to the pools.
Although the geometric mean of the liquidity pools stays constant, a transaction causes

a change in the liquidity pools, i.e., (x, y) → (x′, y′). If market maker i injects (xi, yi)
before a trade, and the aggregate size of the pool is (x, y), she obtains the share of the
aggregate liquidity pools, which is xi

x
and yi

y
. Upon settlement of a trade, the market maker

can withdraw her share from the liquidity pool and realizes her returns. Since the post-
trade pool state is (x′, y′), the market maker obtains the gross return of π = xi

x′

x
+ yi

y′

y
.

3.3 Model
Consider a one-shot trading game in a two-period model. A single risky asset with

common value ṽ is traded on two exchanges between three types of traders: for-profit
traders, liquidity traders, and market makers.7

Events and traders. One of two possible event types may trigger a trade at t = 1:
either an innovation in the fundamental value of the asset (a common-value shock) or a
liquidity shock (a private-value shock).8 With probability η ∈ (0, 1), the common value
of the asset experiences an innovation and becomes ṽ = v0(1 + σ̃), where σ̃ is stochastic
growth rate of the asset’s value and σ̃ = ±σ with the same probability. v0 represents the
prior expected value of the asset and, without loss of generality, I normalize v0 = 1.

There is a continuum of risk-neutral for-profit traders with a unit measure. They
are sophisticated institutional investors: when a shock happens to ṽ, they immediately
observe the realized value of the shock and choose their trading venue (either the DEX
or the CEX, as defined below). Each for-profit trader can decide on the trading venue
contingent on private information, i.e., she is equipped with a smart order router (SOR)

7Although the term “asset” is used throughout the chapter, it does not restrict the types of the traded
assets: following the fact that digital tokens are the major traded assets on DEXs, the asset in the model
can be thought of as cryptocurrencies and ECR-20 tokens. Accordingly, the asset’s value or the price of
the asset can be seen as the exchange rate between a certain pair of ECR-20 tokens (or fiat currency).

8See, for example, Menkveld and Zoican (2017) and Brolley and Zoican (2020) for models with these
shocks as a trigger of transactions.
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that covers both the CEX and the DEX.9 A for-profit trader sends a single-unit market
order to take an arbitrage opportunity.10 In what follows, for-profit traders are also
referred to as informed traders.

With probability 1− η, a shock hits the private value of liquidity traders. The liquid-
ity traders are impatient traders, and the shock triggers their needs for immediacy, such
as hedging motives, margin constraints, and other immediate borrowing and lending re-
quirements. I assume that mass zbuy of liquidity traders are hit by a positive private-value
shock and arrive at the market to buy one unit of the asset, whereas mass zsell of liquidity
traders are hit by a negative shock and try to sell one unit of the asset. The mass of
liquidity traders is stochastic and uniformly distributed, zi ∼ U [0, z] for i ∈ {buy, sell}.
Upon arrival at the market, each liquidity trader immediately places a single-unit market
order to fulfill her trading needs. Regarding their venue choice, liquidity traders need to
decide on their trading venue at t = 0 before they enter the market. This is because they
are unsophisticated retail investors, and maintaining multiple accounts at both exchanges
(or subscribing to an SOR) is costly for them.11 In Section 3.5, I relax this assumption and
allow liquidity traders to choose trading venues contingent on the sign of the private-value
shock.

There also exists a continuum of market makers with measure L. Among them,
measure LC of market makers participate in the CEX, and the remaining LD = L − LC
measure of market makers provide liquidity on the DEX. In what follows, I take LD as
exogenous, while Section 3.4 endogenizes it.

Figure 3.3 illustrates the timeline of the game and possible outcomes of the trigger
event.

Exchange platforms. There are two exchange platforms: the CEX and the DEX. The
CEX is a traditional centralized exchange and operated with a continuous limit order
book (LOB). Market makers on the CEX competitively provide quotes by submitting
a single-unit limit orders with bid and ask prices, as in Glosten and Milgrom (1985).
Limit orders are displayed on the limit order book, and liquidity takers (i.e., informed or
liquidity traders) trade at the proposed prices by submitting market orders. Incoming
market orders are processed with price-time priority. The CEX is based on the centralized
matching algorithm with high-speed information processing. Thus, it provides ultra-fast
trade execution, causing almost no delays.12

9Some third-party agencies provide routing services between CEXs and DEXs for trading firms, such
as CoinRoutes (https://coinroutes.com/) and MainBloq (https://mainbloq.io/).

10 Due to the risk neutrality, each trader is differentiated between two exchanges rather than splitting
her order between two venues.

11As of March 2021, there exist only a limited number of cryptocurrency exchanges that provide order
routine services across CEXs and DEXs. An investor may trade via institutional brokers, but a large
portion of cryptocurrency trades are directly done by retail investors.

12From the high-frequency traders’ perspective, even a centralized exchange with cutting-edge tech-
nologies causes a microsecond or nanosecond delay that may affect trading profits. However, the primary
focus of this chapter is on the trading on the CEX compared to that on the DEX, and ignoring delays in

https://coinroutes.com/
https://mainbloq.io/cryptocurrency-smart-order-router/
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Figure 3.3: Timeline of the game

In contrast, the DEX is operated with the CPMM. As explained in Subsection 3.2.3,
market makers competitively lock one unit of the asset (and cash) into the exchange,
generating liquidity pools. A liquidity taker who wants to buy (resp. sell) the asset
subtracts (resp. adds) the asset from the asset liquidity pool by adding (resp. subtracting)
cash to the cash liquidity pool. The execution price is determined by the CPMM algorithm
instead of quotes by market makers.

Trade execution with the CPMM involves smart contracts on Ethereum blockchain,
and it takes much lower throughput than the CEX, causing a delay in completion of a
transaction. I assume that all incoming orders placed at t = 1 are simultaneously executed
(i.e., matched) at the end of the first period. However, executed transactions are stored in
the mempool of the blockchain and wait to be validated by blockchain miners. Following
Zhu (2014), I assume that a delay in order execution weighs negatively on the private
utility of liquidity traders, as they are impatient and eager to fulfill their trading needs
immediately. In the model, a liquidity trader on the DEX incurs γσ per unit of trade,
where γ is a random parameter that measures the aversion toward a delay (or needs for
immediacy) and drawn from γ ∼ U [0, 1].13

Differentiation. In what follows, I focus on the equilibrium in which the informed and
the liquidity traders are endogenously differentiated between the CEX and the DEX. Note
that each informed trader buys (resp. sells) the asset when the asset value experiences

order of microseconds or nanoseconds does not harm my discussions, as a delay on the DEX is the order
of seconds or minutes, which is much longer than that on the CEX.

13The delay cost that is proportional to the asset volatility σ can be seen as margin constraint or
unmodeled risk aversion (e.g., Brunnermeier and Pedersen, 2009).
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a positive jump σ̃ = +σ (resp. a negative jump, σ̃ = −σ). It becomes clear in the
following discussion that the behavior of informed traders is asymmetric and depends on
the trade direction due to the convex nature of the execution price on the DEX. Therefore,
conditional on σ̃ = +σ, I suppose βbuy ∈ [0, 1] fraction of informed traders participate in
the DEX to buy the asset. In contrast, with σ̃ = −σ, measure βsell ∈ [0, 1] of informed
traders sell on the DEX. I denote the measure of liquidity traders on the DEX as α ∈ [0, 1],
which is not contingent on the sign of a private-value shock, as they decide on trading
venues at t = 0 (see Section 3.5 for the case with asymmetric α).

3.3.1 Trade on the CEX
The partial equilibrium on the CEX mostly follows the conventional model by Glosten

and Milgrom (1985). I denote the equilibrium bid and ask prices on the CEX as

Ask = 1 + a, Bid = 1− b.

I sometimes call the deviation of Ask and Bid from the expected value of the asset E[ṽ] = 1
(i.e., a and −b) the ask and bid prices. Also, the (effective) bid-ask spread is defined as
S = a+ b.

Given the differentiation of traders, the expected profits for a market maker on each
side of the market are given by

πCM,ask = 1
2 [η(1− βbuy)(a− σ) + (1− η)(1− α)za] ,

πCM,bid = 1
2 [η(1− βsell)(b− σ) + (1− η)(1− α)zb] .

In both equations, the first term represents a trade with an informed trader, which hap-
pens with probability 1

2η(1−βi), and the second term shows the case of liquidity trading,
which happens with probability 1

2(1 − η)(1 − α)z. Following Zhu (2014), I focus on the
equilibrium in which a market maker breaks even on the both sides of the market. Then,
the break-even condition yields the following competitive bid and ask prices.

a = a(βbuy, α) = σ
(1− βbuy)η

(1− βbuy)η + (1− η)(1− α)z , (3.1)

b = b(βsell, α) = σ
(1− βsell)η

(1− βsell)η + (1− η)(1− α)z . (3.2)

Note that the bid and the ask prices are potentially asymmetric when βbuy 6= βsell. Other-
wise, the comparative statics of the bid-ask spread are the same as the traditional models
of market microstructure with asymmetric information. That is, the bid-ask spread is pos-
itively (resp. negatively) affected by the intensity of informed (resp. liquidity) trading,
as it exacerbates (resp. mitigates) the adverse selection cost for a market maker.
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Accordingly, the expected profits for an informed trader who trades on the CEX are
given by

πCI (σ̃) =

σ − a if σ̃ = +σ and buys the asset,
σ − b if σ̃ = −σ and sells the asset.

(3.3)

Note that the informed trader’s profits are computed conditional on the realized value of
σ̃. Similarly, a liquidity trader’s (ex-post) profits from trading on the CEX are given by14

πCL,k =

−a if k = buy,

−b if k = sell,
(3.4)

where subscript k indicates whether the private-value shock induces a trader to buy or
sell the asset. Since zbuy and zsell measures of liquidity traders are hit by “buy” and “sell”
private-value shocks, the ex-ante expected trading cost for a liquidity trader at t = 0 is
equivalent to the effective bid-ask spread:

E

 ∑
k=buy,sell

zkπ
C
L,k

 = −z2S. (3.5)

3.3.2 Trade on the DEX
Liquidity pools. I assume that the DEX has c̄ and x̄ of cash and the asset in its
liquidity pools before the trading game starts.15 The positive initial reserve is justifiable
by the existence of unmodeled passive liquidity providers in the real financial markets,
who inject liquidity into the pool and stay inactive. The non-arbitrage condition at the
beginning of the game, together with the CPMM algorithm, implies that c̄

x̄
= v0 = 1, i.e.,

an infinitesimal trade on the DEX does not make any profits. This equation works as an
exogenous initial condition for the DEX liquidity pools.

