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ABSTRACT OF THE DISSERTATION 
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The hippocampus is a brain structure critical for the formation of new memories. Case studies 

have demonstrated that a properly functioning hippocampus is required to form new episodic 

memories. But hippocampal cellular electrophysiology has traditionally studied hippocampal 

function by quantifying the role of the hippocampus in navigation and spatial localization 

through “place cells.” The mechanisms through which allocentric spatial representations arise 

from egocentric sensory cues are not well-understood, nor are the ways in which these 

representations are used to navigate or relate to episodic memory. This dissertation addresses 

three key issues in understanding the mechanisms of episodic memory.  

First, in vivo electrophysiology has traditionally focused on somatic spiking as the output of the 

brain structures under study, completely ignoring the activity in the massive dendritic arbors that 
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neurons maintain, and which have been proposed to have important contributions to neural 

computation. Here we describe development of a novel recording method and report the first 

long-term recordings during unrestrained, natural behavior of cortical dendritic activity 

representing egocentric motion.  Second, confounds between different sensory or behavioral 

parameters can lead to problems in interpreting analyses when traditional methods of 

determining neural receptive fields are used. This work develops and applies powerful statistical 

analyses known as generalized linear models to identify the independent contributions of 

different sensory modalities to hippocampal tuning. Finally, in vivo electrophysiology has never 

been performed in the Morris Water Maze, one of the most widely-used behavioral tests of 

spatial memory, largely due to the incompatibility of water with recording electronics. By 

training rats to do an analogous task in virtual reality, we demonstrate that hippocampal 

pyramidal cells, which function as place cells in most environments, do not encode allocentric 

position in this task, but rather encode episodic distance within trials. 

This multiple-level investigation of episodic memory, from cortical dendrites to hippocampal 

soma, is facilitated by novel technologies and methods. Each level of analysis reveals important 

new details of the computational principles utilized by neural circuits, and lead us to a more 

complete understanding of episodic memory. 
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1. Introduction  

The hippocampus is a brain structure critical for the formation of new memories. Case studies 

like the famous patient HM first demonstrated that a properly functioning hippocampus is 

required to form new declarative and episodic memories
1
. Episodic memories, such as where you 

went to elementary school or the path you took from your house to work today, have two key 

components to them. First, they are spatiotemporally positioned at a particular place and at a 

particular time. Second they typically involve the subjective viewpoint of the person with the 

memory. Behavioral testing has clearly shown the important of the hippocampus in spatial and 

episodic memory
2,3

, but cellular electrophysiology has traditionally approached hippocampal 

function from an entirely different angle. 

Electrophysiological studies have revealed the presence of “place cells” in the dorsal 

hippocampus
4–6

. These are neurons that become very active in only a small segment of any given 

environment, and are otherwise silent. Much work has been spent studying the impact of visual
7–

9
, olfactory

10,11
, auditory

12
, and tactile

13
 cues, as well as differing task type

14,15
, on the properties 

of these place cells and their changes with experience
16,17

. Place cells are thought to represent an 

abstract notion of allocentric space, and behavioral measurements of spatial navigation assume 

an allocentric cognitive map supporting behavior. Though well-studied, many properties of place 

cells are still unknown, particularly what defines “place,” how allocentric space is computed 

from egocentric movements and sensations
18,19

, and how such a code for space might be used to 

navigate
20

. 

All sensory information that comes in to the brain is necessarily in an egocentric, or self-

centered, reference frame. The sights we see, the sounds we hear, the smells we smell, all depend 
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on the relative orientation and distance between ourselves and any given object. All motor 

output, too, is necessarily represented in an egocentric reference frame. We must move forward 

or backward from our current position or rotate to change our current orientation. The 

mechanisms of interaction between self-referenced sensorimotor information and the allocentric 

map of space in the hippocampus, as well as the computational principles that underlie these 

interactions, are not well-understood.  

This work capitalizes on the use of new electrophysiological, statistical, and behavioral methods 

that allow researchers to address questions previously out of reach, and to begin to link the 

realms of in vivo electrophysiology and episodic memory. Three key roadblocks have stood in 

the way of answering these questions.  

First, in vivo electrophysiology thus far has focused on somatic spiking as the output of the brain 

structures under study. But principal neurons maintain vast dendritic arbors with a variety of 

nonlinear voltage gated ion channels. The impact of these active dendrites on the computations 

described above has not at all been characterized, though theoretical work suggests they may be 

vitally important to network behavior
21–25

. Our development of novel electrode recording 

techniques allows us to directly measure the sub- and supra-threshold voltages of these dendrites. 

Second, interactions between different sensory or behavioral parameters can lead to problems in 

interpreting analyses when traditional methods of determining neural receptive fields are 

used
14,26–28

. Hence, it is most straightforward to manipulate only one parameter (space, head 

angle, context, etc.) at a time and attempt to clamp all other variables. Only the most carefully 

designed experiments have been able to investigate the joint or independent contributions of 
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multiple parameters on neural firing. By utilizing a class of statistical models known as 

generalized linear models, we are better able to dissociate these parameters. 

Finally, one of the most widely-used behavioral tests of spatial memory, the Morris Water 

Maze
29,30

, has not been able to be combined with in vivo electrophysiology. This can be 

attributed to a number of reasons, not least of all the incompatibility of water with recording 

electronics
31–33

. Place cells are supposed to make up the “cognitive map” of an environment
5
, 

and it is this cognitive map that is supposed to support spatial learning and memory, but the 

direct link between spatiotemporal hippocampal activity and spatial memory has not been 

established. Using Virtual Reality technology
34–37

, we are able to construct a virtual water maze 

compatible with electrophysiological recordings, allowing us to link cellular dynamics with 

behavior. 

This work investigates spatial navigation from the dendritic level in neocortex to the cellular 

level in hippocampus to episodic memory-related behavior. Novel technologies and methods 

facilitate this multiple-level analysis of memory and behavior, revealing important computational 

principles along the way. 
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2. General Methods 

Subjects 

Data were obtained from singly housed adult male Long-Evans rats, 350-425g at the time of 

surgery, trained to perform the spatial exploration tasks described below. The animals were 

water restricted (minimum of 30mL/day) in order to increase motivation to perform tasks, and 

received sugar water or solid cereal rewards during spatial exploration tasks. Further, they were 

food restricted (minimum of 15g/day) to maintain a stable body-weight and increase motivation 

to perform tasks with food reward. All experimental procedures were approved by the UCLA 

Chancellor's Animal Research Committee and in accordance with NIH-approved protocols.  

Rats with satisfactory behavioral performance on spatial exploration tasks were anesthetized 

using isoflurane and implanted with custom-made hyperdrives with 22 independently adjustable 

tetrodes. Four rats were implanted with drives targeting right prefrontal cortex and right posterior 

parietal cortex and dorsal CA1 of the hippocampus. All others were implanted with drives 

targeting both left and right dorsal CA1 and the posterior parietal cortex above it. After recovery 

from surgery, all tetrodes were slowly lowered through cortex over a span of several days to 

months. Subsets of tetrodes were advanced daily, typically ~70µm and rarely more than 140µm 

in one day. 
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Tetrodes 

Extracellular Recording 

All electrophysiological recording was performed with tetrodes, bundles of 4 wires constructed 

in-house from 13 µm-diameter NiChrome (NiChr) wire coated with 2 µm thick polyimide 

insulation. After the tetrodes were cut, the tips were electroplated with a gold particle solution 

containing 75% gold plating solution and 25% multi-walled carbon nanotube solution.  

Electroplating is performed in order to reduce the impedance of the recording electrodes. The 

impedance is measured as the total impedance between the amplifier and ground. When 

preparing tetrodes, the largest source of impedance, and the easiest to manipulate, is the 

impedance of the electrode-electrolyte interface. Impedance is a frequency-dependent quantity, 

and is typically measured at 1 kHz, the typical frequency of an extracellular action potential. An 

unplated NiChr electrode has an impedance of several MΩ. 

Because the resistance of the amplifier (~ 1 TΩ) is several orders of magnitude larger than the 

electrode-electrolyte impedance, changes to the electrode impedance do not affect overall signal 

amplitude. The motivation for plating comes from reducing the thermal noise, also termed 

Johnson Noise, arising from the resistance. A lower impedance allows the recording of a large 

amount of neurons, critical for investigating population-level dynamics 

A current of 150 nA was passed for 2 seconds with the electrode tip as the anode. This was 

repeated until the impedance at 1 kHz decreased below 130 kΩ for each electrode of every 

tetrode. Additional checks ensured that the four channels of a tetrode were not shorted. 
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Signals were recorded using a Neuralynx data acquisition system at a sampling rate of 32 or 40 

kHz; all signals were initially digitally filtered through a 32 tap low-pass FIR filter with a cutoff 

frequency of 9000 Hz and a high-pass DC offset filter with a cutoff frequency of 0.1 Hz.  

Slow fluctuations in the signal (<100 Hz) typically represent the local field potential (LFP), 

thought to represent the summed input to a brain region, and is typically synchronous over large 

areas. This signal is typically no more than several hundred µV in amplitude. Somatic action 

potentials are extracellularly visible as fast (~1000 Hz) spikes in the signal. These correspond to 

the current going into and coming out of the soma. A single tetrode may record spikes from up to 

30 nearby neurons. 

Extracellular waveforms were extracted from the LFP filtered between 300 and 9000 Hz with a 

zero-phase second order Butterworth bandpass filter. Peaks with values above an adaptive 

threshold based on the magnitude of the noise in the signal (typically >40 µV) were identified as 

putative somatic action potentials.  

Extracellular Unit Classification 

Spike sorting and single unit classification were done offline using custom software. We take 

advantage of the different amplitudes of spikes on the different channels of a tetrode to perform 

spike sorting. Several features of each spike are computed, including peak amplitude, trough 

amplitude, and valley amplitude, as well as principle components computed from these 

measures.  Spikes from a single neuron will cluster along these dimensions, and spikes are 

assigned to different neurons by manually drawing boundaries in different projections of these 

dimensions. Though time-consuming, this process ensures that all units used for analysis are not 
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missing any spikes or are contaminated by spikes from other units, and faithfully represent the 

spiking activity of single neurons.  

We used several metrics of a clustered unit to classify the putative neuron type of extracellular 

units into one of two broad categories of Pyramidal Neurons or Interneurons based on previous 

studies. Such features include mean firing rate, width at half-maximum, and time from spike 

peak to trough,  

Complex spike index (CSI) is another feature used to differentiate pyramidal neurons from 

interneurons, especially in the hippocampus. For all pairs of adjacent spikes with spike time Tn 

and amplitude An and belonging to a single unit, the inter-spike-interval (ISI) was defined as  

𝐼𝑆𝐼 = 𝑇𝑛 − 𝑇𝑛−1  

and the adaptation index (ADI) was defined as the ratio    

𝐴𝐷𝐼 =
𝐴𝑛−𝐴𝑛−1

𝐴𝑛+𝐴𝑛−1
    

The CSI was then computed as  

𝐶𝑆𝐼 = 100 ∗
𝑆−𝐿

𝑆+𝐿
  

where S is the number of spike pairs with ISI < 20 ms and ADI < 0, and L is the number of spike 

pairs with ISI < 20 ms and ADI >=0.  

Virtual Reality 

Virtual reality experiments are done using a custom-built system designed to isolate the 

contribution of different sensory modalities to behavior and neural responses. The rat is 
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harnessed atop a hollow, Styrofoam ball 1 meter in diameter. This provides body-fixation so the 

rat is always facing the same direction in the room frame of reference. The ball is floated on a 

cushion of air. When the rat moves, the ball rotates, and its rotation is tracked by laser sensors on 

the sides of the ball. This input is fed to a computer outside the room running the first-person 

virtual reality program. The visual scene is then projected via a polished, shaped mirror onto a 

screen that covers the rat’s entire field of view. The room that we typically use has a 2 meter 

diameter table that is 75 centimeters above a virtual floor. The pattern on the table provides optic 

flow but has no local cues that could give information about space. The square virtual room is 

4.5 by 4.5 meters, and the walls extend from the floor to 3.2 meters above the table. Each wall 

has a distinct visual cue on it. Thus only distal visual cues contain any information about position 

in the virtual environment, with no smells, sounds, or textures that are reliably associated with 

any position in the virtual world. 

Quantification of Neural Responses 

Constructing Rate Maps 

To quantify the effect of any given stimulus or behavioral pattern has on a neuron, rate maps are 

constructed.  The stimulus space is split up in to several (L) bins. The total number of spikes N in 

each bin is divided by the total time T spent in each bin to obtain an estimate of the mean firing 

rate λ of that neuron as a function of the stimulus space: λi =
𝑁𝑖

𝑇𝑖
 

The firing rate plotted as a function of the entire stimulus space is referred to as the rate map. 

Given large amounts of data, this procedure generates an accurate representation of the neuron’s 

response. However, experiments are finite in length (< 1 Hour), and some neurons may not fire 
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often enough to obtain an accurate representation of the true firing rate. The first way these 

problems are mitigated is to exclude bins in which insufficient time is spent. This avoids 

spuriously high firing rates in isolated regions of the stimulus space. The second way to address 

this problem is to “smooth” the rate maps, usually by convolving a Gaussian kernel with the rate 

map. This is motivated by the observation that neural responses are typically continuous within a 

stimulus space; that is, the firing rate of a neuron for stimuli close in the stimulus space will be 

similar. 

The size of the bins used to construct the rate maps, the minimum occupancy time, and the size 

of the Gaussian smoothing kernel are all free parameters that may differ from experiment to 

experiment, depending on the amount of data available, affecting the minimum occupancy time, 

and the desired resolution, affecting bin size and smoothing size. 

 

Selectivity Quantification 

Once a rate map is constructed, there are several ways to quantify how “well-tuned” the neuron 

is to the given stimulus space. Each has strengths and weaknesses, and thus each provide 

different insights into the nature of neural responses. 

Information Content 

The information content of a single unit rate map (in bits) is defined as  

𝐼 =  ∑ 𝑃𝑖 (
𝜆𝑖

𝜆̅
) log2

𝜆𝑖

𝜆̅

𝐿

𝑖
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Sparsity 

Sparsity of a rate map given 𝑁 bins and 𝑟𝑛 as the rate in the 𝑛𝑡ℎ bin is defined as:  

𝑆 =  ∑ 𝑃𝑖 (
𝜆𝑖

𝜆̅
)

2𝐿

𝑖

 

Dispersion 

The dispersion of a rate map is defined as the mean distance between the pixels with the highest 

10% of all values. 

Coherence 

Coherence was calculated by evaluating the correlation coefficient between each pixel of a rate 

map and the mean of all surrounding pixels
45

. Pixels with undefined firing rate were excluded 

from this analysis. 

Mean Vector Length 

The mean vector length, for circular rate maps, is computed as:  

𝑀𝑉𝐿 = 𝑎𝑏𝑠(
∑ 𝑟𝑛𝑒−𝑖𝜃𝑛𝑁

𝑛

∑ 𝑟𝑛
𝑁
𝑛

)  

where 𝜃𝑛 and 𝑟𝑛 are the angle and rate in the 𝑛𝑡ℎ circular bin respectively. 

Statistics 

Significance Tests 

Due to the relatively small sample size of some datasets and potential non-Gaussian distribution 

of measures, we employed non-parametric tests and resampling statistics to assess statistical 
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significance. Significance between unpaired data was assessed using the Wilcoxon rank-sum 

test. Significance between paired data was assessed using the Wilcoxon signed-rank test. These 

tests make few assumptions about the distributions of data being tested and are robust to non-

equal sample sizes or non-Gaussian nature of data. Correlation coefficients and their related 

significance were calculated using the built-in corrcoef() function in MATLAB, which calculates 

a two-sided t statistic to assess significance.  

Confidence Intervals 

Unless otherwise stated, all values are reported as median [95% confidence interval], in the form 

M [L, U], with M representing the median and L and U representing the lower and upper bounds, 

respectively, of the 95% confidence interval. Confidence intervals were estimated using 

resampling statistics to allow analysis of non-Gaussian distributions. Briefly, a surrogate 

population was constructed by drawing with replacement from the original distribution and the 

median of the resulting distribution recorded. This was repeated 100,000 times to form a 

distribution of the estimated median. The cutoff values of the 2.5
th

 and 97.5
th

 percentile of the 

estimated distribution were designated as the 95% confidence interval of the original population. 
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3. In vivo intracellular dendritic 
dynamics in neocortex 

Abstract  

Neural activity in vivo is primarily measured using extracellular somatic spikes, which provide 

limited information about neural computation. To understand neural dynamics it is necessary to 

measure the activity of difficult-to-record extensive neuronal dendrites, which possess voltage-

gated ion channels supporting dendritic action potentials (DAP). Here we measured neocortical 

sub- and supra-threshold dendritic membrane potential (DMP) using tetrodes in freely behaving, 

drug-free rats over multiple days with a high degree of stability and sub-millisecond temporal 

resolution, which is unfeasible using other techniques. DMP exhibited digital spiking, i.e. DAP, 

with firing rates greatly exceeding somatic spike rates, suggesting that only a fraction of DAP 

contribute to somatic spiking. DAP rates were modulated by analog, subthreshold DMP 

fluctuations, which were far larger than the DAP amplitude even during locomotion, 

demonstrating interacting analog and digital dendritic computation in vivo. During unrestrained 

behavior, somatic spikes in parietal cortex encoded future egocentric movement. Egocentric 

maps were found in the DAP and DMP as well, but they were more diffuse and lacked the 

anticipatory component observed in somatic spikes. These results reveal surprising features of 

dendritic computations in parietal cortex during natural behavior. 

