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ABSTRACT OF THE DISSERTATION 
 
 
Students Becoming Mathematicians through Mathematical Modeling Learning Environments: A 

Design-Based Study 
 

by  

Martin Christopher Romero 

Doctor of Philosophy in Education 

University of California, Los Angeles, 2015 

Professor Concepción M.Valadez, Chair 

Algebra has functioned as a gatekeeper for urban school students. Interventions have involved 

everything from doubling math time to new technologies.  However, it is clear that change will 

not occur unless we address the content of mathematics, the pedagogical approach, attention to 

students and context together.  In this Design-Based Research (Design Experiment) Study, I 

designed a learning environment that re-envisions the urban school algebra classroom using the 

"science of patterns"  (Devlin, 1996; Kneebone, 2001; Steen, 1988; Resnik, 1997; Mason, 

Burton, Stacey, 1982).  Undergirding this learning environment is the engagement of students in 

mathematical modeling - iterative cycles of expressing, testing, and revising of their 

interpretations (Doerr & Lesh, 2011).  The design experiment provided insights about students’ 

learning trajectories as they used functions to construct their models as well as the pedagogy and 

tools that supported participation.  It was found that when students engaged in the classroom 

tasks, that specific mediating process (interactions and activity) emerged that led to student 

learning.  In this case, learning included: 1) students using their derived mathematical models to 
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answer/pose contextual questions about the quantities, and in the process of deriving models, 2) 

students developing an understanding of the underlying structure of functions as it relates to its 

symbolic and graphical representations.  
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Chapter 1 – Introduction  
Problem Statement 
 Urban school students (USS1) face a multitude of unmatched in-and-out of school 

challenges that impact their future academic and life outcomes (Duncan & Murnane, 2011; 

Kozol, 1991).  It is no surprise then that these realities also affect the mathematics teaching and 

learning these students experience.  On the 2011 “nation’s report card” (National Assessment of 

Educational Progress-NAEP) for California, marked gaps along racial, ethnic, and 

socioeconomic lines were persistent.  Only 17% of Latino and 19% of Black students scored at 

or above proficient on the 4th grade NAEP; while 57% and 64% of White and Asian students 

scored at or above proficient respectively.  On the same measure, 18% of low socioeconomic 

status (SES) students scored at or above proficient and 56% for non-low SES students 

(California Department of Education, 2012).  As a result, mathematics often plays a gatekeeping 

role for USS by limiting their access to advanced classes and by the simple fact that too many 

students cannot navigate their way through traditional school mathematics (Adelman, 2006; 

Stone, 1998; Walston & McCarroll, 2010).  Amplifying these struggles is the fact that USS are 

amongst the fastest growing demographic groups in the nation; making success with urban 

schools and USS a national imperative (Scheurich, Goddard, Skrla, McKenzie, & Youngs, 

2011).   

 The urgency to address this issue is linked to what past research says about the negative 

educational outcomes for students who are not successful in mathematics – especially for those 

who progress from middle school into high school without success in Algebra 1.  It is no surprise 

then that Algebra 1 has been saddled with the moniker of “gatekeeper,” identified as a subject 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  Note: In this paper I will use the term urban school students (USS) as proxy for urban city students from 
communities of color, low-income families, and families of immigrant status. 	
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that hinders USS from gaining access to post secondary education.  Having spent most of my 

career working with secondary USS, I can confirm that those students who often fail Algebra 1 

are fast-tracked to dropping out of high school or at least not graduating in four years.  

Consequently, the practical effect is that when these students have a strong negative experience 

in mathematics and in education more broadly; they come to believe that learning mathematics 

and success in school is beyond them. 

Rationale for Study 

Mathematics Success  
 Within the landscape of inequitable educational opportunities for urban school students 

(USS), the problem this study addresses is the lack of success USS have in secondary school 

mathematics, and more specifically, Algebra 1.  This is critically important given the 

opportunities and benefits possibly accrued because one is successful in mathematics.  For 

example, success could mean students become proficient mathematicians (National Research 

Council, 2001) as well as develop a "sense of efficacy (empowerment) in mathematics together 

with the desire and capability to learn more about mathematics when the opportunity 

arises.” (Cobb & Hodge, 2010, p. 161). Simultaneously, success in secondary school 

mathematics is a gateway to advanced course sequences that prepares students for college entry 

and enrollment into highly regarded Science, Technology, Engineering, and Mathematics 

(STEM) based college majors.  Cognitively, success in mathematics helps develop a students' 

mathematical thinking and reasoning abilities - which are most often beneficial when solving 

math problems, but may be transferred to other contexts where critical thinking and problem 

solving is involved.  Lastly, coupling the intellectual status of mathematics in our society with 

the perception of its inaccessibility to the general population, success in mathematics provides 

USS with a form of social, academic, and cognitive capital to better position themselves in the 
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world. 

 In order to address the problem, this study examines an approach to teaching algebra that 

will help students see the relevance of mathematics, engage them in mathematical thinking and 

mathematical practices, and dispel the belief that mathematics is a rigidly contained system of 

facts, procedures, and algorithms where the teacher always holds the answer to the 

question (Stein, Grover, & Henningsen, 1996).  This will be done by building a classroom 

learning environment hinged on the idea of mathematics as a "science of patterns" (Devlin, 1996; 

Kneebone, 2001; Steen, 1988; Resnik, 1997 ; Mason, Burton, Stacey, 

1982).  This characterization of mathematics links the learning of mathematics to a fundamental 

neuroscience view; “human brains operate…in terms of pattern recognition rather than 

logic”(Edelman , 2006, p.83).  Further buttressing a motivation to learn mathematics from this 

perspective, Hawkins (2004) argues that, "patterns are all the brain knows about. They are 

pattern machines” (as cited by Laughbaum, 2008, p.589). 

 Beyond the cognitive rewards, there are advantages to viewing mathematics in this light.  

Immediately it gives credence to the argument that the learning of mathematics is a real-world 

activity. We can use mathematics to describe the patterns that exist all around us.  For secondary 

school mathematics, these symbolic descriptions may come in the form of mathematical 

functions students learn early in their study of algebra.  Most importantly, by expanding these 

real-world patterns to encompass all types of data found in our daily lives, we help answer the 

dreaded question commonly asked of mathematics teachers, "When will I ever use this in my 

life?" 

USS’ Struggles, Algebra for All, and Mathematics Equity 
 To further develop the study's rationale, it is important to clarify why USS struggle with 

mathematics, what has been done to address this issue, and what we can do moving forward to 
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help improve USS’s mathematics success.  To explain this, the following discussion is parsed 

into three sections, 1) an exploration of possible explanations for the low rates of success we 

have had with teaching mathematics to USS, 2) an examination of the "Algebra for All" 

movement meant to equalize opportunities for all students to a meaningful and rigorous 

mathematics education, and 3) a highlight of current calls for mathematics equity.  

USS’ Struggles 
 When reflecting on data showing tremendous disparities in mathematics achievement 

between USS and their non-urban-school peers, one first has to consider non-classroom issues to 

explain these gaps.  This section briefly explains how poverty, segregation, and high-stakes 

testing impact USS.  It ends focusing on mathematics classroom instruction.  

Poverty and Segregation:  Poverty’s intractable impact on social, academic, and economic 

outcomes for USS is undeniable (Anyon, 2005).  This is exacerbated by the fact that many USS 

go to schools lacking the resources needed to help support their success.  Historically, it has been 

documented that low achievement statistically correlates to low socioeconomic status and with 

lack of home and school resources (Lacour & Tissington, 2011).  Complicating the effect 

poverty has on students and learning are the findings that USS still attend highly segregated 

schools (Orfield, Kucsera, & Siegel-Hawley, 2012).  “The consensus of nearly sixty years of 

social science research on the harms of school [racial] segregation is clear: separate remains 

extremely unequal” (Orfield et al., 2012, p.7).  This segregation leads to inequities that pervade 

their school life, especially the quality of teaching these students experience (Haberman, 

December 1991; Kohn, 2000). With that said, it is important to state from an equity perspective 

that: 

these findings do not suggest that poor students are of low intelligence; rather, the studies 
point to the power of the economy — and of economic hardship — to place extremely 
high hurdles to full development in front of children who are poor (Anyon, 2005, p. 76) 
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High-Stakes Testing: As a result of differential results on traditional measures of achievement, 

USS are more likely to attend schools which emphasize the use of standardized testing as a 

vehicle for reform.  The rise of high-stakes testing impacts the quality and type of instruction 

these students receive.  Darling-Hammond and Rustique-Forrester (2005) found that teaching to 

the test occurs with greater frequency in schools where stakes are attached to the test and where 

students are generally lower performing.  Kohn (2011)  observed that for poor children their 

curriculum consists of basic skills development, reliance on worksheets, more rote practice, more 

memorization, and a diminished emphasis on critical thinking.  Kohn’s major indictment of 

standardized testing is that it serves mostly to make dreadful forms of teaching appear 

successful.  USS have suffered the most from the proliferation of high-stakes standardized 

assessments (FAIRTEST, 2011); with so much riding on their outcomes, meaningful instruction 

supporting higher-order thinking skills is stifled and often replaced with rote memorization 

techniques, “drill and kill” activities, and unashamed teaching to the test (Advancement Project, 

2010).  This brief synopsis is an appropriate foreshadowing of the types of mathematics 

instruction that lead to low success rates with USS.  

Harmful Mathematics Instruction: Having spent significant time in schools during this test-

frenzy atmosphere as a mathematics educator, I can personally attest to contributing in the 

detrimental practices reported by researchers and practitioners. Often times, we were not 

concerned about learning as much as we were about improving test scores on high-stakes exams. 

We spent numerous weeks training students to answer problems they were likely to encounter on 

standardized tests; essentially relegating their education into who can best eliminate three out of 

four bubbles (Hopkinson, 2011).  This reductive version of mathematics instruction is actually in 

line with how many people view what mathematical learning is; even prior to the high-stakes 

accountability tests, studies have established that traditional school mathematics instruction in 

the United States primarily focused on routine procedures, rote exercises, and memorization 

(Stigler, Givvin, & Thompson, 2010). 
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 As a result, the nature of traditional school mathematics instruction needs challenging.  A 

premise of this study that the narrowly restricted view of mathematics is indicative of the 

impoverished teacher-centered experience students receive in school classrooms, the reification 

of mathematics as something completely disconnected from reality emerges early in a students’ 

academic trajectory.  Students’ disaffection for learning mathematics directly impacts their 

motivation to want do well in the subject as well as understand the content.  When faced with 

this dilemma, USS do not seem to respond very well, as indicated by most local and national 

achievement results (Aud et al., 2011; EdSource, 2012) 

 Even more damaging, traditional school mathematics bears little likeness  “to the 

mathematics of life or work…in which mathematicians engage” (Boaler, 2008).  This denies 

students the opportunity to wrestle with challenging problems, acquire effective problem solving 

skills, and make sense of the mathematics they are learning (Schoenfeld, 2004).  Learning 

mathematics through a traditional perspective has detrimental effects on how students use 

mathematical thinking and reasoning to productively solve problems and verify whether or not 

their answers to questions are reasonable (Stigler et al., 2010). Immediate consequences of this 

procedural fluency focus sets students up to see mathematics as a set of abstract disconnected 

facts that have little meaning, even to the point where they begin to see learning mathematics 

conceptually as “just wasting their time, time needed for practicing and memorizing” (Givvin, 

Stigler, & Thompson, 2011).  The effect from this perspective is that students do not develop 

conceptual understanding and are unable to navigate problem situations that are not identical to 

the examples found in the book.  This lack of success easily translates to decreased motivation to 

persevere through complex multi-step problems.  Additionally, the critical thinking, problem 

solving, and analytical reasoning skills found in rich mathematical situations are the types of 

skills needed to be successful in post-secondary education (Conley, 2007). 

 In sum, there is no single explanation as to why many USS fail mathematics. As 

presented here, there are many issues that go beyond classroom instruction that need to be 

addressed to ensure more success for USS.  Poverty, segregation, and high-stakes testing are all 
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out of teachers’ hands.  However, teachers in urban schools have a socially just responsibility to 

be attuned to their students’ social and academic needs as well as to be aware of equitable 

instructional practices that may empower them.  Currently, traditional school mathematics as 

conceived in most schools, continues to offer students only a shell of what mathematics is and 

how it is practiced.  In fact, during the Iris M. Carl Equity address at the National Council of 

Teachers of Mathematics (NCTM) national conference, Treisman (2013) emphasizes that in his 

work with urban schools across the country, math classrooms are more interested in “filling in 

bubbles rather than connecting the dots” and are mostly “driven by a compliance mentality on 

tests that are neither worthy of the children nor worthy of the discipline they purport to reflect.”  

With his in mind, it is easy to argue that this bankrupt version of mathematics functions as a 

gatekeeper for most students and will continue to do so, especially for USS. 

Algebra for All 
 The acknowledgement of the successful completion of Algebra 1 in middle school as a 

gateway to advanced mathematics prompts educational reformers and equity activists to ask how 

to make this course available to everyone.  The presumption being - especially for disadvantaged 

students- that giving them access to Algebra 1 earlier, can dramatically reduce the opportunity 

and achievement gap (Evan, Gray, & Olchefske, 2006).  Many districts are now encouraging and 

even forcing more students to take Algebra 1 in middle school (Musen, 2010).  The following 

section examines the effects of these implementations. 

 Tracing the “Algebra for All” call to its equity-driven roots, Silva, Moses, Rivers, and 

Johnson (1990) argued that the practice of offering Algebra 1 only to certain students has had 

detrimental effects on the mathematics education of urban school students.  They further state 

that this “rationing of algebra” (Pg. 5) closes the door to a broad range of academic and 

professional pursuits while at the same time having a negative long-term effect on the well being 

of these students.  In order to have a clear understanding of the impact of “Algebra for All” on 
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school and student achievement, we must take a thorough look at current literature on such 

reform efforts. 

  In an early analysis of the impact of high school algebra among students who differ in 

their math skills prior to entering high school, Gamoran and Hannigan (2000) describe the 

findings that helped initiate this all-inclusive push for all students taking algebra.  It was found 

that students who completed Algebra 1 not only learn more math, but also pursued higher level 

courses of study.  Gamoran and Hannigan’s (2000) quantitative findings were consistent with the 

hypothesis that taking algebra earlier promotes academic achievement. All students regardless of 

prior math skills benefit from taking algebra in ninth grade.  However, their study did suggest 

that these undifferentiated math classes may not benefit low achievers as much as high achievers, 

which could mean that students that need the most help do not get it. In addition, Gamoran and 

Hannigan’s (2000) work does not address the negative effects of placing students in algebra who 

do not have the basic skills to be successful.  They stated that the impact of an “Algebra for All” 

policy had still not been fully assessed.  

 Like previous studies, Allensworth, Nomi, Montgomery, and Lee (2009) quantitatively 

studied the effects of an “Algebra for All” implementation in the Chicago Public Schools (CPS) 

and found contrasting results to Gamoran and Hannigan (2000).  Allensworth et al. (2009) reveal 

that other than gaining course credit, there are no observable benefits of enrolling in Algebra 1 

instead of remedial math courses.  In fact, among the students who took algebra instead of 

remedial math, their grades declined and math failure rates increased.  Students were no more 

likely to proceed to advanced college-preparatory math courses because of the policy.  

Allensworth et al. (2009) address the issue of classroom instruction by remarking that with the 

change of classroom composition, it is imperative that substantial changes in pedagogy need to 
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be instituted for more students to be successful.  They do not say what these changes should be 

and do not address what happens to those students who fail algebra because of lack of 

preparation. In a policy brief analyzing the work done by Allensworth et al. (2009), Mazzeo 

(2010) underscores the key premise that mandatory curriculum policies are suppose to offer 

greater equity in course taking which lead to improvements in students learning and educational 

outcomes. However, based on the results of CPS’s “Algebra for All” push, he suggests that states 

and districts implementing mandatory curricula reforms “should focus attention on the quality of 

classroom instruction and the depth of tasks” (Pg.10) students are asked to complete. 

 In 2008 Loveless examined the National Assessment for Educational Progress (NAEP) 

math test results of the increased number of eighth-grade students enrolled in algebra as a result 

of the “Algebra for All” policy.  He argues that although NAEP test scores had gone up for 8th 

graders since 2000, the scores of the top performing eight graders dropped over that time. They 

found this was a result of more unprepared students being enrolled in algebra; upwards of 7.8 

percent of eight grade students enrolled in algebra scored at the second grade level. Loveless 

(2008) found no evidence to suggest that having these students with extreme gaps in 

mathematical understanding be placed in an Algebra 1 classroom.  In addition, Loveless (2008) 

discovered an increased instructional load placed on teachers to differentiate instruction for 

students with varying skills; so one possibility is that poor student performance was tied to 

teachers’ instructional decisions.  What this study did not include was any analysis of the effects 

of classroom instruction on student’s performance and any follow up on what happens to 

students who fail Algebra 1 in the 8th grade. 

 In arguably the most comprehensive review of 8th grade Algebra 1 performance data, 

Williams et al. (2011) examined the readiness levels of 8th grade students (n=69,945) who took 
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the end of course 8th grade Algebra 1 California Standardized Test (CST) and compared them to 

their achievement results they obtained on the Algebra 1 CST.   These students’ readiness levels 

were determined by their achievement on the 7th grade end of course CST.  Not surprisingly, 

they found that the most-prepared students typically took Algebra 1 in 8th grade and generally 

scored proficient or higher on the Algebra 1 CST. They also found that the least-prepared 

students, if placed in Algebra 1, generally did not even score at a basic level.  Interestingly, the 

data indicated that schools serving mostly low-income students not only placed higher 

percentages of students into Algebra 1, but they placed higher percentages of students into 

Algebra 1 who were not proficient on the 7th grade CST.  Thus, despite the well-intentioned 

efforts of expanding access to Algebra 1 to more students, “placing all 8th graders into Algebra 1, 

regardless of preparation, sets up many students to fail” (Pg.6).  As a conclusion, Williams et al. 

(2011) state that there is sufficient reason for concern about too early placement into Algebra 1, 

particularly since there is little research on how 8th grade Algebra 1 failure affects students’ 

future outcomes and their disposition towards mathematics as they progress into high school.  

 It is important to note that Algebra 1 can serve students beyond giving them access to the 

prerequisite march to Calculus, it can also provide as an “intellectual gateway” to abstract 

reasoning, critical thinking, and problem solving (Muller & Beatty, 2008).  All of which have 

been identified as critical cognitive skills needed by students to be college ready (Conley, 2007).  

These additional cognitive benefits further heighten pressures to promote participation in 

Algebra 1 for USS.  In fact, Evan et al. (2006) argue that Algebra 1 has functioned as central 

player in “maintaining and institutionalizing the achievement gap by systematically reducing the 

access of minority and low-income students to upper level mathematics… that is a precondition 

for college success” (pp. 13). 
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 Having spent my entire career working in urban schools, I am immediately aware of the 

academic performance of students on end-of-year Algebra 1 assessments.  In fact, despite the 

current climate of high stakes testing and California’s Algebra for All initiative for 8th graders, 

eighty percent of California’s students enrolled in Algebra 1 as 9th graders have historically 

scored below proficient on the state’s standardized tests.  Even more shocking, most urban 

schools have “non-proficiency” rates closer to ninety-five percent.  This serves as a reminder that 

the current “Algebra for All” push has not done enough. Regardless of the findings that more 

students now take the course and are even passing the course at higher numbers, it is evident that 

not enough time has been spent on defining what it should look like when students learn Algebra 

1.  Liang, Heckman, and Abedi (2012) argue that "the  algebra-for all policy  did  not  appear  to 

have encouraged a more compelling set of classroom and school-wide learning conditions that 

enhanced student understanding and learning of critical knowledge and skills of algebra” (p.340).  

This last finding is exactly why this current study can have important ramifications to what 

Algebra 1 curriculum and instruction looks like for more students. 

Mathematics Equity 
 Since the publication of the National Council of Teachers of Mathematics (National 

Council of Teachers of Mathematics, 1989, 2000) standards for school mathematics, equity 

concerns have garnered increased attention by mathematics researchers.  NCTM (2008) states: 

Excellence in mathematics education rests on equity—high expectations, respect, 
understanding, and strong support for all students. Policies, practices, attitudes, and 
beliefs related to mathematics teaching and learning must be assessed continually to 
ensure that all students have equal access to the resources with the greatest potential to 
promote learning. A culture of equity maximizes the learning potential of all students (p. 
1). 

This attention to equity is buoyed by the reality the schools produce unequal outcomes for USS, 

especially in regards to mathematical proficiency (Ball, 2002). 
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 The equity perspective of this study is rooted in Cobb and Hodges’s (2010) and 

Gutierrez’(2002; 2012) long established work and viewpoint on constitutes mathematics equity 

for students.  For Cobb and Hodge (2010), equity “encompasses students’ development of a 

sense of efficacy (empowerment) in mathematics together with the desire and capability to learn 

more about mathematics when the opportunity arises” (p.181). Gutierrez (2002) takes a critical 

stance, her version of equity states, “the inability to predict mathematics achievement and 

participation based solely on student characteristics such as race, class, ethnicity, sex, beliefs, 

and proficiency in the dominant language” (p.19).  Gutierrez (2012) elaborated on her notion to 

include four dimensions: access, achievement, identity and power.  Access refers to the 

availability of “tangible resources that students have to participate in mathematics”. 

Achievement relates to the conventional and non-traditional ways to measure student 

proficiency.  Identity embraces more than students seeing themselves as proficient doers of math, 

but “incorporates the question of whether students find mathematics not just ‘real world’ as 

defined by textbooks or teachers, but also meaningful to their lives” (p.20).  The power 

dimension extends the identity piece; students taking up “issues of social transformation” and 

opportunities for them “to use as an analytic tool to critique society” (p.19).   

 By addressing issues of power and social consciousness through mathematics, Gutierrez 

(2012) implicitly proposes a Critical Race Theory (CRT) turn to achieving mathematics equity 

for USS.  Although not a direct focus of this study, this critical perspective is foundational in 

examining why USS are academically underperforming.  Solórzano (2005)  identified five tenets 

of CRT that should inform theory, research, pedagogy, curriculum and policy: (1) the 

intercentricity of race and racism; (2) the challenge to dominant ideology; (3) the commitment to 

social justice; (4) the centrality of experiential knowledge; and (5) the utilization of 
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interdisciplinary approaches. (p.274-275).  In regards mathematics equity, Gutierrez’ power 

dimension of equity addresses the second and third tenets of CRT.   

 Furthermore, the connection between CRT and obtaining equitable access and outcomes 

for USS lies with the idea that CRT is viewed as a “social justice project” (Yosso, 2005, p.74)  . 

This perspective has led math educators to employ a pedagogy known as teaching mathematics 

for social justice (Bartell, 2010; Frankensein, 1983; Gutstein, 2003; Wager & Stinson, 2012).  

“Appealing to their sense of fairness, teaching mathematics with social justice issues can 

motivate students to learn the mathematical skills necessary to solve complex problems” 

(Gutierrez & Irving, 2012, p.24).   Although research is still emerging about the benefits of this 

pedagogy, “the approach appears to be especially successful at engaging students who have lost 

interest in mathematics…by connecting mathematics to the world outside school” (Gutierrez & 

Irving, 2012, p.24) .   

 In sum, it is of utmost importance to extend the conversation about equity in the 

mathematics classroom beyond being solely about providing students the opportunity to learn 

and giving them access to gate keeping math courses.  This extension is crucial to drive 

conversation and action towards addressing disparate achievement results for USS and their non-

urban school peers.   

