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Abstract

Speech Analysis Methodologies towards Unobtrusive Mental Health Monitoring

by

Keng-hao Chang

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor John F. Canny, Chair

The human voice encodes a wealth of information about emotion, mood and mental
states. With the advent of pervasively available speech collection methods (e.g., mobile
phones) and the low-computation costs of speech analysis, it suggests that non-invasive,
relatively reliable, and modestly inexpensive platforms are available for mass and long-term
deployment of a mental health monitor. In the thesis, I describe my investigation pathway
on speech analysis to measure a variety of mental states, including affect and those triggered
by psychological stress and sleep deprivation.

This work has contributions in many folds, and it brings together techniques from several
areas, including speech processing, psychology, human-computer interaction, and mobile
computing systems. First, I revisited emotion recognition methods by building an affective
model with a naturalistic emotional speech dataset, which is consisted of a realistic set of
emotion labels for real world applications. Then, leveraging the speech production theory
I verified that the glottal vibrational cycles, the source of speech production, are physically
affected by psychological states, e.g., mental stress. Finally, I built the AMMON (Affective
and Mental health MONitor) library, a low footprint C library designed for widely available
phones as an enabler of applications for richer, more appropriate, and more satisfying human-
computer interaction and healthcare technologies.
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Chapter 1

Introduction

Emotion, mood and mental health are key determinants of quality of life. Affect is a term
used to cover mood and emotion, and other non-cognitive phenomena such as arousal. Mental
health, especially depression, has close ties with emotion and e.g., is often first manifest as
persistent negative mood. Affective computing has a variety of applications: computers may
adapt based on affect to improve learning [47], work performance [83], and communication
[51]. Healthcare technologies can be made more intelligent to help people regulate emotions,
manage stress, and avoid mental illness [63]. But capture of affect can be quite challenging,
e.g., GSR sensors must be worn in the periphery of the body and primarily capture arousal,
heart rate variability primarily captures stress and confounds with physical activity, and
facial and body gesture conveys rich emotion but requires a camera pointing at the subject
and real-time image analysis. On the other hand, voice is easily captured and has proved to
be a surprisingly accurate tool for mental health evaluation, e.g., showing 90% classification
accuracy for depression from a few minutes of voice data [59]. Voice analysis for emotion
recognition [81] is somewhat less accurate (accuracies 70-80%) but should be usable for
many applications. Thus voice seems to be an excellent choice for everyday affect/mental
health estimation.

1.1 Affect and Mental Health Monitor

The World Health Organization has reported that four of the ten leading causes of disability
in the US and other developed countries are mental disorders. Depression has become a major
financial burden for the world’s economy; in the US alone, it is estimated to cost as much
as $83.1 billion dollars in year 2000. By the year 2020, depressive illnesses are expected to
become the second most costly health problem and the leading cause of disability for women
and children worldwide [64]. In addition, the social ramifications associated with depression
are just as staggering; depression is a major contributor to suicide, which takes about 850,000
lives each year [66].
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Fewer than 25% of depression patients are currently receiving the necessary treatment
and an even smaller percentage of at-risk groups are getting adequate preventive care [66].
A multitude of barriers exist for depression prevention and treatment, including the lack
of trained professionals, the lack of resources for long-term treatment and monitoring, and
often, the social stigma associated with mental disorders. Identifying effective ways for early
detection of warning signs, persuading at-risk groups to seek for help, and establishing long-
term monitoring plans (to avoid relapse of depression) are major areas for improvement to
move towards a more holistic approach for treating depression related mental disorders.

Were one to design an ideal device for affect/mental health monitoring by voice, it would
probably look a lot like a cell phone. A small, handheld device that is regularly used for other
voice-based tasks (i.e., calling others), and which helps to distinguish a particular user’s voice
from those around them (phones have a variety of noise-canceling and directional features
built in). What is lacking for developers are the speech features needed for applications or
better still, binary or real values that denote emotion or depression strengths - i.e., emotion
classifier outputs.

Automatic recognition of affect in speech is a problem with a very large scope. Solving
this problem goes beyond the work of a single doctoral thesis. Therefore, this work is
focused on the acoustic, non-content-wise properties of speech to build a statistical model
for monitoring affective states. The computation costs of processing the acoustic parameters
are significantly lower than extracting and evaluating the semantic content, which is an
advantage towards modestly inexpensive platforms for mass and long-term deployment of a
mental health monitor.

Scenarios

The value of speech monitoring of mental health may not be immediately obvious so we
describe some scenarios, illustrated in Figure 1.1:

• Cell-phone monitoring of healthy subjects as part of a health-care package. Using client
code on the phone itself, the voice is analyzed during cell phone conversations. Privacy
is maximized in this way, and subjects are directly informed if problems emerge. In the
early stages, they are likely to seek treatment in many cases. Rather than individual
sign-up, this would be part of a health “package” from a provider which includes
physical health as well. This de-stigmatized mental health, and presents it as part of
comprehensive health care.

• Subsidized “calling-card” number for at-risk populations. Subjects can make free calls
on a normal phone using a special access number. This number routes calls through a
cloud of servers where they are analyzed. Distinct access codes would allow per-patient
tracking. This method should be cost effective for many chronic conditions such as
AIDS where mentally ill patients add severe cost overhead due to wasted (not taken)
medication and (corollary) drug-resistance strains of the virus.
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Figure 1.1: Scenarios for Speech Monitoring

• Monitoring of human-computer speech interfaces and interpersonal speech for elders in
assisted or independent care. Environmental monitors (array microphones that work
10-20 feet from subjects) can be used to gather incidental speech between subjects.
For subjects living alone, speech interfaces may be introduced as a convenient way for
subjects to access email, text messages, news, weather and personal schedule infor-
mation. These routine services provide regular opportunities to intercept and analyze
their speech for mental health purposes.

Motivating Applications

In this section we describe several applications that an affect monitor should be able to
support (application mockups are available in Appendix A).

• Improving emotional intelligence. This application monitors the user’s emotion con-
tinuously in order to improve the user’s ability to identify, assess, and control their
emotions. Even if users are good at assessing emotions over the short term, this appli-
cation would allow visualization of frequency and intensity of emotions over the long
term to expose trends in mood. By integrating contextual information like the user’s
calendar and location, the application can correlate emotions with possible triggers
and allow the user to better manage those effects.

• Managing social relationships. This application would measure emotions and detect
positive affect or conflicts during phone conversations. While users are generally aware
of their emotions during a conversation, they are also cognitively loaded with the sub-
ject matter of the conversation. They may also fall without realizing into counterpro-
ductive roles (e.g., mutual victim roles in close relationships) which induce a variety of
negative emotions (frustration, defensiveness, anger) that are incorrectly attributed to
the partner in the conversation. Emotion monitoring can help users better understand
what they were actually feeling and expressing during a conversation with another.
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• Computer-assisted psychotherapy. Almost all psychotherapies attempt to track pa-
tient’s mental state in between therapy sessions. This includes mood, triggers to emo-
tion (the first bullet above), and direct cues to mental health. In conventional therapy
this is limited to patient self-reports, which are often irregular and subject to a variety
of biases. Monitoring of phone conversations should provide a more fine-grained and
diverse sample.

1.2 Thesis Outline

In the thesis, I describe my investigation pathway on speech analysis methods to measure
a variety of mental states, including affect and those triggered by psychological stress and
sleep deprivation.

The thesis is organized as follows. The thesis starts by providing the theoretical back-
ground for speech analysis methods and associated psychology studies, serving as the foun-
dation for the rest of the thesis. This includes the emotion theory, speech production theory,
and several relevant work indicating that speech features are useful to measure affective
states and mental illness. Chapter 3 describes the process of building speech analysis meth-
ods for emotion recognition, using a naturalistic emotional speech dataset with a variety and
realistic set of emotion labels. Chapter 4 presents the a light-weight method to recognize
phonemes. The method was applied for the recognition of speech rate (rate of phoneme
transitions). The method is useful in a sense that the speech rate is an important feature
to associate different mental states (e.g., fast speech in anger and slow speech in sadness).
Chapter 5 describes the source of speech production and its applications in two domains.
We believe that glottal activities in speech production can be a good indicator of physical
change induced by mental states. It demonstrates the hypothesis by showing that the fea-
tures depicting the glottal vibrational cycles are effective in improving the classification of
speech in pathology and mental stress, where mental stress often manifests physical response
in the autonomic nervous system. Acting on the glottis is a muscle that is activated entirely
by the ANS (Autonomous Nervous System), this muscle responds directly to stress. More-
over, Chapter 6 extends this idea by describing a thorough analysis on two applications in
which the speech features are effective to reflect the trigger of the physical body. Firstly it
presents a project where the impact of sleep deprivation on vocal expression of emotion was
investigated. Results for the computerized acoustic properties indicate decreases in pitch,
intensity in certain high frequency bands and vocal sharpness. Secondly, a speech dataset
under simulated and actual stress will be revisited, and it describes several critical techniques
to improve the classification of stress, including user normalization and the constraints of test
speech length. Chapter 7 describes the AMMON (Affective and Mental-health MONitor)
library, a low footprint C library designed for widely available phones. To comfortably run
the library on feature phones (the most widely-used class of phones today), we implemented
the routines in fixed-point arithmetic, and minimized computational and memory footprint
by algorithmic improvement and code optimization. Finally the thesis draws conclusion and
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describes potential work in the future.
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Chapter 2

Theoretical Foundation and
Background

2.1 Recognition of Affect

What makes our conversation with the others more human-like is the affect we associate
within. Affective computing is the study and development of systems that can recognize,
process, and simulate human emotions [68]. In the vein of affect recognition, psychologists,
computer scientists, and bioengineers have been exploring this in different aspects, be the
construction of cognitive models of affect, or the measurement of the bodily expressions.

The Model of Affect

The section does not intent to be an overview of the vast literature on emotion theory. Its
goal is to present a simplified and intuitive distinctions to the mental states that my study
is referring to. Justin and Scherer suggests using affect as a general, umbrella term that
subsumes a variety of phenomena such as emotion, stress, mood, interpersonal stance, and
affective personality traits [43]. All of the states share a special affective quality that sets
them apart from “neutral” states. We often use the phrase to describe that a person is
“affected” by something (e.g., an event, a thought, a social relationship etc), which in fact
defines clearly the root of the word “affect”. The influence by something gives an affective
episode standing out from the neutral baseline states both in the subjective experience of
the person and in the perception of the person by an observer.

Scherer [75] differentiated affective states by seven dimensions, including intensity, du-
ration, event focus, rapidity of change, etc. This is called a design-feature approach. This
approach suggests three broad classes of affective states:

1. emotions and stress

2. moods and interpersonal stances
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Figure 2.1: Arousal-valence theory with discrete emotions. Arousal increases vertically,
valence is positive to the right and negative to the left.

3. preferences/attitudes and affect dispositions (e.g., personality)

Using the dimensions to describe, emotions and stress are quite short but intense reactions
to specific events of high pertinence to the individual. Evolutionarily, it is believed that stress
played a role in survival by increasing arousal and through activation of the fight-or-flight
response in the presence of danger [7]. These reactions are generally powerful and have
strong impact on behaviors, which enables studies in the following section using the strong
behavioral/expressional cues to sense the affective state of an individual as we can perceive
as an observer.

Moods and interpersonal stances are rarely generated by specific events or objects. Moods
may occur for many different reasons, often unknown to the individual, triggered by factors
such as fatigue, hormonal influences, or even the weather. Along with interpersonal stances,
these states may last for hours or days and change only slowly, and the intensity is low. Lastly,
preferences/attitudes are long-term affective evaluations of objects or people that have low
intensity. Probably due to the nature of low intensity, there are relatively less literature
leveraging physiological arousal to sense these affective states, but growing recently [41].

That is the basis for distinguishing affective states, at least from the bodily expression
point of view. Looking a step further at the work of recognizing emotions, two approach of
differentiating emotions were adapted and each of them has their proponents.
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• A discrete emotions approach argues that one should distinguish among a limited
number of “basic emotions” (e.g., angrer, happiness etc) [20].

• A dimentional approach defines the emotions as points in a two-dimensional space
formed by valence (pleasant and unpleasnt) and activation (aroused/sleepy) [72]. This
approach involves traditional expectations about arousals might affect the bodily ex-
pressions.

Figure 2.1 shows the relationship of the two models. One thing to note is that chapter 3
will leverage both approaches to present my investigation in speech analysis methods.

Vocal Expression of Affect

Studies have shown that facial expression [44], speech [43], and biosignals [39] including
galvanic skin response, heart rate, breathe rate, and brain activity are strong indicators for
inferencing the emotional states.

The branch of emotional speech processing recognizes the user’s emotional state by an-
alyzing speech patterns [43, 28]. To be clear there are linguistic content- and prosody-based
aspects of speech that we can leverage to perceive others’ emotional states. A intuitive dis-
tinction is that the content is about the words in speech, i.e., what we are saying, whereas
the prosody is about the sound characteristics of speech, i.e., how we say it. In terms of
acoustics, the prosodics of oral languages involve variation in syllable length, loudness, pitch,
and the formant frequencies of speech sounds. Further distinction in speech can be made
upon the linguistic, paralinguistic, and extralinguistic information within speech utterances.
However, the description is beyond the scope of this thesis, but can be referenced in the
linguistic literature, although some distinction is still in debate. Research using the speech
content to distinguish emotions is known as “sentiment analysis”, which works by counting
frequency of sentimental terms (e.g., I am ‘excited’). A relevant and currently very popular
topic is to analyze large scale web data for consumer behavioral analysis [67].

However, this thesis is geared towards the speech analysis on the “non-content” acoustic
parameters to model affect and emotions. Previous studies directed their effort to identify the
optimal set of acoustic features to classify a set of emotions. These works were often based
on psychological studies that, some prosodic features such as pitch variations and speech
rates associate well with emotional changes [43]. In linguistics, prosody is the rhythm, stress,
and intonation of speech. Prosody reflects whether an utterance is a statement, a question,
or a command. In the mean time, prosody is also applied to reflect the emotional state of a
speaker, either consciously or unconsciously.

First of all, pitch (i.e., physiological pitch1, F0, fundamental frequency) represents the
rate at which vocal folds open and close across glottis. A sudden increase in pitch can often

1Strictly speaking, pitch is a psychological quantity, while F0 is physiological. For instance, pitch can
change from the frequency F0 depending on the amplitude of the signal. Furthermore, the fundamental can
be entirely missing (as it often is on telephones) and still the listener will perceive the same pitch. So we
distinguish the pitch here as “physiological pitch” to represent F0.
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be perceived as high activation (e.g., anger), whereas low variance of pitch is often conceived
as low energy (e.g., sadness). Intensity reflects the effort to produce speech. Studies showed
that angry utterances usually display rapid rise of energy, and on the contrary sad speech
usually has characteristics of low intensity. In temporal aspects, speech rate and voice
activity (i.e., pauses) are also affected by emotions. For example, sadness often results in
slower speech and more pauses.

In addition to discrete emotions, a number of studies have obtained results regarding to
affect dimensions, i.e., activation and valence. Activation has been studied the most, and
the results are fairly consistent. High activation is associated with high mean F0, large
F0 variability, fast speech rate, short pauses, increased voice intensity, and increased high-
frequency intensity [43]. The results for valence are much more inconsistent unfortunately.

A representative landmark for emotion recognition was the Interspeech Emotion Chal-
lenge 2009 [78]. This challenge included a standard dataset of emotion-tagged speech, and
a “baseline” implementation of feature analysis, known as openSMILE. Surprisingly, while
some more sophisticated algorithms improved on the baseline system, the improvements were
very small, and it is fair to say that the baseline implementations achieved state-of-the-art
performance. A second surprising result was that the use of segmental features (phone-level
features) did not improve on “suprasegmental” primitive features (MFCCs, pitch, dynamics,
energy). This may change in the future, but for now it means that state-of-the-art emotion
recognition is much simpler than phonetic analysis. Expressed in terms of speech recognition
components, that means that fully-accurate emotion analysis requires only the front-end of
a speech recognizer and not the (memory and compute-intensive) acoustic model or later
stages.

As a quick reference, the state-of-the-art recognition accuracy is about 70% for five-way
classification of emotions (happy, sad, fear, anger and neutral) in a standard database with
actors expressing emotion portrayals [70]. On the other hand, for the Interspeech challenge,
naturalistic transcripts were recorded and hand annotated. Accuracy was only 70% for two-
way classification [79]. An important question concerns the extent to which such portrayals
differ from natural vocal expressions. However, a preliminary view can be offered that acted
emotional speech may be more exaggerated than natural vocal expressions so that it allows
higher recognition accuracies.

2.2 Diagnostic Cues in Vocal Expression

Mental illness is one of the most undertreated health problems worldwide. Previous work
has shown that there are remarkably strong cues to mental illness in short samples of the
voice. Mounting evidence from the literature suggests a critical role for speech in the clinical
aspect of affective states. The section gathers research suggesting the critical role of vocal
expression for standardized diagnosis, emerging research of psychopathological signs, and
common practice using mental status exam.
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Table 2.1: DSM-IV: Diagnosing Criteria for Major Depressive Disorder (for a minimum of
two week duration)

Major Criteria Plus 4 or More

Depressed mood Feelings of worthless or guilt
Loss of interest Impaired concentration

Loss of energy or fatigue
Thoughts of suicide
Loss or increase in appetite
Insomnia or hypersomnia
Retardation or agitation

Psychomotor Symptoms

A growing body of scientific research points towards psychomotor disturbances as consistent
indicator (also known as prodrome [42]) of the onset of depression [76, 85]. It was also re-
ported that psychiatrists routinely monitor these prodromes in patients during the diagnostic
period and as measures for assessing treatment progress. For example, depressed patients
often express slow responses (longer response time to questions and pause time within sen-
tences), monotonic phrases (less fundamental frequency variability), and poor articulation
(slower rate of diphthong production) [29, 48, 65, 87]. These factors indicate signs of retar-
dation. On the other hand, the spectrum of agitated behavior includes expansive gesturing,
pacing and hair twirling [89]. Lemke and Hesse [49] stressed the importance of developing a
monitor of psychomotor symptoms. Moreover, they stated that the technology should not
be constrained to research purposes only: “the development of clinical instruments for eval-
uation of motor symptoms in psychiatric patients is necessary to differentiate more clearly
between observed psychopathological signs and experienced symptoms in clinical psychia-
try.”

Diagnostic and Statistical Manual of Mental Disorders
(DSM-IV-TR)

Persistent depressed mood is the main criteria for diagnosing the existence of major depres-
sive disorder (DSM-IV-TR) [1]. Coupled with lost of interest and four additional criteria
for a minimum of 2-week duration, psychiatrists may diagnose existence of the depressive
illness (Table 2.1). Note that sleep deprivation (insomnia) and stress (agitation) are criteria
relevant to depression and the recognition of these mental states are explored in the thesis.

The Diagnostic and Statistical Manual of Mental Disorders (DSM) published by the
American Psychiatric Association provides a common language and standard criteria for the
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Table 2.2: Speech Descriptors in Mental Status Exam

Category Patterns

Rate of speech slow, rapid
Flow of speech hesitant, long pauses, stuttering
Intensity of speech loud, soft
Clarity clear, slurred
Liveliness pressured, monotonous, explosive
Quantity verbose, scant

classification of mental disorders. It is used in the United States and in varying degrees
around the world, by clinicians, researchers, psychiatric drug regulation agencies, etc. Cur-
rent version is DSM-IV-TR (fourth edition, text revision). It is worthwhile noting that the
current standard does not involve any criterium described with speech (Table 2.1). Nonethe-
less, the human speech is the expression of our bodies and minds. It is the focus of the thesis
to bridge the vocal expression with the criteria stated in the standard. This goal is similar
to that of actiwatch, an accelerometer-enabled watch to measure gross motor activity.

Mental Status Examination

The mental status examination in the United States or mental state examination in the rest
of the world, abbreviated MSE, is an important part of the clinical assessment process in
psychiatric practice. It is a structured way of observing and describing a patient’s current
state of mind, under the domains of appearance, attitude, behavior, mood and affect, speech,
thought process, thought content, perception, cognition, insight and judgment [88]. In par-
ticular, practitioners pay special attention to abnormal speaking styles listed in the MSE
(Table 2.2) and relate the descriptors to certain mental status. The MSE allows the clinician
to make an accurate diagnosis and formulation, which are required for coherent treatment
planning.

Relationship with Emotion Research

Results derived from affective computing share a similar set of acoustic features in psy-
chopathology research, including pitch, intensity, speech rate etc (i.e., prosodic features).
The methodology to extract acoustic features has been studied more extensively in emo-
tion recognition research than in the mental illness setting, so acquaintance in the emotion
research helps us to proceed in the clinical mental health setting.
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2.3 Theory of Speech Production

The thesis focuses on the meaningful parts of vocal expression for mental health monitoring,
so understanding the process of speech production helps develop effective speech analysis
routines. The following description is adapted from [26, 43]. The basis of all sound making
with the human vocal apparatus is air flowing through the vocal tract powered by respira-
tion. The type of sound produced depends on whether the air flow is set into vibration by
rapid opening and closing of the glottis, producing quasi-periodic voiced sounds, or whether
it passed freely through the lower part of the vocal tract and is transformed to turbulent
noise by friction at some obstruction (e.g., the lips), i.e., non-periodic, unvoiced sounds. The
characteristics of a speech wave form (and of its spectrum) are determined by two quite differ-
ent and largely independent factors: the glottal wave or pulse (determined by the subglottal
pressured and the laryngeal setting) and the vocal tract resonance characteristics (transfer of
filter function, mainly determined by the supralaryngeal articulatory setting). The process
is shown in Figure 2.2, which illustrates the source-filter theory of speech production [26].
The human speech production system is illustrated in Figure 2.3.

The Glottal Wave

At the beginning, the vocal folds are set into a closed position by the muscular action of
the laryngeal muscles. The continuous respiratory air flow compresses the air in the column
below the glottis and builds up subglottal pressure. When the pressure exceeds the closing
force of the muscles, the vocal folds open for a fraction of a second to release some of
the pressure. The reclosing of the vocal cords is achieved by the elastic recoli of the folds
themselves. Both the overall tension of the vocal folds are regulated by a large number
of extra- and intralaryngeal muscles (laryngeal setting). The most important factors are
the length, thickness, mass and tension of the vocal folds. The greater the length and the
tension, the faster they will open and close. Both F0 and voice quality (e.g., breathiness,
roughness, sharpness) are strongly influenced by the timing of the glottal cycle (e.g., the
relative duration of closing, closed, opening and open phases).

The Vocal Tract

As a result of the glottal pulse’s passage through the transfer function of the vocal tract, some
of the harmonics in the spectrum of the pulse are amplified (producing local energy maxima
called formants) and attenuated. Both effects depend on the resonance characteristics of
the vocal tract. Figure 2.2.a-c show the result of this filtering process in the time domain
and wave forms in Figure 2.2.d-f, its equivalent in the frequency domain. Radiating at
the mouth of a speaker, the waveform serves as the basis for the objective measurement of
acoustic parameters.

Basic speech acoustics include simple parameters of wave forms including amplitude and
frequency, and complex characteristics such as spectral decomposition, fundamental fre-
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Figure 2.2: The source-filter theory of speech production: (a) glottal wave, (b) vocal tract
shape, (c) radiated sound wave, (d) glottal spectrum, (d) vocal tract transfer function, (f)
acoustic spectrum at mouth opening (adapted from [26])

.

