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Abstract

We investigated gesture dynamics by examining wrist-worn
accelerometer data from 28 patient-therapist dyads involved in
multiple sessions of mentalization-based therapy. We sought
to determine if there were long-term correlations in the sig-
nals and evaluate the degree of complexity matching between
patient and therapist. Moreover, we looked into the relation-
ship between complexity matching and the level of therapeu-
tic success (operationalized by change in mentalization and
the severity of symptoms). The results indicated that the pa-
tient and therapist gesture dynamics were significantly differ-
ent than long-term correlations produced by white noise. Fur-
ther, six patient-therapist dyads matched each other in com-
plexity across sessions, but no systematic relationship between
the patient and therapists’ was observed and there were no rela-
tionships between these dynamics and measures of therapeutic
success.
Keywords:
fractal scaling; DFA; complexity matching; reflective func-
tioning; mentalization

Introduction
Humans are highly complex beings that utilize myriad mech-
anisms to interact with one another. One such mechanism
is mentalization, which entails the socio-cognitive processes
that enable humans to make sense of both themselves and
others by means of mental states (Bateman & Fonagy, 2004;
Shaw, Lo, Lanceley, Hales, & Rodin, 2020). A deficiency
in mentalizing capacities has been associated with a num-
ber of mental disorders like borderline personality disor-
der (Bateman, Campbell, Luyten, & Fonagy, 2018), autism
(Baron-Cohen, Leslie, & Frith, 1985), and affective mental
disorders (Inoue, Tonooka, Yamada, & Kanba, 2004). Psy-
chotherapeutic interactions can help individuals to overcome
deficiencies in their mentalizing abilities and bring about pos-
itive change in people engaged in the process.

Importantly, recent approaches have suggested that there
may be common features to social interactions that ultimately
drive not only therapeutic effectiveness (Wampold, 2015),
but also successful teamwork (Gorman, Dunbar, Grimm,
& Gipson, 2017) and relationships (Deits-Lebehn, Baucom,
Crenshaw, Smith, & Baucom, 2020). Through interactions
with caregivers, for example, children have been shown to
develop the ability to mentalize (Fonagy & Target, 1996).
Interpersonal coordination in psychotherapy, more gener-
ally, contributes to positive outcomes (Wiltshire, Philipsen,
Trasmundi, Jensen, & Steffensen, 2020), with the sensitive

responsiveness of the therapist providing a potential interac-
tional scaffold for healing mentalizing difficulties (Allen &
Fonagy, 2006). Toward this end, we examine the role of
gesture-based fractal dynamics of patient-therapist interac-
tions and investigate the relationship between this form of
non-verbal bodily interaction and patients’ mentalizing ca-
pacity as well as changes in symptomatology.

Mentalization. The ability to mentalize enables humans to
understand both intrapersonal and interpersonal situations in
terms of mental processes and subjective states (Allen & Fon-
agy, 2006). Co-morbid mentalizing deficiencies and psychi-
atric conditions are particularly challenging though. Because
psychiatric patients often suffer from attachment traumas,
they are less willing to take in new knowledge from others as
trustworthy, generalizable, and relevant (i.e., epistemic trust
(Fonagy & Allison, 2014). Damaged epistemic trust mani-
fests as difficulties in personal and professional relationships.
And, this mistrust of information from others makes thera-
peutic change challenging. In other words, impaired mental-
ization complicates social interactions (Sperry, 2013).

Mentalization-based therapy (MBT) (Bateman & Fonagy,
2004; Vogt & Norman, 2019) focuses on creating an attach-
ment relationship that makes it possible for the patients to
increase their mentalization abilities and it has been shown to
be effective for a range of mental disorders. In such cases, in-
teractional or “ostensive cues” such as eye contact, accurate
turn-taking, and contingent tone of voice, play an essential
role in making these ’hard to reach’ patients feel understood
and helping them to restore their capacity to learn from expe-
rience and build epistemic trust. Put differently, interpersonal
coordination and adaptation have been proposed to be one of
the most fundamental common factors among psychothera-
peutic treatments (Sperry, 2013; Wiltshire et al., 2020), and
thus, this relational and interactional context and its dynam-
ics are necessary to characterize and develop mentalization
abilities and bring about positive change.

