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Abstract

Simple perceptual decision-making tasks such as the Stroop
and flanker tasks are popular as a method of measuring indi-
vidual variation in the processing of conflicting visual stimuli–
for instance, the difference in accuracy on stimuli with and
without conflict. A major challenge in applying these tasks,
for instance, to compare two different populations of subjects,
is the low reliability of the nonparametric measures of perfor-
mance in the tasks. Here, we model dynamic adjustments in
decision policies often seen in human behavior, thereby cap-
turing trial-by-trial variation in decision policies, in addition to
the classically used average statistics. We propose a recurrent
network model to capture behavioral strategies in the task in a
model-agnostic manner, and to overcome small-sample learn-
ing challenges by pooling across subjects. We show that by
splitting the learning into a complex, shared meta-model and
simple subject-specific parameters, we learn significantly bet-
ter predictive models, and also identify latent dimensions in-
dexing the decision policy that may serve as a better measure
of individual differences in the task.

Keywords: Artificial Intelligence; Cognitive Neuroscience;
Decision Making; Machine Learning; Neural Networks

Introduction
Decades of research in cognitive neuroscience have focused
on simple behavioral tasks thought to measure aspects of
decision-making and related cognitive processes. For in-
stance, the Eriksen flanker task (Figure 1, Eriksen and Erik-
sen (1974)) purportedly measures an individual’s ability to
suppress or ‘inhibit’ irrelevant visual information1. Such
tasks are widely used as a battery of behavioral experiments
in large-scale studies–for instance, in longitudinal studies of
adolescent development (Garavan et al., 2018), or psychiatric
conditions & clinical outcomes (Victor et al., 2018). Yet, re-
cent research raises significant concerns about these tasks:
that they do not correlate well with life outcomes (Eisenberg
et al., 2019), and that indices of performance in these tasks
show unacceptably high within-subject variation in repeat
measurements (Enkavi et al., 2019; Hedge, Powell, & Sum-
ner, 2018). This is true both for empirical measures such as
error rates and average response times (RT) on different types
of trials, and also for latent variables/parameters estimated

∗Equal contribution
1We describe only one task for illustration; there are a wide range

of very well-studied tasks probing various aspects of the notion of
“inhibitory control”, e.g., the go-nogo task (Donders, 1969; Logan
& Cowan, 1984a), the Stroop task (Stroop, 1935), the stop-signal
task (Lappin & Eriksen, 1966), etc.

Figure 1: Sequential updating in inhibitory control tasks. (a)
Eriksen Flanker task: participants respond to the direction of
the central arrow while ignoring flanking stimuli. Response
times (RT) and accuracy deltas between congruent & incon-
gruent trials are considered indices of cognitive control. (b)
Relation between RT decile and accuracies, pooled across
subjects (deciling within subject), showing that RT variance
is influenced by trial-by-trial adjustments to decision policy.

from model fits to RT/accuracy distributions using classical
approaches like the race model (Ratcliff & Rouder, 1998; Lo-
gan & Cowan, 1984b).

We argue that classical empirical measures and computa-
tional models focus on average performance, and fail to cap-
ture the full range of behavior. In particular, well-known
stimulus-history-based changes in response times and accu-
racy (Laming, 1968) contain valuable information about trial-
by-trial adjustments to subjects’ decision policies, and ex-
plain significant behavioral variability. Driven by this insight,
we propose and address the novel challenge of extracting
subject-specific parameters of dynamic policy adjustments as
a more informative individual index of task performance.2

Our contributions are as follows: (a) We propose a deep re-
current model (RECNET) to predict sequential adjustments to
speed-accuracy tradeoffs, (b) We pool data across subjects in
a meta-learning framework to effectively learn the recurrent
model of behavior, and (c) We learn a compact parametriza-
tion of each subject in the meta-model to customize it to each
subjects’ individual behavior. Our proposed meta-learning
model is significantly more accurate at predicting behavior

2Although much studied in recent research, from Bayes nets (Yu
& Cohen, 2009) to hypernetworks (Dezfouli, Ashtiani, et al., 2019),
sequential effects models have not directly addressed issues of test-
retest reliability; indeed, recent proposals (Dezfouli, Ashtiani, et al.,
2019; Yu & Cohen, 2009) fare poorly in our experiments on mea-
sures of reliability. See Related Work & Results sections for details.
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compared to simple pooled models, and the predictive power
transfers easily to new sessions of data. In particular, we
demonstrate that given a prelearned meta-model, our sub-
ject parameters can be recovered with very little data, and
show significantly better test-retest reliability (Intraclass cor-
relations (Shrout & Fleiss, 1979)) compared to classical be-
havioral and model-based measures.

