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Putting the Probability Heuristics Model to the Test
Lukas Elflein (elfleinl@cs.uni-freiburg.de) and Marco Ragni (ragni@cs.uni-freiburg.de)
Cognitive Computation Lab, Department of Computer Science, Albert-Ludwigs-Universität Freiburg

Georges-Köhler-Allee 52, 79110 Freiburg, Germany

Abstract

In the last decades there was a shift from more logically in-
spired theories describing human reasoning towards the new
paradigm of probabilistic approaches. One of the most promi-
nent models for syllogistic reasoning is the Probability Heuris-
tics Model (PHM) which has been formulated based on five
heuristics. The contribution of this article is: (i) to provide an
analysis of different formalizations of the PHM, (ii) to exam-
ine the impact of each heuristic, and (iii) to identify possible
violations of underlying assumptions in present implementa-
tions. A systematic analysis of the model parameters shows a
surprising variation in parameter values across experiments. A
Bayesian modeling approach explains this variance of param-
eters. Implications for probabilistic approaches are discussed.

Keywords: Syllogistic Reasoning; New Paradigm of Reason-
ing; Cognitive Modeling; Heuristics; Bayesian; PHM

Introduction
A classical syllogism consists of two quantified statements
(sometimes called premises) using one of the quantifiers All
(abbreviated by A), Some (I), Some . . . not (O), or None (E).
And the task is to draw an inference from the given informa-
tion, if possible. Consider the following example:

Premise 1: All a are b (Aab)
Premise 2: Some b are c (Ibc)

What, if anything, follows?

Most participants [74%, (Khemlani & Johnson-Laird, 2012)]
conclude that Some a are c (Iac) follows. The given conclu-
sion is, when evaluated with first-order logic, not correct. If
we allow only answers between the two terms ‘a’ and ‘c’ (in
either direction), the 4 quantifiers above, or no valid conclu-
sion (NVC), then only the latter is correct in terms of first-
order logic. Four different arrangements of the terms in the
premises are possible. These are called figures, where we use
the numbering of the figures in (Khemlani & Johnson-Laird,
2012) notation:

Figure 1 Figure 2 Figure 3 Figure 4

A-B B-A A-B B-A
B-C C-B C-B B-C

And so any syllogism can be described by the respective
quantifiers of the first and second premise and the Figure.
For the example above we can simply write: AI1 to uniquely
characterize the syllogism. While the human responses in ex-
periments often deviate from the inferences of first-order log-
ical calculus, Chater and Oaksford (1999) propagated a new
paradigm of reasoning that is inspired by a Bayesian inter-
pretation of cognition. A core idea is that different quantifiers
have a different degree of informativeness I, i.e., conclusions

containing specific quantifiers are more informative than oth-
ers. The ordering is given by:

I(A)> I(I)> I(E)> I(O) (1)

The PHM has been formulated based on this ordering (Chater
& Oaksford, 2007) by three generation heuristics (G for
short) predicting the responses of a human reasoner (more
are possible due to reasoning errors):

G1 The min-heuristic: Choose the quantifier of the conclu-
sion to be the same as the quantifier in the least informative
premise (the min-premise). In the example above (AI1) the
min-premise is Some b are c, and so the min-quantifier in
the conclusion is Some (I).

G2 p-entailments: The next most preferred conclusion will
be the p-entailment [see eq. (8)] of the quantifier predicted
by the min-heuristic. In the example above (AI1), the min-
quantifier is Some (I), which entails Some . . . not (O).

G3 Attachment-heuristic: If just one of the possible conclu-
sion subject noun phrases matches the subject noun phrase
of just one premise, then the conclusion has that subject
noun phrase. In the example above (AI1) this heuristic pre-
dicts the terms in the conclusion as a-c.

Furthermore, there are two test heuristics motivating a
parametrization of the possible responses:

T1 Max-heuristic: Be confident in the conclusion generated
by G1-G3 in proportion to the informativeness of the most
informative premise (the max-premise).

T2 O-heuristic: Avoid producing or accepting O-conclusions,
because they are uninformative relative to other conclu-
sions.

