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Abstract

We present a design exploration strategy for the beamformer system, an ex
ample of a typical DSP system. In order to do so, we first define a parameter
ized design template for the beamformer and for a FIR filter, since the filtering
operation is a part of the overall beamformer system. We then discuss some
approaches for varying the design parameters for the filter and the beamformer
system, under constraints imposed by technology or the designer.
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1 Introduction

In exploring the design space of a DSP system, there are four design features that need

to be considered : parallelism, pipelining, blocking, and customization [1].

A design is said to be maximally parallel if it completely exploits the inherent parallelism

in a specification and hence, at any time, computes as many operations in parallel as

possible. Thus, from the time that all the inputs to produce a given output are available, a

maximally parallel design is one that wiU produce it in the minimum possible time. Design

parallelism is thus a measure of the operations computed in parallel. It is obvious that while

parallelism improves design performance, it also results in relatively expensive designs.

The second design feature, pipelining, is another means of increasing design performance,

for a relatively small overhead in terms of pipelining register costs. This feature is all the

more significant for DSP computations since they are regular and repetitive in nature, and

yield well to pipelining techniques.

Blocking refers to partitioning or slicing the entire computation into smaller blocks,

where a block is defined as a group of operations that can be executed as one "indivisible"

unit. The direction of blocking is an important feature of designs that have a distinguished

direction of data flow. The optimal partition in such a design is usually along the flow of

data, so that the partial results of a computation readily fiow from one component to the

other with minimum delay. This concept is explained in more detail in [1].

The fourth design feature, customization, refers to the mix of standard and custom

components in the design. A standard component is a predesigned, off-the-shelf component

which may not be tuned to the problem at hand. Custom components, on the other hand,

are designed from scratch, and hence can be designed to fit a given set of requirements.

Generally speaking, standard components may not be suited for performance-critical appli

cations, though they may be relatively inexpensive.

Customization also refers to the mix of hardware and software solutions in a design,

where the software solution typically involves programming a part of the design on a stan

dard component, such as a DSP processor, while the hardware solution involves custom

designing components, usually, for the performance critical sections of the design.

We introduce the beamformer, an example of a typical DSP system, and present a

method for exploring its design space by varying parallelism, pipelining, and, to an extent,

the direction of blocking the computation. It is to be noted, that we only address custom

designs in this report.

We first describe a design procedure for the FIR filter since a FIR filter is one of the



operations in the beamformer, and also because the nature of the FIR filter operation is

similar to the beamformer. For both the systems, FIR filter and the beamformer, we start

by defining and illustrating a parameterized design template using several simple examples.

Next, we explain the algorithms for generating implementations under the given design

template.

Current CAD tools for the automated design of VLSI FIR filters, [2] [3], do explore

the design space, but to a limited extent and usually, at a "lower level". For example,

GENRIF [2], has a fixed architecture for a P-order filter, but it offers the option of using

either a carry save adder or a carry ripple adder for the implementation of the multiplier and

the adder. Thus, the designer does not have too many implementations to chose from. Our

design approach for the FIR filter varies the number of components, their interconnection,

and the pipelining in the design. This leads to a much larger spectrum of implementations.

In this report, we have not explicitly dealt with varying component types; however, our

design approach can easily be extended to include this search.

Section 2 gives an overview of the beamforming operation in terms of mathematical

formulae. The templates and design procedures for the FIR filter and beamformer are

presented in Sections 3 and 4 respectively.

2 Beamformer problem description

The beamforming problem is formally described by the following equations:

ytii) = ^D,(i-k)4{k)
k=0

R'ii) = EfeliK'

Where,

6 € (1.. .M) is the beam index,

e C (1.. .N) is the receiving element index,

i is the sample index, k is the filter coefficient index,

De{i) is the ith digitized sample received at element e,

c5(/?) is the kth filter coefficient for element e and beam 6,

P is the order (or the number of taps) of the FIR filter,

yj(i) is the filtered output for the ith sample ofelement e and beam 6,

ojg is a complex phase correcting coefficient,

is the resultant response for beam 6, (this is the output of the beamformer)
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Figure 1: An N-element, M-beam beamformer system

N is the number of receiving elements in the beamformer, and

M is the number of beams to be formed.