Fractal Dynamics. Fractals are geometric and statistical
structures that can exhibit self-similarity over temporal and
spatial scales. Fractals are present in natural structures
(e.g., trees, coastlines, and cardiovascular networks) and pro-
cesses (e.g., physical, physiological, psychological, and so-
cial) (West, 2017). They have received considerable in-
terest from the scientific community including the cogni-
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tive (Van Orden, Holden, & Turvey, 2003; Likens, Fine,
Amazeen, & Amazeen, 2015), movement (Hausdorff et al.,
2001), and health sciences (Goldberger et al., 2002). Fractal
characteristics are identifiable in those contexts by measur-
ing patterns of autocorrelation in noisy time series data (see
Detrended Fluctuation Analysis section below). Fractal pro-
cesses tend to exhibit a slowly decaying form of autocorre-
lation that has been termed Long-Range Correlation (LRC).
These patterns have been observed in a number of time se-
ries relevant for studying interpersonal interactions, includ-
ing: reaction times (Van Orden et al., 2003), eye movements
(Stephen & Mirman, 2010), postural sway (Palatinus, Kelty-
Stephen, Kinsella-Shaw, Carello, & Turvey, 2014), neuro-
physiology (Hardstone et al., 2012; Wiltshire, Euler, McKin-
ney, & Butner, 2017), and limb movements (Stephen, Anas-
tas, & Dixon, 2012).

Studying these forms of variability is important because
fractal patterns have been associated with qualities such
as adaptability, expertise, and health (Cavanaugh, Kelty-
Stephen, & Stergiou, 2017; Nourrit, Delignières, Caillou, De-
schamps, & Lauriot, 2003; Goldberger et al., 2002). Adap-
tive forms of variability tend to produce patterns consistent
with LRC, whereas non-adaptive forms of variability often
lack temporal correlation (Goldberger et al., 2002). Frac-
tal patterns are thought to emerge from the interaction of
many nested components (Ihlen & Vereijken, 2010). For
example, maintaining balance in an upright stance requires
multiple regions of the body to work in parallel (such as vi-
sual, vestibular, and musculoskeletal system) (Duarte & Zat-
siorsky, 2000). In social interactions, these same subsystems
are nested within individuals which are nested within the su-
perordinate group (Likens, Amazeen, Stevens, Galloway, &
Gorman, 2014). Fractal variability in social interactions may
even reflect important information such as the quality of team
coordination (Likens et al., 2014). Thus, we contend that
measuring fractal variability of gestures may be important for
characterizing patient-therapist interactions.
Patient-therapist dyads: fractal organization and com-
plexity matching. In the context of physical therapy, multi-
fractal movement patterns—patterns exhibiting multiple frac-
tal structures— have been shown to be crucial for the phys-
iological ability of the movement structure to interrelate
(Cavanaugh et al., 2017). Those fractal movement patterns
have been suggested to reflect an optimal form of variabil-
ity that allows people to flexibly adapt their movements to
novel circumstances and respond to unexpected perturba-
tions. The fractal structure has also been suggested to reflect
similar qualities in cognitive and social dynamics (Likens
et al., 2014; Stephen & Mirman, 2010). We expect that
fractal movement patterns may also reflect the quality of
therapist-client interactions because nonverbal coordination
has been shown to be important in predicting the success of
psychotherapy (Paulick et al., 2018; Wiltshire et al., 2020).

As far as we are aware, this is the first study to investigate
the relationships between fractal movement dynamics, men-

talization, and therapeutic success. We posited that fractal
movement patterns measured from patient-therapist dyads’
gestures may reflect the quality of their therapeutic interac-
tions. This entails three interrelated predictions. First, we
expected that wrist movements of both patients and thera-
pists would produce fractal scaling exponents coinciding with
”pink noise” (Van Orden et al., 2003) as evidenced by con-
trast with white noise signals. Second, we expected that
there would be correlations between the scaling exponents
exhibited by patient-therapist dyads. This so-called complex-
ity matching has been observed in numerous situations in-
volving dyadic coordination (Abney, Paxton, Dale, & Kello,
2014, 2021; de Jonge-Hoekstra, Cox, van der Steen, & Dixon,
2021; Marmelat & Delignières, 2012; Delignières, Almu-
rad, Roume, & Marmelat, 2016). More generally, complexity
matching takes place when two processes that exhibit fractal
scaling have similar dynamics (i.e., their dynamics are corre-
lated). Theoretically, this is important as systems that exhibit
complexity matching are able to maximize information ex-
change (Delignières et al., 2016). Lastly, our third prediction
was that if patient fractal scaling exponents can serve as an in-
dex of health and adaptability, and the complexity matching
estimates as an index of information exchange and interaction
quality, then these two measures should have a systematic re-
lationship with two key measures of therapeutic success: in-
creased mentalization and decreased symptomatology.