Figure 2.3: The human speech production system
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quency (the lowest harmonic that would correspond to the series of harmonics associated
with a periodic source) and harmonics (higher-order components of complex waves occur-
ring at integral multiples of the fundamental frequency). The reader is referred to classic
textbooks in the field (e.g., [4]).

2.4 Long-term Monitor and Healthcare Applications

Morris conducted ethnographical studies to understand the acceptance of technologies for
early detection of health conditions [62]. They suggested that adoption of such health tech-
nologies will be increased if monitoring is woven into preventive and compensatory (i.e.,
intervention feedback) health applications. An integrated system should provide values be-
yond assessment. Some related work followed this idea. An example UbiFit [17] utilized
a wearable multi-sensor device to infer physical activities and created a graphical appli-
cation to promote physical health. Moreover, an abundance of research was dedicated to
address healthcare problems from different perspectives. Abaris [45] supports therapy for
children with autism. Ramachandran [71] applied information and communication technolo-
gies (ITCs) to support health workers for improving maternal health in rural India.
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Chapter 3

Emotion Recognition

We built an automatic emotion monitor via voice, which will serve as a key component to
promote emotional awareness. The work was based on the Belfast Naturalistic Emotion
Database, which was chosen to provide a realistic model for monitoring everyday conver-
sations. While the database offered a holistic solution to approach “naturalistic-ness”, in-
cluding a variety of emotion labels, a flexible labeling scheme, and a complete set of natural
recordings, we discovered that some points need to be considered during the modeling pro-
cess, in order to fully benefit from those great characteristics. For example, we experimented
with methods for feature normalization and proposed methods to address data imbalance
and shared-meaning emotion labels. In this work, we achieved 0.7 unweighted average (UA)
F-measure in a two-way classification task and 0.4 UA F-measure in a four-way classification
task. Here we discuss the experimental result and the learned lessons of a generalized model,
which was designed to simultaneously classify a multitude of emotion labels. In the end, we
report the useful features of vocal expression.

3.1 Introduction

Persistently depressed mood is one of the major criteria for the existence of major depressive
disorder [1]. However, the depressed often lose their ability to recognize and manage the onset
of harmful emotions [6], so they often fail to participate the control of the illness. Affective
computing research [81][43] has proved that vocal expression is often encoded with a wealth
of information, which is suitable to automatically infer the emotion that a user is currently
experiencing and prompt the user of the recent onset of emotions. With strategic feedback,
it is anticipated to help users build their ability to retrospect the momentary emotions and
develop coping skills. In this chapter, we focus on building an automatic monitor, which can
analyze users’ vocal expression and then identify the appearance of emotions.

With the goal of building an application that will work in people’s everyday lives, we
considered it necessary to make use of a naturalistic emotion database. We chose The Belfast
Naturalistic Database [23], which consists 298 audiovisual clips from 125 speakers, 31 male,
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94 female. The database provided a holistic solution to approach ‘naturalistic-ness’. For
example, it provided a set of 40 emotion labels, which were much richer than the prototypical
emotions, such as sad, happy, and angry emotions. In addition, the clips themselves were
descriptive enough in showing the necessary context for researchers to understand the local
peak of emotions and the development over time. Moreover, it provided a flexible yet detailed
labeling mechanism, where the judges were asked to mark down more than one emotion that
they can perceive within a clip, along with a three-point intensity value (weak, medium and
intense).

During the course of the data analysis, we found it necessary to be more careful processing
the data, in order to fully benefit from the great characteristics. For example, out of the rich
set of emotion labels, some emotion labels have shared meaning, such as happy and pleased
emotions, possibly causing judges to mix the use of labels. More seriously, the similar
emotions may not have distinctive vocal expression. This creates a modeling challenge
since clips sounding similar may be labeled as subtly different emotions and will create
confusion when training a model. For this problem, we discussed an “objective” way to
merge similar emotions as one to avoid the confusion during modeling, instead of judging
which two emotions are similar “subjectively”.

It is also difficult to obtain a balanced dataset from a naturalistic database, because there
are rarely-appearing emotion labels in a rich label set. This problem often misleads training
algorithms to create an incorrect model favoring the majority class [12] while optimizing
objectives such as accuracy or alike. Instead of applying the popular solutions such as
resampling or downsampling, the just-mentioned method which merges similar emotions
into a larger class can also interestingly play a role here. A larger class can partially reduce
the magnitude of data imbalance, and therefore help create a better model.

Furthermore, leveraging the Belfast database offers great opportunity to explore several
useful mechanisms for creating better emotion recognition models. For instance, we proved
the effectiveness of a user-based feature normalization. We also found that this method is
effective even if there are fewer than five data points per user. In addition, we experimented
with a generalized model that is capable of simultaneously classifying a multitude of emotion
labels. Although in the end the accuracy of the model was not satisfying, we were able to
study the feasibility of identifying rare emotions. Moreover, we adopted a label aggregation
method to combine the labels created by multiple judges, which was made possible by the
detailed labeling scheme with a three-point intensity scale.

Combining the efforts mentioned above, we delivered classifiers that were able to dis-
tinguish prototypical emotions with a reasonable performance. In short, we achieved 0.7
unweighted average F-measure in a two-way classification task and 0.4 unweighted average
F-measure in a four-way classification task. We also discussed the features that were useful
in identifying emotions, and showed that voice quality features, pitch accent, and first-order
measure of contours were the most outstanding ones.

The rest of the chapter will be presented in the following outline. First, we will provide
related work specifically to emotion recognition in Section 3.2. Then, we describe the Belfast
database in Section 3.3, which includes data characteristics, a label aggregation method, an
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objective way to evaluate the similarity of emotions, and the classification tasks that we
plan to investigate. In Section 3.4, we will describe the feature set. Finally, we will provide
experimental results in Section 3.5, and draw a conclusion in Section 3.6.

3.2 Related Work

In this section we describe some related work for discussing our contribution to the area.
Constructing an automatic emotion recognizer depends on a sense of what emotion is

[19]. Most psychological studies have been trying to provide a holistic framework for the
portrayal of the source and expression of emotional states [18]. Nonetheless, for emotion
recognition research, it comes naturally to develop a simple scheme that can be applied
directly to statistical machine learning models. In the end, assigning categorical labels to
speech becomes the most popular one, because it is natural and convenient to reduce the
recognition problem into a well-studied classification problem in the machine learning area
[81]. However, as humans use a daunting number of labels to describe different emotions, the
simple reduction advantage leads to a challenging question: ‘could we create a system that
can recognize emotions with the same level of granularity people apply’?

For modeling emotions, researchers usually follow the same modeling process. It usually
starts by extracting a significant amount of features. Since there is not yet a final conclusion
of the most effective feature set [43][52][28], researchers usally take a shut-gun approach
where they include as many features as possible if the features may be helpful for recognition.
Then, some may apply an intermediate feature selection step to reduce the dimensionality
of features [28]. Finally, researchers choose a machine learning model of interest to classify
emotions, including support vector machines [21], artificial neural network [91], gaussian
mixture models [56], or a combination of these [31]. Again, researchers have not concluded
which method is superior. Since classes were often unbalanced, the primary measure of
performance was often chosen as unweighted average recall or F-measure. A recent work
showed that it achieved in the level of 70% UA recall for two emotion classes and 45% UA
recall for five emotion classes (Interspeech 2009 Emotion Challenge [81]).

3.3 The Naturalistic Belfast Emotional Database

We made use of The Naturalistic Belfast Emotional Database [23] to model vocal expression
of affect. The database consists of 298 audiovisual clips from 125 speakers, 31 male and 94
females. These clips were collected from a variety of television programs and studio-recorded
conversations. The television programs consist of chat shows, religious programs, programs
tracing individuals’ lives and current affairs programs. Studio recordings were based on one-
to-one interactions between a researcher with field work experience and close colleagues or
friends.
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Table 3.1: Categorical labels used in Belfast database

affecting, afraid, agreeable, amused, angry, annoyed, anxious, ashamed, bored, calm, con-
fident, content, despairing, disappointed, disapproving, disgusted, embarrassed, excited,
guilty, happy, hopeful, hurt, interested, irritated, jealous, joyful, loving, nervous, panicky,
pleased, proud, relaxed, relieved, resentful, sad, satisfied, serene, surprised, sympathetic, and
worried.

The database contains conversations covering a wide range of emotional states that occur
in everyday interactions as well as more archetypal examples of emotion such as full-blown
anger. In addition, for each speaker there is at least one clip showing him or her in a state
judged relatively emotional, and also one clip judged relatively neutral. Clips range from
10 to 60 seconds in length. Also it is worth noting that, in addition to the main speaker
of interest, other speakers such as the host of TV shows were recorded as well. To avoid
confusion while building classifiers, we did some preprocessing to segment out the voice of
the other participants.

The Belfast database provides both categorial labels and two-dimensional activation-
evaluation space coding [72]. Nonetheless, we only focused on the categorical labeling. The
database utilized an intuitive and generalized labeling scheme. First, it accommodates the
coexistence fact that in our everyday conversations more than one emotion may show up
simultaneously, each with different intensity. This is different from that of traditional emo-
tional databases, in particular acted emotional databases, where each clip is coded with (or
designed to display) only one categorical emotional label [35]. In addition, it considers the
variety fact that the emotions appearing in everyday conversations are more than just the
basic ones, i.e., happy, sad and angry. The forty different categorical labels allowed us to
study how well a computerized algorithm can match the perception of humans.

The labels were labeled by judges. A judge was asked to assign up to three emotion
labels that the she can perceive from a clip. In addition, she was asked to describe the
intensity level for each emotion, which may be weak (1), medium (2), or strong(3). In this
way, a label instance may look like (Clip: 001a, Judge: bob, Emotion 1 : sad, Intensity of
Emotion 1 : medium, Emotion 2 : despairing, Intensity of Emotion 2 : strong, Emotion 3 :
N/A, Intensity of Emotion 3 : N/A). The emotions were drawn from a pool of forty labels,
and they are displayed in alphabetical order in Table 3.1. In addition, to ensure the quality
of labeling, there were a total of seven judges involved.

Label Aggregation

Multiple judges can ensure the reliability of coding, but it requires label aggregation to
eliminate labeling error and reflect consensus. The aggregation mechanism that we applied
was based on the assumption that the judges were equally reliable.
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We first converted the 3-emotion-item tuple-based coding (i.e., Emotion 1 : sad, Intensity
of Emotion 1 : medium, Emotion 2 : despairing, etc) to an 40-element array form Intensityc,j,
where each element Intensityc,j[e] represents the intensity of emotion e perceived by judge j
in clip c. If an emotion did not exist in the list, the intensity of its corresponding element in
the array should be zero. Otherwise, its intensity recorded in the tuple was copied directly to
the array. That means, the intensity values in the array form became {0, 1, 2, 3} where 0 rep-
resents non-existence, 1 is weak, 2 is medium and 3 is strong. With the array-representation,
it became straightforward to aggregate by

Intensityc[e] = round(
1

NumberofJudges

∑
j

Intensityc,j[e]) (3.1)

The four-point intensity scale enabled a more robust way to aggregate labels, instead
of the traditional {0,1} labels. An momentary error labeling would likely to be ignored
through aggregation. If there was only one or two judges perceived that a certain emotion
appeared in a clip, the intensity they assigned would be diluted since there were a total of
seven judges. Similarly, if a judge perceived a emotion strongly, it would be reflected more
in the aggregated label, than the case if the judge perceived it weakly.

Throughout the work, we focused on predicting the appearance of emotions:

Appearancec[e] =

{
1 if Intensityc[e] = 1, 2, or 3
0 if Intensityc[e] = 0

(3.2)

Distribution of Emotions

With the aggregation method, now we can provide an overview of how emotion labels dis-
tribute in the database. Table 3.2 shows the sorted list of emotions according to the number
of appearances in clips. There were a total of ten clips did not have labels provided, so the
total number of useful clips was actually 288. In addition, the positive and negative emotions
are placed in two separate columns.

Table 3.2 shows an evidence of data imbalance, that out of 298 clips, most of the emotions
appear in less than 1/5 of the clips, and more than half of the emotions even appear in less
than 1/10 of the clips. The table implies that there was significant class imbalance between
emotions, which is actually very common in naturalistic emotional databases since it is
difficult to balance all these emotions from natural recordings. That said, if one wants to
build a classifier to recognize some of the minority emotions, such as the joyful (c.f. happy)
emotion, the class-imbalance problem could lead to improper modeling since a classifier may
be optimized to favor the majority class.

Similarity between Emotions

As stated in related work, humans use a significant number of labels to describe emotions,
where some of them are subtly similar. The similarity between some of the emotions may
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Table 3.2: Appearance Frequency in Clips of Categorical Emotions (Out of 288 Clips)

Negative Number of Positive Number of
Emotion Appearances Emotion Appearances

sad 70 happy 66
angry 68 pleased 58

annoyed 64 interes 53
disapproving 39 content 40

hurt 37 confident 31
disappo 26 relaxed 31
worried 18 calm 31

resentful 14 excited 25
disgusted 13 affecti 22

despairing 12 amused 19
irritated 10 loving 17
anxious 10 serene 11

afraid 8 proud 9
nervous 7 surprised 8

guilty 1 joyful 8
ashamed 1 relieved 7

jealous 1 hopeful 6
embarrass 1 satisfied 5

bored 0 sympathetic 3
panicky 0 agreeable 0

create confusion on classifiers, which makes it challenging to have a system that matches the
level of granularity people apply to distinguish emotions. In other words, a classifier may
suffer from a big deal of confusion in the classification of similar emotions, e.g., happy and
pleased emotions.

As a result, we may want to identify which emotions are beforehand in order to resolve
the confusion imposed on the classifiers. However, an immediate question will be raised:
“how do we claim that a pair, or a set of emotions are similar, or have shared meaning?” Of
course, we can always judge it by ourselves, with our own knowledge and beliefs. But even
better, we can approach this in an objective way, by leveraging judges’ joined perception on
the meanings of emotions.

The idea was that, if two emotions appeared (or were labeled) concurrently in clips,
it’s likely that they showed the same emotional image to the judges. That is, if the co-
appearance is frequent, two emotions are likely to be similar. The similarity between two
emotions sim(e1, e2) can be formulated by Pearson’s correlation coefficient:
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Table 3.3: The Top Correlated Emotion Pairs

Emotion Pairs Correlation Coefficient
angry, annoyed 0.686
happy, pleased 0.529
angry, disapproving 0.496
sad, hurt 0.484
happy, excited 0.477
annoyed, disapproving 0.471

sim(e1, e2) = PearsonCoeff(AppearanceM [:, e1], AppearanceM [:, e2]) (3.3)

where AppearanceM is a matrix where each column is the appearance array Appearancec for
clip c, as defined in Equation 3.2. This idea was also adopted in the context of collaborative
filtering [74].

Having the equation applied to the Belfast database, we obtained most correlated pairs
of emotions and listed them in Table 3.3. We can see that the prototypical (i.e sad, happy,
and angry) emotions have significant correlation with other emotions, for example angry is
similar to annoyed, happy is similar to pleased, and angry is similar to disapproving emotion.
The analysis gave us a hint to decode the confusion in experimental results and we will se
this being applied in Section 3.5.

Classification Tasks

The categorical coding provided by the Belfast database allows us to experiment a variety of
classification tasks. Here we summarize the tasks upfront and describe the rationales behind
them.

The first one was to find a generalized model. We planned to build a model hat is
generalized enough to recognize a variety of emotions (i.e., over ten emotions) simultaneously
and is capable of predicting the intensity levels. Although this might sound a little far-
reaching if we consider state of the art classification accuracy, the challenge didn’t stop
us from designing such a model. In particular given the fact that the Belfast database
provided such a rich set of emotion labels. In the end, we finalized with a hierarchical model
which contains multiple sub-models, where subModele is responsible for predicting both the
appearance and the intensity of a given emotion e. This means that, each subModele predicts
whether emotion e does not appear (intensity = 0), or appears with weak (intensity = 1),
medium(intensity = 2) or strong intensity (intensity = 3).

Intuitively, we can build a four-class classifier for each subModele. However, if we simplify
the model to predict only the appearance of a given emotion, it is in fact already a challenging
two-way classification task to discriminate an emotion from the remainder [81]. By the



CHAPTER 3. EMOTION RECOGNITION 22

norm that adding more classes (i.e., representing intensity levels) would usually worsen the
performance, it may be wise to have another hierarchy in the sub-model, so that the sub-
model first identifies the appearance and then predicts the intensity. Therefore, we continued
in this task with two-class classifiers. In addition to the purpose of building a generalized
model, the two-way classification task also allowed us to evaluate how well each of the forty
emotions can identified well.

The second task was to build multi-emotion classifiers. For example, we built a classifier
to discriminate happy, sad, angry, and the remaining emotions. This task allowed us to
compare ourselves with state of the art performance.

Finally, we defined the third task for building an emotional-aware application. Since such
application should be able to recognize how often negative emotion appears, we experimented
a positive-negative two-class classifier.

3.4 Voice Analysis Library: The Feature Set

We created a voice analysis library to extract features that can best describe the vocal ex-
pression of affect. As a high level overview, the features were calculated in two stages. The
library first extracted several waveforms from the speech signals, such as fundamental fre-
quency, energy, etc. They are in fact the same as the low-level descriptors (LLDs) described
in Interspeech Emotional Challenge 2009 [78]. Then, the library calculated some statistical
measures to describe the dynamics of the waveforms, e.g., mean, variance, first-order maxi-
mum, etc. Altogether these measures formed the final feature set, which contained a total of
approximately 1000 features. We didn’t do feature selection as an intermediate step, so the
features were fed directly into machine learning algorithms to perform the three classification
tasks.

Table 3.4: Voice Features

Waveforms Measures
Pitch
F0 contour Basic statistics (referring to Table 3.5) of zero and first-ordered F0

waveform; proportion of voiced sections
Stylized F0 contour Proportion of accent and descent; basic statistics of accent and de-

scent slopes; basic statistics of zero and first-ordered level waveform
Intensity
Energy contour Basic statistics of zero and first-ordered energy waveform; basic statis-

tics of zero and first-ordered peaks found in energy waveform; EMS
(Equation 3.4) and EDS (Equation 3.5)

Temporal aspects
Speech rate Basic statistics of zero and first-order speed waveform
Voice activity Proportion of active and inactive sections
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Voice quality
Glottal waveforms Basic statistics of timings of opening phase (OP), closing phase (CP),

closed phase (C ), open phased (O) and total cycle (TC ) found in the
glottal waveform; basic statistics of timing ratios of closing to opening
phase (rCPOP), open phase to total cycle (rOTC ), closed phase to
total cycle (rCTC ), opening to open phase (rOPO), and closing to
open phase (rCPO) in the glottal waveform

Spectrogram Basic statistics of zero and first-ordered energy waveforms in each
Bark frequency band; basic statistics of zero and first-ordered peaks
found in energy waveforms in each Bark frequency band; basic statis-
tics of zero and first-ordered cumulative energy waveforms above each
of the Bark-based cut-off frequency thresholds; basic statistics of
zero and first-ordered cumulative energy waveforms above each of
the Bark-based cut-off frequency thresholds

If we read Table 3.4 closely, the waveforms are grouped into several categories, which are
pitch, intensity, temporal aspects, and voice quality. From now on we present the extraction
of them sequentially.

Pitch

First of all, F0 represents the rate at which vocal folds open and close across glottis. It is
a physiological measure. Pitch on the other hand, is a psychological quantity. From the
computation perspective, an F0 tracking algorithm is measuring the physiological quantiy,
or to be fair, the physiological pitch. It describes how a listener perceive a sound. A
sudden increase in pitch can often be perceived as high activation, such as anger, whereas
low variance of pitch is often conceived as low energy, for example, sadness [43]. We made
use of open source software Praat [3] and Prosogram [55] to extract both pitch waveform
and stylized pitch waveform [55]. In particular, the stylized pitch were extracted based on
a controlled cognitive study so that a stylized pitch can follow people’s perception on pitch
accent, descent and level. An example of a stylized pitch contour is showed in Figure 3.1. It is
anticipated that making use of the stylized pitch that approaches people’s perception closely
on pitch, can help mimic people’s perception of emotions. From the stylized waveform, the
library also calculated a level -based stylized waveform by outputing an averaged pitch value
from each stylized segment.

Note that, the unvoiced sections of a pitch contour, i.e., where pitch is zero, were first
removed so that the voiced parts of the pitch contour were concatenated together as a
continuous contour and then fed into the following calculations.
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Figure 3.1: A Stylized Pitch Waveform

Table 3.5: Basic Set of Statistical Measures

Standard Measures Robust Measures
Mean Median
Variance Mean absolute deviation
Maximum 95 percentile (95p)
Minimum 5 percentile (5p)
Range 95p - 5p

Statistical Measures

The library calculated measures based on a set of basic statistical measures, which are
summarized in Table 3.5. It was our hope that by including multiple statistical measures,
the final feature set will represent all possible dynamics which might be affected by emotions.
In addition to the standard statistical measures, we also included the robust version of
measures, so as to make the features less sensitive to the noise produced during waveform
extraction (e.g., median vs. mean, 5 percentile vs. min etc).

In addition, we hoped to model that some emotions may have less momentary change in
pitch (i.e., monotone), such as sadness. Therefore, we had the library calculating first-order
perturbation [69]. First-order perturbation was calculated by taking difference between ad-
jacent samples in zero-order waveform, where the zero-order waveform is simply the original
waveform. In this way, it can describe the rapid change of pitch cycles from the current one
to the next.

Intensity

The intensity reflects the effort to produce speech. Studies showed that angry utterance
usually displays rapid rise of energy, and on the contrary sad speech usually is characterized
by low intensity.

Based on the observation, our purpose became creating features that can describe the
overall energy level and some momentary energy ‘onset’ and ‘offset’. For the latter, the
library first extracted a raw energy waveform by root-mean-square with a moving window.
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Then, it identified peaks in the energy waveform, and then it calculated statistical measures
to capture the dynamics in-between the peaks. Describing dynamics by peaks was based on
the hypothesis that peaks are the major perceptual components in an energy envelope.

Also, Moore II proposed two measures EMS and EDS [59] to accommodate the fact
that direct energy values are less robust to different recording conditions (i.e., microphone
distance, recording level, etc) varied slightly from session to session. EMS (energy median
statistics) and EDS (energy deviation statistics) are energy perturbation measures among
the voiced sections of a contour. They were computed by taking all of the statistics listed in
Table 3.5 from the voiced sections and then computing the standard deviation (EDS) and
the median values (EMS) of the ith statistic by

EMS = Median(STATi[Ev]), i = 1, ..., N (3.4)

EDS = Std(STATi[Ev]), i = 1, ..., N (3.5)

where STATi, is the ith statistic computed on the voiced sections, Ev one of the V voiced
sections broken down from the energy contour, and N is the total number of statistics
computed on each voiced section.

Temporal Aspects

In temporal aspects, we included measures that can describe speech rate and voice activity
(i.e., pauses). Some research showed that those two temporal properties may be affected by
emotions [43]. For example, sadness often result in slower speech and more pauses.

In terms of implementation, we made use of Morgan’s mrate implementation [61] to
calculate speech rate. In addition, we adopted ETSI’s extended front-end processing module
(ETSI AFE ) [24] to approximate the amount of pauses. The approximation was achieved
by firstly using the front-end to calculate a sequence of voice activity flags. Then, the library
collected the total duration of inactive periods as the amount of pauses.

Voice Quality

Studies reported that emotions may influence the voice quality of utterances [43]. For exam-
ple, some voice becomes sharp or jagged while some voice sounds soft.