Introduction 

Microelectrode techniques have enabled the measurement of extracellular action potentials in 

drug-free subjects during natural behavior over long periods of time. However, action potentials 
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are brief (~1 ms), occur rarely (~1.5 Hz in principal neocortical neurons), and only represent the 

binary output of the somata, while their dendritic arbors span more than 1000 µm
38

. In vitro 

studies show that dendrites possess voltage-gated ion channels that support local spike initiation 

of dendritic action potentials (DAP)
21,39–49

 and back-propagating action potentials (bAP) initiated 

at cell somata
42,44–46,50–53

. Further, they show that these nonlinear processes profoundly influence 

synaptic integration
42–44,53

 and plasticity
47–49

, and computational models show that this can alter 

circuit dynamics and information capacity of single neurons
21–25,54

. All of these effects can 

influence behavior and cognition, but the nature of sub- and supra-threshold dendrite dynamics 

during natural behavior, particularly those of electrotonically distal dendrites where the majority 

of excitatory synapses are localized, have remained largely elusive. Thus it is essential to 

measure the dendritic membrane potential (DMP) during natural behavior.  Sharp electrode
39

 or 

patch-clamp techniques
55

 can measure intracellular subthreshold voltage from somata and 

proximal dendrites at sub-millisecond temporal resolution, but the damage caused by rupturing 

the membrane and dialyzing the intracellular medium limits the duration of recording allowed by 

these methods
56

, may alter in vivo signal properties including firing rates
57

, and is ill-suited to 

record from thin tertiary dendrites. Two-photon imaging techniques can estimate the dendritic 

calcium influx
53,58,59

, but do not directly measure subthreshold membrane potential or dendritic 

sodium spikes and lack sub-millisecond resolution.  

 “In-cell” recording technique can measure intracellular voltage
60,61

, where cells attempt to 

endocytose the recording electrodes, yielding a large seal resistance, allowing measurement of 

the intracellular voltage without the electrode penetrating the cell membrane, yielding positive 

polarity spikes as in patch-clamp recordings, as opposed to negative polarity spikes during 

extracellular measurements. In vivo, glial cells also engulf chronically implanted 
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microelectrodes, forming a high impedance glial sheath
62,63

.The high impedance of the glial 

sheath also blocks the signals from surrounding neurons.  

A similar technique is the use of “quasi-intracellular” recordings in anesthetized animals
64–68

 

where   sharp glass pipettes occasionally measure intracellular like signals, including positive 

spikes riding on subthreshold potentials
65–67

. These recordings can be stable for at most a few 

hours
65

. Spikes measured with quasi-intracellular and patch-clamp techniques have identical 

shapes, of~1 ms width , typical of somatic recordings
65,67,68

. The proposed mechanism for quasi-

intracellular recording is that a region of high electrical resistance electrically isolates the 

membrane under the microelectrode, resulting in a large, intracellular-like signal. 

We hypothesized that a combination of tetrode technology, in-cell (quasi-intracellular) recording, 

and glial response to electrode implantation could provide high quality dendritic recordings in 

vivo. If a tetrode with four closely spaced (~4 µm) tips is positioned near a dendrite when the 

tetrode is encapsulated by the glial immune response the dendrite would become trapped 

between the tetrode tips; an equipotential region would then be formed in which the voltage at all 

four tips would closely match the intracellular DMP. This would be biased towards thin 

dendrites and not somata or proximal dendrites because thin dendrites could be cradled in the ~4 

µm spacing between tetrode tips until the glial sheath forms, but cell somata and proximal 

dendritic trunks would be ruptured by the tetrode due to their large size. This is a different 

configuration than the in-cell recordings in cell cultures described above, but utilizes the same 

principle of increasing the seal resistance between the electrode and ground. Hence, we closely 

examined the signal properties of tetrodes in vivo to see if such “glial-assisted” recordings of 
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intracellular voltages could be achieved and maintained over long periods in freely behaving 

animals.  

Results 

We implanted 9 rats with hyperdrives containing up to 22 individually adjustable tetrodes, as 

described previously
34,36

, targeting both prefrontal and parietal cortices (see Methods). Unless 

specified otherwise, these data were pooled together, as there were no systematic differences 

between them. Tetrodes usually recorded standard signatures of extracellular signal, including 

thin (<1 ms) extracellular spikes of negative polarity with ~100 µV amplitude (Fig. 3-1a), 

presumably of somatic origin
69

. However, in several instances (25 over 194 total tetrodes over 

847 total recording days across 9 rats), the signal was dramatically altered to that resembling an 

intracellular dendritic recording (Fig. 3-1b). These signals manifested overnight while all 

tetrodes were stationary. Here the signal amplitude was orders of magnitude larger, containing 

broad (>5ms) positive polarity spikes with amplitudes of the order of thousands of microvolts 

(Fig. 3-1b, c). In fact, these signals could easily be mistaken for artifacts as their amplitude 

saturated the amplifiers set at high gains typically used in extracellular recording. Hence, we 

used data acquisition system settings with high dynamic range to record these large amplitude 

signals. All such measurements were obtained at a median of 18 (between 6 and 55) days after 

surgery and discontinuation of any psychoactive drug, ruling out any possible anesthesia effects. 

DAP vs extracellular spikes 

For reasons described below, we refer to these spikes as DAP. We computed several features of 

the 25 DAP sources measured in vivo from our data (Fig. 3-1d, see Methods), and compared  
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Figure 3-1 | Measurements of DAP in vivo.  

a, Typical extracellular local field potential (LFP) showing ~100 µV fluctuations. Somatic action 

potentials are visible as thin, ~100 µV negative-polarity spikes (inset to right). b, Putative dendritic 

membrane potential recording on the same tetrode presented in a on the following day. Fluctuations are 

~5000 µV. DAP are visible as broad, positive-polarity, ~5000 µV spikes with a much longer falling phase 

than rising phase (inset to right). c, Example membrane potential traces from four separate tetrodes, each 

exhibiting spontaneous dendritic spiking. d, Left, Quantification of DAP shape parameters (see Methods). 

Top right, distribution of DAP amplitudes within a single recording session, median 3420, [3410, 3430] 

µV, n=8187 spikes. Middle right, distribution of DAP rise times for the same recording session, median 

0.65, [0.65, 0.65] ms, n=8187 spikes. Bottom right, distribution of DAP half widths for the same 

recording session, median 4.06, [4.02, 4.09] ms, n=8187 spikes. e, Extracellular spike amplitude (EC, 

blue) was always negative (−77.5, [−81.1, −73.4] µV, n=754 units), in comparison to DAP (red) which 

were always positive (833, [621, 1120] µV, n=25 dendrites), and more than 10 times larger in magnitude 

(p=1.7x10
−17

, Wilcoxon rank-sum test). f, The rise time of DAP (0.77, [0.70, 0.80] ms, n=25 dendrites) 

was significantly larger (p=1.7x10
−17

, Wilcoxon rank-sum test) than that of extracellular spikes (0.31, 

[0.31, 0.31] ms, n=754 units). g, The half-width of DAP (3.90, [3.04, 4.98] ms, n=25 dendrites) was also 

significantly larger (p=1.7x10
−17

, Wilcoxon rank-sum test) than that of extracellular spikes (0.26, [0.26, 

0.26] ms, n=754 units). Throughout the figure, data are reported and presented as median and 95% 

confidence interval of the median, and * indicates significance at the p<0.05 level. 
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these to our extracellular somatic spike measurements from 754 units across 9 rats in vivo (Fig. 

3-1e-g) and to available intracellular reports of dendritic spiking (Extended Data Table 3-

1)
40,42,44–46

. First, similar to in-cell and quasi-intracellular measurements
60,61,65,66

, DAP amplitude 

was always positive (Median 850 µV, range 175 to 20,000 µV) (Fig. 3-1d, e, Extended Data Fig. 

3-1), in contrast to extracellularly recorded somatic spikes simultaneously recorded from nearby 

tetrodes; these were always of negative polarity and of much smaller amplitude (Median −70 µV, 

range −40 to −925 µV) (Fig. 3-1e, Extended Data Fig. 3-1). DAP rise time (0.77 ms) was fairly 

consistent across all recordings, similar to that of dendritic sodium spikes in vitro, and much 

larger than the rise time of the extracellular spikes (0.31 ms), but much shorter than the rising 

phase of calcium spikes (Fig. 3-1d, f, Extended Data Table 3-1)
40,42,46,58

. Also consistent with in 

vitro data, the full-width at half maximum (half-width) of DAP (3.90 ms) (Fig. 3-1d, g) was 

much longer than the DAP rise time (Extended Data Fig. 3-2a, b), and far greater than the half-

width of extracellular (0.26 ms, Fig. 3-1g) or intracellular (~0.7ms, Extended Data Table 3-1) 

somatic spikes; DAP were also much wider than reported “high-amplitude positive spikes” from 

cortex
70

 and somatic spikes recorded quasi-intracellularly
64–68

. However, DAP half-width was 

much shorter than the typical half-width of dendritic calcium spikes (Extended Data Table 3-1). 

Further, DAP width was more variable both within and across recordings (Extended Data Fig. 3-

2), in contrast to very consistent DAP rise times across data, and there was no significant 

correlation (r=0.24, p=0.26) between DAP rise time and width across recordings (Extended Data 

Fig. 3-2f). These differences in the variability of rise time and width across DAP are also 

characteristic of dendritic sodium spikes (Extended Data Table 3-1)
40,42,44–46,50,53,58,59

. Hence, the 

above results are consistent with the hypothesis that our signals represent the intracellular 

dendritic membrane potential, and suggest that our spikes are sodium-based, not calcium-based.  
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These results raise several important questions: What mechanism allowed the intracellular-like 

measurement of DAP using tetrodes? Are the measurements stable over long periods and during 

locomotion? What type of cell do these DAP belong to? Are these locally generated DAP or 

back propagating action potentials? Are these signals recorded from proximal or distal dendrites? 

How prevalent are DAP during natural behavior and how are they modulated by internal and 

behavioral variables? Because these questions are impossible to unequivocally resolve in freely 

behaving animals using present techniques, we used signal analysis techniques to address them. 

Mechanism of DMP recording, glial sheath hypothesis 

We hypothesize that the DMP recordings were achieved by the above-mentioned in-cell (quasi-

intracellular) recording
60,61,65,66

 and glial-sheath  mechanisms
62,63

, where our tetrodes, ~40 µm in 

diameter with each uninsulated electrode ~13 µm in diameter, measured intracellular-like signals  

from dendrites only a few microns thick
38,46

, and trapped in the ~4 µm gap between the electrode 

tips (Extended Data Fig. 3-3a, b). Specifically, increased resistance from the electrode tips to 

ground due to the proposed glial encapsulation of the electrode would allow recording of the 

intracellular membrane potential (Extended Data Fig. 3-3b). To validate this model we 

performed impedance spectroscopy measurements on electrodes during either DMP or the local 

field potential (LFP) recordings (Extended Data Fig. 3-3d). Fitting parameters to an electric 

circuit equivalent model of glial encapsulation
71,72

, the only parameter that was significantly 

higher (p=1.8x10
-3

)
 
for DMP-recording electrodes was the resistance between the electrode tip 

and ground, through the glial sheath (Extended Data Fig. 3-3d, e). The estimated glial resistance 

was more than 6-fold larger for DMP-recording electrodes compared to LFP-recording; which is  
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Figure 3-2 | DAP are similar across all electrodes of a tetrode and stable for long periods.  

a, Top, the waveform of a single extracellular spike has very different amplitudes on each of the 4 tetrode 

channels (left), but the waveform of a single DAP on the same tetrode the following day has very similar 

amplitudes (right). Bottom, the spike amplitude variation across four electrodes (see Methods) was 

significantly greater for extracellular single units recorded the day before DAP were recorded (PRE) 

(0.18, [0.14, 0.29], n=25 units) compared to DAP during DMP recording (DUR) (0.09, [0.06, 0.12], n=25 

DAP sources) on the same tetrode the following day (p=6.2x10
−6

, Wilcoxon signed-rank test) b, Multi-

unit activity (MUA) amplitude during DMP recording (DUR) (41.8, [36.9, 53.4] µV, n=25 recordings) 

was significantly lower than that during PRE (45.8, [44.3, 54.6] µV, n=25 recordings; p=6.6x10
−3

, 

Wilcoxon rank-sum test). MUA amplitude was also smaller in DUR compared to that the day after DMP 

recording (POST, 44.1, [40.6, 53.9] µV, n=25 recordings), but not significantly so (p=6.7x10
−2

, Wilcoxon 

rank-sum test). c, MUA rate was significantly lower in DUR (5.19, [1.29, 10.7], n=25 recordings) 

compared to both PRE (17.5, [4.84, 34.7] Hz, n=25 recordings; p=2.1x10
−5

, Wilcoxon rank-sum test) and 

POST (16.5, [2.01, 25.5] Hz, n=25 recordings; p=8.0x10
−5

, Wilcoxon rank-sum test). d, DAP recordings 

were stable for long periods of time (3, [2, 23] hours, n=25 recordings), with the shortest recording lasting 

1 hour and the longest lasting 97.5 hours, or more than 4 days. Durations between 5.5 and 23 hours are 

absent due to restrictions on total recording duration in a single day, resulting in artificial bimodality. 

Hence, all recording durations are likely an underestimate of actual duration for which the DAP were 

held. e, Left, sample membrane potential at the beginning of recording (top), and 90 minutes afterwards 

(bottom) of recording, showing little change in the quality of recording. Right, averaged DAP (median 

and 25
th
, 75

th
 percentile) in the first part of the recording to the left (n=616 DAP) was not qualitatively 

different from the averaged DAP in the later part of the recording (n=897 DAP). f, The percentage change 

from the first five minutes or recording to the last two minutes of recording was not significantly different 

from 0 for amplitude (−2.19, [−18.5, 9.17] % change, p=0.91, n=25 dendrites, Wilcoxon signed-rank 

test), rise time (0.00, [−3.57, 1.79] % change, p=0.52, n=25 dendrites, Wilcoxon signed-rank test), half-

width (1.35, [−8.80, 8.87] % change, p=0.82, n=25 dendrites, Wilcoxon signed-rank test), nor mean firing 

rate (7.93, [−23.9, 20.5] % change, p=0.97, n=25 dendrites, Wilcoxon signed-rank test). Throughout the 

figure, data are reported and presented as median and 95% confidence interval of the median unless 

otherwise noted, and * indicates significance at the p<0.05 level. 
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precisely the condition predicted by the model that would yield glial-sheath assisted 

measurements of the intracellular voltage (Extended Data Fig. 3-3c). 

The above result is corroborated by several properties of the signals on tetrodes that recorded 

DAP, evaluated before (PRE), during (DUR), and after (POST) the time in which the DMP 

signal was measured. First, DAP amplitudes were nearly identical on all four channels of a 

tetrode in DUR (see Methods), unlike in the PRE condition where the voltages of extracellular 

spikes were different across four channels (Fig. 3-2a).  This would not occur if any single 

electrode of the tetrode had penetrated the dendrite, but would be expected if the dendrite and the 

entire tetrode tip were encapsulated during DMP recording.  This would additionally result in the 

shielding off of the surrounding extracellular medium from the tetrode by the encapsulating glial 

sheath. Consistently, in the DUR condition both the amplitude and mean firing rate of detectable 

extracellular multi-unit activity (MUA) were significantly reduced (Fig. 3-2b, c, see Methods) 

compared to PRE. In a particular case where one of the four tetrode channels did not achieve an 

intracellular-like recording, MUA activity on only that channel was preserved, and its correlation 

with other channels remained low, suggesting that the single channel was not encapsulated by 

the glial sheath (Extended Data Fig. 3-4). There was also no evidence of damage to the tetrodes 

that yielded DMP measurements, as all MUA properties in POST were similar to those in PRE, 

including spike polarity, spike rate and spike amplitude with different amplitudes on the four 

channels (Fig. 3-2b, c).  

DAP properties also remained stable for long periods of time (Fig. 3-2d-f). Our recordings 

typically lasted several hours, and DAP from the same tetrode could be recorded for up to 4 

consecutive days (Fig. 3-2d, see Methods).  From the beginning to the end of the recording span 
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of any single DMP, there was no systematic change in DAP amplitude, rise time, width, or mean 

firing rate (Fig. 3-2e, f). Together with the long recording duration, these observations indicate 

that the tetrode did not damage the dendrite during these measurements, a key advantage over 

other intracellular voltage measurement techniques, especially in vivo
56,57,73,74

.  

bAP vs DAP 

While the rise times and widths of the spikes described above are consistent with dendritically 

generated sodium spikes, i.e. DAP, they are also consistent with somatically generated 

(bAP)
42,44–46,50–53

.  To dissociate these two possibilities, we compared the firing properties of 

DAP to those of extracellular somatic spikes from well isolated units recorded simultaneously on 

nearby tetrodes (see Methods). We first examined data when the rats were quiescent, in slow 

wave sleep (SWS), to minimize the influence of behavioral parameters (Fig. 3-3, see Methods). 

DAP mean firing rates were high (6.4 Hz), 4-fold greater than the mean firing rates of 

extracellular units (1.6 Hz) (Fig. 3-3a, b). The high DAP firing rates were not due to multiple 

DAP sources being pooled together, as all DAP had inter-spike interval and amplitude 

distributions inconsistent with multiple independent sources (Extended Data Fig. 3-5, see 

Methods).  The high rates were also unlikely due to damage or otherwise altered activity of 

dendrites because of the longevity of recording (Fig. 3-2d), and the absence of any systematic 

changes in DAP kinetics or rate (Fig. 3-2e, f) over long periods of time.  

We further considered the possibility that the high DAP rates were a result of preferentially 

recording from interneurons, which typically have higher firing rates than pyramidal neurons
75

. 

This explanation would necessitate that DAP have other characteristics similar to interneurons’. 