Each market maker at the DEX must follow the CPMM algorithm. For example, if
market maker i wishes to supply ci (cash) and xi (the asset), it must satisfy ci = v0xi
to keep the price on the exchange at t = 0 constant at v0, i.e., it does not change the
execution price of an infinitesimal trade on the DEX because c̄+ci

x̄+xi = v0. Since I have the
unit-trading assumption, the above rule on liquidity provision implies that each market
maker supplies one unit of the asset and cash simultaneously at the beginning of the game.

14I implicitly assume that a liquidity trader obtains private utility u if she fulfills her trading needs,
with u being sufficiently large (e.g., u > 1 + σ). Therefore, all liquidity traders participate in the market
upon hit by a shock. u does not affect the equilibrium conditions because a liquidity trader obtains u no
matter where she trades.

15I assume that the size of the liquidity pools are larger than the potential size of liquidity taking orders,
i.e., c̄, x̄ ≥ max{1, z}. In other words, the liquidity pools do not dry up even if all traders participate in
the DEX and take liquidity.
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I denote the aggregate size of cash and the asset in the liquidity pools at t = 0 as C
and X, where

C ≡ c̄+
∫
cidi = c̄+ LD (3.6)

and X = v−1
0 C = C. Also, the initial constant for the CPMM is given by k ≡ CX = C2.

The execution price of a trade is determined so that the geometric mean of the pools stays
at the constant level, k.

Execution price. Consider an incoming market order with size x (e.g., x > 0 means a
buy market order with mass x). By denoting the execution price for the order as p, the
state of the liquidity pools changes as follows after the trade:

C → C ′ = C + px (3.7)
X → X ′ = X − x. (3.8)

For example, if a trader is buying the asset (x > 0), she subtracts x unit of the asset from
the asset liquidity pool, X, by adding the corresponding amount of cash px to the cash
pool, C. The CPMM sets the price p so that the post-trade state of the pools satisfies

k = C2 = (C + px)(X − x),

leading to the following value.
p(x) = C

C − x
. (3.9)

Thus, the larger quantity the trader intends to buy (resp. sell), the higher (resp. lower)
the execution price becomes. Moreover, the price impact of a trade can be defined as
follows.

Lemma 3.1. The price impact of a market order with measure x is given by d log p(x)
dx

=
1

C−x . Also, the price impact is decreasing in C and increasing in x.

The above lemma characterizes the market depth on the DEX. When the DEX has a
larger quantity in its liquidity pools (C), the market becomes deeper, and a market order
of a given size has a smaller price impact. Therefore, it is appropriate to use the pool size
(C) as the measure of liquidity on the DEX.

Profits for informed traders on the DEX. When a jump in the asset’s value
occurs, each informed trader knows σ̃ = ±σ, which also implies that she is aware of the
trading attempts of other informed traders. More precisely, she knows that a positive
(resp. negative) jump triggers buy (resp. sell) market orders of aggregate size βbuy (resp.
βsell). Therefore, conditional on σ̃ = ±σ, the execution price on the DEX is given by

p =

p(βbuy) = C
C−βbuy

when σ̃ = +σ,
p(−βsell) = C

C+βsell
when σ̃ = −σ.

(3.10)
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For simplicity, I assume that all incoming orders are aggregated and executed all at once,
but Appendix C.4 shows that the expected execution price is the same as (3.10) when
we consider sequential execution of orders. As a result of (3.10), an informed trader’s
expected profits from trading on the DEX are

πDI (σ̃) =

1 + σ − p(βbuy) if σ̃ = +σ
p(−βsell)− (1− σ) if σ̃ = −σ.

(3.11)

Importantly, the execution prices for buy and sell orders are not symmetric around
the expected value of the asset. We can think of p(x) and p(−x) as the ask and the bid
prices on the DEX but p(x) − 1 6= 1 − p(−x) as long as x 6= 0. This is because of the
convexity in the CPMM’s pricing algorithm. As illustrated in Figure 3.4, suppose that
a buy or a sell order with quantity ∆x moves the state of the liquidity pools from LP0
(the initial condition) to LP1 in the figure. If it is a buy order (∆x > 0), LP0 slides
upward to LP1,buy, while a sell order moves LP0 downward to LP1,sell, both along the
curve C = X−1. Since the curve is convex, even if the buy and the sell orders have the
same size, the buy order requires a larger adjustment of the cash pool than the sell order,
∆cbuy > ∆csell. Hence, a trader must pay a higher price p to buy the asset than the price
payment she obtains when she sells the asset.

Note that the above discussion is true even if I switch the role of cash and the asset.
Economically, the convexity of the CPMM implies that the execution price or the exchange
rate between assets is determined so that adding the liquidity to the pool bears a smaller
price impact compared to consuming liquidity in the pool. This hard-wired asymmetry
in the CPMM algorithm is absent in the limit order market because, without frictions or
risk aversion, a buy and a sell market order bear the same trading cost, i.e., bid and ask
prices are symmetric around the mid point.

Profits for liquidity traders on the DEX. With probability 1−η, the trigger event
is a private-value shock on the needs for immediacy of liquidity traders. Conditional on
the direction of the private-value shock, the profits for a liquidity trader with the delay
cost parameter at γ are given by

πDL,k(γ) =

1− E∆z[p(α∆z)]− γσ if k = buy,

E∆z[p(α∆z)]− 1− γσ if k = sell.
(3.12)

Note that the aggregate order size, ∆z = zbuy−zsell, is uncertain for each liquidity trader,
and E∆z is the expectation over ∆z. Compared to the informed trading, the price impact
of liquidity trading tends to be weak because their trading direction is random, and buy
and sell orders are netted out.

3.3.3 Equilibrium venue choice
I define the equilibrium with exogenous DEX liquidity (C,X) as follows:
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Figure 3.4: Asymmetric price impact

Note: This figure discribes the price impact of buy and sell orders with the same size, ∆x. Starting from
(X0, C0), a buy market order with size ∆x causes an upward shift of the liquidity pools, while a sell order
triggers a downward shift. The execution price must keep (C,X) on the CPMM curve (C = 1/X). Since
the curve is convex, an addition of ∆x to X requires a smaller adjustment of the value of C than the
case of reduction of X, meaning that the price impact is larger for a buy order.
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Definition 3.1. The equilibrium of the model is defined by the measure of informed and
liquidity traders who participate in the DEX, {(βi)i=buy,sell, α}, the bid-ask prices, (a, b),
and the execution prices on the DEX, p, such that (i) the informed traders are indifferent
between trading on the CEX and the DEX given the occurrence of a jump in ṽ and the
information about σ̃, (ii) the liquidity traders are differentiated by comparing the ex-ante
expected profits on the CEX and the DEX, (iii) the market makers on the CEX break even
at the bid and the ask prices, and (iv) the prices on the DEX follows the CPMM algorithm
given the initial pools condition (C,X).

With the profit functions for each trader on each venue given by (3.3), (3.4), (3.11),
and (3.12), the indifference conditions for traders pin down the equilibrium mass of traders
on the DEX.

Informed traders. The informed traders’ indifference condition for the buy and the
sell sides boils down to

1 + a(βbuy, α) = p(βbuy),
1− b(βsell, α) = p(−βsell).

By rearranging the above equations with (3.1), (3.2), and (3.10), βbuy and βsell solve
B(β; +σ) = 0 and B(β;−σ) = 0, respectively, where B is given by

B(β; σ̃) = β2(1 + σ̃)η − β[(1 + σ̃)η + z(1− α)(1− η) + σηC] + σηC. (3.13)

Since we have B(0; σ̃) > 0 and B(1; σ̃) < 0 there is a unique solution of B(β; σ̃) = 0 in
β ∈ (0, 1).

Proposition 3.1. (i) Given α, the equilibrium measure of informed traders on the DEX
is given by β∗buy = β(+σ, α) and β∗sell = β(−σ, α) where

β(σ̃, α) =
(1 + σ̃)η + (1− η)αz + σηC −

√
D(σ̃)

2(1 + σ̃)η (3.14)

with D(σ̃) = [(1 + σ̃)η + (1− η)αz + σηC]2 − 4(1 + σ̃)ση2C.
(ii) β∗i is monotonically increasing in α, C, and σ.
(iii) β∗buy < β∗sell for all α ∈ (0, 1).

Proof. Solving the quadratic equation in (3.14) yields the result. Point (ii) is obtained by
the implicit function theorem.

β∗buy and β∗sell are both a unique solution for each indifference condition in β ∈ (0, 1),
and they are stable, i.e., they do not diverge even if a small perturbation happens to
parameter values. Intuitively, a small increase in the measure of DEX informed traders
β∗ causes a larger price impact on the DEX and a narrower bid-ask spread on the CEX
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due to mitigated adverse selection for CEX market makers. Thus, the CEX becomes more
attractive than the DEX, meaning that a marginal informed trader on the CEX has no
incentive to switch her trading venue.

Moreover, the trading intensity of the informed traders exhibits anticipated reactions
to a change in parameter values. If a larger set of liquidity traders participate in the DEX
(α increases), it exacerbates adverse selection for market makers on the CEX. It induces
the market makers on the CEX to charge a wider bid-ask spread, and more informed
traders are willing to participate in the DEX (β∗i increases). Also, a larger C implies that
the DEX provides deeper liquidity and attenuates the price impact of informed trading
(see Lemma 3.1), inviting more informed traders to the DEX. Finally, a higher volatility of
the asset (σ) also attracts informed traders to the DEX. On the one hand, the execution
price at the DEX is not directly affected by the asset volatility. On the other hand,
the bid-ask spread on the CEX becomes proportionally wider when the asset becomes
more volatile. This is because σ captures a stronger informational advantage of informed
traders and more severe adverse selection for market makers.

One of the novel implications of the CPMM algorithm emanates from asymmetry
in execution prices due to its convexity explained above. Since buying the asset incurs
a larger cost than the return of selling the asset, a negative innovation in the asset’s
value induces a disproportional reaction of informed sellers to informed buyers, leading to
β∗buy < β∗sell. The asymmetric reaction survives in the general equilibrium with endogenous
α and C and provides some empirical implications, as discussed later.

Liquidity traders. A liquidity trader with cost parameter γ participates in the DEX
if and only if the profits from trading on the DEX dominate that from trading on the
CEX:16

z

2
∑

k=buy,sell
πDL,k ≥

z

2
∑

k=buy,sell
πCL,k = −z2S,

where the last equality uses (3.5). The above inequality is reduced to

γ < γ∗ ≡ S(βbuy, βsell, α)
2σ .

The LHS is the expected trading cost on the DEX. Since buying and selling happens with
the same probability, the execution price does not affect the expected cost. However, the
delay cost matters because a liquidity trader on the DEX bears it regardless of the trading
direction. In contrast, the RHS represents the expected trading cost on the CEX, i.e., the
bid-ask spread. Since γ ∼ U [0, 1], I obtain the following result.