Research Questions  
With these circumstances in mind, here are the questions this study addressed:                            
1.     What does teaching and learning look like in a secondary school mathematics classroom 
that approaches the teaching of algebra with problems set in daily life observations? 
2.     How does the use of graphing technology assist students’ in mathematical thinking and the 
engagement of mathematical practices? 
3.     What is the trajectory of student’s mathematics identity as they learn algebra from a “science 
of patterns” perspective? 
4.     What is the learning trajectory of student’s use of functions to model data through a curve 
fitting process? 
 

In order to answer these questions, I engaged students in the mathematical modeling of real-

world data; this was done by creating “model-eliciting” activities related to the topic of data 
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modeling and curve fitting 

 A learning environment was based on a “science of patterns” perspective was envisioned 

using the following scenario.  After classroom formalities, the lesson begins with the 

presentation of a potential pattern found in the world.  For an algebra class, the patterns – which 

come in many forms - could be a table of values that hypothetically contain the stopping distance 

of a car for a given speed. The context of the presented data is discussed as a class after the 

teacher prompts the students to discuss everything they know about the data at this point.  The 

discussion then takes a speculative turn as the teacher encourages the students to ask "I wonder" 

questions.  As the questions come in, the teacher records each response.  Using these "I wonder" 

inquiries as guide, the teacher elicits potential mathematical descriptions from the students to 

initiate the modeling process.  The students then convert the data to a visualize representation by 

plotting the data using graphing technology.  From here, students use their knowledge of 

functions to search for ways to mathematically describe or model the data with an algebraic 

representation.  During the course of this modeling process (which is cyclical in nature), the 

teacher encourages students to convince, conjecture, and engage in mathematical practices by 

sharing their progress to the class or by collaborating in small groups.  It is during this thought 

revealing sequence that students learn that multiple solutions are possible and that mathematics 

can be experimental in nature. As activity continues, they also learn from each other to 

"iteratively express, test, and revise their interpretations or conceptualizations of mathematical 

learning” (Doerr & Lesh, 2011, p.248) .  In this context, students use graphing technology to test 

their models against the visual representation of the data.  This process concludes when students 

are able to verify and justify that their model is a good fit to the original data as well solve posed 

problems from the teacher, solve problems that were co-constructed with their peers, or even 
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pose additional problems to be considered.  

 During this study I used a design experiment methodology to answer my research 

questions.  I developed cycles of investigation as I engaged students in the modeling process of 

real-world data as described above.  These investigations began with students hypothesizing 

about which functions they believe best models the pattern formed by the data; they then 

proceeded to test and revise their models via the feedback they receive from their peers, the 

teacher, and from their use of graphing technology.  These cycles allowed me to revise the 

process I used to instruct students as well as “identify and account for successive patterns in 

student thinking by relating these patterns to the means by which their development was 

supported and organized” (Cobb et al., 2003, p.11).  Since a primary goal of the methodology is 

to go through iterations of test and learn sequences to document and unpack the processes that 

lead to learning, each opportunity for students to develop mathematical models in the class was 

considered another iteration of my study. 

 This process of describing the world with mathematical models is a conduit for students 

to “focus on patterns, regularities, and other systematic characteristics of structurally significant 

systems” (Lesh and Lehrer, 2003, p.112).  Furthermore, this purposeful design of having students 

engage in model-eliciting activities was in line with Schoenfeld’s (1992) goals for mathematics 

instruction- having students make sense of what mathematics is and how it is done.  To that end, 

the methodology of employing model-eliciting activities had students developing new ways of 

thinking about how to make “symbolic descriptions” and “sense making systems” to describe the 

world (Lesh & Lehrer, 2003). 
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Chapter 2 – Literature Review and Theoretical Grounding 
 
 The mathematical fate for urban school students (USS) has been coupled with inequitable 

opportunities and academic underachievement.  With USS often measured by standardized 

testing assessments, they have traditionally not performed well along those metrics.  This 

underachievement, as indicated on most local and national achievement results (Aud et al., 2011; 

EdSource, 2012), has had detrimental effects on the future academic and life outcomes for these 

students.  In order to provide a context for the study, the presentation of this chapter is done in 

two parts. 

 The purpose of Part 1, divided into 3 sections, is to provide a rationale for the design of 

the learning environment.  1) It explains how learning mathematics from a "science of patterns" 

perspective leads to students engaging in the practices of mathematicians. 2) It elaborates on 

what mathematical thinking and problem solving are as well as describe the benefits of engaging 

in those practices. 3) I conclude this part by examining research on modeling and "model-

eliciting" activities.  Part 2, delves into learning from both the cognitive and sociocultural 

perspective.  I end by claiming that defining learning from a participatory framework provides an 

opportunity for mathematics educators to extend the definition of student achievement beyond 

those skills only measurable by multiple-choice exams. 

Part 1: “Science of Patterns”, Mathematical Thinking/Problem Solving, and Mathematical 
Modeling 

“Science of Patterns” 
 At the heart of the study was the mathematics I expected students to engage in.  Using the 

depiction of mathematics as the “science of patterns” to guide my curriculum and instructional 

choices provided students with productive opportunities to engage in mathematical 

thinking.  Supporting these choices is Tall’s (2008) proposal that a fundamental human attribute 
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essential for mathematical thinking and ling-term learning is the sensory capacity to recognize 

patters.  This recognition of patterns provokes what Burton (1984) calls the “statement of a 

generalization”.  He describes such statements as “the building blocks used by learners to create 

order and meaning out of an overwhelming quantity of sense data” (p.38).  While adhering to 

similar sentiments, Schoenfeld (1992) extends these ideas by adding “mathematics is an 

inherently social activity in which a community of trained practitioners (mathematical scientists) 

engages…in systematic attempts, based on observation, study, and experimentation” (p. 335). 

These prevailing descriptions of mathematics help situate what a mathematician does and what 

disciplinary mathematical learning can look like in classrooms.  It further allows us to re-

conceptualize what mathematics is worth being taught, what it means to be an expert 

(mathematically proficient), and what activities can be used to develop students’ emergent 

mathematics proficiency.   

The Mathematical Method 
 Devlin (2012) proposes a “Mathematical Method” analogous to the Scientific 

Method used by scientists to engage in the practices of their discipline.  Although listed 

in a sequential manner (Figure 2-1), a mathematician may move back and forth through 

the cycle when needed. The goal of the study was to support students’ mathematical 

growth by providing them with meaningful patterns to consider; then guiding students to 

study and develop an abstract notation for these patterns. From a modeling perspective, 

this meant students constructed or identified a mathematical structure that represents the 

pattern.  Within this context, the mathematical method provides a means for students to 

engage in mathematical thinking and the practices of mathematicians. 
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• Identify a particular pattern in the world 
• Study it 
• Develop a notation to describe it 
• Use that notation to further the study 
• Formulate basic assumptions (axioms) to capture the fundamental properties of 

the abstracted pattern 
• Study the abstracted pattern, establishing truths by means of rigorous proofs 

form the axioms 
• Develop procedures that you and others may use to apply the results of the study 

to the world 
• Apply the results to the world 

Figure 2-1 The Mathematical Method (Devlin, 2012) 

  Recalling the classroom vignette introduced in chapter 1 that describes a “science 

of patterns” learning environment, which I have included below with special annotations, 

it is important to connect the “Mathematical Method” with the proposed classroom 

setting for the study. 

 (Identify a particular pattern in the world) After classroom formalities, the 
lesson begins with the presentation of a potential pattern found in the world 
around us.  For an algebra class, the patterns- which come in many forms- could 
be a table of values that hypothetically contain the stopping distance of a car for a 
given speed.  
(Study It) The context of the presented data is discussed as a class after the 
teacher prompts the students to discuss everything they know about the data at 
this point.  The discussion then takes a speculative turn as the teacher encourages 
the students to ask "I wonder" questions.  As the questions come in, the teacher 
records each response.  Using these "I wonder" inquiries as guide, the teacher 
elicits potential mathematical descriptions from the students to initiate the 
modeling process.  
 (Develop a notation to describe it) The students then convert the data to a 
visualize representation - they do this by plotting the data using graphing 
technology.  From here, students use their knowledge of functions to search for 
ways to mathematically describe or model the data with an algebraic 
representation.   
(Use that notation to further the study)During the course of this modeling 
process (which is cyclical in nature), the teacher encourages students to convince, 
conjecture, and engage in mathematical practices by sharing their progress to the 
class or by collaborating in small groups.  It is during this thought revealing 
sequence that students learn that multiple solutions paths are possible and that 
mathematics can be experimental in nature. 
(Formulate basic assumptions (axioms) to capture the fundamental 
properties of the abstracted pattern) As activity continues, they also learn from 
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each other to "iteratively express, test, and revise their interpretations or 
conceptualizations of mathematical learning" (Loerr & Leah, 2011, p.248).  In 
this context, students use graphing technology to test their models against the 
visual representation of the data.   
(Study the abstracted pattern, establishing truths by means of rigorous 
proofs form the axioms)This process concludes when students are able to verify 
and justify that their model is a good fit to the original data as well solve posed 
problems from the teacher, solve problems that were co-constructed with their 
peers, or even pose additional problems to be considered.  (Chapter 1 this paper) 
 

By overlaying the “Mathematical Method” with the hypothetical classroom it is easy to see that 

the students learning in this environment participate as mathematicians- they enact the 

“Mathematical Method”.  Although the last two steps of the process are not included in the 

vignette, I argue that those two become enacted over a period of time when students continually 

engage in the learning environment.  Through the development of their mathematical 

proficiency, students will be able to use the models they find and be able to at some point 

“develop procedures that you and others may use to apply the results of the study to the world” 

and ultimately to “apply the results to the world” (Devlin, 2012).  This application of results 

brings us full circle.  The “Mathematical Method” is directly linked to Burton’s  (1984) argument 

that the study of mathematics provides a particular means – specializing, conjecturing, 

generalizing, and convincing- to describe the world (Burton, 1984).  Making this connection is 

vital; it ensures that the mathematics and the practices that students engage in within this 

classroom are akin to what mathematicians actually do as well as provide students with an 

answer to the often asked question, “When will we ever use math in our real lives?”  Considering 

this study is focusing on students who are at a critical stage in their mathematical development, a 

tangible response to this question can give more students a reason to productively engage in 

mathematical activity.   
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Mathematical Thinking and Problem Solving 
 Mathematical thinking and problem solving are at the core of what mathematicians do.  

Because it is believed that mathematical thinking engages the same cognitive resources that are 

available for thinking in general (Tall, 2008), it is appropriate to look at two definitions of 

thinking respectively presented by cognitive scientists and a mathematics educator: 

• thinking is the systematic transformation of mental representations of knowledge to 
characterize actual or possible states of the world, often in service of goals (Holyoak & 
Morris, 2012, Pg.XX)  . 

• thinking is the means used by humans to improve their understanding of, and exert some 
control over, their environment (Burton, 1984, p.36).  

It is believed that mathematical thinking and the study of mathematics provides particular means 

to characterize the world and exert some control over it.  Burton (1984) describes these means –

the operations, processes, and dynamics of mathematical thinking - as encompassing four 

processes, specializing, conjecturing, generalizing, and convincing.  An important aspect of these 

processes is the demarcation between them and the corpus of knowledge (rules and procedures) 

typically described as mathematics.  This distinction is important because of the premise – one in 

which I believe- that “mathematical thinking is used when tackling appropriate problems in any 

context area, although questions of a mathematical nature might more readily expose such 

thinking” (Burton, 1984, p.36).  This transfer of mathematical thinking to assorted domains is at 

the heart of the argument of why it is important for school mathematics to have a focus on a 

disciplinary learning in classrooms. As a result, it becomes important to give students the 

opportunity to actively engage in the dynamics of mathematical thinking.  These dynamics 

include: “query assumptions, negotiate meanings, pose questions, make conjectures, search for 

justifying and falsifying arguments that convince, check, modify, alter, be self-critical, be aware 

of different approaches, be willing to shift, renegotiate, and change direction” (Burton, 1984, 

p.48). 
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With this in mind, Schoenfeld (1992) posits the case that thinking from a mathematical 

point of view means “seeing the world in the ways mathematicians do” (p.340).  He further goes 

on to describe mathematical thinking as: 

a mathematical point of view-valuing the processes of mathematization and abstraction 
and having the predilection to apply them, and developing competence with the tools of 
the trade, and using those tools in the service of the goal of understanding structured 
mathematical sense-making (p. 335) 

 
All these views of mathematical thinking bolster the argument that classroom mathematics needs 

to be experienced in a manner that accentuates the main features of what it means to think 

mathematically.  This is done by helping students recognize that mathematics is not a rigidly 

contained system of facts, procedures, and algorithms where the teacher always holds the answer 

to the question (Stein, Grover, & Henningsen, 1996). 

 Some argue that engaging students in problem solving is a core goal of mathematics 

education (Wiggins, 2011).  The National Council of Teachers of Mathematics (National Council 

of Teachers of Mathematics, 2000) explicitly states that “problem solving means engaging in a 

task for which the solution method is not known in advance” and “in order to find a solution, 

students must draw on their knowledge, and through this process, they will often develop new 

mathematical understandings” (retrieved online on March 5, 2012).  It is important to note that 

NCTM’s depiction of problem solving is similar to what others have said about this idea: 

• Individuals responding to a problem that he or she does not know how to ‘comfortably’ 
with routine or familiar procedures(Carlson & Bloom, 2005) 

• A thinking process in which a solver tries to make sense of a problem situation using 
mathematical knowledge she/he has and attempts to obtain new information about that 
situation till she/he can ‘resolve the tension or ambiguity’ (Nunokawa, 2005) 

• A problem arises when a living creature has a goal but does not know how this goal is to 
be reached. Whenever one cannot go from the given situation to the desired situation 
simply by action, then there has to be recourse to thinking. (Bassok & Novick, 2012, as 
cited by Duncker, 1945) 
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I would further these ideas by distinguishing between “creative” and “noncreative” problem 

solving and “divergent” problems-many possible solutions- and “convergent” problems–one 

correct answer (Smith & Ward, 2012).  The distinction between “creative” and “noncreative” is 

the concept of a problem being well-defined or ill-defined.  A problem is well-defined if its 

beginning state and goal state are clearly specified as well as the operations needed to solve the 

problem.  “Creative problems are considered ill-defined, primarily because multiple hypothetical 

solutions might satisfy the goals of the problem” (Smith & Ward, 2012, p.462). Regardless, in 

order for these problem-solving processes to surface in the classroom, an explicit effort must be 

made to have students experience solving problems in new and old contexts as well as 

developing a repertoire of problem solving heuristics they can use to manage themselves from a 

given state to a desired state.  This can only occur though deliberate instructional practices 

developing a students’ mathematical disposition while engaging in a reconceptualized vision of 

what mathematics is. This reconceptualization is “based in part on...detailed understandings of 

the nature of thinking and learning and of problem solving strategies and metacognition; 

evolving conceptions of mathematics as the ‘science of patterns’ and of doing mathematics as an 

act of sense-making” (Schoenfeld, 1992).  It has been argued that when students learn problem 

solving in the context of their math classroom, they “acquire ways of thinking, habits of 

persistence and curiosity, and confidence in unfamiliar situations” (National Council of Teachers 

of Mathematics, 2000) that could ultimately be helpful to them in their daily school and work 

life.  This is especially true considering Bassok and Novick (2012)  claim that “when people 

attempt to find or devise ways to reach their goals, they draw on a variety of cognitive resources 

and engage in a host of cognitive activities” (p.428).  As a result, this is more evidence that a 

participatory and disciplinary approach to mathematics education can have a lasting and positive 
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impact on students’ cognitive growth.  In sum, it is appropriate to end this section with 

Schoenfeld’s (1992) more than fitting description of the goals of mathematics instruction, 

especially as it relates to the goals of this study: 

Mathematics instruction should provide students with a sense of the discipline-a sense of 
its scope, power, uses, and history. It should give them a sense of what mathematics is 
and how it is done, at a level appropriate for the students to experience and understand.  
As a result of their instructional experiences, students should learn to value mathematics 
and to feel confident in their ability to do mathematics. (p. 345) 

Mathematical Modeling and “Model-Eliciting” Activities 
 The research completed on modeling and model-eliciting activities is done from models 

and modeling perspective (MMP).  It is a multi-tiered methodology that examines students, 

teachers, and researchers as they “go through sequences of cycles in which they iteratively 

express, test and revise their interpretations” (Doerr & Lesh, 2011, p. 248).  These cycles 

typically begin with students participating in a classroom modeling activity- usually called a 

model-eliciting activity (MEA) – which is designed to be both “model-eliciting” and “thought-

revealing” (Doerr & Lesh, 2011).  Lesh and Lehrer (2003) describe two major purposes of 

MEAs : 

 (a) identifying the mathematical understandings and abilities that are needed for success 
when “mathematical thinking” is needed beyond school in a technology-based age of 
information, and (b) identifying students who have extraordinary abilities that may not 
have been apparent based on past records of low performance on the narrow and shallow 
band of tasks emphasized in traditional textbooks and tests. (as cited in Lesh, 2001) 
(p.116) 

 
With these explicit goals as a foundation for studying students engaging in a mathematical 

modeling process, MMP and MEA are ideal in assisting researchers to operationally define what 

is meant by “important mathematics, mathematical activity, and learning at the individual and 

social levels” (Lesh, Middleton, Caylor, & Grupta, 2008, pp. 115).  Within its iterative cycle of 

researchers studying teachers, teachers studying students, and students creating and testing their 

mathematical models, MMP provides a framework to better understand what these ideas mean.  
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And considering the context of this study and my Design-Based Research (DBR) 

implementation; this can be especially beneficial for students who have traditionally struggled 

mathematically by determining how to best provide them with the learning experiences 

necessary to develop mathematical efficacy and proficiencies. 

 Combining the goals of MEAs with those of this study will bear fruit in two areas. First, 

it will help students become proficient mathematicians, and secondly but equally as important, it 

can democratize mathematical success for those USS who traditionally have not enjoyed such 

rewards.   

Part 2: Learning Theories – Cognitive and Sociocultural 
 Having spent many years teaching in a mathematics classroom for urban schools, 

indelible debates between two steadfast factions of teachers defending their style of teaching was 

a common sight during department meetings.  One side was for lecturing at the board and “drill 

and kill” assignments, while the other was a proponent of group work and the teacher working as 

a facilitator of learning.  What was missing from these afternoon meetings was any discussion 

about the purpose of education or what learning theories had to say about what were doing in our 

classrooms.   Early on, I found myself siding with the collaborative learning 

supporters.  However, as I struggled to implement group work in the class and found students 

negotiating my cooperative tasks into teacher-directed lessons, I could readily understand the 

arguments for a more explicit model of instruction.  Given those experiences, although reductive 

in description, I learned over time that learning in the classroom takes on many identities, and 

both the cognitive and sociocultural perspectives have important roles in helping students learn 

and develop identities as learners.  It is from this mindset and related calls that educators “apply 

in the classroom what we know about humans as intelligent, learning, thinking creatures" (Bruer, 

1993, p.1), that I present an overview of what knowledge is, where knowledge is found, and 
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what it means to learn within the cognitive and sociocultural perspectives. I will end my 

discussion with a portrayal algebra instruction that is line with the situative perspective studied 

by Greeno (2003).   

Cognitive Perspective 
Information Processing: As an alternative to behaviorism, the early cognitive perspective is a 

knowledge-centered theoretical framework that describes the human mind as a computing device 

that builds and executes production systems. These production systems – knowledge in this 

perspective- can be seen as a mental algorithm that we follow to complete a cognitive 

task.  Additionally, the cognitive perspective emphasizes the major role that memory plays in 

helping us translate new information into a form that is meaningful so that we can retrieve it and 

be able to use it at a later time.  Part of retrieving the information is through mental structures 

called schemas.  These schemas provide a way for us to accumulate information but also 

influence what we notice, how we interpret and how we remember it (Derry, 1996; Greeno, 

Collins, & Resnick, 1996; Mayer, 1996).  In sum, we can think of knowledge from this 

viewpoint as “a large collected database of information, organized into some logical order in the 

mind, which can be accessed and then described through human language” (Leonard, 2002, 

p.29).  

 Knowing what knowledge is from this perspective leads to a natural question, where can 

it be found? Inherent in the cognitive viewpoint is that knowledge is found in the mind and 

situated with individuals (Cobb, 1994).  This individualist approach is prominent in schools 

where the goal of education is often times seen “as helping students develop the intellectual tools 

and learning strategies needed to acquire the knowledge that allows people to think 

productively” (Bransford, Brown, & Cocking, 1999, p.5) about the subjects being taught.  When 

considering how students learn, the cognitive viewpoint posits that in order to acquire new 
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knowledge, our current schemas and prior knowledge help facilitate this new learning (Mayer, 

1996).  It is believed that prior knowledge affects how we interpret and process instruction and 

consequently affects what can be learned.  Additionally, we can learn from new encounters only 

if we have explicit instruction about how to interpret these new mental representations (Bruer, 

1993).  Given this depiction of learning through the acquisition of mental representations and 

one’s prior knowledge, it is appropriate to turn to a discussion on constructivism. 

Constructivism: Considered as an alternative metaphor to describe cognitive development, 

constructivism is the perspective that individuals create knowledge and understanding through 

experiences and reflection, with knowledge resulting from the active mental processes of the 

learner as new experiences are interpreted through existing knowledge structures (Edwards, 

Esmonde, & Wagner, 2011).  Another way to view constructivism is through a “learner-centric” 

lens, where learners have “some prior knowledge and experience as a basis from which to test 

out their hypotheses and build their own set of content to solve a particular set of problems posed 

by the instructor” (Leonard, 2002, p.37).   

 Drawing its tenets from Piaget’s developmental learning theories (Packer & Goicoechea, 

2000) and Vygotsky's emphasis on socially meaningful activities as an important influence on 

human cognition (Schunk, 2008); constructivism has had a major influence on educational 

settings.   This influence, which has materialized in the shape of “reform instruction”, has a 

central focus on the individual acquiring knowledge or concepts through knowledge construction 

(Mayer, 1996) and “conceptual change” (diSessa, 2006). An appropriate summation of this 

knowledge construction and acquisition process is given by Sfard (1998): 

Since the time of Piaget and Vygotsky, the growth of knowledge in the process of 
learning has been analyzed in terms of concept development.  Concepts are to be 
understood as basic units of knowledge that can be accumulated, gradually refined, and 
combined to form ever richer cognitive structures. (p.5) 
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Sociocultural Perspective   
 The sociocultural perspective is the rejection of the view that the locus of knowledge is in 

the individual.  Sociocultural theorists believe cognition is a property of individuals that is 

distributed among people, and their environments which include the tools, artifacts, and books 

that they use (Greeno et al., 1996; Mayer, 1996; Putnam & Borko, 2000) .  As a result, 

knowledge or knowing is seen as: 

both an attribute of groups that carry out cooperative activities and an attribute of 
individuals who participate in the communities of which they are members. A group or 
individual with knowledge is attuned to the regularities of activities, which include the 
constraints and affordances of social practices and of the material and technological 
systems of environments. (Greeno, 1996, p.17) 
 

An important distinction of this conception is the move from "knowledge" to "knowing"- a more 

process-evoking term (Greeno, 1997)- which is a signifier for a participation framework that 

creates a foundational shift in how knowledge is viewed. Sfard (1998) views this emerging shift 

as "the permanence of hav[ing] giving way to the constant flux of doing"(p.6).  For sociocultural 

theorists, this participation-turn towards making the “individual-in-social-action” as a unit of 

analysis places the explanation of psychological development at the center of sociocultural 

activity (Cobb, 1994).  This sociocultural view holds that collaborative cognition is the product 

of group interactions over time (Putnam & Borko, 2000)  

 Consequently, since knowing is about individuals participating in a community, then 

learning is about the improving or strengthening of one’s participatory abilities (Greeno et al., 

1996; Sfard, 1998).  Within this context, Wenger (1998) uses the term participation “to describe 

the social experience of living in the world in terms of membership in social communities and 

active involvement in social enterprises” (p.54).  Wenger’s idea of “communities of practice” 

situates learning as being developed along a trajectory of growth that includes one’s identity and 

the enculturation into a community’s ways of thinking and practicing (Greeno, 1997; Putnam & 
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Borko, 2000).   

