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TRACING CO-REGULATORY NETWORK DYNAMICS IN NOISY, 
SINGLE-CELL TRANSCRIPTOME TRAJECTORIES

Pablo Cordero and Joshua M. Stuart
UC Santa Cruz Genomics Institute, University of California, Santa Cruz, California, USA

Abstract

The availability of gene expression data at the single cell level makes it possible to probe the 

molecular underpinnings of complex biological processes such as differentiation and oncogenesis. 

Promising new methods have emerged for reconstructing a progression ’trajectory’ from static 

single-cell transcriptome measurements. However, it remains unclear how to adequately model the 

appreciable level of noise in these data to elucidate gene regulatory network rewiring. Here, we 

present a framework called Single Cell Inference of MorphIng Trajectories and their Associated 

Regulation (SCIMITAR) that infers progressions from static single-cell transcriptomes by 

employing a continuous parametrization of Gaussian mixtures in high-dimensional curves. 

SCIMITAR yields rich models from the data that highlight genes with expression and co-

expression patterns that are associated with the inferred progression. Further, SCIMITAR extracts 

regulatory states from the implicated trajectory-evolving co-expression networks. We benchmark 

the method on simulated data to show that it yields accurate cell ordering and gene network 

inferences. Applied to the interpretation of a single-cell human fetal neuron dataset, SCIMITAR 

finds progression-associated genes in cornerstone neural differentiation pathways missed by 

standard differential expression tests. Finally, by leveraging the rewiring of gene-gene co-

expression relations across the progression, the method reveals the rise and fall of co-regulatory 

states and trajectory-dependent gene modules. These analyses implicate new transcription factors 

in neural differentiation including putative co-factors for the multi-functional NFAT pathway.
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Introduction

Understanding the dynamics of gene expression progression in a cell population as it 

traverses a biological process such as differentiation has been an outstanding problem in 

modern cell biology. These dynamics are characterized not only by the changes in cell-to-

cell gene expression levels, but by the rewiring of gene regulatory networks as the cells 

transform from one transcriptional state to another. Tracking these gene regulatory changes 
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would pinpoint coordination of biological function as gene modules are turned on or off 

throughout the progression.

Single-cell transcriptomics has given important insights into gene expression dynamics, 

revealing the stochastic nature of gene expression and characterizing in detail the behavior 

of small genetic networks.1–4 In their initial incarnation, these measurements were confined 

to demanding microscopy protocols that assayed gene expression levels through time of only 

a handful of genes. In recent years, advances in flow cytometry, microfluidics, and 

sequencing technologies have enabled the interrogation of up to the whole transcriptome in 

hundreds to thousands of cells.5–7 Application of these techniques to biological processes 

such as development provide snapshots of cell states through time and space.

Many computational methods have emerged to infer trajectories of connected state 

transitions from the static samplings of single-cell transcriptomes. The goal of these methods 

is to provide a pseudotemporal ordering of cells in which neighboring cells are similar to 

each other, capturing an overall biological progression. These approaches have been 

successfully applied to elucidate complex transcriptional patterns and regulators in myoblast 

differentiation,8 B cell development,9 and haematopoiesis.10 Nevertheless, cell orderings 

alone give little insight into the state of gene regulatory networks across time. In addition, 

while most methods use strategies to tackle biological and technical noise, none account for 

the dynamic, heteroscedastic nature of the data. Further, only a few take into consideration 

uncertainties in pseudotime assignments,11 making error estimates difficult to evaluate.

To address these challenges we propose a strategy, Single Cell Inference of MorphIng 

Trajectories and their Associated Regulation (SCIMITAR), for inferring gene expression 

network dynamics throughout biological progression from static, single-cell transcriptomes. 

SCIMITAR gives a detailed, fully probabilistic description of the expression trajectory that, 

in contrast with previous methods, explicitly accounts for heteroscedastic noise in the data. 

In addition, it tracks the changes of gene-gene expression correlations at each point in the 

progression. The probabilistic nature of SCIMITAR transition models allows for evaluating 

the shape of the multivariate gene expression distribution as a function of biological 

progression, which we show can be used to pinpoint co-regulatory cell states.