Our focus in this work is primarily on reliable estimation
of subject-specific performance indices as a machine learn-
ing challenge; making connections to cognitive processes
or proposing new theories is beyond the scope of this pa-
per. Nevertheless, we believe that our work (a) addresses
a key challenge for the broader field of cognitive neuro-
science (Eisenberg et al., 2019; Enkavi et al., 2019), and
(b) can lay the foundation for future work in interpretable
models, and cognitive theories (see e.g., Peterson, Bourgin,
Agrawal, Reichman, and Griffiths (2021); Miller, Botvinick,
and Brody (2021) for recent successes of the transition from
predictive to explanatory models).

Related Work
Inhibitory control & test-retest reliability: Behavioral
tasks are routinely used to characterize individual differences
in putative cognitive processes such as inhibitory control,
self-regulation, working memory, and so on. To accurately
characterize individual differences in these tasks, we need
reliable measures – here, reliability describes our ability to
rank individuals in a consistent manner across sessions. This
is all the more important for longitudinal studies (Garavan
et al., 2018). However, multiple systematic studies question
the reliability of classically used tasks and their associated
indices of individual performance. For instance, Eisenberg et
al. (2019) and Enkavi et al. (2019) found that survey measures
of self-regulation had higher reliability, and better predicted
real-world outcomes, compared to cognitive tasks. Similarly,
Hedge et al. (2018) found low test-retest reliability rang-
ing from 0 to 0.82 across seven commonly used inhibition
tasks. We believe that the average statistics classically mea-
sured in these tasks may not capture the whole of individuals’
decision-making policies in the tasks, and instead build pre-
dictive models that can also explain some portion of the trial
by trial behavioral variation.
Sequential effects in decision-making: Influences of re-
cently experienced stimuli on reaction times have long been
known (see e.g., Laming (1968)), and arise even when there
is no apparent relevance of stimulus history to behavior on the
current trial. Some authors (see e.g., Yu and Cohen (2009))
suggest a model of stimulus statistics estimation under a non-
stationary distributional assumption, leading to rational ad-
justments to the changes in prior expectation. There are com-
peting theories about which particular stimulus history pat-
terns influence behavior, and through what cognitive mech-
anism (see e.g., Davelaar (2013)). Other work examines the
influence of prior stimulus expectation on a within-trial policy
tradeoff between various objectives in the task (Leotti & Wa-

ger, 2009); however, attempts at defining those within-trial
policies vary widely, from descriptive (Ratcliff & Rouder,
1998; Logan & Cowan, 1984b) to prescriptive (Shenoy &
Yu, 2011). Some researchers investigate brain regions in-
volved in integrating stimulus-outcome history for policy ad-
justments (Hwang, Dahlen, Mukundan, & Komiyama, 2017),
or suggest entirely alternate causal mechanisms underly-
ing sequential patterns, such as stochasticity in brain pro-
cesses (Samaha, Iemi, Haegens, & Busch, 2020), or instan-
taneous coupling between brain areas (Polanı́a, Moisa, Opitz,
Grueschow, & Ruff, 2015).
Computational models of behavior:3 The drift-diffusion
model (DDM (Ratcliff & Rouder, 1998)) is a highly pop-
ular mechanistic model of 2-alternative forced choice tasks
as well as other similarly structured tasks, and model fits of
DDM (e.g., using packages such as HDDM (Wiecki, Sofer,
& Frank, 2013)) are often used to extract covariates from be-
havioral data for correlational analysis with brain signals or
clinical outcomes. DDM only models distributional data (RT
and error distributions), and cannot capture sequential adjust-
ments in behavior; in our experiments, their test-retest relia-
bility is in the ballpark of classical empirical measures.