Glottal waveforms are useful to describe these sound characteristics [86]. As illustrated in
Figure 3.2, a glottal (flow) waveform represents the time that the glottis is open (O) (with
air flowing between vocal folds), and the time the glottis is closed (C ) for each vibrational
cycle. In addition, an open phase can be further broken down into opening (OP) and closing
(CP) phases. If there is a sudden change in airflow (i.e., shorter open and close phases), it
would produce more high frequency and the voice therefore sounds more jagged, other than
soft. To capture it, the library calculated measures describing timings of the phases and the
ratios of closing to opening phase (rCPOP), open phase to total cycle (rOTC ), closed phase
to total cycle (rCTC ), opening to open phase (rOPO), and closing to open phase (rCPO).
The extraction of glottal waveforms was based on Moore II’s implementation [58].
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Figure 3.2: A Glottal Vibrational Cycle

We also included a spectrogram to describe the energy distribution across frequency bands.
The reason was that the emphasis on certain frequency may be speaker dependent and may
be used to reflect emotions [28]. In particular, we analyzed the frequency bands in a way
that follows the nature of listening. Listening devotes “unequal” emphasis to different areas
of the audible spectrum, i.e., critical-band processing. It was our hope that by following the
nature of listening, we could better approach human decoding of emotions. In particular, we
processed the frequency bands with Bark scales [98], from Bark1 to Bark14 (0Hz - 2320Hz).

Moreover, some work claimed that as the amount of high-frequency energy increases, the
voice sounds sharp and less soft [43]. Therefore, we analyzed the amount of high-frequency
energy in the spectrogram, by calculating the cumulative values in the spectrogram that
appear above certain cut-off frequency thresholds. A set of frequency thresholds were chosen,
including 510Hz (> Bark5), 920Hz(> Bark8), 1480Hz(> Bark11) and 2320Hz(> Bark14).

Feature Normalization

After finalizing the feature set, we considered methods for feature normalization. Based on
the fact that each individual may have her own pattern of vocal expression (for instance a
male’s high pitch is only as high as a female’s normal pitch), we need to make sure that the
features or patterns of different users are lying in the same range.

In particular, the Belfast database contains clips from over 100 speakers, which is a good
dataset for us to experiment a user-based normalization. In implementation, we collected
the range information for feature fc[i] on a user basis, which are maximum maxu(c)[i] and
minimum minu(c)[i]. The notation c represents the clip from which the feature fc[i] was
extracted, and u(c), a function of c, represents the user (speaker) of clip c. In other words,
the maximum and minimum values were gathered from all the clips of the same user. Then,
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we applied the range information to normalize each feature:

fNc [i] =
fc[i]−minu(c)[i]

maxu(c)[i]−minu(c)[i]
(3.6)

In addition to the user-based normalization, we also proposed another coarse-grained
normalization method: gender-based normalization. The reason was that, there were only
about two to five clips from the same speaker, which may be not enough to represent a valid
range of a user’s feature. In this method, the range information maxg(c)[i] and ming(c)[i] will
be collected from all the clips from speakers having the same gender as g(c) (gender of clip
c), which should be more reliable in terms of data size:

fNc [i] =
fc[i]−ming(c)[i]

maxg(c)[i]−ming(c)[i]
(3.7)

3.5 Experimental Results

We performed several experiments to examine the tasks proposed in Section 3.3. The ex-
periments were conducted in Matlab environment and Weka toolkit [36], and it worked in
the following. We first fed the audio clips into the voice analysis library, to acquire a feature
vector for each clip. Then, the feature vectors along with class labels were fed to Weka for
classification. The model of choice was J48 decision tree, which has several advantages. The
model usually performs reasonablely well, because it is capable of ignoring noisy and useless
features, and makes no prior assumptions about the data. Finally, we could easily interpret
what features work well by referencing the built trees. In the end, we applied 10-fold cross
validation to analyze the performance.

Predicting the Appearance of each Emotion

As the first task, we experimented two-class classifiers for sub-models, where we looked at
the classification between the appearance (class 1) and non-appearance (class 0) of a given
emotion. In other words, it was a two-way classification task classifying an emotion and the
remainder. Table 3.6 displays the performance, where the results are sorted by the data size
of class 1. The sorted list allows us to see the trend of performance over the levels of class
imbalance. For each classifier, we listed the F-measure for class 0 (Fc0) and class 1 (Fc1),
and the weighted and unweighted average F-measures (Fua and Fwa). However, the weighted
average F-measure and the F-measure of class 0 cannot fully reflect the performance of the
sub-models, since the classes were mostly imbalanced. For example, towards the bottom
half of the table where the classes get more imbalanced (ratio > 1/10), if a classifier blindly
predicts class 0 most of the time, it will still have the weighted average F-measure higher than
0.9. Nonetheless, the F-measure for class 1 and the unweighted-average F-measure depict the
performance better. They can represent how well a classifier recognizes the minority class,
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i.e., the appearance of an emotion, and we will use those measures to judge performance
from now on.

If we look at Table 3.6 again by focusing on the Fua and Fc1 measures, we will see that
only some emotions (or sub-models) had barely acceptable result. If we choose 0.3 as a
threshold for Fc1, the following six emotions had Fc1 larger than it: sad, angry, annoyed,
pleased, interested, and content emotions. This roughly means that for 30 percent of the time
that the sub-models can recognize the appearance of the particular six emotions correctly.
In addition, out of the six emotions, only the angry emotion has Fc1 over the 0.4 level. And
yet, the sad emotion, one of the prototypical major emotions, was not even in the list.

In addition, there were about twenty emotions with Fc1 equal to zero, indicating that it
remains a challenge to build a generalized model recognizing a variety of emotions, or to do
well in the an-emotion-and-the-remainder two-way classification task. We believed that the
class imbalance was a big barrier. For example, some emotions only appeared in less than 15
clips, which led to a poor 1:20 imbalance data ratio. In addition, the challenge may simply
be due to the inherent fact that some emotions are subtle in speech, such as disgusted, proud,
and despairing emotions. information of vocal expression, With only the information of vocal
expression, it was likely that classifiers would confuse the subtle emotions with others.

In summary, we learned that only the popular and major emotions can be recognized in
a reasonable accuracy whereas for some subtle emotions the classifiers didn’t work well.

Table 3.6: Two-way Classification Result for each sub-
model (class 0: non-appearance, class 1: appearance)
* had Fc1 greater than 0.3

Data Size
Emotion of Class 0/1 Fc0 Fc1 Fwa Fua
*sad 218/70 0.803 0.343 0.691 0.573
*angry 220/68 0.827 0.426 0.733 0.626
happy 222/66 0.797 0.227 0.667 0.512
*annoyed 224/64 0.853 0.359 0.743 0.606
*pleased 230/58 0.783 0.362 0.698 0.573
*interested 235/53 0.826 0.340 0.736 0.583
*content 248/40 0.899 0.300 0.816 0.600
disapproving 249/39 0.896 0.128 0.792 0.512
hurt 251/37 0.841 0.189 0.757 0.515
confident 257/31 0.911 0.097 0.823 0.504
relaxed 257/31 0.922 0.258 0.851 0.590
calm 257/31 0.891 0.258 0.823 0.575
disappointed 262/26 0.947 0.154 0.875 0.550
excited 263/25 0.928 0.040 0.851 0.484
affecting 266/22 0.959 0.136 0.896 0.547
amused 269/19 0.929 0.211 0.882 0.570
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worried 270/18 0.933 0.056 0.878 0.495
loving 271/17 0.967 0.118 0.917 0.542
resentful 274/14 0.967 0.143 0.927 0.555
disgusted 275/13 0.971 0.000 0.927 0.485
despairing 276/12 0.964 0.000 0.924 0.482
serene 277/11 0.978 0.091 0.944 0.534
irritated 278/10 0.975 0.000 0.941 0.487
anxious 278/10 0.964 0.000 0.931 0.482
proud 279/9 0.996 0.000 0.965 0.498
afraid 280/8 0.993 0.000 0.965 0.497
surprised 280/8 0.989 0.000 0.962 0.495
joyful 280/8 0.993 0.000 0.965 0.497
nervous 281/7 0.996 0.000 0.972 0.498
relieved 281/7 0.993 0.000 0.969 0.497
hopeful 282/6 0.982 0.000 0.962 0.491
satisfied 283/5 1.000 0.000 0.983 0.500
sympathetic 285/3 1.000 0.000 0.990 0.500
guilty 287/1 1.000 0.000 0.997 0.500
ashamed 287/1 1.000 0.000 0.997 0.500
jealous 287/1 1.000 0.000 0.997 0.500
embarrass 287/1 1.000 0.000 0.997 0.500
bored 288/0 0.000 0.000 0.000 0.000
agreeable 288/0 0.000 0.000 0.000 0.000
panicky 288/0 0.000 0.000 0.000 0.000

Performance Improvement with Feature Normalization

We experimented feature normalization methods proposed in Section 3.4. The user-based
featue normalization method delivered significant improvement over the previous result, but
the gender-based normalization did not. The result relieved our previous worry about the
data problem in user-based normalization. Data with only 2-5 clips per user were sufficient
to deliver effective accuracy improvement with user-based normalization. We summarized
the result of user-based normalization in Table 3.7, and we only included the meaningful Fc1
and Fua measures. To display the magnitude of improvement, we also copied the result from
Table 3.6 and listed them in columns named as ‘Before Norm.’, i.e., before normalization.
To save space, we didn’t list the emotions that have zero Fc1 in both before-normalization
and after-normalization conditions.

A paired t-test showed that there was a significant increase in the Fua scores from before-
normalization (M = 0.4855, SD = 0.1556) to after-normalization (M = 0.5016, SD =
0.1556) conditions; t(39) = 2.2795, p = 0.0282. Similarly, there was a significant increase in
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the Fc1 scores from before-normalization (M = 0.1084, SD = 0.1337) to after-normalization
(M = 0.1366, SD = 0.1605) conditions; t(39) = 2.1694, p = 0.0362.

Qualitatively, three additional emotions (happy, hurt, and relaxed) have Fc1 greater than
0.3 with the feature normalization. Unfortunately, the Fc1 of the pleased emotion dropped
below than the threshold. There were a total of three emotions (sad, angry, and annoyed)
having Fc1 greater than 0.4, and the Fc1 of sad emotion became greater than 0.5.

Note that in the remaining tasks, we applied the normalized feature set to evaluate their
performance.

Table 3.7: Feature Normalization and the Improvement
in Performance over the values from Table 3.6
* has F-Measure of Class 1 greater than 0.3 after nor-
malization

F-measure of Class 1 Unweighted Average F-measure

Emotion Before Norm. After Norm. Before Norm. After Norm.
*sad 0.350 0.531 0.574 0.685
*angry 0.430 0.459 0.627 0.646
*happy 0.238 0.346 0.512 0.581
*annoyed 0.383 0.426 0.611 0.624
pleased 0.326 0.252 0.566 0.544
*interested 0.321 0.306 0.579 0.582
*content 0.312 0.338 0.603 0.618
disapproving 0.143 0.293 0.512 0.594
*hurt 0.167 0.341 0.512 0.616
confident 0.105 0.127 0.504 0.510
*relaxed 0.271 0.393 0.594 0.664
calm 0.239 0.226 0.570 0.567
disappointed 0.182 0.261 0.557 0.599
excited 0.044 0.150 0.482 0.543
affecting 0.167 0.100 0.555 0.517
amused 0.190 0.143 0.563 0.549
worried 0.054 0.176 0.495 0.562
loving 0.143 0.000 0.549 0.472
resentful 0.160 0.000 0.561 0.471
disgusted 0.000 0.083 0.481 0.521
serene 0.111 0.148 0.541 0.553
irritated 0.000 0.100 0.485 0.534
afraid 0.000 0.267 0.491 0.623
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Merging Similar Categorical Emotion Labels

Up until now, the two-class classifiers for prototypical (happy, sad, and angry) emotions
achieved Fua in the range of 0.58 ∼ 0.68. This is approaching but still worse than the
state-of-the-art accuracy [81]. However, as we have already hinted before, we believed the
classification error was due to the inherent fact that some emotions have shared meanings
with others in the remainder class.

Given the fact that these correlated emotions may confuse classifiers, we were pondering,
“why don’t we move the subtly different emotions to the same class as the target emotion,
and then to build a better classifier on the merged emotion?” In other words, the data that
confused the main emotion of interest can also be utilized or recycled into the main class to
avoid confusion. We believed that this is a reasonable way since it is legitimate and practical
to have classifiers discriminating a set of similar emotions (i.e., happy and pleased) from the
remainder. Moreover, it helps reduce class imbalance, and allow algorithms to build more
correct classifiers.

We built a merged version of sub-models for the three stereotypical emotions, and named
the merged emotions as angry+, happy+ and sad+. This was done by moving clips from
class 0 to class 1 if the clips contain the chosen similar emotions. The selection of similar
emotions was done by referencing the objective similarity measure proposed in Section 3.3.

Table 3.8 shows Fc1 significantly increased by 0.1 for angry+ and happy+ emotions (i.e
angry : 0.459 ⇒ 0.557 and happy : 0.346 ⇒ 0.484). Note that since the class distribution
has changed, it actually has become a different problem. Making head-to-head comparisons
may not be valid. However, the result still proved that merging similar emotions is a possible
remedy for the problems of class imbalance and emotion labels with shared-meaning.

Given the performance of the two-class classifiers, it indicated very well that it is indeed
challenging to realize such a generalized model. In particular, the two-way an-emotion-
and-the-remainder classification task has its intrinsic barriers, such as data imbalance and
confusing labels. Nonetheless, it was the experimentation of this task itself guided us to
learn those intrinsic problems.

Classifying between Multiple Emotions

We proceeded to the second task of classifying between multiple emotions, in particular the
prototypical emotions. In addition, we strategically reported the result in an incremental way,
where we started with two-class (i.e., two emotions) classifiers, and then we incrementally
reported classifiers with other emotions included. In this way it allowed us to understand
which groups of emotions can be distinguished well (and yes there are). Moreover, it offered
opportunities to report the subset of features that were effective in classifying prototypical
emotions. Note that for the goal of feature evaluation, we purposely ignored the clip instances
containing more than one of the target emotions, in order to minimize confusion posed on
the classifiers.
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Table 3.8: Results of Emotion (Sub-model) Merging: angry+, happy+, and sad+

Before Merging After Merging

Data Size Data Size
Emotion of Class 0/1 Fc1 Fua of Class 0/1 Fc1 Fua
angry 220/68 0.459 0.646

201/87 0.557 0.681annoyed – 0.426 0.624
disapproving – 0.293 0.594
happy 222/66 0.346 0.581

200/88 0.484 0.619pleased – 0.252 0.544
excited – 0.150 0.543
sad 218/70 0.531 0.685

209/79 0.516 0.669hurt – 0.341 0.616
despairing – 0 0.479

Table 3.9: Performance of Classifying between Multiple Emotions

Data Size F-measures
Emotion Set of Classes Classes Fua
angry, happy 68/66 0.739/0.723 0.731
angry, sad 57/59 0.713/0.718 0.716
happy, sad 65/69 0.617/0.689 0.653
sad, angry, happy 58/57/65 0.574/0.595/0.597 0.589

angry, happy, remainder 68/66/154 0.503/0.311/0.631 0.482
angry, sad, remainder 57/59/161 0.452/0.404/0.665 0.507
happy, sad, remainder 65/69/153 0.176/0.427/0.599 0.401
sad, angry, happy
remainder 58/68/65/96 0.317/0.356/0.361/0.389 0.356
angry+, happy+, remainder 86/87/114 0.505/0.457/0.525 0.496
angry+, sad+, remainder 59/51/150 0.528/0.384/0.709 0.540
happy+, sad+, remainder 85/76/124 0.409/0.461/0.543 0.471
sad+, angry+, happy+
remainder 48/58/84/66 0.323/0.45/0.475/0.408 0.414

positive, negative 133/112 0.743/0.679 0.711
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Classifying Between Prototypical Emotions

In Table 3.9 we can see that differentiating angry emotion from the other emotions can
achieve about 0.71-0.73 of Fua, but it obtained only 0.65 of Fua distinguishing the happy
emotion from the other emotion. The result somehow matched the trend reported in the
previous section, that the happy emotion was modeled relatively poorly. In addition, we
experimented a three-class classifier between the three emotions, and Fua dropped to 0.589.

We also added a remainder class to build more realistic classifiers. This was done by
adding the remainder clips not containing any of target emotions into an additional class.
However, the result dropped significantly, where the 4-class classifier obtained Fua only
around 0.36. As what we learned in the previous section, the poor result should also be due
to the data imbalance and the fact that, the emotions in the remainder class having shared
meaning with the target emotions.

Therefore, we applied the “emotion merging” remedy introduced in the previous section,
where we labeled the merged emotions as sad+, angry+, and happy+. From Table 3.9 we
can see that this approach again helped slightly increase Fua by an average of 0.05. In
the end, we concluded that in the four-way classification task (sad+, angry+, happy+, and
remainder), we achieved 0.414 of Fua.

Feature Evaluation

The result in the previous section showed that classifying prototypical emotions could achieved
reasonable result, so we decided to report effective features for these classifiers. Tables 3.10
to 3.13 list the features selected by the J48 decision tree algorithm. The tables indicate that
the useful features actually spanned across the categories that we described in Section 3.4,
except the features in temporal aspect, meaning the included features are useful. In partic-
ular, the high-frequency energy extracted from the spectrogram were mostly used. Also, the
timing characteristics of the open and closures of the glottis were important. They altogether
showed that the voice quality features are essential to building emotion classifiers. More-
over, pitch accent from the stylized pitch were applied frequently, implying that it is crucial
to monitor the sudden increase in pitch, In addition, both standard and robust statistical
measures were effective. Finally, the first order statistics were used frequently, meaning that
the momentary change of the contours displays significant discriminating ability.

Between Positive and Negative Emotions

The final task was to classify between positive and negative emotions. To achieve that, the
clips were assigned to either a positive or negative class based on whether positive or negative
emotions appear. The definition of positiveness and negativeness are listed in Table 3.2. The
clips containing both positive and negative emotions were ignored, with the same reason that
we intended to avoid confusing instances. Table 3.9 shows that the classifier achieved 0.711
of Fua.



CHAPTER 3. EMOTION RECOGNITION 34

3.6 Conclusion

To create a model that recognizes emotions in everyday lives, it becomes essential to adopt a
naturalistic emotional database. Such a database contains recordings in everyday lives and a
variety of emotion labels. Nonetheless, in the process of analyzing the data, we learned that
there was a mismatch between the great characteristics of the database and the adaptability
of machine learning methods. In particular, a naturalistic database often provide imbalance
data and shared-meaning emotion labels.

With a feature set that contains a wealth of information to describe vocal expression,
and a method of user-based feature normalization, we achieved0.7 unweighted average (UA)
F-measure in a two-way classification task and 0.4 UA F-measure in a four-way classification
task. We also proposed and experimented of a generalized model, which was designed to
simultaneously classify a multitude of emotion labels. Although the generalized model did
not work, the experiment process guided us to understand the challenging realism of modeling
everyday emotions. As a future work, we are planning to improve the modeling in various
aspects. For example, since naturalistic recordings may contain multiple emotions in each
clip, we are interested to construct a more fine-grained labeling to identify the boundaries
between the emotions, and therefore create a more fined-grained classifiers. Also, we plan to
label the peaks of emotions within a clip, i.e., trajectory of intensity change of an emotion,
so that we can track the development of emotions with temporal based machine learning
methods.

As stated in Chapter 2, results derived from affective computing share a similar set of
acoustic features in psychopathology research, including pitch, intensity, speech rate etc (i.e.,
prosodic features). So acquaintance in the emotion research helps us to proceed to the next
chapters in the clinical mental health setting.
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Table 3.10: Selected Features to Classify Angry and Happy Emotions

Waveform Focused Part Statistical Measure
stylized pitch accent slope 95p−5p
stylized pitch first-order level mean
energy first-order peaks min
spectrogram bark1 first-order peaks min
spectrogram bark5 first-order range
spectrogram bark6 first-order peaks max
spectrogram bark7 first-order peaks range
spectrogram bark9 mean
spectrogram >bark5 first-order peaks std
spectrogram >bark8 peaks med
glottal rOTC mean
glottal rOPO 95p

Table 3.11: Selected Features to Classify Angry and Sad Emotions

Waveform Focused Part Statistical Measure
pitch raw mean absolute dev.
energy EDS 5p
spectrogram bark1 first-order peaks mean absolute dev.
spectrogram bark13 range
spectrogram >bark5 first-order std
spectrogram >bark8 first-order peaks mean absolute dev.
spectrogram >bark11 5p
glottal O 95p−5p
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Table 3.12: Selected Features to Classify Happy and Sad Emotions

Waveform Focused Part Statistical Measure
stylized pitch accent slope mean absolute dev.
energy raw range
spectrogram bark1 95p−5p
spectrogram bark1 first-order 95p−5p
spectrogram bark5 first-order peaks 95p−5p
spectrogram bark9 peaks 5p
spectrogram bark13 first-order peaks range
spectrogram >bark2 mean
spectrogram >bark8 med
spectrogram >bark11 first-order peaks range
spectrogram >bark14 first-order 95p−5p
spectrogram >bark14 first-order peaks 5p
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Table 3.13: Selected Features to Classify Sad, Angry and Happy Emotions

Waveform Focused Part Statistical Measure
pitch raw max
spectrogram bark1 95p−5p
spectrogram bark6 first-order peaks 95p−5p
spectrogram bark8 95p
spectrogram bark9 first-order 95p−5p
spectrogram bark9 first-order peaks max
spectrogram bark10 first-order range
spectrogram bark12 max
spectrogram bark13 mean
spectrogram bark13 range
spectrogram bark13 first-order peaks mean
spectrogram bark13 first-order peaks range
spectrogram bark13 first-order peaks 95p−5p
spectrogram >bark5 peaks std
spectrogram >bark8 peaks 95p−p
spectrogram >bark8 first-order peaks max
spectrogram >bark11 first-order max
spectrogram >bark14 first-order peaks range
glottal C max
glottal rCPOP mean
glottal rCTC 5p
glottal rOPO 5p
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Chapter 4

Phoneme Processing

4.1 Introduction

A phoneme is a basic element of a given language or dialect, which is the smallest segmental
unit of sound employed to form meaningful contrasts between utterances [2]. Recognition of
phonemes has been adapted to language identification, especially those exploiting the phonol-
ogy difference between languages [97, 96]. Zissman [96] has shown that language modeling at
the phoneme level is effective in identifying the alternations of spoken languages. Arguably
the phoneme transition is also useful for recognizing different “speaking styles” (virtually
different spoken languages) triggered by a variety of mental states. The chapter presents
the a light-weight method to recognize phonemes. The method was applied for the recogni-
tion of speech rate. Previously we’ve described that the speech rate is an important feature
to associate different mental states (e.g., fast speech in anger and slow speech in sadness).
Counting the rate of phoneme transitions in an automatically generated transcript can be
used to accurately approximate speech rates. However, generating phoneme sequences is
expensive if we adapt an full-blown speech recognizer. We reduced computation by simpli-
fying the prediction with only acoustic models and Gaussian smoothing filters, while still
preserving reasonable speech rate estimation accuracy.