Proposition 3.2. (i) Given (βbuy, βsell), the equilibrium mass of liquidity traders on the
DEX is determined by

α = Pr(γ < γ∗) = S(βbuy, βsell, α)
2σ . (3.15)

16I assume that a liquidity trader participates in the DEX when she is indifferent.
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Figure 3.5: Expected trading costs for liquidity traders

If η < z
1+z , equation (3.15) has two solutions: α̂ = 1 and α∗ ∈ (0, 1). α̂ is unstable and

α∗ is stable. If η > z
1+z , α̂ = 1 is a unique (unstable) solution.

(ii) α∗ is monotonically decreasing in βbuy and βsell.

Proof. See Appendix C.1.

Figure 3.5 depicts the LHS and the RHS of equation (3.15) with η < z
1+z . Since the

cost of the DEX trading crosses the cost of the CEX trading from above at α∗, it is
stable, i.e., even if a small change happens to α∗, it converges to the original point. In
what follows, I assume that the condition holds for multiple solutions and focus on the
stable one α∗ ∈ (0, 1).

Proposition 3.2 demonstrates that the measure of liquidity traders on the DEX is
decreasing in the measure of informed traders on the DEX. When informed traders migrate
away from the CEX to the DEX (β∗i increases), CEX market makers face a less severe
adverse selection problem. It induces the market makers to lower the bid-ask spread, and
the trading cost on the CEX declines. Sine the execution price on the DEX for liquidity
trading is not directly affected by the measure of informed traders, the CEX becomes
more attractive for the liquidity traders, lowering α∗.

Overall, Propositions 3.1 and 3.2 indicate that informed traders “chase” liquidity
traders between trading venues. When the liquidity traders migrate away from the CEX
to the DEX (α declines), the informed traders are more willing to trade on the DEX as
well. This is because of a more severe adverse selection problem on the CEX and a larger
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trading cost there. In contrast, when informed traders move to the DEX, the liquidity
traders are inclined to migrate back to the CEX, because liquidity on the CEX improves
due to a less severe adverse selection problem for CEX market makers. In the follow-
ing subsection, I derive the equilibrium by putting together the above two channels and
analyze the impact of the DEX liquidity (C) on the CEX liquidity (the bid-ask spread).

3.3.4 Liquidity impact of the CPMM
It is not trivial whether an additional liquidity on the DEX improves or deteriorates

liquidity on the CEX. Since the bid-ask spread on the CEX is determined by the ratio of
informed trading to liquidity trading, we need to investigate the reaction of (βbuy, βsell)
relative to that of α to a change in DEX liquidity C.

From Propositions 3.1 and 3.2, I obtain the following result.

Proposition 3.3. (i) The equilibrium measures of liquidity traders and informed traders
on the DEX, (α∗, β∗buy, β∗sell), solve the following equations.

α = S(βbuy, βsell, α)
2σ , (3.16)

βi =

β∗(+σ, α) for i = buy,

β∗(−σ, α) for i = sell,

where β∗ is given by (3.14). There is a unique stable interior solution for the above
equations.
(ii) The equilibrium measure of liquidity traders on the DEX α∗ is a decreasing function
of DEX liquidity C.
(iii) The equilibrium bid-ask spread on the CEX is a decreasing function of C.

Proof. See Appendix C.2.

Although the behavior of β∗i is hard to obtain analytically, I can numerically check
that informed traders are more inclined to participate in the DEX when it becomes more
liquid, as shown by Figure 3.6. This is because the price impact for informed trading is
decreasing in C. Thus, larger liquidity pools on the DEX render informed trading on the
DEX less costly and attracts more informed traders to the DEX.

Moreover, Proposition 3.3 shows that deeper liquidity on the DEX causes migration
of liquidity traders from the DEX to the CEX. Firstly, an increase in β∗i mitigates the
adverse selection cost for CEX market makers, and the bid-ask spread declines. Secondly,
we know from equation (3.16) that a change in C does not have a direct impact on liquidity
traders’ behavior, as the execution price on the DEX does not matter in expectation.
Hence, facing a decline in the trading cost on the CEX, more liquidity traders participate
in the CEX. Note that this process involves a decline in the bid-ask spread or improved
market liquidity on the CEX, as demonstrated by point (iv) in Proposition 3.3.
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Figure 3.6: Informed trading on DEX

Note: This figure illustrates the values of β∗i for different C. The values for other parameters are
σ = 0.1, z = 1.0, η = 0.2. The upward sloping configuration is robust to other parameter values.

Therefore, my model suggests that liquidity on the DEX complements that on the
CEX. Although I do not model underling blockchain mechanisms for the DEX in detail,
some exogenous variations in blockchain parameters may affect CEX liquidity by altering
liquidity provision on the DEX. For example, the amount of Ethereum locked in Uniswap
has experienced a substantial drop (about 40%) in November 2020 after the announcement
of a change in the fee structure on the platform.17 The above result can be a simple
building block to analyze the liquidity impact of such an event and helps discuss the
broader implications of blockchain environment by incorporating its cross-market effects.

Moreover, compared to actively monitored and repriced limit orders on the traditional
markets, liquidity provision with the CPMM (or AMMs, in general) is called “lazy liquid-
ity” and regarded as inefficient in the real financial market. The claim is based on the fact
that market makers on the DEX do not have control over the execution price of a trade
and cannot incorporate information even if some news arrives. my model cannot address
if it is inefficient, as it does not directly compare the welfare implication of liquidity on
both venues. However, I show that an additional liquidity on the DEX improves that on
the CEX, which may go counter to the claimed inefficiency of DEX liquidity.

3.4 Liquidity provision with the CPMM
Although the previous subsection establishes that DEX liquidity C improves liquidity

on the CEX, C must be an endogenous variable in the equilibrium. Namely, the value of
C in my model captures how many market makers provide liquidity on the DEX. Thus,

17See, for example, https://cointelegraph.com/.

https://cointelegraph.com/news/uniswap-s-liquidity-plunges-40-in-a-day-as-incentives-dry-up
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this section endogenizes the liquidity provision by the market makers by allowing them
to choose the venue to provide liquidity.

3.4.1 Market makers’ profits on the DEX
Prior to the trading game (at t = 0), each market maker decides on the trading venue

to supply liquidity. If she participate in the CEX, she decides on bid and ask prices for
one unit of the asset. Since the market-making sector on the CEX is competitive, she
proposes the competitive prices, a and b derived in (3.1) and (3.2), to obtain zero profits
in expectation.

In contrast, if she participates in the DEX, she injects one unit of cash and the asset
to the liquidity pools. The expected cost of liquidity provision is 1 + E[ṽ] = 2, i.e., one
unit of cash and the asset, with the latter having the expected value E[ṽ]. By locking
liquidity, she obtains w = 1

C
share of the post-trade aggregate liquidity pools. With a

trade of size x, the post-trade liquidity pools have C ′ and X ′ in equations (3.7) and (3.8).
Since the order type and the trigger event are uncertain for market makers at the

liquidity provision stage, the expected liquidation value of the liquidity pools is

VLP = E
[

C2

C − x̃
+ ṽ(C − x̃)

]

where E is the expectation operator regarding the type of traders (i.e., informed or un-
informed) and the type of the trigger event (i.e., an innovation in ṽ or a private-value
shock). By expanding the expectation and applying the trading strategy of liquidity
takers, it holds that

VLP = η

2

[
C2

C − βbuy
+ (1 + σ)(C − βbuy) + C2

C + βsell
+ (1− σ)(C + βsell)

]
(3.17)

+ (1− η)
∫ z

−z

(
C2

C − α∆z + C − α∆z
)
dG(∆z)

where G is the cdf of ∆z ≡ zbuy − zsell.18 The first line shows the value of the post-trade
liquidity pools when the trigger event is an innovation in the fundamental value of the
asset. In this case, the jump in ṽ is either positive or negative with the same probability
and triggers informed trading with measure βbuy (if σ̃ = +σ) or βsell (if σ̃ = −σ). With
the complementary probability, a shock hits on the private value of liquidity traders. It

18Since ∆z = zbuy − zsell with zi ∼ U [0, z], the pdf of ∆z is

g(∆z = q) =
{

0 if q /∈ [−z, z],
1

z2 (z − |q|) if q ∈ [−z, z].
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results in the market orders with stochastic size ∆z = zbuy − zsell, as captured by the
second line.

Each market maker has share w of the post-trade liquidity pools, meaning that her
expected profits from supplying liquidity, net of the initial cost, is given by πDM ≡ wVLP−2,
that is,

πDM = η

2

[
βbuy

C − βbuy
− (1 + σ)βbuy

C
− βsell
C + βsell

+ (1− σ)βsell
C

]
︸ ︷︷ ︸

=πDM,IT

+ (1− η)
[∫ z

−z

(
C

C − α∆z

)
dG(∆z)− 1

]
︸ ︷︷ ︸

=πDM,LT

.

I denote the net profits from informed and liquidity trading as πDM,IT and πDM,LT , respec-
tively.

Proposition 3.4. (i) A market maker on the DEX obtains negative profits from informed
trading and positive profits from liquidity trading, that is, πDM,IT < 0 and πDM,LT > 0.
(ii) The (negative) profits from informed trading is decreasing in βbuy, βsell, and σ. It
takes a U-shaped curve against C, and converges to 0 as C →∞.
(iii) The (positive) profits from liquidity trading is increasing in α and decreasing in C.

Proof. See Appendix C.3.

As in the case of limit order markets, market makers on the DEX gain from trading
with liquidity traders but lose from trading with informed for-profit traders. In other
words, informational advantage of informed traders causes the risk of negative profits
for the market makers on the DEX. On the DEX, the fact that liquidity is taken by
an informed trader implies that the value of liquidity pools inevitably declines. This is
because an informed trader always subtracts one of the more valuable assets from the
liquidity pools by adding a less valuable asset to the pools. As a result, a market maker
ends up having a larger amount of a less valuable asset by giving up a more valuable
asset. This result highlights the similarity of the CPMM to market making on the limit
order book. Namely, informed trading involves adverse selection for market makers on
the DEX, as in the case of limit order markets (e.g., Glosten and Milgrom, 1985; Kyle,
1985).

Following the above intuition, market makers lose more when informed trading on the
DEX is more active, i.e., when βi is high. Moreover, the adverse selection cost for DEX
market makers (πDM,IT ) is a decreasing function of σ. The more volatile the asset becomes,
the more informational advantage the for-profit traders obtain by knowing σ̃ = ±σ. Thus,
σ also captures the degree of adverse selection and the cost of liquidity provision on the
DEX.
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In contrast, the size of liquidity on the DEX has an ambiguous impact on the cost of
informed trading. On the one hand, a larger pool size (C) induces more informed trading
(Proposition 3.1), and the adverse selection problem deteriorates. On the other hand, a
larger C implies that each market maker has a smaller stake in the aggregate liquidity,
diminishing the negative impact of informed trading on her profits.