Closer to our proposal, Dezfouli, Griffiths, Ramos, Dayan,
and Balleine (2019) proposed a simple LSTM model for cap-
turing human policy learning in a bandit task, with the goal of
classifying subjects into 3 clinically defined groups. In sub-
sequent work (Dezfouli, Ashtiani, et al., 2019), they mapped
individual behavioral sequences into a low-dimensional la-
tent space, where, again, the goal was qualitative across-
group comparisons of (disentangled) factors underlying deci-
sion policies. The embeddings only captured coarse aspects
of across-group variation in the task, not sufficient to serve as
accurate predictive models of individual behavior.

Chatterjee and Shenoy (2021) proposed learning a feedfor-
ward architecture, with subject embeddings, on pooled data
from a large number of subjects performing an information
seeking task. In their task, while the subject embeddings cap-
ture a substantial amount of inter-subject variation in perfor-
mance, they do not build recurrent models and also do not
address the reliability of parameter estimates across sessions.
Our approach: We take a model-agnostic approach to cap-
turing inter-trial variability, using black-box LSTM architec-
tures. Our finding that recurrent architectures capture trial-
by-trial responses is evidence that part of the variability is
history-driven; further, empirical analyses show that RT and
accuracy do in fact tightly covary, again supporting the notion
that this captured variability is related to policy adjustments
that influence such tradeoffs (Leotti & Wager, 2009). We fo-
cus solely on the predictive task of capturing RT/choice vari-
ation, on a per-subject grain, without limiting learned mod-
els to any specific function class. Other models with strong
inductive biases (Yu & Cohen, 2009), or aimed at captur-

3We only sketch a few approaches relevant to our context: simple
cognitive/behavioral tasks, sequential updates to decision policies,
and subject-specific parameter estimation.
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ing group-level variation (Dezfouli, Ashtiani, et al., 2019)
showed poor test-retest reliability in our experiments. Fi-
nally, we exploit simple meta-learning architectures to pool
data across subjects for training – indeed, learning recurrent
models from small amounts of single-subject data is difficult
in general, and unsuccessful in our setting.

Methods
Eriksen Flanker Task
We describe the Eriksen flanker task used in our experiments
(Figure 1). Each trial presents an arrow (left, right) in the
middle of the screen, with subjects required to press a button
linked with the direction of the arrow, as fast and accurately
as possible. Additional, task-irrelevant stimuli are present on
either side of the central arrow, in one of 3 trial types – (a)
congruent: arrows matching the central stimulus, (b) incon-
gruent: arrows in opposition to central stimulus, (c) neutral:
non-arrow stimuli. The expectation is that on congruent tri-
als, the flanking stimuli reinforce the perception of the central
stimulus, and on incongruent trials they interfere.

In the task, each subject performs multiple trials per ses-
sion. For each trial t, with trial type xt and arrow direction pt ,
the subjects’ reaction time τt and correctness ct is recorded.
We use the notation xt = (xt , pt) to denote the stimulus, and
rt = (ct ,τt) to denote the user response for trial t.

Recurrent Networks for Behavior Prediction
Given a sequence of trials X = {x1 . . .xt} experienced by a
subject s, we wish to model behavioral responses by training
models that mimic behavior, i.e., the model’s goal is to pre-
dict an individual subject’s response sequence R = {r1 . . .rt},
rather than maximize the accuracy at the task itself.

As discussed earlier, our goal is to capture sequential
adjustments in behavior; we therefore model the response
at time t as a function of all previous stimuli and feed-
back. To model this temporal dependency, we use an LSTM
(Hochreiter & Schmidhuber, 1997) to integrate stimulus and
response history over the past trials.

Our proposed model RECNET, consisting of an LSTM ac-
cumulator and a feedforward response prediction network, is
shown in Figure 2a. The LSTM has as its inputs, the previous
stimulus xt−1 and the previous responses rt−1. We combine
the LSTM’s hidden state ht and the current trial’s stimulus
information xt using a feedforward network, and predict the
user’s choice (ĉt ) and RT (̂τt ) on the current trial.