For instance, interneurons exhibit very little spike amplitude attenuation within high frequency  



22 

 

 

Figure 3-3 | DAP are likely to be from pyramidal neurons but have much greater firing rates and 

stronger short-term plasticity.  

a, Top, sample LFP showing a single extracellular unit firing at a relatively low rate. Middle, sample 

putative membrane potential showing a DAP firing at a higher rate. Bottom, first temporal derivative of 

the MP trace. Dark red dots indicate the peak value of identified DAP and demonstrate activity-dependent 

attenuation. b, In SWS, the mean spontaneous firing rate of extracellularly recorded units (1.65, [1.41, 

1.91] Hz, n=754 units) was more than 4-fold smaller (p=4.1x10
−8

, Wilcoxon rank-sum test) than the firing 

rate of DAP (7.07, [3.76, 12.6] Hz, n=25 dendrites). Notice the near complete absence of low (less than 1 

Hz) firing rate DAP. c, Demonstration of CSI. Left, the median and 25
th
, 75

th
 percentile of sample 

pyramidal neuron (blue, n=140 spike pairs) interneuron (green, n=6987 spike pairs) and d(DAP)/dt (red, 

130 spike pairs) waveforms are plotted for the first spike in a burst (darker color) and the second spike in 

a burst (lighter color). For pyramidal neurons and DAP, the second spike has a smaller amplitude, but this 

is not the case for interneurons. Right, adaptation index (see Methods) plotted against inter-spike interval 

(ISI) for a sample pyramidal neuron, interneuron, and DAP. For pyramidal neurons and DAP, but not 

interneurons, the adaptation index tends toward negative values for ISI less than 20 ms. For clarity, every 

5
th
 spike pair is plotted for the interneuron and DAP. d, Pyramidal neuron CSI (12.0, [10.3, 13.5], n=657 

units) was significantly greater (p=1.0x10
−11

, Wilcoxon rank-sum test) than that of interneurons (1.02, 

[0.25, 2.99], n=97units), but smaller (p=7.1x10
−7

, Wilcoxon rank-sum test) than that of DAP (39.1, [24.1, 

55.6], n=25 dendrites). DAP CSI was significantly greater (p=1.2x10
−9

, Wilcoxon rank-sum test) than that 

of interneurons, indicating that DAP are unlikely to be recorded from interneurons. e, DAP mean firing 

rate was not significantly correlated with recording depth (770, [460, 960] µm, n=25 DAP sources; 

r=0.24, [−0.17, 0.58]; p=0.24, two-sided t test). The background shows a representative coronal slice of 

Nissl-stained posterior parietal cortex. Tetrode tracks are visible as dark bands descending from the top of 



23 

 

the slice. f, DAP mean firing rate was not significantly correlated with amplitude (r=−0.31, [−0.63, 0.10], 

p=0.13, two-sided t test), rise time (r=0.22, [−0.19, 0.56], p=0.30, two-sided t test), half-width (r=−0.07, 

[−0.45, 0.34], p=0.76, two-sided t test), or CSI (r=−0.31, [−0.63, 0.10], p=0.14, two-sided t test), 

suggesting that high rate DAP are not from a special population of neurons separate from those with low 

rate DAP and that the recording configuration did not systematically alter local membrane properties 

(membrane capacitance or resistance) which would artificially increase firing rates. Throughout the 

figure, data are reported and presented as median and 95% confidence interval of the median unless 

otherwise noted, and * indicates significance at the p<0.05 level. 

 

bursts, characterized by the complex spike index (CSI)
75,76

 (see Methods), in contrast to 

pyramidal neurons, which exhibit consistent amplitude attenuation. This distinction between cell 

types is present in dendrites as well, as in vitro reports show that DAP exhibit more amplitude 

attenuation with repeated firing compared to somatic spikes in pyramidal neurons
46,51,52

 but do 

not show much attenuation in interneurons
77,78

. Thus, DAP should have a high CSI if recorded 

from pyramidal neurons and a low CSI if recorded from interneurons. Further, the same sodium 

channel inactivation kinetics that result in CSI differences between pyramidal neurons and 

interneurons would likely also influence peak firing rates
76

, with reduced peak rates for 

pyramidal neurons and pyramidal DAP compared to the interneurons’.  

To test these predictions, we separated the extracellular units into putative pyramidal neurons 

and interneurons (Extended Data Fig. 3-6a)
75

 and compared their CSI with that of the first 

temporal derivative of DAP, as the rising phase of the extracellular spike closely corresponds to 

the rising phase of the first temporal derivative of the intracellular spike
69

. Consistent with 

previous studies
75,79

, our data set contained far more pyramidal neurons (86%) than interneurons 

(14%), the pyramidal neurons’ firing rates were lower than interneurons’
75

 (Extended Data Fig. 

3-6b), and the CSI of pyramidal neurons was greater than that of interneurons (Fig. 3-3c,d)
75,76

. 

DAP mean rate was significantly greater (more than five-fold) than that of pyramidal neurons 

(p=2.4x10
−9

), but not interneurons (p=0.16) (Extended Data Fig. 3-6b). However, the peak firing 
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rates of DAP (92.6 Hz) were lower than those of interneurons (122 Hz, p=2.1x10
−2

) but greater 

than those of pyramidal neurons (67.6 Hz; p=1.8x10
−2

) (Extended Data Fig. 3-6c). The 

differential pattern of the mean and peak rates could be explained by differences in short term 

plasticity. Indeed, the CSI of DAP was far greater than that of CSI of interneurons (p=1.1x10
−9

), 

and also greater than that of pyramidal neurons (p=8.3x10
-6

) (Fig. 3-3c, d), supportive of the 

hypothesis that our recordings are predominantly from pyramidal dendrites. Other measures of 

short term plasticity, such as DAP amplitude and width, showed activity-dependent adaptation as 

well, similar to that of pyramidal neuron dendrites in vitro
51,52

 (Extended Data Fig. 3-6d, e).  

The high mean firing rate of DAP compared to pyramidal neuron somatic spike rates further 

implies that the majority of these measurements are not of bAP but are of locally generated DAP 

in dendrites that are electrotonically distant from the soma.  These high DAP rates are unlikely to 

arise from measurement artifact or from specialized subpopulation of high-rate pyramidal 

neurons because the DAP rates were similar at all depths (from 330 µm to 1240µm, p=0.26, Fig. 

3-3e). Other properties of DAP sources were uncorrelated with DAP rate as well, including 

amplitude (p=0.15), rise time (p=0.29) half-width (p=0.96), and CSI (p=0.09) (Fig. 3-3f). Hence, 

the disparate rates of DAP and somatic spikes suggests that only a fraction of DAP elicit somatic 

spiking, indicating a significant decoupling of dendrites and somata
39,43,44,46,52

. 

Subthreshold dendritic potential dynamics during SWS  

We also quantified the subthreshold fluctuations accompanying DAP during SWS, which had 

characteristics suggesting they represent the DMP (Fig. 3-4a, see Methods). Like DAP 

amplitude, the subthreshold fluctuations were of the order of thousands of microvolts, reaching 

up to 20 mV, (Fig. 3-4a, b), far exceeding the range of the LFP recorded simultaneously on 
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nearby tetrodes (Fig. 3-4b).The magnitude of the subthreshold fluctuation was positively 

correlated with the DAP amplitude on the same recording (Fig. 3-4c); in contrast, nearby LFP 

magnitude was not correlated with DAP amplitude (Extended Data Fig. 3-7a). This suggests the 

subthreshold fluctuations originated from the same source as the DAP, and implicates a common 

cause of amplitude differences across different recordings, which we hypothesize to be the 

quality of glial-sealed encapsulation (Extended Data Fig. 3-3, 3-4). The subthreshold magnitude 

was also always greater (5.5-fold) than the corresponding DAP amplitude (Fig. 3-4c), a 

membrane property primarily observed in vitro in dendrites that are electrotonically distant from 

the soma
40–46

. Furthermore, in all but one case the DMP signal in SWS was significantly 

negatively correlated with the LFP signal simultaneously recorded on a nearby tetrode (Fig 3-4d, 

Extended Data Fig. 3-7b), similar to the anticorrelation observed between the somatic membrane 

and LFP
80

. This demonstrates that the direction of current flow was opposite between 

extracellular tetrodes and those recording DMP, another signature of recording intracellular 

membrane voltage. 

We next tested if the subthreshold DMP influenced DAP dynamics
81

 by quantifying the 

relationship between the instantaneous subthreshold DMP magnitude and DAP rate (see 

Methods). The range of subthreshold DMP at which DAP initiated was quite large, 4.6-fold 

larger than the magnitude of the corresponding DAP, and positively correlated with DAP 

amplitude (Fig. 3-4e). The large DAP initiation range, in some cases reaching up to 10 mV (Fig. 

3-4e), is similar to that reported for dendrites in vitro
40–46

, further supportive of the dendritic 

origin of our measurements.  
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Figure 3-4 | Large subthreshold membrane potential fluctuations modulate DAP rates during SWS.  

a, Top, sample dendritic membrane potential (DMP, red) trace during SWS, showing prominent 

oscillations of the same order of magnitude as DAP. DAP are shown in light red to highlight the spike-

clipped subthreshold membrane potential, which has a range of 6.5 mV. Shown below on the same scale 

is the local field potential (LFP, blue) recorded simultaneously on a nearby tetrode, showing much 

smaller fluctuations. Bottom, same as above but from a different pair of tetrodes in a different recording 

session, again showing prominent fluctuations as large as DAP, but at a reduced scale. b, The range of the 

LFP (0.61, [0.47, 0.76] mV, n=25 LFP) was nearly an order of magnitude (9.3-fold) smaller (p=1.8x10
−8

, 

Wilcoxon signed-rank test) than the subthreshold DMP accompanying DAP (5.69, [2.85, 7.77] mV, n=25 

dendrites). * indicates significance at the p<0.05 level. c, In SWS, the range of subthreshold DMP was 

always larger (p=1.2x10
−5

, Wilcoxon signed-rank test) than the corresponding DAP amplitude (0.84, 

[0.63, 1.86] mV, n=25 dendrites), and positively correlated (r=0.73, [0.47, 0.87]; p=3.7x10
−5

, two-sided t 

test). d, In all but one case, LFP and simultaneously recorded DMP during SWS were negatively 

correlated (r=-0.26, [−0.38, -0.20]), further indicating the DMP is a measure of the intracellular 

membrane potential. e, Top, sample DMP trace segment showing a dynamic threshold for DAP initiation, 

with the initiation points marked by black circles. Bottom left, histogram of initiation voltages for entire 

recording session from which the above was taken; the 5-95% range of initiation voltages spans 8.5 mV. 

Bottom right, DAP initiation range (3.67, [2.24, 6.99] mV, n=25 dendrites) was larger (p=3.6x10
−5

, 

Wilcoxon signed-rank test) than the corresponding DAP amplitude, and positively correlated (r=0.64, 

[0.33, 0.83], n=25 dendrites; p=5.6x10
−4

, two-sided t test). f, Sample DAP firing rate as a function of 

relative voltage, which was well-approximated (Extended Data Fig. 3-7g) by a sigmoidal logistic function 

(black line). Firing rates here vary by 47.2 Hz over a dynamic range of 4.4 mV. g, Left, the population of 

DAP had a large dynamic range of initiation voltages (4.03, [2.74, 5.07] mV, n=25 dendrites), as defined 

in g. Right, the firing rate range of the DAP population was similarly wide (33.1, [20.3, 53.1] Hz, n=25 
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dendrites). Throughout the figure, data are reported and presented as median and 95% confidence interval 

of the median. 

 

Accompanying this variable initiation threshold was a strong modulation of DAP rates by 

subthreshold DMP. During SWS, DAP rate had a slowly increasing, sigmoidal dependence on 

subthreshold DMP (Fig. 3-4f), with rate increasing over a large dynamic voltage range (see 

Methods) which often exceeded the magnitude of DAP themselves (Fig. 3-4f, g, Extended Data 

Fig. 3-7c). The firing rate was modulated from nearly 0 Hz at low values of the membrane 

voltage up to 300 Hz at the highest membrane voltages (Fig. 3-4f, g, Extended Data Fig. 3-7c). 

Because short-term ion channel dynamics could influence spike initiation properties
81

, the above 

calculations were also done for only those DAP separated from all others by at least 50ms 

(termed solitary DAP), with only minor differences (Extended Data Fig. 3-7d-h). These results 

suggest a form of analog-digital coding in the dendrites, in which the analog subthreshold DMP 

modulates the firing rate of digital suprathreshold DAP in a gradual fashion resulting in a high 

dynamic range of firing.   

Dendritic sub- and supra-threshold membrane potential during 

unrestrained behavior 

Do DAP occur during drug-free natural behavior and if so, how frequently? The stable nature of 

our recordings further allowed us to measure dendritic activity and its subthreshold modulation 

during wakefulness, when the rat was free to explore the recording chamber (RUN) (Fig. 3-5a, 

see Methods). Remarkably, DAP mean rate during RUN (12.8 Hz) was nearly twice as large 

compared to the mean rate during SWS (6.87 Hz, Fig. 3-5b), possibly due to increased excitatory 

drive from sensory inputs. Consistent with the observed activity-dependent adaptation (Fig. 3-3d,  
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Figure 3-5 | Large subthreshold membrane potential fluctuations modulate DAP rates during RUN.  

a, Sample membrane potentials during SWS (red, left) and exploration (RUN, orange, right) show similar 

dynamics and amplitude of both DMP and DAP (middle). b, DAP mean firing rate was nearly twice as 

large(p=1.9x10
−3

, Wilcoxon signed-rank test) during RUN (12.8, [8.29, 20.0] Hz, n=25 dendrites) than 

during SWS segments of comparable duration (6.87, [4.66, 14.2] Hz, n=25 dendrites); DAP amplitude in 

RUN (0.79, [0.52, 1.66] mV, n=25 dendrites) was reduced (p=3.8x10
−3

, Wilcoxon signed-rank test) 

compared to during SWS (0.79, [0.52, 1.66] mV, n=25 dendrites); DAP rise time in RUN (0.80, [0.77, 

0.80] ms, n=25 dendrites) was slightly greater (p=2.5x10
−4

, Wilcoxon signed-rank test) than rise time in 

SWS (0.74, [0.71, 0.80] ms, n=25 dendrites); DAP width during RUN (3.50, [3.10, 4.27] ms, n=25 

dendrites) was slightly but not significantly larger (p=0.28, Wilcoxon signed-rank test) than width during 

SWS (3.38, [2.58, 4.25] ms, n=25 dendrites). c, Sample DMP trace during RUN shows a dynamic 

initiation range similar to that observed in SWS (Fig. 3-4e). d, DMP range during RUN (3.92, [2.82, 6.24] 

mV, n=25 dendrites) was significantly larger (p=1.8x10
-5

, Wilcoxon signed-rank test) than the 

corresponding DAP amplitude (0.79, [0.52, 1.66] mV, n=25 dendrites), and significantly correlated 

(r=0.66, [0.36, 0.84], n=25 dendrites, p=3.1x10
−4

 ,two-sided t test). e, DAP initiation ranges in SWS 

(3.67, [2.24, 6.99] mV, n=25 dendrites) and RUN (4.07, [2.51, 8.14] mV, n=25 dendrites) were positively 

correlated (r=0.91, [0.80, 0.96], n=25 dendrites, p=3.4x10
−10

, two-sided t test) and not significantly 

different (p=0.46, Wilcoxon signed-rank test). f, Sample V-R curve during RUN, which was well-

described (Extended Data Fig. 3-9) by a sigmoidal logistic function, as in SWS. g, 24 of 25 dendrites had 

sufficient data to compare V-R curves in SWS and RUN. Left, the dynamic voltage range during RUN 

(3.90, [2.98, 4.67] mV n=24 dendrites), was not significantly different (p=0.73, Wilcoxon signed-rank 

test) from the dynamic range in SWS (3.87, [2.74, 5.03] mV, n=24 dendrites). Right, the firing rate range 

in RUN (32.5, [24.6, 46.5] Hz (n=24 dendrites) was not significantly different (p=0.86, Wilcoxon signed-

rank test) from the range during SWS (35.6, [21.6, 53.1] mV, n=24 dendrites). Throughout the figure, 
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data are reported and presented as median and 95% confidence interval of the median. * and n.s. indicates 

significance or lack of significance, respectively, at the p<0.05 level. 

 

 

 

Extended Data Fig. 3-6d, e), DAP amplitude was smaller during RUN compared to SWS, and 

rise time and width were slightly longer, though the difference in width was not statistically 

significant (Fig. 3-5a, b). The similarity of these measures to those in SWS demonstrates the 

stability of the recordings even during behavior, as rats were not head-restrained or recently 

anesthetized during exploration. 

Surprisingly, subthreshold DMP measures were also comparable in SWS and RUN. First, the 

magnitude of subthreshold DMP was equally large in the two conditions (Fig. 3-5a, Extended 

Data Fig. 3-8). This is in contrast to the pattern observed in the LFP, where fluctuations are 

severely diminished during exploration compared to the large fluctuations present in SWS 

(Extended Data Fig. 3-8)
82,83

. The subthreshold DMP magnitude during exploration was 6.3-fold 

larger than the corresponding DAP amplitude, and the two were highly correlated (Fig. 3-5d), as 

in SWS. Second, DAP had a large initiation range in RUN (Fig. 3-5e) that was 5.8-fold larger 

than the corresponding DAP amplitude, as in SWS (Extended Data Fig. 3-9a). DAP rate during 

RUN was also modulated by subthreshold DMP in a sigmoidal fashion (Fig. 3-5f, g, Extended 

Data Fig. 3-9b) over a wide dynamic voltage range,  and spanned a large range of firing rates, 

both of which were as large as in SWS (Fig. 3-5f, g). As in SWS, these results were similar when 

performed on solitary DAP during exploration (Extended Data Fig. 3-9c-h). These results 

demonstrate that the high dynamic range of analog subthreshold DMP and digital supra-

threshold spiking are present during both free behavior and SWS, supporting a hybrid analog-

digital coding scheme under both conditions. 
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Modulation of DAP, DMP, and soma by behavior 

In addition to sleep-run differences, do DAP and DMP contain information about instantaneous 

behavior? Previous studies have shown that somatic spike rates in the posterior parietal cortex 

(PPC) are modulated by specific types of movements, including forward running, left turns, and 

right turns (Fig. 3-6a)
19,84

, and have an anticipatory component to their response
84

. Hence, we 

compared the modulation of parietal DAP, DMP, and somatic spike rates by the rats’ movements 

in an egocentric reference frame during free locomotion in both a rest box and in a random 

foraging task (Fig. 3-6b, Extended Data Fig. 3-10a, see Methods).  To quantify modulation by 

behavior, we computed the normalized dispersion of egocentric response maps (see Methods)
84

. 

The anticipatory component was quantified by finding the time lag corresponding to the highest 

depth of modulation (Extended Data Fig. 3-10b, see Methods). 