 An essential aspect of this learning trajectory is the search for one’s identity within the 

community; which powerfully results in both the person and community being transformed 

(Packer & Goicoechea, 2000).  Identity development is important from a school perspective 

since classrooms can be considered complex social environments where students are always in 

search for their “learner” identity. For example, the development of one’s mathematical identity 

in a mathematics classroom is considered a form of learning that goes beyond traditional claims 

of mathematical proficiency.  From this perspective, once an individual begins to associate him 

or herself as a legitimate participant, they can argue that they are part of the community.  Their 

increased participation including the use of the language, tools, and discourses of a 

mathematician, allows them to stake community membership.  Within this context, I believe that 

you do not need content matter expertise or have a Ph.D. in mathematics to say you are 

mathematician, as long as you engage in the mathematical practices of a mathematician while 

developing math content knowledge, you are a mathematician. 

 To conclude this brief overview of the two perspectives, I recognize that the continuum 

that connects the early cognitive perspective and the more participatory frameworks of social 

cultural learning theories is complete with multiple perspectives and arguments.  However, this 

move from a cognitive perspective to a participatory framework of learning has moved us from a 

“narrow view of learning as something people gain to a broader conception of learning that can 

include what people do” (Forman, 2003).  More importantly, I agree with Sfard’s (1998) thesis 

that this participatory turn replaces the image of learning as one’s private possession to a 

democratizing view that can alter people’s beliefs about learning and teaching; which has the 

potential to change how we view the purpose of education. 
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Chapter 3 - Methods 
  This chapter describes the main features of Design-Based Research (DBR) and why I 

chose this methodology. I then continue by using conjecture mapping (Sandoval, 2013) to 

explain what the features of my design do and how they work together to produce my 

hypothesized learning outcomes.  The last part concludes with the curricular design of the 

intervention, and the logistics (instructional resources, participant and site context, intervention 

structure, data analysis) of the study. 

Design-Based Research/Design Experiments 
 I enacted a Design-Based Research (DBR) (Barab, 2006; Cobb, Confrey, diSessa, Lehrer, 

& Schauble, 2003; Confrey, 2006; Schoenfeld, 2006) methodology to answer my posed research 

questions.  Due to its focus on instructional design and classroom-level research (Cobb, Stephan, 

McClain, & Gravemeijer, 2001) , it provided the best opportunity to study learning in the 

classroom from an inquiry-based perspective.   This allowed for the potential to “create 

instructional theories at the level that holds the best possibilities to provide solutions to common 

ills in education” (Confrey, 2006, see location 6166 of Kindle Edition). 

 Supporting my methodological choice, Schoenfeld (2006) argues that the best way to 

examine the potential of ideas for educational implementations is to examine them in the 

classroom setting.  DBR is especially advantageous in this regard since its foremost goal is to 

“produce data that enable those involved in the study to draw warranted conclusions about 

student learning and what contributes to it” (Schoenfeld, 2006, p. 196). Reinforcing this 

argument, Barab and Squire (2004) allude to the role context plays in learning and where DBR is 

best situated, “in the buzzing, blooming, confusion of real-life settings” (pg. 4, Table1).  

Furthermore, a byproduct of DBR is that not only do researchers and practitioners gain a better 
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understanding of learning in complex environments, it provides extended and meaningful 

learning opportunities for those students and teachers involved in the study (Barab, 2006). 

 Looking at DBR/DE from a broader view, Cobb et al. (2003) identifies five crosscutting 

features of DBR/DE studies: 

• The development a class of theories about both the process of learning and the means that 
are designed to support that learning 

• A highly interventionist nature which are test-beds for innovation. 
• The creation of conditions for developing theories yet at the same time placing these 

theories in harm’s way. 
• Multiple iterations 
• Producing theories that do real work; having potential for rapid pay-off be also speaking 

directly to the types of problems that practitioners address in the course of their work 
(Cobb et al., 2003, p.10) 

In addition to these features, I highlight Sandoval’s (2013) view that the main effort of design 

research is on “explicating casual processes” (p.17) that lead to desired outcomes within the 

proposed learning environment.   With that said, the varied foci of each of these characteristics 

position DBR to be an appropriate methodology to study the mathematical learning and 

participation of students while engaging in mathematical and data modeling.   

Conjecture Mapping 
 In response to questions about Design Based Research’s (DBR) methodological rigor, 

Sandoval (2013) submits conjecture mapping (Figure 3-1) - a “technique for conceptualizing 

design research [as] a means to specify theoretically salient features of a learning environment 

design and map out how they are predicted to work together to produce desired outcomes”(p. 2).  

He argues that:  

Whatever the context, learning environment designs begin with some high level 
conjecture(s) about how to support the kind of learning we are interested in supporting in 
that context. That conjecture becomes reified within an embodiment of a specific design. 
That embodiment is expected to generate certain mediating processes that produce 
desired outcomes. The ideas a research team has about how embodied elements of the 
design generate mediating processes can be articulated as design conjectures. The ideas 
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they have about how those mediating processes produce desired outcomes are theoretical 
conjectures. (p. 4) 

Conjecture mapping   7 

 
Figure 1. Generalized conjecture map for educational design research. 

It is now well established that learning environment designs have to concern 

themselves with changing the social infrastructure of the settings in which they function 

(Bielaczyc, 2006). Two critical aspects of tool use to specify therefore include task structure 

and participant structure (Erickson, 1982). Task structure refers to the structure of the tasks 

learners are expected to do – their goals, criteria, standards, etc. Participant structure refers to 

how participants (e.g., students and teachers) are expected to participate in tasks, the roles 

and responsibilities participants take on. A final element of design includes intended 

discursive practices– ways of talking, in the simplest sense. This element reflects the claim 

that desirable discursive modes can be at least partially designed. These four elements of 

learning environments embody conjectures about learning in multiple, interacting ways. That 

is, tools, task and participant structures, and discursive practices are all intended to work 

together to achieve a design. Naturally, any particular learning environment design may not 

include all of these four elements. The reciprocal teaching effort described in Brown’s (1992) 

seminal paper focused on re-designing task and participant structures, without novel 

technologies, for example. 

A final point about the embodied elements of designs is they are typically socially and 

temporally distributed. Students in a classroom, for example, participate in different tasks at 

different times, and the material or social scaffolds designed to support such participation 

 

Figure 3-1 – Conjecture Map 

Using Sandoval's conjecture mapping framework to hypothesize answers to my research 

questions and identify a means for testing them, Table 3-1 outlines the key components of my 

design.  More importantly, by following the structure of the framework, I posited initial 

outcomes for students who learn in my proposed learning environment. 

 To begin, my high level conjecture is about how to support mathematical learning for 

students who have traditionally not been ready for 8th grade Algebra 1.  The exact conjecture: 

Engaging in a technology rich mathematical modeling learning environment helps students 

develop a frame of mind in which they begin to see how they can use mathematics to describe the 

world results from my argument that learning mathematics from a “science of patterns” 

perspective allows students to see the act of doing mathematics as a real-world activity.  As a 

consequence, they would be more motivated to engage in mathematical activity. My choice to 

employ data modeling and curve fitting in the learning environment was linked to the benefits 

found from the having students engage in “model-eliciting” activities.  This includes extending 

the range of mathematical understandings and abilities being assessed, which would lead to a “ 

broader range of students …[emerging] as having exceptional potential” (Lesh & Lehrer, 2003, 

p.116).   
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 A critical aspect of the embodied elements of the learning environment was the use of 

tools within the task and participant structures.   Foremost was the need to have tasks helping 

students begin to think about what mathematics is, the benefit of productively engaging in 

mathematics, and what it means to do mathematics.  Also, because studying mathematics from 

the data modeling and curve-fitting perspective are not common in traditional curricula, activities 

needed to be developed to engage students in the data modeling process.  Additional tools 

included graphing technologies and interactive systems so that students got immediate feedback 

about their model representations as well dynamically sharing their progress with peers. A major 

reason to focus on such technologies is because of the extensive benefits afforded to students 

who have daily access to the technology (Roschelle & Singleton, 2008).  Furthermore, graphing 

technologies were found to “facilitate communication and sharing of knowledge in both private 

and public settings, especially when the technology was treated as a partner or extension of self” 

(Goos, Galbraith, Renshaw, & Geiger, 2003, p.87).  From a Vygotskian perspective, graphing 

technologies mediate learners abilities to “acquire mathematical process and concepts” (Rivera 

and Becker, 2004, p.82) 

 Given the task structures that had students engage in data modeling activities to study 

patterns and develop notations to describe these patterns, it was important to consider the 

mediating processes that would emerging as students used graphing technologies within these 

structures.  My hypothesized mediating processes – certain kinds of activity and interactions 

resulting from the embodiment of my design - lead to my conjectured learning outcomes.  It was 

my intent that the elements of the conjecture map lead to an initial hypothetical learning 

trajectory that will ultimately be refined as I enacted my research design.  
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Table 3-1 

Conjecture Mapping Design 
High Level 
Conjecture 
 

Engaging in a technology rich mathematical modeling learning 
environment helps students develop a frame of mind in which they 
begin to see how they can use mathematics to describe the world 
 

Embodiment 
 

Tools/Materials  
• Graphing technology 
• Interactive display mechanism 
• Patterns Curriculum/Activities 

Task Structures 
• Pattern Activities 
• Graphing Stories / CBR 
• Identifying Functions in Images 
• Identifying Functions from Data/Scatterplots 
• Deriving Models in Images 
• Deriving Models from Data  

Participant Structures 
• Cooperative Learning 

 
Mediating 
Processes 
 
 
 

• Students recognize, describe, and make generalizations about 
regularities in patterns of numbers, symbols, and graphs. 

• Students recognize the relevant quantities involved in the situation.  
• Students represent these quantities in tabular, graphical, algebraic 

forms.  
• Students hypothesize/explain how change in one quantity affects 

change in another quantity. 
• Students choose functions that are relevant to the situation.  
• Students test/revise whether their chosen function is an appropriate 

model 
 

Outcomes • Students use their derived models to answer/pose contextual 
questions about the quantities.  

• In the process of deriving models, students develop an understanding 
of the underlying structure of functions as it relates to its symbolic 
and graphical representations  

 

Description of Mediating Processes 
 As discussed previously, the mediating processes found in Table 3-1 are conjectured to 

lead to the hypothesized outcomes.  The following is a more in depth description of the 

interaction and activity associated with the mediating processes. 
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• Students recognize the relevant quantities involved in the situation. (They do this by stating 

the relationships existing between the quantities):  
• Students can represent these quantities in tabular, graphical, algebraic forms. (They take the 

values that represent the quantities and represent them in a mathematical form. This is seen 
when students make a scatter-plot from a table of values, and then find a mathematical model 
representing the plotted data):  

• Students hypothesize/explain how change in one quantity affects change in another quantity: 
(In the process of making sense of a of quantities and representing them in mathematical 
forms, students hypothesize how the quantities are related to each other.) 

• Students choose functions that are relevant to the situation. (This means they use a visual 
inspection of the graphical representation to choose a matching function. Or they use the 
contextual situation to argue why one function would be more appropriate than another (eg. 
population growth = exponential): 

• Students test/revise whether their chosen function is an appropriate model,  (They do this 
by plotting the function along with the data to gauge the fit of the function to the 
data.  Students revise their model until it fits the data.  Their revision can begin with guesses 
about how to adjust the function, but ultimately students learn how the coefficients of the 
function affect its fit): 

 

Description of Hypothesized Outcomes 
 As Sandoval (2013) describes, the outcomes in Table 3-2 should be as a result of the 

mediating processes being generated from the embodiment of the design.  

 
• Students use their derived models to answer/pose contextual questions about the 

quantities 
• In the process of deriving models, students develop an understanding of the underlying 

structure of functions as it relates to its symbolic and graphical representations 
 
The first outcome is the application or real-world use of functions and the second outcome is 

connected to students understanding how the parameters of different functions effect the graphs 

of functions.    

Curricular Content 
 The curricular content for the intervention/enrichment program consisted of concepts and 

skills found in the Common Core State Standards (CCSS) proposed for 8th graders enrolling in 

Algebra 1.  It included activities that had students thinking about what mathematics is, why they 

would want to study mathematics, and what it means to do mathematics. The instructional 
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content was divided into six learning segments (Table 3-2).  The learning segments were 

sequenced so that students learned the concepts and skills in a focused and coherent manner.  

This focus relates to isolating a smaller number of core mathematical ideas for a course and 

coherence is the idea that standards are "articulated over time as a sequence of topics and 

performances that are logical and reflect, where appropriate, the sequential or hierarchal nature 

of the disciplinary content from which the subject matter derives"(Schmidt  and Hoang, 2012, 

p.295, as cited in Schmidt et al., 2005). For this teaching experiment, the specific content 

included relationships between quantities, concept of function, linear functions and equations, 

and quadratic functions and equations.  The original intent was to include exponential functions 

and equations, but due to time constraints the content was excluded.   The reason these topics 

were included was because they represent the big ideas of Algebra 1 found in the CCSS.  

Additionally, the content is important given the academic background of the participants and 

their impending enrollment into Algebra 1 in 8th grade. 

 Table 3-2 (Appendix A) provides a description of the content, tasks, and activities for the 

classroom intervention. The mathematics content is in line with what I described above, 

however, due to the nature of design experiments, the amount of content students experienced 

differed based on the daily analysis and reflections from the classroom activity.  It is important to 

remember that this study examined a way of teaching Algebra through mathematical modeling, 

so a keen eye was paid to how students engaged in the modeling process.  This meant looking for 

ways to refine the modeling tasks to improve instructional design.   

Table 3-2 

Description	
  of	
  Content	
  
Task 

 
Activities Math Content 

Introductory activities around  
Calculator/Navigator use.  
Introduction to Patterns and 

• Log-Into TI Navigator system 
• Introduction to calculator and its use to 

• Use of handheld technology 
• Numerical, Symbolic, 
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How Mathematics is a Real 
World Activity. 

complete basic math operations 
• Have discussion of what mathematics 

is and what it means to engage in the 
study of mathematics 

• Pattern identification and creation 
activities. 

Graphical Patterns 
 
 

Graphing Stories Tasks and 
Calculator-Based Ranger  (CBR) 
Tasks 

• GraphingStories.com graph creations 
• CBR motion detector activities 

• Functional relationships 
• Graphical representations of 

related quantities 
• Rate of change 

 
Identifying Functions in Images 
Tasks 

• Introduction to functions and their 
graphs 

• Cooperative Group Task 
• Calculator Driven Task 
• Pencil-Paper Task 

• Functions (Linear, Quadratic, 
Cubic, Exponential, Rational, 
Absolute Value, Square Root, 
Sine) 

• Identifying functions based on 
their graph 

Identifying Functions in 
Data/Scatterplots Tasks 

• Plotting data and identifying a 
function that possibly could represent 
the data 

• Creating a table of values, plotting 
data and identifying a function that 
possibly could represent the data 

• Collect data, creating a table of values 
from the data, plot data and identify a 
function that possibly could represent 
the data 

• Creating scatterplots with 
technology 

• Identifying patterns in plotted 
data 

• Identifying functions based on 
their graph 

Modeling Tasks • Deriving models from images 
• Deriving models from data 
• Deriving models from collected data 

• Linear equations (y=mx+b) 
• Quadratic equations (standard 

and vertex form) 
• Math Modeling 

(Hypothesizing and creating 
appropriate models based on 
the situation 

 

Tasks / Activities  

Pattern Activities 
 During these tasks students were challenged to recognize, describe, and make 

generalizations about regularities in patterns of numbers, symbols, and graphs.  The goal for the 

initial task (Figure 3-2) was to create an opportunity for students to begin to think about what 

patterns are, how they can “arise from the world around us, from the depths of space or time, or 

from our inner workings of the human mind”, and how they connect to the idea of mathematics 

as a “science of patterns”. 
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Figure 3-2- Initial Pattern TASK 

CBR / Graphing Stories 
 The goal of the Graphing Stories.com tasks were to have students begin to make 

connections between physical contexts found in the real world, functional relationships existing 

within the physical context, and graphical representation of the functional relationship. The 

tasks originated from the GraphingStories.com website; they asked students to graphically 

represent a contextual situation that was provided to students in a fifteen second video clip 

(Figure 3-2 – Bottom 2 Images).  These graphical representations become the basis for wanting 

to study those mathematical functions found in algebra courses. 

 The purpose of the calculator based ranger (CBR) activities were to have students 

actively participate in the creation of mathematics via physical movement.   Their creations 



	
  

	
   38	
  

involved drawing mathematical representations of quantities, physically moving to produce 

graphical representations, and by explaining the relationship between quantities.  The CBR is a 

motion detector that collects distance, velocity, and acceleration data while connected directly to 

a TI graphing calculator.  These activities helped students recognize relevant quantities involved 

in a physical situation (Figure 3-3 – Top 2 Images). 

 

 
 

 

 

Figure 3-3- CBR and Graphing Stories Samples 

Identifying Functions in Images 
 The purpose of these tasks (Figure 3-4) was to see if students could identify graphs of 

functions in real world images.  Images were presented to students and they chose functions 

A	
  woman	
  climbs	
  a	
  
hill	
  at	
  at	
  a	
  steady	
  
pace	
  and	
  then	
  starts	
  
to	
  run	
  down	
  the	
  
other	
  side. 
(Speed	
  vs.	
  Time) 

First	
  you	
  stand	
  still	
  for	
  3	
  
seconds	
  far	
  away	
  then	
  after	
  
3	
  seconds	
  you	
  walk	
  or	
  run 
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whose graphs could be found in the images.  I hypothesized that being able to do this would 

allow students to begin to think about how to choose functions in contextual situations.  This task 

developed a student’s ability to connect mathematical representations to contextual situations. 

 
Cubic and Quadratic Functions 

 
Absolute Value and Linear Functions 

 
Sine Function  

Rational and Quadratic Function 
Figure 3-4  - Functions in Images 

Identifying Functions in Data 
 The tasks of identifying functions in data/scatterplots (Figure 3-5) during the class 

included three specific scenarios. The first was for a student to be presented with plotted data 

from some contextual or “real-world” situation, and then asked to identify and choose a function 

whose graphical representation matches that of the plotted data.  A second scenario involved 

students taking data from a table of values and representing this data in a graphical form. From 

there students used their knowledge of functions and their graphs to choose a function relevant to 

the situation.  This task helped students begin to see data as being represented in a graphical 
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form.   A final scenario involves students identifying a function in data during the initial steps of 

the modeling process.  

 

 

 

Figure 3-5 – Functions in Data 

Deriving Models Tasks 
 The specific tasks include deriving models of functions in images, deriving models from 

data, and deriving models from collected data. The intention of the latter two tasks and to some 

degree the first task was for students to use their models to answer/pose contextual questions 

about the quantities involved in the situation and to develop an understanding of the underlying 

structure of functions as it relates to its symbolic and graphical representations. 

Instructional Design   

Mathematical Modeling/ Curve Fitting and Classroom Practices 
 In order to engage the participants in increased opportunities to learn and to document 

their learning and mathematical practices, I created “model-eliciting” activities around the topic 

of data modeling and curve fitting.    To guide the creation of these activities, I chose data that 

can be approximated by those functions found in the Algebra 1 curriculum.  An example of using 

curve fitting to represent or model patterns in the real world can be found in Figure 3-6abc.  By 

using current handheld graphing technologies, the path of a shot basketball (Figure 3-6a.) is first 
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modeled by transposing the Cartesian plane on top of the image of the basketball (Figure 3-6b.).  

This produces data points that represent the path of the ball; a polynomial function is then 

obtained through the iterative process of expressing, testing, and revising until an appropriate 

model is determined.  As discussed previously, this iterative cycle follows Devlin's (2012) 

proposed Mathematical Method where students identify a pattern, study it, try to develop a 

notation to describe it, and then use that notation to further the study.  In our specific data 

modeling situation, this means students encounter a contextual situation where they produce a set 

of values that can be abstracted by a mathematical function. They will use graphing technology 

to plot these values and study the graphical representation or pattern formed from the data.  From 

here, students express a representation of the data by trying to identify a mathematical model 

(function) that fits the data.  To test whether this function is an appropriate model, they plot the 

function along with the data to gauge the fit of the function to the data. Depending on the fit – 

the graph goes through the points - of the function to the data, the students then revise their 

model based on the visual feedback of the graph along with the data and their knowledge of the 

function.  With this revision, the students are then in engaged in the iterative cycle of expressing, 

testing, and revising in order to find an appropriate model for the data.  Once a model is 

generated, students then answer posed questions regarding the context of the situation or even 

pose their own questions to answer. 

 

Fig. 3-6a 

 

Fig. 3-6b 

 

Fig. 3-6c 
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Cartesian Plane on top of image Values approximating the path Math model describing the path 

Figure 3-6 – Physical Situations (Basketball Shot) 

 Another way to engage students in the modeling process is through real-world data.  In 

the case below (Figure 3-7), the tabular data represents the predicted life expectancy for four 

demographic categories.  As can be seen from the scatterplots that are formed using graphing 

technology, a distinctive linear pattern is evident.  From here, students studied the linear pattern 

in the act of producing an abstract notation to represent the data.  In this scenario, students start 

with the slope-intercept equation (f(x)=mx+b) to begin their iterative process of modeling the 

data.  In sum, these are some of the initial methods students will employ to model data in this 

learning environment.  Additional methods or choices of topic were considered as a result of the 

“analyze and revise” portion of the design research methodology.    

 
Fig 3-7a. 

Table of Values for Life Expectancy 

 
Fig 3-7b. 

Plotted values by race 

 

Fig 3-7c. 
Linear Model that approximates life 

expectancy for Blacks 
Figure 3-7 – Life Expectancy Data 

Classroom Pedagogies 
 In addition to engaging struggling math students through data modeling and curve fitting, 

the instructional practices in the classroom attempted to follow what Boaler (2002, 2008) 

describes as positive characteristics of mathematics classrooms. These characteristics include 

“reasoning about applied problems, discussing mathematical ideas, and actively engaging in 

mathematical learning” (Boaler, 2012, p.3).  In order to achieve these goals, students were 

arranged in collaborative working groups during the instruction of the study. Because working in 

groups has shown to have great potential to support student learning in the mathematics 
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classroom (Webb et al., 2009), opportunities were provided for students to work together while 

developing their mathematical models and conceptual understanding of Algebra topics. 

Classroom Technology 
 This study utilized the Texas Instruments Nspire-CAS (Nspire-CAS) handheld device 

and the Texas Instruments Navigator Wireless Network (TI-Navigator) in conjunction with the 

data modeling and model-eliciting activities. The Nspire-CAS is a multi-function graphing 

calculator with applications allowing the user to create spread sheets, do statistical analysis on 

data, and compute solutions to algebraic equations via the Computer Algebra System.  The ease 

of use and visual features of the Nspire-CAS makes graphing, curve fitting, and data analysis a 

fluid process allowing students to participate in the express, test, and revise process of 

mathematical modeling.  The TI-Navigator system creates a connection between students and 

teacher wirelessly networking each student’s graphing calculator to the classroom computer.  