From these heuristics we can observe that: (i) A reasoner
responding ‘No valid conclusion’ is not predicted by PHM.
Hence, the question arises how to deal with such responses
and if an extension of PHM is necessary (like one (Hattori,
2016) proposed). (ii) Different heuristics can generate con-
flicting predictions. Consider as an example the following
syllogism (AO1): All a are b and Some b are not c. Then the
min-heuristic (G1) predicts the O-conclusion Some a are not
c responses, and the prediction is confident, because of the
A-quantifier and the max-heuristic (T1), but the O-heuristic
(T2) calls for avoiding the O-quantifier. Testing the coherence
of the PHM becomes important. (iii) A systematic analysis of
parameters and their stability to evaluate the goodness-of-fit
on diverse data set including individual data. (iv) A rigorous
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mathematical model allows to evaluate PHM and to develop
a Bayesian implementation of the theory.

The heuristics (of the PHM) have been implemented by
Chater and Oaksford (2007) with 6 parameters: one for each
quantifier ({pA, pI, pE, pO}), an entailment probability (pent ),
and an error probability (perr). To fit these parameters to ex-
perimental data, different strategies can be employed. Orig-
inally, Chater and Oaksford “obtained best fit estimates of
these six parameters directly from the mean values of the
relevant quantities in the data”. This procedure minimizes
some deviation on the 256 datapoints excluding the NVC
responses. Recently, it has been implemented by (Hattori,
2016) with an additional fit for NVC and tested on 8 stud-
ies (aufzaehlen...) for predicting the quantifiers or the NVC
response. Hence there are two implementations of PHM
and to compare the data on common grounds we use the 4
studies not reporting ’Misc’ answers or ’Most’/’Few’ quan-
tifiers. We abbreviate these by the individual names of the
studies, BBJ95 (Bara, Bucciarelli, & Johnson-Laird, 1995),
JB84-3 (Johnson-Laird & Bara, 1984), JS78-2a (Johnson-
Laird & Steedman, 1978), JS78-2b (Johnson-Laird & Steed-
man, 1978). Additionally, to examine figurative effects and
to fit individual data we use a data set that has been published
with the 2017 syllogistic modeling challenge1. It consists of
139 participants that solved all 64 syllogisms in a paid web-
experiment. Participants received the premises with the same
content used in (Chater & Oaksford, 1999) and had to se-
lect the respective response. We abbreviate the data (that we
will use to calculate individual performance) by RG16. The
remainder of the article is structured as follows: In the next
section we propose a formalization of the PHM by mathemat-
ical equations. In Section 3 we demonstrate the equivalence
of the previous PHM implementations and our formalization
by reproducing the reported results from (Chater & Oaksford,
1999) and (Hattori, 2016). This includes discussing the dif-
ferent parameters. In Section 4 we show that using a full
Bayesian account allows to answer new questions. Limita-
tions and potentials of our formal approach including impli-
cations for PHM are discussed.

A New Mathematical Formalization of PHM
The goal of this section is to develop a mathematical frame-
work of the PHM.

PHM as a Binary Decision Diagram. We are first repre-
senting the PHM as a binary decision diagram (see Fig. 1).
It helps to make the cognitive processes transparent and to
introduce some necessary notation. The attachment heuris-
tic does not depend on the G1 or G2 heuristic. Hence, if
the answer is compatible with the attachment heuristic (G3),
proceed to the min-heuristic (G1). If the quantifier of the con-
clusion is the min-quantifier, accept it with probability pQmax .
If the min-heuristic fails, check if the entailment of the min-
quantifier matches (G2). Accept this conclusion with pent if

1http://www.cc.uni-freiburg.de/data/rg16

G3: Attachment

G1: Min-Heuristic

pQmax G2: Entailment

pent perr

perr

yes no

Figure 1: PHM decision flowchart for forced choice syllo-
gisms with 9 possible answers. For every possible answer, its
compatibility with the generating heuristics is checked and
assigned a probability pQmax , pent , or perr.

the entailment heuristic is satisfied, else use perr. For exam-
ple, for the AI1-syllogism, the answer Oac satisfies G3, fails
G1, but satisfies G2, thus it get assigned a probability of pent .
Ica satisfies G1 and G2, thus the probability is pQmax . The
max-quantifier is A, thus pQmax = pA. All other answers are
accepted with probability perr.