These analyses revealed substantially different properties of tuning in pyramidal somata (PYR), 

DAP, and DMP (Fig. 3-6c). Normalized dispersion for PYR (0.26) was significantly better than 

that of DAP (0.32, p=2.7x10
-2

, Wilcoxon rank-sum test) and DMP (0.33, p=1.4x10
-2

, Wilcoxon 

rank-sum test), which were not significantly (p=0.52, Wilcoxon rank-sum test) different from 

each other. Interestingly, the depth of modulation of egocentric maps was comparable between 

all three groups (Extended Data Fig. 3-10c), with a similar percentage having a depth of 

modulation significantly above chance (PYR, 156/245 (64, [57, 70̅] %), DAP, 13/24 (54, [33, 

74] %), DMP, 9/15 (60̅, [32, 84] %)). Coherence
85

 showed a different pattern, with DMP having 

the highest coherence (Extended Data Fig. 3-10d), but because coherence is computed on 

unsmoothed rate maps, and the continuous DMP signal has more data, this is likely an artifact. 

Similar to dispersion, short-term stability for PYR was larger than DAP and DMP, but the 

differences were not statistically significant (Extended Data Fig. 3-10e).  These results  
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Figure 3-6 | DAP show non-anticipatory egocentric responses.  

a, Schematic of egocentric map computation. In this example, the neuron fires maximally (8 Hz, red) 

during a left hand turn at high velocity, and minimally (1.5 Hz, blue) during a right hand turn at high 

velocity. b, Two sample pyramidal (PYR, left), DAP (middle), and DMP (right) egocentric rate maps. 

The minimum and maximum firing rates (mean voltages for DMP) for each map are displayed in the title, 

and the normalized dispersion D (see Methods, Extended Data Fig. 3-10a, b) is displayed in the upper-

right corner. Red arrows indicate DAP and DMP from the same recording sessions. c, The normalized 

dispersion of  pyramidal somata (0.26, [0.25, 0.28] , n=245 maps) was significantly smaller than that of 

DAP (0.32, [0.25, 0.34], n=24 maps, p=2.7x10
-2

, Wilcoxon rank-sum test) and DMP (0.33, [0.30, 0.36], 

n=15 maps, p=1.4x10
-2

, Wilcoxon rank-sum test), indicating better tuning for PYR. DAP and DMP 

dispersions were not significantly different from each other (p=0.52, Wilcoxon rank-sum test). d, The 

time lag corresponding to the optimal tuning for pyramidal somata with significant tuning (−130 [−160, 

−80] ms, n=156 maps with significant  tuning) was significantly different from 0 (p=7.8x10
−8

, Wilcoxon 

signed-rank test), indicating significant predictive coding. The same measure for DAP (20, [−100, 360] 

ms, n=13 maps with significant tuning) was not different from 0 (p=0.58, Wilcoxon signed-rank test) and 

significantly more positive than PYR (p=4.4x10
-2

, Wilcoxon rank-sum test). DMP (-100, [-240, 60] ms, 

n=9 maps with significant tuning) was also not significantly different from 0 (p=0.19; Wilcoxon signed-

rank test), but not significantly different from either PYR (p=0.62, Wilcoxon rank-sum test) or DAP 

(p=0.3, Wilcoxon rank-sum test). Throughout the figure, data are reported and presented as median and 

95% confidence interval of the median. * indicates significance at the p<0.05 level, and n.s. indicates lack 

of significance at the p<0.05 level. 
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demonstrate that there is significant depth of modulation in both somata and dendrites, but the 

tuning is strengthened at the soma through a reduction in dispersion, leading to a single 

“clustered” region of the egocentric space with increased firing rate.  

Consistent with a previous study
84

, the time lag corresponding to the optimal ΔS/S for pyramidal 

neurons with significant tuning was significantly negative (−130 ms, p=7.8x10
−8

) (Fig. 3-6d), 

indicating a preference to code for movements to be made in the future. In some instances, 

somatic spikes were best tuned for behavior several seconds in the future or past (Extended Data 

Fig. 3-10f). In contrast, the optimal lag time for significantly tuned DAP (20 ms) was not 

significantly different from 0 (p=0.58) and significantly more positive than PYR lag (p=4.4x10
-

2
).  DMP lag (-100 ms) was also not significantly different from 0 (p=0.19), but not significantly 

different from either PYR (p=0.62) or DAP (p=0.3).  This indicates that in addition to an 

improvement in coding quality, egocentric responses also become more anticipatory in the soma 

compared to the dendrite
17,24,86–88

.  

We then investigated the plasticity of egocentric responses. First, we computed the correlation 

between the maps computed from data in the first and second halves of a session
36

. These 

correlations for pyramidal somatic spikes (0.33) were greater than that for DAP (0.21, p=3.8x10
-

2
) but not DMP (0.27, p=0.38) (Extended Data Fig. 3-10g). The plasticity of the anticipatory 

component of neural responses was evaluated by computing the difference in optimal lag times 

between the first and second halves (see Methods). There were small but non-significant shifts 

for PYR (-40 ms, p=0.88), DAP (-40 ms, p=0.75), and DMP (+140 ms, p=0.48) (Extended Data 

Fig. 3-10h).  
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Hence, pyramidal neuron somata and dendrites both code for egocentric movement, but with 

important differences that illustrate potential computational principles within a neuron. First, 

pyramidal somatic responses are less diffuse than DAP and DMP responses, even though 

equivalent percentages of PYR, DAP, and DMP are significantly tuned. Second, the optimal 

coding occurs at negative time lags, or prospectively, for pyramidal somatic spikes but not for 

DAP or DMP. These results could be explained by a multi-stage model of information 

processing within individual PPC neurons, where dendrites integrate initial inputs into diffuse, 

high firing rate responses representing the current behavioral state of the animal, which are 

integrated again at the soma into concentrated, low firing rate responses with an added 

anticipatory component. An alternate possibility is that the anticipatory responses in the soma 

arise from other, more proximal dendritic branches, which we may not be measuring. 

Conclusions 

This is the first time that the membrane potential and sodium spikes of putative neocortical distal 

dendrites have been directly recorded during natural behavior, long removed from anesthesia or 

any drugs. Further, these measurements were done at sub-millisecond temporal resolution and 

were remarkably stable for at least one hour and up to four days, which is unprecedented 

compared to patch clamp techniques, even in vitro
41,42,53,55–59,73,74

. DAP kinetics were similar to 

those seen in vitro and in anesthetized animals
40–46

. Analysis of these recordings revealed a 

number of surprising results. First, DAP fired at very high rates in vivo, far greater than somatic 

rates. Additionally, DAP were accompanied by large subthreshold DMP fluctuations, the 

magnitudes of which were always larger than the DAP amplitude; this was present not only 

during SWS but also during active exploration. Further, DAP rates varied by an order of 
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magnitude as a function of the subthreshold DMP in a graded fashion during both SWS and 

active exploration, suggesting a large dynamic range. Finally, unlike previous reports from 

primary sensory-motor neocortical areas showing dendritic responses similar to those at the 

soma
58,59

, our measurements from PPC showed substantial differences between DAP, DMP and 

somatic spikes in both quality and temporal dynamics. 

Discussion 

DAP have long been hypothesized to endow neurons with greater computational power by 

turning dendritic branches into computational subunits with branch-specific plasticity
21–25

. In 

support of this, dendrites have been shown to support initiation and propagation of action 

potentials in vitro via voltage-gated sodium, potassium, and calcium channels
40–46

 which are 

critical for the induction of some forms of long-term plasticity
49

. What has been unclear is if the 

conditions for generating DAP exist in vivo during natural behavior. Recent experiments with 

patch-clamp recordings in head fixed mice suggest that proximal dendrites in visual cortex 

support spikes, though a majority of them were back propagating action potentials while some 

were DAP
59

. In contrast, we present recordings that are putatively from electrotonically distal 

dendrites which generate dendritic spikes locally, and where somatically generated bAP are 

mostly absent
39,43,44,46,52

. Importantly, these recordings were stable for hours or days at a time 

during free locomotion with no obvious damage to the dendrite.  

How is it possible to record intracellular dendritic voltages using an extracellular tetrode, a 

bundle of 4 electrodes each 12µm in diameter and separated by about 4µm? We hypothesize that 

our tetrodes are in a “glial-assisted” configuration similar to in-cell or quasi-intracellular 

recordings
60,61,65,66

. Because we did not apply any suction as done with patch-clamp 
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recordings
55,56

, in this model the requisite high seal resistance would come from glial 

encapsulation
62,63

 trapping a segment of a thin dendrite between the four electrode tips and the 

glial cells, forming a stable configuration providing high quality, positive polarity sub- and 

supra-threshold signals. Our in-vivo impedance spectroscopy measurements are in strong support 

of such a model, and the negative correlation between the subthreshold DMP and LFP is 

consistent with a measure of intracellular voltage. The engulfment process might be facilitated 

by the fine-scale geometry of our gold-plated tetrode tips, but this is not sufficient to guarantee 

dendritic recordings since the tetrodes have to be positioned close enough to a neuron to trap the 

dendrite without puncturing it. Indeed, our current success rate of dendritic recordings is quite 

low (25 DAP over 194 total tetrodes across 9 rats, 13%; obtained over 847 total recording days), 

but comparable to the success rate of somatic whole cell recordings during natural 

behavior
74,89,90

. Further refinements of the technique are needed to make these recordings more 

frequent. 

While chronic, in-vivo measurements with tetrodes currently precludes direct identification of the 

neural processes we record from, several signal properties are consistent with the hypothesis that 

our measurements are from electrotonically distal dendrites of pyramidal neurons and the 

dendritic spikes are generated locally in the dendrites, not back-propagated from the soma. First, 

the high dynamic range of the subthreshold DMP, reaching up to 30mV and dwarfing the spike 

amplitude, is similar to in vitro dendritic recordings and unlike somatic recordings.  DAP also 

have a very fast rise time, consistent across different recordings, but a much longer and more 

variable decay time, again quite similar to DAP properties in vitro
40,44–46

 and in vivo in 

anesthetized or head fixed animals
41,58,59

.  The strong activity-dependent attenuation of DAP 

indicates that they belong to pyramidal neurons rather than interneurons
75,76

. Finally, another 
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striking feature of DAP is their high rates, which are unlikely to come from damage to the 

neuron due to stable DAP properties over hours. The fact that these rates greatly exceed those of 

pyramidal units in the same brain region implies that a large amount of activity and information 

processing in a neuron may be occurring in the dendrites without being read out in the soma, 

consistent with in vitro studies showing decoupling of somatic and dendritic 

compartments
39,43,44,46,49,52

.  Further, if dendrites are operating semi-independently, and not 

globally governed by bAP from the soma, then NMDA-dependent plasticity could be induced in 

only a specific dendritic branch, allowing for more input-specific plasticity and clustering of 

synapses with similar information
21–25,49

. 

We also see a strong, graded modulation of DAP firing rate by subthreshold DMP. This endows 

the dendrites with a rate code defined by the depolarization level of the dendrite, and one 

reminiscent of the sigmoidal response profile of the hidden layer of artificial neural networks
22,23

. 

This large subthreshold modulation range (~5mV average, ~20mV max) is consistent with but 

greater than the recent results from the somata of hippocampal CA1 neurons’ activity within 

place fields
73,74,90

, entorhinal stellate cells’ activity within grid fields
91

, and barrel cortex neurons 

during social interaction
88

.  The true subthreshold voltage range in our case is likely even greater, 

as the magnitude of signals obtained through our measurement technique would be influenced by 

the quality of the glial seal.  

Consistent with previous studies, somatic spikes in PPC were modulated by movement in an 

egocentric reference frame
19

 in an anticipatory fashion during free behavior
84

. We further found 

that DAP and DMP also exhibit egocentric modulation, but are more disperse and do not show 

significant anticipatory behavior. The anticipatory nature of somatic, but not dendritic activity, is 
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reminiscent of similar results in feed-forward networks
17,24

 which rely on spike-timing dependent 

plasticity between many inputs and a single output; analogous mechanisms may be at work 

between DAP from many branches and somatic spiking within a single neuron. Similar 

anticipatory shifts are seen in many neural circuits, including hippocampal place fields
17

, 

predictive responses in visual areas
86,87

, and anticipatory membrane potential dynamics in barrel 

cortex
88

. Our findings suggest a computational framework in which individual cortical neurons 

take information about the current state of the world, present in the dendrites, and form an 

anticipatory, predictive response at the soma, a computation similar to that performed by a 

Kalman Filter
92

 or Hidden Markov Model
93

. Thus, unlike network models of sequence learning, 

each individual neuron may behave like a feed-forward circuit that performs predictive coding 

based on non-predictive inputs arriving from many dendritic branches
17,24

. Further, the 

intermediate integration step performed by the dendrites is likely a crucial one in neurons with 

extensive dendritic trees, to allow inputs at distal tufts to be integrated in the somatic response
43

. 

Our results paint a bold new picture of dendritic activity in the awake, unanesthetized animal. 

Dendrites are not just passively ferrying subthreshold EPSPs to the soma, but are very active, 

initiating DAP at rates far exceeding somatic firing rates. High DAP rates can greatly enhance 

dendritic branch specific plasticity and computation, largely independent of somatic spiking, 

thereby enhancing network capacity. These results demonstrate that dendritic signaling in vivo is 

indeed varied and colorful
21

, and offers a unique view into the computations performed within a 

single neuron. 
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Methods 

Recording Procedure 

Subjects: Data were obtained from 9 singly housed adult male Long-Evans rats (350-425g at the 

time of surgery). Animals were trained to perform spatial exploration tasks non-central to the 

present study and described previously
34,36

. The animals were water restricted (minimum of 

30mL/day) in order to increase motivation to perform tasks, and received sugar water or solid 

cereal rewards during spatial exploration tasks. Further, they were food restricted (minimum of 

15g/day) to maintain a stable body-weight and increase motivation to perform in the random 

foraging task (see below). All experimental procedures were approved by the UCLA 

Chancellor's Animal Research Committee and in accordance with NIH-approved protocols. 

Surgery and in vivo electrophysiology: All methods were analogous to procedures 

described previously
34,36

. Rats with satisfactory behavioral performance on spatial exploration 

tasks were anesthetized using isoflurane and implanted with custom-made hyperdrives with 22 

independently adjustable tetrodes. All implanted tetrodes were constructed in-house from 13 µm-

diameter NiChrome wire coated with 2 µm-thick polyimide insulation, according to previously-

reported techniques
34,36

. After the tetrodes were cut, the tips were electroplated with a gold 

particle solution containing 75% gold plating solution and 25% multi-walled carbon nanotube 

solution. A current of 1 µA was passed for 2 seconds with the electrode tip as the anode. This 

was repeated until the impedance at 1 kHz decreased below 250 kΩ for each electrode of every 

tetrode. Additional checks ensured that the four channels of a tetrode were not shorted. 

Four rats were implanted with drives targeting right prefrontal cortex and right posterior parietal 

cortex. Four additional rats were implanted with drives targeting both left and right parietal 
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cortex. After recovery from surgery, all tetrodes were slowly lowered through cortex over a span 

of several days to months. Subsets of tetrodes were advanced daily, typically ~70µm and rarely 

more than 140µm in one day. Before tetrodes were adjusted each day, all continuous signals 

were visually and aurally screened for intracellular-like signatures, consisting of large-amplitude 

fluctuations and broad, large amplitude spikes of reverse polarity compared to normal 

extracellular units. While a tetrode recorded a dendritic signal, no other tetrodes in the same 

hemisphere were adjusted. DAP signals always manifested overnight while all tetrodes were 

stationary. 

Signals were recorded using a Neuralynx data acquisition system at a sampling rate of 32 kHz 

from 7 rats and 40 kHz from 1 rat; all signals were initially digitally filtered through a 32 tap 

low-pass FIR filter with a cutoff frequency of 9000 Hz and a high-pass DC offset filter with a 

cutoff frequency of 0.1 Hz. Data from both brain regions and both hemispheres were pooled 

together for Figures 3-1 through 3-5 and Extended Data Figures 3-1, 3-2 and 3-4 through 3-9, as 

no systematic differences existed between any of these regions. Data from both parietal 

hemispheres from one rat performing the random foraging task (see below) were pooled together 

for Figure 3-6 and Extended Data Figure 3-10. 

Behavior 

 

Position tracking: For 5 rats, the animal’s position was measured using an overhead camera 

that detected the position of colored LEDs (0.5 cm x 0.5 cm each) placed on top of the electrode 

assembly on the head, and sampled at an average of 55 Hz at a resolution of 640x480 pixels. 

This data was used to compute instantaneous position, running speed and movement direction.  
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Rest box: The majority of data were recorded when rats were left to freely behave in a “rest 

box” made of plastic with an open top (60x40 cm, 103 cm high). A small cloth was placed in the 

box for rats to rest on, but no other salient cues were present on any surface of the box, and the 

box was cleaned between recording sessions to eliminate odors. During recording, rats were 

totally unrestrained and free to groom, sleep, and move around; hence we refer to behavior in 

this condition and random foraging (see below) as “free locomotion”. This configuration allowed 

us to characterize the properties of the same DMP during SWS and RUN. Recording sessions 

lasted approximately one hour, and between one and three recording sessions were performed 

per day, interspersed with task sessions referenced above. Position data was recorded for 5 rats in 

this condition, yielding a total of 8 DAP across a total of 18 recording sessions. 

 

Random foraging: Data from one rat was also obtained during a task where the rat foraged for 

randomly dispersed food rewards in an open field 100x100 cm with 50 cm high walls, each with 

a distinct visual cue. Each session lasted approximately 20 minutes. 4 DAP were recorded across 

a total of 8 recording sessions in this condition. There were no notable differences between data 

from the Rest Box and Random Foraging conditions, and so were combined for analysis for 

Figures 3-5, 3-6, and Extended Data Figures 3-8, 3-9, and 3-10. 