4.2 Estimating Rate of Speech

Speech dysfunction, such as slow, delayed or monotonous speech, are prominent features of
patients suffering from severe depression, bipolar disorder or schizophrenia. From the per-
spective of audio signal processing, analyzing those speech features computationally delivers
a mental health monitor. In the second application, we describe phoneme-based methods to
measure the rate of speech (ROS), due to the fact that depressed patients often express slow
and paused speech. By rate of speech, we mean the rate at which individual speech units
are uttered. In this work we choose a “phoneme” as the individual speech unit. Adapting
acoustic models trained by Sphinx III developed by CMU, the system predicts a phoneme



CHAPTER 4. PHONEME PROCESSING 39

sequence for a given speech utterance and then approximates the rate of speech by counting
the rate of phoneme transitions. In fact, this method can be easily adapted to estimate
pause information by measuring the time periods where there there is no phoneme detected
(no voice activity). For the purpose of efficient deployment on cell phones, we simplified
the prediction method using acoustic models while still preserving reasonable speech rate
estimation accuracy.

Several unsupervised methods exist for estimating rate of speech. One method relied
entirely on the output of a speech recognizer and count the frequency of word transitions in
the transcript [82]. However, it is arguable that estimating rate of speech does not require
a full-blown recognizer which will generate more information than the speech rate itself.
That is, it also recognizes the speech content. A speech recognizer consists of both acoustic
model and language model. The acoustic model takes Mel-frequency Cepstrum Coefficients
(MFCCS, the energy distribution of over the frequency spectrum from 40Hz to 12KHz) as
input. Then it estimates the speech content by first mapping these MFCCs to phonemes
using Hidden Markov Models. The mapping works by Viterbi alignment algorithm, which
a dynamic programming algorithm performed in quadratic time. With the aid of language
modeling, some error of the alignment will be corrected by the language model. A language
model utilize both a dictionary (word-to-phonemes breakdown) and probabilistic n-gram
models to decide whether a sequence of phonemes (i.e., words) are predicted reasonably. For
example, if a word “good” was predicted, it is very likely to have “morning” predicted as
the next word.

By inspecting the recognition process in an automatic speech recognizer, we believe that
using the acoustic model itself should be sufficient to predict phoneme sequence and therefore
estimating the rate of speech. As long as we can approximate the rate of phone transitions,
i.e., speech rate, it’s tolerable to have some erroneous phoneme prediction. In addition, we
further simplified the mapping process used in acoustic model by avoiding the the quadratic
complexity given by the alignment algorithm. We dropped the usage of “transition matrices”
for smoothing in the Hidden Markov Models, and replaced the functionality with Gaussian
smoothing filters. It is intuitive that the convolution with filters (n ≈ 10) should be more
efficient than the Viterbi algorithm.

Rather than relying on any component of a speech recognizer, Morgan et al. approached
this problem directly on the signal level. Using signal processing methods they measured
the variation of the energy envelope in raw speech signals [60] as an approximator for rate of
speech. Another related work also computes rate of speech by estimating phone boundaries.
However, they predicted the phonemes by means of Multi-layer Perceptron [92], rather than
adapting the acoustic model of a recognizer.

The rest of the work presents as follows. It first explains the procedure for creating a
simplified acoustic model, along with an matrix-based implementation so the performance
can be optimized with linear algebra libraries. Then it describes an initial experimental result
of phoneme prediction. With the addition of Gaussian filters, the results of the simplified
acoustic model approach the ones by a full-blown speech recognizer.
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4.3 Simplified Acoustic Model

Acoustic Model of Automatic Speech Recognizer (ASR)

We made use of an acoustic model trained by the CMU Sphinx-3 recognizer [90] to build
the speech rate estimator. Now we briefly describe the structure of the original acoustic
model, and we propose the simplified model based on this one in the next section. The
acoustic model used in Sphinx-3 adapts an common structure that is universal to other
implementation, e.g., HTK toolkit [95].

Sphinx-3 is based on sub-phonetic acoustic models. The basic sound in a language are
classified into phonemes or phones. There are roughly 50 phones in English. Phones are
refined into context-dependent triphones, i.e., phones occurring given the left and right
phonetic contexts. The reason is that the same phone within different contexts can have
widely different acoustic manifestations, requiring different acoustic models. Phones are also
distinguished according to their position within the word: beginning (b), end (e), internal(i),
or single (s).

Each triphone is modeled by a Hidden Markov Model. Typically 3-state HMMs are used,
where each state has a statistical model for its underlying acoustic. Each state is modeled as
a gaussian mixture. The first, second, and the third state of a HMM respectively represents
the contextual phone on the left, the phone of interest, and the contextual phone on the
right. However, if we have 50 base phones, with 4 position qualifiers and 3-state HMMs,
we end up of a total of 503 ∗ 4 ∗ 3 distinct HMM states. So HMM states are clustered
into a much smaller number of groups where each group is called a “senone” (tied state),
and all the states mapped into one senone share the same underlying statistical model.
The number of senones to be maintained can be predetermined during the training stage.
The acoustic feature vector has 39 elements, including 13-element Mel-frequency cepstral
coefficients (MFCCs), and their first and second order derivatives. The feature vectors are
computed in the rate of 100 vectors/second.

Simplified Acoustic Model Decoding

We claim that without using the full blown acoustic models with HMMs (triphones with
position qualifiers), we can still approximate the speech rate. The reason is that the current
task is to merely recognize the transitions from one phone to the other. As long as we
can approximate the rate of phone transitions, i.e., speech rate, it’s tolerable to have some
erroneous phoneme prediction.

We propose a method that only computes the emission likelihood from the middle state
of all 3 state HMMs, without computing the emission likelihood of the first state (the left
phone) and third state (the right phone). In this way, given a sequence of feature vectors, the
method predicts a phoneme sequence by maximum likelihood estimation “locally” at each
frame. It only calculates the likelihoods using the center Gaussian mixture of each senone,
and it chooses the most likely phoneme straightforwardly. It does not calculate the likelihood
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Table 4.1: Snippet of a model definition file trained by Sphinx-3

center phone left phone right phone position attr left base right
state id state id state id

AA - - - 0 1 2
...

AA AA AA s 145 155 170
AA AA AO s 145 148 164
AA AA AW s 145 155 170
AA AA AXR s 145 148 165
AA AA B s 146 155 168
AA AA D b 146 151 168
AA B B e 144 149 168
AA B B i 144 149 168
AE AA B b 184 201 232
AE AA CH b 184 202 232
AE AA M b 184 200 224
AE AA NG b 184 200 221
AE AE T b 184 201 232
AE CH NG i 180 207 226

given the left and right mixtures, nor does it accommodate the transition probabilities to
predict the most probable sequence “globally” using a lattice approach, i.e., the Viterbi
algorithm. Details and formulation follow in the next section.

For example, Table 4.1 shows the snippet of a model definition file trained by Sphinx-3.
Each row represents a 3-state HMM, labeled with a center phone of interest, a left phone, a
right phone, and the corresponding state id’s. Since the states were clustered into senones
(tied states), multiple HMMs may share the same senone, so a state id may appear more
than once. In this example, our method only computes the emission probabilities from state
1, 155, 148, 151, 149, 201, 202, 200, and 207, which correspond to phoneme AA and AE.
The computation is reduced by ignoring the computation of contextual left and right states
and the transition probabilities in HMMs. Finally, our method retrieves the phone with the
highest probability.

Matrix Multiplication for Likelihood Calculation

A big matrix was pre-computed offline so that during phoneme estimation, the emission
probabilities of a feature vector from all senones (states) can be computed online by a single
operation of matrix multiplication and several exponential operations. The matrix M is of
size P ∗Q where P equals 2 * the size of feature vectors (= d) + 1 and Q equals the number
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of mixture components (= K) * the number of considered senones. Each column corresponds
to the parameters of a Gaussian mixture component given a senone. Below describes how
the big matrix is constructed.

The Gaussian mixture of each senone was trained with a diagonal covariance matrix,
so the likelihood of a feature vector f = (f1, f2, ..., fd) given the parameters of a mixture
θ = (µ, σ, π) (i.e., the means, variances and weight of each mixture components c) can be
written as:

p(f |θ) =
K∑
c=1

πc
1

(2π)d/2
∏d

i=1 σc,i
exp(−

d∑
i=1

(fi − µc,i)2

2σ2
c,i

) (4.1)

The equation can be decomposed in a way to separate feature values from the multiplying
coefficients, which can be pre-computed in order to speed up the likelihood calculation. By
taking the logarithm on the likelihood of each mixture component c, we can re-write the
equation as

p(f |θ) =
K∑
c=1

exp(log(p(f |θc)))

=
K∑
c=1

exp(log(πc
1

(2π)d/2
∏d

i=1 σc,i
exp(−

d∑
i=1

(fi − µc,i)2

2σ2
c,i

)))

=
K∑
c=1

exp(log(πc)−
d

2
log(2π)−

d∑
i=1

log(σc,i)−
d∑
i=1

(fi − µc,i)2

2σ2
c,i

)

=
K∑
c=1

exp(
d∑
i=1

−1

2σ2
c,i︸︷︷︸

len=d

f 2
i +

d∑
i=1

µc,i
σ2
c,i︸︷︷︸

len=d

fi + (log(πc)−
d

2
log(2π)−

d∑
i=1

log(σc,i)−
d∑
i=1

µ2
c,i

2σ2
c,i︸ ︷︷ ︸

len=1

))

(4.2)

From Equation 4.2, we can see that the coefficients with underbracing markings are used
to calculate the inner product with the feature values (including the quadratic f 2

i and the
ordinary fi term) plus a constant. These values can be pre-computed as a vector and saved
into a big matrix M. That is, the form a column (length= 2 ∗ d + 1) of the big matrix
corresponding to a particular mixture component of a Gaussian mixture:

[(
−1

2σ2
c,i

)i=1...d, (
µc,i
σ2
c,i

)i=1...d, (log(πc)−
d

2
log(2π)−

d∑
i=1

log(σc,i)−
d∑
i=1

µ2
c,i

2σ2
c,i

)]T

Given the matrixM, we can now compute the emission probability p(f |θP ) of feature f
by a senone S (a Gaussian mixture with K components) in the following steps.
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1. Expand feature vector: expand a feature vector f = (f1, f2, ..., fd) by including
squared terms and a constant term to f ′ = (f 2

1 , f
2
2 , ..., f

2
d , f1, f2, ..., fd, 1). f ′ is a row

vector of size P .

2. Matrix multiplication: do f ′ ∗M to calculate the likelihoods of the feature in all
mixture components throughout all senones. The output is a row vector of size Q.

3. Take exponentials and do summation: for every K elements in the length-Q
output vector, take element-wise exponentials and do summation to calculate the like-
lihood of the feature by each senone (Equation 4.2).

Finally, a phoneme P̂ is chosen at each frame by maximum likelihood criterium. Note
there’s a multiple-to-one mapping from senones to a phoneme (Table 4.1).

Ŝ = arg max
S

p(f |θS)

P̂ = map(Ŝ) (4.3)

4.4 Experimental Results

Implementation

We applied the SphinxTrain module to train an acoustic model with the ICSI meeting corpus
[61]. The collection includes a total of approximately 72 hours of meetings with naturalistic
conversations collected at the International Computer Science Institute in Berkeley during
the years 2000-2002. We set the training parameters so that the trained model has about
2000 tied states, each with 32 component gaussian mixtures. Since we were only interested
in the states (senones) in the middle of HMMs, only 749 states were considered to compute
emission probabilities. The speech estimation routine was implemented with MATLAB.
The trained model files are read into and processed in the MATLAB environment, including
means, variances and weights of the Gaussian mixtures (senones) and the model definition
file (Table 4.1).

For the model we adapted, P equals 2 * 39 + 1 = 79 and Q equals 32 * 749 = 23968.
Matrix multiplication requires about 4M FLOPS (floating point operations), which can be
done real-time in mobile devices nowadays. Fast matrix multiplication libraries can further
reduce the computation overhead.

The ground truth is gathered by processing the transcription and dictionary file provided
by the ICSI database. The true speech rate (rate of phoneme) is computed by expanding
word-based transcripts into phoneme-based transcripts with the dictionary and then calcu-
lating the rate.
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Figure 4.1: The log likelihood trajectories of a speech utterance given 44 phonemes (Gaussian
mixtures)

Speech Rate Estimation by Raw Probability Estimation

Given a sequence of feature vectors computed from a speech utterance, the method first
computed the most probable phoneme sequence, where the phoneme probability is calculated
by taking the maximum of the likelihood estimation among all the senones mapped to the
given phoneme. Then, it counted the number of transitions between different phonemes.
The initial result was not satisfying because the phoneme rate was overestimated in most
cases. Investigation shows that, the raw probability is noisy so there are more erroneous
phoneme transitions.

Here we take a test speech utterance as an illustrative example. Figure 4.1 is a chart of the
log likelihood predictions of the 44 phonemes. The chart looks noisy in a way that there are
many momentary sharp peaks corresponding to unreliable high likelihood of phonemes. Table
4.2 shows the ground truth and the prediction of phoneme sequence for this example. In the
row of predicted phone sequence, some of the correctly predicted phonemes are underscored.
We can see that the prediction was not persistent and there were many momentary prediction
errors. The predicted distinct phone count is 160 but the ground truth is only 34 based on
the transcribed phone sequence.
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Table 4.2: The prediction of phoneme sequence of a speech utterance

Transcript TRANSCRIPT ONE FOUR FIVE ONE ONE FOUR SEVEN O
Transcript
phoneme
sequence

T-R-AE-N-S-K-R-IH-P-T W-AH-N F-AO-R F-AY-V W-AH-N W-
AH-N F-AO-R S-EH-V-AX-N OW

Predicted
phoneme
sequence

M N K D P K T T T JH T Y R R HH AE EH AE AE AX
N N N N S S S K K K K K R IX UH IH V P V P F T T T K
AH W W AH HH M W W W W L W AA AH AH AH AX N AX
N N EH AX AX R V P V F F F F F F AH R AO AO AO AO AO
ER ER ER IY R R R R R AX CH V V V CH F F F AO AA AO
AY AY AY AY AY AY AY EH AE AXR B UW T T V V SIL AX
AH L L L W L L AA AA AA AH AH AH AH AY AH AE IH AX
AX L D N DX N N N N M N Y M M D D D P T L K T N JH NG
N D V V W W W W W W AA AH UH AH EH EH AX N N N N
AA AXR SH N P P F F F F R AO AO AO ER EH ER R R R R
R AX AX S S S S S S S S S T DH DH EH EY EH EH EH AH AH
T V N N AH AX AX V N N N N N AX EH AW AW AW OW AW
AW AW OW OW OW UW OW OW OW OW OW OW OW OW
OW L L M OW OW D D D L T T T L T T N M M

Predicted
distinct
phoneme
sequence

M N K D P K T JH T Y R HH AE EH AE AX N S K R IX UH
IH V P V P F T K AH W AH HH M W L W AA AH AX N AX N
EH AX R V P V F AH R AO ER IY R AX CH V CH F AO AA
AO AY EH AE AXR B UW T V SIL AX AH L W L AA AH AY
AH AE IH AX L D N DX N M N Y M D P T L K T N JH NG N
D V W AA AH UH AH EH AX N AA AXR SH N P F R AO ER
EH ER R AX S T DH EH EY EH AH T V N AH AX V N AX EH
AW OW AW OW UW OW L M OW D L T L T N M

Smoothing by means of Gaussian Filter

We adapted Gaussian Filter to smooth out momentarily erroneous prediction. Gaussian
filter is a low-pass filter whose impulse response is a Gaussian function. We designed a 1-D
Gaussian filter with variance σ and length 8 ∗ σ+ 1, as in Equation 4.4. The Gaussian filter
is normalized so that the summation of the coefficients is 1.

y = exp(− x2

2σ2
), x = −4σ,−4σ + 1, · · · , 0, 1, 2, · · · , 4σ (4.4)

Using the same example, Figure 4.2 shows a much cleaner confidence measure (smoother
and less sharp peaks) than Figure 4.1. σ was set to 2.
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Figure 4.2: The Gaussian-filter smoothed log likelihood trajectories of a speech utterance
given 44 phonemes.

Table 4.3 shows the new predicted sequence. The predicted distinct phoneme count
reduced to 63 from 160 in the previous case. In the third row of the table below, we can see
that the predicted phone sequence became cleaner. It matched with the transcript phone
sequence better.

By visual inspection on the log likelihood in Figure 4.2, we suspected that the prediction
could be improved further by eliminating the phone predictions with smaller confidence
measure. This happens when there are the pauses in between words. So in this case the
prediction to a certain phoneme is not necessary.

Thresholding to Eliminate Unconfident Predictions

By inspecting the confidence chart and comparing the likelihood measure of phonemes with
the transcript phoneme sequence, we can visually conceptualize a threshold that rules out
the incorrect and not-as-confident phoneme prediction. We hypothesized that confidence
threshold stay between exp(-1.5) (=0.2231) and exp(-2.0) (=0.1353). In Table 4.4 we show
the improved prediction with threshold set to exp(-1.7) (=0.182684). The count of distinct
predicted phonemes dropped to 46, in comparison to 63 in the non-thresholded case.



CHAPTER 4. PHONEME PROCESSING 47

Table 4.3: The prediction of phoneme sequence of a speech utterance with the aid of a
Gaussian filter

Transcript TRANSCRIPT ONE FOUR FIVE ONE ONE FOUR SEVEN O
Transcript
phoneme
sequence

T-R-AE-N-S-K-R-IH-P-T W-AH-N F-AO-R F-AY-V W-AH-N W-
AH-N F-AO-R S-EH-V-AX-N OW

Predicted
phoneme
sequence

M M M N N N N N N N N T T T T T T T T R R R AE AE AE
AE AE N N N N N S S S K K K K K R R UH IH P P P P T T T
T T W W W W W W W W W W W W AH AH AH AH AH N N
N N AX AX AX AX V V V F F F F F F F AO AO AO AO AO
AO ER ER ER ER R R R R R R V V V V F F F F F AY AY AY
AY AY AY AY AY AY AY AXR AXR AXR UW T T V V V L L
L L L L L L AA AA AH AH AH AH AH AY AY AY AX AX AX
AX N N N N N N N N M M M D D D D D D T N N N N NG NG
V V V W W W W W W AH AH AH AH AH EH N N N N N N
N N P P P F F F F F AO AO AO AO ER ER R R R R R R R S
S S S S S S S S DH DH DH EH EH EH EH EH EH AH AH AH
N N AX AX AX N N N N N N N AW AW AW AW AW AW OW
OW OW OW OW OW OW OW OW OW OW OW OW OW OW
OW OW OW OW OW D D D L L L T T T T T T T T M M M
M M M M

Predicted
distinct
phoneme
sequence

M N T R AE N S K R UH IH P T W AH N AX V F AO ER R V
F AY AXR UW T V L AA AH AY AX N M D T N NG V W AH
EH N P F AO ER R S DH EH AH N AX N AW OW D L T M

Evaluation

We applied the final method to a test set of 1000 speech utterances. Figure 4.3 shows the
prediction-versus-ground-truth phoneme rate. A clear correlation displays in the figure.

We ran correlation analysis over the three methods we proposed: prediction with raw
likelihood measure, smoothed likelihood measure, and smoothed likelihood measure with
a threshold. Table 4.5 shows evolvement of the performance. It shows that the method
achieves 0.69 correlation coefficient in the end.

Comparison with ASR

We further performed experiments to compare how well our simplified acoustic model es-
timate ROS in comparison to a full-blown speech recognizer. Sphinx-3 was used to test
ASR performance, with language weight set to 23. Since a speech recognizer only generates
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Table 4.4: The prediction of phoneme sequence of a speech utterance with the aid of a
Gaussian filter and thresholds

Transcript TRANSCRIPT ONE FOUR FIVE ONE ONE FOUR SEVEN O
Transcript
phoneme
sequence

T-R-AE-N-S-K-R-IH-P-T W-AH-N F-AO-R F-AY-V W-AH-N W-
AH-N F-AO-R S-EH-V-AX-N OW

Predicted
phoneme
sequence

T T T T T T R R R AE AE AE AE AE N N
N N N S S S K K K K K P P P T T T T W W W W
W W W W W W AH AH AH AH AH N N N N AX AX AX V
V F F F F F F F AO AO AO AO AO AO ER ER ER ER R R R
R R R V V V V F F F F F AY AY AY AY AY AY AY AY AY AY

AXR L L L L L L AA AA AH AH AH AH AH AY
AY AX AX AX AX N N N N N N N
V V W W W W W W AH AH AH AH AH EH N N N N N N

P F F F F F AO AO AO AO ER ER R R R R R R R S S S S S
S S S S DH DH DH EH EH EH EH EH EH AH AX AX N
N N N N N N AW AW AW AW AW AW OW OW OW OW OW
OW OW OW OW OW OW OW OW OW OW OW OW OW OW

D D D
Predicted
distinct
phoneme
sequence

T R AE N S K P T W AH N AX V F AO ER R V F AY AXR L
AA AH AY AX N V W AH EH N P F AO ER R S DH EH AH
AX N AW OW D

Table 4.5: The evolvement of performance by Gaussian filters and thresholds

Setup Mean squared error Std of squared eror correlation
with linear regression with linear regression

Raw likelihood 11.31 21.10 0.227
Smoothed likelihood (σ = 2) 10.42 23.26 0.240
Smoothed likelihood (σ = 2)

5.49 10.57 0.690with threshold (exp(-1.7))
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Figure 4.3: The correlation between the predicted speech rate (Y-axis) and the ground truth
(X-axis).

Table 4.6: Performance comparison with a full-blown ASR

Setup Mean squared error Std of squared eror correlation
with linear regression with linear regression

Smoothed likelihood (σ = 2)
5.49 10.57 0.690with threshold (exp(-1.7))

ASR 3.80 9.58 0.78

word sequences, we leveraged a lexicon dictionary to expand the words into the phonemes.
Table 4.6 shows that ASR has better ROS estimation than our method. Although we didn’t
measure running time, it’s clear that our method runs faster than ASR.

4.5 Discussion

In this project, we showed that using simplified acoustic model without leveraging language
models could achieve reasonable rate of speech estimation. Correlation coefficient of 0.69 was
achieved using a speech dataset with natural conversation. The method avoids the original
HMM decoding method by simply calculating emission probability of Gaussian mixtures.
Gaussian smoothing and threshold was used to improve the estimation. For future work, we’d
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like to evaluate the method with more dataset. Dataset with emotional speech utterances or
collected from patients with mental illness would be a reasonable next step, since the project
goal is to create a mental health monitor. In addition, we also want to compare the method
with the related work based on the energy envelope (i.e., mrate [60]).

4.6 Conclusion

A phoneme is a basic element of a given language or dialect, which is the smallest segmental
unit of sound employed to form meaningful contrasts between utterances. It is also an
informative unit of which listeners can pay attention to its variation in order to distinguish
abnormalities. The chapter presents a light-weight phoneme recognizer to estimate the rate
of speech, by simplifying the utility of acoustic models for predicting the most likely phoneme
sequence. The method is light-weight enough to be predict phoneme sequences on mobile
phones comfortably, while maintaing certain level of accuracy.
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Chapter 5

Voice Source Processing

The theory of speech production says that, the human speech is initiated by the opening and
closing actions of vocal folds, which will generate a series of glottal vibrational cycles. By the
resonance of the vocal tract and the shape of the mouth, the periodic pulses are re-shaped to
the speech we perceive in the end, containing distinct vowels, consonants etc. The chapter
focuses on the voice source, and shows that it can serve as a new dimension of evidence to
monitor mental health. The hypothesis is that the mental affects the physical : mental states
may physically and unconsciously affect the muscles of glottis, and alternates the shape of
glottal vibrational cycles. The alternation is the focus of the chapter. An example is that the
depressive illness often contributes to the retardation of physical activities so as the respon-
siveness of the glottal muscles. That is, glottal muscles may be slackened as a pathology,
which can be captured using speech analysis to characterize the responsiveness of glottis
opening. This chapter examines this hypothesis with two additional applications/datasets.
The first dataset contains speech samples from patients with tumors in the neck, so the
glottal muscle is pathologically affected. Experiments show that the voice source features
improve the recognition of non-intelligible speech, as direct characteristics of speech pathol-
ogy. The second dataset is about the psychological stress, which often manifests physical
response in the autonomic nervous system, cf. heart rate. Experiments show that the glottal
features improve the recognition of stress, indicating that the autonomic nervous system also
physically affects the glottal muscles, a phenomenon capturable by voice source processing.