In contrast, uninformed liquidity trading improves the value of the liquidity pools.
Firstly, since liquidity buy and sell orders are netted out and they are independent of
σ̃, liquidity trading does not change the expected value of the asset pool (E[X ′] = C −
αE[∆z] = C), leading to zero net profits from X → X ′. The strictly positive profits
from liquidity trading emanate from the liquidity pool of cash. Since the execution price
adjusts the post-trade liquidity pools along with the convex curve C = X−1, Jensen’s
inequality implies that

E∆z

[
C

C − α∆z

]
>

C

C − αE∆z[∆z] = 1.

Therefore, the positive impact of liquidity trading is hard-wired in the CPMM’s convex
pricing algorithm and works as an implicit reward for liquidity providers on the DEX.

The profit from liquidity trading is magnified when the volatility of liquidity trading
is large. For example, both a larger set of liquidity traders on the DEX (α) and a wider
variation in liquidity trading (i.e., V ar(zi)) improve πDM,LT . However, a larger liquidity size
(C) diminishes a variation in the liquidity trading and reduces πDM,LT . These properties
are easily derived from Jensen’s inequality, as a change in α∆z or C alters the convexity
of the pricing curve.

3.4.2 Equilibrium with endogenous DEX liquidity
We are poised to characterize the full equilibrium with endogenous liquidity on the

DEX. I focus on the equilibrium in which market makers are differentiated between two
venues, meaning that each of them must be indifferent between them. Since market
makers on the CEX break even due to competition, the measure of DEX market makers
LD is determined by the zero-profit condition on the DEX. That is, C∗ = c̄+ L∗D solves

πDM = η

2π
D
M,IT (C) + (1− η)πDM,LT (C) = 0. (3.18)

As shown by Figure 3.7, I numerically check that πDM is monotonically decreasing in
C when πDM < 0, and the above equation has a unique stable solution, C∗, as long as
σ < C

1+C and some other parameter conditions are satisfied.
Moreover, Proposition 3.4 implies that C∗ negatively reacts to an exogenous change

in β∗i relative to α. Intuition follows the traditional discussions on adverse selection:
informed trading relative to liquidity trading makes it more costly for market makers on
the DEX to supply liquidity. Thus, the size of the liquidity pools (or the measure of
DEX market makers) must decline to guarantee the break-even condition, leading to a
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Figure 3.7: Market makers’ profit on DEX

Note: These figures are illustrated by using z = 2.0 and η = 0.4.

shallower market. This is also true for an increase in σ, as it exacerbates information
asymmetry between informed traders and market makers.

Comparative statics. In what follows, I take the volatility of the asset σ (or the
measure of asymmetric information) to gauge a joint reaction of the traders’ behavior
and market liquidity. Parameter σ has a direct impact on liquidity on the DEX (C∗;
via equation [3.18]) and informed trading (β∗buy, β∗sell; via equation [3.14]), whereas the
measure of liquidity trading (α∗) is only indirectly affected by σ.

A higher volatility of the asset implies that informed traders possess a more informa-
tional advantage over market makers, and the adverse selection problem worsens both
on the DEX and the CEX. Therefore, it confounds liquidity provision by DEX market
makers, leading to a decline in C∗, as well as a wider effective bid-ask spread on the CEX.

As both the DEX and the CEX become more costly to trade, the reaction of β∗buy
and β∗sell can be ambiguous. Remember that β∗buy solves B(β; +σ) = 0, while β∗sell is the
solution of B(β;−σ) = 0, with B given by equation (3.13). Thus, the impact of σ on βbuy
and βsell through market liquidity can be analyzed by the following partial derivative:

∂B(β; σ̃)
∂σ

∼ C∗ − sign(σ̃)σ︸ ︷︷ ︸
>0

+ σ
∂C∗

∂σ︸ ︷︷ ︸
<0

. (3.19)
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Figure 3.8: Reaction of informed traders to σ

Note: These figures are illustrated by using z = 2.0 and η < C
1+C to guarantee the existence of the stable

equilibrium. The solid line shows βbuy, the dotted line shows βsell, and the dashed line shows βbuy +βsell.

The first term shows the impact of σ on βi via a change in the bid-ask spread (CEX
liquidity), and the second term is the impact via a change in C∗ (DEX liquidity). It shows
that βbuy is more resilient to a wider bid-ask spread than βsell, i.e., the first component
in (3.19) is larger for βsell because σ̃ = −σ. This is intuitive because the convexity of the
CPMM makes it less costly for a liquidity taker to add liquidity to the pool than consume
liquidity in the pool, meaning that an incentive to migrate to (or stick to) the DEX is
stronger for selling informed traders. As a result, informed traders on the DEX exhibit
asymmetric reaction to a volatility shock: when selling (resp. buying) the asset, informed
traders tend to cluster on the DEX (resp. the CEX).

The above logic is confirmed by Figure 3.8, which shows that the DEX-liquidity effect
(the second term of [3.19]) dominates the CEX-liquidity effect (the first term of [3.19])
for buying informed traders, leading to decreasing β∗buy against σ, while β∗sell shows the
opposite reaction. Moreover, since βsell exhibits a stronger (positive) reaction to σ than
a negative reaction of βbuy, the DEX involves more informed trading in expectation, i.e.,
β∗buy + β∗sell increases.

Numerical result 1: When the asset becomes more volatile, informed sellers tend to
cluster on the DEX and informed buyers tend to cluster on the CEX. The net effect
is positive in the sense that outflow of buyers is dominated by inflow of sellers to
the DEX.

Next, consider the behavior of liquidity traders. Figure 3.9 shows that liquidity traders
tend to cluster on the CEX when the asset becomes more volatile. They compare the
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Figure 3.9: Reaction of liquidity traders to σ

Note: These figures are illustrated by using z = 2.0 and η < C
1+C to guarantee the existence of the stable

equilibrium.

delay cost on the DEX (γσ) to the expected trading cost on the CEX (S; the bid-ask
spread). Since both of them are proportional to the asset volatility, σ has no direct
impacts on liquidity traders’ venue choice. Instead, what matters is the normalized bid-
ask spread, S

2σ , which captures the adverse selection problem for the CEX market makers
that emanates from informed traders’ venue choice.

In the above discussion, we have established that informed traders tend to cluster on
the DEX in expectation (i.e., βbuy+βsell

2 increases), and it imposes more severe adverse
selection on DEX market makers, while mitigating that for CEX market makers. It
tightens the normalized bid-ask spread on the CEX and attracts liquidity traders to the
CEX.

Numerical result 2: When the asset becomes more volatile, liquidity traders tend to
cluster on the CEX.

Finally, Figure 3.10 summarizes the reaction of market liquidity to a change in the asset
volatility incorporating the above behavior of traders. Through their venue choice, traders’
reactions may have indirect effects and undermine the direct impact of σ on market
liquidity, but they cannot offset or dominate the direct effect.

Numerical result 3: When the asset becomes more volatile, liquidity on the DEX, mea-
sured by the amount of cash locked in the pool, and liquidity on the CEX, measured
by the bid-ask spread, both deteriorate. The normalized bid-ask spread on the CEX,
however, improves.
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Figure 3.10: Reaction of market liquidity to σ

Note: These figures are illustrated by using z = 2.0 and η = 0.3. They are rbust to other parameter
values as long as η < C

1+C is satisfied to guarantee the existence of the stable equilibrium.

The normalized bid-ask spread becomes narrower because informed traders, in expecta-
tion, tends to cluster on the DEX, while liquidity traders are more likely to trade on the
CEX.

DEX trading share The share of the DEX in terms of trading volume can be used
as a measure of traders’ activity on the DEX. The expected trading volumes on the CEX
and the DEX, as well as the aggregate volume, are defined by the following.

VCEX = η

1− 1
2

∑
i=buy,sell

βi

+ (1− η)(1− α)z,

VDEX = η
1
2

∑
i=buy,sell

βi + (1− η)αz,

V = VCEX + VDEX = η + (1− η)z.

Note that the aggregate trading volume is constant and perfectly determined by the
probability of the trigger event (η) and the expected size of liquidity trading z = 1

2E[zbuy+
zsell].

Figure 3.11 plots the trading volumes on the DEX and the CEX (VDEX , VDEX) against
the asset volatility. The behavior of trading volumes on exchanges are not robust and
dependent on the probability of the trigger event η. When the asset becomes more volatile,
the measure of DEX liquidity traders increases, while that of informed traders declines
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Figure 3.11: Trading volumes

Note: These figures are illustrated by using z = 2.0, η = 0.3 and σ = 0.05. They are rbust to other
parameter values as long as η < C

1+C is satisfied to guarantee the existence of the stable equilibrium.

in expectation. From the above equations for Vi, these two effects compete against each
other with η being the weight on the informed traders’ behavior. Thus, the DEX trading
volume (as well as its share) tends to decrease when a common value shock is more
likely to be the trigger of transactions (the right panel), while it tends to increase when
transactions are motivated by private values.

3.5 Discussion
In this section, I first check the robustness of the above results by relaxing the assump-

tion regarding liquidity traders’ venue choice. I also discuss some testable implications
provided by my model.

3.5.1 Robustness
For tractability, the above analyses assume that liquidity traders must decide on their

trading venue prior to the trigger event. In this subsection, I allow liquidity traders to
choose their trading venue contingent on the realized value of a private-value shock. Due
to the convexity of the CPMM pricing, I focus on the equilibrium in which the fractions of
buying and selling liquidity traders on the DEX are asymmetric and given by αbuy ∈ (0, 1)
and αsell ∈ (0, 1), respectively.
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By applying the same logic as the previous sections, informed traders’ indifference
conditions are given by

1 + a(βbuy, αbuy) = p(βbuy),
1− b(βsell, αsell) = p(−βsell),

where p(x) is given by equation (3.9), and the ask and the bid prices are given by (3.1)
and (3.2) with asymmetric α. As a result, the equilibrium measure of informed buyers
and sellers can be expressed by reusing the previous equations.

Corollary 3.1. Given α ≡ (αbuy, αsell), the equilibrium measure of informed traders on
the DEX is β∗buy = β(+σ, αbuy) and β∗sell = β(−σ, αsell), where β(σ̃, αj) is the solution
of B(σ̃;αj) with B given by equation (3.13). β∗i is increasing in C, σ, and αi for i ∈
{buy, sell}.

Thus, the reaction of informed traders in the partial equilibrium stays the same as the
previous case with symmetric α in Proposition 3.1.

Now, consider the venue choice for liquidity traders. When a liquidity trader buys
(resp. sells) the asset on the CEX, her trading cost (resp. reward) is the ask (resp. bid)
price. In contrast, she pays or obtains the following symmetric price on the DEX:

pn(αbuy, αsell) = E(zbuy ,zsell)

[
C

C − (αbuyzbuy − αsellzsell)

]

= C

z2αbuyαsell
log (C + αsellz)C+αsellz(C − αbuyz)C−αbuyz

CC(C − z∆α)C−z∆α (3.20)

where E(zbuy ,zsell) is the expectation regarding zi ∼ U [0, z], and the second line expands
the expectation. When α is symmetric, the net expected amount of liquidity trading is
zero, as zbuy and −zsell are symmetrically distributed, i.e., buy and sell orders are netted
out. In contrast, the asymmetric behavior of buy and sell liquidity traders prevents the
orders from completely offsetting each other.