The beamforming operation involves the temporal alignment and summation of digitized

signals from several antenna elements. This is illustrated in Figure 1 for the case of an N-

element antenna array. Each element receives a new sample every S ns, where S Is the

sample period of the beamformer system. Since the N elements in the antenna array are

spread over a distance of the order of a few kilometers, the samples arriving at the elements

at any time t, having travelled different distances, actually correspond to different times.

Thus, before these samples are summed, as the beamformer operation requires, it is essential

to interpolate the samples such that they all correspond to the same time instant. This

interpolation operation is also referred to as time alignment, as indicated in Figure 1. It

involves delaying the samples from each of the N elements by certain amounts, such that

the samples are all aligned in time before being summed, that is, they correspond to the

same time instant. A beam is then formed by summing the E time-aligned signals.

To illustrate this point, consider an array of 4 antenna elements each placed 1 kilometer

(fcm) apart, and the object to be detected directly above, and in line with the first antenna.

If the object is 1 km above the first antenna, then samples arriving at the first antenna



travel a distance of 1 km, those arriving at the second antenna antenna travel a distance of

y/2 km}, at the third antenna, a distance of \/5 km, and at the last antenna, a distance of

v/To km. Thus, if all the elements are sampled at a time t, the sample at the first antenna
will correspond to a time t —a, where a is the time for the signal to travel a distance of

1 km, the sample at the second antenna will correspond to a time t —0, where 0 is the

time for the signal to travel a distance of y/2 km, and finally at the last antenna the sample

corresponds to a time t —6, where S is the time for the signal to travel a distance of \/l0

km. In order to detect the object more accurately, it is essential that before the samples

from all the 4 elements are summed, they correspond to the same time. The interpolation

operation ensures that they do.

An antenna array, such as the one in the beamformer, is an alternative to having a

single larger rotating antenna for purposes of radar detection. Whereas a "conventional"

antenna rotates mechanically, the rotation of the antenna array is achieved electronically

by varying the delay values associated with each antenna. M independent directions or

angles can be achieved by associating M different delay values with each element. Every S

ns, the new samples arriving at each of the N elements are delayed by M different values.

The corresponding delayed signals from aU the N elements are then summed to form M

resultant beams, to R^.

As an example, if Af = 30, the beamformer produces 30 independent beams, where each

beam could be pointing in any arbitrary direction (i.e. the angle that the beam makes with

respect to a fixed reference line could vary between 0° and 359°, where 360° corresponds to

one complete rotation of the antenna array). As as aside, a larger N and M correspond to

a larger tracking range and resolution of the antenna array.

The delay or time alignment operation involves two computations: 1) filtering, and 2)

phase rotation (PR), performed in that order. The filtering is performed by using a P-order

finite impulse response (FIR) iilter. For each element, e, and beam b there are a set of P

filter coefficients, denoted by Ce(/:), G 0... (P —1). The phase rotation operation for an

element e and beam b simply requires multiplying the filtered signal, with a phase

correction coefficient, wj, associated with that element and beam.

Equation (1) describes the filtering operation and equation (2), the phase rotation and

subsequent summation. It should be noted that the nature of the two equations is very

similar (a sum of products). Thus, the design procedures for both the FIR filter and the

complete beamformer system, are, in principle, the same. Sections 3 and 4 outline design

^Using Pythagoras' theorem for the length of the hypotenuse of a right zmgled triangle.



procedures for both the systems.

3 FIR filter

In this section, we define a design template for the FIR filter, and illustrate its parameters

with the help of several examples. Furthermore, we describe an algorithm to automatically

generate "all possible" designs for a given constraint on the throughput (or, sample period)

of the filter.