Thus, in our study, we investigated whether patient
and therapist gestures display fractal dynamics, evaluated
whether those dynamics were correlated (i.e., complexity
matching), and determined whether those fractal dynamics
and complexity matching estimates had a relationship with
therapeutic success.

Methods
Participants and Study Design
Twenty-eight patients from an outpatient hospital in a North-
ern European country who were being treated for anxiety or
personality disorder with Mentalization-based Therapy were
included in the study. All patients and therapists provided
informed consent and the study was given ethical approval
by the participating hospital. Therapy sessions were given
weekly and lasted approximately 40 - 60 minutes. The num-
ber of sessions varied between 5 - 35 sessions (M = 16.85).

Data Collection
The data was collected using BioNomadix wearable de-
vices. Accelerations were measured using the BN-ACCL3
Reciever+Transmitter attached to the dominant wrists of the
therapist and the patient. All signals were transmitted to
a Biopac MP160 data acquisition unit connected to a wire-
less amplifier and stored using AcqKnowledge software. Ac-
celerometers capture movement in three dimensions (X, Y,
and Z) and were sampled at 125 HZ. For dimensionality re-
duction, we calculated the point-wise three-dimensional Eu-
clidean distance from each observation. This common ap-
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proach, also known as an interpoint distance time series,
captures the overall moment-to-moment movement magni-
tude (Davis, Brooks, & Dixon, 2016). The average length
of the interpoint distance time series was 2,790,076.42 (SD =
624,611.36 ) with min length = 87,584 and max = 4,504,885.

Measures
At the beginning and end of treatment (and at three-month
intervals), patients completed a battery of questionnaires to
assess their progress. For the present study, the Reflec-
tive Functioning Questionnaire (Fonagy et al., 2016) and
the Symptoms Checklist (SCL-92) (Olsen, Mortensen, &
Bech, 2004) were used. Only 19 patients completed a pre-
and post-treatment questionnaire and were thus suitable for
questionnaire-based analyses.

To assess the levels of mentalization present from pre-
to post-treatment, the Reflective Functioning Questionnaire
(RFQ) was used (Fonagy et al., 2016). The RFQ is the opera-
tionalization of the mental processes that underpin the abil-
ity to mentalize. Patients’ level of mentalizing capacities
may influence outcomes, and RF can be a possible moder-
ator and/or predictor of outcome, but also as a mediator of
change (Katznelson, 2014). This type of questionnaire re-
lies on the ”meta-perspective” of the subject, testing the de-
gree to which they can accurately assess the affective and
cognitive states that they experience (Fonagy et al., 2016).
The RFQ questionnaire utilizes a 7-point Likert scale and
is typically assessed in two factors: certainty (RFQc) and
uncertainty (RFQu). When low, the RFQc indicates hyper-
mentalizing (i.e., excessive and inaccurate mentalizing) and
when high, RFQc indicates genuine mentalizing (Sharp et al.,
2011). High scores on the RFQu indicate an almost complete
lack of mentalization capacity (Fonagy et al., 2016). Only
the RFQc scores were used. We took the difference from pre-
(first measurement) to post-treatment (last measurement).

The SCL-92 (Olsen et al., 2004) was used to keep track
of the change in symptoms reported by the patients. 92
items were rated on a 5 point Likert scale and are associ-
ated with nine factors: somatization, obsession-compulsion,
interpersonal sensitivity, depression, anxiety, phobic anxiety,
hostility, paranoid ideation, and psychoticism. We utilized
the Global Severity Index (GSI), which is the total score
across all items on the questionnaire divided by total possi-
ble. Higher GSI values correspond to more severity of symp-
toms. Like with the RFQ, we took the delta from the first to
last measurement.