The model parameters Θ are learned by minimizing the fol-
lowing objective:

L
(

R̂;X ,Θ
)
=

t

∑
i=1

lCE (ĉt ,ct)+ lHuber (̂τt ,τt) (1)

Here, lCE is the cross-entropy loss and lHuber is the Huber
loss. R̂ is defined in the same way as R but for the model
predictions. The true user responses R, also an input to the
loss function, are elided here and in the following sections
for notational simplicity.

Note that we use the subject’s actual responses rt−1 as in-
put to the LSTM, rather than the model’s predictions on the
previous time step. This is because we are specifically in-
terested in capturing the policy adjustment as a function of
sequentially integrated history; using the model’s own pre-
dictions may result in accumulative noise over the sequence
of predictions for the subject, and hinder learning.

Figure 2b shows a simplification of the model by elimi-
nating the recurrent component (LSTM)–we use this purely
feedforward model, FFNET, as a baseline for comparison.
FFNET is also trained using the loss function described
above. Note that since the model has no contextual informa-
tion distinguishing any given trial from any other trial with the
same stimuli xt , it can only learn the average error rates and
response times broken down by trial types. The primary role
of FFNET as a baseline is to account for all variance in choice
explained by trial type alone, i.e., without the use of sequen-
tial adjustments. Figure 2c considers an intermediate model;
one that uses a flat prediction structure like FFNET but also
takes as input the immediately preceding time point’s stimuli
and responses. This model is named FFPREV and is used to
re-examine previous findings that simple linear models (e.g.,
logistic regression) show sequential influence of the immedi-
ately preceding time point, but typically not further back in
the past (Hwang et al., 2017).

Meta-Learning via Parametrization
We propose a simple meta-learning approach (e.g., Fig-
ure 2d), wherein the network parameters are shared across
subjects, and each subject s is parametrized using a subject-
specific embedding θ

(s)
SE passed as additional input to the

model. These learned embeddings allow for the meta-model
to be customized, to some degree, to individual subjects. We
refer to the model in Figure 2d as RECNET(SE) and train it
using data pooled across all subjects, i.e.,

LSE = ∑
s

L
(

R̂(s);X (s),Θ,ΘSE

)
(2)

where X (s), R̂(s) refer to the trial inputs and responses from
subject s, respectively, and ΘSE is the set of subject-specific
embeddings θ

(s)
SE for all subjects.

We note that the other baseline models FFNET and FF-
PREV can also be similarly enhanced via pooled training and
subject parameters, creating the models FFNET(SE) and FF-
PREV(SE) respectively.

Experiments
Dataset: We reanalyze data collected by Hedge et al.
(2018)4, which includes two sessions about 3 weeks apart.
Each subject completed 720 trials (240 in each condition -
congruent, incongruent, neutral) per session. The study in-
cluded two different batches, of 50 and 62 subjects each. We
pool data from both giving 107 subjects5. For each subject

4released under CC BY 4.0, https://osf.io/cwzds/
5The remaining 5 did not return for the second session.
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Figure 2: Recurrent models of decision policy adjustment. (a) A recurrent model RECNET, with an LSTM to integrate trial
& response history (previous trial stimuli xt−1 and response rt−1), and a feedforward network (FF) to combine with current
trial stimuli xt and predict current choice (ct ) & RT (τt ). (ct and ht denote the cell state and the hidden state of the LSTM.)
(b) Non-recurrent baseline for comparison–FFNET–a purely feedforward network with current trial inputs. (c) Non-recurrent
baseline with bounded history–FFPREV, similar to FFNET, except that it takes directly as input the previous trial’s information
(xt−1,rt−1). (d) The meta-model RECNET(SE) which can be trained over pooled data from multiple subjects, and includes a
learned subject embedding (SE) for customization to individual subject data. Other models can be similarly customized.