The TI-Navigator is designed so that teachers can track the progress of individual students or the 

class in real time, view student coursework, check problem solving techniques, guide 

performance, and use instant feedback to create a dynamic learning environment (Texas 

Instruments, 2012) 

 Given the context of the study, it was my hope that the potential utility of these 

technologic systems to the mathematical modeling process would help facilitate mathematical 

thinking, conceptual understanding, and procedural fluency for the participants.  Additionally, 

the prospective usefulness of these advanced tools in the classroom coheres to Lesh et al.’s 

(2008) position that “we must find ways to use technology to provide all children with 

democratic access to powerful ideas” (p. 114).  Specifically, all participants in this study had 

access to a TI-Nspire CAS in class as well as being able to connect to the TI-Navigator. 
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School and Participant Context 
 I used an independent Pre-K – 12 charter school in the greater Los Angeles area as the 

study site. The school population is approximately 75% Latino and 24% African American, with 

the remaining demographics made up of various groups. The total number of students in the 

entire span is approximately 1200 with about 25% considered English Language Learners. 

intervention/enrichment program.  These students had just completed 7th grade mathematics and 

were enrolling in Algebra 1 in the proceeding academic year.  

 The participants for the study were recruited from the school’s matriculating 8th grade 

cohort of students. With the help a school site administrator and the school site counselor, 

students and parents were informed a summer math class that would help prepare 8th grade 

students for Algebra 1.  Twenty-four students were allowed to enroll in the course based on their 

desire to participate or by suggestion that they could benefit from the course.  These students 

were consulted about the study and the potential of the program to help them successfully be 

prepared to engage in Algebra 1. 

Program / Class Structure 
 I was both the primary researcher for the project and teacher of the mathematical 

modeling Algebra 1 course.  There were also two pre-service student teachers in the classroom to 

observe me teach and assist with data collection.  With the course spanning five weeks (June 24-

July 26, no school July 4,5), I worked with the participants on a block schedule format (Figure 3-

8). This format takes the following form: I met with them Monday, Wednesday, and Friday from 

10:00am to 12:30pm.  These meeting times allowed me to see them for seven and half hours a 

week for a total of thirty-five hours during the five-week course.  It is important to note that my 

intervention course is not the only academic instruction the participants receive.  During the time 

they were not with me, they engaged in other academic and enrichment activities. 
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 Additionally, I gained access to this site because of my past history with the school.  I 

was one of the founding faculty members of the high school portion of the pre-K-12 campus.  I 

previously served as faculty member and administrator for the school for four years.  None of the 

participants was a former student. 

Week 

1 2 3 4 5 

M W F M W F M W F M W F M W F 

2.5 

hrs. 

2.5 

hrs. 

2.5 

hrs. 

2.5hrs. 2.5 

hrs. 

No 

School 

2.5 

hrs. 

2.5 

hrs. 

2.5 

hr. 

2.5 

hrs. 

2.5 

hrs. 

2.5 

hrs. 

2.5 

hrs. 

2.5 

hrs. 

2.5 

hrs. 

Figure 3-8 – Class Schedule 

Data Sources and Projected Analysis 
 Multiple sources of data were collected and analyzed in order to understand how the task 

and participant structures led to the emergence of the mediating processes in the design.  

Important in this process are the observable interactions and artifacts evidenced in the class.  

This evidence was also used to demonstrate the mediating process led to desired outcomes.  

Table 3-3 outlines the timing of the data collection activities – see Appendix B for a complete 

description of the rationale for each collection.   

 
Table 3-3 

Data Sources 
Timing of Collection In-Experiment 

Date(s) June 24- July 26, 2013 

Activity *UCLA MDPT Free-Response Algebra 1 Readiness Task (First Class 
Session) 
*Participant Calculator Responses (Daily) 
*Participant Written/Math Responses  (Daily) 
*Student Discourse  (Video – 5 Times in Total (Once a week)) 
*UCLA MDPT Free-Response Algebra 1 Readiness Task (First Class 
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Session) 
*Reflections on individual and group learning trajectories. Includes 
Field notes / Student daily Observation Form (see Appendix C)  
*Teacher Reflections on Instruction (Daily) (Appendix D) 

 

Limitations 
 Although the purpose of this study was to better understand what teaching 

and learning would look like in an Algebra 1 classroom engaging in mathematical modeling, due 

to time constraints of the summer course, results of the this study did not include students 

interacting with exponential functions. This critical component of the Algebra 1 curriculum, 

especially as it relates to the Common Core State Standards, was not 

studied.  Exponential functions are applicable to many aspects of the real world, so my belief is 

that the inclusion of them would have further supported students in connecting mathematics to 

their lives.
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Chapter 4 - Data Analysis and Findings  
 The presentation of data and findings is organized in two parts.  Part 1 shows how and 

where the mediating processes emerge from within the tasks; students’ interaction and artifacts 

are examined.  Part 2 maps out how the existence of the mediating processes function to produce 

the learning outcomes.   

Part 1 – The Emergence of Mediating Processes 

Introduction 
 The presentation of the analysis and findings for Part 1 focuses on the task structures 

students engaged in within the learning environment.  For each task, I display the evidence of 

mediating processes emerging from within the task structures, and also discuss how the use of 

graphing technology along with my adjustments to instruction supported student learning 

(the emergence of mediating processes and outcomes) within my learning environment.  The task 

structures analyzed include: Patten Activities, Calculator Based Ranger (CBR)/Graphing Stories, 

Identifying Functions in Images, Identifying Functions in Data/Scatterplots, and Deriving 

Models.  

 Each section heading for Part 1 is titled with a name of a task structure.  Within these 

sections is a description of the various tasks students engaged in, a discussion of what it looks 

like for students to work and participate while completing these tasks, and how the mediating 

processes emerged.  Additional content includes the role technology and instruction played with 

student learning in this environment.  It is important to note that for the first tasks (Pattern 

Activities / CBR and Graphing Stories), I only summarize the tasks and interactions in order to 

focus on the more complex tasks related to student learning.  My in-depth findings and analysis 
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are for the following tasks: Identifying Functions in Images, Identifying Functions in 

Data/Scatterplots, and Deriving Models. 

Developing a Mindset: Pattern Activities Tasks and CBR / Graphing Stories Tasks 
 The Pattern Activities and CBR/Graphing Stories tasks occurred at the beginning of the 

course.  The goal for these first two tasks was for students to see mathematics being used to 

describe the world and that the use of mathematical functions is one way to do that. 

Task Structures 

Pattern Activities 
 Starting the course with pattern activities created an opportunity for students to begin to 

think about what patterns are and how they could be described mathematically.  Figure 4-1abcd 

provides examples of the types of questions prompted to students.   The questions ranged from 

numerical and letter patterns to graphical and geometric patterns.  These activities were 

integrated into the first two class sessions and then cycled in throughout the course during 

opening warm-up prompts.  During these tasks students recognized, described, and made 

generalizations about regularities in patterns of numbers, symbols, and graphs.   

 

 

5,1,-3,___, -11, -15, ___, ___, -27, ___ 

2, -4, 8, -16, ___, ___, 128, ___ 

 

O,T,T,F,F,S,___,___,____ 

4-1c. 4-1b 
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4-1c. 

 

4-1d. 

Figure 4-1 – Pattern Activities 

CBR / Graphing Stories 

Graphing Stories 
 The goal of Graphing Stories.com tasks was to have students make connections between 

physical contexts found in the real world and the functional relationships existing within the 

physical context.  These graphical representations of the functions became the basis for wanting 

to study those mathematical functions found in Algebra courses.  In the process of completing 

graphing stories (Figure 4-2) students linked the action in the video to mathematical 

representations.    To represent the situation students identified a pattern of regularities in their 

graph and the action playing out in the video.  This type of interaction led students to have to 

recognize the relevant quantities involved in the situations being presented.  Although this only 

involved time (0 to 15 seconds) as the independent variable, students recognized how another 

quantity (dependent variable) was affected as time elapsed.  Furthermore, they figured out how 

to represent the relationships between the quantities in graphical forms. 

Calculator Based Ranger (CBR) 
 The purpose of the calculator based ranger (CBR) activities was to have students actively 

participate in the creation of mathematics via physical movement.   Their creations involved 

drawing mathematical representations of quantities, physically moving to produce graphical 
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representations, and by explaining the relationship between quantities.  Using a CBR motion 

detector to track distance versus time data, students were asked to walk in a manner that would 

produce specific graphs (See Figure 4-2c. for a sample graph).  Students were also asked to draw 

the graph of a specific situation (“A woman climbs a hill at a steady pace and then runs down the 

other side”, Figure 4-2d).  

 These activities helped students recognize relevant quantities involved in a physical 

situation.  This was seen when they physically walked in front of a motion detector to produce a 

graph of a real-world context.  In these cases the quantities were time and distance from the 

motion detector.  Important with these tasks is the opportunity for students to see that physical 

contexts found in the real world can be described using mathematics; they begin to make sense 

of how to model real-world situations. 

 

 

4-2a 

 

4-2b 
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4-2c 

 

4-2d 

Figure 4-2 Student Work 

Identifying Functions in Images Tasks 

Task Structure Description 
 The purpose of these tasks was to see if students could identify graphs of functions in real 

world images.  I hypothesized that being able to do this would allow students to begin to think 

about how to choose functions in contextual situations.  Finding a graph of a function in an 

image is a simplified proxy for finding a mathematical model to represent real-world contextual 

situation; this task develops a student’s ability to connect mathematical representations to 

contextual situations.  They begin to make sense of what it means to do mathematics: identify a 

pattern, describe with mathematical notations, and then use the notation for something in the 

world. 

 An example of these tasks can be found in Figure 4-3.  Images were presented to students 

and they were expected to choose a function whose graph could be found in the image.  It is 
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important to note that the representations found in the images may not appear identical to that of 

the actual graph.  This means students began to implicitly apply transformations of functions to 

identify them in the images. 

 

 

 
Absolute Value Function 

 

 
 

 
Quadratic Function 

 

 
 

Square Root Function 
 

Figure 4-3 – Sample Images with Functions 

 In order to support students’ ability to identify functions in images, students were given a 

resource, a tool containing the name of a function, its algebraic representation, and it graph.  See 

Figure 4-4 for an example of one function given to students.  See Appendix E for the entire 

y = x

y = x2

y = x
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document. When provided with images, students could then use their resource to choose relevant 

functions based on its graphical representation.  This means students would analyze the graphical 

shape of functions and see if they can found in an image. 

Equation: Absolute Value 

 

Table: 

 

Graph: 

 
Figure 4-4 – Function Resource for Students 

 Three main tasks were given to students to identify the graphs of functions in images, a 

cooperative group task, a technology task, and the last was done with pencil-paper.  The 

cooperative group task presented students with an image on the screen and they were asked to 

decide in their working groups which graph could be found in the image.  They chose their 

functions by sending a group member to the front of the class holding a large graph of the 

function. The technology version included students being electronically sent images to their 

handheld graphing calculator and then identifying them by submitting responses from their 

handheld to my computer.  The pencil-paper version included printed images where students 

identified graphs of functions by naming them and drawing over the image.  

Task Findings: Student Work and Participation 
 The analysis presented here looks at the choices students made for functions they see in 

images and also analyzes classroom discourse around the choices they are made.  It is not until 

the next set of tasks (identifying functions in data/graphs) that students were asked to write why 

they made the choices they did.  I chose not to have them write a reason for their choice with 

these tasks since this was the first time they were trying to connect functions (graph of complex 

y = x
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functions) to real world images.  The intent was to see if they would gradually develop a mindset 

that mathematics can be used to describe the world. So having them write reasons for the choices 

this early could possibly deter them fully participating at time when it is important to dive into 

the tasks without any caution of failure. 

 For these specific identifying functions in images tasks, two specific mediating processes 

emerged.  One, choose functions relevant to a contextual situation; meaning students examined 

an image of a real-world representation, then chose a function based on the shape of its graph 

they believed could be found in the image.  Two, students recognized and described patterns of 

regularity in graphs.  This occurred when students analyzed an image, looked for patterns in the 

image, and then described those patterns in multiple manners.   

Cooperative Group Task 
 Students showed that they could choose the appropriate function when working together.  

In making decisions about the image containing a parabola (Figure 4-5), all the groups chose the 

graph of the quadratic function as their answer.  Students could be seen shuffling through their 

stack of functions and matching them up to the projected image.   A snapshot of their activity is 

found in Figure 4-12.  One of the students in Group 1 is explaining in Spanish to the other 

student by pointing to the image on the screen while comparing it to the their stack of functions 

on the table.  Three of the students in Group 2 have their eyes pointed to the screen while 

examining a function they have in hand.  The fourth student in Group 2 is going through the 

stack functions to find a match.  The students in Group 3 and Group 4 can be seen discussing 

their options before deciding which function matches the image on the screen (Figure 4-5).  

Mathematical discussion leads to the development of mathematical practices; making sense of 

problems, arguing and critiquing others, and communicating their mathematical ideas.  By 
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choosing the quadratic function as being represented in the image, students in their groups 

recognized the parabolic pattern in the image and connected that to the quadratic equation.  

 The types of activity and interaction described for the image in Figure 4-5 continued for 

the remaining images (Figures 4-6 to 4-11).  Students compared, contrasted, and explained their 

choices about which functions were appropriate.  This was evident in the way they talked to each 

other during the choice of functions.    “I know this one” and “Sine, Sine, Sine” when they first 

saw the image in Figure 4-6.  When finding a function for Figure 4-7, different students could be 

heard saying, “It could probably be this one”,  “It can’t be this one”, “Could it be this one?”  In 

some cases, students defended and described their choices by saying, “It curves more”, “I think it 

is this one, because if you flip it over, it is the same thing as that [exponential function], “you 

really don't see the bottom part”, “You should flip it, flip it to the right.”  These exchanges show 

students recognizing and describing regularities of patterns in images. 

 Although student discussion did not always include the names of the functions, their 

comments indicated an ability to recognize a function in an image.  I cite further evidence of 

while they discussed images found in Figures 4-9 to 4-11.  “This one, this one” (a student 

showing a function to another student), “Maybe its that car, the car has this on top” (as a student 

points to a function on a sheet a paper), “Look the top of the car” (a student seeing a function on 

the top of the car), “I know I know” (a student recognizing immediately a function in the image), 

“Her nose, the top of the nose”, “Look at the car” (students trying to explain to another student 

where a function can be found in the image).  In an exchange between two students, one student 

asked the question, “Where do you see cubic?”  The other student responded with, “the car it 

goes like this and that, remember he showed us the pattern?” (This discussion occurred outside 
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the view of the camera, but I imagine that the student was using hand gestures to enhance his 

argument). 
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Figure 4-5 – Quadratic Function 

 
Figure 4-6 – Cubic Function 

 
Figure 4-7 – Square Root Function 

 
Figure 4-8 – Rational Function 

 
Figure 4-9 – Absolute Value Function 

 
Figure 4-10 – Sine Function 

 

 
Figure 4-11 – Exponential Function 
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Figure 4-12 – Student Activity During Cooperative Group Task 

 In addition to their conversations about functions, students communicated their ideas via 

pointing and hand gestures (Figures 4-13 to 4-19).  A conversation (Figure 4-19) shows one 

student explaining where the exponential function can be found in the image (Figure 4-11), he 

uses his hand to demonstrate to a Spanish-only speaking student and then says “mira de lado”, 

which means “look on the side.”  Highlighted in Figures 4-13 to 4-15 is similar communication, 

students pointing to graphs on their table or screen while comparing and contrasting and making 

choices about which functions are appropriate. These instances show students fully participating 

in the process of choosing functions appropriate for the situation.  It also shows them engaging in 

important mathematical practices.    

 Constructing viable arguments – an important mathematical practice- is demonstrated by 

students in Figure 4-16 and Figure 4-17.  Students used their hands and fingers to make an 

argument for their choice while trying to decide on a function that is represented in the image. 

Figure 4-18 shows a student asking to come to the board; “Can I show you?” was his question, as 

he wanted to defend to his choice.  He proceeded to come to the board and rotate the graph he 
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had in hand so that it mapped on to the image on the board.  This prompted another student to 

say, “exact too”, meaning that the rotated graph fit perfectly onto the portion of the image he was 

referring to. On a mathematical content note, this indicates an intuitive application of the 

transformation of a function, a concept not learned until a more advanced algebra or pre-calculus 

class.  

 

 
Figure 4-13 

 

 
Figure 4-14 

 

 
Figure 4-15 

 
 

 
Figure 4-16 - Student using hand gestures to demonstrate 
the shape he sees in the image displayed on the board and 
how it matches up to what is on paper. 

 
Figure 4-17 - Student uses his finger to point at the graph 
on paper as he explains to another student how it is 
represented in the image. 
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Figure 4-18 - Student raising his hand and leaning forward saying, “Can I show you?”; he wants to argue is point about 
his choice of function. 

 

 

Figure 4-19 - Student demonstrating with his hand and speaking in Spanish to another student to show where he sees an 
exponential function, “mira de lado” [look at the side]. 

 Group analysis shows that when students are working together they can choose 

appropriate functions relevant to the situation.  Table 4-1 shows the results for the groups’ 

choices.  Important in these interactions is not that they chose the correct function, but that they 

used the graphical patterns in the image to identify a function representing that pattern.   For this 

task, students associated the graphs of functions to real world objects; which meant they are 
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recognized a visual pattern and then found a way to represent that pattern in a mathematical 

manner. 

 These conversations and interactions are examples of students recognizing and describing 

patterns of regularity in graphs.  I use the term graphs to mean the images that are being 

represented on a coordinate axes system.  As students work collaboratively, each interaction 

showed students either recognizing a pattern in the image or describing to others where the 

pattern can be found.   What can be inferred from the type of language used is students are still 

early on in the ability to use formal mathematical language to describe the patterns.  Only a few 

students use the name of functions (“Sine, Sine, Sine”, “Where do you see cubic?” ) to describe 

the pattern at this stage, while most either identify a location in the image (“the car has this on 

top”, “Her nose, the top of the nose”) or beginning to use some math terminology (“remember he 

showed us the pattern?”, “It curves more”).  As will be seen in another task, students get better at 

describing these patterns by the using mathematical terminology to name the patterns.  I argue 

that this initial activity of recognition and description are mediators for students to choosing 

functions relevant to a contextual situation, which will then be a mediator for other mathematical 

activity. 

Table 4-1 

Group Results – Cooperative Task 
Image – Function(s) Found In Image Group Responses 
Figure 5 (Quadratic) All groups identified the graph of a Quadratic 

function. 
Figure 6 (Cubic, Sine) Five groups identified a Sine curve in the 

image and one group identified a cubic 
function. 

Figure 7 (Quadratic, Square Root, Exponential) Five groups identified an Exponential function 
in the image and one group identified a 
quadratic function. 

Figure 8 (Rational, Linear) Four groups identified a rational function, one 
group identified a linear function, and one 
group did not respond.  
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Figure 9 (Absolute Value) Five groups responded Absolute Value 
function and one group did not respond. 

Figure 10 (Sine, Linear) Five groups chose a Sine function and 1 group 
chose a Cubic function. 

Figure 11 (Exponential, Linear) All groups chose Exponential Function. 
 

Technology-Driven Task 
 Technology as a tool was used to support students in recognizing and choosing functions 

found in images. The initial tasks are multiple response items; students are given functions to 

choose from when making their decisions. The purpose for the multiple choices is in line with 

the idea that since these are initial tasks regarding these ideas, I wanted to provide students with 

the best opportunities to participate. The results for the images are presented in chronological 

manner, meaning they are presented in the order students encountered them in the class. 

 Table 4-2 summarizes the images presented to students and their choices for functions 

found in the images.  The results for these three images occurred during the first day students 

were asked to identify functions in an image.  From the first one to the last one, students showed 

an improved ability to look images and find graphical representations of functions in the images.  

The number of students who could correctly identified an appropriate function in the image was 

up to 95% by the last one for the day. In addition, the participation rate of students, at minimum, 

18 of the 22 students submitted an answer when prompted about choosing a function in an 

image.  This meant that students engaged with the idea that functions can used to describe the 

world. 

Table 4-2 

Number of 
Participating 
Students 

Image and Function Choices Student Responses 
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N=22 

 

22 different students 
responded with a total of 32 
choices of functions.  Of these 
selections, 13 chose a linear 
function, 9 chose an 
exponential function, 6 chose 
a quadratic function, and 4 
chose a sine function.   

N=18 

 

Each student only chose one 
answer although they were 
able to choose multiple 
responses.  The overwhelming 
choice by students (14 of 18, 
78%) was the absolute value 
function. As for the other 
students, 1 chose an 
exponential function, 1 chose 
a quadratic function, and 2 
chose a rational function. 

N=20 

 

19 (95%) of the students said 
they saw an exponential 
function in the image. There 
was a lone student who chose 
the sine function; I am not 
sure why they made this 
choice.   However, this student 
did choose appropriate 
functions with the two 
previous images.    

 

 Table 4-3 summarizes results from a second day of having students identifying functions 

in images. The results for the first two images show students analyzing an image and choosing a 

function - based on visual inspection - that is relevant to the situation. Similar to the results from 

the last image of the previous day, all but one student chose the function that was the most 

evident in the image of the bridge.  Second image was included since I believed it would cause 

students pause when deciding which function was represented.  The ambiguity in the picture 

forced to students to compare the graphs of functions to the peculiarities of the image. As a result 
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students chose multiple functions to represent the situation. For me, the rational function would 

have been my choice considering the symmetric nature of the rational function and the 

symmetric shape in the image.  More students choosing the rational function meant that they 

picked up on the symmetry and shape between the image and the graph.   This type of 

recognition is essential in identifying a potential model from plotted data.  As of the choice of a 

cubic function, I believe the curved shape found in the image could lead to this conclusion.   

Using that as a measuring stick, this shows students thinking mathematically.  For the last image 

(skater), students identified multiple functions; each of these could easily be argued for as 

appropriate, especially given the various patterns in the image. 

Table 4-3 

Summary	
  Results	
  
Number of 
Participating 
Students 

Image and Function Choices Student Responses 

N=17 

 

Sixteen of seventeen students 
identified a sine graph in the 
image of the sinusoidal shaped 
bridge.  One student chose the 
exponential function; 

N=22 

 

Sixteen of twenty-two 
students chose a rational 
function, eleven of twenty-two 
chose a cubic function, three 
students chose the linear 
function, and three chose the 
sine function.   



	
  

	
   65	
  

N=22 

 

The linear function was 
chosen by fourteen of the 
twenty-two students and the 
exponential function was 
chosen by ten of the twenty-
two students.  The choices by 
four of the students for the 
absolute value function and 
the choice by two of the 
students of the quadratic 
function are reasonable with 
respect to the image.   

 

Pencil-Paper Tasks 
 The pencil-paper tasks, completed after the cooperative group and technology tasks, 

asked students to identify functions in images without the support of multiple choices.  This 

meant they had to first individually analyze the image (Figure 4-20) and then find a function 

from their toolkit (See Appendix E) that they believed was represented in the image. 

 
Figure 4-20 – Pencil-Paper Task Image 

 
 
 The results of the students’ choices can be found in Table 4-4.  The data represents the 

functions chosen by students and the number of students who chose that function; students were 

able to choose multiple functions.  For example, of the twenty students who participated in the 

activity, eight of them identified the graph of a linear function in the image.  Additionally, all 
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students chose a variety functions they found in the image (Figure 4-20).  This indicates that 

students recognized patterns in the image and chose a function to describe the visual pattern.  At 

this stage it is important to note that whether or not the actual functions are in the image is not 

important at his point.  For example, the arch in at the bottom of the tower is more than likely not 

a parabola, but that does not make the choice of a quadratic function incorrect in this case. 

Students are made a connection between the real world aspect of the image and a possible 

representation with algebraic notation and language. This is a mediating process for them being 

able to produce a formal mathematical model from data.  

Table 4-4 

Student	
  Results	
  Functions	
  in	
  Images	
  
Function Found in Image Number of Students Identifying Function 
Linear 8 
Quadratic 11 
Cubic 11 
Exponential 7 
Square Root 8 
Absolute Value 12 
Rational  2 
Sine 1 
 
 A second pencil-paper task, a culminating activity for these types of tasks, presented 

students with 11 images (APPENDIX F), they were to choose one function whose graph was 

represented in the image. The data is reported by the number of images for which students 

identified an appropriate function (Table 4-5).  Eighteen students completed this task.  Four 

students correctly identify a function in each image but thirteen students correctly identified at 

least 8 functions in the images.  One student performed poorly, however, I believe it was not due 

their ability, but due to them just not completing the task.   