Detrended Fluctuation Analysis
One of the most widely used techniques for detecting LRC
is Detrended Fluctuation Analysis (DFA) (Peng et al., 1994).
DFA has been described extensively elsewhere (Kantelhardt,
Koscielny-Bunde, Rego, Havlin, & Bunde, 2001); so we pro-
vide a brief summary here. DFA entails splitting a time series
into several small bins (e.g., 16). In each bin, the least squares
regression is fit and subtracted within each window. Residu-
als are squared and averaged within each window. Then, the

square root is taken of the average squared residual across all
windows of a given size. This process repeats for larger win-
dow sizes, growing by, say a power of 2, up to N/4, where
N is the length of the series. In a final step, the logarithm of
those scaled root mean squared residuals (i.e., fluctuations)
is regressed on the logarithm of window sizes. The slope of
this line is termed α and provides a measure of LRC. When
α > 0.5, this indicates the presence of LRC; when α < 0.5,
this indicates negative autocorrelation. Lastly, when α = 0.5,
this signals the absence of autocorrelation.

We performed DFA on the interpoint distance time series
for patient/therapist using the fractalRegression R package
(Likens & Wiltshire, 2021) with the following parameters:
minimum scale = 16; maximum scale = N/4, scale ratio = 2,
and a linear detrending function. Additionally, to determine
whether the observed α scaling exponents were non-random,
we ran DFA on matched-length white noise time series (M =
0.50, SD = 0.007) to compare the scaling exponents.

When a time series is stationary with a stable mean and
variance, α equals the Hurst exponent (H), although it is suit-
able for both stationary and non-stationary signals. DFA has
relaxed assumptions of stationarity (Peng et al., 1994) and the
main issue introduced by strong non-stationarity is cross-over
points, indicating multiple scaling regions (Hu, Ivanov, Chen,
Carpena, & Stanley, 2001). None of our α values were greater
than one suggesting stationarity and we also inspected the
log-log plots for cross-over points prior to subsequent anal-
yses (Kantelhardt et al., 2001).

Estimating Complexity Matching
We evaluated the evidence for complexity matching in three
ways. First, the degree of complexity matching was estimated
as the correlation of α exponents between patient and ther-
apist across sessions. Evidence of complexity matching at
this level of granularity would be evidenced by non-zero esti-
mates. We tested this using the cor.test() function in R. More
specifically, per dyad, two vectors containing the scaling ex-
ponents for both patient and therapist across sessions were
used as input to the function resulting in complexity match-
ing coefficients and confidence intervals. Additionally, we
ran an overall mixed model that included estimates of the
therapists’ α scaling exponents as predictors of patient α ex-
ponents. Lastly, we ran a mixed model that included the ab-
solute value of the difference between patient and therapist
α exponents (| patientα− therapistα |) as a predictor (∆α).
The rationale for multiple methods for assessing complexity
matching is that the correlational analysis provides an idio-
graphic depiction, the therapistα as a predictor gives an in-
dicator of the trend across sessions, and the difference score
(∆α) is a direct index of matching (zero indicates a perfect
match).

Statistical Tests
A series of independent samples Welch’s t-tests and
Wilcoxon Signed-Rank tests were used to compare the fol-
lowing combinations of scaling exponents to white noise: 1)
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patient and therapists α exponents collectively, 2) patient α

exponents individually, and 3) therapist α exponents individ-
ually. Further, one-way t-tests were used to evaluate whether
the change in patients’ reflective functioning (∆ RFQc) and
symptom severity (∆ GSI) were different than zero.

Furthermore, we ran a series of mixed-effects models that
included the patient α estimate for a given session as the out-
come variable, with either the corresponding therapist α from
that session or the absolute value of the difference between
patient and therapist α exponents (| patientα− therapistα |)
for that session, as a level 1 predictor. The patients’ change
in reflective functioning (∆ RFQc) and symptom severity
(∆ GSI) were included as level 2 predictors with a random
intercept effect for the ID of the patients. Several random ef-
fect structures, as well as potential interactions, were tested
as well and model fit was compared (additional details in
the Results section). The models were run in R using the
lme4 (Bates, Mächler, Bolker, & Walker, 2015) and lmerTest
(Kuznetsova, Brockhoff, & Christensen, 2017) packages,
with p-values estimated on the t-tests with the Satterthwaite
degrees of freedom approximations. Models were fit us-
ing restricted maximum likelihood (REML). Model assump-
tions and fit were checked using the performance R pack-
age (Lüdecke, Ben-Shachar, Patil, Waggoner, & Makowski,
2021). One highly influential data point was removed.