We benchmarked SCIMITAR’s inference capabilities in two scenarios. First, we tested its 

ability to infer cell ordering and network rewiring from simulated transcriptomic 

measurements where the underlying cell behavior was known. Second, we asked whether 

SCIMITAR could yield insights in the developmental trajectory of human fetal neurons by 

analyzing recently published fetal brain single-cell measurements. A likelihood ratio test 

designed for SCIMITAR revealed 36 genes that significantly varied throughout the 

progression but that were missed by standard differential expression between cell groups 

including genes in cornerstone developmental pathways such as the hypoxia inducible factor 

1 α (HIF1α), nuclear factor of activated T cells (NFAT), and androgen receptor (AR) 

pathways. Further, by tracking SCIMITAR co-expression matrices across pseudotime we 

were able to detect the evolution of co-regulatory states, gene modules, and genes that 

gained and lost connectivity throughout the trajectory.
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Results

Uncovering the full probability distribution progression underlying static single-cell 
measurements with SCIMITAR

Recently, there has been an explosion of single-cell transcriptomic data in various 

biomedical contexts and systems. A projection of the data from three such studies 

(refs8,10,12) in Fig 1A using a locally linear embedding reveals that these datasets are 

characterized by distinct groups of many cells interspersed with cells that fall along what 

appear to be isolines between groups. This structure suggests a model that combines 

distributions for cell population density and evolving cell states with heteroscedastic noise. 

One such model that could describe these data is a continuous mixture of Gaussian 

distributions with constraints that allow only for smooth, continuous changes in parameters 

over the course of the progression. We call such a model a Morphing Gaussian Mixture 

(MGM, see Methods and Fig 1B). The MGM has a mean function, µ : [0,1] → ℝn that 

threads through the data and is equipped with a covariance matrix function Σ : [0,1] → 
ℝn×n that defines a Gaussian distribution at each point in the progression, with n being the 

number of genes. The mean and covariance matrix functions vary continuously throughout 

the [0, 1] interval, defining a probability P(x|µ, Σ, t) for each cell gene expression vector x 
and pseudo time-point t ∈ [0, 1]. To ease inference, these mean and covariance functions can 

be parametrized with different functional classes, such as polynomials, splines, or Gaussian 

processes (see Methods). This probabilistic structure maps samples to a smooth curve and 

allows points to veer away stochastically by modeling the structure of the changing 

biological and technical noise. P(x|µ, Σ, t) captures the uncertainty of a cell mapping to a 

particular pseudotime due to the changing covariance nature of the MGM. A key advantage 

of this approach is that it replaces standard, grouped differential gene expression analysis or 

differential co-expression analysis with a more sensitive test for potential gene-gene 

regulatory relationships that change throughout the progression. Details of the MGM model 

as well as inference of its parameters from data are given in the Methods section.

Benchmarking SCIMITAR in simulated data

To test our strategy, we asked whether SCIMITAR could infer the underlying cell ordering 

and co-expression networks of simulated data where the ground truth was available. We 

tested SCIMITAR’s cell order inference capabilities in two settings in which noise was 

added to the system: 1) the noise is uncorrelated to the underlying trajectory and 2) the noise 

is correlated with the trajectory. The first setting, adding noise uncorrelated with the 

trajectory, tests robustness of the method in the presence of genes that are unrelated to the 

biological progression and that confound ordering inference. The second setting tests how 

biological and technical noise intrinsic to the system, including gene-gene correlated noise 

that change over time, affect cell ordering inference.

For the first setting, we simulated data closely following the simulation procedure described 

in ref.9 We simulated data in which 3 genes defined the true cell state and 7 genes 

represented unrelated (uncorrelated) expression programs to the simulated progression. 

Simulations in this scenario then, 3 dimensions of the data were ”signal” while 7 

were ”noise”. To obtain the three-dimensional trajectory, we performed a random walk for 
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600 steps and sampled a ’cell’ from a standardized normal distribution centered at the 

current point in the walk. We then added seven dimensions of Gaussian noise. We generated 

several datasets with an increasing noise magnitude (quantified as the standard deviation 

times the range of the trajectory). We then used SCIMITAR to model these data and obtain 

the model’s optimal cell ordering. We used SCIMITAR with three different functional 

classes (see Methods): third degree polynomials, cubic splines, and Gaussian Processes with 

a squared exponential correlation function (GP). We compared SCIMITAR’s performance 

with the cell orderings inferred by two popular methods, Monocle8 and Wanderlust,9 and 

used the Pearson correlation coefficient to compare the approaches (see Fig 2A). The best 

overall performers were all SCIMITAR models, with Wanderlust coming in close second 

and Monocle performing slightly worse possibly due to its assumption of linearity in its 

dimensionality reduction step in agreement with previous studies.13 All methods were 

susceptible to the noisy dimensions uncorrelated with the trajectory.