5.1 Introduction

Glottal vibrational cycles can serve as a promising feature for monitoring mental health.
Moore et al. [59] showed that linear classifiers using a combination of these features can
distinguish depressed and healthy subjects with 90% accuracy. This implies that the glottal
activities in speech production can be greatly affected by mental illness, a good indicator
of physical change induced by mental states. We hypothesize that the glottal features can
improve stress detection as well. In analogy, mental stress often manifests physical response
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in the autonomic nervous system (cf. heart rate) [13]. So glottal features, indicating physical
change in glottal muscles, may also respond to the autonomic nervous system. Our experi-
ments showed that the glottal features indeed improved the classification accuracy (> 10%
relative improvement for recognizing stress increase vs. stress decrease). Furthermore, the
chapter verifies the hypothesis with a dataset where speakers have direct speech pathology.
These speakers have tumors in the neck and are undergoing chemico-radiation therapy. The
glottal muscles are clearly affected, so is the intelligibility of the speech. Experiment shows
that the glottal features improves the recognition of intelligibility, a direct characteristics of
speech pathology (28% relative improvement).

5.2 Extracting the Glottal Waveforms

As illustrated in Figure 3.2, a glottal (flow) waveform represents the time that the glottis is
open (O) (with air flowing between vocal folds), and the time the glottis is closed (C ) for each
vibrational cycle. In addition, an open phase can be further broken down into opening (OP)
and closing (CP) phases. If there is sudden change in airflow (i.e., shorter open and close
phases), it would produce more high frequency and the voice therefore sounds more jagged,
other than soft (slower change of airflow). To capture it, the library calculated measures
describing timings of the phases and the ratios of closing to opening phase (rCPOP), open
phase to total cycle (rOTC ), closed phase to total cycle (rCTC ), opening to open phase
(rOPO), and closing to open phase (rCPO). When the speech source is altered, say the
muscle is slackened, the opening phase (OP) will last longer, so is the ratio with the closing
phase (rCPOP). These durations and ratios can serve as good features to describe the
alternation. The extraction of glottal waveforms was based on Fernandez’s implementation
[28][27].

Following the linear source-filter theory, the estimate of the glottal vibrational cycles G(z)
may be obtained by inverse filtering a stationary segment of the speech signal S(z) with a
vocal tract transfer function estimate V (z) obtained from the segment. Let S(n), G(n), V(n)
be respectively the z-transforms of the acoustic speech signal s(n) and impulse responses g(n)
and v(n). The speech production often involves the lip radiation effect, which is ignored in
Equation 5.1 because it can be typically modeled and removed by a differentiator (single
pole transfer function), typically a pre-emphasis filtering (e.g., highpass at 6 dB/octave).

S(z) = G(z)V (z)

s(n) = g(n)
⊗

v(z) (5.1)

The theory displays difficulty in estimating the glottal waveform. There is an interaction
effect between the resonance of vocal tract and the glottal vibrations. Due to these inter-
actions, extracting glottal vibrational cycles from the output signal becomes more difficult.
There is a need to estimate the vocal tract filter V (z) so that we can use it to inverse filter
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the speech signal for glottal vibrational cycles G(z), but the question is how to estimate
V (z) in a clean way given the interaction effect? The algorithm resolves this by seeking
regions where these components interact minimally. Specifically, the algorithm identifies the
closed-phases (Figure 3.2) of glottal vibrational cycles as the first step, where the glottis is
closed so there is minimal interaction. When the glottis is closed, no air is flowing through
and only the vocal tract is effective in speech production within this short window, so the
formant should be stationary. The estimation of formant is reliable as well. Note formant
frequencies are the realization of vocal tract resonances, including the first formant F1, the
second formant F2, the third F3, the forth F4 etc. Linguistic studies show that different
vowels have distinct signature of combination of formant frequencies.

Closed Phase Identification

In fact, whether the formant is stationary is the property that the algorithm verifies to
identify closed phases. The algorithm repetitively estimates the first formant frequency F1

with a small sliding window. If the first formant estimates are stable (i.e., do not change in
an amount larger than a threshold), the vocal tract estimate V (z) is reliable enough such
that we can use it for both (1) calculating the durations of closed-phases (C) and (2) inverse
filtering the speech S(z) to acquire the glottal vibrational cylces G(z).

Estimating the formant frequencies is realized by linear predictive coding (LPC) analysis,
a common, efficient practice used in the speech analysis domain. LPC generates a set
of polynomial coefficients representing the poles of the vocal tract filter V (z). The LPC
analysis window is set to N/4 , where N is the pitch period in samples. The order is set to
min{16, N/4}.

Let roots {zk} be the roots of the polynomial coefficients. For each complex-conjugate
pair, the formant frequencies Fn equal Fs

2π
angle(zk), n = 1, 2, 3, 4, . . .. Note the associated

bandwidths are bn = −log(|zk|)/π. The formant frequencies and the bandwidths are efficient
approximation of the frequency response of vocal tract filter. These values characterize the
“envelope” of the frequency response, illustrated in Figure 5.2. The algorithm is summarized
in Figure 5.1.

Identification of Instances of Maximum Excitation

The next part of the algorithm identifies the instances of maximum excitation. The purpose
is clear. The instances of maximum excitation are the turning points where the glottis starts
to close: the amount of air flowing through starts to drop. A maximum excitation breaks an
open phase (C; the contrast of a closed phase O) into two sub-phases, the opening phases
(OP ) and closing phases (CP ).

The identification exploits the properties of the average group delay of minimum-phase
signals to reliably locate the maximum excitations. Speech signals can be modeled as the
impulse response of a minimum-phase system. A characteristic of such systems is that the
average slope of the unwrapped phase response is zero, or, if the impulse response is shifted
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Let sseg(n) be the speech segment between two consecutive excitation instants, N its
length(i.e., the pitch period in samples), and Fs the sampling frequency.

• Formant Tracking

1. Perform LPC analysis method on sseg(n) with a one-sample shift, a window length
Nw = N/4 and an order pseg = min{16, Nw − 3}.

2. For each set of LPC coefficients

a) Let P (z) be the polynomial of coefficients with roots {zk}. For each complex-
conjugate pair, find the formant candidates fn = Fs

2π
angle(zk) and their asso-

ciated bandwidth bn = −log(|zk|)/π
b) Let f1 be the smallest fn for which bn ≥ 5fn

3. Let F1 be the set of f1, the track of first formants. Let F1,med be a median filtered
version of F1 with a 4-point window.

4. For every value m of F1 not exceeding an allowed threshold of 1050 Hz, let m∗ be
the closest time index not exceeding the threshold, and let F1(m) = F1,med(m

∗).

• Initial Identification of Stationary Region

5. Given F1(m), define the formant modulation function D(n0) =
∑n0+4

m=n0
|F1(m)−

F1(m − 1)|, 1 ≤ n0 ≤ N − Nw − 5) (a cumulative first difference over a 5-point
window), and let n∗0 = argminn0D(n0)

6. Let [Ni, Nf ] = [n∗0 − 1, · · · , n∗0 + 4] be an initial stationary region. Let µF and σF
be the sample mean and variance of the first formant over the interval.

• Growing the Stationary Region to the Right

7. While |F1(Nf + 1)− µF | < 2σF

a) let Nf ← Nf + 1

b) Update µF and σF

• Growing the Stationary Region to the Left

8. While |F1(Nf + 1)− µF | < 2σF , let Ni ← Ni − 1

Figure 5.1: Algorithm for identifying the closed-phase region of a glottal cycle [27]
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Figure 5.2: Illustration of a frequency response and its envelope, which can be characterized
by the frequency locations and bandwidths of the peaks (formants).

in time, proportional to the time shift [94]. If an analysis window is centered around the
excitation, the average slope of the phase response of the short-time signal should be close
to zero. Otherwise, it exhibits a slope proportional to the offset of the excitation with
respect to the center of the window. This suggests an algorithm which, by using a time
window small enough to capture primarily one impulse, tracks the short-time frequency
response and examines the average slope of the unwrapped phase response. The algorithm
is summarized in 5.3.

The following sections describe two experiments in which glottal features are effective for
detecting speech pathology, and consequently recognizing mental states that contribute to
speech source alternation.

5.3 Application I: Classification of Intelligible vs.

Non-intelligible Speech

The first application verifies the effectiveness of glottal features as indicators for speech
pathology. The experiment utilizes the “NKI CCRT Speech Corpus” (NCSC) recorded at the
Department of Head and Neck Oncology and Surgery of the Netherlands Cancer Institute,
as described in [57]. The corpus contains recordings from 55 speakers (10 females and 45
females), who were undergoing concomitant chemo-radiation treatment (CCRT) due to the
inoperable tumors of the head and neck. The speech source (i.e., glottal muscles) are likely
to be affected by the tumors at the neck, and this application helps verify that the glottal
features are effective in distinguishing the level of speech pathology. All speakers read a
Dutch text of neutral content. Not all speakers were Dutch native speakers. Average speaker
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Segment the speech into M disjoint voiced segments based on pitch. Let f0(m) denote the
mean fundamental frequency of the mth segment, and let s(n)m be the mth voiced segment.
For m = 1, . . . ,M :

1. Calculate the 10th-order LPC residual of s(n)m, a Hanning analysis window of 25
msecs, and a frame rate of 100 frames/sec.

2. Find the short-time fast Fourier transform (STFT) of the residual form using a Hanning
window of length 1.5/f0(m) secs, zero-padded to the next integer power of 2. Shift the
analysis window by one sample

3. For each frame n of the STFT:

a) Unwrap the phase

b) Using linear regression, find the best linear fit to the unwrapped phase. Let φ(n)
be the slope of the fit for the nth frame.

4. Smooth the phase function φ(n) with a Hanning window of 4 msecs, and remove the
mean.

5. Assign the zero-crossing instances of the zero-mean smoothed phase slope function to
the instants of maximum excitation.

Figure 5.3: Algorithm for identifying instances of maximum excitation [27]

age was 57. The original samples were segmented at the sentence boundaries, resulting a
total of 1646 utterances.

Thirteen recently graduated or about to graduate speech pathologists evaluated the
speech recordings on an “intelligibility” scale from 1 to 7. To establish a consensus from
the individual intelligibility ratings, the evaluator weighted estimator (EWE) [34] was used.
The EWE is a weighted mean of the ratings, with weights corresponding to the reliability
of each rater, which is the cross-correlation of her/his rating with the mean rating (over
all raters). The average rank correlation (Spearman’s rho) of the individual ratings with
the mean rating is 0.783. The EWE was calculated and discretized into binary class labels
(intelligible, non-intelligible), dividing at the median of the distribution. Note that the class
labels of the speech are not exactly balanced (725/921) since the median was taken from the
ratings of the non-segmented original speech.

Baseline Feature Set

The evaluation strategy was to verify whether glottal features can achieve better perfor-
mance (e.g. classification accuracy) than a “baseline” feature set. We adapted the one used
in Interspeech 2012 Speaker Trait Challenge [80] as the baseline acoustic feature set, pri-
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Table 5.1: Low-level descriptors in the baseline feature set

4 energy related LLD
Sum of auditory spectrum (loudness)
Sum of RASTA-style filtered auditory spectrum
RMS Energy
Zero-Crossing Rate
54 spectral LLD
RASTA-style auditory spectrum, bands 1-26 (0-8 kHz)
MFCC 1-14
Spectral energy 250-650 Hz, 1 k- kHz
Spectral Roll Off Point 0.25, 0.50, 0.75, 0.90
Spectral Flux, Entropy, Variance, Skewness,
Kurtosis, Slope, Psychoacoustic Sharpness, Harmonicity
6 voicing related LLD
F0 by SHS + Viterbi smoothing, Probability of voicing
logarithmic HNR, Jitter (local, delta), Shimmer (local)

marily due to the fact that the Interspeech Challenge provides such feature set alongs with
the recognition performance evaluated directly on the NCSC dataset. With such reference
result, the experiment will be convincing and valuable if our improved feature set performs
better. In short, the baseline feature set unifies the acoustic feature sets used for the In-
terspeech 2010 Paralinguistic Challenge dealing with ground truth (non-perceived) speaker
traits (age and gender) with the new acoustic features introduced for the Interspeech 2011
Speaker State (SSC) and Audio-Visual Emotion Challenges (AVEC) aiming at the assess-
ment of perceived speaker states. The challenge uses TUM’s open-source openSMILE feature
extractor [25] and provide extracted feature sets on a per-utterance level. The feature set
preserves the high-dimensional 2011 SSC feature set including energy, spectral and voicing
related low-level descriptors (LLDs, in the form of signal waveforms, Table 5.1); a few LLDs
are added including logarithmic harmonic-to-noise ratio (HNR), spectral harmonicity, and
psychoacoustic spectral sharpness, as in the AVEC 2011 set. The functionals summarizing
the statistics over each converted LLD is listed in Table 5.2. Altogether, the 2012 Speaker
Trait Challenge feature set contains 6125 features.

Experimental Results

Linear SVM was adapted for the binary classification task, with performance evaluated
with 10-fold cross validation. The baseline feature set achieved 74.19% accuracy. With
the baseline result provided, we were able to show that the glottal features achieved higher
accuracy. The glottal feature set was extracted in the same manner as the baseline feature
set, by projecting the waveform contours (i.e., low level descriptors; LLDs) to a feature
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Table 5.2: Applied functionals in the baseline feature set

Functionals applied to LLD / ∆ LLD
quartiles 13, 3 inter-quartile ranges
1 % percentile (≈ min), 99 % percentile (≈ max)
position of min / max
percentile range 1 % - 99%
arithmetic mean1, root quadratic mean
contour centroid, flatness
standard deviation, skewness, kurtosis
rel. duration LLD is above / below 25 / 50 / 75 / 90% range
rel. duration LLD is rising / falling
rel. duration LLD has positive / negative curvature
gain of linear prediction (LP), LP Coefficients 15
mean, max, min, std. dev. of segment length
Functionals applied to LLD only
mean of peak distances
standard deviation of peak distances
mean value of peaks
mean value of peaks arithmetic mean
mean / std.dev. of rising / falling slopes
mean / std.dev. of inter maxima distances
amplitude mean of maxima / minima
amplitude range of maxima
linear regression slope, offset, quadratic error
quadratic regression a, b, offset, quadratic error
percentage of non-zero frames

vector by functionals. In the case of glottal features, the LLDs are the contours of glottal
timings across vibrational cylces (i.e., sequences of O, C, OP, CP, rCPOP, rOTC, rCTC,
rOPO, and rCPO). Moreover, to each of these LLDs, the delta coefficients are additionally
computed. The computed functionals are adapted from those used in Interspeech Challenge
2009 [78], much simpler than the version in Interspeech Challenge 2012 (Table 5.2). They are
mean, standard deviation, kurtosis, skewness, minimum, maximum range, and rel. position.
In the end, the glottal feature set achieved 81.60% accuracy (7.41% absolute improvement
and 28.7% relative improvement).

The result implies that the glottal features are better indicators for speech pathology.
Retrospectively, the result also serves as the basis for verifying the hypothesis of the chapter,
the mental affects the physical. Now it shows the glottal features describe the alternation
of speech production. The next application leverages a stress speech dataset, showing that
mental stress will affect the glottal muscles physically through the autonomic nervous system,
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Figure 5.4: Hypothesis of Stress Detection by Glottal Features

and that the glottal features help improve the detection of mental stress. Note mental stress
often manifests physical response in the autonomic nervous system (cf. increase heart rates).
The hypothesis of relationship is illustrated in Figure 5.4.

5.4 Application II: Classification of Speech Under

Stress

We evaluated stress detection with a dataset named Speech Under Simulated and Actual
Stress (SUSAS) [37], developed by John Hansen. It is the most common dataset found in the
literature for stress detection tasks [38]. For our experiment, we made use of the recordings
under actual stress, where each subject was asked to speak (and repeat) 35 distinct English
words while riding one of two roller coaster rides. High stress and neutral speech utterances
were marked depending on the position of a riding course. There are a total of 7 subjects
(3 females and 4 males) involved, producing a total of 1900 utterances. Each utterance was
segmented as a word, lasting about one second.

The Feature Sets

For comparison, a baseline feature set was developed, following a similar strategy used in
the previous application. The experiments started by applying the baseline feature set to
obtain the baseline performance. Then, an experimental feature set containing the glottal
features was composed for the goal of improving the baseline performance. Table 5.3 shows
the feature sets, where the glottal timings are included together with the baseline feature
set to form the experimental feature set.

The feature set adapts the one used in Interspeech Emotion Recognition Challenge 2009
[78]. The rich feature set is composed of prosodic and spectral features which support emotion
recognition with state-of-the-art accuracy.

Recognizing Stressed vs. Neutral Speech

This was a 2-way classification problem, where utterances with high stress were put to class 1
and the neutral utterances were assigned to class 2. Both baseline and experimental features
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Table 5.3: The feature set, computed by applying functionals on LLD waveforms.

LLDs functionals

(∆)ZCR mean, standard deviation,
(∆)RMS energy kurtosis, skewness,
(∆)F0 minimum, maximum
(∆)HNR range, rel. position
(∆)MFCC 1-12
(∆)Glottal timings x 9 a

aThe experimental feature set includes the additional glottal timings as part of the LLDs, whereas the
rest of LLDs are used as the baseline feature set

Table 5.4: Comparison in the recognition of stressed vs. neutral utterances, by including
additional glottal features (class size: 1200/701).

Feature Set F-Measures ROC Area Accuracy

Baseline 0.867/0.770 0.763 83.18%

+Glottal 0.877/0.788 0.832 84.43%

were extracted from the utterances. The feature vectors were fed into SVM (regularized
linear SVM, features scaled, 10-fold cross validation). Table 5.4 shows that experimental
feature set (denoted as “+Glottal” because the experimental set includes the additional
glottal features than the baseline set) outperformed the baseline one with 1%, reaching 84%
of accuracy. Note the accuracy is much better than blindly guessing the majority class, which
is of accuracy 63% because of the imbalanced data size 1200/701. Also, the area under the
ROC (receiver operating characteristic) curve significantly increased from 0.763 to 0.832.

Recognizing Stress Increase vs. Stress Decrease in Speech

We hypothesized that stress detection can be further improved by user normalization. Be-
cause of user difference, the feature vectors in the previous task may be biased with offsets
in different directions and scales in the feature space, ruining the classification. Nonetheless,
if we look at the distance from a feature vector in neutral condition to another vector in
stressed condition of the same user, we can focus on the within-user stress change (i.e., stress
increase) and ignore the user difference.

Because of the nature of SUSAS, each user speaks the same set of words in both stress
and neutral conditions. Therefore, we calculated the distance vector (by element-wise sub-
traction) between each pair of stress/neutral utterances of the same word by the same user.
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Table 5.5: Comparison in the recognition of stress increase vs. stress decrease, by including
glottal features (class size: 337/336)

Feature Set F-Measures ROC Area Accuracy

Baseline 0.923/0.923 0.923 92.27%

+Glottal 0.936/0.936 0.936 93.60%

We also randomized the order of subtraction so some distance vectors represent the increase
of stress (a stress vector minus a neutral vector) whereas other distance vectors represent
the decrease of stress.

The task became a two-way classification, where distance vectors with stress increase
were put in class 1 and the distance vectors with stress decrease were put to class -1. Note
we partitioned for cross-validation in a way that the distance vectors by each user were
placed in the same pool (i.e., training set or test set), so this is a user-independent classifier.
The classifier is not trained with some data from a user that is to be evaluated in test
set, i.e., stress pattern of the user was not seen before. We extracted both baseline and
experimental feature vectors. The feature vectors were fed into SVM (regularized linear
SVM, features scaled, 10-fold cross validation). Table 5.5 shows that the additional glottal
features outperformed the baseline with 1.3%, reaching 93.6% of accuracy (blind guess should
give accuracy of 50% because of the dataset is symmetric and balanced). The 1.3% increase is
significant at the 92% accuracy level. Also, the ROC area increased from 0.923 to 0.936. This
again demonstrates that, by adding glottal features it performs better in stress detection.
Glottal features shows an promising way of reflecting physical response to stress in the human
voice.

Readers may be questioning that this is not the real stress vs. neutral classification.
Nonetheless, we argue that this result is more insightful for real world applications. The
result shows that if the norm of a user’s speaking characteristics is obtained, the system
can accurately detect stress change (increase or decrease) by the displacement vector from
the norm to the current feature vector. We can calculate the difference from the current
feature vector to the next, and judge whether a user has stress level increased or decreased.
In addition, the result is very promising (93% accuracy for a balanced dataset), and can be
used to create a temporal model of stress detection.

5.5 Conclusion

The chapter describes the usage of speech source features for the detection of mental states.
Inspired from the related work that the features describing glottal vibrational cycles are
effective in detecting depression, we hypothesized that the alternation of speech source vi-
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bration is a good indicator to mental states. Recognizing the mental states should follow
the idea of “the mental affects the physical”. For the related work example, depressive ill-
ness often manifests motor retardation, which may also affect the muscles triggering glottal
vibration. Similarly, the mental stress often carries “fight-or-flight response” [7], which is
triggered by the autonomic nervous system. Experiments described in the chapter show that
the glottal features are effective detecting the stress change, implying the autonomic nervous
system also alters the glottal muscles. In fact, our physical body often directs the trigger of
muscles in may subconscious ways. Imagine that a person is experiencing a serious crying
episode. He or she may occasionally breathe in very hard, which is a bodily response by
the sympathetic nervous system to opening throw in order to increase air flow. In Chapter
6, two applications are presented along with the topic of bodily response. The detection of
mental stress is revisited with more detailed analysis. In addition, we evaluated the change
of voice characteristics for subjects undergoing sleep deprivation, a condition having impacts
on the body in multiple aspects.



63

Chapter 6

Trigger by the Physical Body

6.1 Introduction

Monitoring the mental states can be achieved by directly probing users’ thoughts, say ana-
lyzing the diary or the speech content of a user. Another way to do this, which is the main
approach of the thesis, is to observe of the physical realization of mental states. That is,
the streamline of research is to identify the correlation between the onset of some mental
states and the triggers of bodily response. As Chapter 5 hinted, mental stress affects the
autonomous nervous system, which will trigger many bodily response, including the change
of heart rate, sweating, and even the vibration of glottis. This chapter explores this idea
with additional applications, in particular the effects of sleep deprivation. Mental disorders
often have significant impact on sleep. So sleep deprivation has become an important factor
to diagnose the existence of mental disorder. The application evaluated the change of voice
characteristics for subjects who went through sleep deprivation. Moreover, the detection of
mental stress is revisited, by reviewing the difference between stress with a thrill factor and
stress with a high mental work load. It also tries to answer a question about the optimal
length of speech for accurate stress detection etc.