Results
Change in Patient Symptomatology and Reflective
Functioning
We sought to determine if patients exhibited a change in their
symptomatology (∆ GSI) and reflective functioning (∆ RFQc)
from pre- to post- treatment. Results from a set of one-way t-
tests showed that overall the global severity of symptoms was
reduced for all patients (M = -0.40, SD = 0.60, t(18) = -2.90,
p <.001, CI95 = [-0.69, -0.12], but reflective functioning did
not systematically change across all patients (M = -0.09, SD
= 8.29, t(18) = -0.05, p = 0.52, CI95 = [-4.09, 3.90].

Comparison of the α Exponents with White Noise
The α scaling exponents for both patients and therapists, as
well as white noise signals, are presented in the density plot
in Figure 1. On average, the α scaling exponents for patients
(M = 0.792, SD = 0.042, CI95 = [0.788, 0.796]) were simi-
larly distributed to the α scaling exponents for therapists (M
= 0.786, SD = 0.045, CI95 = [0.78, 0.79]).

We first conducted an independent samples Welch t-test to
evaluate the null hypothesis that the α exponents resulting
from DFA on the accelerometry-based interpoint distance of
patient-therapist dyads is significantly different than the α ex-
ponents resulting from DFA run on white noise with the same
length. Results indicated that there was a significant differ-
ence between the scaling exponents of accelerometer data (M
= 0.79, SD = 0.04) and white noise (M = 0.50, SD = 0.007,
t(952.17) = -196.87, p <.001, CI95 = [-0.29, -0.287]. Further,
the effect size was large, d = 9.25. See Figure 1 for a visual

Figure 1: Density plots for patient, therapist, and white noise
α scaling exponents

comparison of these distributions.
To be sure that this effect was evident for patients and ther-

apists individually, we conducted two additional independent
samples Welch t-tests to compare patient or therapist scaling
exponents to those derived from white noise. There was a dif-
ference between the scaling exponents of patient accelerom-
eter data (M = 0.79, SD = 0.04) and white noise (M = 0.50,
SD = 0.007, t (476.71) = -143.84 , p <.001, CI95 = [-0.296,
-0.288] with a large effect, d = 9.58. And, there was also a
difference between the scaling exponents of therapists (M =
0.786, SD = 0.045) and white noise (M = 0.50, SD = 0.007,
t(474.20) = -134.45, p <.001, CI95 = [-0.29, -0.28], also, with
a large effect, d = 8.95. This pattern of results also held true
when comparing the exponents using Wilcoxon Signed-Rank
Tests, which do not assume normality.

Complexity Matching
An overview of the correlational results of complexity match-
ing analysis is presented in Figure 2. Many of the CIs of the
correlation coefficients include zero, except for six patient-
therapist dyads.

Mixed Modeling Results
First, we examined whether patientα could be predicted by
therapistα as well as patient change in mentalization (∆ RFQ)
and symptomatology (∆ GSI). Our iterative model evaluation
procedure showed that no additional interactions between the
fixed effects or random effect structures improved the original
model fit (see Statistical Tests section).
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Figure 2: Dot and whisker plot for each patient-therapist
dyads’ complexity matching estimates

Table 1 shows the results from the mixed model using
Therapistα as an index of complexity matching. Overall,
there did not appear to be any systematic relationships be-
tween the patient α exponents and therapist exponents across
sessions, nor with the change in symptom severity or re-
flective functioning (Patient ID random effect: SD = 0.025;
Residual: SD = 0.032). While the model accounts for 41%
of the variability in patientα exponents across sessions (R2c =
0.41), fixed effects accounted for only 5% (R2m = 0.047).

Table 1: Fixed effects for model with Therapistα.

Coef. SE df t p
(Intercept) 0.75 0.04 341.45 20.00 0.00
Therapistα 0.05 0.05 361.27 1.00 0.32

∆ SCL92 0.00 0.01 15.15 0.23 0.82
∆ LRFc -0.00 0.00 15.11 -1.35 0.20

Lastly, we examined whether patientα could be predicted
by the complexity matching indicator ∆α (| patientα −
therapistα |) as well as patient change in mentalization
(∆ RFQ) and symptomatology (∆ GSI). Evaluation of model
performance showed that no additional interactions between
the fixed effects improved the model fit, but including a ran-
dom slope for ∆α did. Thus, we report that model here.