& session, the first 80% of the trials are used for training and
the remaining for validation i.e., two sets of 576 & 144 trials,
which we label S1Train, S1Val, S2Train, and S2Val.
Training & validation: All models are first trained using
S1Train and evaluated on S1Val, allowing us to compare
their predictive power. For models that have subject param-
eters, we evaluate transfer using the following process: the
shared parameters (network weights) are kept frozen from
the first session’s training, and only subject parameters are
re-estimated using S2Train data. The frozen meta-models,
plus the re-estimated subject parameters, are then evaluated
on S2Val. Finally, the two sets of subject parameters are
compared for estimating across-session reliability.
Architecture and Training Details: A single layer LSTM
with an input size of 6 and hidden dimension 15 is used.
The feedforward network consists of two parallel sets of lay-
ers, one each for predicting the choice and RT. These are
two-layer fully connected networks having 15 hidden units
and ReLU activation. Training is done using Adam opti-
mizer (Kingma & Ba, 2015) using a learning rate of 0.003
for session 1 and 0.001 for session 2, for a maximum of 2000
epochs, with early stopping. A weight decay (L2 regulariza-
tion) of 0.001 is used for the subject embeddings (ΘSE ). A
batch size of 2 is used. We use log(RT) instead of RT since
the log distribution is easier to learn.
Metrics and evaluation: We calculate within-subject corre-
lations between predicted and actual RT, and predicted choice
(likelihood) and actual choice. These correlations are aver-
aged across subjects; we also keep track of the number of
subjects for which the correlation was statistically significant
(setting p < 0.05). We compare two models using paired t-
tests on the subject-grain correlation coefficients, and assess
statistical significance. All reported metrics are on the vali-
dation splits alone. We also compared models on MSE (RT
predictions) and cross-entropy (choice); the findings were
broadly similar and we do not report those metrics here. For
simplicity, we evaluate models without subject parameters
only on session 1 data; results are similar on session 2 data.
Test-retest reliability: We compute the intra-class correla-
tions (ICC (Shrout & Fleiss, 1979)) of estimated subject pa-

rameters across the two sessions. ICCs are used as a measure
of consistency or reproducibility of measurements made by
different raters for the same subject. It roughly compares the
variation of ratings of the same subject to the total variation
across all ratings and all subjects.
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Figure 3: Model predictive power on session 1 data (left
panel), and transfer performance on session 2 data (right
panel, see text for details). RECNET(SE) significantly out-
performs (p <1e-10, pairwise comparisons), and each model
class is improved by adding subject parameters. For meta-
models, simply re-estimating embeddings on session 2’s data
provides performance equivalent to that of session 1.

Results
Sequential policy updates: Figure 1b relates response times
with accuracy on congruent & incongruent trials in the task.
We divided each subject’s trials into decile buckets by RT,
and pooled data across subjects to calculate accuracy by
decile bucket. The data shows a clear tradeoff between re-
sponse speed and accuracy, showing that RT variations are
not merely perceptual or motor noise, but reflect adjustments
to the decision policy.
Model fits to behavior: Figure 3(a) shows the averaged
per-subject correlation between model predictions and ac-
tual data, for RT (left group) and choice (right group). Also
shown are error bars (SEM across subjects) and the number of
subjects with statistically significant correlations (p < 0.05)
(numbers on top of the bars). The models listed include
baselines (FFNET, FFPREV, RECNET) trained on pooled
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parameters alone re-estimated using data from session 2. The first 5 panels show the 5 dimensions of the embedding. Panel 6
shows the correlation between sessions for dimension 0 alone, as a function of #trials of session 2 used for estimation.

data across subjects, and their corresponding meta-models
(FFNET(SE), FFPREV(SE), RECNET(SE), which include
subject parameters for personalized predictions). The follow-
ing trends are clearly demonstrated: (1) No-history models
perform poorly; FFNET and FFNET(SE) both show low av-
erage correlations, and are similar to each other, (2) Even
a single previous timestep provides substantial information
(FFPREV, FFPREV(SE))–this is consistent with previous
findings (Hwang et al., 2017), (3) Recurrent models clearly
outperform the other models (RECNET and RECNET(SE)).
Finally, each model family’s performance is consistently im-
proved by the addition of subject parameters.