Closed-form equation. In this subsection we demonstrate
how the PHM can be formulated by a closed-form equation.
The information about a syllogism can be written as a set
of two premises {(D0,Q0),(D1,Q1)} with a direction (also
called figure) Di and quantifier Qi of each syllogism, the or-
dering of the premises is not considered. The quantifiers are
again A, I, E, O. To represent the direction we introduce a
predicate D encoding the order of the terms (for simplicity we
assume that the middle term in the premises is always ’b’), so

D =

�
1, for ab, bc, ac
0, for ba, cb, ca

(2)

e.g., the AI1 syllogism ’All a are b, some b are c’ can be
encoded by {(1,A), (0, I)}. The conclusion consists of a di-
rection Dc and a quantifier Qc. The min-quantifier Qmin is
the quantifier among the premises with the least informative-
ness (cp. heuristic G1 above). So with the informativeness-
ordering taken from Chater and Oaksford (1999) (see equa-
tion (1) above) we set

Qmin = argmin
i

(I(Qi)) (3)

The index i is used to make Qi reference the respective quan-
tifier. In the following we will use the delta function. In is
defined as 1 if its indices are equal, otherwise it is 0:

δx,y =

�
1, for x = y
0, else

(4)

Now we can use this delta-function to mimic the min-
heuristic, it evaluates to 1 if the conclusion quantifier equals
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the min-quantifier, otherwise to 0:

δQc,Qmin =

�
1, for Qc = Qmin

0, else
(5)

This min-heuristic can be combined with the max-heuristic
to obtain the probability of a participant answering with some
quantifier Qc. This conditional probability depends on the hu-
man reasoner receiving the premise information and possible
conclusions (symbolized with |Data).

P(Qc|Data) = δQc,Qmin · pQmax (6)
with Qmax = argmaxi(I(Qi)) (7)

The probabilities pQmax actually are 4 fitting parameters, one
for each quantifier (pA, pI, pE, pO). In the original PHM
framework (Chater & Oaksford, 2007), there is the possi-
bility of answering with the entailment of the min-quantifier
Ent(Qmin), the entailment heuristic (G2). Originally, there
is only one parameter describing its frequency, pent . Thus, the
entailment heuristic is independent of the max-premise, and
therefore does not follow the max-heuristic, which would re-
quire 4 separate parameters or some other dependency on the
max-premise. Thus the original implementation is incompati-
ble with its verbal description (described above). We will fol-
low the original implementation instead of the original verbal
description in the following. The entailment function (i.e.,
which quantifier is entailed by the current quantifier) is taken
from Chater and Oaksford (1999).

Ent(A) = I, Ent(I) = O, Ent(O) = I, Ent(E) = O (8)

This entailment is modeled by probability pent computed on
experimental data. By combining the min/max-heuristic with
the entailment-heuristic, we can formulate an equation de-
scribing that a reasoner choses a quantifier either according
to the min-max or to the entailment heuristic:

P(Qc|Data) = δQc,Qmin · pQmin +δEnt(Qmin),Qc · pent (9)

Finally, we add the possibility of erroneously accepting an-
other quantifier with an error rate perr. Chater and Oaks-
ford (1999) choose to let errors occur if no other heuristic is
applied. In our modeling we use an inverse delta-function
(1−δx y) to select the cases where neither the entailment nor
the min-max heuristic is used:

P(Qc|Data) = δQc,Qmin · pQmax +δEnt(Qmin),Qc · pent (10)
+(1−δQc,Qmin) · (1−δEnt(Qc),Qmin) · perr

To include effects of the directions, we need to formulate a
mathematical equation for the attachment heuristic (G3).
There are at least two different descriptions (Chater & Oaks-
ford, 1999, 2007), we follow the more recent one. It is not
clear how the Figures 3 and 4 (see the Introduction) need to
be treated. Accepting both directions in the conclusion with
equal probability seems like a plausible interpretation. On the

other hand, the direction of the conclusion Dc for figure 1 and
2 is clear:

P(Dc|Data) = δD0,D1δDc,D1 +(1−δD0,D1) ·0.5 (11)

If the conclusion direction is not predicted by attachment, we
still accept it with error rate perr:

PD error = δD0,D1(1−δDc,D1) · perr (12)

By combining equations (10), (11), and (12), we get the fol-
lowing formula for PHM:

P(C|Data) = P(Dc|Data) ·P(Qc|Data)+PD error (13)
= [δD0 D1δDc D1 +(1−δD0 D1) ·0.5]
·
�
δQc Qmin · pQmax +δEnt(Qmin) Qc · pent

+(1−δQc Qmin) · (1−δEnt(Qc) Qmin) · perr
�

+(1−max
i
({δDc Di}i)) · perr (14)

Evaluating the Formal Model We need to show that our
formalization captures the results computed by Chater and
Oaksford (1999). If we neglect the figures like they do, we
can insert the 16 moods and 4 quantifiers into the formula.
Thus we obtain a 64× 4 matrix for the syllogistic answers,
where 4 lines are equal due to not considering the figure.
Setting the parameters to the values provided by Chater and
Oaksford (1999) (denoted by ∗

=), the resulting matrix of num-
bers is identical to the ’Model’ columns of their table:



pA pent perr perr
pA pent perr perr
...