3.1 Design templates and parameters

A Pth-oider FIR computation, as described by equation (3), is essentially a summation

of P products of successive input signals and coefficients. This summation is performed

once every 5 ns, where S is the sample period of the filter, (i.e. 1/5 is the arrival rate

of samples at the filter input). If i represents time or a sample number, then the input

sequence that is used for the ith summation ranges from the ith, to the {i —P i- l)th input

samples.

y{i) = ^x(i- k)b{k) (3)
il:=0

The input is represented by the x array, the filter coefficients by the b array, and the outputs

by the y array. The array indices, i and k, represent the sample number and filter coefficient

number respectively. The dataflow graph of a 4th-order FIR filter is shown in Figure 2.

In general, the ith output depends on the {i)th, {i —l)f/i, ..., {i —P + l)th inputs.

Similarly, the (i + l)ih output depends on the (i + l)th, {i)th, ..., (i —P + 2)th inputs.

There is thus a "flow" of input values across consecutive outputs. In effect, we can think of

this as a shift operation, where for the {i + l)th output, the (i - P -f- ^)th input is shifted

out since it is no longer needed, and the (« + l)th input is shifted in. All other inputs are

"shifted right", such that if an input was multiplied by coefficient b{j) in the ith iteration,

it is multiplied by b{j 1) in the (i + l)th iteration. This is clearly demonstrated in Figure 2

for the input X2.

In designing the FIR filter, we keep in mind the inherent input or data flow in the

computation, and thus incorporate a design feature that supports the data flow. The

template we chose directly reflects the filter operations: several products followed by their

summation, as well as a shift of input values. The template, thus, consists of three distinct

blocks or sections corresponding to each of the operations. These are labeled shift, product,

and summation in Figure 3 (a).
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The shift block is required to shift the inputs in the manner described above, the product

block is required to multiply the inputs with the filter coefficients and the summation block

is required for summing the products. The shift block thus contains 1 to P - 1 shift

registers configured as in the shift block in Figure 3 (b), the product block contains a set of

multipliers, and the summation block contains a set of adders and, possibly, accumulators.

Different FIR implementations are, thus, obtained by varying the number of multipliers in

the product block, and the number of adders and accumulators in the summation and their

interconnection.

We first explain the summation block, since in our template, an FIR implementation

is mostly specified by the structure of the summation block. We take an example of an

8<ft-order FIR filter, where the ith output is given by

y[i) - 1(2)6(0) + a:(i - 1)6(1) + a:(i - 2)6(2) + x(j - 3)6(3) + ~ 4)6(4)

+a:(i - 5)6(5)+ x{i - 6)6(6)+ 1(1 - 7)6(7) (4)

For simplicity, let us rewrite equation (4) as:

y{i) = PO+Pl +P2+P3+P4 + P5+P6 + P7 (5)

The job of the product block is to provide the products, po.. .pr, and the job of the sum

mation block is to sum these products. The summation can be done in one of many ways.

Some of these are given in equations (6), (7), and (8).

y(«) = (((((A) + Pi)+P2)+P3)+P4) + P5) + P6) + P7) (6)

y(2) = ((((P0 + Pl) + (P2 + P3)) + (P4 + P5))+ (P6+P7)) (7)

y{i) = (((P0+Pl) + (P2 + P3))+ ((P4 + P5) + (P6 + P7))) (8)

The parenthesis indicate the order in which the operands are added. The corresponding

hardware implementations for each of these equations is given in Figures 4 (a), (b) and (c)

respectively. (Note that the summation block is enclosed within the dashed-box). We refer

to the summation structure in Figure 4 (a) as a parallel sum, that in Figure 4 (c) as a serial

sum, and the one in Figure 4 (b) as a hybrid. In general, for a Pth-ordei filter, there are

log2 P —I such structures.