6.2 Application I: Sleep Deprivation

The literature suggests a critical role for sleep in our bodily functioning. Generally, sleep
deprivation may result in aching muscles, headaches, increased sensitivity to cold, increased
blood pressure, increased risk to depression, diabetes, etc [93]. Moreover, the literature also
suggests a correlation between the amount of sleep and emotional functioning. Healthy
adult participants whose sleep was restricted to 5 hour per night over one week reported a
progressive increase in negative emotion [22]. A goal of the present study was to delineate one
possible modifiable mechanism by which a critical, but understudied, feature of adolescent
emotion difficulties might be maintained; namely, sleep deprivation.
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As part of a larger 2-day study on affect and sleep deprivation in adolescents compared
to adults, the current study focused on vocal expression of emotion on one of the nights
of sleep deprivation [54]. A multi-method approach was used, and my work focused on
the part of computerized acoustic properties of vocal expression. Based on past research
[30], we hypothesized that vocal expression of positive emotions would decrease and vocal
expression of negative emotions would increase after sleep deprivation, relative to when
rested. The second aim was to determine if sleep deprivation affects vocal expression of
emotion differently for adolescents relative to adults. We predicted that the hypothesized
emotional effects of sleep deprivation would be greater for adolescents relative to adults.

The Study

Note the study was based a collaboration with a team in Department of Psychology, led
by professor Allison Harvey and graduate student researcher Eleanor McGlinchey. The
study was conducted and led directly by Harvey’s team, and I contributed partly, namely
the part of the analysis of the computerized acoustic properties of vocal expression. The
details can be found in [54], but this section will mainly report the part where I had direct
contribution. Describing the analysis requires the delineation of dataset so as the study
procedure. Therefore, a brief description of the study procedure follows.

55 healthy participants completed the study. 38 adolescents (15 female) aged 11-15 years
and 17 adults (9 female) aged 30-60 years participated the study. Individuals aged 16-30
years were excluded primary reasons to provide a clear neuro developmental difference and
clear differentiation of sleep patterns between the adult and adolescent groups [54].

The sleep deprivation protocol occurred over 2 nights. On the first night, participants
were asked to restrict their sleep to a maximum of approximately 6.5 hours at home. Par-
ticipants came to the laboratory on the second night at 22:00. At 22:30, a baseline Stan-
ford Sleepiness Scale (SSS) rating was completed, which is a 1-item measure of subjective
sleepiness (with scale 1-7). In addition, the first Speak Freely Interview Procedure was ad-
ministered. Participants were then continuously monitored throughout the night by trained
laboratory staff. They were permitted to interact with the laboratory staff in order to ensure
wakefulness, as well as to read, watch movies, and play board games. A small snack, such as
fruit or crackers, was made available by the laboratory staff. No caffeine or other stimulants
were allowed. Between 03:00 and 05:00, participants were given a 2-hour nap opportunity.
After waking, participants had a breakfast consisting of fruit, crackers, yogurt, and cheese.
At 06:30, the SSS and the second Speak Freely Interview were repeated.

In the Speak Freely Interview, participants were asked the following 4 questions by a
trained research staff member, who requested they spend one minute answering each ques-
tion. The questions for each time period were as follow. Recording conditions were kept
consistent across all participants during all interviews.

• 22:30:

1. How are you feeling right now?
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2. What are you looking forward to tonight?

3. How do you expect you’ll feel without sleep?

4. Is there anything you’re not looking forward to?

• 06:30:

1. How are you feeling right now?

2. What are you looking forward to today?

3. How do you expect you’ll feel the rest of this morning without sleep?

4. Is there anything you’re not looking forward to?

Computerized Acoustic Properties of Vocal Expression

While a great deal of research has focused on acoustic properties as measures of emotion,
minimal research has leveraged this method to investigate emotion in sleep deprivation.
The vocal properties investigated were selected from Juslin and Scherer’s [43] summary of
properties that are correlated with emotion. A total of thirty features were extracted in the
categories of fundamental frequency, jitter, intensity, shimmer, speech rate, pauses and high
frequency energy. The features resemble the ones described in Section 3.4, but the details
are described here for clarity.

Fundamental frequency (F0) is a measure of pitch and is represented by the rate (1/sec)
at which the vocal folds open and close. The unit of measurement for F0 is cycles per second
or hertz (Hz). A sudden increase in fundamental frequency is associated with high activation
emotion such as anger, whereas a low rate in fundamental frequency is interpreted as low
energy or sadness [43]. The dynamics of the fundamental frequency contour were calculated
by several statistical measures: average (F0 avg), standard deviation (F0 std), minimum
(F0 min), maximum (F0 max), and range (F0 range).

Jitter is pitch perturbation and is represented by small-scale rapid and random fluctua-
tions of F0, meaning fluctuations of the opening and closing of the vocal folds from one vocal
cycle to the next. Previous research suggests that jitter is an indicator of stressor-provoked
anxiety [33]. Two methods were applied to calculate jitter in this study, (1) by calculating
the average of the first-order difference sequence in F0 (F0 jitter PF), and (2) by calculating
the average of the difference sequence over the mean of running F0 values (rather than over
the preceding F0 value) with different cycle lengths (F0 jitter PQ mean).

Intensity reflects the energy (in dB) in acoustic signal or loudness of speech. Previ-
ous research suggests that a rapid rise in intensity is associated with angry speech and sad
speech is characterized by low intensity [43]. Several statistical measures were applied in
order to describe the dynamics of intensity including Energy average (Energy avg), stan-
dard deviation (Energy std), minimum (Energy min), maximum (Energy max), and range
(Energy range). Intensity can also be analyzed by interpreting its distribution over fre-
quency bands (i.e., spectrogram). Previous research suggests that an emphasis on loud-
ness of psycho-acoustical barks in certain high frequency energy bands may be indicative
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of emotional speech [28]. Specifically, the following energy values (in dB) in high frequency
energy bands with bark scales were processed: energy bark7 at 700-840Hz, energy bark8 at
840-1000Hz, energy bark9 at 1000-1170Hz, energy bark10 at 1170-1370Hz, energy bark11 at
1370-1600Hz, energy bark12 at 1600-1850Hz, energy bark13 at 1850-2150Hz, energy bark14
at 2150-2500Hz, energy bark15 at 2500-2900Hz, and energy bark16 at 2900-3400Hz.

Shimmer is the loudness perturbations in speech and is measured by the small varia-
tions of energy amplitude in successive glottal cycles. Shimmer can serve as an indicator
of underlying stress in human speech [33]. Two features were calculated to describe shim-
mer: 1) Loud shimmer PF which is the average of the first order difference sequence and
2) Loud shimmer PQ mean which is the average of the difference sequence over the mean
of running energy values (rather than over the preceding energy value) with different cycle
lengths.

For the temporal aspects of speech, we included measures to describe speech rate and
pauses. Previous research indicates that sadness often results in slower speech and more
pauses [28]. Both speech rate and pauses were calculated by measuring the voiced sections
(F0 > 0) in speech. Speech rate was represented by the relative ratio of voiced versus
unvoiced sections (ratio voiced over unvoiced). Pauses were calculated and approximated
by counting unvoiced sections (silence voiced count) and summing the total duration (in
seconds) of silence (unvoiced sections, silence duration).

As the amount of high-frequency energy increases, the voice sounds sharp and less soft
[43], which can also be emotion-dependent. Therefore, we analyzed the amount of high-
frequency energy in the spectrogram, by calculating the cumulative values (in dB) in the
spectrogram that appear above two cut-off frequency thresholds: 500Hz (HF500) and 1000Hz
(HF1000). In addition, the trend of high-frequency energy distribution (Slope1000) was
calculated by the linear regression of the energy distribution in the frequency over 1000Hz.

All properties were extracted from the digital audio recordings via the MATLAB platform
based on methods used by Moore, Clements, Peifer, and Weisser [59] and Fernandez and
Picard [28]. Specifically we applied Moore’s implementation to find intensity and Fernandez’s
implementation to find jitter, shimmer, speech rate, and high frequency energy. In addition,
we used the Praat speech analysis software to extract fundamental frequency [3]. Praat is a
computer program commonly used for acoustic analysis of vocal expression in clinical and
research settings.

Experimental Results

Table 6.1 presents the mean values for each of the acoustic properties from 10:30 p.m. to 06:30
a.m. for the adolescent and adult participants. We conducted repeated measures ANOVAs
for the 30 acoustic properties. For fundamental frequency (F0), there was a significant main
effect of Time (between 10:30 p.m. and 06:30 a.m.) for F0 average, F (1, 53) = 8.14, p < 0.01,
such that all participants expressed a decreased rate in F0 at 06:30 a.m. relative to 10:30 p.m.
There was no main effect of Group (between adults and adolescents) F (1, 53) < 1, ns, nor
a Group × Time interaction, F (1, 53) < 1, ns, for F0 average. Additionally, there were no
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main effects of Group or Time and no Group × Time interactions for the standard deviation,
minimum, maximum, and range of F0 (see Table 6.1).

There was a significant main effect of Time for both of the methods applied to calculate
jitter. For the average of the first-order difference sequence in F0, F (1, 53) = 4.12, p <
0.05, such that all participants expressed an increase in jitter at 06:30 a.m. relative to
10:30 p.m. There was no main effect of Group F (1, 53) = 1.65, ns, nor a Group × Time
interaction, F (1, 53) < 1, ns. Additionally, there was a main effect of Time for the average
of the difference sequence over the mean of running F0 values with different cycle lengths,
F (1, 53) = 5.23, p < 0.05, such that all participants expressed an increase in jitter at 06:30
a.m. relative to 10:30 p.m. There was no main effect of Group F (1, 53) < 1, ns, nor a Group
× Time interaction, F (1, 53) < 1, ns.

For intensity, there were no main effects of Group or Time and no Group × Time in-
teractions for the average, standard deviation, minimum, maximum, and range of energy
(see Table 6.1). However, when intensity was measured in specific high frequency en-
ergy bands, there were significant main effects of Time in the following bark scales, such
that all participants expressed decreases in psycho-acoustical barks at 06:30 a.m. rela-
tive to 10:30 p.m.: bark7 at 700-840Hz F (1, 53) = 4.31, p < 0.05, bark8 at 840-1000Hz
F (1, 53) = 5.33, p < 0.05, bark9 at 1000-1170Hz F (1, 53) = 9.89, p < 0.01, bark10 at 1170-
1370Hz F (1, 53) = 11.62, p = 0.001, bark11 at 1370-1600Hz F (1, 53) = 12.97, p = 0.001,
bark12 at 1600-1850Hz F (1, 53) = 16.81, p < 0.001, bark13 at 1850-2150Hz F (1, 53) =
13.40, p = 0.001, bark14 at 2150-2500Hz F (1, 53) = 8.15, p < 0.01 and bark15 at 2500-
2900Hz F (1, 53) = 4.22, p < 0.05. There were no main effects of Group nor any Group
× Time interactions for these bark scales (see Table 6.1). Additionally, there were no sig-
nificant main effects of Time or Group and no Group × Time interactions for bark16 at
2900-3400Hz (see Table 6.1). Note the magnitude of energy appearing in frequency bands
(energy bark7-16) is much smaller than the magnitude of the overall energy (energy avg)
given that each bark value is a decomposition of the total energy.

There was a significant main effect of Time for both of the methods applied to calcu-
late shimmer. For the average of the first-order difference sequence in energy, F (1, 53) =
11.83, p = 0.001, such that all participants expressed an increase in shimmer at 06:30 a.m.
relative to 10:30 p.m. There was no main effect of Group F (1, 53) < 1, ns, nor a Group ×
Time interaction, F (1, 53) < 1, ns. Additionally, there was a main effect of Time for the
average of the difference sequence over the mean of running energy values with different cycle
lengths, F (1, 53) = 9.97, p < 0.01, such that all participants expressed an increase in shim-
mer at 06:30 a.m. relative to 10:30 p.m. There was no main effect of Group F (1, 53) < 1, ns,
nor a Group × Time interaction, F (1, 53) < 1, ns.

For the temporal aspects of speech, there were no main effects of Group or Time and
no Group × Time interactions for speech rate (see Table 6.1). However, there was a main
effect of Time for Pauses, F (1, 53) = 12.58, p = 0.001, such that all participants expressed a
decrease in pauses at 06:30 a.m. relative to 10:30 p.m. There was no main effect of Group
F (1, 53) < 1, ns, nor a Group × Time interaction, F (1, 53) < 1, ns. Additionally, there were
no main effects of Group or Time and no Group × Time interactions for the total duration
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of silence (see Table 6.1).
For high frequency energy in the spectrogram above 500Hz and 1000Hz, there were no

main effects of Group or Time and no Group × Time interaction for 500Hz (see Table
6.1), but there was a main effect of Time for 1000Hz, F (1, 53) = 7.91, p < 0.01, such that
all participants expressed a decrease in high frequency energy above 1000Hz at 06:30 a.m.
relative to 10:30 p.m. There was no main effect of Group F (1, 53) < 1, ns, nor a Group
× Time interaction, F (1, 53) < 1, ns. In addition, the spectral slope over 1000Hz became
flatter in all participants at 06:30 a.m. relative to 10:30 p.m., F (1, 53) = 26.56, p < 0.001.
There was no main effect of Group F (1, 53) < 1, ns, nor a Group × Time interaction,
F (1, 53) < 1, ns.

Table 6.1: Mean values for acoustic properties in adoles-
cents and adults (with standard deviations in parenthe-
ses).

Adolescents Adults

22:30 06:30 22:30 06:30
F0 avg (Hz) 148.72 (27.86) 139.20 (20.73) 144.46 (30.89) 134.19 (22.03)
F0 std (Hz) 51.08 (15.89) 43.72 (17.40) 51.10 (15.61) 52.48 (26.67)
F0 min (Hz) 98.18 (11.37) 95.16 (5.75) 93.62 (10.32) 90.86 (8.84)
F0 max (Hz) 237.11 (47.3) 213.86 (48.26) 229.22 (61.75) 231.48 (98.86)
F0 range (Hz) 138.93 (45.49) 118.70 (48.55) 135.60 (54.53) 140.61 (101.37)
F0 jitter PF (Hz) 0.34 (0.07) 0.36 (0.07) 0.32 (0.07) 0.33 (0.06)
F0 jitter PQ mean (Hz) 0.20 (0.04) 0.21 (0.04) 0.19 (0.04) 0.20 (0.03)
Energy avg (dB) 0.21 (0.01) 0.22 (0.01) 0.21 (0.01) 0.21 (0.01)
Energy std (dB) 0.13 (0.02) 0.12 (0.02) 0.13 (0.02) 0.13 (0.02)
Energy min (dB) 0.09 (0.02) 0.09 (0.02) 0.09 (0.02) 0.09 (0.02)
Energy max (dB) 0.45 (0.04) 0.44 (0.04) 0.43 (0.03) 0.45 (0.03)
Energy range (dB) 0.36 (0.05) 0.35 (0.05) 0.35 (0.05) 0.36 (0.04)
Energy bark7 3.46*10−3 2.60*10−3 3.70*10−3 3.48*10−3

at 700-840Hz (dB) (1.09*10−3) (1.59*10−3) (1.57*10−3) 1.97*10−3)
Energy bark8 2.66*10−3 1.83*10−3 3.20*10−3 2.85*10−3

at 840-1000Hz (dB) (1.37*10−3) (1.75*10−3) (1.59*10−3) (2.55*10−3)
Energy bark9 2.36*10−3 1.54*10−3 2.66*10−3 2.37*10−3

at 1000-1170Hz (dB) (1.53*10−3) (1.52*10−3) (1.46*10−3) (1.90*10−3)
Energy bark10 1.87*10−3 1.16*10−3 1.98*10−3 1.76*10−3

at 1170-1370Hz (dB) (1.14*10−3) (0.98*10−3) (1.16*10−3) (1.41*10−3)
Energy bark11 1.54*10−3 0.92*10−3 1.59*10−3 1.36*10−3

at 1370-1600Hz (dB) (0.92*10−3) (0.68*10−3) (0.81*10−3) (1.05*10−3)
Energy bark12 1.28*10−3 0.75*10−3 1.26*10−3 0.96*10−3

at 1600-1850Hz (dB) (0.77*10−3) (0.59*10−3) (0.70*10−3) (0.67*10−3)
Energy bark13 1.18*10−3 0.64*10−3 0.87*10−3 0.63*10−3
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Table 6.1: Mean values for acoustic properties in adoles-
cents and adults (with standard deviations in parenthe-
ses).

at 1850-2150Hz (dB) (0.83*10−3) (0.61*10−3) (0.57*10−3) (0.43*10−3)
Energy bark14 0.85*10−3 0.45*10−3 0.51*10−3 0.38*10−3

at 2150-2500Hz (dB) (0.68*10−3) (0.56*10−3) (0.38*10−3) (0.31*10−3)
Energy bark15 0.46*10−3 0.25*10−3 0.32*10−3 0.27*10−3

at 2500-2900Hz (dB) (0.40*10−3) (0.32*10−3) (0.26*10−3) (0.29*10−3)
Energy bark16 0.40*10−3 0.22*10−3 0.30*10−3 0.26*10−3

at 2900-3400Hz (dB) (0.46*10−3) (0.29*10−3) (0.25*10−3) (0.25*10−3)
Loud shimmer PF 0.73 (0.16) 0.79 (0.16) 0.72 (0.14) 0.79 (0.12)
Loud shimmer PQ mean 0.27 (0.05) 0.29 (0.04) 0.26 (0.04) 0.28 (0.04)
ratio voiced over unvoice 2.90*10−3 3.0*10−3 2.90*10−3 3.0*10−3

(2.08*10−3) (1.87*10−3) (1.88*10−3) (1.94*10−3)
silence voiced count 9.60*10−3 8.40*10−3 9.81*10−3 8.63*10−3

(1.57*10−3) (2.45*10−3) (1.65*10−3) (1.35*10−3)
silence duration (seconds) 0.70 (0.08) 0.70 (0.14) 0.71 (0.06) 0.77 (0.05)
HF500 (dB) 8.31 (8.34) 5.97 (5.78) 6.99 (4.36) 6.41 (6.75)
HF1000 (dB) 0.67 (0.46) 0.48 (0.28) 0.66 (0.32) 0.51 (0.21)
Slope1000 -0.82 (0.74) -0.39 (0.46) -0.91 (0.74) -0.58 (0.51)

6.3 Discussion

The application reported the impact of sleep deprivation on emotions to vocal expression
in adolescents relative to adults. Following the prediction, the computerized acoustic prop-
erties analysis added to the support for the hypothesis that sleep deprivation resulted in
dramatic changes in pitch, energy, and vocal sharpness. In other words, vocal expression
took on a lower pitch, became less intense, and energy levels decreased. Previous research
has described decreases in pitch as being associated with sadness [43]. Additionally, high
frequency energy has been associated with low physiological activation. Low activation ap-
pears to be associated with sadness and fatigue [72]. Finally, increased perturbations in pitch
and loudness of speech (jitter and shimmer) have been interpreted as indicative of stress or
anxiety [33]. We also note that there was a decrease in pauses at 06:30 relative to 22:30;
however, there were no differences in the rate of speech or total duration of silence. There-
fore, it is unlikely that the pitch, energy, and vocal sharpness findings can be explained by
participants speaking more slowly due to fatigue. Overall, these results are consistent with
previous studies indicating that adolescents and adults experience negative mood in relation
to sleep deprivation [22].
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The second hypothesis was that the predicted effects of sleep deprivation would be par-
ticularly pronounced in the adolescent group relative to the adult group. The computerized
acoustic properties analysis did not support this hypothesis, but in [54] it reported that based
on the computerized text analysis, the adolescent group expressed fewer positive emotion
words than the adult group when sleep deprived.

Several caveats are important to consider. First, the relatively small sample size, par-
ticularly for the adult group, may have limited statistical power. Additionally, the small
sample size of the adolescent group precluded analysis of pubertal status on the expression
of emotion and there is evidence to suggest that the voice is going through changes during
puberty, particularly among adolescent boys [32]. However, we believe that a strength of the
current study was the within subjects design, which allowed comparison of vocal expression
at two different time points within the same participant. Second, future work should use
a high quality external microphone (i.e., VoiceTracker array microphone by AcousticMagic)
in a sound attenuated room. It is possible that the built-in microphone used in the current
study may lose some nuanced details. However, in the current investigation, recording con-
ditions were kept consistent across all participants and the within-subject design allowed for
the analysis of a change in acoustic properties. More discussion related to other types of
analysis can be found in [54].

6.4 Application II: Simulated and Actual Stress

It is believed that stress plays a critical role in survival by increasing arousal through the
activation of the fight-or-flight response in the presence of danger [7]. Several hormones were
generated to facilitate immediate physical reactions associated with a preparation for violent
muscular action, including acceleration of heart and lung function, and constriction of blood
vessels in many parts of the body. Challenges people not used to are also perceived as danger
by the body, which indirectly induces work-related stress and anxiety. There is a growing
attention in this area to monitor mental stress [16] and reduce it with appropriate feedbacks
[77] to promote work performance and physical health.

In this section, we revisit the sensing of stress in voice, by nonverbal voice measures
as indicators of stressor on the body. Section 5.4 describes part of the analysis for such
goal, but mainly for analyzing the effectiveness of glottal features. This section describes
several additional analysis to answer several questions for realistically building a real life
stress detector. The analysis includes: (1) the investigation of a realistic evaluation in
the classification of stress vs. neutral speech, (2) the investigation of an user-normalization
approach, and (3) the understanding of the optimal speech duration for the best classification
result. In fact, the analysis is a progression of experiments to improve the classification
accuracy. In the end, with the techniques combined, the accuracy of classifying stress vs.
neutral speech is improved to up to 95%.

The dataset Speech Under Simulated and Actual Stress (SUSAS) [37] is used for answer-
ing the questions. For our experiment, we made use of two set of recordings under both
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actual and simulated stress. Under the “actual stress” condition, each subject was asked
to speak (and repeat) 35 distinct English words while riding one of two roller coaster rides.
High stress and neutral speech utterances were marked depending on the position of a riding
course. There are a total of 7 subjects (3 females and 4 males) involved, producing a total of
1900 utterances. Each utterance was segmented as a word, lasting about one second. Under
the “simulated stress”, 9 speakers were asked to perform high workload tasks (manipulating
flight control tasks on a desktop computer) while reading out the same set of English words.
High stress and neutral speech utterances were marked depending on whether a high work-
load or low workload task is undergoing. A total of 1261 utterances were collected and each
utterance corresponds to a word.

Intuitively, the actual stress involves some thrill factor during roller coaster rides, which
may involve screaming from time to time, so it is more prominent in vocal expression. On
the other hand, the simulated stress is triggered from the high mental work load, which
should be more subtle, harder to recognize in the human voice.

To be clear about the concept and consistent throughout the chapter, the actual stress
will be referred as the thrill stress and the simulated stress will be referred as the work
load stress. Nonetheless, the following sections will first focus on the data with thrill-stress
stressors, evolving the classification method. In the end, the finalized method will be applied
to the work load stress data to compare the result with thrill stress.

User-independent Classification of Stress vs. Neutral Speech

In Section 5.4, the binary classification task between stress and neutral speech was ex-
plored. The evaluation worked by cross-validation. However, after re-visiting the partitioning
method, we consider the original method not realistic for deploying a real-world application,
although the result was valid. The evaluation randomly partitioned the data as folds, so
the utterances by a user was scattered across multiple partitions. This implies that during
cross-validation, some stress/neutral data of a user is previously seen during the training
phase, so the accuracy is boosted during the classification of the user’s data. Realistically,
when applying a model to new set of users, the model should be user independent and should
not be trained with any data by the new user.