We compared the meta-models in pairwise fashion using
paired t-tests: RECNET(SE), FFPREV(SE), FFNET(SE);
each model was statistically significantly better than the next
with high confidence (p < 1e−10 for all comparisons).
Generalization: To test generalization to a second session,
we kept the meta-models fixed, and only re-estimated sub-
ject parameters on a portion of the new session’s data, start-
ing with random initialization. Figure 3(b) shows that each
model’s performance on the new session’s data is nearly iden-
tical to performance on the original session’s validation data;
this shows excellent transference of predictive power across
sessions. This is a significant result: given a pre-learned
meta-model, say RECNET(SE), we only need to estimate a
small number of subject parameters per subject to be able to
predict behavior on an entirely different session of behavioral
data. This also means that parameters for entirely new sub-
jects can be easily estimated using a prelearned meta-model.
Repeatability: Figure 4 compares the estimated subject pa-
rameters (here, of dimension 5) for RECNET(SE) across ses-
sions; each plot compares one dimension in isolation across
subjects. Parameter estimates are strongly correlated, partic-
ularly dimensions {0,1}. The rightmost panel of Figure 4
shows the correlation across sessions for dimension 0, as a
function of # trials from session 2 used for estimating sub-
ject parameters. A small amount of data (around 200 trials)
is already sufficient to obtain a stable re-estimate.
Intraclass Correlations: Table 1 presents, for each subject-
specific index of behavior, its ICC (a measure of across-
session reliability–see Methods), the associated confidence
interval, and the Pearson correlation coefficient (closely re-

lated to ICC). For model parameters, we only present the two
dimensions that had the highest ICC scores; these are also
typically (but not necessarily) the first 2 dimensions. We also
evaluated classical measures in the task, based on RT and ac-
curacy by trial type. RT cost and Accuracy cost refer to the
difference in averages (RT, accuracy respectively) between
congruent and incongruent trials.

As seen in Table 1, ICC scores are ordered similar to model
predictive power; in particular, RECNET(SE) has clearly su-
perior test-retest reliability, driven by its capturing of sequen-
tial policy adjustments as a subject-specific trait. This also
indirectly supports our primary motivation–that strongly pre-
dictive models correspond to more reliable subject indices.
FFPREV(SE) shows intermediate ICC scores, since it has
bounded access to history. Interestingly, FFNET(SE) closely
matches ICCs of empirical/behavioral measures in the task,
since it is only able to capture average performance by trial
type, similar to the empirical measures.

Finally, referring back to Figure 4 (last panel), we see that
ICC for dimension 0 already exceeds all behavioral measures
using as few as 200 trials; this is especially important given
the claim that estimation noise may be a major factor under-
lying poor retest reliability of classical measures, requiring
large numbers of trials (Rouder, Kumar, & Haaf, 2019).
Other computational models: Due to paucity of space, we
only summarize key findings from the study of other com-
putational models. We evaluated the fitted parameters of the
Drift-Diffusion Model (DDM, a popular mechanistic model
for simple decision-making tasks), using the HDDM pack-
age (Wiecki et al., 2013) and found them to be on par with
behavioral measures (∼0.59). This is unsurprising, as DDMs
only model the overall distribution (i.e., average statistics)
and cannot capture across-trial variance.

We similarly evaluated the hypernetwork proposed
by Dezfouli, Ashtiani, et al. (2019) and found the latent repre-
sentations to have very low ICCs (∼0.23). This approach, al-
though conceptually similar in the use of a recurrent network,
pooled learning, and latent parameters, was designed primar-
ily for qualitative separation (disentangled representations)
and across-group comparisons, rather than accurate subject-
specific predictive modeling. Finally, we evaluated a popular
proposal for modeling sequential RT variations–the Dynamic
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Bayes Model (Yu & Cohen, 2009)–and found its estimated
parameters to also have low reliability. Here, too, there is
a mismatch of modelers’ intent and application, since they
primarily addressed the nonstationary estimation of stimu-
lus frequencies using a specific inductive bias, whereas we
use models with sufficient representational capacity and no
inductive constraints (LSTMs) with the primary objective of
predictive accuracy.
Examining learned model parameters: We display the
cross-correlation matrix between all empirical measures and
all embedding dimensions for RECNET(SE) in Figure 5,.
The dimensions SE0 and SE1 for RECNET(SE) have the
highest ICC; they appear to show moderate-to-high positive
(resp. negative) correlation across all behavioral measures.
Notably, they show similar correlation patterns as the incon-
gruent accuracy, which is the most reliable of the empirical
measures; this is despite the fact that RECNET(SE) models
sequential adjustments, a source of information not (directly)
available to the average empirical metrics. This suggests that
average metrics contain some coarse representation or corre-
lates of the decision policies implicit in RECNET(SE); fur-
ther analysis is needed to explicate these relationships.