...
...

...
perr pa perr pent

...
...

...
...

perr pent perr pO




∗
=




70.14 10.76 1.22 1.22
70.14 10.76 1.22 1.22

...
...

...
...

1.22 70.14 1.22 10.76
...

...
...

...
1.22 10.76 1.22 18.04




The full PHM model given in equation (14) can be rep-
resented by an analogous 64 × 8 matrix. For each max-
quantifier, a separate parameter for the ’NVC’ answer can be
added to normalize the rows to 1, which has technical advan-
tages during fitting and model comparison:

pQi + pent +6 · perr + pQi
nvc = 1

pQi
nvc = 1− pQi + pent +6 · perr

Giving us a 64x9 matrix:



pa pent perr perr perr perr perr perr pA
nvc

perr perr perr perr pa pent perr perr pA
nvc

pa
2

pent
2 perr perr

pa
2

pent
2 perr perr pA

nvc
pa
2

pent
2 perr perr

pa
2

pent
2 perr perr pA

nvc
perr pa perr pent perr perr perr perr pA

nvc
...

...
...

...
...

...
...

...
perr

pent
2 perr

po
2 perr

pent
2 perr

po
2 pO

nvc



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Empirical testing
Improved frequentist fitting. Chater and Oaksford (1999)
originally “computed the fit between data and model over all
five responses, A, I, E, O, and NVC [. . . ]. Estimates for the
NVC response did not involve introducing any further param-
eters because they can be derived from a linear combination
of the existing parameters.” To do this, a standard method is
optimizing the root mean square error on all aggregated syl-
logistic data.

RMSE =

�
1
N

N

∑
i=1

(ymod
i − yexp

i )2 (15)

RMSEHattori =
1

64

64

∑
j=1

����1
5

5

∑
i=1

(ymod
i j − yexp

i j )2 (16)

Similarly, Hattori (2016) used a mean of the same metric (eq.
16). Optimizing the RMSE (eq. 15) via BFGS (python code
is provided2) improves the fit compared to the fits of Oaksford
and Chater (see Table 1). The best fit values are slightly dif-
ferent from those given by Chater and Oaksford (1999) (also
compare Figure 3).

Table 1: Optimizing parameters with a root mean square error
(RMSE) improves goodness of fit compared to the original
method (CO99). CO99 is similar to optimizing a RMSE on
all data except the NVC column (RMSE−NVC).

Method RMSE pa pi pe po pent perr

CO99 .101 .70 .31 .19 .18 .11 .01
RMSE−NVC .101 .70 .31 .19 .18 .11 .02
RMSE .099 .68 .35 .18 .17 .11 .02

Contribution of heuristics
We want to quantify the contributions of every single heuristic
independently. Equation 6 already defines the min-heuristic.
Thus, we can compute the impact of the min-heuristic (G1)
alone or in combination with the entailment-heuristic (G2) to
determine how often the conclusion quantifier is predicted.
Additionally, we can test the contribution of the attachment
heuristic (G3) and compare it to uniform guessing of the di-
rection of the conclusion. To do this, we need information
on the direction of the conclusion. This information is not
present in the Hattori (2016) data, but it is in the RG16 data.
Thus, an aggregation of the RG16 data is used for comparing
the goodness of fit. Unsurprisingly, the best fit is archived by
the full PHM model (Figure 2, rightmost bar). Figure 2 fur-
ther shows that the min-heuristic is the most important con-
tribution, which is suggested in Chater and Oaksford (1999).
Entailment has a surprisingly small influence on the goodness
of fit, while the effect of attachment is in-between. All of the
heuristics perform better than the baseline goodness of fit of
uniform random guessing. Thus the impact of heuristics on
model performance can be ranked: G1 > G3 � G2.