For the second test that adds noise correlated with the trajectory, we simulated a curve, 

µsimtraversing a 10-dimensional space using 10 randomly-generated quadratic polynomials. 

The correlated noise was simulated from the evolution of randomly generated Watts-

Strogatz networks and an additional set of quadratic polynomials with 6 different settings of 

signalto-noise ratios (see Supplemental Methods for a detailed description of this 

benchmark). We found all methods performed similarly (Fig 2B), suggesting that noise 

intrinsic to the system, including gene-gene statistical dependencies, equally confounds any 

cell ordering inference method.

In addition to solving the cell ordering problem, SCIMITAR models track evolving 

genegene correlations. We used the correlated noise simulations to test the accuracy of 

SCIMITAR’s gene network rewiring inference. To this end, we compared the covariance 

functions inferred by the polynomial, spline, and GP SCIMITAR versions. We measured the 

concordance of trends between each entry of the predicted matrix functions and the 

corresponding entry of the simulated values  using the Pearson correlation coefficient 

(see Fig 2C). The spline version of SCIMITAR produced the highest correlation coefficients 

while all versions were substantially better than randomly-generated covariance matrix 

functions. Closer examination of the three functional classes revealed that the GP version 

tended to overfit the data locally, closely following local covariance structure even in regions 

where a few samples were present while the polynomial version lacked the flexibility to 

model some complex twists and turns in evolving true covariance structures. The spline 

version struck a balance between smoothing inferences in intervals of the trajectory with few 

samples and maintaining flexibility to capture non-linear trends. We therefore chose to use 

the spline functional class for SCIMITAR models in the remainder of this study.

A differentiation model for human fetal neurons

In a previous study, Darmanis et al. obtained a transcriptomic map of the adult and fetal 

brain using single-cell RNA-seq measurements.14 One of the findings of the study was a 

continuous transition the between fetal replicating and quiescent neurons. We applied 

SCIMITAR to infer cell ordering and network rewiring of these data to elucidate key 

regulatory changes across the differentiation process. We downloaded these data from the 
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gene expression omnibus (series identifier GSE67835) and obtained the subset 

corresponding to all fetal neurons. We focused on all transcription factors that were 

expressed in at least 10% of the cells, log-transformed the data and controlled for cell-cycle 

effects using scLVM.15 We then fit SCIMITAR to the data and visualized the results in a 

two-dimensional locally linear embedding (see Fig 3A). The visualization suggested a single 

linear trajectory that traversed the fetal replicating and quiescent neurons which was 

captured by the SCIMITAR model. To obtain progression associated genes, we used a 

likelihood ratio test tailored for SCIMITAR models with dynamic noise (see Methods). The 

test revealed 92 genes with expression that was significantly psuedotemporal-dependent (see 

Fig 3B). To obtain global insights from these genes, we used hierarchical clustering with the 

Pearson correlation similarity metric to group them into 5 groups and performed Gene 

Ontology and KEGG pathway enrichment tests on each group (see color groups in Fig 3B). 

Early-expressed genes (red and green clusters) were associated with glucocorticoid 

receptors, heat shock factors, and signal transduction; genes expressed in the middle of the 

progression (yellow and pink clusters) were enriched with Maf-like proteins and cytokines; 

and the late-expressed genes (cyan cluster) had apoptosis, neurogenesis, and alternative 

splicing enrichment. These enrichments correspond to multiple observations in the literature. 

For example, heat shock factor proteins are well known to be involved in early 

neurodifferentiation16 while glucocorticoid receptors and Maf-like proteins are found to be 

expressed at different stages in hippocampal and developmental neurogenesis, 

respectively.17,18 Further, neurodifferentiation has been found to be particularly enriched for 

alternative splicing events.19

We then compared SCIMITAR’s progression associated genes to those obtained using an 

ANOVA differential expression test between cells grouped according to their fetal 

replicating or quiescent annotations. SCIMITAR uncovered 36 genes missed by ANOVA, 

most of which were highly expressed in the middle of the progression, a detail that is lost 

when grouping cells into two groups. These missed genes implicate different pathways 

whose genes were engaged in progression dynamics. For example, five genes, BHLHE40, 

SMAD3, SP1, and SMAD4, of the hypoxia inducible factor 1 α(HIF1α) pathway, involved 

in neural development,20 were revealed to follow an ordered progression by the SCIMITAR 

model but missed using grouped ANOVA differential expression (see Fig 3C). SCIMITAR 

revealed that the progression associated genes of this pathway were mostly active in early 

stages of differentiation. SCIMITAR also illuminated two other pathways: the Nuclear factor 

of activated T-cells (NFAT) and the Androgen receptor pathway which is critical for neural 

stem cell fate commitment21,22 (see Fig 3C).