We have just explained what we mean by the structure of a summation. We now

explain its "accumulation factor". However, before that we clarify the functionality of an

accumulator. An accumulator is represented by the node labeled A in Figures 3 and 4, and

it is elaborated in Figure 5. It consists of an adder and a register, with the output of the
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Figure 5: Accumulator functionality and structure



adder connected to the input of the register, and the output of the register connected to

one of the inputs of the adder. Thus, if S{i) is the input to the adder at the ith clock pulse,

and R{i) the contents of the register also at the ith clock pulse, then the contents of the

register at the {i + l)th clock pulse will be R{i + 1) = R{i) + 'S'{0'

For each of the implementations in Figures 4 (a), (b) and (c), we had 7 adders. If we

now reduce the number of adders, the computation will be done in two or more "batches"

or accumulations. For example, if we have only three adders and an accumulator, as in

Figure 4 (d), we can first compute (((po + Pi)+P2)+P3)i store the result temporarily in the

accumulator, then compute (((p4 + ps) 4- pe) + Pr), and add this result to the previous one.

In this example, the addition is thus performed in two batches or accumulations. We can,

likewise, do the addition in four accumulations by having one adder and an accumulator,

or in eight accumulations by having just an accumulator.

Next, we illustrate a third feature of the summation block, which we refer to as the

number of levels of accumulation. All the implementations considered so far are one-level

structures. We illustrate a two-level structure in Figure 6 (a). For purposes of comparison

we also illustrate a one-level structure (Figure 6 (b)), that may appear to be similar to the

two-level structure.

In the first step, adder Si performs (po + Pi) and adder S2 performs (p2 + ps). The

result of these additions is stored in accumulators Ai and A2 respectively. In the next step,

operations (p4+P5) and (pe+P?) are performed using adders Si and S2 and their results are

accumulated in Ai and A2 respectively. The final result is obtained by adding the partial

results in Ai and A2 using 53.

(pO+ pl) H —

(P4-I-P5) lU

1

{pfi+ p3)

(p6 + p7) (P..PS. ;L0jI^^
1

n| (p2+ p3)
^ 1(p6 +p7)

1

L__ J J

Level 2

1

' Level 1
1

1

1

1

1

✓oO/ used 1

(a)

I
1

t

1

1

1 _

Level 1

(b)

Figure 6: FIR example illustrating a two-level summation



As a comparison, in the one-level implementation, adder Si performs (po +Pi)» adder S2

performs (p2+P3)i adder S3 performs ((po+Pi)+(P2+p3)), in the first step. This partial

result is stored in the accumulator and in the second step it is added to ((P4+P5) + (P6+ P7))i

which is computed by adders 5i, 52, and 53. If we assume that accumulations and additions

take one time unit each, then the two level summation requires 5 time units, while the one-

level summation requires 6 time units.

In general, for a Pfh-order summation the number of levels can vary from 1 to log2P.

It is to be noted that for a given summation block, the shift and product blocks are fixed,

i.e, the number of shift registers and multipliers is directly determined by the summation

block. For example, for a one level summation of 7 adders, the product block will necessarily

contain 8 multipliers. This is illustrated in the examples in Figure 4.

Thus, the design template can be completely specified by a set of 5-tuples for the sum

mation block and one pipelining parameter for the product block. Each element of the

5-tuple set corresponds to a level of the summation block. The parameters are represented

by:

Summation : (5t,

Product : P»

Where,

i € (1. • •log2 P)' summation level index

5i € (0... P - 1): sum size ( or the number of additions performed),

Aj € (0... P —1): accumulation size ( or the number of accumulations

performed),

Ti € (1.. ./0P2P): sum structure factor ( or the number of "completely

balanced levels" -f 1)

P^i'. "serial-sum" pipeline factor,

Pp.: "parallel-sum" pipeline factor, and

P.: product pipeline factor.

5i,Ai, and Tj, specify the parallelism in the design while P,^, Pp^ and P., specify the

extent of pipelining. Each of these factors is now explained by taking implementations of

the St/i-order filter in Figure 4.



3.1.1 Parallelism parameters

Si gives the total number of additions that are performed by the ith summation level,

and i4,, the number of accumulations that are required in order to add the Si data values.

Thus, for the implementations given in Figures 4 (a), (b), and (c) the sum size is 8, and

the accumulation size is 1. In these implementations the accumulator serves no purpose

(or, it is used just once), while in Figure 4 (d), the accumulator is used twice. In this

implementation the sum size is still 8, while the accumulation size is now 2. In effect,

Ai indicates the number of iterations through the summation in order to complete the 5,-

additions.