2https://www.cc.uni-freiburg.de/code/phm

G1+G2G1G2
G1+G2+G3

G1+G3
G2+G3

0

0.05

0.1

0.15

R
M

SE

Figure 2: Impact of heuristics on the goodness of fit. The
goodness of fit of the complete PHM model on the RG16
dataset is depicted by the rightmost column. When substi-
tuting the attachment heuristic G3 with randomly guessing
a figure, the error increases (rightmost brown column). Us-
ing the PHM without the entailment heuristic G2 results in
slightly larger errors (middle). Determining the quantifiers
only via the entailment heuristic (left) results in errors close
to uniform guessing (dashed line).

Falsification of the O-Heuristic. There is some incompat-
ibility between high values for pO (how often people accept
O-conclusions for OO-syllogisms) and the O-heuristic (peo-
ple avoid conclusions with an O-quantifier). All subjects us-
ing the O-heuristic implies low values for pO. This is not the
case (see Table 1), values for pO are comparable to those of
pE and pent . Thus the O-heuristic cannot be an universally
used heuristic, or a good description of aggregate data. Also,
there is no evidence of an implementation of the O-heuristic
by Hattori (2016) or in the predictions of the original model.

0.28 0.3 0.32 0.34 0.36 0.38

0

20

40

Value of pI

Po
st

er
io

rP
(p

I|D
at

a)

’Model’
CO99
’Data’
RMSE

Figure 3: The pI parameter, estimated with Bayesian meth-
ods (bell-shaped curves) or point estimates (straight lines).
Neglecting the NVC answers leads to the estimates on the
left hand side (Bayesian estimation from ’Model’ column by
Chater and Oaksford (1999) and their estimate ’CO99’). Us-
ing the full data results in the slightly different estimates on
the RHS (Estimation from the ’Data’ column, and a root mean
squared error ’RMSE’).
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Bayesian modeling
To quantify the uncertainty in the parameters, we use the
PyMC3-package (Salvatier, Wiecki, & Fonnesbeck, 2016) to
implement a model derived from equation 14 (python code is
provided2). The core assumption is that the categorical data
of participant answers comes from a single multinomial dis-
tribution. This defines the likelihood P(Data|Θ) of every pa-
rameter Θ. We can infer posterior distributions P(Θ|Data)
of the parameters from their prior distributions P(Θ) and the
data aggregated over all N participants ∑N

i=1 Datai:

P(Θ|Data) ∝ P(
N

∑
i=1

Datai|Θ) ·P(Θ) (17)

PΣ(Θ|Data) ∝
N

∑
i=1

P(Datai|Θ) ·P(Θ) (18)

Here, posteriors are determined up to a multiplicative factor,
symbolized via the proportionality sign ∝. For comparison,
we also infer individual posteriors from individual data (eq.
18). We chose minimally informative uniform prior distri-
butions on the 6 parameters. The posterior distributions are
estimated via Markov Chain Monte Carlo (NUTS) sampling
5 · 105 times with burn-in and thinning. To validate our ap-
proach, we estimate parameter posteriors (Fig. 3, left curve)
using the output of the original model by Chater and Oaks-
ford, the ’Model’ data (Chater & Oaksford, 1999) and retrieve
original parameter values (Fig. 3, lhs vertical line). Max-
ima of posteriors estimated from the ’Data’ column (Chater &
Oaksford, 1999) agree with parameters optimized via RMSE
minimization, further validating the implementation.

Parameter Instability
Small variations in experimental conditions should not have
a large effect on the cognitive processes which are described
by parameters in the PHM framework. The uncertainty in pa-
rameter values due to small experiment size (here, N = 20) is
reflected in broader posteriors, if the model assumptions are
correct. One would now expect the parameters to be equal
across experiments. Otherwise, the uncertainty in these pa-
rameters ought to explain the difference in the values. This
is the case for some parameters in the PHM, for example the
parameter pent (see Fig. 4, left hand side cluster of curves).

Table 2: Variation of best-fit values for pI occurs under 3
different methods: RSME (eq. 15), Hattori’s version of an
RMSE (eq. 16) or taking the Posterior mean (eq. 17). Col-
umn names refer to experiments following Hattori (2016).

BBJ95 JB84-3 JS78-2a JS78-2b RG16

RMSE .4428 .4234 .3016 .2101 .3900

Hattori .4288 .3817 .3144 .1690 .3993

Posterior .4423 .4229 .2847 .1737 .3911

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

20

40

Value of parameter p on dataset Datai

Po
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io
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(p
|D

at
a i
)

pent
pA
pE
pI

Figure 4: Variation of the PHM parameters: The posterior
distributions of most parameters show appreciable overlap
when calculated on the different experiments Datai collected
by Hattori (2016). The posteriors of the parameter for the I
quantifier (pI , red) vary substantially. This is not plausibly
explained by chance alone.