We note that SCIMITAR’s progression associated genes did not include 7 genes from the 

ANOVA list, false positives for which the variance was too large or where the statistic was 

skewed by outliers in an otherwise lowly expressed gene. Nevertheless, three genes that 

seem to be be differentially expressed by manual inspection (BCL11B, AFF1, and REST) 

were found by ANOVA but missed by SCIMITAR, presumably due to a small subset of cells 

driving the change between groups.
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Evolving co-expression networks reveal defined co-regulatory states

We then used SCIMITAR’s inferred covariance functions to track changes in gene-gene 

connectivity across the progression. We sampled 100 correlation matrices at regular intervals 

from the covariance function, restricting the matrices to genes deemed progression 

associated. We calculated a global distance matrix between networks using Frobenius 

distance to assess their similarities and plotted the similarity values across pseudotime (see 

Fig 4A). As expected, the strongest similarities were between networks that were neighbors 

in pseudotime. However, three network clusters could be appreciated in the matrix, 

suggesting three different co-regulatory states. We obtained the consensus network of each 

state by averaging the network members of the cluster. Then, we ranked each gene by 

comparing their co-expression degree in each state to their co-expression degrees in the 

other two states using z-scores. The top 20 genes that gained the most connectivity in each 

state are listed in Fig 4B. All of the gain-of-connectivity genes include genes that have been 

established as key players in neurodifferentiation, such as PAX6, DLX1, and NEUROD6 

and were enriched with neurodevelopmental and neurogenesis GO terms.

To track highly connected gene modules of each state that significantly changed their 

connectivity, we obtained gene modules for each co-regulatory state using affinity 

propagation (with a dampening parameter of 0.5), finding 27 gene modules in total. We 

annotated these modules by gene set enrichment and ordered them across pseudotime (see 

Fig 4C). This analysis revealed a coordinated functional response across the trajectory: 

modules in state 1 were annotated with neural stem cell commitment, immune response, and 

protein trafficking, while state 2 was enriched with embryonic development, neuron 

regulation, and pallium development. State 3 had more diverse enrichments, from 

morphogenesis to membrane organelles, suggesting a stage when cells start taking on mature 

neuron roles depleted of differentiation potential. Importantly, this analysis pinpointed an 

NFAT-associated module to be most active in co-regulatory state 2 (see Fig 4D). Most NFAT 

co-factors involved in neural development are still unknown.23 The uncovered NFAT-

associated module provides putative candidates for this function. The full list of modules 

and their gene networks can be found in the Supplemental Results (see below).

Discussion

An outstanding goal of systems biology is to understand the principles under which the gene 

regulatory circuitry of a cell changes during a biological process. Single-cell transcriptomes 

offer a fast way to obtain transcriptome-wide snapshots of these processes. When properly 

analyzed, these data can be used to recover the principal trends of the biological progression, 

but current methods do not model the dynamic gene-to-gene correlations in expression that 

are the hallmarks of the underlying regulatory circuitry. Here, we presented SCIMITAR, a 

strategy that leverages morphing Gaussian mixtures to track biological progression and 

model the rewiring of these gene networks from static transcriptomes. SCIMITAR models 

account for heteroscedastic noise and increase the statistical power to detect progression-

associated genes when compared to traditional differential expression tests. Further, the 

models allow for detecting modes in co-expression structure in the trajectory: defined co-

regulatory states that represent potential metastable and transitionary cell states. We note 
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that Gaussian mixtures with non-diagonal covariance matrices suffer from the curse of 

dimensionality, which we have tried to control for by using shrinkage estimators. Exploring 

the robustness of other types of regularized estimators such as the graphical LASSO would 

be a logical next step to improve confidence in the inferred morphing mixture models.

SCIMITAR is part of a recent wave of probabilistic methods for cellular trajectory 

reconstruction from single-cell measurements.11,24 These types of models present several 

advantages, such as assigning uncertainty estimates of cell orderings and providing a natural 

way for mapping new samples to a trained model — a necessary task for building queryable 

trajectory maps with multiple progressions. Although SCIMITAR as presented cannot model 

branched cellular trajectories such as those corresponding to multiple cell fate decisions, the 

framework can be readily extended by replacing the single-curve parametrization of the 

mixtures with a branching structure, which deserves further investigation.