 Overall, students developed the ability to see functions in the images by comparing the 

shapes of the graphs to objects in the images.  The marking on the image (Figure 4-21) outlines 
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the graph the student identified; this ability is evidence that the mediating process of choosing 

appropriate functions relevant to a contextual situation emerges.  This helped students make 

sense of what it means to do mathematics: identify a pattern, describe with mathematical 

notations, and then use the notation in a productive manner. 

Table 4-5 

Culminating Paper-Pencil Task Results 
Number of images identified  Number of Students 

11 4 

10 9 

9 3 

8 1 

4 1 

 

 
Figure 4-21 - Student Identifying Function in Image 

 

Instructional Design 
 The plan for instruction for these tasks centered on providing students with a resource 

(APPENDIX E) to support their choice of functions found in images.  This resource should be 

seen as a tool for them to use to begin to think about how mathematics can be used to describe 

the world.  Observed during these tasks were students using this resource in productive ways to 
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choose an appropriate function. They were seen looking at the images and referring to the 

resource to choose a function.  The resource became a centerpiece between multiple students as 

they discussed possible functions that could represent the situation.   

 My initial plan prior to engaging students in these tasks was to have images appear on 

their handhelds, and then they would interactively respond and submit their choice of functions 

to my computer via the handheld.  However, I made adjustments to my instruction based on how 

students engaged with the content prior to these tasks.  Looking at my observation notes during 

the study “I learned that I need to make sure students are actively engaged in the lesson and need 

to alter the types of activities they engage in.”  As a response, the collaborative activity analyzed 

above was my attempt to have students participate in mathematical activity.  Based on the 

results, not only did mediating processes emerge, but students used mathematical language in a 

give-and-take manner to discuss the naming of functions found in images.  After this 

collaborative task, I proceeded with sending images to students’ handhelds so they choose the 

function and submit it to me electronically.  

 One thing I learned from the transition of initial tasks (Pattern Activities and 

CBR/Graphing Stories Tasks) is the need to approach classroom instruction like I was a 

classroom teacher.  Meaning that I could not just expect the students just to be well-behaved and 

fully engaged into the content because I was conducting a study. I needed to conceive of sound 

instructional strategies that took into account students’ prior experiences and knowledge, as well 

as strategies that help students have positive learning experiences.  These ideas led me to 

implement the collaborative learning activity as a way to introduce students to functions as a 

representation of the world.  By the end of these tasks, students were able to identify a function 

inside a picture.  
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Technology as a Mediator 
 Since students have access to a handheld graphing calculator and I was using the TI-

Navigator computer system (the TI-Navigator system creates a connection between students and 

teacher wirelessly networking each student’s graphing calculator to the classroom computer), the 

use of technology becomes an important tool to support the emergence of mediating processes 

and ultimately the desired learning outcomes.  As a result, it is important to discuss where in the 

participation of these tasks did the technology support such learning goals.  Up to this point, 

students were using the handheld to log-in to the TI-Navigator system and to respond to polling 

questions using the handheld to submit their answers to me.  They had also been introduced to 

the basic features of the handheld via Cross-Number computational activity (Appendix G). 

 The technology used during these tasks included students choosing functions they find in 

images that were sent to their handhelds.   This personalization was to allow students a safe 

space to process and thing about their choices.   They would choose the function, submit it via 

the handheld, and their response anonymously displayed on my computer.  In turn, I would 

project for the class to see.  The purpose of the public display was to encourage conversation 

about the choices and have students defend their choices when they would see alternative 

answers.  As seen from the results section, most students were able to choose appropriate 

functions, and classroom discussion showed evidence of students thinking and reasoning about 

mathematics as well as the beginning use of correct academic language. 

Identifying Functions in Data/Scatterplots Tasks  
 These sets of tasks followed immediately after the identifying functions in images tasks.  

Three versions of tasks prompted students to identify functions in data or scatterplots.  Each task 

structures is described prior to the presentation of results and findings of students engaging in 

these tasks. 
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Task Structure Description 
Task Type 1 – Plotted-Data: The first was for a student to be presented with plotted data from 

some contextual or “real-world” situation, and then asked to identify and choose a function 

whose graphical representation matches that of the plotted data.  For example, in Figure 4-22, 

data from a contextual situation is plotted (scatterplot) and students are then asked to access what 

they know about the graphical forms of functions to choose one that best represents the data.  

 
Figure 4-22 – Plotted Data 

 
Task Type 2 – Tabular Data: A second task involves students taking data from a table of values 

and representing this data in a graphical form.  Students used their knowledge of functions and 

graphs to choose a function relevant to the situation. By transforming the table of values into a 

scatterplot, students were then able to describe the data with a mathematical notation. Figure 4-

23 shows an example of a table of values from a contextual situation. 
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Figure 4-23 – Identifying Functions in Data/Scatterplots Task 2 

 
Task Type 3 – Initial Modeling: A third task involved students identifying a function in data 

during the initial steps of the modeling process. Figure 4-24 shows a scatterplot of data that has 

been collected by students.  The process of finding a mathematical model included students 

interacting with real-world data, representing it in graphical form, and identifying a pattern 

(asking them which function could represent this data).  This process mediated their ability to 

find a formal mathematical model.  

 

 
Figure 4-24 – “Real-World “Modeling Data 

 
 

Student Work and Participation 
 The following analysis shows how three mediating processes emerged while students 

participated in tasks where they identified functions in data and scatterplots.  The mediating 

processes were; students recognized and described regularities in patterns in graphs, represented 

quantities in tabular and graphical forms, and choosing a function relevant to the situation.  Both 

group and individual level findings will be discussed. 

Plotted-Data - Data Analysis 
 Table 4-6 shows the results of three successive scatter-plots presented to students on their 

handheld devices. For each, students individually responded by submitting their answer to my 

computer. In each case, the majority of students chose an appropriate function to represent the 
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plotted-data.  For the first plot, thirteen of fifteen students chose a relevant function; for the 

second one, seventeen of twenty chose a relevant function; and for the last one, twenty-one of 

twenty-two chose the cubic function.  These results indicate that students recognized that pattern 

in the plotted data, connected the basic graphical form of a function to that pattern, and then 

chose an appropriate function. 

   For those students who did not choose an appropriate function, there were only a few 

instances where students chose an unrelated function.  For the first plot, only the absolute value 

function was unreasonable because of its “V” shaped graph; and only one student chose this 

function.  In the second plot (curved), three students chose the linear function and none chose the 

sine function.  Since no explanation accompanied student choices, it is difficult to know exactly 

why three students chose a linear function to represent the curved data.  Important to note is that 

by not choosing the sine function, it shows students can identify functions that are not relevant to 

the situation; an ability on a larger scale that is an essential for effective mathematical thinking.   

 For the final prompt of this task type, one student chose a rational function.  The student 

who chose the rational function previously had no trouble identifying a relevant function for the 

other tasks, so it is difficult to know exactly why they did not choose the cubic function like all 

the other students.  A thought is that the plotted data demonstrates similar behavior to that of the 

y-values of the rational function; the y-values are unbounded (increase without stopping) for 

both functions.  Assuming that this may be a reason why the student chose the rational function 

as the representation, it shows that the student used the patterns in the graph to make a choice. 

Table 4-6 

Plotted-Data Student Results 
Number of 
Participating 
Students 

Plotted-Data Student Responses 
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N=15 

 

Of the fifteen participating students, 
seven chose exponential function, 
four chose rational function, two 
chose y=2x (algebraic form for an 
exponential function), and one chose 
absolute value. 

N=20 

 

Of the twenty participating students, 
fourteen students identified the data 
as an exponential function, three as 
quadratic, and three as linear. 

N=22 

 

Of the twenty-two students 
participating, twenty-one chose the 
cubic function and one student chose 
the rational function as the 
representation. 

 

Tabular Data - Data Analysis 
 For these task types, students represented a table of values in graphical form and 

identified a function that represented the plotted data.  Figure 4-25 provides an example of what 

sixteen of twenty-one students produced in this task.   These students represented the quantities 

in a table, plotted the data by hand and using technology, and identified the graphical pattern as a 

linear function.  One of the sixteen students not only chose a linear function to represent the 

situation, but the student found a specific function (y=x+1) to describe the situation (Figure 4-

26).  Whether the student used the description in the context, the values of the quantities, or the 

plotted to data to derive the equation is unknown, but this attempt forms beginning steps to 

deriving a mathematical model. 
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 Three students produced a correct table but did not identify a function to describe the 

data; the reason for this is unknown. More interestingly, two students created the table, plotted 

the data, and then described the data with an incorrect function; one student chose absolute value 

and the other chose exponential function.  Its possible the student who chose the absolute value 

was thinking of the “V” shape graph produced by the absolute value function in terms of pieces.  

Thinking of absolute value graph in piece-wise sections – two linear parts – makes the choice of 

the absolute value function acceptable.  The student in this case not only recognized a pattern 

after representing the quantities in graphical form, but also chose a function that is relevant to 

this situation.   

 
Figure 4-25 – Student Written Work #1 
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Figure 4-26 – Student Written Work #2 

 
 A second task  (Appendix H), completed after the plotting-data tasks, used technology to 

study graphical patterns and functions represented in multiple forms (graphical, tabular, 

algebraic).  The analysis highlights common responses made by most students, and unique 

answers that are incorrect, but demonstrate the emergence of mediating processes. 

 The first two responses (Figures 4-27,4-28) are representative of how fourteen of twenty 

students responded to the prompts.  Although the hand plots are not scaled correctly (probably 

due to the translation from the hand-held to paper), they show students representing the data in 

multiple forms, recognizing patterns, and choosing functions relevant to the situation.  At this 

time point in the class, students had not been asked to formally name the patterns with algebraic 

representations.  However, naming the pattern with a function name was a primer for finding a 

model for the data. 
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Figure 4-27 Linear Function Sample 

 

 
Figure 4-28 Quadratic Function Sample 

 
 The two examples in Figure 4-29 and Figure 4-30 are of interest because of the incorrect 

mathematics displayed.  However, these students still demonstrated they could choose a function 

relevant to the situation.  They do this by matching what they know about graphs of functions to 

the data they plotted.  The response in Figure 4-29 is for the same data found Figure 4-28, 

however, the student inverted the columns in the table and plotted the quantities time versus 

height.  Unfortunately, the inversion is evidence that the student did not reason about relationship 

between the quantities.  Despite these shortcomings, the student still identified a quadratic 

function as the best representation for the data. 

 Due to the lack of labels (Figure 4-30) on the axis it appears the student plotted the points 

based on looking at a graph on a calculator.  The student chose the cubic function as the 

representation for data although the context of the data was periodic in nature (sinusoidal). Given 

the initial stages of growth for these students in regards to functions representing the real world, 

the choice of a cubic function makes sense based on the curved shape of the data.  Both the cubic 

function and the sine curve have points of inflection (point where graph changes concavity), 

which makes these graphs look similar. Based on these characteristics, the student chose a 

function relevant to the situation. 
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Figure 4-29 Quadratic Function Sample 2 

 

 
Figure 4-30 Cubic Function Sample 

 

Initial Modeling - Data Analysis 
 This task type had students identify a function from data they have collected.  The data 

and analysis come from the initial stages of students going through the modeling process.  In 

later tasks, students used derived models from this process to predict an outcome for an event of 

interest.  In this first case (Appendix I), students predicted the time it would take for a miniature 

parachute to fall a distance of 3 stories (965 cm). In order to do so, they collected data for the 

drops of the miniature parachute at various heights under 200 cm.  For a second task students 

collected and plotted for a situation where students found a mathematical model representing a 

physical a bungee jumping situation.  They did this using rubber bands and Barbie dolls to 

replicate a bungee jump using various lengths of bungee.  Figure 4-31 and Figure 4-32 display 

sample student work for each task.  
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Figure 4-31 Sample Student Work Barbie 

 
 

 

 
Figure 4-32 Sample Student Work Barbie 

 
 
 Across both tasks, although at different rates of participation, students collected and 

represented data in tabular and graphical forms (89% for task 1 and 65% task 2, Table 4-7).  

They also showed the ability to analyze various features of a graph then choose a relevant 

function to represent the data.  More telling then their choice of function was the explanation for 

their choice.  Comments like “it looks like exponential because it looks curv[y]” and “linear 

because I see the diagonal lines going a positive slope” show a level of mathematical 

sophistication and understanding by students to eventually derive a mathematical model to 

represent this situation and make predictions.  Evident in these responses is the students’ ability 

to choose a function by comparing the pattern of the plotted data to that of graphs of known 

functions.  Table 4-7 contains more evidence, “Linear, I think [it] is linear because the line is 
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going strait and because there isn’t any other function that looks like this.”  This student went 

through their database of functions to choose a function that matches the data. 

 A unique example (Figure 4-32) provides more evidence of mediating processes 

emerging.  A student’s response for their choice of a function, “it looks like [a] cubic function or 

a linear function” is based on the shape of the plotted data.  From a global perspective, the 

overall trend of the data appears to be linear, but upon further inspection, the center of the data 

shows a change in concavity. This change in concavity gives the data a cubic look; a prominent 

feature for the graph of the basic cubic function.  The student developed ability to not only to 

represent data in multiple forms (tabular and graphical), but to analyze various features of a 

graph and then choose a relevant function to represent the data.   

 This written work and explanation of why they chose a particular function indicates how 

students thought about graphical patterns.  A student describing why they choose a function 

based on how the data looks, led to them choosing an appropriate function whose graphical 

representation resembles the plotted data.  Students interacting with real-world data by taking the 

data, representing it in graphical from, and identifying a pattern (asking them which function 

could represent this data) mediates their ability to find a math model to represent the data.  This 

further buttresses the evidence that the mediating processes (representing quantities in tabular, 

graphical, algebraic forms, recognizing and describing regularities in patterns of graphs, and 

choosing functions that are relevant to a situation) emerged within these tasks. 

Table 4-7 

Task Functions Chosen Student Written Reasoning 

Parachute 
Activity 
(N=19) 

Seven students responded 
that the data showed a linear 
pattern, six students 
identified the exponential 
function as a possible 

“It looks like exponential because it looks 
curv[y] and because the points” 
 
 “And it looks like linear because it is kinda 
straight” 
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function, three stated the 
square root function, and one 
said the cubic function fit 
their data, two students did 
not respond 

 
“Linear because I see the diagonal lines going 
a positive slope” 
 
“Exponential because you can see the lines 
curve a little bit” 
 
“Its exponential or linear function because it 
has a curve and it also looks a diagonal line” 
 
“Linear because it looks like a line” 
 
 

Bungee 
Jumping 
Activity 
(N=17) 

Eleven of the seventeen 
students stated the data 
looked linear and/or cubic.  
The rest of the students 
either plotted and did not 
choose a function (n=5) or 
simply did not plot the data 
(n=2). 

“The function is linear because it almost looks 
like a line” 
 
“It looks like a cubic function or a linear 
function” 
 
“liner por ninguna funcion se paresca a la 
linear” 
 
“Each time you add a rubberband to a barbie 
doll, the barbie doll bungie jumps lower than 
before (it makes a positive slope going 
diagonally - linear function)” 
 
“because is looks like a line” 
 
“Linear I think is linear because the line is 
going strait and because there isnt any other 
function that looks like this” 

 

Instructional Design 
 Identifying functions from data and scatter plots is a more complex task then identifying 

a function in an image.  Looking at a real-world image immediately contextualizes the situation 

for the students; while examining and plotting numerical data adds a layer of abstraction to the 

process of choosing an appropriate function to represent the situation.  Without explaining to 

students the numerical characteristics of different functions, students have to first plot the data 

before identifying a function that could be a representation for the data.  This means a procedural 
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step needs to be completed prior to students being able to recognize and describe the pattern; this 

step is to plot the data.  During this course, students were shown how to do this to do using their 

handheld graphing technology.  I will discuss in the next section how this supported student 

learning.  Given this background, I learned that it was important to create alternative learning 

experiences and to contextualize the data otherwise some students would lose interest in the task. 

 These specific tasks occurred about half way through the course, so by this time I had 

become aware of classroom instruction that facilitated increased student engagement.  For 

instance, I utilized more collaborative activities where students distributed the work in their 

groups to accomplish specific goals. In one task, students were provided with eight tables of 

values representing real-world situations (Appendix J) they were to identify an appropriate 

function for the data.  Instead of having students complete all the tables of values, students were 

each assigned two of the situations to work on.  They then met with another student in the class 

to explain and verify their findings.  Once they were confident with their work, they returned to 

their original group to explain why the chose the function they did.  

 Another thing I did was to begin classes analyzing data from the real world or data that 

was collected by them.  I did this to contextualize the mathematics they were doing; examples 

included showing videos of situations and presenting data about those situations and having them 

physically collect data in order to answer a question.  Videos I used were cars skidding to stops 

to analyze stopping distances, a CNN video of the Asiana Airlines plane crash in San Francisco 

(Summer, 2013) to discuss the data on landing a plane, and videos students made while shooting 

a basketball to determine the path of the ball.  Collected data included their shoe size and height, 

distance they live from school and the time it takes to get to school, and identifying the 

horizontal distance and height of a ball as it was tossed in front of a whiteboard.  Many of these 
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activities were added to my daily plans in order to better connect the mathematics they were 

learning to real-world situations.  

Technology as a Mediator 
 In addition to role the handheld graphing calculator and TI Navigator played in the 

previous tasks - interactive communication and feedback between students and myself – the 

handheld was used to assist students with the process of graphically representing data.  Within 

these tasks students were expected to choose an appropriate function that represents the data 

found in a table of values.  To do this, students first had to make a scatterplot.  However, to assist 

with the tedium of hand plotting or those students who need additional support with the 

procedures to correctly produce a plot, students were allowed to use the handheld to produce the 

scatterplot.  The flexible use of the handheld to quickly produce these plots allowed students to 

examine the patterns in the distributions.  Being able to see the data plotted in a correct and 

efficient manner mediates their ability to then choose a function that could be relevant to the 

situation.   

 Figure 4-33 is a sample of written and calculator work produced by a student.  The 

student begins by creating a table of values based on the given situation.  Using a graphical 

approach to analyze the data, the student then enters the data into a list on the handheld.  Once 

into the calculator, a scatterplot is quickly produced.  With the data now plotted, the student is 

then able to make an educated decision about which function represents this data.  In this case, 

the student identifies the linear function as the appropriate choice.  Since there is no explanation, 

we can only assume because the data forms a straight line that this is why the student chose the 

linear function.  It is important to note that I could have first instructed to students to examine the 

rate of change in the table as a way to identify an appropriate function.  However, because only 

the linear function produces a somewhat trivial result when considering the rate of change or first 
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differences, I thought it was a conversation worth having only after students approached these 

situations from a graphical perspective.  

 For these tasks, having students engage in identifying functions in data and scatterplots 

with the use of technology led to the emergence of students being able represent quantities in 

tabular and graphical forms, recognize and describe regularities in patterns of graphs, and 

choosing functions that are relevant to a situation. In sum, the results show what it looks like for 

students to participate and produce mathematics as well as what it looks like for the mediating 

processes to emerge.  

 

 

  

Figure 4-33 Student Written and Calculator Work 
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Deriving Models Tasks 
 The deriving models tasks are at the heart of what it means to do mathematics from a 

“science of patterns” perspective. The creation of models to describe a pattern follows the early 

steps of Devlin’s Mathematical Method (2012): 

• Identify a particular pattern in the world 
• Study it 
• Develop a notation to describe it 
• Use that notation to further the study 

 
This section will begin with a brief description of what the tasks looked like. 

Task Structures Description 
 The specific tasks include deriving models of functions in images, deriving models from 

data, and deriving models from collected data. The intention of the latter two tasks and to some 

degree the first task was for students to use their models to answer/pose contextual questions 

about the quantities involved in the situation and to develop an understanding of the underlying 

structure of functions as it relates to its symbolic and graphical representations.   An example of 

each can be found in Appendix K.  It is important to keep in mind that at the core of the 

modeling process is the use of technology to engage in the iterative process of expressing, 

testing, and revising until an appropriate model is determined.  

Student Work and Participation 
 The analysis and findings for these tasks will come from a snapshot of the specific tasks 

students engaged in during the class. I analyze the work from the perspective of identifying how 

students engaged in the iterative process of finding a model to fit the data in the given situation. 

The focal mediating processes emerging from these modeling tasks are students representing 

quantities in multiple forms (tabular, graphical, and algebraic), students choosing functions 

relevant to a situation, and students testing and revising to determine whether their chosen 

function is an appropriate model for the situation.  Students recognizing regularities in patterns 
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of graphs, which was prominent mediating process in other tasks, also played a role in the 

deriving models situations. 

Deriving Models in Images 
 For this task students found models representing the streets found in the image (Figure 4-

34).  The streets in the image are those in the immediate vicinity of where most of the students 

live; the choice of using a familiar locale was a result of trying to personalize the content for the 

students. Personalizing the content was an adjustment to instruction to increase student interest.  

 Results for this task are categorized into three categories based on how nineteen students 

performed (Table 4-8). With the first two groups, the goodness of fit was determined by seeing 

whether or not the derived model overlapped the image in their handheld.  The technology used 

in the class allowed for students to see an image on their handheld screen, and to place the graph 

of their models over the image in order to determine a good fit.  The group who did little or 

nothing were a combination of students who still had not developed the skills to start the 

modeling process or just resistant to participating in the summer program.   

 

 

Figure 4-34 – Images of Streets on the Handheld 
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Table 4-8 

Modeling Process (Street Task) 
Number of 
Students (N=19) 

Modeling Process 

n=2 This group obtained a linear model for the streets mainly by altering both 
the slope and the y-intercept in an iterative process.  They then checked to 
see if the model matched the street in the image. 
 

n=13 It appears this group derived their model by first calculating a correct 
slope for their model and then altering the y-intercept to check to see if an 
appropriate fit was made, meaning they found a linear model that matched 
the street in the image.   
 

n=4 This group either did not do anything significant in regards to the 
assignment or simply did not document the work they did to obtain the 
models for the streets.   

  

 The first group of students found models to represent the streets in the image.   The 

results show the work for one of the streets outlined in the assignment.  Although the complete 

task asked students to find models for five streets, I limit my analysis to the first assignment 

prompt – finding a mathematical model representing the street that goes through the two points (-

4,0) and (-2,4), Broadway Street (See arrow on Figure 4-34).  The written work for the two 

students is found in Figure 4-35. 

 The work for both students shows a sequence of iterative attempts to obtain a model for 

the Broadway Street.  They began their modeling process starting with the equation y=x; this 

shows students knew they wanted to use a linear equation to model Broadway Street.  

Explanations of how the model is altered to find a better fit is also seen in the student work. In 

the first case (Figure 4-35), the student begins altering the original model by recognizing that the 

y=x model does not match or fit Broadway Street, the student says “make it higher” to 

acknowledge the y=x needs to be moved up to fit the street.  The second student then proceeded 

in a similar manner; choosing to revise their model each time by changing the y-intercept.  The 
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student stated, “a lot”, “higher”, “higher”, “lower”, “perfect”, as they described the alterations 

needed to adjust their model to fit Broadway Street.  The trajectory of alterations, y=x, y=x+2, 

y=x+4, y=x+6, y=2x+8, shows the student tried to find a model by examining the graph of the 

chosen model and comparing it to the street on the image. 