 

Behavioral state identification: Spectral features of the LFP were used to estimate 

behavioral state. The 32 (40) kHz continuous traces were downsampled by a factor of 8 to 4 (5) 

kHz and digitally filtered with a zero-phase second order Butterworth bandpass filter with cutoff 

frequencies of 0.5 and 500 Hz. Using the built-in MATLAB function spectrogram( ), the power 

spectral density of the LFP was estimated using five-second periods shifted by one second, 
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yielding a spectrogram with a frequency resolution of 0.4 Hz and a temporal resolution of 1 

second. This spectrogram was smoothed by 2-dimensional convolution with a Gaussian kernel of 

standard deviation 0.4 Hz and 1 second. 

Using the resulting spectrogram, rat behavior was manually classified into two categories: slow 

wave sleep (SWS) and running (RUN). Time periods corresponding to whisker twitching, sleep 

spindles, handling by experimenters, or other movement artifacts were discarded. SWS was 

defined as time periods with elevated power in the 1.5-5 Hz (delta) band, reflecting large 

amplitude cortical up and down states (UDS). Remaining time periods were defined as RUN, 

long segments at least 20 s long, typically lasting several minutes. These segments included fast 

movements, slow movements and brief periods of relative quiescence. When available, these 

classifications were confirmed by tetrodes located in the CA1 region of the hippocampus 

showing elevated power in the 6-12 Hz theta band, a typical signature of movement, or directly 

with video recording. 

  

Extracellular electrophysiology and spike sorting 

 

Extracellular unit classification: Spike extraction, spike sorting and single unit classification 

were done offline using custom software and according to methods described previously
34,36

. 

Extracellular waveforms were extracted from the LFP filtered between 300 and 9000 Hz with a 

zero-phase second order Butterworth bandpass filter. Peaks with values above an adaptive 

threshold based on the magnitude of the noise in the signal (typically >40 µV) were identified as 

putative somatic action potentials.  



42 

 

Because we compare firing rate properties between extracellular units and DAP, we used the 

spike waveform to classify the putative neuron type of extracellular units. After manual spike 

sorting to assign spikes to isolated units, the average spike waveform was estimated as the mean 

across all spikes within a cluster. The width at half-maximum and time from spike peak to trough 

were then computed for each cluster. Only units from neocortex with a mean firing rate above 

0.05 Hz in either SWS or RUN, as well as a half-width below 0.45 ms were included in all 

analyses. Units were classified as either pyramidal neurons or interneurons based on a 

combination of these measures. Units satisfying 1.6*W + P > 0.95 were identified as putative 

pyramidal neurons, and units satisfying 1.6*W + P <= 0.95 were identified as putative 

interneurons, where W is the width at half-maximum and P is the time from spike peak to the 

trough immediately after the peak. The parameters defining this equation were chosen to achieve 

maximal separation between two clusters in the width vs peak-to-trough space, and are consistent 

with previous studies
37

. 

 

Complex spike index (CSI): All CSI data presented were computed only using spikes in SWS 

to eliminate potential behavioral bias. For all pairs of adjacent spikes with spike time Tn and 

amplitude An and belonging to a single unit, the inter-spike-interval (ISI) was defined as  

𝐼𝑆𝐼 = 𝑇𝑛 − 𝑇𝑛−1  

 

and the adaptation index (ADI) was defined as the ratio    

 

𝐴𝐷𝐼 =
𝐴𝑛−𝐴𝑛−1

𝐴𝑛+𝐴𝑛−1
    

 

The CSI was then computed as  

 

𝐶𝑆𝐼 = 100 ∗
𝑆−𝐿

𝑆+𝐿
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where S is the number of spike pairs with ISI < 20 ms and ADI < 0, and L is the number of spike 

pairs with ISI < 20 ms and ADI >=0. Any other spike property can be substituted for amplitude 

to quantify the degree of change with repeated activation. Since the rising phase of the derivative 

of intracellular somatic spikes corresponds to the rising phase of extracellular spikes
69

, the DAP 

CSI reported in Figure 3-3e is computed for the peak value of the first temporal derivative. CSI 

computed for DAP rise time and width are reported as the negative of the above formula, as rise 

time and width were observed to increase with repeated activation, rather than decrease. 

 

MUA estimation: All MUA data presented were computed only using spikes in SWS. For a 

given tetrode, only detected spikes with a half-width between 0.05 and 0.45 ms and a peak-to-

trough time between 0.3 and 1.2 ms were included in MUA calculations. This eliminates 

contamination by spurious events. The MUA amplitude for a given tetrode was computed as the 

mean of all spike amplitudes across all four tetrode channels, and the rate was computed as the 

number of spikes divided by the amount of time spent in SWS. MUA rate estimated thusly is not 

independent of MUA amplitude, as spikes with an amplitude below the adaptive detection 

threshold will not contribute to the MUA rate. 

  

Amplitude Variation: Given the amplitude of a spike (Extracellular or DAP) on all four 

channels of a tetrode 𝐴1, 𝐴2, 𝐴3, 𝐴4, and the mean amplitude  

𝐴̅ =  
∑ 𝐴𝑖

4
𝑖=1

4
    

 

the amplitude variation is defined as 

 

Amplitude Variation = √
∑ (𝐴𝑖−𝐴̅)24

𝑖=1

4
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For recording sessions prior to (PRE) and following (POST) dendritic recording, amplitude 

variation was computed over the amplitude of all spikes from a single extracellularly-measured 

unit. During dendritic recording, amplitude RMS was computed over the amplitude of all spikes 

from a single DAP. 

 

Dendritic detection and quantification 

 

DAP Detection: Detection of putative DAP was performed on the individual tetrode channel 

with the largest amplitude-fluctuations. The continuous trace was filtered below 1500 Hz with a 

zero-phase second order Butterworth lowpass filter. Positive peaks in the first temporal 

derivative were identified as putative DAP, and the peak value of the second derivative 

immediately before the first derivative was recorded for each. Using these times, analogous 

values were obtained on each of the other tetrode channels. DAP were manually separated from 

noise offline using custom MATLAB scripts based on the first and second derivative peaks on 

all four channels (Extended Data Fig. 3-1). 

 

DAP Quantification: The initiation time of a DAP was defined as the time of the peak of the 

third derivative immediately preceding the peak in the first derivative (Fig. 3-1d). The end of the 

rising phase of the DAP was defined as the time of the peak of the third derivative immediately 

following the first derivative peak. DAP rise time and amplitude were defined as the time 

difference and voltage difference, respectively, between these two points. Due to the large range 

of signal amplitudes across recordings, we did not establish a static threshold of dV/dt to detect 

DAP in order to eliminate biases. To calculate DAP width, the voltage trace was additionally 
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filtered above 15 Hz with a zero-phase second order Butterworth highpass filter. Half-amplitude 

crossing points were identified up to 3 ms before DAP peak and 30 ms after DAP peak (Fig. 3-

1d). If no such points were identified for a particular DAP (<5% of all spikes), the width was 

excluded from further analysis. 

 

Duration of Recording: The duration of each DMP recording was defined as the time 

difference between the end of the last session and the beginning of the first session containing 

intracellular signatures on a given tetrode. Hence, the reported hold times are likely 

underestimates of the true DMP hold time. A signal recorded on the same tetrode on consecutive 

days was designated to be the same DMP based on the similarities of DAP waveform and firing 

rate, and unchanged tetrode depth. 

 

Peak Rate and Inter-spike Interval Calculations: The shortest ISI reported in Extended 

Data Figure 3-5 was calculated as the lowest 5% of the ISI histogram. The peak rate reported in 

Extended Data Figure 3-6 was defined as the reciprocal of the lowest 5% of the ISI histogram. 

Impedance Spectroscopy: As a confirmation of the glial sheath hypothesis described in 

Extended Data Figure 3-3a-c, we measured the impedance of electrodes in vivo during dendritic 

recording and compared that to electrodes that were recording local field potential (Extended 

Data Fig. 3-3d, e).While the rat rested in the sleep box, the impedance of all channels on 7 

tetrodes was measured at 20, 50, 100, 200, 500, 1000 and 2000 Hz, using the same Neuralynx 

hardware used to monitor impedance during electroplating (see above). 
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The impedance thus measured is typically modeled as a combination of several components. 

First, the electrode-electrolyte interface is modeled as a constant phase element (CPE), which has 

its impedance in the form: 

𝑍𝐶𝑃𝐸 =
𝐾

(𝑗𝜔)𝛼
 

Here K represents the overall magnitude of the impedance, j is the imaginary number √−1, ω is 

the frequency, and α is constrained between 0 and 1. As α approaches 0, the behavior of the CPE 

approaches that of a pure resistor. As α approaches 1, the behavior approaches that of a pure 

capacitor. 

The second component of the modeled impedance is the impedance of the surrounding glial 

tissue between the electrode and ground. There are two such pathways, one directly through the 

surrounding glial cells, which is modeled as a second CPE, and one through the space between 

glial cells, modeled as a frequency-independent resistor. 

For each electrode, the 5 parameters (Kelectrode, αelectrode, Kglia, αglia, Rglia) were estimated by 

minimizing the following function: 

𝐽 =  ∑ (
(𝑍′𝑖 − 𝑍′̇

𝑖)
2

(𝑍′̇
𝑖)2

+
(𝑍′′

𝑖 − 𝑍′′̇ 𝑖)
2

(𝑍′′̇ 𝑖)2
)

𝑁

𝑖=1

 

where i indicates the different frequencies, N represents the total number of frequencies, 𝑍′𝑖  

represents the real part of the measured impedance at the specific frequency, 𝑍′̇
𝑖  represents the 

corresponding model estimate, and 𝑍′′𝑖and 𝑍′′̇
𝑖  represent similar values for the imaginary part of 

the measured impedance. Parameters were estimated using the built-in patternsearch( ) function 
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in MATLAB. Different sets of initial values were tested and the results producing the minimum 

error were selected, thus improving the chances of obtaining the global minimum. 

All 5 parameters were unconstrained during fitting, but a systematic relationship emerged 

between the pairs of parameters specifying the CPE elements (K and α). A thorough 

investigation of this relationship is beyond the scope of the current study, so only the K values 

for each CPE are reported. 

 

Subthreshold Responses 

 

Subthreshold Magnitude Estimation: To eliminate the possible influence of long timescale 

fluctuations in signal properties, all subthreshold analyses were performed on segments of data 

approximately 5 minutes in duration. To eliminate possible influences of refractoriness or 

biasing of the voltage due to the large DAP amplitude, the subthreshold trace was constructed by 

eliminating all data in the original voltage trace 4 ms after each DAP initiation point. The 

membrane potential range reported in Figures 3-4b-c, 3-5d, and Extended Data Figure 3-8d was 

defined as the difference between the 5
th

 and 95
th

 percentile of the distribution of voltages in the 

subthreshold trace. 

 

Initiation Range: The DAP initiation voltage reported in Figures 3-4d, 3-5e, and Extended 

Data Figures 3-7d and 3-9a, c, e was defined as the subthreshold voltage at the time of DAP 

initiation. The initiation range for a given DAP was computed as the difference between the 5
th

 

and 95
th

 percentile of the distribution of DAP initiation voltages. 
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Voltage-Rate (V-R) Curve: For each trace, the subthreshold voltage was split into 100 equally-

spaced bins. The firing rate in each voltage bin was computed by dividing the number of DAP 

initiated in each voltage bin by the amount of time the DMP sampled the corresponding voltage 

bin. Voltage bins with less than 300 ms of data were excluded from analysis to eliminate 

artifacts. Using the built-in MATLAB function nlinfit( ), a logistic function of the form 

𝑅(𝑉) =  
𝑎

1 + 𝑒−𝑏∗(𝑉−𝑐)
 

 

 

was then fit to the resulting data points, where a, b, and c are estimated constants. 

 

The “dynamic voltage range” reported in Figures 3-4f, 3-5g, and Extended Data Figures 3-7e and 

3-9f was defined as the difference between the voltages at which the V-R curve crossed 5% and 

95% of the maximum firing rate of the V-R curve. The “firing rate range” reported in Figures 3-

4f, 3-5g, and Extended Data Figures 3-7f and 3-9g was defined as the difference in firing rate 

between these two points. Two DAP sources did not have enough spikes in RUN to generate a 

V-R curve, and these were excluded from analysis in Figure 3-5g and Extended Data Figure 3-

9f-h. 

Goodness of Fit: The goodness of fit for fitted V-R curves in Figures 3-4f, and 3-5f, as well as 

Extended Data Figures 3-7c, d, h, and 3-9b, d, h was evaluated as the R-squared value of the 

estimated rates at each voltage compared to the observed rates. This value is scale-invariant, 

allowing comparison across DAP with disparate firing rates. 
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Solitary DAP Analysis: To isolate the influence of a DAP on subsequent DAP and DMP via 

adaptation or short-term plasticity, a second subthreshold trace was constructed as above but 

with 50 ms of data excluded after each DAP initiation point. All subthreshold analyses above 

were repeated on these DAP isolated data for Extended Data Figures 3-7 and 3-9. 

 

Egocentric Responses 

 

Position Tracking: Position originally sampled at an average of 55 Hz was interpolated to a 

uniform 50 Hz. To eliminate abrupt position changes due to transient LED occlusion, position 

was first smoothed using a median filter of 250 ms width. Position was then further smoothed 

using a 15-point moving mean filter, and then up-sampled by linear interpolation at all data 

points including the occluded data to 100 Hz. Instantaneous heading direction H(t) was 

calculated as done previously
84

:  

 

H(t) = tan−1
𝑑𝑦(𝑡)

𝑑𝑥(𝑡)
 

𝑑𝑥(𝑡) = 𝑥(𝑡 + 50𝑚𝑠) − 𝑥(𝑡 − 50𝑚𝑠) 

𝑑𝑦(𝑡) = 𝑦(𝑡 + 50𝑚𝑠) − 𝑦(𝑡 − 50𝑚𝑠) 

 

 

Construction of Egocentric Rate Maps: Movement in an egocentric reference frame
45

 was 

computed frame-by-frame by calculating the difference in position and heading direction 

between the start and end of a moving 100 ms time window.  

𝑟(𝑡) =  √𝑑𝑥(𝑡)2 + 𝑑𝑦(𝑡)2 

𝑑𝐻(𝑡) = 𝐻(𝑡 + 50𝑚𝑠) − 𝐻(𝑡 − 50𝑚𝑠) 
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𝐷𝑋𝑒𝑔𝑜(𝑡) = 𝑟(𝑡) ∗ cos(𝑑𝐻(𝑡)) 

𝐷𝑌𝑒𝑔𝑜(𝑡) = 𝑟(𝑡) ∗ sin(𝑑𝐻(𝑡)) 

 

 

Two-dimensional egocentric movement (DXego(t) and DYego(t)) were then down-sampled to 50 

Hz, binned using 0.25 cm bins in egocentric space, and smoothed by 2-dimensional convolution 

with a Gaussian kernel of standard deviation 0.25 cm in each dimension. Egocentric firing rate 

maps were generated by dividing the number of spikes occurring in each egocentric bin by the 

total time spent in the corresponding bin. Bins occupied less than 250 ms for every 20 minutes of 

recording were discarded. Maps constructed with 0.25 cm bins were used for all figures, and all 

statistics (below) were calculated from maps constructed with 0.15 cm bins as done previously
84

. 

For figures, displacement (cm) was converted to speed (cm/s) by dividing by 100 ms. 

 

Information Content: Selectivity of egocentric rate maps was quantified by information 

content, as described previously for two-dimensional place fields
36

. To evaluate the anticipatory 

properties of rate maps, information content was evaluated for maps constructed using a time-

shifting procedure. For a given unit or DAP, the time of all spikes were circularly shifted by an 

amount between ±1 second, with a resolution of 20 ms, while preserving the temporal structure 

of spikes. Information content was evaluated for each of these time lags, and the largest 

information content and the time lag it occurred at were recorded. Information content was 

calculated from smoothed rate maps with 0.15 cm bins. 

 

Statistical significance was assessed by using a boot-strapping procedure, using a similar time-

shifting method as above, but with larger shift amounts, between 200 and 1000 seconds. This 

was repeated 1000 times with different shift amounts to construct a null distribution. The 
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percentage of null data that was greater than the maximum information content of the original 

rate map was evaluated as the p-value for the null hypothesis that the information content came 

from the null distribution. Significance was only assessed for the maximal information content of 

each rate map.  

Coherence: Egocentric rate map coherence was calculated by evaluating the correlation 

coefficient between each pixel of a rate map and the mean of all surrounding pixels
45

. Pixels with 

undefined firing rate were excluded from this analysis. Coherence was evaluated at the time lag 

of maximal information content, and was computed on un-smoothed rate maps with 0.15 cm 

bins.  

Number of Dendrites: Multiple recording sessions for a dendrite were kept separate for 

egocentric analyses. Thus the dendritic sample size for egocentric comparisons is the number of 

sessions across all dendrites recorded with position data. The 22 recording sessions were divided 

between 7 independent dendritic sources. 

 

Statistics 

Significance Tests: All analyses were done offline using custom-written codes in MATLAB. 

Due to the relatively small dendritic sample size and potential non-Gaussian distribution of 

measures, we employed non-parametric tests and resampling statistics to assess statistical 

significance. Significance between unpaired data was assessed using the Wilcoxon rank-sum 

test. Significance between paired data was assessed using the Wilcoxon signed-rank test. These 

tests make few assumptions about the distributions of data being tested and are robust to non-

equal sample sizes or non-Gaussian nature of data. Correlation coefficients and their related 
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significance were calculated using the built-in corrcoef( ) function in MATLAB, which 

calculates a two-sided t statistic to assess significance.  

Confidence Intervals: Unless otherwise stated, all values are reported as median [95% 

confidence interval], in the form M [L, U], with M representing the median and L and U 

representing the lower and upper bounds, respectively, of the 95% confidence interval. 

Confidence intervals were estimated using resampling statistics to allow analysis of non-

Gaussian distributions. Briefly, a surrogate population was constructed by drawing with 

replacement from the original distribution and the median of the resulting distribution recorded. 

This was repeated 100,000 times to form a distribution of the estimated median. The cutoff 

values of the 2.5
th

 and 97.5
th

 percentile of the estimated distribution were designated as the 95% 

confidence interval of the original population. 