A liquidity traders with delay cost γ compares the trading cost on the DEX (the LHS)
and the CEX (the RHS):

γσ ≷

1 + a(βbuy, αbuy)− pn(αbuy, αsell) if a "buy" liquidity shock hits,
pn(αbuy, αsell)− (1− b(βsell, αsell)) if a "sell" liquidity shock hits.

Since γ uniformly distributes in [0, 1], I obtain the following:

Corollary 3.2. Given (βbuy, βsell), the equilibrium measures of liquidity buyers and sellers
on the DEX are given by the solution of the following equations.

αbuy = 1 + a(βbuy, αbuy)− pn(αbuy, αsell)
σ

,
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αsell = pn(αbuy, αsell)− (1− b(βsell, αsell))
σ

.

For i ∈ {buy, sell}, αi is decreasing in βi and increasing in αj for j 6= i.

The above result shows that the reaction of αi in the partial equilibrium is the same as
the previous analyses. The additional result brought by the asymmetric α is the strategic
complementarity between liquidity buyers and sellers. Namely, liquidity buyers are more
willing to trade on the DEX when more liquidity sellers participate in the DEX, and vice
versa. This is because a larger trading volume on the opposite side of the market offsets
the buy liquidity orders, leading to a smaller shift in the liquidity pools and a weaker
price impact. Therefore, liquidity begets liquidity on the DEX with the CPMM, as in the
traditional limit order markets (e.g., Pagano, 1989).

Finally, the expected profits for a market maker on the DEX is given by

πDM = η

2

[
βbuy

C − βbuy
− (1 + σ)βbuy

C
− βsell
C + βsell

+ (1− σ)βsell
C

]
︸ ︷︷ ︸

=πDM,IT

+ (1− η)[pn(αbuy, αsell)− 1]︸ ︷︷ ︸ .
=πDM,LT

Once again, it is easy to check that πDM,IT < 0 and πDM,LT > 0, meaning that a market
maker loses from informed trading and gains from liquidity trading. A larger mass of
informed trading on the DEX, as well as a higher volatility of the asset, reduces DEX
market makers’ profits by worsening adverse selection.

Result. Figure 3.12 plots the reaction of informed traders (the left panel) and liquidity
traders (the right panel) on the DEX to an increase in the volatility of the asset. The
asymmetric reaction of informed buyers and sellers on the left panel shows that the result
in the previous analyses is robust to a change in the assumption on liquidity traders’
venue choice. The right panel, however, shows that allowing a contingent venue choice
adds a new implication regarding liquidity traders’ behavior on the DEX.

Numerical result 4: When the asset becomes more volatile, liquidity buyers tend to clus-
ter on the CEX, while liquidity sellers tend to cluster on the DEX. The net effect
is negative, i.e., outflow of liquidity traders from the DEX dominates inflow to the
DEX.

The net behavior of liquidity traders αbuy+αsell is different from that of informed traders.
Intuitively, a liquidity trader on the DEX is not directly affected by the convexity of the
CPMM algorithm per se, as she is uncertain about the aggregate trading volume (given
by [3.20]). Thus, the asymmetric reaction of liquidity traders is driven by the asymmetric
reaction of informed traders, that is, βbuy and βsell. Since the expected mass of informed
traders increases on the DEX, the bid-ask spread on the CEX shrinks which, in turn,
induces liquidity traders to participate more on the CEX in expectation. Therefore,
αbuy + αsell declines with σ.
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Figure 3.12: Reaction of informed and liquidity traders

Note: This figures are illustrated by using z = 2.0 and η = 0.3. They are robust to other parameter
values, as long as it holds that z < C

1+C .

Figure 3.13: Reaction of market liquidity

Note: This figures are illustrated by using z = 2.0 and η = 0.3. They are robust to other parameter
values, as long as it holds that z < C

1+C .
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Figure 3.14: Reaction of trading volumes

Note: This figures are illustrated by using z = 2.0 and η = 0.3. They are robust to other parameter
values, as long as it holds that z < C

1+C .

Given the venue choice by traders, Figure 3.13 shows the reactions of market liquidity.
The left panel shows the comparative static of DEX liquidity, measured by C∗, while the
right panel illustrates the bid-ask spread (S) and the normalized bid-ask spread (S/σ).
Since the net behavior of liquidity traders stays the same as the previous sections, so does
the impact of the asset volatility on market liquidity.

Finally, the reaction of trading volumes is similar to the case of symmetric α. When
transactions are more likely to be driven by the common-value shock (resp. the private-
value shock), the share of the DEX declines (resp. increases), as shown by Figure 3.14.
The same logic applies as the previous sections, as the expected measure of liquidity
traders (αbuy + αsell) still declines even if we consider a state-contingent venue choice of
liquidity traders. Thus, we can check that the ambiguous behavior of trading volumes
provided in the previous section is robust.

3.5.2 Empirical implications
I can derive novel empirical implications from my model. In the following discussion

I consider a change in the asset volatility σ (or the degree of adverse selection) and the
addition of a DEX with the CPMM to the traditional financial market. These events
serve as an exogenous variation in financial market to propose testable implications.

More concretely, the addition of a DEX can be seen as a change in the status quo, in
which all transactions are conducted via centralized exchanges. It is a relevant measure of
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the impact of DEXs because, in reality, many ERC-20 tokens are cross-listed between some
CEXs and DEXs. Also, we have several tokens that replicate some major cryptocurrencies.
For example, Uniswap has listed the ETH/WBTC pair on December 2020. WBTC is an
ERC-20 token that is pegged to Bitcoin. Thus, the listing of WBTC on Uniswap can
be seen as the advent of a DEX for the Ethereum and Bitcoin pair, which is previously
traded mostly on the centralized exchanges, such as Coinbase and Binance.

Firstly, the equilibrium prices of the asset on the CEX is affected by the CPMM.

Conjecture 3.1. The addition of the DEX with the CPMM induces or strengthens asym-
metry in the bid and the ask prices.

The first conjecture is a natural consequence of the convex pricing of the CPMM.
It generates asymmetry in the price impact on the DEX for buy and sell orders. The
asymmetry, in turn, must affect bid and ask prices on the CEX with different magnitudes
via traders’ venue choice. There is a large body of literature for the asymmetric bid and
ask prices, such as Ho and Stoll (1981) and Stoll (1989). In terms of the bid-ask spread
that stems from adverse selection, studies have highlighted the asymmetry due to some
microstructure constraints, such as a discrete tick size (Anshuman and Kalay, 1998), and
the asymmetric distribution for the value of assets (Bossaerts and Hillion, 1991). My
model proposes a new and exponentially growing market structure that brings about the
asymmetric prices on the traditional limit-order markets.

Conjecture 3.2. All else being equal, an increase in the asset volatility (or the degree
of adverse selection) is associated with a higher order informativeness on the DEX and a
lower order informativeness on the CEX.

This conjecture is the result of Subsection 3.4.2. A higher degree of adverse selection
makes it costly to trade on both venues. Informed traders tend to cluster on the same side
of the market on the DEX, bearing a larger price impact, compared to liquidity traders
with random trading behavior. Thus, order flow on the DEX tends to be information
driven, while that on the CEX tends to be private-value driven.

As the literature on the CPMM is still in its infancy, an empirical measure of infor-
mativeness on the DEX is yet to be constructed. In contrast, we have some metrics of
informed trading on the traditional markets, such as PIN by Easley and O’hara (1987).
My model suggests that the addition of a DEX with the CPMM strengthens a positive
reaction of informativeness of order flow to a change in the volatility of the asset.

Related to the informativeness of order flow, my model suggests that buy and sell
orders may react in the different ways even if the magnitude of a trigger event is the same.
This, in turn, implies that return predictability of order flow is asymmetric between sell
and buy orders.

Conjecture 3.3. Buy orders on the DEX are more likely to be followed by a positive
innovation in returns than sell orders followed by a negative innovation. The opposite is
true on the CEX.
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Moreover, the above prediction regarding the informativeness of order flow has a direct
implication for market liquidity.

Conjecture 3.4. All else being equal, an increase in the asset volatility (or the degree
of adverse selection) is associated with a decline in the amount of assets locked in the
DEX (e.g., Uniswap), a wider effective bid-ask spread, and a narrower normalized bid-ask
spread on the CEX.

In terms of the above-mentioned example, my model predicts that the correlation
between the effective bid-ask spread for the ETH/BTC pair on centralized exchanges (e.g.,
Coinbase) and its return volatility tends to be stronger after Uniswap starts covering the
ETH/WBTC pair compared to that prior to Uniswap.

3.5.3 Limitations of the model
Information horizon. One of the limitations of my model is that it does not accom-
modate informed traders with a longer information horizon. In my model, I consider a
one-shot trading game, in which informed traders try to exploit their informational ad-
vantage knowing that the information is perfectly revealed (or the asset is liquidated)
after a trade.

When traders act on some long-lived private information, I need to incorporate some
other important features of the information management on the DEX, namely, public
nature of blockchain information. As mentioned in Subsection 3.2.1, trading intentions
on the DEX are stored in the mempool and wait for validation by blockchain miners. In
most cases, the state of the mempool is publicly disseminated and observable for miners
and traders. As suggested by Malinova and Park (2017), a trader may extract private
information of other traders by observing publicly available information on the mempool,
generating the front-running risk. My current model with competitive traders cannot fully
address the long-run issues, and a strategic aspect of informed trading must be embedded
in the future research.

Endogenous delay. In my model, I cut corners in introducing a trading delay on
the DEX by assuming that a liquidity trader incurs a linear delay cost per transaction.
It can be thought of as a situation where the mass of liquidity trading is sufficiently
small compared to the block capacity so that all trades are settled with a constant (and
deterministic) delay, i.e., the block time.

In general, however, a trader can shorten the expected waiting time by paying a higher
transaction fee to blockchain miners. Since a miner tends to process transactions with
higher fees, proposing a higher fee can put trader’s transaction forward in a queue. For
example, Huberman, Leshno, and Moallemi (2019) formulate the expected delay cost
(the sum of the waiting time and fee payment) as an increasing function of the measure
of traders waiting for verification.
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Endogenizing the delay cost will certainly add new implications to my model. At the
same time, however, I also believe that the endogenous delay cost strengthens my results.
If the delay cost is an increasing function of the measure of liquidity traders on the
DEX (α), as suggested by Huberman, Leshno, and Moallemi (2019), liquidity traders are
discouraged to participate in the DEX, leading to even larger outflow of liquidity traders
from the DEX to the CEX. Thus, the endogenous delay cost may work as an additional
driving force to mitigate adverse selection for CEX market makers and improve CEX
market liquidity.