Table 1: Intraclass-correlations, confidence intervals, and
across-session correlations for classical task measures and
learned subject embeddings. Primary classical metrics
(RT/Accuracy Cost) have low ICCs; incongruent accuracy is
better with ICC 0.70. RecNet(SE) embeddings show clearly
higher ICCs, and are thus more reliable as markers of individ-
ual behavior. All correlations except RT cost are p <1e-10.)

ICC CI 95% Corr

RECNET(SE) SE:top1 0.77 [0.68, 0.84] 0.78
SE:top2 0.75 [0.65, 0.83] 0.77

FFPREV(SE) SE:top1 0.71 [0.59, 0.80 ] 0.73
SE:top2 0.62 [0.48, 0.72] 0.62

FFNET(SE) SE:top1 0.62 [0.48, 0.72] 0.65
SE:top2 0.62 [0.46, 0.73] 0.66

Classical RT

congruent RT 0.62 [0.46, 0.73] 0.66
neutral RT 0.58 [0.41, 0.71] 0.64
incongruent RT 0.57 [0.38, 0.70] 0.63
RT Cost 0.23 [0.05, 0.40] 0.27

Classical Acc

congruent Acc 0.53 [0.37, 0.66] 0.59
neutral Acc 0.52 [0.34, 0.65] 0.58
incongruent Acc 0.70 [0.57, 0.80] 0.74
Accuracy Cost 0.57 [0.42, 0.68] 0.56

Discussion
We outlined the problem of reliable session-to-session mea-
surement of individual behavior in inhibitory control tasks.
We showed the promise of modeling sequential policy adjust-
ments in the task, a direction not explored in classical analy-
ses of task behavior for identifying subject-specific indices of
performance. We proposed meta-learning of recurrent mod-

Figure 5: Cross-correlations between classical task metrics
and learned subject parametrizations.

els for capturing sequential choice and response time behav-
ior, and showed that these models were significantly more
predictive than per-subject models, or non-recurrent models
with bounded history. Our approach provides, along with a
meta-model for predicting behavior in the task, subject pa-
rameters that serve as compact, individual parametrizations
of the meta-model to subject-specific data. The learned sub-
ject parameters have high test-retest reliability and can be par-
simoniously estimated with only a few trials of data for a new
subject. This is especially important given findings in the lit-
erature that behavioral estimates are noisy and may need sig-
nificant amounts of data for estimation (Rouder et al., 2019).
Our subject parameters show promise as a richer window into
individual differences in inhibitory control, and may better
capture across-group differences for diagnosing disruptions
in decision-making faculties.

From the perspective of developing theories of cognition
and decision-making, there are two straightforward next steps
for our work. On one hand, the meta-models must be cap-
turing a parametrized family of behavioral policies, using
some functional form relevant to ecological and statistical
concerns. In general, interpreting and understanding the func-
tions learned by black-box models such as ours is a very
promising direction of study given their strong predictive
power. On the other hand, many recent papers have attempted
nonparametric analyses to identify potential latent dimen-
sions or factors that describe unitary constructs of inhibitory
control that generalize across many such diagnostic tasks; see
for example (Eisenberg et al., 2019; Gärtner & Strobel, 2021).

We can easily extend our models to a multi-task setting,
and study the induced subject parameters that span these tasks
for clues about the structure of inhibitory control. We believe
that by using predictive accuracy as a strong supervisory sig-
nal, we may uncover much more informative latent spaces,
and consequently, a better understanding of the conceptual
construct of “inhibitory control” in general.
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