Therefore, a leave-one-subject-out cross validation was adapted. In each fold, a user
was chosen for testing, using the model trained from the speech of the remaining users (the
remaining 6 users in the thrill stress case). That said, the evaluation method matches well
with the real-world testing scenario. The algorithm computed a feature vector for each
speech utterance (an English word, about one second long) based on the feature set listed
in Table 5.3 and utilized linear SVM for classification training/testing. In fact, comparing
to linear SVM, the radial-basis SVM worked poorly for emotion recognition tasks [78].

A crucial step for applying linear SVM is feature normalization, which is suggested by
the authors of libsvm [40]. Feature vectors should be scaled to range [0, 1] beforehand. The
scaling factor obtained from the training data (P) was kept as part of the model parameters,
and will be applied to the test data (Q) during test phase. The scaling method is detailed in
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the following, a straightforward method and will be improved in the next step. If a feature
value is subscripted as the ith element of the kth datum (feature vector),

minFeati = min
k∈P

featk,i (6.1)

maxFeati = max
k∈P

featk,i (6.2)

ˆfeatk,i =
featk,i −minFeati

maxFeati −minFeati
, k ∈ P ∪Q (6.3)

As expected, because of the realistic cross-validation seeting the performance dropped,
significantly from 83% to 62.79% in accuracy, from 0.763 to 0.626 in ROC area. Indeed, the
accuracy became unacceptable, but this experiment setup is believed to be more realistic
than the previous one. After investigation, two improvements evolved, with one focusing
on the improvement of feature normalization method and one targeting on the question of
“data instability“. Details of the two improvements follow.

User-based Normalization

Based on the idea that, each user should have his/her own baseline/range of feature values
across neutral and stress conditions, so it is necessary to accommodate that individually.
Instead of scaling the training data “altogether”, we scale the features of each user indepen-
dently. That is, the feature vectors of each user are grouped together, and scaled respectively
(i.e., with different scaling factors minFeati,u and maxFeati,u for each user u). If user u is
assigned to the training set, feature k of user u should belong to training set Pu:

minFeati,u = min
k∈Pu

featk,i (6.4)

maxFeati,u = max
k∈Pu

featk,i (6.5)

ˆfeatk,i =
featk,i −minFeati,u

maxFeati,u −minFeati,u
, k ∈ Pu (6.6)

Equations 6.4 to 6.6 reveal a problem of this method: the scaling factor for test user
u′ is undefined, since the scaling factors are only defined for the training data of the other
users. To resolve this, we calculated the scaling factors of the test user u′ from all feature
vectors of the user. This partial solution in fact, requires collecting a significant amount of
data from a given user (having sufficient coverage of the range) before the scaling becomes
effective. In fact, Chapter 3 found that scaling factors collected from less than 5 data points
are sufficient.

The result improved, achieving 72.73% accuracy and 0.787 ROC area.
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The Length of Speech Samples

Due to the nature of the dataset, each feature vector was extracted from a speech utterance
lasting only 1 second. It is in fact imaginable that detecting stress from one second of speech
is deemed to be inaccurate. Therefore, we experimented whether lengthening the speech
samples will improve the accuracy.

“Lengthening” speech samples was achieved by randomly concatenated recordings to-
gether. In other words, we randomly “synthesized” English sentences of length N by ran-
domly concatenating N English words together. Moreover, consider the goal is to classify
stress/neutral “sentences” by each user. Concatenating speech samples from different users
does not make sense. Likewise, speech samples in different conditions (neutral/stress) should
not be concatenated together either. Therefore, we concatenated recordings of the same user
in the same condition.

Based on the concept, we can experiment the following question. Whether training
utterances of length N will give the best performance when the test utterances are of length
M? This requires generating synthesized sequence with increasing durations (2, 3, 4, 5, ..., K
seconds) per user per condition. If a user has 38 neutral utterances of length 1 in the original
dataset, the utterances can be combined separately without repetition into 8 utterances of
length 5 (length 3 for the remainder case) where each original utterance is assigned to only
one synthesized utterance.

Applying the same cross-validation and user-based normalization presented in the previ-
ous two steps, Figure 6.1 shows the accuracies in the combination of training data of length
N and test data of length M (2 < N,M < 30). Figure 6.1 shows that, as long as the test
data is of longer unit length, the accuracy will increase (up to 95%). This is a significant
improvement, implying that the unit length of test data should be as long as 30 seconds.
Nonetheless, when the unit length of training data increases, the accuracy stays invariant.
This means that the linear SVMs can accommodate the variance of the training data (even
when the training data is really short), but not the variance of a single, short test datum.
If we can increase the unit length of the test datum, we can remove the variance factor and
achieve better result.

Thrill vs. Work Load Stress

The same experiment was performed for the subset of data with work load stress, with result
shown in Figure 6.2. In fact, Figure 6.2 follows the same trend as Figure 6.1: the longer the
test speech the better. Nonetheless, the accuracy level for recognizing work load stress is
not as high as detecting thrill stress. For example, the high value is 85%, lower than 95% in
the thrill stress case. This follows the intuition that recognizing mental-load related stress
through voice is more difficult than detecting thrill related stress that involves screaming
from time to time.

This can be explained by feature analysis. The analysis is to look at what category of
features are more important to the classification. A particular hypothesis is that the energy
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Figure 6.1: Accuracies with combination of training data of length N and test data of length
M , 2 < N,M < 30, with “thrill-stress” stressor.

feature in the thrill stress dataset should stand out more than in the work load dataset.
The Linear SVMs provide a way to evaluate the importance of features because an SVM

assigns importance weights to its features for class prediction. The prediction is made by
weighted linear combination of features, i.e., y = arg maxc

∑
k wckxk + bc. We can think of

the weight wck as a vote assigned to a particular feature xk. We constrained the variability
of the features to lie between 0 and 1. The classifiers were given 384 different features as
input (Table 5.3 without the glottal features), and, as the rank-order weight plot in Figure
6.3 shows, about 50-100 features have high weight after feature selection. Therefore, we
reviewed the appearance of the features in the top 75 features for trained models in thrill
and work load stress.

Figure 6.4 shows the distribution of each feature category in the top 75 features, chosen by
the (a) thrill stress model and (b) work load stress model. It is clear that both models picked
MFCCs, the energy distribution over the frequency bands, as the most important features
(> 60%), whereas the work load-stress model put more emphasis on it. This follows [43] that
energy in high frequency associated well with physiological activation, which is higher during
stress episodes. However, the distribution in Figure 6.4 could be distorted, weighted a bit
towards MFCCs. This may due to the fact that over the 384 features, the MFCC category
has 12 times more features than the other four categories (HNR, F0, ZCR and RMS-energy),
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Figure 6.2: Accuracies with combination of training data of length N and test data of length
M , 2 < N,M < 30, with “work load-stress” stressor.

Figure 6.3: Weights of the Linear SVM’s features for thrill stress and work load stress plotted
in rank order show that,
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(a) (b)

Figure 6.4: Distribution of feature categories in the top 75 features chosen by linear SVM
for (a) thrill stress and (b) work load stress.

because there are 12 LLDs in the MFCC category (MFCC 1-12) whereas there is only one
in the other category (Table 5.3). Although the MFCCs are important so the linear SVMs
pick the features repetitively as top features, the majority of the MFCC features may cause
the other features to be lessly emphasized. Re-weighting the distribution by dividing by the
total number of features per category leads to the normalized version in Figure 6.5. Note as
a reference, if we calculate the distribution over the total set of 384 features, it will be evenly
distributed, each category representing 20% of the total features. So Figure 6.5 magnifying
RMS-energy implies that RMS-energy was considered important (> 20%) in the top 75
features. Moreover, the RMS-energy features are treated more importantly for recognizing
thrill stress (36%), than for recognizing work load stress (31%). This follows the original
observation that screaming happens occasionally in thrill stress such that RMS-energy could
be a more useful feature. In addition, the work load stress model emphasizes more on the
MFCCs (23%) than the thrill stress model (12%) stress. Also note in Figure 6.5 the pitch
(F0) featues were evaluated less important in comparison to the others.

6.5 Conclusion

This chapter describes two applications where the triggers from the physical body correlating
with vocal expression are adapted to recognize mental states. The first one is sleep depri-
vation, which often places important role on emotional functioning. Sleep deprived causes
increasing negative emotions, and in reverse mood disorders such as depression often triggers
sleep deprivation. So we studied the vocal expression of emotion on sleep deprived subjects
to understand the relationship. Sleep deprivation indicated decreases in pitch, bark energy
(intensity) in certain high frequency bands, and vocal sharpness (reduction in high frequency
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(a) (b)

Figure 6.5: “Normalized” Distribution of feature categories in the top 75 features chosen by
linear SVM for (a) thrill stress and (b) work load stress.

bands > 1000 Hz). The second application enables a detailed analysis on stress detection
via voice. Accuracy as high as 95% was achieved, with the help of user-based feature nor-
malization and test speech of duration > 30 seconds. Nonetheless, the high accuracy was
derived from a dataset with a thrill factor (roller coaster rides) where there’s a prominent
high RMS energy in stressed speech. Whereas the other dataset with high mental load dis-
plays more difficulty for detection. The accuracy was 85%. Although the RMS-energy was
not as prominent, it shows that the energy distribution over frequency spectrum is important
contributor to the accuracy. Putting together the work, Chapter 7 will conclude the thesis
by providing an implementation of the speech analysis library to run efficiently on mobile
phones.
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Chapter 7

A Speech Analysis Library on Mobile
Phones

The human voice encodes a wealth of information about emotion, mood, stress, and mental
state. With mobile phones this information is potentially available to a host of applications
and can enable richer, more appropriate, and more satisfying human-computer interaction.
In this chapter we describe the AMMON (Affective and Mental health MONitor) library,
a low footprint C library designed for widely available phones as an enabler of these ap-
plications. The library incorporates both core features for emotion recognition (from the
Interspeech 2009 Emotion recognition challenge), and the most important features for men-
tal health analysis (glottal timing features). To comfortably run the library on feature
phones (the most widely-used class of phones today), we implemented the routines in fixed-
point arithmetic, and minimized computational and memory footprint. On identical test
data, emotion classification accuracy was indistinguishable from a state-of-the-art reference
system running on a PC, achieving 75% accuracy on two-class emotion classification tasks.
The library uses 30% of real-time on a 1GHz processor during emotion recognition and 70%
during stress and mental health analysis.

7.1 Introduction

Were one to design an ideal device for affect/mental health monitoring by voice, it would
probably look a lot like a cell phone. A small, handheld device that is regularly used for other
voice-based tasks (i.e., calling others), and which helps to distinguish a particular user’s voice
from those around them (phones have a variety of noise-canceling and directional features
built in). What is lacking for developers are the speech features needed for applications or
better still, binary or real values that denote emotion or depression strengths - i.e., emotion
classifier outputs.

While smartphones are gaining market share daily, “feature phones” are still the dominant
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devices in the hands of users, and will be for some time to come1. Furthermore, the downside
of the very powerful (1GHz) processors and large memory on smartphones is that they
can run batteries into the ground much faster than older-model phones. The bright side
is that clock speed can be curtailed (or the processor idled) so that power consumption
scales approximately linearly with the amount of computation to be done. So to be feasible
on feature phones and to be practical on smartphones, voice analysis must have a small
computational footprint in both CPU time and memory. This is a primary goal in design of
the AMMON library. The other goal is to ensure that analysis on the mobile library is as
accurate as on a PC.

We have developed the AMMON library (Affective and Mental-health MONitor) to meet
these goals. The library computes a rich set of prosodic and spectral features which support
emotion recognition with state-of-the-art accuracy of around 70% based on the Interspeech
2009 emotion recognition reference dataset and feature set [79]. AMMON also includes fea-
tures to describe glottal vibrational cycles, a promising feature for monitoring depression.
Moore et al. [59] showed that linear classifiers using a combination of these features can
distinguish depressed and healthy subjects with 90% accuracy. This implies that the glottal
activities in speech production can be greatly affected by mental illness, a good indicator
of physical change induced by mental states. We hypothesize that the glottal features can
improve stress detection as well. In analogy, mental stress often manifests physical response
in the autonomic nervous system (cf. heart rate) [13]. So glottal features, indicating phys-
ical change in glottal muscles, may also respond to the autonomic nervous system. Our
experiments showed that the glottal features indeed improved the classification accuracy.
AMMON was written in C and we developed it based on an existing mobile front-end (ETSI
advanced extended front-end [24]).

Most feature phones today lack floating-point hardware. Feature phones have clock
speeds in the 150 to 400 MHz range. The toolkit we describe is intended to run on these
feature phones. So far we have demonstrated 30% of real-time performance on 1GHz ARM
devices and 45-65% of real-time on 600 MHz ARM devices, which should be close to real-
time on 300-400MHz ARM devices2. This should be acceptable for monitoring applications.
e.g., for 200 MHz or slower devices, some blocks of the input can be dropped - the features
are all block-based and therefore discarding data reduces data volume but not accuracy.

The rest of this chapter is structured as follows: Section 7.2 describes the related work.
Section 7.3 presents the speech analysis library, including the voice feature set and the
effort to improve efficiency. It includes the benchmarked performance running the library
on mobile phones. Section 7.6 demonstrates the effectiveness of the features by applying
them on an emotional speech dataset and a dataset of mental stress. The result matches the
state-of-the-art result. Section 7.8 concludes the chapter and discusses future work.

1Globally it seems unlikely that smartphones will ever dominate the market in developing countries
2The toolkit is not yet fully optimized, and e.g., does not yet use ARM intrinsics, so this figure should

decrease.
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7.2 Related Work

In this section, we describe related work for discussing our contribution relative to these
works.

Emotion Recognition

Automatic emotion recognition has a long history with speech processing [43]. An extremely
useful landmark was the Interspeech Emotion Challenge 2009 [79]. This challenge included
standard dataset of emotion-tagged speech, and a “baseline” implementation of feature anal-
ysis, known as openSMILE. Surprisingly, while some more sophisticated algorithms improved
on the baseline system, the improvements were very small, and it is fair to say that the base-
line implementations achieved state-of-the-art performance. Since the baseline code was
publicly distributed, we were able to compare our own implementation against it. A second
surprising result was that use of segmental features (phone-level features) did not improve on
“suprasegmental” primitive features (MFCCs, pitch, dynamics, energy). This may change
in the future, but for now it means that state-of-the-art emotion recognition is much simpler
than phonetic analysis. Expressed in terms of speech recognition components, that means
that fully-accurate emotion analysis requires only the front-end of a speech recognizer and
not the (memory and compute-intensive) acoustic model or later stages.

As a quick reference, the state-of-the-art recognition accuracy is about 70% for five-
way classification of emotions (happy, sad, fear, anger and neutral) in a standard database
with actors expressing emotions [70]. On the other hand, for the Interspeech challenge,
naturalistic transcripts were recorded and hand annotated. Accuracy was only 70% for
two-way classification [79].

Speech Patterns in Depression

In a remarkable study, Moore et al. [59] showed that feature analysis can separate a control
group of healthy subjects from a group of depressed patients with 90% accuracy. It relied
most strongly on glottal features which are not part of most low-level speech analysis systems.
We included these features in AMMON to support mental health analysis. As shown in
Chapter 5, this lead to improvement in the accuracy of stress detection and recognition of
cases involved with speech pathology.

Voice Analysis Library on Mobile Phones

There has been a lot of activity lately on toolkits for mobile applications, including speech
analysis and machine learning. SoundSense applied voice analysis to infer activities hap-
pening around a user, including driving, listening to music, and speaking [50]. SoundSense
extracted a set of low-computation features and fed them to the J48 decision tree algorithm
running locally on the phones. The features included zero-crossing rates, low energy frame
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rates, and other spectral features. By comparison, AMMON extracts affective features,
including pitch and information about glottal vibrational cycles. It supports linear classifi-
cation in real-time since the Interspeech challenge showed there to be little advantage in use
of other classifiers for emotion recognition. EmotionSense is an emotion recognition library
on mobile phones for psychological studies [70]. EmotionSense does not infer emotions locally
on the phones, but it ships the computation to the cloud. This imposes significant penalties
in terms of privacy, need for access to the network, centralized server costs etc.

Choudhury et al. developed the Sociometer [14], a framework that infers colocation and
conversation networks from voice data. The work focused primarily on the social ties by
analyzing the turn-taking by energy and voiced/non-voiced features in face-to-face conver-
sations. Our work instead provides rich and multidimensional analysis of emotion during
conversation which can support a variety of social applications.

7.3 Speech Analysis Library

In this section, we provide an overview of the AMMON architecture. We describe each
architectural component in turn, as those illustrated in Figure 7.1.

Preprocessing

Sound processing starts with segmenting the audio stream from the microphone into frames
with fixed duration (25 ms) and fixed stepping duration (10 ms). Not all frames are consid-
ered for further processing. The module performs voice activity detection for the non-speech
frame dropping.

Feature Extraction

The selection of features is critical for building a robust classifier. We built a feature set
based on the features defined in Interspeech challenge. It includes static feature vectors
derived by projecting low-level descriptors (LLDs, in the form of signal waveforms) such as
pitch and energy by descriptive statistical functionals such as lower order moments (mean,
standard deviation etc). The static feature vectors were effective, which is probably justified
by the supra-segmental nature of occurring with respect to the emotional content in speech
[81].

Table 7.1 lists the LLDs in the categories of prosody, voice quality and spectral domains:
zero-crossing rate (ZCR), root-mean-square (RMS) frame energy, pitch (F0), harmonics-to-
noise ratio (HNR), mel-frequency cepstral coefficients (MFCC) 1-12. Moreover, to each of
these LLDs, the delta coefficients are additionally computed. The features in Table 7.1 are
the same as in Table 5.3 but repeated here for clarification.

In addition to the standardized set defined in the Interspeech challenge (16 LLDs), we
include glottal timings in the LLDs, which had great success in measuring mental health [59].
As illustrated in Figure 3.2, a glottal (flow) vibrational cycle is characterized by the time
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that the glottis is open (O) (with air flowing between vocal folds), and the time the glottis
is closed (C ). In addition, an open phase can be further broken down into opening (OP)
and closing (CP) phases. If there is a sudden change in airflow (i.e., shorter open and close
phases), it produces more high frequency and the voice therefore sounds more jagged, other
than soft. To capture it, AMMON calculates the above 4 durations of each cycle and 5 ratios
of the closing to the opening phase (rCPOP), the open phase to the total cycle (rOTC ),
the closed phase to the total cycle (rCTC ), the opening to the open phase (rOPO), and the
closing to the open phase (rCPO). In summary, there were a total of 9 glottal timing-based
LLDs included.

Then, AMMON segments the LLDs into windows, meaningful units for the modeling of
feature vectors. A window can either be a turn or a fixed duration. Finally, it calculates
9 functionals from each window, including mean, standard deviation, kurtosis, skewness,
minimum and maximum value, relative position and range. In the end, a feature vector
contains 25 ∗ 2 ∗ 9 = 450 attributes.

Affect and Mental Health Recognition

AMMON uses linear Support Vector Machines (SVM) to recognize emotions based on the
feature vectors (projecting LLDs by functionals). Linear SVM is currently a dominantly
used mechanism for recognition emotions. In addition, doing prediction with a linear SVM
is rather efficient, which is suitable to run on the phones. Training models is more expensive,
but this can be done off-line (not on the phones).

Implementation

We implemented AMMON in C, which can be deployed to both feature phones (e.g., Sym-
bian) and smart phones (e.g., Android). In the work we developed AMMON with Android
NDK, where we can turn off the floating-point support in compile time to test the scenarios
of feature phones. The Android platform has a dominant market share and is likely to lead
the market in the near future. In addition, it supports implementation in both Java and
C, which is convenient for re-using existing signal processing libraries written in C. For pre-
processing, we leveraged the existing function of voice activity detection in ETSI front-end
library [24].

AMMON for Emotion Analysis

We developed AMMON by extending an ETSI (European Tele-communications Standards
Institute) front-end feature extraction library [24]. The original purpose of the front-end was
for local extraction of features on phones for remote speech recognition. Nonetheless, the
front-end was useful for AMMON because (1) The ETSI front-end was already extracting
some of the LLDs, such as energy, F0 and MFCC. We can re-use the code. (2) The front-end
was equipped with noise-reduction routines, designed especially for the case of background
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Figure 7.1: The AMMON Architecture

Table 7.1: The AMMON feature set, computed by applying functionals on LLD waveforms.

LLDs functionals

(∆)ZCR mean, standard deviation,
(∆)RMS energy kurtosis, skewness,
(∆)F0 minimum, maximum
(∆)HNR range, rel. position
(∆)MFCC 1-12
(∆)Glottal timings x 9 a

aAMMON includes glottal timings for mental health anlysis, whereas the rest of LLDs are sufficient for
emotion analysis.
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noise while using mobile phones. It will make the features more reliable. (3) The library
had routines for voice activity detection, which can be used for frame admission control.
Non-speech frames will not be considered for further processing. (4) The ETSI library was
implemented purely with fixed-point arithmetics, ensuring the library to run efficiently on
feature phones without floating-point hardware.

We ported the ETSI front-end to the Android platform with Android NDK. , which is a
GNU C/C++ based compiler and tool-chains that can generate native ARM binaries. An
Android application built in Java can evoke AMMON with JNI (Java native interface) by
passing a raw file of voice recording, and AMMON will return the affective information, e.g.,
emotion classes and the confidence.

After porting the front-end to Android, we implemented routines for the remaining LLDs
(ZCR, HNR and glottal timings), using fixed-point arithmetic in particular. Zero-crossing
rate (ZCR) was straightforward. Harmonic-to-noise ratio was implemented by the calling au-
tocorrelation function (ACF) provided by the ETSI library (HNR = 10 logACF (T0)/(ACF (0)−
ACF (T0)), T0 = fs/F0). Finally, in terms glottal timings, it was computationally more ex-
pensive to extract them than other LLDs. Therefore, we re-designed the algorithm with
details described in Section 7.4.

Implementing Functionals

Making a reliable estimate arguably requires as much data processing as possible. This
means that, we have to calculate functionals over a large window of LLDs. Given the limited
memory available on feature phones, it is not practical to buffer full conversational turns.
AMMON should calculate the functionals over time without having to save the value at
every sample. Therefore, we implemented an online, buffer-free algorithm to calculate the
functionals (pseudo code can be found in [46]).

Given a new sample of an LLD, only the mean and the first to forth moments are updated,
implying constant space per LLD. Then, it can calculate an up-to-date functional with the
moments. For example, we can calculate variance with the second moment. We can also
obtain kurtosis with the forth and the second moments. In terms of computation, each
update and computation of functionals takes only constant time.

7.4 Extracting Glottal Timings

It is computationally more expensive to extract glottal timings than the other LLDs. So
we implemented the routine with special care, including algorithimic improvement and code
optimization. Following the algorithm described in Section 5.2, we analyzed the bottleneck
by profiling. The most dominant part is formant tracking, which requires for every sample,
estimating LPC (linear predictive coding) polynomials and solving roots of each polynomial
to determine formant frequencies. The rationale for computing formants is as follows: in
general, the production of speech sounds can be described as the interaction of glottal ex-
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citation with the resonance of a vocal tract. Due to these interactions, estimating glottal
vibrational cycles from the output signal becomes more difficult, so we seek regions where
these components interact minimally. This part helps identify the closed-phases (C) of glot-
tal vibrational cycles. When the glottis is closed, vocal tract is the only mechanism in effect
in speech production. So formant frequencies should be stationary within short windows. 3

Solving roots of polynomials is expensive, which involves eigensolving the companion
matrix of a polynomial. Even worse, the root solving is evoked frequently, in windows
advancing in every sample. But we can leverage the property in a way to avoid constant
eigensolving or “finding” roots from scratch. We can “track” roots instead. The idea is as
follows. Because the sequential LPC polynomials are computed from adjacent windows that
share a majority of speech samples, these LPC polynomials – and their roots – should not
change a great deal between any two adjacent windows. Thus, we applied Newton-Raphson
iteration to track roots of the current polynomial starting from the roots of the previous one.
The Newton iteration is much cheaper. However, it does not guarantee to find all the roots.