Methods

Morphing Gaussian Mixtures: correlated gene progression modeling with no 
dimensionality reduction

Single-cell transcriptomic measurements are high-dimensional, with the number of variables 

measured typically ranging from a few markers (generally no less than 48) to the full 

transcriptome that can be upwards around 30000 transcripts. However, not every gene or 

transcript is relevant to the biological system of interest and most are not expressed at all. 

Further, due to the underlying gene regulatory networks, the expression patterns of many 

genes are correlated and the strength of this correlation changes throughout the progression 

as the regulatory system changes from one cell state to the next. These biological constraints 

put the data in some low-dimensional manifold, a property that is used in various ways by 

cell ordering algorithms to justify reducing the dimensionality of the dataset to a manageable 

number of dimensions. Monocle, for example, reduces the data’s dimensionality to 2 

dimensions using independent component analysis and performs its calculations on a lower 

dimensional manifold. While the procedure captures general aspects of the trajectory, 2 

dimensions is generally not enough to capture all of the relevant variability of the data and 

the reduction leads to loss of information that can impact trajectory reconstruction (see e.g. 

our benchmarks in the Results sections and other benchmarks in13,24). Other methods, such 

as Wanderlust, reduce the dimensionality in a more principled way through nearest-neighbor 

calculations but forego capturing the changes in gene-gene expression correlations over 

time. To address both of these shortcomings, we introduce a model that retains the 

dimensionality of the dataset and tracks gene-gene correlations throughout the trajectory. To 

this end, we extended Gaussian graphical models to accommodate time-dependent changes 

in the mean and covariances of the model with time being a latent variable.

Gaussian graphical models are one of the dominant frameworks for analyzing gene 

expression data, where the data is assumed to follow a multivariate Gaussian distribution 

defined by a mean vector and a covariance matrix. Modeling the data becomes more 

challenging in the presence of population structure where several different populations, each 

with its own distribution, are intermixed. Gaussian mixture models, which posit that the data 

comes from a finite combination of multivariate Gaussians, have been used successfully in 
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this scenario.25 In static single-cell expression from a group of cells continuously 

undergoing a biological process, such as differentiation, the boundaries between populations 

are blurred and the data is best described as a continuous transformation between the first 

and last states. We model this transformation by assuming that the data comes from a 

continuous Gaussian mixture, parametrized by timepoints within the progression (the so-

called pseudotime), which are unknown. Let X be the data, p the number of genes, µ : [0, 1] 

→ ℝp, Σ : [0, 1] → ℝp×p the mean and covariance functions of the evolving populations 

that are time dependent, and γ a probability distribution on the [0, 1] interval representing 

cell population density at each pseudo time-point. Then the probability of the data given the 

model M = {µ, Σ, γ} can be written as:

(1)

Here, t stands for the pseudotime in the progression. This model, which we name the 

morphing Gaussian mixture model (MGM), differs from other mixture models in that we 

require the mean and covariance structures to be described through continuous functions and 

generalize other related models such as principal curves by inferring local covariance 

structure in addition to the mean curve. The changing covariance structure allows the model 

to both keep the dimensionality of the dataset and track co-expression changes throughout 

the progression.

To fit the model to the data, we use a maximum likelihood approach. As previously defined, 

the parameters in the MGM model are difficult to infer, since optimization of the likelihood 

function requires searching the space of all continuous functions. Additionally, the positive-

definite requirement on Σ(t) makes fitting the matrix function difficult. Therefore, we recast 

the problem of fitting Σ(t) into fitting its pseudotime-dependant Cholesky decompositions: 

Σ(t) = C(t)TC(t), ∀t and impose a functional form to the µ(t) and C(t) functions. We consider 

three different functional classes: polynomials, Gaussian processes with squared exponential 

correlation models, and cubic, De Boor smoothing splines, a special case of Gaussian 

processes.