Validation of Detection Algorithm and Generation of Surrogate High Rate Data: The 

fidelity of the detection algorithm was validated by constructing surrogate data sets with known 

spike times. A typical DAP waveform normalized to an amplitude of 1 mV was convolved with 

impulses spaced at varying distances, and Gaussian noise with standard deviation of 0.1 mV was 

added. The detection algorithm was run on the resulting trace. The minimal interval between 

spikes the algorithm could detect was 0.4 ms. The noise level plotted in Extended Data Figure 3-

5e was computed as the 99.99
th

 percentile of the distribution of peaks in the derivative of the 

surrogate signal, and serves as a visual guide. 

To verify that the high DAP firing rates were not a product of multiple, independent sources 

being pooled together, surrogate data was simulated and quantified in Extended Data Figure 3-

5e-g. Inter-spike intervals (ISI) were generated from a gamma distribution with shape parameter 
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1.75 and an appropriate scale parameter to generate a mean ISI of 1/f, where f is the desired 

firing rate. The shape parameter of 1.75 was chosen to eliminate the majority of ISI less than 2 

ms and to fit the observed ISI distributions of DAP. Few remaining ISI <3 ms (<1% of all data) 

were discarded. Spike times were then generated by taking the cumulative sum of the intervals. 

Impulses were scaled by a random amplitude drawn from the distribution of amplitudes from a 

sample DAP (mean 1.5 mV), and then convolved with a canonical DAP waveform with peak 

value 1. Finally, Gaussian noise with standard deviation of 0.05 mV was added. The detection 

method described above was then applied to the resulting traces to compute the histograms 

shown in Extended Data Figure 3-5f and 3-g. 
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Extended Data Figures and Figure Legends 

Extended Data Table 3-1 | Comparison of Spike Types. 

Type of Spike 

Amplitude Rise Time  Width*  

     (mV)      (ms)  (ms) 

Putative DAP in our data 0.15 to 20 0.6 to 0.9 1 to 9 

Local DAP in vitro and in vivo (sodium) 
40,42,44,45,53,59

 10 to 80 0.25 to 1.8 0.6 to 12 

bAP in vitro and in vivo (sodium)
40,42,44–46,53,58,59

  10 to 80 0.72 to 1.8 1 to 12 

Quasi-intracellular somatic sodium spike
64–68

 2 to 40 0.25 to 1 0.5 to 2 

Somatic sodium spike
40,44–46,58

 60 to 110 0.3 to 0.7 0.55 to 1 

Calcium spike
40,45,46,58

 10 to 65 3 to 9 10 to 56 

 
Characterization of the amplitude, rise time, and width for putative DAP from the current study compared 

to the same measures for different types of intracellularly-recorded spikes. Note that our data have widths 

approximately an order of magnitude larger than somatic sodium spikes but an order of magnitude 

smaller than calcium spikes, making these unlikely explanations for our data, but match dendritic sodium 

spike properties. 

*: “Width” refers to width at the base for calcium spikes, and width at half maximum for all others. 
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Extended Data Figure 3-1 | Distributions of somatic spikes, DAP and its derivatives.  

a, Left, example segment of an LFP trace filtered between 20 and 9000 Hz showing negative-polarity 

spikes. Right, histogram of all extrema (maxima and minima) detected in the entire LFP trace, showing a 

prominent cluster of peaks around −240 µV (shaded) and no prominent cluster of positive extrema. The y-

axis is limited to cut off the large number of peaks in the noise cloud. b, Left, example segment of an MP 

trace similarly filtered showing positive-polarity spikes. Right, histogram of all extrema detected in the 

entire MP trace, showing a prominent cluster of peaks around 3800 µV (shaded) and no prominent cluster 

of negative extrema. As in a, the y-axis is limited. c, Left, the first temporal derivative of the MP trace in 

b shows peaks clearly separated from the noise of the rest of the trace (right). d, Left, the second temporal 

derivative of the MP trace in b also shows clearly separated peaks (right). e, For all putative DAP, 

identified by peaks in the first temporal derivative, the 1
st
 derivative peak and the immediately preceding 

2
nd

 derivative peak are plotted against each other. Data points that extend beyond the noise cloud (black) 

are identified as DAP (red). 
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Extended Data Figure 3-2 | Variability of DAP Width and Rise Time.  

a, Average waveform (median and 25
th
, 75

th
 quantile, n=8917 DAP) for one DAP recording source shows 

less variation on the rising phase compared to the falling phase. b, For a single dendrite source, the rise 

time (0.69, [0.60, 0.78] ms, n=67714 DAP, CV=0.13) was smaller (p=0, Wilcoxon signed-rank test) and 

less variable than the half-width (5.30, [2.42, 8.18] ms, n=67714 DAP, CV = 0.54). c, Across the 

population of DAP, width CV (0.67, [0.58, 0.87], n=25 dendrites) was always greater (p=1.2x10
−5

, 

Wilcoxon signed-rank test) than the CV of rise time (0.15, [0.14, 0.17], n=25 dendrites). Width CV and 

rise time CV were not significantly correlated (r = -0.06, [-0.45, 0.34], n=25 dendrites, p=0.77, two-sided 

t test). d, Average waveforms for five different DAP show a large range of half-widths, marked by black 

dots. e, Across the population of DAP, rise time (0.78, [0.73, 0.84] ms, n=25 dendrites) was significantly 

shorter (p=1.4x10
−9

, Wilcoxon signed-rank test) than half width (5.58, [3.30, 7.86] ms, n=25 dendrites), 

and half-width (CV=0.41) was more variable than rise time (CV=0.07). f, Across the population of DAP, 

rise time was not significantly correlated with half-width (r=0.24, [−0.18, 0.58], n=25 dendrites; p=0.26, 

two-sided t test). Throughout the figure, data are reported as median and 95% confidence interval of the 

median unless otherwise noted. 
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Extended Data Figure 3-3 | Proposed schematic of glial sheath mechanism of DAP recordings.  

a, Proposed spatial arrangement of a model, drawn to scale, of a tetrode and a model neuron with 

morphology characteristic of neocortical pyramidal neurons. The tetrode has cradled a thin dendrite 

several hundred µm from the cell soma. b, Panel 1 shows a scanning-electron microscope image of a 

typical tetrode used for implantation. The following panels show a model tetrode (gray and orange) 

advancing down into the brain (Panel 2) and coming in to close apposition to a dendrite (red, Panel 3). 

The glial sheath gradually encapsulates the tetrode and dendrite (purple, Panel 4). c, Electrical circuit 

equivalent. The voltage difference between the electrode tip and ground will be proportional to the 
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voltage difference between the inside of the dendrite and ground, and the overall magnitude will depend 

on the relative values of the membrane impedance Zm and glial seal impedance Zg. In typical extracellular 

recordings, Zg is negligible compared to Zm, so no intracellular signal is recorded. Not depicted, 

impedance of the electrode-electrolyte interface, axial resistance of the electrode wire, and leak 

capacitance of the wire, all of which are typically orders of magnitude smaller than the impedances 

shown. Ramp represents the resistance across the amplifier used to record signals and is typically several 

orders of magnitude larger than the impedances shown and so can safely be ignored, as can Rax, the axial 

resistance within the dendrite, which is typically several orders of magnitude smaller. d, Left, impedance 

spectra for normal extracellular (light blue) and DAP-recording (light red) electrodes shows increased 

impedance for the DAP-recording electrodes. Right, an electric circuit equivalent of glial encapsulation of 

a tetrode well approximates sample impedances for both extracellular and DAP-recording electrodes. e, 

The percentage variance unexplained (top left) for extracellular electrodes (0.62, [0.43, 0.87] %, n=24 

electrodes) was very low, and not significantly different (p=0.87, Wilcoxon rank-sum test) from that for 

DAP-recording electrodes (0.74, [0.14, 1.57] %, n=4 electrodes). The fitted model parameters for Kel (top 

right, EC, 0.41, [0.37, 0.46] GΩ*s
-α

; MEM, 0.55, [0.50, 0.60] GΩ*s
- α

) and
 
Kg (bottom left, EC, 0.58, 

[0.41, 0.67] GΩ*s
- α

; MEM, 0.47, [0.39, 0.62] GΩ*s
- α

) were not significantly different from each other 

(Kel, p=7.1x10
-2

, Wilcoxon rank-sum test; Kg, p=0.58, Wilcoxon rank-sum test). In contrast, Rg for MEM 

(bottom right, 35.7, [32.5, 40.0] MΩ) was significantly (p=1.8x10
-3

, Wilcoxon rank-sum test) larger than 

Rg for EC (5.61, [2.80, 10.2] MΩ), supportive of our hypothesis that dendritic membrane potential 

recordings result from an increase in the seal of glia around the tetrode. 
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Extended Data Figure 3-4 | Reduction of MUA on tetrode channels with DMP signal.  

a, Sample trace from a tetrode in which 3 channels recorded DMP (red, orange, brown) but one channel 

(magenta) did not. No signature of DAP, which are clearly visible on channels 1-3, are visible on channel 

4, and no signature of extracellular spikes, which are clearly visible on channel 4 (inset), are visible on 

channels 1-3. b, Extracellular spikes were detected and triggered on channel 4, and the corresponding 

amplitude recorded on all 4 channels, 2 (out of six possible) combinations of which are shown in 

scatterplots. Left, channel 4 typically records higher amplitude (more negative) extracellular spikes that 

are uncorrelated with the amplitude on channels 1-3 (only channels 1 and 4 are shown). Right, 

extracellular spike amplitude is weakly correlated between channels 1-3 (only channels 1 and 3 are 

shown). c, DAP were detected on channels 1-3, and their amplitude recorded on all 4 channels, 2 

combinations of which are shown in scatterplots. Left, channel 4 typically records much smaller 

amplitude DAP compared to channels 1-3 (only channels 1 and 4 are shown). Right, DAP amplitude on 

channels 1-3 are highly correlated (only channels 1 and 3 are shown). This shows that the tetrode channel 

that did not have DAP signal had greater amount of MUA activity, further supporting the glial sheath 

hypothesis of DAP measurement. 
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Extended Data Figure 3-5 | Validation of DAP detection algorithm and separated nature of 

measured DAP.  

a, Convolution of a typical DAP waveform (top row) with impulses spaced  2 (left), and 1 (right) ms 

apart. In each row, the y-axis has arbitrary units but identical for the left and right plots. First temporal 

derivatives of the above traces are plotted in dark purple. In both examples, two peaks above the noise 

level (see Methods) are clearly distinguishable. b, Inter-spike-interval (ISI) histograms of 3 separate 

experimentally recorded DAP. The black and magenta lines mark the 2 ms interval designating a typical 

neuronal refractory period and the shortest ISI (0.4 ms) our detection method can distinguish, 

respectively. c, Across the population of DAP, the minimum ISI (10.7, [8.82, 13.8] ms, n=25 dendrites) 

was significantly longer than the 2 ms refractory period  (p=1.2x10
−5

, Wilcoxon signed-rank test), as well 

as the 0.4 ms resolution limit of our detection method. Data are reported and presented as median and 

95% confidence interval of the median. d, Unimodal distributions of DAP amplitude are further evidence 

that each DAP is from a single source. e, Two surrogate 8 Hz DAP traces were generated from a gamma 

process (see Methods) (top two rows, magenta). These were summed together to generate a “Dual 

Source” 16 Hz DAP trace (third row, purple). The black asterisk indicates an inter-spike interval less than 

2 ms. An additional “Single Source” 16 Hz DAP trace was generated from a single 16 Hz gamma 

distribution (bottom row, black). f, Zoomed-in region of the ISI histogram for the simulated dual 

source16 Hz trace (purple), the simulated single source 16 Hz trace (black), and data from the 

experimentally recorded DAP represented in the first panel of b (red). The dual source trace has several 

ISI <2 ms but these are absent in both the single source trace and the experimental DAP trace. g, Zoomed-

in region of the amplitude histogram for the simulated dual source 16 Hz trace, the simulated single 

source trace, and the experimental DAP from the first panel of d. The dual source trace has several 

detected amplitudes greater than 5 standard deviations from the mean of the distribution, but these are 

absent in both the single source trace and the experimentally observed DAP. These large amplitude events 
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come from the summation of two spikes from two independent simulated 8 Hz sources that occur within 

0.4 ms and cannot be resolved; these are not found in experimental data. 

 

 

Extended Data Figure 3-6 | Spiking properties and short term plasticity of pyramidal neurons, 

interneurons, and DAP.  

a, Pyramidal neurons and interneurons were identified based on their half-width and the time from the 

peak of the action potential to the trough after the peak (Peak-to-valley). 87% of extracellularly recorded 

neurons were classified as pyramidal neurons (657 units), and 13% were classified as interneurons (97 

units). b, The mean firing rate of pyramidal neurons (1.41, [1.08, 1.65] Hz, n=657 units) was significantly 

smaller than both that of interneurons (4.59, [3.51, 7.96] Hz, n=97 units, p=7.9x10
−13

, Wilcoxon rank-sum 

test), and that of DAP (7.07, [3.76, 12.6] Hz, n=25 dendrites, p=1.3x10
−9

, Wilcoxon rank-sum test). DAP 

mean firing rate was not significantly different from that of interneurons (p=0.31, Wilcoxon rank-sum 

test). c, The peak firing rate of pyramidal neurons (defined as the inverse of lowest 5% of all ISI) (67.6, 

[63.5, 73.7] Hz, n=657 units) was significantly less than that of both interneurons (125, [111, 137] Hz, 

n=97 units, p=5.2x10
−9

, Wilcoxon rank-sum test) and DAP (93.5, [72.7, 113] Hz, n=25 dendrites, 

p=1.0x10
−2

, Wilcoxon rank-sum test). Interneurons also had significantly higher peak firing rates than 

DAP (p=4.5x10
−2

, Wilcoxon rank-sum test). d, Example scatterplots of ISI versus amplitude, rise time, 

width, and 1
st
 derivative peak demonstrate activity-dependent adaptation. e, For the population of DAP, 

CSI was significantly greater than 0 for measures of amplitude (21.1, [3.11, 34.8], n=25 dendrites, 

p=2.3x10
−3

, Wilcoxon signed-rank test), , half-width (41.4, [32.4,60.9], n=25 dendrites, p=1.8x10
−5

, 

Wilcoxon signed-rank test) and 1
st
 derivative peak (39.1, [24.1,55.6], n=25 dendrites, p=1.4x10

−5
, 

Wilcoxon signed-rank test), but not for rise time (−1.54, [−5.88, 7.87], n=25 dendrites, p=0.99, Wilcoxon 

signed-rank test). Throughout the figure, data are reported and presented as median and 95% confidence 

interval of the median. * indicates significance at the p<0.05 level, and n.s. indicates lack of significance 

at the p<0.05 level. 
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Extended Data Figure 3-7 | Modulation of DAP by subthreshold membrane potentials.  

a, DAP amplitude was not significantly correlated (r=0.26, [−0.15, 0.59], n=25 dendrites; p=0.22, two-

sided t test) with the range of LFP recorded simultaneously from a nearby tetrode, ruling out spurious 

noise artifacts. b, During SWS, simultaneously recorded LFP (blue) and DMP (red) show up-down states 

with reversed polarity with respect to each other. c, Sample Voltage-Rate (V-R) curves computed using 

all DAP within a session during SWS. d, Sample V-R curves for the same DAP in c, but for only those 

DAP and times separated from other DAP by at least 50 ms (Solitary). e, For solitary DAP in SWS, 

initiation range (2.99, [1.94, 3.73] mV, n=25 dendrites) was larger (p=1.7x10
−4

, Wilcoxon signed-rank 

test) than the corresponding DAP amplitude (0.86, [0.64, 1.98] mV, n=25 dendrites), and positively 

correlated (r=0.64, [0.32, 0.82], p=6.3x10
−4

, two-sided t test). f, The dynamic voltage range for solitary 

DAP (2.66 [1.75, 3.71], n=25 dendrites) was smaller (p=1.7x10
−2

, Wilcoxon signed-rank test) than for all 
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DAP (4.03, [2.74, 5.07], n=25 dendrites). g, The V-R firing rate range was significantly higher 

(p=5.9x10
−3

, Wilcoxon signed-rank test) for solitary DAP (79.8, [45.5, 154] Hz, n=25 dendrites) 

compared to all DAP (33.1, [20.3, 53.1] Hz, n=25 dendrites). h, The goodness of the logistic fit of the 

VR-curve when calculated for solitary DAP (0.97, [0.92, 0.97], n=25 dendrites), was slightly larger 

(p=2.0x10
-2

, Wilcoxon signed-rank test) compared to all DAP (0.90, [0.84, 0.95], n=25 dendrites). 