Figure 7: General structure of a summation level

The general form of the summation structure is shown in Figure 7. At one extreme, the

size of the parallel block is zero, and we have a completely serial structure (Figure 4 (a)).

At the other extreme, the serial block contains just one adder, and we have a completely

balanced binary tree structure (Figure 4 (c). The parameter Ti represents the number of

levels in the parallel block. Thus the structure factor in the implementations of Figures

4 (a), (b), and (c) is 1, 2 and 3 respectively.

3.1.2 Pipelining parameters

stage 1 ' stage 2
(a) (b)

Figure 8: FIR examples illustrating pipelining parameters



We illustrate the summation pipelining factors, F,, and Fp,, by considering a general

summation block as shown in Figure 7. The delay, and hence the throughput, of the non-

pipelined structure is dp+ d,, where dp is the delay of the parallel block and d, is the delay

of the serial block. After pipelining the parallel block into Fp equal stages, and the serial

block into F, equal stages, the throughput reduces to dp/Fp dj/F^.

Pipelining of the serial block requires us to introduce appropriate delay elements (or

latches) at the inputs of the parallel block. (These latches do not have to be added at

the inputs; they could also be introduced within the appropriate parallel blocks or at the

output of the parallel block). For example, if we pipeline the serial block shown in Figure 8

into two equal stages, the inputs C(i) and D(i) are required only one clock cycle after A(i)

and B(i). At any clock pulse, stage 2 is completing the ith sum, stage 1 is starting the

(i -I- l)th sum. In order to maintain correct operation of the filter, two latches are thus

introduced at inputs C{i) and D{i).

As we increase the pipelining of the serial block, latches are introduced to "skew" each

of the inputs by appropriate amounts. In Figure 8 the serial block is pipelined into four

stages; 2, 3 and 4 latches are thus required at inputs B(i), C(i), and D(i) respectively.

Finally, F. indicates the number of pipeline stages in the multipliers constituting the

product block. The parameter F» is required because the number of pipeline stages in the

product block is independent of the summation block. Whereas the number of multipliers

in the product block is completely determined by the summation structure, the number of

pipeline stages in the product block is an orthogonal feature.

3.2 Design procedure

To summarize so far, we have just defined an FIR design template consisting of three

blocks: shift, product, and summation. The template is parameterized by a set of 5-tuples

for the summation block and a pipelining parameter for the product block. We now give a

procedure for varying these parameters so as to generate all possible FIR implementations

for a given throughput constraint, C.

In explaining the algorithm, we use the same notation introduced earlier for the parame

ters; however, for the sake of convenience, we drop the subscript i from the notation. Thus,

for a summation level, the parameters are (S,A,TiPa,Pp), where 5 indicates the sum size,

A the accumulation size, T the structure factor, and Pg and Pp the pipelining factors.

The recursive algorithm FIR{) takes as its parameter F, the order of the filter. It

starts by initializing 5 to F, A to unity, and T to log S (which corresponds to a balanced
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tree structure). It then makes a call to the procedure GenSum with the parameters S/A

and T. This procedure returns a one-level summation of the form shown in Figure 7. T

is the number of levels in the parallel block and S/A is effectively the number of inputs

in the summation structure. Next, a recursive call is made to the FIR{) procedure with

the parameter P/S. This is how multiple summation levels are generated. For example, if

P = 8, in the first iteration a one-level tree would be generated since S is set to P, P/5 = 1,

and thus a call to FIR(l) would result in the execution of it's base case.

The base case of the recursive algorithm FIR is reached when the summation block is

completed and the FIR{) algorithm is called with its parameter set to unity. The prod

uct and shift blocks are then "connected", and the performance of the resultant design is

estimated. If the design does not satisfy the throughput constraint it is pipelined in in

cremental steps till the minimum clock period is reached or the throughput constraint is

met. Pipelining the design involves varying the three pipelining parameters, Pj, Pp, and P*.