Other parameters like pI vary more than is explained by the
broadness of their posteriors. This variation is not an artifact
of the bayesian parameter estimates, it occurs in comparable
magnitude under three different metrics (see Table 2). It is
also reported by Hattori (2016) but not explained in a satis-
factory way.

Inadequacy of the aggregated-data approach. It is as-
sumed that participant answers can be aggregated, which re-
duces the information content of the data, but makes mod-
eling and data evaluation simpler. This aggregation is sup-
posed to reduce mainly noise, not signal - which is the case
if effects are distributed unimodally, but fails for multimodal
distributions. Aggregating is similar to assuming every sub-
ject’s mental processes come from the same distribution. To
this implicit aggregation assumption, we calculate a posterior
distribution for every individual. To better visualize the total
distribution of the population, we then sum these posteriors
(eq. 18).

Some parameters like pent seem to be unimodally dis-
tributed in the population (see Fig. 5, upper plot), although
there is considerable asymmetry. These parameters also show
less variation between estimates based on different experi-
ments. For other parameters like pI , the sum of posteriors is
broad and shows multiple modes. Also, the parameter vari-
ability is more severe for these parameters. Thus, the single-
distribution assumption underlying the aggregation procedure
is clearly violated. This provides a qualitative explanation for
the parameter instability reported by Hattori (2016).

General Discussion
Inconsistencies. Chater and Oaksford described the origi-
nal implementation of the PHM based on 5 heuristics, all of
them verbally specified. First, we formalize and thus fully
specify this description (eq. 2 - eq. 14). We show, that this
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Figure 5: Top: the sum of individual posterior distributions
(dark curve, compare eq. 18) shows one mode for the entail-
ment probability pent . Bottom: for the parameter pI , the anal-
ogous individualistic distribution (dark curve) is flatter and
shows at least two modes: the peak at pI = 0 and the plateau
around pI = 0.3. Parameter point estimates show substan-
tially more variation in the lower plot..

formalization is functionally equivalent to the original model.
We implement a bayesian model according to these formal
specifications and show that it retrieves original parameter
values (Fig. 3). We point out three inconsistencies within
the explicit model assumptions:

1. The O-heuristic (i.e. humans tend to not accept O-type
conclusions) is inconsistent with the max-heuristic (i.e.
humans accept conclusions with a probability connected
to the premise quantifier of maximum informativeness).
Also, it is not supported by the model predictions.

2. The max-heuristic is not applied to the entailment and at-
tachment heuristics as stated in the description. Instead, it
only affects the min-heuristic.

3. The attachment heuristic is underspecified, only the cases
of figure 1 and 2 are covered. An extension to figure 3 and
4 is proposed (eq. 11) and tested (Fig. 2)

Limitations. The parameters of the PHM vary across ex-
periments, which leads to paradoxical interpretations. For
example, a high pI value can be interpreted as ”in most
cases, the conclusion drawn by humans will contain the min-
quantifier”. A low value means that this will almost never
be the case. This variation is reported by Hattori (2016),
but no satisfactory answer is given. Experimental condi-
tions differing between the studies seems like an important

factor, we propose another explanation. If the underlying
mental processes captured by the PHM differed substantially
between humans, parameters estimated from aggregates of
small (N=20) studies would vary in the same way. We show
that the distribution of PHM-parameters in the subject pop-
ulation is broad and asymmetric. It violates the implicit as-
sumption of unimodality in some cases. Aggregating on pop-
ulations of this kind results in mean values which do not re-
flect the actual properties of the individual reasoners. This
problem has been discussed in the literature (Estes, 1956).

Potential. A great strength of the PHM is its deep theoreti-
cal motivation. The problems discussed here are of a techni-
cal nature, and can be addressed from within the PHM frame-
work. Due to the modular nature of the PHM, contradictory
heuristics (like the O-heuristic) can be omitted for more par-
simony. Components that do not contribute substantial pre-
dictive power (like the entailment-heuristic) can be improved
upon separately. Basing the PHM on individual instead of the
currently used aggregate data might address the problem of
excessive parameter variation between experiments. This ap-
proach also enables a search for groups of subjects who use
only some heuristics. Thus it provides a natural way to model
heuristics which appear to be contradictory on aggregate data,
like e.g. the O- and max-heuristics.
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