3.6 Conclusion
This chapter studies the equilibrium impact of the adoption of a decentralized exchange

(DEX) with a novel market-making algorithm called the Constant Product Market Makers
(CPMMs). In the real financial market, DEXs with the CPMM and the traditional
centralized exchanges (CEXs) with the limit order mechanism interact with each other.
I built a model of coexisting exchanges, in which traders are endogenously differentiated
between the DEX and the CEX. It characterizes joint behavior of market liquidity on
both venues.

As in the traditional market microstructure models, liquidity on both trading venues
is determined by information asymmetry between informed for-profit traders and unin-
formed market makers. My model shows that DEX liquidity complements CEX liquidity.
I also find that the convexity of the CPMM pricing equation leads to asymmetric reaction
of informed traders. In particular, when the asset becomes more volatile, informed buyers
tend to cluster on the CEX, while informed sellers tend to cluster on the DEX. Thus, my
model predicts that sell orders on the DEX has higher informativeness compared to buy
orders on the DEX.

In my model, I focus on a one-shot trading environment and abstract away from long-
lived private information. When information horizon becomes longer, informed traders
must incorporate the speed of information revelation via their trading orders (as in Kyle,
1985). Moreover, price discovery in the long-run is one of the two pillars that determines
trader welfare. Thus, constructing a long-run model based on the current analyses is the
topic for future research.
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Appendix A

Institutional details of intentional
delays

This section briefly describes the institutional details of speed bumps. Although the
model in the main text is built to analyze asymmetric speed bumps rather than a sym-
metric speed bump in IEX, I start this section by explaining IEX speed bump below, as
it is a precursor of all other speed bumps.

A.1 Symmetric and deterministic delays

A.1.1 Who is protected?
A symmetric and deterministic speed bump is first adopted by IEX in 2013 and fol-

lowed by NYSE American (while NYSE American has decided to remove it based on
NYSE, 2019). It delays all incoming and outgoing orders by 350 microseconds. The type
of orders protected by the speed bump is “Pegged Order.” Pegged order is the type of
non-displayed limit orders whose price is dynamically adjusted by reference to the na-
tional best bid and offer (NBBO).1 Although IEX imposes a delay on incoming orders
and outgoing information, the messaging of SIP-related information is not delayed. Thus,
the price of pegged orders is dynamically adjusted by IEX with no delays. If the NBBO
changes, a speed bump allows IEX to adjust the pegged orders, and HFTs cannot snipe
them at the stale price.

1There are three types of pegged-order: Primary Peg (P-Peg), Discretionary Peg (D-Peg), and Mid-
point Peg (M-Peg). P-Peg and D-Peg orders are resting at one tick below or above the NBBO. P-Peg
orders have discretion to trade at the NBBO, while D-Peg orders have discretion to trade up to the
midpoint. M-peg orders stay and are traded at the midpoint of the NBBO and has a higher priority
than D-Peg orders at the mid-point. Whether the discretion of each order is exercised is determined by
the “IEX signal” that determines if the NBBO is volatile (i.e., “scrambling”) by using a specific measure.
The discretion is not exercised if the signal is “on,” meaning that the bid-ask in the market is volatile.
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A.1.2 Speed bump infrastructure
All traders sending messages to IEX must enter the IEX’s system from the Point

of Presence (POP) in Secaucus, NJ. After entering via the POP, a message sent to IEX
travels through a “coiled” fiber optic cable, which has a distance of 38 miles. After exiting
the coil, the message travels an additional physical distance to the IEX trading system,
located in Weehawken, NJ. Due to this travel distance, a message sent to IEX must incur
350 microseconds of additional travel time.

A.1.3 Asymmetric delays
An asymmetric speed bump has been adopted by a growing number of exchanges. It

delays all orders except liquidity-providing orders. Details in the implementation varies
depending on exchanges. For example, a speed bump by Chicago Stock Exchange de-
lays all orders except for visible limit orders from approved liquidity providers, while an
exception in TSX Alpha is provided to visible Post-Only orders. Post-Only is the type
of limit orders that is automatically rejected if it has a potential to cross a market and
remove liquidity from the limit order book.

Empirically identifying the impact of speed bumps is not straightforward, as a speed
bump typically comes with changes in other market structures and trading rules. For
example, along with a speed bump, TSX Alpha sets a minimum size requirement for
liquidity providing orders and adopts an inverted maker-taker fee structure. Due to these
structural changes, market makers must pay some additional cost (in terms of monetary
or risk exposure) in return for protection by a speed bump.

A.1.4 Randomness in delays
Randomizing the length of delay is expected to generate an additional benefit: it

mitigates asymmetric information more effectively compared to a deterministic speed
bump. The advantage of random speed bumps stems from a situation where an informed
trader splits a large order and sends them to multiple exchanges, i.e., “sweep” or “sprayed”
orders.

If a speed bump is deterministic, a trader can send split orders to multiple exchanges
by adding or subtracting some time lags to synchronize the execution timing of her orders
on all exchanges. The simultaneous execution of sweep orders is made possible by the
smart order router (SOR) that calculates and predicts the execution timing of each order
by incorporating the deterministic delay imposed by a speed bump.

For example, consider an informed trader who wants to fill a large order (say 1, 000
shares). Exchanges A has 300 shares available, and Exchange B has 500 shares. Thus,
the informed trader may spray orders to both exchange to fill 1,000 shares. Suppose
that it takes tA and tB to send and execute orders on Exchanges A and B, respectively.
Now, a speed bump is applied in Exchange B. If the length of delay δ is deterministic,
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the informed trader can stagger the timing or order entry to make tA = tB + δ.2 By
the synchronized execution, there is no information leakage, and the trader can fulfill all
orders.

Randomness in a speed bump makes it harder for the SOR to predict the execution
timing, so that synchronizing executions of split orders does not really work. Due to the
failure in the synchronized execution, market makers in Exchange B observe the execution
of informed order on Exchange A before a part of split orders arrive at Exchange B. The
time lag generated by a random speed bump allows the market makers to cancel or reprice
their limit orders to avoid being picked off. Hence, liquidity providers bear less severe
adverse selection than in the case with a deterministic speed bump.

2In reality, there must involve some unexpected delays due to random factors, such as precipitation
and temperature, and even a SOR cannot perfectly synchronize the order arrival timing.
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Appendix B

Proofs for Chapter 2

B.1 Derivation of the equilibrium spread
In what follows, I denote ψ = φ+β+γ in the single-HFT model and ψ = φS +β+φM

in the multiple-HFTs model to save the space. Equation (2.1) is rewritten as

VM(s) =Eδ̃,t0

[
s
∫ δ̃+t0

δ̃
βe−β(t−δ̃)e−γ(t−t0)I{t≥t0}dt

+[φ(s− σ) + βs]
∫ ∞
t0+δ̃

e−β(t−δ̃)e−γ(t−t0)e−φ(t−t0−δ̃)dt
]
. (B.1)

By letting b = δ−1,

VM(s) = Eδ̃,t0

[
It0>δ̃s

∫ t0

δ̃
βe−β(τ−δ̃)dτ + s

∫ δ̃+t0

max(t0,δ̃)
βe−β(τ−δ̃)e−γ(τ−t0)dτ

+[φ(s− σ) + βs]
∫ ∞
t0+δ̃

e−β(τ−δ̃)e−γ(τ−t0)e−φ(τ−t0−δ̃)dτ
]

= Et0

[∫ t0

0
be−bδ̃s(1− e−β(t0−δ̃))dδ̃ +

∫ ∞
0

be−bδ̃seβδ̃e
β

β + γ
(e−(β+γ) max(t0,δ̃) − e−(β+γ)(δ̃+t0))dδ̃

]

+ 1
ψ

z

z + β

1
1 + δγ

[φ(s− σ) + βs].

The first line is

First line = sEt0

[
1− e−bt0 − e−βt0 b

b− β
(1− e−(b−β)t0) + b

β

b− β
1

b+ γ
(e−βt0 − e−bt0)

]

= βs
b

z + b

(b+ 1) + z

b+ γ

1
β + z

.

Thus, in aggregate,

VM(s) = 1
ψ

z

z + β

1
1 + δγ

[
φ(s− σ) + βs+ ψβs

z−1[(1 + δ) + δz]
δz + 1

]
,
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which leads to the benchmark spread with λ = z−1[(1+δ)+δz]
δz+1 .

B.2 Proof of Proposition 2.2
The cross-derivative of the FOC, evaluated at the optimal speed φ∗, is reduced to

∂

∂λ

(
dWHFT

dφ

)
|φ=φ∗ = 2β2φ

1 + λη

K3 − γ dδ
dλ
C ′(φ)

= 2φ
[
β2 1 + λη

(φ+ β(1 + λψ))3 − cγ
dδ

dλ

]
(B.2)

where K ≡ φ+ β(1 + λψ), and the second line uses the quadratic cost function.
The first term of (B.2) is bounded from above, and there exists L <∞ such that

∀c, L > β2 1 + λη

(φ+ β(1 + λψ))3 .

In contrast, cγ dδ
dλ

is monotonically increasing in c and not bounded from above. Therefore,
there exists c̄, such that

c > c̄⇒ cγ
dε

dλ
> L⇔ dφ∗

dλ
< 0.

Next, we know from the FOC that φ∗|c=0 <∞, as long as λ <
√
β(β + γ). Therefore, the

first term of (B.2) is bounded from below, meaning that there exists c such that

c < c⇒ dφ∗

dλ
> 0.

B.3 General proof of Proposition 2.3
Denote that s∗ = s(φ∗(δ), δ). By the chain rule,

ds∗

dδ
= ∂s

∂δ
+ dφ∗

dδ

∂s

∂φ
.

The optimal speed φ∗ satisfies the FOC, denoted as H∗(δ) = H(φ∗(δ), δ) = 0 with

H(φ, δ) = (σ − s(φ, δ))dπND(φ)
dφ

− πND(φ)∂s(φ, δ)
∂φ

.
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By taking the derivative of H∗ with respect to δ,

0 = dφ∗

dδ

∂H∗

∂φ
+ ∂H∗

∂δ

= dφ∗

dδ

(
− ∂s
∂φ

(φ∗, δ)dπND(φ)
dφ

+ (σ − s(φ∗, δ))d
2πND(φ)
dφ2 − dπND(φ)

dφ

∂s(φ∗, δ)
∂φ

− πND(φ)∂
2s(φ∗, δ)
∂φ2

)

− ∂s(φ∗, δ)
∂δ

dπND(φ)
dφ

− πND(φ) ∂
∂δ

∂s(φ, δ)
∂φ

= −
[
πND(φ) ∂

∂δ

∂s(φ, δ)
∂φ

+ dφ∗

dδ

(
dπND(φ)

dφ

∂s(φ∗, δ)
∂φ

+ πND(φ)∂
2s(φ∗, δ)
∂φ2

)]

+ dφ∗

dδ
(σ − s(φ∗, δ))d

2πND(φ)
dφ2 − ds∗

dδ

dπND(φ)
dφ

= d

dδ

(
−πND

∂s(φ∗, δ)
∂φ

+ (σ − s(φ∗, δ))dπND(φ∗)
dφ

)
− ds∗

dδ

dπND(φ)
dφ

= −ds
∗

dδ

dπND(φ)
dφ

.