This has not been shown in the flowchart. If the design still cannot satisfy the throughput

requirement after it is maximally pipelined, then no further FIR implementations are gen

erated and the algorithm terminates. This is because the algorithm starts from the most

parallel end of the design spectrum and proceeds towards the serial end. Thus, if a design

cannot satisfy throughput requirements, neither will subsequent designs generated by the

algorithm.

The calls to the two procedures, GenJSum and FIR, are nested within three loops. The

inner most loop generates all possible summation structures (from parallel to completely

serial) for a given 5, sum size and A, accumulation size. The second loop varies A from

1.. .5 for a given 5, and the third loop varies 5 from P down to 2 for a given P.

Thus, the summation blocks are generated recursively and the three parallelism param

eters are varied using the three loops. Also, for a given implementation, the pipelining

parameters are varied using si triple nested loop. In this way, the algorithm generates all

FIR implementations that satisfy a given throughput requirement. It is to be noted that

the algorithm can be easily modified to accommodate a different set of constraints, such as

minimum cost or latency.

4 Beamformer system

In this section, we define a parameterized template for the beamformer system and a

procedure for obtaining a cost-effective implementation under a given set of constraints.



System level parameters:

BK : # of banks

BL : # of FIR "blocks" per bank
P : # of pipeline stages

Block level parameters:

Figure 10: Design template for beamformer system

4.1 Design template and parameters

The design template shown in Figure 10 contains three distinct blocks: FIR, PR, and

SUM. The FIR block is used to compute equation (1), and the PR and SUM blocks compute

equation (2). However, one or more of these blocks can be merged, for example PR can

be merged with either FIR or SUM, without significantly affecting the parameters or the

design procedure.

As Figure 10 clearly shows, the beamformer template has a two level hierarchy. The

top (or system) level is an interconnection of FIR, PR and SUM blocks, and the bottom

(or block) level is an interconnection of adders, multipliers and registers. Corresponding to

each level we define a set of parameters:

1. System level:

(a) BK : number of BanKs,

(b) BL : number of FIR BLocks per bank, and

(c) P : number of Pipeline stages (at the system level).

2. Block level:

(a) FIR parameters

(b) PR parameters

(c) SUM parameters



BK=2, BL=4. P=1 BK=1, BL=4, P=1 BK=1, BL=2. P=:3

iii
FIR FIR FIR FIR FIR FIR FIR FIR FIR FIR

Figure 11: Examples illustrating design template and parameters of beamformer system

The examples in Figure 11 illustrate the system level parameters. A bank refers to one

"plane" of interconnected FIR, PR and SUM blocks. Thus the first example has two banks,

while the other two have just one bank each. The size of a bank is given in terms of the

number of FIR blocks, and this is refered to as the block size (BL). BL varies from 4 to 2

in the examples.

The FIR computation (sum of products) can be viewed as a superset of the PR (prod

ucts) and SUM computations; hence, the design template and parameters given in Section 2

suffice as an explanation for the block level parameters.

4.2 Design procedure

We now describe a procedure for obtaining a minimum cost beamformer implementation

by varying parallelism and pipelining. This variation is limited by constraints on the sample

period (S) and the latency (L) of the system, as weU as the minimum clock period, a

constraint imposed by technology. The sample period (in ns) is the rate at which digitized

samples are sent to the FIR biock(s), and the latency (in number of sample periods) is the

total time for an input to be processed.

We present two design approaches, both of which lead to the same (or very similar)

implementations for a given set of constraints. In the first approach, we trade cost for

sample period, while keeping the clock rate constant. This is essentially done by serializing

the design, such that design costs drop and the sample period increases due to the decrease

in the number of components in the design. In the second approach we keep the sample

period of the design constant, and trade cost for the clock rate, where a decrease in the

clock rate leads to a drop in design costs.
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Figure 12: Two approaches for varying parallelism and pipelining in the beamformer system



Both these approaches are explained by taking an example with the following specifica

tions:

1. N, the number of elements = 512

2. M, the number of beams = 4

3. S, the sample period = 512 ns

4. L, the latency limit = 4 sample periods.

4.2.1 Approach 1

This approach is illustrated in Figure 12 (a). We start with the most parallel non-

pipelined design (at the system and block levels), and pipeline it till the minimum clock

period is reached. Then we serialize it while making sure that constraints are still satisfied.