Throughout the figure, data are reported and presented as median and 95% confidence interval of the 

median, and * indicates significance at the p<0.05 level. 
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Extended Data Figure 3-8 | Comparison of LFP and subthreshold DMP modulation during SWS 

and RUN.  

a, Sample segments of a spike-clipped LFP trace during SWS (left, blue) and RUN (right, light blue), 

showing smaller amplitude fluctuations during RUN. b, Histograms of the LFP voltage for the traces in a, 

showing a much wider range of variation in SWS (−265 to 215 µV, range of 480 µV) than during RUN 

(−89.7 to 87.9 µV, range of 178 µV). The ratio of SWS range to RUN range in this example is 2.70, 

indicating a much larger range in SWS. c, Sample segments of a spike-clipped MP trace during SWS 

(left, red) and RUN (right, orange), showing large amplitude fluctuations in both SWS and RUN. d, 

Histograms of the MP voltage for the traces in c, showing a similar range of variation in SWS (−4690to 

3560 µV, range of 8250 µV) and RUN (−6080 to 7980 µV, range of 14100 µV). The ratio of SWS range 

to RUN range in this example is 0.59, indicating a comparable range in SWS and RUN. e, Left, spike-

clipped local field potential range during RUN (306, [263, 401] µV, n=25 recording segments) was 

smaller (p=4.1x10
−5

, Wilcoxon signed-rank test) than the local field potential range during SWS (578, 

[463, 755] µV, n=25 recording segments here and throughout the figure); the two ranges were also 

significantly correlated (r=0.74, [0.49, 0.88], p=2.4x10
−5

, two-sided t test). Right, spike-clipped DMP 

range during RUN (3840, [2820, 6240] µV, n=25 recording segments) was not significantly different 

(p=9.8x10
-2

, Wilcoxon signed-rank test) than that during SWS (5770, [2950, 7850] µV), and the two 

measures were significantly correlated (r=0.89, [0.76, 0.95], p=2.710
−9

, two-sided t test). f, The ratio of 

SWS range to RUN range in the LFP (1.75, [1.45, 2.32], n=25 recording segments) was significantly 

greater than 1 (p=2.3x10
−5

, Wilcoxon signed-rank test) and significantly greater (p=4.6x10
−5

, Wilcoxon 

signed-rank test) than that of DAP (1.10, [1.01, 1.39]), which was not significantly different from 1 

(p=5.4x10
-2

, Wilcoxon signed-rank test). 
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Extended Data Figure 3-9 | Properties of solitary DAP in SWS and RUN.  

a, DAP initiation range in RUN (4.07, [2.51, 8.14] mV, n=25 dendrites) was larger (p=2.0x10
−5

, 

Wilcoxon signed-rank test) than the corresponding DAP amplitude (0.79, [0.52, 1.66] mV, n=25 

dendrites), and positively correlated (r=0.65, [0.35, 0.83], n=25 dendrites; p=3.9x10
−4

, two-sided t test)
 
b, 

Sample Voltage-Rate (V-R) curves for all DAP during RUN. c, For solitary DAP in RUN, initiation range 

(2.56, [2.14, 4.13] mV, n=25 dendrites) was larger (p=4.1x10
−5

, Wilcoxon signed-rank test) than the 

corresponding DAP amplitude (0.80, [0.52, 1.68] mV, n=25 dendrites), and positively correlated (r=0.68, 

[0.40, 0.85]; p=1.7x10
−4

, two-sided t test). d, Sample V-R curves for the same DAP in (b), but for only 

those DAP and times separated from other DAP by at least 50 ms. e, For solitary DAP, initiation range in 

SWS (2.99, [1.94, 3.73] mV, n=25 dendrites) and RUN (2.56, [2.14, 4.13] mV, n=25 dendrites) were 

correlated (r=0.84, [0.66, 0.93], n=25 dendrites, p=1.7x10
−7

, two-sided t test) and not significantly 

different (p=0.74, Wilcoxon signed-rank test). f, The dynamic range for solitary DAP in RUN (1.80, 

[1.25, 2.69] mV, n=24 dendrites) was slightly reduced (p=1.8x10
-3

, Wilcoxon signed-rank test), compared 

to all DAP in RUN (3.90, [2.98, 4.67] mV, n=24 dendrites). g, The V-R firing rate range was significantly 

higher (p=2.3x10
−4

, Wilcoxon signed-rank test) for solitary DAP in RUN (117, [52.6, 183] Hz, n=24 

dendrites) compared to all DAP in RUN (32.5, [24.6, 46.5] Hz, n=24 dendrites). h, The V-R curve in 

RUN was better approximated by the logistic fit (p=3.8x10
−2

, Wilcoxon signed-rank test) when calculated 

for solitary DAP (0.91, [0.88, 0.97], n=24 dendrites) compared to all DAP (0.88, [0.62, 0.90], n=24 

dendrites). 
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Extended Data Figure 3-10 | Sample egocentric rate maps, evaluation of significance, additional 

measures, and long-term stability.  

a, Three sample pyramidal (left), DAP (middle), and DMP (right) egocentric maps. b, Illustration of 

shuffling method used to determine significance and optimal lag (see Methods). Neural data is shifted 

with respect to behavioral data by large amounts (up to ±20 seconds), and the standard deviation of the 

resulting maps (top) is plotted as a function of lag (bottom-left). To determine significance, the peak 

standard deviation (blue mark) is then compared to distribution of standard deviations at long time-lags 

(bottom-right). The black mark at 0.84 indicates the highest value at long time lags. Since the peak 

standard deviation (blue mark, 1.7) is larger than the entire null distribution, this unit is significantly 

tuned. c, Normalized standard deviation (ΔS/S), a measure of the depth of modulation of a map, was 

comparable between PYR (0.39, [0.35, 0.43], n=245 maps), DAP (0.40, [0.23, 0.46], n=24 maps), and 

DMP (0.46, [0.30, 0.57], n=15 maps), with no significant differences (PYR vs DAP, p=0.29; PYR vs 

DMP, p=0.68; DAP vs DMP, p=0.19, Wilcoxon rank-sum test for all). d, Coherence for both pyramidal 

soma (0.15, [0.14, 0.17, n=245 maps) and DAP (0.17, [0.10, 0.22], n=24 maps) was significantly smaller 
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than coherence of DMP (0.40, [0.31, 0.50], n=15 maps; PYR vs. DMP, p=4.6x10
-6

, Wilcoxon rank-sum 

test; DAP vs DMP, p=2.3x10
-5

, Wilcoxon rank-sum test), but DAP and pyramidal map coherence were 

not different from each other (p=0.6, Wilcoxon rank-sum test). e, Short-term stability for pyramidal 

neurons (0.35, [0.32, 0.41], n=245 maps) was higher than DAP (0.27, [0.17, 0.41], n=24 maps) and DMP 

(0.27, [0.24, 0.39], n=15 maps), but these differences were not statistically significant (PYR vs DAP, 

p=0.12, Wilcoxon rank-sum test; PYR vs DMP, p=0.25, Wilcoxon rank-sum test). DAP and DMP short-

term stability were not significantly different from each other (DAP vs DMP, p=0.87, Wilcoxon rank-sum 

test). f, Two sample pyramidal neurons with an extremely large lag time of maximal standard deviation, 

at −2.22 s (top) and −8.22 s (bottom) respectively. g, Long-term stability (see Methods) for pyramidal 

soma (0.33, [0.29, 0.35], n=245 maps) was significantly larger (p=3.8x10
-2

, Wilcoxon rank-sum test) than 

that of DAP (0.21, [0.16, 0.26], n=24 maps), and larger, but not significantly so (p=0.39, Wilcoxon rank-

sum test) than that of DMP (0.27, [0.08, 0.48], n=15 maps). DAP and DMP long-term stability were not 

significantly different (p=0.38, Wilcoxon rank-sum test). h, The lag time of optimal tuning for pyramidal 

units was not significantly different (p=0.88, Wilcoxon signed-rank test) between the first half (-100, [-

150, -60] ms, n=156 maps with significant tuning) and second half (-140, [-180, -80] ms) of recording 

sessions. There was also no significant changes between session halves for DAP (first half, -80, [-200, 20] 

ms, n=13 maps with significant tuning; second half, -120, [-340, 100] ms; p=0.75, Wilcoxon signed-rank 

test) or DMP (first half, -220, [-960, 260] ms, n=9 maps with significant tuning; second half, -80, [-360, 

80] ms; p=0.48,Wilcoxon signed-rank test).  
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4. Hardware Development 

To ask new questions, new hardware must sometimes be developed. The following projects are 

works in progress, functioning as either pilot tests of theories, or preparations for future studies. 

Low-cost, Simple, Circuit Board for In-Vivo Stimulation 

Motivation 

Despite thorough and rigorous analyses, there is inevitably some doubt about the dendritic nature 

of the results described in Chapter 3 without more direct tests. While the signal analysis is fairly 

convincing, there are some tests that can be done with future dendritic recordings, given the 

proper equipment. One such method is to stimulate the dendrite, or otherwise pass current 

through the dendrite to perform such classical electrophysiological tests as measuring the 

membrane time constant, evaluating the relationship between injected current and firing rate (I-R 

relationship), and searching for any tell-tale signs of ion channels that are differentially 

expressed in the soma and dendrites.  

In vitro work suggests that dendrites have a faster time constant than their corresponding somata. 

Stimulation would be able to reveal what the time constant is of the membrane we are recording 

from. Such experiments may also give us a better idea of the true resting membrane potential of 

the dendrite, a value unknown to us due to using AC-coupled amplifiers. Tonic depolarizations 

could also shed light on whether the observed spikes are dependent on sodium channels, as 

raising the resting membrane potential should inactivate such channels. 
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Measuring the I-R curve would serve two purposes. First, it may be expected that the I-R 

relationship would be different between dendrites and soma, due to the different diameters and 

local axial resistances of the two elements. Second, showing that the firing rate of DAP is 

manipulable be passing current would confirm that these spikes are indeed reflective of 

biological processes, and not simply recording artifacts due to faulty electronics. 

Finally, certain types of ion channels are often expressed differentially in dendrites and soma, 

particularly ion channels mediating the “sag potential.” These potentials are only seen in 

dendrites, and are mediated by HCN channels, which tend to be more strongly expressed in 

dendrites
94

.  

All of the above measures would provide more direct evidence that we are recording from 

dendritic processes, and not some warped record of somatic potential or electrical noise. 

Unfortunately, the current high-density recording set-up used in the lab is not conducive to such 

stimulation experiments; thus, new hardware must be introduced to make these experiments 

possible. 

Physical Constraints 

All tetrodes implanted into our rats come through an electrode interface board (EIB). Each wire 

is pinned to the EIB, which has a printed circuit-board designed to route signals to 3 large 

headers, or headstages. Each headstage contains all of the channels for 8 tetrodes, as well as 

ground and reference channels. These headstages are 36-pin male Omnetics connectors, sourced 

from Neuralynx, which interface through 36-pin female Omnetics connectors on a circuit board 

with pre-amplifiers, also sourced from Neuralynx. These headers are very dense, with adjacent 

pins separated by only 0.025 inches. The headers are also sheathed and polarized such that they 
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can only interface in an all-or-none fashion; electrical access to individual channels is practically 

impossible. 

The pre-amplifiers are unity gain operational amplifiers (op-amps) from Texas Instruments that 

provide a high impedance (~1TΩ) buffer between the brain and the Neuralynx recording system. 

This effectively shields the recording system’s electronics from any currents that might arise in 

the brain or at the tetrode tips. This is an important safety feature, but precludes our stimulating 

individual channels via software; any current directly passed through the op-amp would generate 

a massive voltage difference and likely cause damage to the circuitry. 

A suitable workaround might be to discard the entire pre-amplifier for a given headstage, and 

interface with single pins on the headstage. While this would allow the connection between a 

current source and individual channels, such stimulation would be performed blindly. Real-time 

evaluation of the membrane voltage response to injected current would be unavailable, making 

the above-mentioned experiments unfeasible. Ideally, one would like to pass current between on 

one channel of a tetrode and ground, or between two channels of a tetrode, and simultaneously 

record the voltage response on the non-stimulated channels. 

The solution to this problem came in the form of an intermediate circuit board, between the 

headstage and the pre-amp. The design allows the experimenter to interrupt the current path of 

certain tetrodes, connecting them to the stimulator, while leaving the other channels directly 

connected to the pre-amp. By injecting current between the op-amp and the electrode tips, all 

injected current will flow into the brain due to the op-amp’s high resistance. 
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Figure 4-1 | Design and Assembly of Stimulator Board.  

a-b, Schematic of the front and back of the stimulator board, prepared in DipTrace. Groups of colored 

wires indicate electrodes belonging to the same tetrode. The orange holes represent the contact points for 

one pole of the stimulator input, and the blue holes the contact points for the other pole. c-d, The front 

and back of the printed circuit board, before populating with components. e-d, The fully assembled circuit 

board, populated with the Omnetics connector on top, breakout headers on the front side, and interfacing 

headers and stimulator jacks on the back side. 

 

Stimulator Design 

All circuit design was performed in DipTrace, a free software suite for printed circuit board 

(PCB) design. A major design constraint was the overall size of the PCB; too large a board 

would add undue weight to the rat, as well make it more difficult to balance. Counteracting this 

design constraint is the need for all traces to be well separated and mapped in a way that is 

logical to the user. 
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Figure 4-2 | Interfacing with the NanoZ Connector.  

a-b, The front and back of the NanoZ connector, which interfaces directly with the headstage through the 

Omnetics connector on the bottom, and interfaces with the stimulator through the headers on the back. c, 

The fully assembled stimulator, with the NanoZ connector attached to the back of the stimulator board. 

Penny for scale. d, A previous, less streamlined, less modifiable iteration of the stimulator. Only pre-

specified channels can be used for stimulation and recording, and several pins must be individually 

connected. This demonstrates the comparative ease of use of the stimulator board. 

 

A schematic of the PCB is shown in Figure 4-1. The electrodes initially come through the 

Neuralynx adapter used for electroplating (Fig. 4-2). This connector has a standard header 

design, removing the need to procure a female Omnetics connector. Signals leave the PCB 

through a male Omnetics connector surface-mounted onto the PCB. The pre-amp plugs in to this 

connector just as if it were the original connector on the headstage. 
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Each channel is connected to its corresponding channel on the output end, as well as to a specific 

pin of a “breakout header.” For ease of experimenter use, each tetrode has its own breakout 

header, consisting of 9 pins. Pins 2, 4, 6, and 8 are connected to channels 1, 2, 3, and 4, 

respectively, of the tetrode. Pins 1, 5, and 9 are connected to the positive pole of the stimulator 

input; pins 3 and 7 are connected to the negative pole of the stimulator input. Using 0.05” shunts, 

or “jumpers,” an experimenter can thus connect any channel to either the positive or negative 

pole of the stimulator, leaving all other channels unaltered. A 3-pin header allows similar 

connectivity for the ground signal. The positive and negative poles of the simulator enter the 

PCB through jacks on each side of the PCB (Fig. 4-3).  

 

Figure 4-3 | Interface with the EIB and Pre-Amplifier.  

a, The entire implanted cone-shaped drive typically interfaces through the headstage (middle, white) 

connection with the pre-amplifier (top, black). b, The stimulator board occupies a position between the 

headstage and pre-amplifier. The red and black wires are connected to the positive and negative poles, 

respectively, of the current source used for stimulation. 
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Thus, a current source can be connected to any two arbitrary channels. Current may be passed 

with positive or negative polarity from ground to any single channel, or current may be passed 

between two channels. This circuit has no complex circuit elements, active or passive. The only 

added resistance to the original connectivity is the resistance of the wire traces and of the contact 

points, a negligible amount that is not expected to interfere with signal properties in any 

substantial way. This also reduces the cost and labor necessary to produce the circuit. The final 

dimensions of the stimulator are 1.65 by 1.65 inches, with 210 holes and 77.54 inches of wiring. 

Printed on standard material, the PCB has a mass of 8.5 g. When coupled to the NanoZ 

connector the assembly has a total mass of 14.5 g. This is a substantial addition to the ~30 grams 

of the existing implant, but can be largely offset by the tension of the wires connecting to the 

stimulator. 

Assembly and Cost 

The board itself is cheap to manufacture. Five boards were ordered from Bay Area Circuits for a 

total of $30. Headers must be purchased and soldered to the through-holes on the PCB. The most 

expensive element is the male Omnetics connector, which must be custom-ordered from 

Omnetics or Neuralynx. This component can cost ~$100 and have a several week turnaround 

time. For the purposes of this prototype, we salvaged a connector from an old Neuralynx pre-

amp. The Omnetics connector must be surface-mount soldered to the board. Due to the close 

spacing of the surface-mount pads, this requires a skilled and patient hand. In total, 10 hours of 

labor and ~$150 of materials are needed for a single stimulator circuit.  

In comparison, Neuralynx sells a stimulator pre-amp. This product handles the switching of 

stimulator channels through software, allowing for more dynamic switching of the channels to be 
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stimulated. Undoubtedly this allows greater temporal control over stimulation protocols, but the 

functionality comes at a high price of $2000. For simple in-vivo stimulation experiments, the 

stimulator circuit described above is quite adequate, at a fraction of the cost. 

Proof of Concept 

Since the stimulator was manufactured, we have not had the opportunity to interact with any 

putative dendritic signals. As proof of concept, we have tested the circuit to ensure 1) Use of the 

stimulator does not alter signal properties; 2) That there is no cross-talk between channels; and 3) 

Current passed through the stimulator has an effect on neural activity.  

To test that routing the signals through the stimulator does not have any effect on signal 

properties, we compared neural signals recorded with and without the stimulator (Fig. 4-4a). 

Signals were qualitatively the same, with extracellular spiking and lower-frequency fluctuations 

clearly visible. This was confirmed quantitatively by computing the power spectra of these 

signals (Fig. 4-4b), using identical methods as those described in Chapter 3. The power was 

nearly identical with or without the stimulator for all frequencies above 2 Hz. When recording 

with the stimulator extra power below 2 Hz was introduced, which may be due to amplification 

of movement artefacts. This is not anticipated to be a problem, as most oscillations of interest 

during movement are high frequency, the lowest being theta oscillations of 6-12 Hz. The biggest 

concern would be during slow-wave sleep, which has prominent oscillations in the 0.5-2 Hz 

range. But this is not a problem if the excess low frequency power comes from movement, as the 

rat will not be moving during sleep.  

Next we tested if there was any evidence of cross-talk between channels of a tetrode introduced 

by the stimulator. As above, we recorded signals from all channels of a headstage with and 
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Figure 4-4 | Electrode Signals above 3 Hz are Unaffected by the Presence of the Stimulator 

a, Top, sample 1.25 second-long LFP recording, obtained with the normal recording configuration (see 

Fig. 4-3a). Bottom, sample 1.25 second-long LFP recording from the same tetrode as above, but in the 

recording configuration with the stimulator between the headstage and the pre-amp (see Fig. 4-3b). No 

current was being passed through the stimulator during these measurements. b, Top, power spectra of 

individual channels (thin light traces) and the median power spectrum (thick dark traces). At frequencies 

above ~3 Hz, the power spectrum is nearly identical with or without the stimulator board in the circuit. 

Signals tend to have excess power in frequencies below 3 Hz in the presence of the stimulator board. This 

may be attributable to slow movement artefacts, as the board adds two more contact points to the circuit 

that could introduce noise from movement. Bottom, the ratio of the power spectra PWith/PWithout further 

illustrates the above point. As above, thin light traces represent individual channels and the thick dark 

trace represents the median. 