The last equality comes from the FOC. Thus, the result in Proposition 2.3 is robust as
long as the sniping probability π(δ, φ) is separable, i.e., it is decomposed into the no-delay
sniping probability πND and the delay effect h(δ). The separability holds if a delay is
independent of the learning process of the HFT.

B.4 Proof of Proposition 2.4
Uniqueness of the mixed strategy

Firstly, suppose that HFM i puts a positive weight on si = σ. For si = σ to obtain a
positive weight, HFT j must charge prices above σ, which is not an equilibrium. Therefore,
si = σ cannot be an atom.

Secondly, suppose that HFT i puts positive wight w on p ∈ (s0, σ). For this to be
an equilibrium, there must exist positive ε such that HFT j does not charge prices in
[s0, p+ ε]. If not, HFT j can exploit the profit discontinuity at p, and she undercuts HFT
i to obtain positive profits. Also, if HFT j charges prices below p, it is not optimal for
HFT i to put a positive weight on p. Thus, HFT j must charge prices above p + ε. In
this case, however, it is optimal for HFT i to raise p.

Finally, suppose that p = s0 has a positive weight. For sj ≥ p = s0, the profits for
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HFM j satisfy

VM,j(sj) ∼
φS + β(1 + λψ)

ψ
(sj − s0) Pr(sj < si)

+
[
φS + β(1 + λψ)

ψ
(sj − s0)− (1− g)β(1 + λψ)

ψ
sj

]
Pr(sj = si)

+
[
φS + β(1 + λψ)

ψ
(sj − s0)− β(1 + λψ)

ψ
sj

]
Pr(sj > si)

= φS + β(1 + λψ)
ψ

(sj − s0)− β(1 + λψ)
ψ

sj [Pr(sj > si) + (1− g) Pr(sj = si)]

<
φS + β(1 + λψ)

ψ
(sj − s0)− β(1 + λψ)

ψ
sj Pr(sj > si).

Then, we can define

ε ≡ β(1 + λψ)s0 Pr(sj > si)
φS + β(1 + λψ)(1− Pr(sj > si))

> 0

so that posting sj ∈ [s0, s0 + ε] makes VM,j(sj) < 0. Thus, HFT j does not post prices
in [s0, s0 + ε]. However, this implies that HFT i has an incentive to raise p from p = s0
to p = s0 + ε, leading to the same discussion as the case with p ∈ (s0, 1). From above
argument, if HFT i randomizes quote over [s0, σ] with an atom p, then p converges to σ.
However, this contradict to the first case that shows p = σ cannot be an atom.

Comparative statics

In what follows, the comparative statics are analyzed by variating λ instead of δ
because it affects the equilibrium spread only via λ(δ) and λ′(δ) > 0. Also, I use φi = φS
and φ−i = φM to make the correspondence of HFTs’ role and their speed clear.

Firstly, note that log x has the following properties for general x ∈ (0, 1).

log x+ 1− x < 0, (B.3)

2(log x+ 1− x) + (1− x)2 < 0. (B.4)
Also, I denote

X = log s0 + 1− s0.

Next, for later use, compute the following derivatives and cross-derivatives: with η =
φM + β,

ds̄(φS, φM)
dφS

= −1 + λη

β

X

(1 + λψ)2 > 0, (B.5)

d2s̄(φS, φM)
dφ2

S

= −1 + λη

βφS

[
(1− s0)2 (1 + λη)− 2λφSX

(1 + λψ)3

]
< 0,
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∂s̄(φS, φM)
∂φM

= λ
φS
β

X

(1 + λψ)2 < 0,

∂

∂φM

(
ds̄(φS, φM)

dφS

)
= λ

β

1
(1 + λψ)3

[
X(1 + λβ) + (1 + λη)(1− s0)2

]
,

ds̄(φS, φM)
dλ

= ψ
φS
β

X

(1 + λψ)2 < 0.

∂

∂λ

(
ds̄(φS, φM)

dφS

)
= 1
β(1 + λψ)3

[
[φS + ψ(1 + λη)]X + (1 + λη)ψ(1− s0)2

]
.

Also, φ∗S = BR(φM) satisfies the FOC:

0 = H(φS, φM , λ) = dπND
dφS

(1− s̄(φS, φM))− πND
ds̄(φS, φM)

dφS
. (B.6)

The SOC is computed as

∂H/∂φS = (1− s̄(φS, φM))d
2πND
dφ2

S

− 2dπND
dφS

ds̄(φS, φM)
dφS

− πND
d2s̄(φS, φM)

dφ2
S

= −2 1
ψ

ds̄(φS, φM)
dφS

− φS
ψ

d2s̄(φS, φM)
dφ2

S

= 1
ψ

(1 + λη)2

β(1 + λψ)3

[
2X + (1− s0)2

]
< 0, (B.7)

where the last inequality uses (B.4).

Impact of λ on φ∗S = BR(φM) Since (B.7) holds, it suffices to show that ∂H/∂λ > 0.

∂H/∂λ = −
(
dπND
dφS

∂s̄(φS, φM)
∂λ

+ πND
∂

∂λ

ds̄(φS, φM)
dφS

)

= −φS
β

1 + λη

(1 + λψ)3

[
2X + (1− s0)2

]
> 0, (B.8)

where the last inequality comes from (B.4).

Impact of φj on φ∗S = BR(φM) Since (B.7) holds, it suffices to show that ∂H/∂φM > 0.
The cross derivative of FOC is

∂H/∂φM = −dπND
dφS

∂s̄(φS, φM)
∂φM

− πND
∂

∂φM

ds̄(φS, φM)
dφS

+ ∂

∂φM

dπND
dφS

(1− s̄(φS, φM))

− ∂πND
∂φM

ds̄(φS, φM)
dφS

.
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By using the FOC, the first and the last terms sum up to

A0 = −dπND
dφS

∂s̄(φS, φM)
∂φM

− ∂πND
∂φM

ds̄(φS, φM)
dφS

= − φS
βψ

X

ψ(1 + λψ)2 (1 + 2λη).

Also, the middle two terms amount to

A1 = −πND
∂

∂φM

ds̄(φS, φM)
dφS

+ (1− s̄) ∂

∂φM

dπND
dφS

= πND

− ∂

∂φM

ds̄(φS, φM)
dφS

+
(
dπND
dφS

)−1
ds̄(φS, φM)

dφS

∂

∂φM

dπND
dφS


= πND

(1 + λψ)3

[
−λ
β
X (1 + λβ)− 1

β
λ(1 + λη)(1− s0)2 + (1 + λη)(1 + λψ)

ψη
X

]
.

Therefore, in aggregate, ∂H/∂φM = π̃S
(1+λψ)3A with

A = − 1
βψη

{
X
[
λψη (1 + λβ) +

(
φ(1 + λη) + λη2

)
(1 + λψ)

]
+ ψηλ(1 + λη)(1− s0)2

}
>

1
2

1
βψη

{[
λψη (1 + λβ) +

(
φ(1 + λη) + λη2

)
(1 + λψ)

]
− 2ψηλ(1 + λη)

}
(1− s0)2

> 0

where the second inequality comes from (B.4).

B.5 Analysis on strategic complementarity in Propo-
sition 2.5

Consider the cross-derivative of the FOC (2.18) with respect to the rivals’ speed φ−i.

∂2Wi

∂φ−i∂φi
=


effects (i) + (ii)>0︷ ︸︸ ︷

∂(1− s̄
σ
)

∂φ−i

∂πND
∂φi

+ πND
∂2(1− s̄

σ
)

∂φ−i∂φi

h(δ, φ−i) + C ′(φi)
1
h

effect (iii)<0︷ ︸︸ ︷
dh(δ, φ−i)
dφ−i

(B.9)

+


effect (iv)︷ ︸︸ ︷

∂πND
∂φ−i

∂(1− s̄
σ
)

∂φi
+

effect (v)︷ ︸︸ ︷
∂2πND
∂φ−i∂φi

(1− s̄

σ
)

h(δ, φ−i).

As φ−i increases, HFMs become less likely to be picked off. It affects HFT i’s expected
sniping profit through three channels: (a) by changing the behavior of the spread, (b) by
strengthening the delay effect, h(δ, φ−i), on the sniping probability, (c) and by reducing
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the no-delay sniping probability πND(φi, φ−i). The third channel is new in the general
model: even without a delay (i.e., h = 1), faster HFTs −i makes it more difficult for HFT
i to snipe.

Note that the first two channels, (a) and (b), bring about the same effect as an
extension of a delay (δ). Hence, equation (B.9) has effects (i)-(iii) that replicate equation
(2.6) in the benchmark model. The envelope condition with C ′ = 0 eliminates effect (iii).

Furthermore, channel (c) generates effects (iv) and (v) in equation (B.9). Effect (iv)
implies that HFT i does not need to care about the adverse price movement caused by
her speed-up. Even if she becomes faster, and the trading profit worsens, her expected
profit is slightly affected because it is less likely to materialize due to her rivals’ speed-up
(φ−i). Effect (v) captures the ambiguous effect of rivals’ speed on the slope of the no-
delay sniping probability, πND. When rivals are equipped with very high speed φ−i, HFT
i’s speed-up does not really improve her sniping probability because an increase in φi is
dwarfed by a large φ−i. Hence, it holds that ∂2πND

∂φ−i∂φi
< 0 if φ−i is large, and vice versa.

Although the sign of effect (v) is ambiguous by itself, effects (iv) and (v) are positive
in total.

Lemma B.1. In the equilibrium, the sum of effects (iv) and (v) is positive.

Proof. The sum of effects (iv) and (v) is rewritten as

∂πND
∂φj

∂(σ − E[sj])
∂φi

+ ∂2πND
∂φj∂φi

(σ − E[sj]) = σ − E[sj]
πND

[
−
(
∂πND
∂φi

)(
∂πND
∂φj

)
+ πi

∂2πND
∂φj∂φi

]

= σ − E[sj]
πND

φ2
i

ψ4 > 0.

Intuitively, effect (v) cannot be a large negative to dominate effect (iv) in the symmet-
ric equilibrium, where all HFTs have the same speed. Overall, effects (iv) and (v) help
the first two effects with generating strategic complementarity.