 Another implication of this work is the connection between the changes students 

suggested and how that altered their choices for the parameters in their models.  For example, the 

first student chose y=x+4 as the next model after y=x and recognized that this was not good; they 

suggested to “make it align” to fix the problem.  The next moves were also to the y-intercept, 

y=x+2, y=x+6; this moved the linear model down and then up.  Following the y=x+6 model, the 

student said they needed to make the their model a “little lower”.  Based on the suggested 

adjustments by both students, their models were altered appropriately until they obtained a good-

fit model.  A full trajectory of the student’s models can be found in Appendix L.  Each picture 

displays the graph and equation for the model being tested.   

 A limitation of this analysis is not being fully aware of any mental or undocumented 

modeling attempts by the students in the modeling process.  If existing, knowing the models 

could shed further light on their thinking and how the meditating processes emerged within the 

tasks.  With that said, each student showed evidence that they chose a function relevant to the 

situation - a linear model to represent the street; and that they used their knowledge of linear 

functions along with the graphing technology to test and revise their models to obtain a line of 

best fit.  
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Figure 4-35 Student Models 

   

 The second group consisted of the students (n=13) who derived their model by first 

identifying a linear function as a possible fit, then calculating a slope for their model using the 

given points on the image, and then altering the y-intercept to check to see if an appropriate fit 

was made. My evidence that they calculated the slope first rather than using a trail and learn 

method is based on how they recorded the slope in their equation.  They either recorded the slope 

in fraction form (4/2), meaning they used the classic “rise over run” method (𝑚 = !!!!!
!!!!!

), or they 

recorded the correct slope of 2 for their initial model, so I am hypothesizing that they also 

calculated the slope first before doing any trial and learning process to obtain a model that 

represents Broadway Street (Figure 4-34). 
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 Figure 4-36 shows student responses for four students who calculated the slope prior to 

engaging in their search for a model to fit Broadway Street.  It is evident in their iterative 

attempts that they knew how to choose an appropriate function and alter it to find a function that 

goes through the street.  Their documented adjustments also show they knew how to change 

parameters in the model to find their model.  Their comments for their adjustment included “I 

just need to find the y-int”, “change the y-int” “move up to 4”, “slope is good, move to -4”.  

These statements indicate that these students believed their slope is correct.  The student’s 

comment, “keep the slope” indicated that they were aware that a model with a slope of 2 is a 

good start.  This good start is probably related to the fact that their first attempt, y=2x+3, is 

parallel to Broadway Street. 

 These examples show student recognizing the linear pattern in the street, choosing an 

appropriate function to begin the modeling process, and obtaining a final model via a test and 

revise strategy.  Their trail of equations is a good way to see the students thought process until 

the graph of the model overlaps the street they were representing. 
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Figure 4-36 Student Models 
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Deriving Models from Data/Collected Data 
 The task analyzed here prompted students with the following graphic, scenario, and 

questions (Figure 4-37). 

At many automobile crime scene investigations, investigators often measure the skid marks left 
behind by those cars involved in the accident.  By measuring and recording the length of the 
skids marks, crime scene investigators can determine the speed of the car.  We will use the data 
below to determine how they do this. 
 

 
1) What is the stopping distance for a car that is traveling 35 mph and 100 mph? 2) When driving 
in front of a school, the posted speed is 25 mph. One day you are driving in front of a school and 
have to come to a quick stop. The neighborhood officer sees this and measures the skid mark left 
behind your car. He measures the skid mark; it turns out to be 50 feet. He then writes you a ticket 
for speeding, was he right or wrong to do so? 
 
Figure 4-37 Stopping Distance Prompt 

  Those students who successfully addressed the prompted questions made sense of the 

quantities involved, created a table of values from the numbers in the graphic, made a scatter plot 

using the values in the table, recognized a pattern in the plotted data, identified a function to 

represent the pattern, and then determined a mathematical model that fit the data.  These skills, 

which were my hypothesized mediating processes, emerged (students showed the ability to do 

these things) while students engaged in the given tasks. 
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 By the end of this activity, which was one of the last tasks students completed in the 

course, work samples of the eighteen students (n=18) who turned in their work and had 

attempted some aspects of the task (Table 4-9) were collected.  Without discounting those 

students who completed little, this analysis focuses on the first two groups of students.  Figures 

4-38 to 4-43 show the written work for six of the eight students who documented their process 

for finding a model to fit the Stopping Distance data.  From this group, two categories of 

students emerged in this activity; one group identified a linear function as an appropriate 

function to model the data, and the other group recognized that the linear function might not be 

the most appropriate model and altered their plan of attack by trying a quadratic function. 

Table 4-9 

Student	
  Results	
  Stopping	
  Distance	
  
Number of 
Students (N=18) 

Stopping Distance Modeling Process 

n=8 eight students documented their modeling process with written and 
technological documentation, 
 

n=6 six students completed the work mostly on the calculator, either with a test 
and revise process or with the transformation tool 
 

n=4 four students completed little or nothing. 
 

 To start, the two students who used only a linear function for their model both 

approached their changes in a similar manner.  Each chose to alter the value of the slope during 

the process.  Indicating this are their explanations for adjustments, “add to the slope” and “put it 

more up” (Figure 4-38, Figure 4-39). The second statement accompanied successive changes in 

the equation for the model, “y=x”, “y=5x”, “y=4”, “y=2x”, “y=2.3x”, “y=4.0x”.  These 

adjustments showed that the student tried to fit the graphs to the data points by altering the “m” 

(value of the slope) parameter in the y=mx+b equation.  This meant they were aware of how the 

change in parameters of the linear function impacts how the graph appears.  
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1: Make both numbre grente 
2: add to the slope 
3: add 0.5 to the slope 
Figure 4-38 Student Models 

 

 

1: Put it up more 
 
Figure 4-39 Student Models 

 
 

 The second group of students who documented their work started the model seeking 

process by choosing a linear function (Figures 4-40 to 4-43).  Two of them started with “y=x”, 

the others started with “y=3.91x” and “y=4.7x-39”.  As I mentioned previously, it was not 

documented why they chose those starting functions, all we know is that their initial choice was 

a linear function.  The item differentiating this group is their choice to change their model type 

from a linear to a quadratic function.  Students articulated some of their thought process, “Now I 

think it is quadratic”, “Not even close to a line”, “Try a different function”, “try a Quadratic” 

(Figures 4-40 to 4-43).  These statements indicate a conscious recognition on the students’ behalf 

that their initial plan of attack to use a linear function to model the data was appropriate in this 

case.  

 From this group, Figures 4-41 and 4-43 show the students’ understanding of how the 

parameters in the models need to be changed in order for the model to graphically fit the data.  

The two students used the following phrases when describing the adjustments they made: “add a 

slope and y-int”, “change the vertex”, “change the a”, “ I just need to find a slope”, “found my y-

intercept but just need my slope”, “I’m really close now”, I’m just trying to find the x-value”.  

The students are making an explicit connection between the graph and how altering certain 



	
  

	
   94	
  

values in the equation influence how the graph looks and fit the data.  Figure 4-44 shows the 

graphical trajectory of the models from Figure 4-43. 

 

1: Not even close to the line 
2: So close 
3: Yay???? The Correct One 
Figure 4-40 Student Models 

 

 

1: I just need to find the slope 
2: found my y-intercept but just need my slope 
3: I’m really close. Now I think it is quadratic 
4:I’m just trying to find the XXXXX 
Figure 4-41 Student Models 

 

 

1: try a different function 
2: IDK 
Figure 4-42 Student Models 

 
 

1: add a slope and y-int 
2: try the Quadratic 
3: change the vertex 
4: change the a 
5: it was close 
Figure 4-43 Student Models 
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Figure 4-44 Student Models 

 

 This analysis is for those students who did not document in writing their modeling 

process but instead found their model on the handheld either by a test and revise process or with 

a transformation shortcut.  The evidence for first case was found in the trail of functions left on 

the students handheld. Evidence for the second case was based on my interactions with students 

while they were obtaining a model during the lesson.  It is important to note that the 

transformation shortcut is a process where students manually fit a graph over the data.  While 

using this method, the equation dynamically changes with respect to the transformations being 

made to the graph.  This results in students finding a model without altering the parameters in the 

equation.  Although this was not the original intent of the task, I allowed some students to use 

this process.  For me this was still evidence of them choosing an appropriate function for the 

situation and them using tools strategically to engage in mathematics.  I viewed this as a way for 

all students to participate in the modeling process, especially those who had produced little work 

up to this point or were struggling with the mechanics of finding a model.  For both cases, I 

collected their work from their handheld. 

 I highlight the work of one of three students who completed their test and revise method 

for finding a model using the calculator without documenting the process in writing.  Figure 4-45 
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shows the seven functions and the graphs of those functions.  Based on the pattern of the data 

points, the student chose the square root function ( ) to model the data.  This was a 

reasonable choice since the graph of the square root function has the appearance of a quadratic 

function; the square root graph is mirror reflection of the quadratic function.  Seen in the 

student’s function trajectory is their attempt to fit the data by a test and revise process.  After a 

few attempts by altering the parameters of square root function, the student makes a change of 

direction and tries a quadratic function for their model.  The student altered the leading 

parameter to fit the graph to the data.  They do this by changing the values from 10, to 1, and 

then to 1/10.  This indicates their understanding of how the parameters in the equation impact the 

shape of a graph. Although their final model does not go through the data points, the student 

showed an ability represent the data in multiple forms, to choose a function relevant to the 

situation, and then use a test a revise method to find a model for the situation. 

 

 

 

Figure 4-45 Student Models 

 This final analysis if for students who did not document their modeling finding process 

and used the transformation tool on the calculator to find their model.  Given the interactive 

nature of the process- students using the click and drag feature to manipulate the graph of the 

function – it was difficult to demonstrate what this looks like when a student engages in that 

y = x

f1(x) = x

f 2(x) = 3 x

f 3(x) =10 x

f 4(x) =100 x

f 5(x) =10x2

f 6(x) = x2

f 7(x) = 1
10

x2
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process.  Figure 4-46 has the end result for two students who used the process.   I recall these 

students were sitting next to each other and told me they used this process to find the quadratic 

and linear model.   The students tried three different models, and based off the order of the 

labeled functions, they started with the square root function (f1(x)) and progressed to the 

quadratic (f2(x)) and linear (f3(x)) functions.  Two items indicating their use of the 

transformation tool are the level of precision for the parameters in the equations (f2(x) and f3(x)) 

and the fact that they have different equations although working together during the process.  As 

a subtext, these two students where often unproductive and displayed some resistance to the 

content during the course.  So although the use of the tool was not intended learning outcome, its 

use supported students in finding a model to describe the data.  Despite the fact they did not 

revise their models by manually altering the parameters in the equations, the students represented 

the quantities in multiple forms (tabular, graphical, and algebraic), recognized a pattern, chose a 

function that could represent that pattern, and then used a transformation tool appropriately to 

find an appropriate model for the situation.   

 

  

Figure 4-46 Student Models 
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Instructional Design 
  Given there was a time limit for the course (5-weeks), a major challenge was gauging 

how long it would take for students to productively engage in the various tasks.  So engaging 

students in the derivation of models tasks – which encompassed more steps then previous 

activities – took longer to complete than I anticipated.  This was also because students were 

participating at different levels based on their motivation, behavior, and prior knowledge.  

Another thing to consider was the progression of the tasks, the deriving models tasks mostly 

happened later in the course; being able to give all students adequate time to fully develop their 

models was not always possible.  As happens in regular classes, these challenges resulted in 

students progressing at different paces and with my having to find ways to engage students in the 

content.  At the same time, I wanted to make sure I was not being too prescriptive with my 

instruction; telling students exactly what to do in order to move through content.  Student activity 

had to result from genuine interaction with data, patterns, and the modeling process. 

 A specific thing I did to help students connect mathematical modeling to the real world 

was to provide students with physical contexts.  These contexts included collecting data to model 

parachuting, bungee-jumping, and the path of a basketball being shot.  These situations provided 

a context to pose and answer questions regarding the developed models.  The use of the 

parachute and bungee jumping were part of my original plan, but modeling the path of the 

basketball was not.   Additionally, I included the use of a video analysis tool to capture students 

from the class shooting the basketball. I traced the path of the ball so students could the find a 

model to represent the situation (Figure 4-47). 
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Figure 4-47 – Traced Path of Basketball 

Technology as a Mediator 
 The students used handheld technology while deriving models from images and data.  

The use included entering the data into a list, having the technology plot the data, and then using 

the graphing feature to test and revise their models until they found a good fit.  In terms of our 

classroom discussions, a good fit meant that the graph of their function resembled the way the 

plotted data looked, or the graph went through the points.   A sample of what this looks like for 

the students can be found in Figure 4-48.  Emerging from this activity were mediating processes 

leading to students using their models to answer posed questions about the data.  Specific things 

students did were represent quantities in tabular, graphical, and algebraic forms, choose 

functions relevant to the situation, and test and revise whether their chosen function is an 

appropriate model.  



	
  

	
   100	
  

 

 
Figure 4-48– Fitted Model  

 
 The latter mediating process – deriving a mathematical model using a test and revise 

approach – was a new activity for students.  The technology was integral to this process because 

students were able to get immediate feedback on whether or not their chosen model fit the data.  

Once students entered in the data and created a plot, they instantly saw the graph of the model as 

soon as they entered the equation into the calculator.  This instant response by the calculator 

prompted the students to reflect on whether or not their choice of functions was appropriate, and 

if the model was appropriate, if the model needed to be revised.  Important in these interactions 

with technology is students are able to do something that would be time-consuming and tedious 

to complete using pencil and paper.  The procedure of fitting a potential model to data takes 

seconds using the handheld technology; fitting the same model by hand could take upwards of 5-

10 minutes.  This difference in productivity, especially for students with a negative disposition 

towards mathematics, gives them entrée into heady mathematical activity otherwise not 

accessible to them without technology.  

 An additional activity emerged while students derived models to fit data.  Some students 

discovered alternative to come up with their model.  Without any guidance, some students 

figured out that when they entered in a model to determine a fit, they could alter their initial 



	
  

	
   101	
  

model by “clicking” on its graph, and then dragging and moving the graph until it fit the data – 

the graph went through the data points.   When students transformed their model using this 

process, the equation for the model would also change accordingly, which would provide 

students with an equation that represents the plotted data.   Two things tipped me off to students 

using this method to obtain their equation.  When sharing models and graphs with the class, the 

parameters in the models appeared to be too precise to have come from a trial and learn process; 

an equation of 5.24x  - 57.96 for a linear model compared to 5x – 57 would be cause pause.  A 

second hint had to do with the specific students who were presenting these precise models.  By 

this time in the course, the pace at which students were obtaining their models varied. This 

varied because of interest in the course, behavior issues, or some students just needed more time 

to do the procedural aspects of finding a model.  It turned out that some students were obtaining 

models faster than normal, so I inquired about their process, and they shared the transformation 

tool on the calculator.  Although the overall intent was or them to derive their models by a test 

and revise process where they alter the parameters in the models, this transformation tool gave 

certain students access to deriving a mathematical model that could be used in answering and 

posing questions about the relevant quantities.  This was especially important for students who 

would not have engaged in the process of altering parameters.  In a way, these students used a 

revise and test method while they were first choosing a model and then transforming the graph to 

find a fit.  In the end, the technology provided students with a way to engage in the modeling 

process and develop a mindset that mathematics can be used to describe the world.   

Summary 
 The preceding sections showed how the mediating processes emerged from within the 

embodiment of the learning environment.  This summary consolidates the findings on mediating 

processes and summarizes the findings of technology as a mediator in the learning environment.   
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The Emergence of Mediating Processes 
 Important in the design of the study is the embodiment of the learning environment 

leading to students participating and interacting in ways that ultimately produce the hypothesized 

learning outcomes.  I have showed how and where the emergence of the mediating processes 

occurred within the task structures students encountered.  Below is a set of tables summarizing 

the findings (Tables 4-10 to 4-13).  The first column lists the specific tasks in the learning 

environment, the second column contains the mediating processes emergent in the tasks, and the 

third column restates the evidence from above.    

Table 4-10 

Developing a Mindset (Initial Tasks) 
 
Tasks Mediating Processes Sample Evidence from Text 
Pattern 
Activities 

Students recognized, described, and 
made generalizations about 
regularities in patterns of numbers, 
symbols, and graphs. 
Students recognized the relevant 
quantities involved in the situation.  
Students hypothesize and explain 
how change in one quantity affects 
change in another quantity. 
  

This was evident when students 
extended sequences of numbers and 
symbols based on their own reasoning, 
and generated their own patterns and 
sequences that demonstrated 
regularities when prompted to do so.  
 

CBR/ 
Graphing 
Stories 

Students can recognize, describe, and 
make generalizations about 
regularities in patterns of numbers, 
symbols, and graphs. 
 Students are able to recognize the 
relevant quantities involved in the 
situation.  
 Students hypothesize/explain how 
change in one quantity affects change 
in another quantity. 
  

In the process of completing graphing 
stories (Figure 2) students made a 
connection between the action in the 
video and how the action is 
represented in mathematical ways.  
These activities helped students 
recognize relevant quantities involved 
in a physical situation.  This was seen 
when they physically walked in front 
of a motion detector to produce a 
graph of a real-world context.  
 

 
 
Table 4-11 

Identifying Functions in Images 
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Tasks Mediating Processes Sample Evidence from Text 
Cooperative 
Group Tasks 

Students can recognize, describe, and 
make generalizations about 
regularities in patterns of numbers, 
symbols, and graphs. 
Students choose functions that are 
relevant to the situation.  
  

The evidence of students’ recognition 
is seen when they interacted with 
other students in the process of 
choosing a function; this process 
included them describing the patterns 
to other students.  For example, seen 
in Table 3 is student conversation, 
they recognized a graphical pattern in 
the image and then described to 
others what the pattern was or where 
the pattern could be found in the 
image. 
 

Technology 
Task 

Students can recognize, describe, and 
make generalizations about 
regularities in patterns of numbers, 
symbols, and graphs. 
 Students choose functions that are 
relevant to the situation.  
  

Choosing an appropriate function 
relevant a contextual situation 
evolved by students first recognizing 
that some pattern or regularity exists, 
then finding a way to represent that 
pattern in mathematical manner.  
With these tasks this meant students 
found a pattern in an image and then 
identified a function whose graph 
represents that pattern.   The evidence 
of students engaging in this activity 
can be found with the results of 
students successfully naming a 
function whose graph can be found in 
an image.  
 

Pencil-Paper Students can recognize, describe, and 
make generalizations about 
regularities in patterns of numbers, 
symbols, and graphs. 
 Students choose functions that are 
relevant to the situation.  
  

The marking on the image outlines 
the graph the student saw in the 
image; this ability is evidence that the 
mediating process of choosing 
appropriate functions relevant to a 
contextual situation emerges.  
 

 
 
Table 4-12 

Identifying Functions in Data/Scatter-Plots 
Task Mediating Process Sample Evidence from Text 
Plotted Data Students recognized and described 

regularities in patterns in graphs 
Students choose functions that are 
relevant to the situation.  

Students take the basic graphical 
form of a function and connect to this 
to plotted data.  This is evident in that 
nine students chose the exponential 
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 function to represent the scatterplot, 
which is correct, but four more 
students chose the rational function.  
This choice is reasonable give that the 
right side of the rational function 
y=1/x closely resembles the plotted 
data.   
 

Tabular Data Students recognized and described 
regularities in patterns in graphs 
Students can represent these quantities 
in tabular, graphical, algebraic forms.  
 Students choose functions that are 
relevant to the situation.  
  

Figure 33 provides an example of 
what sixteen of twenty-one students 
produced in this task.   These students 
represented the quantities in a table, 
plotted the data by hand and using 
technology, and identified the 
graphical pattern as a linear function.  
One of the sixteen students not only 
chose a linear function to represent 
the situation, but the student found a 
specific function (y=x+1) to describe 
the situation.  

Initial 
Modeling 

Students recognized and described 
regularities in patterns in graphs 
Students can represent these quantities 
in tabular, graphical, algebraic forms.  
 Students choose functions that are 
relevant to the situation.  
  

They also showed the ability to 
analyze various features of a graph 
then choose a relevant function to 
represent the data.  More telling then 
their choice of function was the 
explanation for their choice.  
Comments like “it looks like 
exponential because it looks curv[y]” 
and “linear because I see the diagonal 
lines going a positive slope” show a 
level of mathematical sophistication 
and understanding by students to 
eventually derive a mathematical 
model to represent this situation and 
make predictions.  

 
 
Table 4-13 

Deriving Models 
Tasks Mediating Processes Sample Evidence from Text 
From Images Students choose functions that are 

relevant to the situation.  
Students test/revise whether their 
chosen function is an appropriate 
model 
  

The student begins the attempt at 
finding a model by starting with the 
equation y=x. The significance of this 
starting equation is that is shows 
students know they want to use a 
linear equation to model Explanations 
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of how the model is altered to find a 
better fit is also seen in the student 
work. In the first case, the student 
begins altering the original model by 
recognizing that the y=x model does 
not match or fit Broadway Street, the 
student says “make it higher” to 
acknowledge the y=x needs to be 
moved up to fit the street.  
 

From Data / 
Collected 
Data 

Students are able to recognize the 
relevant quantities involved in the 
situation.  
Students can represent these quantities 
in tabular, graphical, algebraic forms.  
Students hypothesize/explain how 
change in one quantity affects change 
in another quantity. 
Students choose functions that are 
relevant to the situation.  
Students test/revise whether their 
chosen function is an appropriate 
model 
  

Two of them started with “y=x”, the 
others started with “y=3.91x” and 
“y=4.7x-39”.  As I mentioned 
previously, it was not documented 
why they chose those starting 
functions, all we know is that their 
initial choice was a linear function.  
The item differentiating this group is 
their choice to change their model 
type from a linear to a quadratic 
function.  Students articulated some 
of their thought process, “Now I think 
it is quadratic”, “Not even close to a 
line”, “Try a different function”, “try 
a Quadratic” (Figures 40-43).  These 
statements indicate a conscious 
recognition on the students’ behalf 
that their initial plan of attack to use a 
linear function to model the data was 
appropriate in this case. 

 

The Role of Technology 
 Technology was integral to the design of the learning environment. Specifically, 

handheld technology was to support the emergence of the mediating processes that would lead to 

desired learning outcomes.  With that said, it is clear technology played a role in supporting 

students in the learning environment.  Although more is to learn about how to successively use 

this technology to further students mathematical thinking, problem solving, and modeling.  I am 

confident saying that we could not have gotten to some of the mediating processes without the 
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use of technology.  In no way could students have engaged in the ways they did without the 

ability to flexibly use the handheld to engage in the tasks. 

 Within this learning environment, graphing technology supported students in representing 

data in multiple forms – tabular, graphical and symbolic.  The ease at which students moved 

from a table of values to a graphical form allowed them to then quickly recognize a pattern in the 

data and then name the pattern.  The naming of the pattern involved them going through the 

process of finding a function whose graph would go through or best-fit the data.   By removing 

the cognitive load or the time it would take to hand plot and graph various models, the graphing 

technology gave students easy access to the type of thinking needed to fit a model to the data.   

Students identified the pattern with a function name and used an algebraic notation to see if they 

named it correctly.   Additionally, in the process of checking if they chose the appropriate 

function, students’ flexible use of the technology allowed them to learn how the adjustment of 

parameters in a function influence the shape of the graph.  This trial and learn process, mediated 

by the technology, developed a students’ understanding of how the algebraic representations are 

related to its graphical form.  The technology also gave students a private place to experiment 

with their ideas before having to share or communicate their thoughts.  This is important for 

students who previously have not had success in mathematics.  This was evident when students 

used the dynamic graphing feature to find a model to fit data.  Compared to the others students 

who were manually changing parameters to fit the function to the data, these students used a trial 

and learn process of moving a function to fit the data and allowed the technology to derive the 

equation for them.   Although a different process than thinking about how to change parameters 

to make the graph move into place, this dynamic method provided these students with access to 
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finding a model and eventually asking and posing questions about the situation using their 

derived model.  
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Part 2 – Mediating Processes to Learning Outcomes 

Introduction 
 The findings discussed in this section focus on how the mediating processes function to 

produce desired learning outcomes.   Important in this chapter (and with Design Experiments) is 

to produce a level of analysis so that it is possible to backtrack from learning outcome to 

mediating process (Sandoval, 2013).  The learning outcomes were: 1) students used their derived 

models to answer/pose contextual questions about the quantities, and in the process of deriving 

models, 2) students developed an understanding of the underlying structure of functions as it 

relates to its symbolic and graphical representations. 