At the system level a most parallel design is one in which BK = M (one bank per

beam), and BL —N (one FIR block per element). At the block level, the FIR, PR and

SUM blocks also have the most parallel implementations. For example, for a P-order filter,

the FIR block wiU have P multipliers and a summation tree of P-1 adders. This can

be obtained by making a call to the FIR{) procedure (outlined in the previous section),

and selecting the most parallel design that meets the performance constraint of S. The

FIR{) procedure not only returns the implementation, but also an estimate of its cost and

execution time. The most parallel PR and SUM implementations can also be obtained by

making calls to similar procedures. These procedures are not given in this report since they

are almost identical to the procedure for the FIR block.

The maximally parallel design is then pipelined both at the system and block levels. At

the system level, a maximally pipelined beamformer simply contains three pipeline stages,

the FIR, PR and SUM stages. At the block level, the number of stages in each block

depends on the execution time of the block and the minimum allowable clock rate in the

given technology.

The next step in the design process consists of serializing the maximally parallel and

pipelined design (and hence, the most expensive one in the design spectrum), till the con

straints on 5" and L are just satisfied. The resultant design, is thus always maximally

pipelined. Since pipelining increases the performance for a relatively small increase in cost,

by exploiting pipelining we always obtain the minimum cost implementation.

In order to search the design space exhaustively, serialization has to be performed at

the block and system levels. Serialization can be viewed as consisting of a double nested



loop, where the inner loop performs block serialization, and the outer loop serializes at the

system level. That is, serialization is first performed at the block level until the throughput

or latency constraints are no longer met. Then the system is serialized by a factor of two,

and the block serialization is repeated.

We would further like to point out that in serializing at the system level, the number

of banks is first reduced by factors of two, and when the design is down to one bank, the

number of FIR blocks is reduced by factors of two. Serializing at the FIR level, refers to

varying the three parallelism parameters mentioned in the previous section, in an order

of decreasing parallelism. That is, successive FIR designs will have a fewer number of

multipliers or a more serial adder structure.

Figure 13 shows a few designs that are obtained by using this approach on the exam

ple mentioned earlier. We assume certain delay values for each of the blocks, and also a

technological limit of 64 ns on the clock period.) In our evaluations, we also assume that

serializing an FIR implementation by a factor of two results in a design with half the num

ber of multipliers and double the execution time. This is a simplifying assumption, but is

sufficient to illustrate the design approach.

Design ^1 is the most parallel and pipelined design. The total execution time (or the

critical path) of the implementation is 1024 ns, and with 16 pipeline stages, the clock period

is 64 ns. However, the circuit can support a sample period of 64 ns • this is far greater than

the constraint of 512 ns. This design is then serialized at the block level, that is, the FIR

block is serialized by a factor of two. The delay of the FIR block thus increases to 768 ns

from 384 ns. This is the second design we obtain (not shown in the figure). Also note that

the clock period is the same as before, though the sample rate increases to 128 ns. When the

FIR block is further serialized, the latency of the resulting design (4.25), exceeds the user-

imposed constraint of 4.0 sample periods. The serialization step thus falls out of the inner

loop of block serialization, and executes the outer loop of system serialization. The number

of banks now reduces from 2 to 4. This is Design #3, and it is depicted in Figurel3(b).

Design i^3 is then serialized at the block level, resulting in Design Design ^5 and #7

shown in Figuresl3(c) and (d) correspond to the implementations obtained after further

serialization at the system level, and Design #6 is obtained after serializing Design #5 at

the block level.