This leads to an algorithm that we have to strike a balance between the Newton’s method
and eigensolving. The former one is faster but does not guarantee a result. The latter is
slower but can be counted on to find correct answers. If Newton’s method fails, we resort to
the eigensolver, which always finds a correct answer but much more expensive. Moreover,
we applied several techniques to increase the probability of success in root tracking with
Newton’s iteration , but did it within the time budget that the Newton iteration gained
over the eigensolver. e.g., subdivision between polynomials or kicking roots off the real or
imaginary axis, as described in the following.

• Roots in sequential windows are significantly different from each other, and that New-
ton’s method with two previous roots may incorrectly converge to the same root, i.e.,
a root is not found. Therefore, we can try to solve for the roots of a linear inter-
polation of the previous window’s polynomial and the current window’s polynomial,
then use those intermediate roots to offer a better initial iteration point for subsequent
iterations. This subdivision procedure can be invoked recursively to further improve
the probability of successful root-tracking at the cost of greater computation time.
The success of Newton’s method is worthwhile for spending additional trials with the
Newton’s iteration. We know if we successfully find roots, the much more expensive
eigensolver will not be invoked.

• Since all polynomials we deal with have entirely real coefficients, the interpolated
intermediate polynomials are also real. By perturbing the polynomial of the previous
frame with a small amount of complex coefficient, the interpolated polynomials become

3It is not necessary to do root finding in order to extract an inverse transfer function in order to remove
the vocal tract effect. Transforming the LPC polynomial to reflection coefficients is an alternative. Similar
to formants, the reflection coefficients interpolate and smooth well. The transformation requires very little
computation, and has often been done in fixed point arithmetic. Once the coefficients are computed they
can be used directly to form the inverse filter [53]. Nonetheless, formants were studied and proven effective
in the detection of affective states. [5]
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complex so the intermediate roots will be complex and less likely to collapse during
Newton’s method.

• We verify that the tracked roots are correct by multiplying the root binomials (i.e.,
(x − a − bi)(x − a + bi)) together to obtain the original polynomial. In many cases,
this can be much faster to compute.

• If a polynomial has a multiple root, its derivative also shares that root. Otherwise,
the found double roots are incorrect; a root is not found. We can use this as an early-
stage verification criterium. The criterium of the previous item requires all roots for
verification.

• When moving from a function with a double root to one with a root pair, we need
our iteration to produce two distinct roots from the two identical roots in the previous
window. To deal with these issues, we order the roots by their magnitude, and add a
small real and imaginary value at each step to the roots at odd indices, and subtract
that same value at each step from the roots at even indices. This has the effect of
“kicking” root pairs off the real or imaginary axis, as well as pushing the roots in root
pairs or double roots in opposite directions, allowing them to converge to different
values over additional iterations.

• For polynomials of order=2, 3, and 4, we applied the closed form solution.

It should be noted that these techniques have tunable parameters - we can choose the
maximum number of Newton’s method iterations allowed, the small value to add or subtract
at each step to deal with splitting double roots, and the number of subdivisions allowed.
Allowing more iterations or subdivisions increases the probability of successful root tracking,
but takes additional CPU time. There is a point at which it is more efficient to simply revert
back to computing roots with an eigensolver. Implementors should find appropriate tuning
parameters for their problem domain.

We implemented the Newton method ourselves, but for eigensolving, we applied CLA-
PACK (f2c’ed version of LAPACK, linear algebra package) [15]. However, the package was
written in floating point. It is our future work to replace it with a fixed-point eigensolver,
making AMMON truly applicable to feature phones (the remaining modules were imple-
mented in fixed-point).

In addition to solving roots of the polynomials, the estimation of polynomials is also
required to run in every sample. It involves using autocorrelation to construct Toeplitz
matrices out of adjacent windows that share a majority of samples. We implemented the
autocorrelation method in a way that the Toeplitz matrix is revised incrementally with each
sample shift. This reduces the running time from quadratic to linear time.

The other bottleneck is the Fast Fourier Transform, which is evoked in every sample
to calculate the phase change and locate the maximum excitation (the boundary between
opening (OP) and closing (CP) phases). We optimized the part with a piece of ARM
optimized assembly code.
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7.5 Performance Evaluation

We evaluated the implementation in terms of its computational efficiency. And we break
down the evaluation based on emotion recognition and mental health analysis.

Emotion Analysis: Compare with openSMILE

First, we compared AMMON with the open source toolkit openSMILE used in the Inter-
speech challenge. For emotion recognition, we excluded the computation of glottal timings.
Since AMMON has voice activity detection and noise suppression modules whereas openS-
MILE does not, we also intentionally turned them off for fair comparison.

We compared them on phones with and without floating-point support. As such, we can
understand whether AMMON can run emotion analysis comfortably on feature phones. As
a benchmark, we made use of an emotional speech database (details in Section 7.6). There
were 298 clips in the dataset, each with 10-60 seconds long. The benchmark was run on a
Google Nexus One phone (1GHz Snapdragon CPU with floating-point hardware), where the
floating-point was turned off to simulate the case of feature phones.

Table 7.2 shows that when the floating-point support was turned on (through compiler
flags), AMMON ran comparably with openSMILE. OpenSMILE ran only slightly faster (17%
of real time (xRT)) than AMMON (18% xRT), which supposedly was spending extra effort in
fixed-point arithmetic. However, when the floating-point support was turned off, the fixed-
point implementation paid off. OpenSMILE ran much slower (53% xRT), whereas AMMON
stays the same (18% xRT). This implies that AMMON is more efficient than openSMILE
on feature phones.

AMMON has additional voice activity detection and noise suppression modules. Finally,
we turned on the modules of voice activity detection and noise suppression. AMMON ran in
a total of 29% of real time. We also benchmarked the performance on two slower phones with
600 MHz CPU (Motorola Droid with TI OMAP 3430 CPU and HTC Aria with Qualcomm
MSM7227 CPU). AMMON ran in a total of 45% of real time on Motorola Droid and 64 %
of real time on HTC Aria. That said, AMMON should run emotion analysis in real time on
300-400 MHz feature phones 4.

Mental Health Analysis: Extract Additional Glottal Timings

Since the root solving module was not revised to fixed-point yet, we turned on the floating
point support for the extraction of glottal features. The modification in Section 7.4 signifi-
cantly improved the performance of glottal extraction, as illustrated in Figure 7.2. For root
solving, we managed to reduce its running time by 68% (reduced to 1/3). Table 7.5 shows the
breakdown of improvement by the order of polynomials. Table 7.5 shows that the additional
improvement of the algorithm improves the reduced ratio from 48% to 68%. It is worthwhile

4Extrapolation based on by CPU frequency scaling may not hold due to factors such as slower and
smaller memory systems, so benchmark will be made on more phones as a future work.
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Table 7.2: Computational efficiency of AMMON. The running time are displayed in the
percentage of real time (xRT) on a 1GHz phone.

toolkit floating point ON OFF

openSMILE 0.17 xRT 0.53 xRT

AMMON
0.18 xRT 0.18 xRTw/o Glottal Timings,

VAD, and Noise Supr.

noting that in the yet improved version, the success rate of Newton’s method dropped as the
order the polynomial increases (< 0.5), due to the fact that roots are more likely to collapse
with others as there are more in the space. By subdivision (with the overhead of additional
trials using Newton’s iteration), the success rate increased significantly to more than 0.8.
The total running time improved consequently. N/A in Table 7.5 means that a closed form
solution was used for polynomials of order 2-4.

Using assembly code for FFT reduced its running time by 85%. Incremental revision of
the Toeplitz also reduced its running time in two orders of magnitude , showing that roots
tracking with Newton method can efficiently replace constant root finding with eigensolvers.

As a whole, the new glottal extraction algorithm ran from 105% of real time to 41% of
real time, a 61% decrease. This adds up the AMMON computation time for mental health
analysis to 70% of real time (was 133% of real time). That said, doing mental health analysis
on phones are more expensive. AMMON can run mental health analysis on smart phones
in real time, but about 2 times slower than real time over the feature phones. Nonetheless,
Chapter 5 and [59] showed that the glottal features were indeed valuable, although it is
computationally expensive. It significantly increased recognition accuracy for mental health
analysis.

7.6 Feature Evaluation

In this section, we demonstrate the effectiveness of AMMON in recognizing emotions. We
show that using the feature set extracted in AMMON, it recognizes emotions in state-of-the-
art accuracy.

Emotion Recognition

To evaluate the features in emotion analysis, we could have chosen the FAU Aibo dataset
used in Emotional challenge 2009, where the recognition accuracy is available as a baseline for
comparison. Nonetheless, given the goal to recognizing emotions in everyday conversations,
the Aibo dataset is not entirely suitable. First, the Aibo dataset is in German, not in En-
glish. It is known that emotional expressions vary across languages and cultures, so a model
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Figure 7.2: The breakdown of AMMON running time. The improvement of glottal extraction
makes AMMON run 70% of real time on a 1GHz smartphone.

trained in German may not be applicable to conversations in English. In addition, emo-
tions happened in the database were mostly non-prototypical and subtle (empathy), making
it insufficient to support most of the applications that require information of prototypical
emotions (i.e., sad, happy, etc).

Therefore, we chose the Belfast Naturalistic Database [23]. The dataset is in English,
covering a wide range of emotional states that occur in everyday interactions, as well as
prototypical examples of emotion such as full-blown anger (Table 3.1). The Belfast database
consists 298 audiovisual clips from 125 speakers (31 males and 94 females). These clips were
collected from a variety of television programs and studio-recorded conversations. Clips
range from 10 to 60 seconds in length.

The Belfast database were labeled by multiple raters. Each clip was labeled by 3 most
visible emotions (Table 3.1) and the intensity (weak, medium and strong). We aggregated
the labels in terms of voting and strength (Section 3.3).

Recognizing Positive v.s. Negative Emotional Clips

We performed a 2-way classification task to separate clips with positive emotions from those
with negative emotions. A clip is considered positive if none of the aggregated label has
negative valence, and vice versa for negative clip. For the case that some clips were labeled
with both positive and negative valence, we excluded them. The task is potentially useful
for most applications, that the information whether users are in positive or negative mood
is of interest.
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Table 7.3: Performance Comparison in the Recognition of Positive v.s. Negative Emotional
Clips. We also list the F-measures for both clasess (data size of classes: 112/133).

Feature Set F-Measures ROC Area Accuracy

openSMILE 0.778/0.727 0.753 75.51%

AMMON 0.776/0.73 0.752 75.51%

The evaluation worked by comparing the performance of AMMON with that of the
openSMILE toolkit. First, we applied AMMON to extract a feature vector for each clip.
Note glottal timings were not extracted since this is for emotion analysis. Then, we fed the
feature vectors to SVM, a widely used method in emotion recognition (regularized linear
SVM, C=0.06, features scaled, 5-fold cross validation). We applied the same procedure to
openSMILE: extracting feature vectors and performing classification. In the end, we classified
between 112 positive valence clips (class 1) and 133 negative valence clips (class 2). Table 7.3
shows that AMMON had a comparable result to openSMILE, achieving 75% of accuracy and
0.75 ROC area. The accuracy is at the same level as the result of the Interspeech challenge,
at 70% level classifying 2 emotions in a naturalistic database. The experiment implies that
AMMON can support emotion analysis with the same level of accuracy as the PC reference
system, i.e., openSMILE.

Identification of Prototypical Emotions

We proceeded to the next task, identifying prototypical emotions from the others. This task
is useful for applications that require spotting emotions in history. We choose three emotions
as the target: anger, sadness and happiness.

This was a 2-way classification problem, where clips with the target emotion were put
in class 1 and the remainder clips were put to class 2. Nonetheless, this led to imbalanced
partition, about 1:3 ratio between classes (Table 7.4). Identifying prototypical emotions in
this setup became essentially more difficult than the one described in the previous section.
We did a similar experiment, applying both openSMILE and AMMON to the clips and
applied linear SVM (regularized SVM 5 fold cross-validation, C=0.5, features scaled).

Table 7.4 lists the recognition result. AMMON performed comparably to openSMILE.
Since it is a more difficult task, the recognition result was not as good as the first task.
Both toolkits achieved around 75% accuracy and 0.66 ROC area in the cases of anger and
happiness. Happiness is usually considered more difficult to differentiate. Our result showed
the same trend that both toolkits decreased to 68% accuracy.
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Table 7.4: Performance Comparison in the Identification of Prototypical Emotions. We did 2-
way classification for identifying anger from the remainder clips. The classes are imbalanced,
with 87/200 instances. In addition, the same setup was repeated for identifying sadness and
happiness.

Anger v.s. Remainder (87/200)

Feature Set F-Measures ROC Area Accuracy

openSMILE 0.532/0.823 0.669 74.31%

AMMON 0.517/0.826 0.662 74.56%

Sadness v.s. Remainder (78/209)

Feature Set F-Measures ROC Area Accuracy

openSMILE 0.493/0.84 0.655 75.69%

AMMON 0.515/0.849 0.669 77.00%

Happiness v.s. Remainder (87/199)

Feature Set F-Measures ROC Area Accuracy

openSMILE 0.497/0.77 0.636 68.40%

AMMON 0.408/0.776 0.588 67.48%

7.7 Future Work

For any of these classifiers to be used in practice (Section 3.5, 6.4 and 7.6), it would be
essential to have an “I don’t know” category. When viewing these problems as a detection
task, sometimes it is necessary to avoid false-positive. This is a future work, which can be
modeled with a confidence measure, or a rejection threshold.

7.8 Conclusion

The pervasiveness of mobile phones opens up an opportunity for improving our psycholog-
ical well-being, and it scales from individuals to the mass public. Emotion monitor can
raise individual awareness and contribute behavior change. A mental health tracker can
detect early stage problems, measure health trend of the public, and promote public health.
Therefore, In this chapter we describe AMMON, an affective and mental health monitor.
AMMON was designed to work on feature phones, so that most people can have access to
this service. We were able to prove that the features extracted by AMMON were as effective
as those by reference systems on PC. AMMON can recognize emotions in state-of-the-art
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accuracy. In addition, we are investigating ways to replace the floating-point eigensolver
library with a fixed-point version. However, re-inventing a fixed-point eigensolving library is
not trivial. We are also considering the Jenkins-Traub algorithm to replace the companion
matrix/eigensolving method for root solving.
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Table 7.5: The improvement of running time (reduced by 68%) using Newton methods for root solving, with breakdown
by polynomial orders. The “Newtons’ success” row represents the percentage of polynomials at which the Newton’s
method successfully found the roots, so eigensolver was not required. The “Newton’s Iters” row represents the number
of times the Newton’s iteration was called. The number is higher in the improved method because subdivision (of
polynomials between the polynomials of the previous frame and the current frame) was used, and the success rate was
improved. N/A means a closed form solution was used.

Polynomial Total
Order 2 3 4 5 6 7 8 9 10 11 12

Stats

Counts 978 2834 5135 4607 2213 998 1022 774 1078 650 2187

Original Performance

Eigensolver (ms) 5.49 82.99 229.88 295.40 215.30 148.84 167.35 160.88 301.22 226.01 886.55 2823.35

With Newton’s Method but no additional improvements

Newton’s Iters 978 2834 5135 4607 2213 998 1022 774 1078 650 2187
Newton’s Success 0.76 0.84 0.66 0.75 0.62 0.63 0.50 0.50 0.42 0.49 0.51
Improved (ms) 3.93 22.23 98.44 96.19 98.39 53.60 88.38 88.84 199.79 117.53 458.32 1417.04
Reduced Ratio 0.30 0.68 0.54 0.66 0.53 0.60 0.45 0.46 0.34 0.45 0.49 0.48

With Newton’s Method AND additional improvements

Newton’s Iters N/A N/A N/A 10515 6795 3073 3969 3074 4990 2712 8387
Newton’s Success N/A N/A N/A 0.92 0.87 0.88 0.84 0.82 0.81 0.85 0.85
Improved (ms) 1.19 16.59 31.95 74.21 64.70 35.86 66.55 55.55 109.85 62.77 262.19 884.85
Reduced Ratio 0.78 0.80 0.86 0.75 0.70 0.76 0.60 0.65 0.64 0.72 0.70 0.68
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Chapter 8

Conclusion

My research in human-computer interaction focuses on “user-centric sensing”, which applies
innovative sensing techniques to infer the state of a user. Using sensors to gather real-
time information about people’s activities in everyday situations can enable a new host
of applications and new user experiences. My research has focused on applications and
techniques for user-centric sensing in a range of application domains, from entertainment [9]
and personal exercise [8] to critical healthcare problems [10, 11].

User-centric sensing is enabled by the dramatic success and proliferation of programmable
mobile devices that make a wide range of sensor data and contextual information accessi-
ble to applications. Inferring real-time user state from mobile (sensor) data such as speech,
accelerometer data, images, GPS, calendar, email, etc., opens up tremendous research oppor-
tunities in pursuing user-centric sensing. As devices are equipped with ever more powerful
computing capabilities, applications can continuously monitor data, aggregate it, recognize
patterns of interest, and create accurate user models, changing ordinary phones into ”cog-
nitive phones”.

The human voice encodes a wealth of affective information, as well as indicators of early
stage mental illness. Coupled with the pervasiveness of mobile phones, the human voice
becomes the most accessible and unobtrusive means to monitor mental health of the general
public. We believe that continuous capturing voice in this way can provide per-patient
baseline data and enable qualitatively better diagnosis. This serves as a starting point for
cognitive phones, phones with cognitive perception that look after us to promote mental
health.

The thesis summarizes my investigation on the speech analysis methodologies towards un-
obtrusive mental health monitoring, involving the recognition of emotions, stress, associated
abnormal speaking styles, etc. The research process involves multidisciplinary understanding
and applications of psychology, machine learning, speech processing, and human computer
interaction. The research is not trivial, but it is our hope that the research community
in computer science will pay more attention to the mental health area, in which there is
significant problems but highly undertreated.

Again, I strongly believe that machine perception will be the key enabling technology
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for the next big wave of applications. By providing an accurate user model, it will enable
researchers and developers to create a new host of intelligent applications that act according
to the state of a user. By accurate user modeling I mean not merely activity recognition
but also social networking, physical, cognitive and affective states. I will continue the focus
on the healthcare area, leveraging sensors on mobile devices in particular, for user-centric
sensing. This is a research area about “big data on mobile phones”, where multi-sensor data
stream are flowing to mobile phones 24/7 and there are millions of phones. In analogy, this
can can be many orders of magnitude larger than the web data we see nowadays, which
is discrete not continuous. Finally, by incorporating user-centric sensing into the design of
user feedbacks based on behavior change theories and cognitive behavioral therapy (e.g.,
Appendix A), I can create a personal health assistant to address health problems.
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Appendix A

Application Mockups

Emotional intelligence is defined as the ability to recognize moment-to-moment emotional
experience and the ability to manage the emotions appropriately [73]. Emotionally intelligent
individuals can recognize and respond to their own emotions, in order to manage stress
and challenges. They can also better express these emotions to others, recognize others’
emotional reactions, display trust, and produce empathic responses. However, people with
mental disorders such as depression and PTSD (post-traumatic stress disorder) often display
low emotional awareness [6][84]. They often lose their ability to recognize and manage the
onset of harmful emotions, and may therefore fail to participate in preventing the onset of
major mood episode. The frequent uncomfortable emotional experiences make them feel as
though their emotions are unpredictable, out-of-control, and hard to identify.

With strategic feedback, it is anticipated that this will help users build their ability to
retrospect about the emotions and developing coping skills. The application uses a mobile
phone to constantly record the conversation from the user. After acquiring the voice data, the
application will be able to identify the onset of emotions, and prompt appropriate feedback
to users on the phone display. To be more specific, here we provide some scenarios that
illustrate the lack of emotional intelligence in both a therapeutic and social situation. In
each scenario, we also provide some design mockups to show the philosophy of the feedback
mechanism.

• (Emotional flatness) Ethan is a kind, reliable, and amiable college student, but his
emotional flatness inspired his friends to nickname him “Johnny 5”, after a Hollywood
fictional robot. However, he keeps it the same and never sees it as a problem. Recently
he is about to graduate. He works so hard to find a job, but keeps failing. He is getting
low but he doesn’t even know.

Proposal: With the feedback shown in Figure A.1, Ethan may learn that he is expe-
riencing constant negative emotions. Feedback would allow Ethan to seek help early
on and regain his confidence.

• (Social problem) A couple constantly argues, their relationship continues this way
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Figure A.1: Mockup for emotional flatness

for an extended period of time. However, the arguing grows worse. With emotional
awareness, the couple may monitor both the frequency and intensity of their arguments,
and may therefore attempt to adjust themselves in order to improve controlling their
emotions.

Proposal: If the couples’ arguments are growing more and more severe, an emotional
awareness alert could offset future arguments. An alert illustrated in Figure A.2 can
encourage each user to take his/her mind off each other, reflect, and even take a walk
to clear the mind. These events may prevent each user from saying regretful words
caused by spur-of-the-moment emotions.

• (Therapy) Alice’s therapist wants to know how often she has negative emotions. How-
ever, Alice’s accounts are often exaggerated. The therapist hopes for a way to accu-
rately track her emotions on a regular basis so that she can properly diagnose Alice’s
dispositions.

Proposal: Since Alice’s therapist is unsatisfied with “about a few times a week” when
asked how often she has negative emotions, the therapist could connect to the phone
and download feedback of instances of negative emotions in Figure A.3 for a more
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Figure A.2: Mockup for social problem

accurate picture . This would allow the therapist to diagnose and treat Alice better
and accurately.

As shown, the application will act as a short break for people’s everyday lives. Whether
the emotions are anger, sadness, anxiety, etc., the system will document and alert the user of
certain instances. This will clear the user’s mind, make them reflect and question themselves,
or even spur motivation and help. Overall, relationships, mental health, and physical health
can be improved to make life more enjoyable.

Research of Feedback Mechanism

The feedback mechanism is the crucial components in building emotional awareness in
the user. We are investigating two variables in the research of feedback mechanism: how
well users will respond to our visual feedback design and the tone differences in the text-
component.

For the visual feedback mechanism, there are two choices under consideration. The first
allows the users to select an influential celebrity, historical figure, or someone they respect
as the avatar or face of their mobile device. This intends to make the feedback more friendly
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Figure A.3: Mockup for therapy

as well as influential. Whenever an instance of anger, sadness, or anxiety occurs, the mobile
device now— will alert the user similar to that of a regular text-message, display the digital
avatar/face complemented with a text message, which could include instructional sugges-
tions, indirect mimicking, or a short story that expands the previous choice, as illustrated in
Figure A.1, A.2, and A.3. However, the other possibility is to have no avatar or face at all,
but retain everything else; this is geared towards those who prefer logical feedback or feel
too mature for an avatar on their mobile device.device.

For the tone differences in the feedback design, we will explore the effectiveness of text
that instructs the user what to do (“You should take a walk for some fresh air”), another
that suggests what the user could try (“I would take a walk for some fresh air”), or a short,
rich story. The short, rich story choice would work well with an avatar; a simple example is
when the user experiences frustration or anger and he is alerted to Michael Jordan’s story of
being rejected from his high school basketball team, and how he persisted to win the NBA
championship years later.
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