 This section presents the work of three students (Student A, Student B, Student C) for 

three different tasks where students had to find a model for a given situation and then use their 

model to answer a real world question.   These modeling tasks were culminating activities 

following students engaging in the tasks previously discussed.  Three different student’s work 

will be examined to lay out the learning that emerged; one student’s work will serve as a 

reference for each of the three tasks.  The student work is shared to highlight the role of the 

meditating processes in learning and to provide an in depth analyses of what students were 

learning.  Additionally, a summary of how well the groups performed in regards to these 

modeling tasks is presented. 

Student Learning on Task 1: Stopping Distance  
 A video of various cars speeding and skidding to stops was demonstrated for students 

as an introduction to the Stopping Distance task. This task began with the prompt and data in 

Figure 4-49.  
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At many automobile crime scene investigations, investigators often measure the skid marks 
left behind by those cars involved in the accident.  By measuring and recording the length of 
the skids marks, crime scene investigators can determine the speed of the car.  We will use the 
data below to determine how they do this. 

 

Figure 4-49 - Stopping Distance Task 

Individual Analysis (Student A) 
 In the process of engaging in this modeling task (Appendix K), Student A used their 

derived models to answer posed questions and developed an understanding of the underlying 

structure of functions as it relates to its symbolic and graphical representations.  Figure 4-50 

shows a portion of Student A’s response (to making sense of the Stopping Distance data.  The 

work first shows the emergence of mediating processes; she recognized both quantities increased 

as the speed increased and that the braking distance had a greater rate of change than the reaction 

distance (Figure 4-50a).  In Figures 4-50bc Student A represented the quantities – by summing 

the bars - in tabular and graphical forms.  It is important to note that she tried to make further 

sense of the data by adding a zero in the speed column; it is possible that she was hypothesizing 

about what the total stopping distance should be for this speed.   

 From here (Figure 4-50d), the student conjectured which function could possibly 

represent the graphed data.  Neither choice mathematically correct, but Student A is used their 

knowledge of what the functions looked like to make the connection the graphed data.  I 
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considered each response as a reasonable choice, the exponential has the same shape, a “little 

curve”, and the square root is possible given that stopping distance data is quadratic in nature. 

 
[Left Column] “It increase each time for both” 
[Right Column]”Why is [is] the Braking distance increases more then the Reaction 
Distance” 
Figure 4-50a 

 

Figure 4-50b 

 

Figure 4-50c 

 
“Square root because it has a little curve or 
exponential” 
Figure 4-50d 

 

Figure 4-50 – Mediating Processes Emerging (Student A) 

 Figure 4-51 shows evidence of Student A testing and revising whether her chosen 

function is an appropriate model. It is in this process that the mediating processes lead to a 

desired learning outcome.  While attempting to fit their chosen model to the data, the student 

changed the parameters of the function in response to how well the graph of the function fit the 

data.  Student A developed an understanding of the underlying structure of functions as it relates 

to its symbolic and graphical representations.  This was done using handheld technology with the 
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student recording each successive equation and adjustment in the table.   However, we do not 

know why Student A made her choices.  We can only infer from the adjustments why they made 

them.  

 

1: y=x 
2: ½ x + 10 
3: 1(x-5)2-4 
4: 1(x-10)2+11 
5: 0.094(x-7.65)2+22.6 
6: 0.094(x-0)2+0 
7: 0.081(x-0)2+0 

Figure 4-51 – Modeling with Test and Revise Process (Student A) 

   

 As modeling process progressed, more evidence of student learning is seen in the way 

Student A adjusted the quadratic function appropriately by altering the parameters for the vertex 

form (y=a(x-h)^2+k) of the quadratic function.  Student A began with the equation of y=x 

(Figure 4-52a), then transitioned from the second ½ x + 10 to third 1(x-5)2-4 (Figure 4-52b) 

equation by shifting directions from a linear to a quadratic model.  Although she originally stated 

“square root” or “exponential” as a possible model for the data, Student A ends up with final 

model that fits the data (Figure 4-52c). 

	
  

 

Figure 4-52a  f1(x)=x 

 

Figure 4-52b  f3(x)= 1(x-5)2-4 

 

Figure 4-52c   f7(x)= 0.081(x-0)2+0 
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Figure 4-52 - Stopping Distance Models (Student A) 

 
 Student A ends this task using her derived model to answer contextual questions about 

the quantities involved in the situation (Figure 4-53).  The student answered by substituting 

values into the equation.  The process of substitution in this case shows that the student 

understands how the quantities in this situation are related to their derived model.  

 In order to answer the more difficult question of how fast was the car going if its skid 

mark is 50 feet, the student used a test and check strategy to determine the speed of the car. Up to 

this point in the class, students had not been instructed to solve a quadratic equation, so the 

student had limited methods to choose from to answer the question.  One aspect of the outcome 

that is not observed is the student posing a question in regards to the model and the situation.  

This occurred because I did not give students an opportunity to do so. Students were still in their 

initial stages of deriving models and using their models to answer questions, so in the design of 

the activities, I did not include a prompt or task where students were asked to pose questions that 

could be answered using their models. 

 

  

Figure 4-53 – Using Derived Model to Answer Posed Questions (Student A) 

Class Analysis 
 I used individual students’ work to show what the learning outcomes look like and how 

they surfaced within the class.  In order to buttress the evidence that learning resulted for more 
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than one student, it is important to get a larger sense of the number of students who did or did not 

perform similarly to the highlighted student above. 

 For the Stopping Distance task, eighteen students (n=18) submitted written work. Of 

those eighteen students, eight students (n=8) completed the task similarly to the student above.  

Common features included the use of a test and revise process for obtaining their model of best 

fit and the use of a substitution process to answer the posed questions regarding the scenario.  Of 

the eighteen students, six students (n=6) did not document their work for finding a model but 

recorded some model to fit the data.  It is unclear if these students used a test and revise approach 

or the transformation tool to find their model.  The remaining students (n=4), did little or no 

work.  As previously discussed, the Stopping Distance task was one of the last tasks completed 

by students during the course.  There was a time pressure to complete content and make sure 

students experienced the entirety of the course. As a result, some students did not have adequate 

time to find their model through a test and revise approach or even with the technology. 

Student Learning on Task 2: Barbie Bungee Jumping 
 The Barbie Bungee Jumping was an activity where students created different sized 

bungee cords using large rubber bands to simulate a bungee jump by tying a Barbie doll to the 

cords and then dropping Barbie from different heights.  The purpose of the activity was to have 

students determine how many rubber bands are needed to construct a bungee cord that will get 

Barbie as close to the ground as possible when dropped form a pre-determined height of 965 cm. 

Individual Analysis (Student B) 
 
 Figure 4-54 shows a portion of a typical student response (Student B) to making sense of 

the Barbie Bungee Jumping task.  The mediating processes: recognizing relevant quantities in a 

situation, representing these quantities in multiple forms, explaining how change in one quantity 
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affects change in another quantity, recognizing patterns in graphs, and choosing a function 

relevant to the situation are all evident in the work. 

  

 
 
“Each time you add a rubberband to a Barbie doll, the Barbie doll bungie jumps lower than 
before. (It makes a positive slope going diagonaly) – (Linear Function)” 
Figure 4-54 – Multiple Representations of Functions (Student B) 

 In engaging in this task there is evidence that the student was able to make sense of the 

data in a way that led to deriving a model for the data and then using the model to answer posed 

questions.  The student completes the table and then makes sense of the quantities to produce a 

scatterplot of the table.  She makes a statement regarding the pattern in the graph and the 

relationship between the quantities.  The student then named a function that is relevant to the 

situation based on the graphical appearance of the plotted data.  

 Figure 4-55 shows five documented models Student B obtained through the test and 

revise process to fit their function to the data.  Each successive change demonstrates their 

understanding of how to manipulate the parameters of the function to fit the graph to the data as 

well as a developing understanding of the underlying structure of functions as it relates to its 

symbolic and graphical representations. With the third model (y=15x+25), the student 
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comments, “almost through”, referencing the fit of the line to the data.  Continued adjustments 

include altering the value of the slope and the y-intercept.  These changes made by the student 

nestle the graph of the linear model into place – through the points.  These small adjustments 

particularly show thoughtful student engaging in the test and revise process with knowledge of 

how the changing parameters influence the graph.  Pictured in Figure 8 is Student B’s initial and 

final model. 

 

 

y=10x+25 | Make it steeper & slope higher 
y=25x+25 | Make it a little lower than before 
y=15x+25 | Almost through 
y=13.5x+35 | just a little bit more 
y=12.7x+35 | yay me!!! 

 

Figure 4-55 – Modeling Process (Student B) 

 The second learning outcome – using a derived model to answer a contextual question – 

emerges when the Student B determined the number of rubber bands needed to get their Barbie 

as close to the ground as possible.  Figure 4-56 shows the derived model being used to solve an 

equation that produces the number of rubber bands.  The displayed answer, 71, is determined 

after the Student B rounds the original answer up to 72.  She recognized that 72 rubber bands 
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was an over estimate, meaning that her Barbie would hit the ground if they use 72.  The final 

result, highlighted in a square, is 71 rubber bands. 

 It is important to note in this process of using her model, the task guided the student to 

the procedure of setting the equation of their model equal to 965.  This was my instructional 

decision to support students through the idea of how we can use models to answer contextual 

question related to the quantities involved in the model.  This decision was also based on the 

time constraints places on us during the course.   

 

Figure 4-56 – Solving the Barbie Problem (Student B) 

Class Analysis 
 In total, twenty students (n=20) returned written work and/or technology documentation 

for this activity.  Of the twenty students, eleven students (n=11) completed the task similar to the 

student whose work was discussed in the above section.  This meant the students responded to all 

prompts, used a test and revise method to obtain their model, and then used their model to 

determine the number of rubber bands needed for Barbie to get as close to the ground as 

possible.  Five students (n=5) recorded some work, but did not document any process for 

obtaining their model. As a result, there was no work showing them using a model to answer the 

posed question.  It is possible that because this was a collaborative task, groups collected data 

together, that these students did not document work because others had already completed the 

task.  The remaining students (n=4), documented little or no work.  For the same reasons, these 
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students possibly did nothing because others in their groups had already completed the task.  An 

alternative reason could be some of them were just not interested in the activity.  This is 

reasonable given some of the resistance demonstrated by students during the course. 

Student Learning on Task 3: Modeling with Quadratics 
 The purpose of the Modeling with Quadratics task was to give students a first experience 

at using quadratics to model a physical situation.  I also chose this task so that I could involve 

students in the creation of the data.  The task was for students to determine if shot basketball 

would go into the hoop, they would do this finding a model for the data and visually seeing if the 

model goes through the basket.   

Individual Analysis (Student C) 
 Student C’s work shows the mediating process of testing and revising their model to fit 

the data.  It also shows evidence of that mediating process supporting his understanding of the 

underlying structure of functions as it relates to its symbolic and graphical representations.  To 

start, Student C used the basic quadratic function (Figure 4-57) to fit the data and then proceeded 

with altering the parameters to move the graph around the coordinate axes to go through the 

points.  This altering of the parameters to fit the graph to the data is an example of a learning 

outcome.  Moving from the second to the third equations, the student changed the leading 

parameter from positive to negative in order to change the orientation of the graph. 

 The student also stated “wider” as an adjustment after the seventh equation, as a response 

they change the parameter from (-1) to -0.11, which produced a fairly good fit.  Not known is 

how the student knew to use -0.11.  My best guess is they played with the number without 

recording their changes.  A second thing could have been the use of the transformation tool, but 

because of the previous models and their lack of precision to more than 1 decimal place, I doubt 



	
  

	
   118	
  

this student used that method.  This interplay by Student C further established his understanding 

of the graphical and symbolic representations of functions. 
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Task: Determine the equation of 
a quadratic function that models 
the path of a basketball. 

 

 
Fitted Model 

1: x2 | make it side ways 
2: 2(x-0)2 +3|  
3:-1(x-0)2+9 | lower 
4: :-1(x-0)2+8.5 | to the right 
5:-1(x-7)2+8.5 | went off 
6:-1(x-6.5)2+8.5 | more up 
7:-1(x-6.5)2+8.9 | wider 
8:-0.11(x-6.5)2+8.9 | good 

Figure 4-57 – Modeling Process (Student C) 

 
 In the process deriving and making sense of the model and the context, Student C 

demonstrated what learning look like by using his derived model to answer questions related to 

the situation.  Figure 4-58 shows a brief response where, the answer 8.91 refers to the maximum 

height the ball travels based on what the model predicts.  The answer also shows Student C 

understood the meaning of the parameter’s value for their model.  The final model (-0.11(x-

6.5)2+8.9) is in vertex form, so the 8.91 represents the y-value of the vertex.  The vertex in this 

case is the highest point on the graph.  Student C knew the y-value represented the height of the 

ball.  Another example shows him responding in a similar fashion in manner.  However, his 
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model is in vertex form, so it is reasonable to assume he  identified the vertex using the handheld 

and then substituted those values into the equation.  The last answer indicates Student C used his 

model to answer questions about the contextual situation.  He knows that the 10.1 in the equation 

represents the maximum height of the ball. 

  

  

 
 

Figure 4-58 – Using Derived Model to Answer Posed Question (Student C) 

Class Analysis 
 In total, eighteen students (n=18) returned written work and/or technology documentation 

for this activity.  There were nine students (n=9) who completed models for the three situations, 

and used their models to answer posed questions.  During the modeling process, students used a 

test and revise process, the transformation tool, or a combination of both.  Seven students (n=7) 

partially completed the work and submitted at least one model for the situations.  There was 

some attempt at answering posed questions, but not all of them were addressed.  Finally, there 

were two students (n=2) who did little or no work.  Their lack of work could be explained by 

their lack of interest in the activity or their inability to derive a model. 
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 Across the three modeling tasks, the two tasks that involved students actively 

participating in the data collection (Barbie Bungee and Modeling with Quadratics) had more 

students demonstrating full or partial learning outcomes (16 out of 20, 80% and 16 out of 18, 

89% compared to 14 out of 18, 78%)(Table 4-14).  There was a consistent pattern amongst the 

students in the level of work they produced; which corresponded to amount of learning 

demonstrated.  One interesting finding was in the Modeling Quadratics task, two students who 

had produced little or now work in the previous tasks, engaged in the modeling process to 

determine if the shot went into the basket.  I believe this was the case because I video recorded 

these two students shooting a basketball, and embedded the video and images from their shots in 

the task.  Table 17 shows that for this task, only two students did little or no work instead of four.    

Table 4-14– Class Analysis Summary 

 Task 

Student Learning Stopping Distance 
 

Barbie Bungee 
 

Modeling with 
Quadratics  

Number of students 
producing work 
similar to presented 
Student (A,B, or C) 

N=8 N=11 N=9 

Number of students 
producing partial 
work compared to 
presented Student 
(A, B, C)  

N=6 N=5 N=7 

Number of students 
producing little or 
no work 

N=4 N=4 N=2 

 

Summary  
 Part 2 of this chapter provided evidence of how my hypothesized mediating processes 

emerged and led to the desired learning outcomes when students actively participated in the 



	
  

	
   121	
  

discussed tasks.  This summary reviews the main findings regarding mediating processes leading 

to learning outcomes and also discusses other findings from the study. 

Main Findings (Mediating Processes Leading to Outcomes) 
 Figure 4-59 contains an overall summary of mediating processes appearing within 

categories of tasks.  For example, in the column labeled Patterns, the “YES” indicates that the 

mediating process of “Students recognize, describe, and make generalizations about regularities 

in patterns of numbers, symbols, and graphs” emerged in the Patterns tasks.  The subsequent 

“YES”’s indicate the same thing for the identified mediating processes within the specified tasks, 

all of these were outlined in the Findings Chapter.   

 Of particular interest in Figure 4-59 are the “**” in the Identifying Functions in Data 

tasks.  I purposely marked these mediating processes because I did not have evidence of them 

emerging within this category of tasks.  I originally thought students would recognize the 

relevant quantities involved in the situation and hypothesize/explain how change in one quantity 

affects change in another quantity when engaging in these tasks, but I had no evidence of this 

happening.  Students being able to interact with the quantities involved in situations seem like an 

important process that would lead to the desired learning outcomes.  Despite this not happening, 

it did not prevent students from using their derived models to answer/pose contextual questions 

about the quantities.   Regardless, this ability to understand how these related quantities interact 

with each other provided students with a deeper understanding of how their choice of functions 

to represent the quantities might depend upon how the change of one quantity affects the other.  

 Further analysis of the tasks leads me to believe that I would have to alter the tasks and 

possibly the ways students interacted so they would have opportunities to discuss how the 

quantities are related and how that relationship is depicted in the scatterplot of the data.   This 

would then lead to further discussions about function characteristics, such as the linear functions 
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display a constant rate of change relationship, or that exponential functions can be described in 

terms of growth or decay based on a multiplicative relationship between the variables.  This 

altering of tasks is a in line with how I approached each day’s instruction, using what I learned 

from each lesson guided my choices of how I would proceed the next day.  These discussions 

can be found in the Instructional Design sections of the Findings Chapter.   

 
Figure 4-59- Summary of Mediating Processes and Outcomes 
 

 Another column of interest is the Deriving Models task.  Based on the data, all the 

mediating processes emerged, but there were sparse examples of students recognizing relevant 

quantities involved in a situation and hypothesizing/explaining how change in one quantity 

affects change in another quantity.   Like the previous discussion, having students engage in 

these processes could benefit them while deriving models and using them to answer/pose 
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contextual questions about the quantities.  To help this development, the task would need to be 

altered in manners previously discussed. 

 In addition to the altering of the tasks and participant structures to produce mediating 

process that lead to desired learning outcomes, is to consider the forms instrumentation used to 

measure and identify mediating processes and outcomes.  In the spirit of design experiments, 

more iterations of this path of study would lead to better in forms of engaging students and 

developing ways to document their learning.  In this study, I could find effective ways to have 

students pose and answer contextual questions requiring the use of their derived models to do so.  

I could also design alternative ways through artifact collection and interaction documentation to 

uncover the important functions that lead to outcomes. 

Other Findings 
 With an emphasis on showing how mediating processes lead to the desired learning 

outcomes, it is important to consider that the actual existence of the mediating processes 

emerging within the tasks is a finding itself.  Knowing certain tasks support my hypothesized 

student interaction and activity, is an important take-away from the study.  The fact the 

mediating processes manifest when students engage in the tasks provide evidence that the 

learning environment is conducive to student learning.  Even with some students not producing 

evidence of the learning outcomes, the strength of a design experiment is that we can go back 

and make adjustments to best support student learning.  This finding helps us understand how 

these types of tasks lead to productive mathematical activity.  

 Another finding – related to the preceding discussion – is the tweaking of tasks during the 

course to get to the mediating processes.  As structured in the design of the study, I constantly 

reflected on the tasks and how they led to productive student interactions and activity.  My 

reflections guided my daily instructional decisions.  I found more students interacting with the 
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mathematics in productive ways after thoughtful modifications to tasks were implemented on a 

daily basis. All this is in line with the crosscutting features of DBR/DE studies: The development 

a class of theories about both the process of learning and the means that are designed to support 

that learning, a highly interventionist nature which are test-beds for innovation, the creation of 

conditions for developing theories yet at the same time placing these  theories in harm’s way, 

multiple iterations, and producing theories that do real work; having potential for rapid pay-off 

but also speaking directly to the types of problems that practitioners address in the course of their 

work (Cobb et al., 2003, p.10). 
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Chapter 5 – Discussion, Contributions, Summary Conclusions 
Introduction 
 The genesis for this study is rooted in my experiences as a mathematics educator in urban 

schools.  I began this study to better understand ways of teaching and learning algebra in order 

that more students might participate in rigorous mathematics content while engaging in the 

productive practices of mathematicians.  My intent was to build a classroom learning 

environment based on the description of mathematics as the "science of patterns" (Devlin, 1996; 

Kneebone, 2001; Steen, 1988; Resnik, 1997; Mason, Burton, Stacey, 1982) and to study this 

learning environment using Design-Based Research (DBR) (Barab, 2006; Cobb et al., 2003; 

Confrey, 2006; Schoenfeld, 2006). 

 The goal of this study was not to produce a perfect curriculum showing results where all 

students learned, but to study specific tasks that shaped the types of activities and interactions 

students had in the learning process.   I learned that students, who often are not successful in 

algebra, are fully capable of using mathematics as a tool to describe the world.  This study 

showed types of tasks that can be used to inform teachers, especially within the context of the 

new Common Core State Standards (2011) and its focus on mathematical practices.  This chapter 

ends with a discussion of the results as related to the study’s research questions, a summary of 

how these results connect to important classroom issues, and the contributions of this study to the 

literature on mathematics education. 

Research Questions  

What does teaching and learning look like in a secondary school mathematics classroom 
that approaches the teaching of algebra with problems set in daily life observations? 
 My experiences as a mathematics educator in urban schools were not only the impetus for 

me to conduct this study, but these experiences formed the foundation of what I believed 

students were mathematically capable of when provided with the conditions to see math as a 
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useful, worthwhile, and doable endeavor.  I combined my on-the-ground work in schools with 

budding ideas on learning to shape a classroom environment leading to what I called learning 

within a mathematics classroom describing mathematics as a “science of patterns”.  This learning 

is directly connected to my original high-level conjecture that engaging in a technology rich 

mathematical modeling learning environment helps students develop a frame of mind in which 

they begin to see how they can use mathematics to describe the world.   

 However, it would be misleading you to say that during the study all students interacted 

and persevered with mathematics in ways that I had predicted or hoped for.  Despite sixteen 

years of classroom experience, but perhaps because I had been out of the classroom for four 

years, I naively expected that when students engaged in the specific tasks I aligned with the 

“science of patterns” perspective, they would immediately adopt the practices of mathematicians. 

I fantasized their going from students with little or no interest in mathematics to ones who now 

saw how math could be applied to their life and begin to actually enjoy the process of doing 

mathematics.  I believed they would begin to identify themselves as mathematicians- those who 

does math because they enjoy it, because they know they are good at it, and because they know 

how to persevere when the task became challenging.   

 So what really happened?  What did teaching and learning look like in the classroom?  

On the surface, it may have looked like any other urban school classroom.  There was hustle and 

bustle of students coming into class; students interacting with each other and me as they found 

their seats and materials.  Students asking the typical questions, “What are we going to do 

today?”  “Can we do something fun?”  During the class, there was student resistance and even 

misbehavior.  This summer school experience offered them no academic credit, it was offered to 

them as Algebra 1 enrichment course to prepare and expose them to Algebra 1.  The students 
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were eighth graders of differing abilities and mathematics success in seventh grade.  Some 

students were not always interested in doing mathematics.  Therefore, I had to quickly pull out 

my teacher bag-of-tricks in order to support and help students.  This meant that I had to 

sometimes put aside my “researcher hat” and begin to think like the urban schoolteacher I had 

been for sixteen years.  Although this aspect is not central to the study, it is discussed in 

instructional design sections of the findings and analysis chapter.  I had to account for student 

motivation and it shaped my instructional choices to better engage students in the tasks.  These 

aspects did have an impact on my data collection, I had to find ways for students to feel 

comfortable responding to journal prompts, confidently discussing math ideas with each other, 

and actively participating in the practices of mathematicians. 