Table 2 shows the results from the mixed model using ∆α

as an index of complexity matching. As with the first model,
there did not appear to be any systematic relationships be-
tween the patientα exponents and the absolute value of the
difference in α across sessions, nor with the change in symp-
tom severity or reflective functioning. While the model ac-
counts for 49% of the variability in patientα exponents (R2c
= 0.49), the fixed effects accounted for only 3% (R2m = 0.03).

Table 2: Fixed effects for model with ∆α.

Coef. SE df t p
(Intercept) 0.79 0.01 17.15 116.45 0.00

∆α -0.04 0.11 16.62 -0.36 0.72
∆ SCL92 0.00 0.01 16.12 0.48 0.64

∆ LRFc -0.00 0.00 14.24 -1.15 0.27

Discussion
Taken together, the main implications of our results are
twofold: firstly, the patients displayed a reduction in symp-
toms. Secondly, the gestures of patients and therapists (as
measured by accelerometers on their dominant hands) exhib-
ited long-range correlations (i.e., fractal scaling). While we
did not observe a systematic relationship between the patient
and therapists’ α exponents across all patients and sessions,
there was evidence of complexity matching in six patient-
therapist dyads. We also did not observe that the patientα or
therapistα were related to changes in mentalization and symp-
tomatology.

One potential reason that we did not observe this relation-
ship could be due to the measurement of mentalization, which
may not be fully captured by the RFQ (Gullestad & Wilberg,
2011). Furthermore, the severity of psychopathology should
also have an effect on the mentalizing capacity where less se-
vere pathologies show more typical levels of mentalization.
This indicates that mentalization may not be a core deficit
when looking at psychopathology (Katznelson, 2014). Future
research could test whether there is more change in mental-
ization for cases with severe pathology.

While we did not directly observe the benefits of the ob-
served movement dynamics as other research has shown
(Paulick et al., 2018; Wiltshire et al., 2020), it may be that
interactional dynamics relate to other elements that have not
been accounted for in the present study such as the attach-
ment relationship. Future work could, for example, focus on
other outcomes and physiological dynamics or vocalizations
(Wieder & Wiltshire, 2020). The time course of the frac-
tal dynamics and complexity matching estimation methods
may also be important. It could be that there is an optimal
level of complexity matching associated with a “successful”
therapy that is specific to stages of treatment (Paulick et al.,
2018, p.14). Or it could be that a windowed DFA approach to
estimate scaling exponents and complexity matching within
sessions would be more sensitive (Rigoli et al., 2020). Alter-
natively, a multifractal analysis would give an indication of
variability across scales and afford the investigation of fluc-
tuations at a “within-session” vs. “across-session” level. Bi-
variate fractal regression methods may also reveal how dyads
relate to each other at those scales (Likens, Amazeen, West,
& Gibbons, 2019). That being said, the study of complexity
matching is still developing and other promising approaches
can be evaluated in future efforts (Abney et al., 2021; de
Jonge-Hoekstra et al., 2021).
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Further, our results indicated that roughly 35-40% of the
variability is explained by the random effects of our mixed
models. This pattern of results indicate that the observed
patient-therapist interactions are highly idiographic. Notably,
our study looked for a more general pattern of results across
all patients. However, large individual differences may ren-
der generalizable findings improbable. Relatedly, different
pathologies are associated with different decoding and en-
coding abilities, which might influence the patient-therapist
interaction pattern (Ekman & Friesen, 1974). And, specific
impairments in gesture performance are found in different
pathologies (Dutschke et al., 2018). Future work should ex-
amine these more patient-specific characteristics and account
for any potential differences due to the number of sessions or
session length.

In conclusion, our study found compelling evidence of
fractal scaling in gesture dynamics of patient-therapist dyads
and partial evidence of complexity matching across sessions.
No relationships between these dynamics and mentalization
were observed. However, we find this first effort a promising
direction in better understanding the functional role of gesture
movement dynamics in collaborative human interactions.
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