Table 1 gives an approximate analysis of the designs and Figure 14 (a) graphically depicts

the seven design points. Sample period is in ns, latency in number of sample periods, and

cost is in terms of adder units, where the cost of a multiplier is 4 adder units, and the cost
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Figure 13: Illustration of first approach
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of a register is one adder unit.

We would like to point out that in the example discussed above only the FIR block was

serialized, and that too in a limited manner. We also did not take into account the overhead

in cost or delay due to pipelining. This was to reduce the complexity of the estimations

since they are all manually derived.

4.2.2 Approach 2

Design BK BL FIR Delay Cost Sample period Latency

# ^ of banks ^ of blocks (ns) # of adders (ns) # sample periods

4 512 384 202748 64 2.00

2 4 512 768 104444 128 2.75

3 2 512 384 101374 128 2.13

4 2 512 768 52222 256 2.88

5 1 512 384 50687 256 2.37

6 1 512 768 26111 512 3.13

7 1 256 384 25344 512 3.00

Table 1: Implementations obtained using approach 1
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Design BK BL FIR Delay Cost Clock period Latency
# # of banks # of blocks (ns) of adders (ns) # sample periods
1 4 512 202748 512 2.00

2 4 512 104444 256 2.75

3 2 512 384 101374 256 2.50

4 2 512 384 52222 128 3.25

5 1 512 384 50687 128 2.75

6 1 512 384 26111 64 3.50

7 1 256 384 25344 64 3.00

Table 2: Implementations obtained using approach 2

In the first approach, the most pipelined and parallel design is serialized till either of the

constraints are violated. In this approach (Figure 12 (b)), a design is pipelined till design

constraints are violated or the minimum clock period is reached. Once again, we start with

the most parallel non-pipelined design and pipeline it just enough to satisfy the performance

constraint. This design is then serialized, and for it to meet the performance requirement

its pipelining is increased. This process of serialization and pipelining is carried on till we

obtain the most serial design, till the latency constraint is violated, or till the technology

limit is reached.

Once again, serialization can be viewed as a double nested loop, where the inner loop

corresponds to block level serialization and the outer loop to system level serialization.

We demonstrate this approach on the same example given above. We start with the

most parallel implementation (Design #1 in Figure 15) pipelined into two equal stages of

512 ns each, and proceed towards more serial and pipelined designs. In Design #2 the

FIR is serialized by a factor of two. In order for this design to satisfy the sample period

requirement, its clock period is reduced to 256 ns. Design cannot be serialized any

further at the block level since its latency exceeds the user given constraint of 4 sample

periods. Serialization is then performed at the system level and this results in Design i^3.

Once again, Design is serialized at the block level, resulting in Design #4. This process

of block and system level serialization goes on until Design #7 when the technological limit

of 64 ns is met, and the design cannot be serialized any further.

Table 2 gives details of each of the designs. The clock period vs. cost tradeoff is depicted

in Figure 16 for each of these designs.

We would like to point out that, typically, a user imposes cost or performance constraints

on the ouera//system, and in a hierarchical system such as the beamformer, this corresponds

to constraints on the top level of hierarchy. These constraints have to be propagated to lower
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Figure 16: Tradeoff curve obtained by second approach

levels of hierarchy, and very often this implies having to distribute or split the constraints

amongst different "modules" of the design. For example, if the designer had a constraint on

the total cost of the beamformer the cost constraint would have to be split up appropriately

amongst the FIR, PR and SUM blocks. This can pose a considerable problem, since there

is no obvious way of determining how to distribute constraints. However, we did not face

this problem while designing the beamformer system, since in the special case that we were

considering, the constraint waa on the throughput or the sample period of the beamformer,

and since the FIR, PR and SUM blocks are aU connected linearly, the throughput constraint

on all of them was the same as that on the complete beamformer system.

5 Conclusions

We have just demonstrated that by varying parallelism and pipelining we can explore

the design space of FIR filters and the beamformer system. The design procedure serves

little purpose, if it can only be applied to these two systems or systems similar in nature

(i.e those that can be formulated as sums of products). As a part of future work, we will

investigate the possibility of applying this or a similar design procedure on a broader range



of problems.
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