To fit the parameters of the model, we employ coordinate ascent. In the first step, we are 

given a fixed set values for M and we calculate, for each sample x, the optimal pseudotime 

toptin the [0, 1] interval for which P(x|µ(topt),Σ(topt)) is maximized. In the second step, given 

optimal pseudotime values, we calculate the cell density γ by fitting kernel density estimator 

to the assigned pseudo time-points. Finally, in the third step, given density weights γ and 

pseudotime assignments, we find the µ and Σ functions that best fit the data. To achieve this, 

we approximate µ(t) and C(t) locally by obtaining optimal values at the pseudo timepoints 

0,0.1,0.2,…, 1.0, inferring the local mean and covariance using each data point weighted by 

their probabilities as given by γ, and leveraging these values to fit functions from the desired 

functional class (e.g. a polynomial, spline, or Gaussian process). Because we may have 

considerably less samples than genes, we use the Ledoit-Wolf-type estimator in the R 

corpcor package to fit the covariance at each pseudo time-point. We repeat this procedure 

until convergence, as evaluated by the Pearson correlation coefficient of current and past 
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pseudotimes, with stopping criterion r > 0.9. As initial values for pseudotime assignments to 

our optimization routine, we use a de-noised one-dimensional locally linear embedding.26

Visualization of the data and SCIMITAR models

To visualize the data and models, we use 2-dimensional locally-linear embeddings, with 

number of neighbors set to 80% of the number of samples. We plot SCIMITAR means by 

sampling 100 equidistant points across the mean function and projecting to the embedding. 

To obtain a projection of the SCIMITAR model’s probability density function, we obtain 

1000 samples from the model, evenly spaced across pseudotimes in the [0, 1] interval, 

project to the embedding, and plot a 2-dimensional kernel density estimator of the 1000 

points.

A progression association statistical test

To obtain genes whose expression is progression-dependent, we use a likelihood ratio test to 

compare the SCIMITAR model of each gene’s progression and the null hypothesis where 

the expression of the gene is ’flat-lined’, i.e. does not track with the model’s path. 

Specifically, we calculate the statistic:

(2)

Where Lscim,Lnullare the likelihood functions of the SCIMITAR and null models, 

respectively, with the null distribution defined as a normal distribution centered at the 

empirical mean µ̂ and standard deviation σ̂ of all the data representing the case where the 

data is independent of the progression. To assess whether the null hypothesis should be 

rejected, we obtain the distribution of LR under the null hypothesis using parametric 

bootstrapping with 1000 samples and compare the resulting ratios to the LR of the data. We 

use the Benjamini-Hochberg procedure to correct for multiple comparisons, setting an FDR 

cutoff of 5%.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
A. Survey of three different single-cell transcriptomic studies. From left to right: murine 

haematopoiesis by Guo et al., early blood development by Moignard et al., and myocyte 

differentiation by Trapnell et al. B. Overview of the SCIMITAR method. Trajectory 

modeling with dynamic and correlated noise of static transcriptomes of asynchronous cells 

is achieved by iterating through optimal cell ordering and inference of a continuous set of 

Gaussian distributions in a morphing mixture of Gaussian models (see Methods in text).
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Fig. 2. 
SCIMITAR in silico benchmark. A. Cell ordering results for three functional classes of 

SCIMITAR (a third degree polynomial, a cubic spline, and Gaussian processes with squared 

exponential correlation model) and two state-of-the-art methods Monocle and Wanderlust in 

a setting with noise uncorrelated to the trajectory. B. Cell ordering results for noise 

correlated with the trajectory. C. Evaluation results of network rewiring across biological 

progression for SCIMITAR’s three functional classes and random covariance functions.
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Fig. 3. 
A. SCIMITAR model for fetal neuron differentiation, projected to a 2-dimensional locally 

linear embedding. The data is plotted as circles in blue (fetal replicating neurons) and green 

(fetal quiescent nuerons) while the SCIMITAR model’s mean is plotted in black and its 

projected PDF is plotted in orange. B. Normalized SCIMITAR model means for genes that 

were deemed progression associated across the progression, clustered into five different 

clusters using expression correlation throughout psuedotime. C. Expression levels of several 

genes from three central neurodifferentiation pathways: the HIF1α, NFAT, and Androgen 

Receptor (AR) pathways that were pinpointed by SCIMITAR associated progression tests.
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Fig. 4. 
A. Similarity matrix between co-expression matrices fitted in the SCIMITAR fetal neuron 

differentiation model across pseudotime. Three different co-regulatory states can be 

appreciated in the matrix, marked in blue, green, and red. B. Top 20 genes with the most 

gain-of-connectivity in each co-regulatory state alongside their log co-expression degree. C. 

Evolution of annotated modules. Each column is a module and each row is a gene annotation 
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— enrichments are shown as −log(p − value) in the heatmap. Column colors denote co-

regulatory state. An NFAT-associated module of state 2 is highlighted in the red matrix
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