 Given this somewhat challenging environment, and as displayed in the findings and 

analysis chapter, student learning did take place.  The mediating processes emerged while 

students engaged in the tasks, and students displayed evidence of the hypothesized learning 

outcomes.  This is especially significant given the real–world context of the study, done in the 

“in the buzzing, blooming, confusion of real-life settings” (Barab and Squire, 2004, pg. 4, Table 

1) where student success in mathematics is often tied to their in-class learning opportunities 

(Treisman, 2013). 

 Viewing the classroom with a more formal lens and appropriating the language of 

mediating processes and outcomes, students had the opportunity to recognize, describe, and 

make generalizations about regularities in patterns of numbers, symbols, and graphs.  Describing 

the patterns in a mathematical manner was one way learning looked for students in the class.  

Further, students had the opportunity to begin to think about their world in a mathematical 

context. This meant that students were provided with real-world situations where they had to 
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recognize relevant quantities in the situation.  Students hypothesizing and explaining how change 

in one quantity affected change in another quantity was a tangible example of them learning in 

this context.  Teaching is providing students with opportunities to use math to describe their 

world and learning is students going through iterative process of finding a suitable mathematical 

function to describe it.   

 Important in this process is the appropriate use of technology.  This meant students used 

technology to represent patterns in multiple forms.  These forms – numerical, tabular, graphical – 

then lead to an algebraic description or mathematical model.  Ultimately, students used their 

derived models to answer/pose contextual questions about the situation.  

 A final aspect of learning in a “science of patterns” classroom connects to a participatory 

framework (Sfard, 1998).   From this perspective, increased participation using the language, 

tools, discourses, and methods of mathematicians allows students to claim community 

membership.  Although I was unable to fully study this focus, it is important to recognize that as 

the mediating processes led to learning outcomes, the students’ learning trajectory included the 

development of their identity as mathematicians. 

How does the use of graphing technology assist students’ in mathematical thinking and the 
engagement of mathematical practices? 
 
 Graphing technology supported students in representing data in multiple forms – tabular, 

graphical and symbolic.  The ease at which students moved from tables of values to graphical 

forms allowed them to then quickly recognize a pattern in the data, and subsequently name the 

pattern.  The naming of the pattern involved going through the process of finding a function 

whose graph would go through or best-fit the data.   By removing the cognitive load or the time 

it would take to hand plot and graph various models, the graphing technology gave students easy 

access to the type of thinking needed to fit a model to the data.  This was in line with McCulloch 
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(2011) , who described that use of technology lessened students’ frustration in the problem 

solving process and that a tool like the graphing calculator could help convert frustration into 

perseverance since they had an “instrument with which they can act in response to feelings of 

frustration” (p.177). 

 More students were willing to participate in the tasks because the technology gave 

students a safe place to test their ideas before having to share or communicate their thoughts.  

This was important for students who previously had not had success in mathematics.  

Additionally, the development of their mathematical thinking flourished.  As research has 

shown, students worked collaboratively more often when technology was available (Burrill et al, 

2002); they were willing to share “the products of [their] problem solving strategies” (Robutti , 

2009).  This was evident when students used the dynamic graphing feature to find a model to fit 

data.  Compared to the others students who were manually changing parameters to fit the 

function to the data, these students used a “trial and learn” process of moving a function to fit the 

data and allowed the technology to derive the equation for them.   Although this is a different 

process than that of thinking about how to change parameters to make the graph move into place, 

this dynamic method provided these students with access to finding a model and eventually 

asking and posing questions about the situation using their derived model.  More importantly, it 

provided students with common language to communicate their ideas to more expert students; all 

students were able to be members of the mathematicians’ community. 

 Although there is much more to be learned about technology and how it can support 

student thinking and participation, there is no doubt that technology supported the development 

of mathematical thinking and the engagement of mathematical practices.  In sum, graphing 

technology helped students effectively represent mathematical objects in multiple ways, it 
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provided access to mathematical modeling and productive ways of mathematical thinking, and 

was a vehicle for fruitful discussions about the characteristics of functions and mathematics in 

general. 

What is the trajectory of students’ mathematics identity as they learn algebra from a 
“science of patterns” perspective?  
 Going into the study with a design experiment approach allowed me to think about how I 

could create and enact a learning environment where students would learn mathematics in ways 

not often seen in urban schools. I believe that a fundamental goal of mathematics education is to 

“produce students who are willing to engage in challenging mathematics and see the value in 

doing so; in other words, to develop students with positive mathematics identities” To study this, 

I proposed traditional ways of measuring identity within the study (questionnaires, journal 

prompts).  However, as I proceeded, what emerged was related to understanding how the 

mediating processes led to desired learning outcomes.  While I know I observed instances of 

productive mathematics identities being developed, it did not turn out to be my focus of analyses. 

 Although I was unable to answer my posed question, in no way should the study of 

mathematics identity be overlooked when compared to traditional manners of measuring student 

performance.  With mathematics identities being associated to many related affective factors 

influencing mathematics performance (Boaler, 2002; Boaler & Greeno, 2000), including 

persistence in the field, identity is a powerful factor determining mathematics learning (Bishop, 

2012).  I believe learning mathematics from a “science of patterns” perspective and engaging in 

ways presented in this study can positively affect how students sees themselves with respect to 

the field and practices of mathematics.  

 
What is the learning trajectory of student’s use of functions to model data through a curve 
fitting process? 
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 A student’s learning trajectory begins with the development of mindset – the idea that 

mathematical functions can be used to describe the world.  This mindset was developed through 

the graphical representation of related quantities found in the world and the graphs of functions.  

Students then developed an understanding of how to represent functions in multiple forms.  This 

back-and-forth allowed students to interact with real-world data by taking the data, representing 

it in graphical from, and making a connection between the plotted points of paired quantities and 

the graphs of functions. 

 Students then hypothesized which function best represented the data and then checked 

whether or not their conjecture was correct.   Their verification process included naming the 

graphed pattern with an algebraic notation (function), and then graphing the function to see how 

well it fit the data.  The goodness-of-fit process was based purely on how well they graphed 

function went through the plotted points.  Additionally, in the process of checking if they chose 

an appropriate function (mathematical model), students flexibly used technology to learn how 

the adjustment of parameters in a function influenced the shape of the graph.  This trial and learn 

procedure, mediated by the technology, developed students’ understanding of the underlying 

structure of how changing parameters in a function changes the functions graphical 

representation.  The learning trajectory ended with students using their chosen and adjusted 

function to answer and pose contextual questions about the related quantities.  Overall, students 

learned that functions are flexible objects used to describe and model data found in the world. 

Contributions and Future Research 
 Important in all studies, is the answer to central question, “What does this all mean?”  My 

posed research questions focused on what teaching and learning looked like in a re-envisioned 

algebra classroom, how students participated and interacted with each other, how technology 
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assisted students in doing mathematics, and could this learning environment help students begin 

to see the relevance of mathematics to their lives.  

Contributions of the Study 
  The results of the study yield the following contributions: Firstly, study presents a 

potential way to support students in mathematics who have traditionally not been successful in 

mathematics.  The approach demonstrated in this research is specifically related to types of tasks 

and student use of technology in the process of modeling and participating in mathematical 

practices.  Having students successful in mathematics and beginning algebra (algebra 1) will lead 

to better educational outcomes for those students.    

 A second contribution revolves around finding ways to have mathematics be more 

meaningful and relevant for students.  This relevance is two-fold; one is related to engaging 

students in mathematical activity couched in real-world contexts, and more importantly, contexts 

immediately related to their lives.  Approaching mathematics from a “science of patterns” 

perspective opens the door to use mathematical modeling as a tool to describe the world. 

 A third contribution, one interconnected with definitions of mathematical proficiency, is 

the development of procedural fluency and conceptual understanding.  These two concepts, 

which are at the heart of any instructional program, developed in this study when students 

showed fluency in both areas.  Understanding the concept of using functions to model the world 

developed their procedural fluency of representing data in multiple forms; this included their 

ability to alter a function’s parameters to have its graph fit data.  I believe given more time, it 

might be possible to develop other procedural skills when engaging students in a learning 

environment of the sort demonstrated in this study. 

 In the end, one overarching significance of the study, is its contribution to mathematics 

equity.  Having more students value mathematics while at the same time emerging as 
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mathematically proficient, gets to a main motivation and responsibility of mathematics teachers.  

It is also in line with Schoenfeld’s (1992) thoughts on mathematics instruction:  

Mathematics instruction should provide students with a sense of the discipline-a sense of its 
scope, power, uses, and history. It should give them a sense of what mathematics is and how it is 
done, at a level appropriate for the students to experience and understand.  As a result of their 
instructional experiences, students should learn to value mathematics and to feel confident in their 
ability to do mathematics. (p. 345) 

 
Ultimately, I see the findings of the study beginning to point (if even ever so slightly) in a 

direction where learning mathematics from the perspective shown here can empower students 

with a sense of agency and belief that they can exert control of the world. This happens by them 

being given opportunities to legitimately participate in a community of mathematicians while 

engaging in the mathematical practices of a mathematician.  This extension of mathematics to 

students, is a democratizing process where more students can, want, and do demonstrate their 

mathematical abilities.  

Future Research 
 Future research in this area should involve a longer period of study of students engaged 

in learning mathematics from the “science of patterns” perspective.  It should be done with 

Design-Based Research approach - so much could be learned about the daily happenings of a 

real-world classroom – and from alternative methodologies able to examine other factors of 

student identity and disposition.   

 A specific research agenda that comes to mind is student identity.  By the end of this 

study, I was not sure how students saw themselves in terms of being a doer of mathematics.  

Although there were engaging in the practices, developed conceptual and procedural fluency, I 

am not sure the students were conscious of the high level mathematical thinking they were doing.  

I say this because I did not see or at least effectively measure if students were cognizant of the 
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type of mathematics they were doing. I was hoping that when they realized what they were doing 

that it would inspire students to want to do more.  

 Another area ripe for study has to do with having students participate in real-world 

mathematics.  Mathematical modeling is a catalyst for having students do mathematics in the 

pursuit of answering real-world questions.  With that said, I believe a question exists about what 

is real-world and what relates to students’ lives.  This is where I think studying the context of the 

modeling situations would be fruitful for mathematics educators.  With future work, I would like 

to see how having social justice themed contexts impacts the ideas examined in this study.   

 Last and definitely not least, future research must run along the lines of equity and 

opportunity.  A key question to ask and seek answers to is “what can teachers do to equalize 

learning opportunities for students?”  My inquiry is motivated by my findings, Treisman’s 

(2013) testimony that “opportunity to learn is something we need to work on as math educators”, 

and NCTM’s (2008) statement that “excellence in mathematics education rests on equity” (pg.1).   

Conclusion 
 When I first completed my data collection for this study, my thoughts were shrouded 

with insecurities and doubts.  I wondered out loud to more than one empathetic ear that maybe I 

would need to do this all over again.  “The students didn't learn anything”, “What did I actually 

learn?, “They [my committee] trusted me to be out in the real world conducting research?”, and 

“Who actually cares about what I just did?” were just some of the utterances I made in my post-

study gloom.   It wasn’t until talking to more-knowing individuals (advisor and committee 

members) that I was put to ease.  A turning point occurred, after one of my self-doubting 

ramblings, when a committee member asked me to respond to a question without thinking deeply 

about it.  The simple but insightful question was, “would I do the study again?” My instant 
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reaction was “yes, yes I would”. Once I thought about it in this manner, I was ready to move 

forward.   

 Of course, the enactment of my design experiment had its issues. Some students were 

resistant, I did not have enough instructional time, outside the class factors were coming into 

play.  I could not collect the data intended and at the same time I collected the data I intended.  

This was all overwhelming, too much data and not enough data, all at the same time.  My 

instinctive response was buoyed by what I saw in students as they engaged in the tasks. I saw 

students participate with mathematics in ways that traditional mathematics did not give them 

access to.  The things (mediating processes and outcomes) students were doing and the way they 

were thinking, even if they were not aware of it, could have lasting benefits if they further 

experience mathematics from this perspective. 
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Appendices 
 

Appendix A – Curriculum/Instructional Content 
 

Task 
 

Activities Math Content 

Introductory activities around  
Calculator/Navigator use.  
Introduction to Patterns and How 
Mathematics is a Real World 
Activity. 

• Log-Into TI Navigator system 
• Introduction to calculator and its use to 

complete basic math operations 
• Have discussion of what mathematics 

is and what it means to engage in the 
study of mathematics 

• Pattern identification and creation 
activities. 

• Use of handheld technology 
• Numerical, Symbolic, 

Graphical Patterns 
 
 

Graphing Stories Tasks and 
Calculator-Based Ranger  (CBR) 
Tasks 

• GraphingStories.com graph creations 
• CBR motion detector activities 

• Functional relationships 
• Graphical representations of 

related quantities 
• Rate of change 

 
Identifying Functions in Images 
Tasks 

• Introduction to functions and their 
graphs 

• Cooperative Group Task 
• Calculator Driven Task 
• Pencil-Paper Task 

• Functions (Linear, Quadratic, 
Cubic, Exponential, Rational, 
Absolute Value, Square Root, 
Sine) 

• Identifying functions based on 
their graph 

Identifying Functions in 
Data/Scatterplots Tasks 

• Plotting data and identifying a 
function that possibly could represent 
the data 

• Creating a table of values, plotting 
data and identifying a function that 
possibly could represent the data 

• Collect data, creating a table of values 
from the data, plot data and identify a 
function that possibly could represent 
the data 

• Creating scatterplots with 
technology 

• Identifying patterns in plotted 
data 

• Identifying functions based on 
their graph 

Modeling Tasks • Deriving models from images 
• Deriving models from data 
• Deriving models from collected data 

• Linear equations (y=mx+b) 
• Quadratic equations (standard 

and vertex form) 
• Math Modeling 

(Hypothesizing and creating 
appropriate models based on 
the situation 

 
 
 
  



	
  

	
   137	
  

Appendix B - Summary of Data Collection 

 
Type / Time Source Method/Instrument Rationale/Projected Analysis 
This data 
was 
collected 
during the 
first and last 
class 
meeting  
 

Individual Free 
Response Math 
Task 

UCLA MDPT Free-
Response Algebra 1 
Readiness Task 

The purpose of this data was to 
provide an in-class pre/post 
baseline of students’ modeling 
skills. 

This data 
was 
collected on 
a daily basis 

Participant 
Calculator 
Responses 

Collected through 
QuickPoll response 
mechanism from the TI 
Navigator Software. I 
will be able to itemize 
and digitally store 
participants 
mathematical responses 

The purpose of data was to track 
student progress as they develop 
their mathematical modeling 
skills, mathematical thinking, 
mathematical practices, and 
concept of function as they learn 
through the science of patterns 
perspective.  This data is used to 
identify how the graphing 
technology supports their 
development in mathematical 
modeling skills, mathematical 
thinking, mathematical practices, 
and concept of function. 
 

This data 
was 
collected on 
a daily basis 

Participant 
Written/Math 
Responses 

The responses were 
collected on a daily 
basis. This included 
homework assignments 
and in class tasks.  
Journals were given to 
students in order keep 
track of their work. 

The purpose of data was to track 
student progress as they develop 
their mathematical modeling 
skills, mathematical thinking, 
mathematical practices, and 
concept of function as they learn 
through the science of patterns 
perspective. 
 

This data 
was 
collected 
every class 
session 

Student Discourse This data was collected 
via video recordings. I 
recorded the entire 
class discussion 
engaged in a model-
eliciting task. We also 
video recorded 
individual discussions 
during this process.  
This was done as the 
assistants or I 

The purpose of this data was 
monitor student discourse as they 
engaged in various mathematical 
practices while mathematical 
modeling.  This data was cross-
referenced with other forms of 
data. 
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supported students 
during class. 

Group 
Debriefing / 
End of each 
class session 

Reflections on 
individual and 
group learning 
trajectories.  Field 
notes / Student 
daily Observation 
Rubric (see 
Appendix D) 

Debriefing with teacher 
and classroom research 
assistants. We recorded 
their engagement of 
mathematical practices 
using a Mathematical 
Practices rubric (See 
Appendix  D for rubric)  
We discussed our 
ratings for various 
students and discussed 
what aspects of the 
instruction, curriculum, 
and graphing 
technology allowed 
them to engage or not 
engage in mathematical 
practices.  This lead us 
to discussing how 
instruction would be 
revised for the next 
lesson.  

The data was essential to track 
individual and group trajectories 
in regards to the their engagement 
in mathematical practices as their 
experience the curriculum and 
instruction.  These observations 
were triangulated with video 
recordings of class sessions as 
well as student work (written and 
calculator). 
 
 
 

Reflections/ 
Collected on 
a Daily basis 

Teacher 
Reflections 

My reflections were 
documented at the end 
of each class session. 
Reflections questions 
(See Appendix E) were 
used to guide the 
analysis.  Additionally, 
the field-notes taken 
during the debriefings 
with research assistants 
were also used to guide 
the content of the 
reflections.  Further 
analysis of student 
written and calculator 
work were used to 
inform the reflections. 

These reflections guided the 
changes and revisions needed 
during the class. This was 
important given the iterative 
nature of the teaching experiment. 

 
 
  



	
  

	
   139	
  

 

Appendix C - Student Daily Observation Form 
 

Observer:         Date: 
There is evidence that the student… TU

T 
MU

T 
ST M

T 
TT Examples (Events of Interest)  / Pedagogical and Content Notes 

Students are able to 
recognize the relevant 
quantities involved in 
the situation.  

 

      
 

Students can represent 
these quantities in 
tabular and graphical 
form.  

 
 

      
 

Students 
hypothesize/explain 
how change in one 
quantity affects change 
in another quantity. 

 

      
 

 
Students choose 
functions that are 
relevant to the situation.  

 

      

Students test/revise 
whether their chosen 
function is an 
appropriate model.   

 

      

Students use their 
model to answer/pose 
contextual questions 
about the quantities.  

 
 

      
 

 
Notes:  
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Appendix D - Lesson Reflection Form 
When you consider the content learning of your students and the development of their 
mathematical thinking and practices, what do you think explains the learning/development or 
differences in learning/development that you observed during the learning segment?   
 
Based on your experience teaching this learning segment, what did you learn about your 
students as mathematics learners (e.g., easy/difficult concepts and skills, easy/difficult 
learning tasks, easy/difficult features of academic language, common misunderstandings)?   
 
What are the next steps given what your understanding of students engaging in mathematical 
practices and mathematical thinking today? 
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Appendix E – Student Function Tool 
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Appendix F – Pencil Paper Task 
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Appendix G – Cross Number Activity 
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Appendix H – Science of Patterns Task 
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Appendix I – Falling Circles Task 
	
  

 

 

 
  

Name: __________________________ Team Name: _____________________ Date: ___________ 

Falling Objects Activity 
 

Objective: Use your skills in data collection, graphing linear equations, and finding the equation of a line in 
slope-intercept form to predict the time it will take for an object to fall from any height.  

 
1) Make Observations: Make sure to listen to the teacher for instructions. Describe the object that you will use 

in this activity (sports ball, paper, coffee filter, etc.) 
 
 
 2) Collect Data: Make a table of values with the starting height in the first column, the time trials in the next 

three columns, the average time in the fourth column, and the ordered pairs.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3) Find the Pattern:  Use this coordinate plane to make a careful graph of the data. Plot the (x,y) 
points and connect them to form a line. Using a ruler, extend the line so that you can estimate the fall 
times of the object from other heights.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Starting 
Height 

(x) 

Fall Time  
Trial 1 

Fall Time 
Trial 2 

Fall Time  
Trial 3 

Average  
Fall Time 

(y) 

Ordered Pair 
(x,y) 
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Appendix J – Real-World Activity 
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Appendix K – Modeling Activities Task 1 
	
  
TAS Street 

 
  

The$“Science$of$Pa.erns”$–$Math$in$the$Streets$

Find%the%equa,on%for%the%following%streets,%keep%track%of%the%changes%you%make.%

Broadway$
f1(x)=mx+b$

Equa,on% What%Adjustment%are%you%
going%to%make?%

San$Pedro$St.$
f2(x)=mx+b$

Equa,on% What%Adjustment%are%you%
going%to%make?%
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Appendix K  - Modeling Activities Task 2 
Stopping	
  Distance	
  

	
  
 
  

The$“Science$of$Pa.erns”$–$Stopping$Distances$

What$do$you$know$for$sure?$ What$do$you$wonder?$

!
!
!
!
!
!

At!many!automobile!crime!scene!inves2ga2ons,!inves2gators!o5en!measure!the!skid!marks!le5!behind!
by!those!cars!involved!in!the!accident.!!By!measuring!and!recording!the!length!of!the!skids!marks,!crime!
scene!inves2gators!can!determine!the!speed!of!the!car.!!We!will!use!the!data!below!to!determine!how!
they!do!this.!

Using!the!table!above,!create!a!new!table!by!iden2fying!the!important!quan22es!(variables)!involved!in!
the!stopping!distance!situa2on.!

Speed$ Total$Stopping$Distance$

10!

20!

30!

40!

50!

60!

70!
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Appendix K – Modeling Activity Task 3 
Modeling	
  with	
  Quadratics	
  

	
  
	
   	
  

  Modeling with a Quadratic Function Name   
Student Activity Class   

 

©2011 Texas Instruments Incorporated 1 education.ti.com 

Open the TI-Nspire™ document 
Modeling_with_a_Quadratic_Function.tns. 
 
You will determine the equation of a quadratic function that models 
the path of a basketball. Based on your equation, you will solve 
problems related to the path of the basketball. 

  

 
Move to page 1.2. 
 
Note: Two tick marks represent 1 meter. 
 

Press / ¢ and / ¡ to 

navigate through the lesson. 

1. Graph the quadratic function, f(x) = x2, on page 1.2. Then use the vertex form 
y=a(x-h)2+k so that it matches the path of the basketball. What is the equation of the 

quadratic function that matches the path of the basketball? 
 
Equation What adjustments are you going to make? 
  
  
  
  
  
  
  
  

 
Note: You may need to drag the function definition away from the graph in order to 
transform the parabola. 
 

2. In this activity, the horizontal distance traveled by the basketball is the independent 
variable. What is the dependent variable? 

 
 
 
3. Determine the maximum height of the basketball in meters. Explain your reasoning. 
 
 
 

  Modeling with a Quadratic Function Name   
Student Activity Class   

 

©2011 Texas Instruments Incorporated 2 education.ti.com 

4. Visualize a point on the ground directly beneath the ball when it reaches its maximum height. 
How far is this point from the person shooting the basketball? Explain your reasoning. 

 
 
 
5. How high was the ball when it was a horizontal distance of 2 m from the person 

shooting the basketball? Explain your reasoning. 
 
 
 
6. If the ball followed the path modeled by your quadratic function and the basket was not 

there, how far would it have landed from the person on the left? Explain your 
reasoning. 
 

 
 
 
7. Move to Page 1.3 and find a quadratic function to match the path of Geo’s amazing jump shoot.  

Keep track of your equations. 
Equation What adjustments 

are you going to 
make? 

  
  
  
  
  
  
  
  
 
8. Move to Page 1.4 and find a quadratic function to match the path of Daniels’s fabulous jump shoot.  

Write your solution below. 
 
 
 
 
 
9. How high does Daniel’s shot go?   
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Appendix L – Student Trajectory Streets Activity 

	
  
y=x	
  

	
  
y=x+4	
  

	
  
y=x+2	
  

	
  
y=x+6	
  

	
  
y=5x+6	
  

	
  
y=2x	
  

	
  
y=2x+8;	
  model	
  of	
  best	
  fit	
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Appendix M – Bungee Jumping Activity 
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