B.6 Proof of Propositions 2.6 and 2.7
Denote the speed level in the symmetric equilibrium as φ. Firstly, the FOCH(φ, φ, λ) =

0, defined by (B.6), is reduced to

0 = Ĥ(φ, λ) = βη(1 + λψ)2 + φψ(1 + λη)(1− s0) + φ(φ+ 2η(1 + λψ)) log s0.

It is easy to check Ĥ(0, λ) = β2(1 +λβ)2 > 0. Also, at φ→∞, 1− s0 and log s0 converge
to some constant values, and Ĥ(φ, λ) can be written as a cubic function of φ with a
negative coefficient on φ3, meaning that limφ→∞ Ĥ(φ, λ) < 0. As shown in the following,
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Ĥ(φ, λ) is a monotonically decreasing function of φ. Thus, the above argument implies
that Ĥ = 0 and H = 0 have a unique solution.

Next, by using the derivatives in Appendix B.4,
∂H

∂φ
= ψ − 4η

ψ3 (1 + φ

β(1 + λψ) log s0)

+ β + η + 2ληβ + λφψ

βψ2
X

(1 + λψ)2 + 1
ψ

1 + λη

β

(1 + λβ)(1− s0)2 − 4φλX
(1 + λψ)3 .

Inequalities (B.3) and (B.4) imply that ∂H
∂φ

< 0. Since Appendix B.4 shows that ∂H
∂λ

> 0,
the implicit function theorem implies dφ

dλ
> 0, where the explicit formula is

dφ

dλ
= ψ3φ(1 + λη) [2X + (1− s)2]
β(ψ − 4η)(1 + λψ)3(1 + φ

β(1+λψ) log s0) + aXX + ψ2(1 + λη)(1 + λβ)(1− s)2]
,

(B.10)

with
aX = ψ(1 + λψ)[β + η + 2ληβ + λφψ]− 4ψ2φλ(1 + λη).

Finally, we want to show that the expected spread is increasing in λ. At the symmetric
equilibrium,

ds̄

dλ
=

= ∂s̄
∂λ︷ ︸︸ ︷

ψ
φ

β

1− s0 + log s0

(1 + λψ)2

= ∂s̄
∂φ

+dφ
dλ

︷ ︸︸ ︷[
−1 + λβ

β

log s0 + 1− s0

(1 + λψ)2

]

= X

β(1 + λψ)2

[
ψφ− (1 + λβ)dφ

dλ

]
.

Since X < 0, inequality ds̄
dλ
> 0 is reduced to

dφ

dλ
>

ψφ

1 + λβ
.

By using the explicit formula (B.10), the above condition is reduced to[
2ψ2(1 + λη)(1 + λβ)− aX

]
X < β(φ− 3η)(1 + λψ)3(1− E[s])

= −β(φ− 3η)(1 + λψ)3φψ

βη
(1 + λη) X

(1 + λψ)2

where the last equality comes from the FOC. As a result, the condition is[
2ψ2(1 + λη)(1 + λβ)− aX

]
X < (3η − φ)(1 + λψ)φψ

η
(1 + λη)X

∴2ψ2(1 + λη)(1 + λβ)− aX > (3η − φ)(1 + λψ)φψ
η

(1 + λη).
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We can compute that

LHS− RHS = (1 + λψ)φ
2

η
+ 4φλψ(1 + λη)

> 0.

This inequality completes the proof.

B.7 Case of other distributions for delays
Suppose that δ ∈ [0, δ̄] has cdf Q(δ). Note that we allow δ̄ → ∞. From the same

argument as the baseline model, the break-even spread is given by

s = φ

β(1 + λψ) + φ
σ

where
λ(Q) = 1

κ−1 − γ

(
1− EQ[e−κ−1δ]

EQ[e−γδ]

)
.

Without loss of generality, assume that κγ < 1.
Now, we compare two random variables with different distributions in a same class:

δ ∼ Q and δ̂ ∼ Q̂ with EQ[δ] > EQ̂[δ̂]. Then, the restriction for the distribution Q that
makes the generalized model with Q identical to the baseline model is λ(Q) > λ(Q̂),
which is identical to

EQ̂[e−κ−1δ]
EQ̂[e−γδ] >

EQ[e−κ−1δ]
EQ[e−γδ] .

Therefore, as long as two distribution of speed bumps, Q and Q̂, such that EQ[δ] > EQ̂[δ̂],
satisfies the above inequality, the results in the main model are robust.

For example, if Q is the uniform distribution, i.e., Q = U [0, δ̄], then,

λ = 1
κ−1 − γ

(
1− γκ1− e−κ−1δ̄

1− e−γδ̄

)
.

Note that increasing δ̄ corresponds to a longer speed bump. It is straightforward to check
that λ is monotonically increasing in δ̄, leading to the same results in the benchmark
model.
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Appendix C

Proofs for Chapter 3

C.1 Proof of Proposition 3.2
Equation (3.15) is

α = S(βbuy, βsell, α)/σ
2 = 1

2

[
(1− βbuy)η

(1− βbuy)η + z(1− α)(1− η) + (1− βsell)η
(1− βsell)η + z(1− α)(1− η)

]
.

(C.1)
It holds that S(βbuy, βsell, 1) = 2σ. Thus, the above equation has α = 1 as a solution.
Also, from the indifference conditions for informed traders, 0 < βi < 1 for all α ∈ [0, 1].

Thus, the above equation has the second solution in α ∈ (0, 1) if and only if

∂S

∂α
|α=1 > 2σ.

It holds that
1
σ

∂S

∂α
|α=1 = z

1− η
η

(
1

1− βbuy
+ 1

1− βsell

)
> 2z1− η

η
.

Therefore, a sufficient condition for the existence of the second (interior) solution is z 1−η
η
>

1. The negative impact of βi on α in the partial equilibrium is straightforward.

C.2 Proof of Proposition 3.3
Define γbuy ≡ βbuy/C. Then, γbuy is the (smaller) solution of Γ(γ;σ) = 0 where

Γ(γ; σ̃) = γ2(1 + σ̃)η − γ
(

(1 + σ̃)η + z(1− α)(1− η)
C

+ ση

)
+ ση

C
. (C.2)

Given α, it holds that

∂Γ
∂C

= γ [(1 + σ)η + z(1− α)(1− η)]− ση
C2 .
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Thus, the above partial derivative is negative if and only if

γ < γ0 ≡
ση

(1 + σ)η + z(1− α)(1− η) .

It is easy to check that

Γ(γ0;σ) = −z
(

ση

(1 + σ)η + z(1− α)(1− η)

)2

(1− α)(1− η) < 0

meaning that γbuy < γ0. Therefore, for all α, γbuy(α) is decreasing in C. The symmetric
argument can be applied to show that γsell(α) = βsell/C is also a decreasing function of
C.

Proof for the existence of a unique solution in α ∈ (0, 1) follows the proof of Proposition
3.2. We denote the solution as α∗.

Next, the equilibrium condition (C.1) is rewritten as

2σα = γbuy(α)
1− γbuy(α) + γsell(α)

1 + γsell(α) .

The RHS is an increasing function of α and crosses the LHS from above at α∗. Since γi
is decreasing in C for all α, the RHS shifts downward when α increases. Thus, α∗ is a
decreasing function of C.

Finally, note that the equilibrium bid-ask spread satisfies 2σα∗ = S(β∗buy, β∗sell, α∗),
meaning that the bid-ask spread becomes narrower when C increases, as α∗ declines.

C.3 Proof of Proposition 3.4
We can rewrite the market maker’s net profits from informed trading on the DEX as

follows.
πDM,IT = βbuy

C

[
C

C − βbuy
− (1 + σ)

]
+ βsell

C

[
(1− σ)− C

C + βsell

]
.

In the equilibrium, the indifference condition for an informed trader on the ask side imply
that C

C−βbuy
= 1+σ

η(1−βbuy)
η(1−βbuy)+(1−η)(1−α)z < 1+σ. Similarly, on the bid side, C

C+βsell
> 1−σ.

Therefore, πDM,IT < 0.
From equation (C.2), γi = βi/C is decreasing in C and

γbuy,∞ ≡ lim
C→∞

γbuy = σ

1 + σ

γsell,∞ ≡ lim
C→∞

γsell = σ

1− σ .

Therefore,
lim
C→∞

πDM,IT = 0.
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The explicit formula for the net expected profit from liquidity trading is

N(α,C) = E
[

C

C − α∆z − 1
]

= C

α2z2

log
(
C + αz

C − αz

)αz (C2 − α2z2

C2

)C− 1.

The first order derivative with respect to C/α is negative. The impact of C on N in the
sense of total derivative is negative because the equilibrium α is decreasing in C.

C.4 Sequential execution of orders at DEX
In the model, we assume that all market orders arriving at the DEX are simultaneously

executed all at once. In this Appendix, we show that executing all at once (AAO) is the
same as the sequential order execution.

Equivalence of post-trade liquidity pools Suppose that there are n informed traders,
and each of them has measure w = 1

n
and places δ unit of market buy order to the DEX

(in the model, we assume δ = 1). Note that the aggregate trading is of size δ. The initial
state of the liquidity pool is denoted as (C0, X0) with k ≡ C0X0. Note that the following
discussion can be easily extended to the case with liquidity traders.

The first transaction is executed at price

p1 = C0

X0 − δw
and the liquidity pool becomes

C1 = C0 + p1δw = C0
X0

X0 − δw
,

X1 = X0 − δw.

By iterating, we obtain the following transition equations for the liquidity pools: for
general i = 1, 2, · · · , n,

Ci = Ci−1
Xi−1

Xi−1 − δw
,

Xi = Xi−1 − δw.

The above equations imply that, after all (n) transactions are completed, the liquidity
pools have

Xn = X0 − nδw = X0 − δ,

Cn = C0
X0

X0 − nδw
= C0

X0

X0 − δ
.

Thus, the post-trade state of the pools with sequential execution is the same as that of
AAO execution. The above result also implies that the profits for the market makers on
the DEX stay the same even if we consider sequential execution of orders.
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Equivalence of the execution price Next, consider the expected trading cost (i.e.,
the execution price) for an informed trader. We consider a continuum of traders with
measure β (by setting n→∞ with δ = 1 and w = β/n in the above example) and assume
that traders’ orders are independently executed following a Poisson process. Suppose that
y ∈ [0, β) orders have been executed before an informed trader gets to execute her order.
From the above discussion, her order faces the following liquidity pools.

Cy = C0
X0

X0 − y
, Xy = X0 − y.

Since her order is infinitesimal, it is executed at price

p(y) = Cy
Xy

= C0X0

(X0 − y)2 .

Due to the independent Poisson process, y ∼ U [0, β]. Thus, the expected execution price
is given by

p = 1
β

∫ β

0
p(y)dy = C0

X0 − β
,

which is identical to the execution price of each order in the case with AAO trade execu-
tion.
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