 

without the stimulator. For all 7 working tetrodes on the headstage, we computed the mean 

correlation coefficient of all 6 pairs of channels (1 vs 2, 1 vs 3, 1 vs 4, 2 vs 3, 3 vs 4). Without 

the stimulator, the correlation was high (0.96), as is expected for the 4 channels of a tetrode (Fig. 
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Figure 4-5 | No evidence of Cross-talk between Channels due to Stimulator 

The within-channel correlation was computed by taking the mean of the correlation coefficients of all 6 

possible pairs of channels on a tetrode. This correlation was not significantly different (p=0.26, Wilcoxon 

signed-rank test), without the stimulator in the circuit (0.96, [0.93, 0.98], n=7 tetrodes) or with the 

stimulator (0.95, [0.93, 0.97], n=7 tetrodes). No current was being passed through the stimulator during 

these measurements. These measurements were done on signals filtered above 10 Hz (4 pole Butterworth 

filter) to minimize movement artifacts. 

 

4-5). The correlation was not significantly different (p=0.26) when recorded through the 

stimulator (0.95), thus demonstrating that the stimulator does not introduce cross-talk between 

the channels. 

Finally, we demonstrated that current passed through the stimulator affects local neural activity. 

We passed current between one channel of a tetrode and animal ground, with positive polarity 

indicating current flow towards animal ground. We tested three different levels of current, +200 

nA, -200 nA, and -1000 nA (Fig. 4-6). The stimulation protocol was 10 pulses of approximately 

200 ms, delivered at a rate of 1.1 Hz. We quantified the spontaneous multiunit firing rate in the 

200 ms before stimulation and compared it to the firing rate during the 200 ms of stimulation. 
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Figure 4-6 | Stimulation Modulates Multiunit Firing Rate 

a, Top, stimulation protocol. Current was passed between one channel of a tetrode and animal ground, 

and multiunit spiking was recorded on that tetrode. A ~200ms pulse was delivered 10 times at a frequency 

of ~1.1 Hz. Current in this experiment was +200 nA when the stimulator was on, and 0 at all other times. 

Middle, raster plot of multiunit spiking. The time of stimulation onset is marked by the magenta line at 0 

ms. The offset of stimulation is marked by the gray line. Each row represents one stimulation pulse, and 

each tick mark represents a single action potential. +200 nA reliably elicited spiking, with little effect 

after stimulation. Bottom, firing rate plot of the raster plot above. The firing rate in the 200 ms before 

stimulation was 3.7 Hz, and the firing rate during the 200 ms of stimulation was substantially increased to 

20.8 Hz. b, Same as in a, but with a stimulation current of -200 nA. Multiunit firing is only mildly 

affected by this stimulation protocol, reducing to 4.6 Hz from 6.7 Hz. c, Same as in a and b, but with a 

stimulation current of -1000 nA. This protocol completely shuts down all spiking on this tetrode.  

 

A stimulation current of +200 nA had a large effect on firing, increasing the local firing rate from 

3.7 Hz to 20.8 Hz, more than five-fold higher (Fig. 4-6, left). This was not simply a response to 

current being passed through the brain, as a stimulation current of -200 nA did not have an 
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appreciable effect on firing rate, decreasing it from 6.7 Hz to 4.6 Hz (Fig. 4-6, middle). Finally, 

we were able to temporarily silence local spiking completely by stimulating with a current of -

1000 nA. Multiunit activity dropped from 4.1 Hz to 0 Hz during this stimulation, and resumed as 

soon as the current pulse ended (Fig. 4-6, right). These experiments demonstrate that passing 

current through a single tetrode with this stimulation board can affect local spiking activity in a 

reliable, predictable, and graded manner. This will be an invaluable tool in the future, allowing 

us to obtain more direct verification of the dendritic nature of our recordings. 

Tetrode Plating Protocols 

A natural question that may arise from our dendritic recordings is why we see these recordings 

and no other lab has reported them. In light of our glial sheath hypothesis, we suspected that 

there may be something peculiar about the way our tetrodes are prepared that makes them more 

likely to elicit the specific type of immune response that we believe facilitates recording of 

dendritic membrane potentials. Our tetrodes are made of a widely used standard Nickel-

Chromium alloy, so the type of electrode is unlikely to be a determining factor. The final step in 

preparing tetrodes before implantation is electroplating the wire tips to decrease impedance. 

Electroplating has many variables that can differ from lab to lab, so we made some systematic 

manipulations of these parameters and observed the morphology of the plating structure. The 

structure of plating may be important because certain sizes of protrusions may appear more or 

less attractive to glia. 

We tested two main plating procedures. The first was a slow plating, with 150 nA of current 

passed for 2 seconds, repeated until the impedance at 1 kHz was below 130 kΩ. The second 
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procedure was a fast plating, with 1000 nA of current passed for 2 seconds, repeated until the 

impedance at 1 kHz was below 250 kΩ.  

In both protocols, one cycle was defined as one plating duration of each channel of a tetrode, 

followed by an impedance check. During plating, gold particles are attracted to the electrode 

being plated from any source. Most of this comes from the surrounding plating solution, but 

some may also come from gold already plated onto neighboring electrodes. Thus, if one 

electrode is plated down to threshold before another starts plating, the second channel may 

“steal” some gold from the first channel, effectively de-plating the first channel. Cycling through 

channels is done to mitigate this phenomenon. 

Tip morphology was qualitatively different when using the different plating procedures. Under 

1000x optical magnification, electrodes plated with the low-current method had smooth, orderly, 

conical plating (Fig. 4-7a). Electrodes plated with the high-current method had tips that looked 

more chaotic and spindly, with large coral-like structures of gold plating extending away from 

the electrode tip (Fig. 4-7b). This is likely due to the propensity of electroplated material to 

aggregate near corners. Because fewer plating steps are needed to complete this process, any 

imperfections would not have time to be smoothed over. 

Additional magnification through use of a scanning electron microscope (SEM) corroborated 

these findings.  Electrode tips plated with the low-current method showed small spheres of gold, 

with a fine cauliflower-like texture (Fig. 4-8a, b). In contrast, electrodes plated with the high- 

current method contained much larger spheres of gold particles (Fig. 4-8c, d) as well as a certain 

degree of scale-like regions of plating, absent in the low-current samples. 
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Figure 4-7 | Optical Characterization of Tetrodes with Different Plating Procedures  

a, Two examples of tetrodes plated using the low-current method, under 1000x optical magnification. 

Entire view window is ~80 µm square. 4 individual tetrode tips are visible with smooth, cone-like gold 

tips. b, Same as in a but for two tetrodes plated using the high current method. The gold-covered tips are 

more corrugated (left) and occasionally form plumes of coral-like structures (right). Entire view window 

is ~80 µm square.  

 

During the time period over which these manipulations were made, very few dendritic membrane 

potentials were recorded. It is therefore impossible to make a conclusive statement about which 

plating method is best for achieving dendritic recordings. Both methods result in usable 

extracellular recordings, though the stability and useful lifetime may differ between the two.  
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Figure 4-8 | SEM Characterization of Tetrodes with Different Plating Procedures  

a-b, Two examples of tetrodes plated using the low-current method, under 1000x magnification (top) and 

10,000x magnification (bottom) in a Zeiss Scanning Electron Microscope. Tetrode tips are covered with 

small (100-400 nm diameter) spheres of gold particles. c-d, Same as in a-b but for two tetrodes plated 

using the high current method. The gold-covered tips have large (~1 µm diameter) spheres of gold 

particles, in contrast to the tetrodes prepared with the low-current procedure.  
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It is possible that different plating procedures would yield more extreme modifications in the 

electrode tip geometry that could facilitate more dendritic recordings. Unfortunately, the 

parameter space is very large and multidimensional. Such parameters include, but are certainly 

not limited to, total impedance, plating time, plating current, composition of the plating solution, 

and relative positioning of the plating cathode to the electrode tips. These implants are also very 

time-consuming to make and implant, and the typical time period in which dendritic recordings 

are achieved is 1 month after implantation, slowing down the time between manipulations and 

observations of results. Finally, even a doubling of the “hit rate” of these tetrodes would be 

difficult to detect without a large sample size. If, on average, 2 of every 24 tetrodes records a 

membrane potential signal, and only one manipulation is done per rat, then it is possible that tens 

of rats must be used to observe statistically significant effects. A more fundamental 

understanding of the process that leads to the glial encapsulation will be needed before the high-

dimensional parameter space of electroplating is explored for the purposes of in-vivo dendritic 

membrane potential recording. The potential insights gained from such recordings, however, 

certainly justify such an effort. 
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5. Hippocampal somatic activity during 
random exploration in virtual reality 

Generalized Linear Model to Separate Multiple Determinants of Firing 

Typically, neuronal responses are characterized by their modulation by a single parameter, be it 

orientation tuning in visual cortex
95

, frequency tuning in auditory cortex
96

, or spatial tuning in 

CA1
4–6

. If one is to look for additional parameters that modulate these neurons, in independent or 

joint ways, great care must be given to identify and eliminate the effect of one variable on the 

other one, particularly if the entire joint stimulus space is not adequately sampled.  

This line of analysis is especially relevant for analyzing hippocampal pyramidal cells, which 

typically are active in only one particular region of an environment
4–6

. Because hippocampal 

cells are heavily modulated by visual cues, it is desirable to investigate the modulation of 

hippocampal activity by head angle; this directional tuning is traditionally thought to only be 

present in 1-dimensional tracks and not 2 dimensional tracks
6,26

, though “place-by-direction” 

cells have been reported in nearby presubiculum and parasubiculum
97

. This is a non-trivial task, 

as these cells are already heavily modulated by position; hence estimates of angular tuning may 

be incorrect or biased
14,26,27

. Recording sessions are also of finite duration, so it is an 

unreasonable expectation to have equivalent behavioral coverage of every head angle at every 

position. This is particularly true at the edge of the recording environment, where the rat cannot 

physically move through certain positions at certain heading angles. This leads to a certain 

degree of “behavioral bias,” which can interfere with measures of selectivity using traditional 

binning methods
26,28

.  
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The use of a Generalized Linear Model (GLM)
98–101

 offers an attractive alternative to traditional 

binning methods, though this method has not yet enjoyed widespread adoption by the 

neuroscience field. Briefly, given a temporal profile of the spike train of a given neuron and 

specified basis functions for the parameters of interest, coefficients to these basis functions are fit 

to produce a time-varying firing rate that best explains the data. The weighted basis vectors can 

then be used to reconstruct a selectivity map for their respective parameters, ideally identifying 

the most likely modulation of the spike train by each of the parameters. By using this method, we 

were able to show that a substantial percentage of hippocampal neurons are modulated by head 

angle, not just in RW environments but also in VR
37

.  

With the power of new techniques comes the burden of proving their effectiveness, that they do 

what they are supposed to do and do not introduce spurious correlations or other artifacts. This 

chapter describes the efforts to validate the GLM framework for our hippocampal data, as well as 

identifying unexpected parameters that can affect measures of spatial and angular selectivity. 

Generation of surrogate data to validate the GLM method 

Non-parametric generation of simulated place fields 

To estimate the amount of angular modulation behavioral biases introduce into purely spatially 

modulated neurons, we generated surrogate data based on the firing rate maps of recorded 

neurons. Given a behavioral profile 𝐵(𝑡) = (𝐵𝑋(𝑡), 𝐵𝑌(𝑡)) and spatial firing rate map 𝐹(𝑋, 𝑌), 

spike times were generated according to an inhomogeneous Poisson process with 𝐹(𝐵(𝑡)) as the 

rate parameter. Data generated in this manner were used in Fig. 5-3. 
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Parametric generation of simulated place fields  

The methods were identical to those described previously
37

. To verify the GLM framework 

accurately estimated the independent contribution of spatial and angular factors in determining 

spiking, we generated surrogate data with predetermined and variable degrees of spatial and 

angular modulation. For a surrogate place field centered at (𝑥̅, 𝑦̅), with spatial variance 𝜎𝑋𝑌 , 

preferred angular orientation  𝜑̅ and angular variance 𝜎𝜑, the relative probability of firing for any 

(𝑋, 𝑌, 𝜑) combination was defined as: 

𝑝(𝑋, 𝑌, 𝜑) = 𝑃𝑋𝑌(𝑋, 𝑌) ×  𝑃𝜑(𝜑)     (12) 

𝑃𝑋𝑌(𝑋, 𝑌) =  𝑝𝑋𝑌(𝑋, 𝑌) − 𝑚𝑖𝑛(𝑝𝑋𝑌(𝑋, 𝑌))    (13) 

𝑝𝑋𝑌(𝑋, 𝑌) = 𝑒
− 

𝐷𝑋𝑌
𝜎𝑋𝑌              𝐷𝑋𝑌 = √(𝑋 − 𝑥̅)2 + (𝑌 −  𝑦̅)2  (14) 

𝑃𝜑(𝜑) =  𝑝𝜑(𝜑) − 𝑚𝑖𝑛 (𝑝𝜑(𝜑))     (15) 

𝑝𝜑(𝜑) =  𝑒
− 

𝐷𝜑

𝜎𝜑                      𝐷𝜑 = 𝑎𝑛𝑔𝑙𝑒(𝑒𝑖(𝜑−𝜑̅))
2
   (16) 

Where 𝑖 is the imaginary number √−1. 

Given a behavioral profile 𝐵(𝑡) = (𝐵𝑋(𝑡), 𝐵𝑌(𝑡), 𝐵𝜑(𝑡)) and desired mean firing rate 𝜇, the 

absolute probability of firing is obtained by scaling the relative probability of firing (equation 12) 

by a constant factor k: 

𝑃(𝑋, 𝑌, 𝜑) = 𝑘 ∗ 𝑝(𝑋, 𝑌, 𝜑)      (17) 

𝑘 =  
𝜇

𝐸
,                                     𝐸 =  ∫ 𝑝(

𝑇

𝑡=𝑡0
𝐵(𝑡)) 𝑑𝑡   (18) 
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Where 𝑡0 indicates the start time of the session, and T indicates the end time of the session. 

Spike times are then generated according to an inhomogeneous Poisson process with 𝑃(𝐵(𝑡)) as 

the rate parameter. Surrogate data generated in this manner were used in Extended Data Fig. 5-

3a–h. 

GLM Specifics 

Two specifics about the output of the GLM are worth describing in detail, one a potential 

problem and one a helpful feature.  

Spuriously High Pixels 

First, although the GLM is more robust to behavioral undersampling than binning methods
37

, it 

still requires an adequate amount of data to arrive at interpretable results. In several sample cells, 

the GLM arrives at a spatial map with a few bins on the periphery of the table with large values. 

These bins may have values several orders of magnitude larger than the rest of the otherwise 

orderly map (Fig. 5-1). This often arises due to over-fitting of a burst of spikes that occurred 

during a single visit to that bin or to adjacent bins. Because the GLM includes an exponentiation 

in its calculation, spuriously high bins can be amplified to extremely high values. In our dataset 

approximately 20% of cells encounter this problem. 

This over-fitting can come about from using too high a spatial order when fitting. In our hands, 

we allow the number of basis functions to vary and choose the “best model” using Bayes’ 

Information Criterion (BIC)
102

, which attempts to balance the number of parameters of the model 

with the goodness of fit. When there are large bins, the GLM tends to use a large number of  
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Figure 5-1 | Fixing Spuriously High Pixels in the GLM Output.  

a, Top, example spatial rate map produced by the GLM. Note that only a restricted set of pixels near the 

bottom of the map have high values above 15 Hz, whereas the rest of the map has low values. Bottom 

left, the same unit’s spatial firing rate when computed with the binned method, which in this case is likely 

closer to the “true” rate map. Bottom right, the original GLM rate map (top) passed through a 2-

dimensional median filter. Note the spurious high pixels are gone, and the rate map has a more natural-

looking topography. b, Same as a but for a different unit. Note that the original map has a peak firing rate 

of 300 Hz, where the corrected maps have a peak rate around 6 Hz.  

 

spatial orders. Evidently in these cases with spuriously high bins, the goodness of fit gained by 

introducing more parameters exceeds the punishment of having a more complex model. A simple 

solution might be to limit the number of allowed spatial basis functions, but this could negatively 

impact cells with bona fide sharp spatial tuning. A combination of 4 other solutions serves as an 

effective check against this phenomenon. 

First, bins with very limited spiking can be excluded from the final map. This fixes matters 

cosmetically, but the underlying fit would still be influenced by those bins and may not 

ultimately be useful. Second, single spurious bins can be removed by passing the map through a 

2-dimensional median filter (Fig. 5-1). Isolated bins on the edge of the map are removed through 

this method, but several maps contain small groups of high bins. Third, before the GLM 
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computes its coefficients, spikes in regions without adequate behavioral sampling can be 

removed. However, not all spurious bins can be removed before spikes begin to be removed 

from the middle of the table where there is “good enough” sampling. Finally, a modification to 

the selection criteria can be used. In addition to considering the goodness of fit and number of 

model parameters, the dispersion of the resulting map can be factored in. This would punish 

maps with a few high-value bins away from the rest of the (presumably correct) high value bins, 

independent of the number of spatial basis functions. Thus, cells with maps that are actually 

sharply tuned will not be punished, as all high rate bins will be located close to each other. 

Implementing the above adjustments to the algorithm reduces the number of anomalous maps to 

~5%, which should be acceptable to discard without reducing the number of sample cells. 

Independence of Number of Bins on Reconstruction 

When using traditional binning methods, great care must be taken to choose the correct number 

and size of bins to ensure results are not spurious. When reporting the modulation of firing 

obtained by the GLM, the number and size of bins must also be chosen to reconstruct the map. 

Fortunately, this is less of a critical decision with the GLM, provided the bins are not so coarse 

as to mask important fluctuations. 

Binning methods arrive at a non-parametric representation of firing rates; values are entirely 

empirically derived, with no governing equation or distribution. In contrast, the GLM estimate is 

fully parametrized. This parametrization is performed when choosing the basis functions; the 

results of the GLM are simply coefficients of those basis functions. Hence, the underlying 

“tuning curve” is a function defined in continuous parameter space. When reconstructing the 

map, we simply evaluate that function at specified locations to obtain values. The overall  
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Figure 5-2 | GLM-Derived Sparsity is Unaffected by the number of Bins used for Reconstruction.  

a, Left, the angular sparsity of individual RW units as a function of the number of bins used to reconstruct 

the angular tuning map. Values are expressed as a percentage of the sparsity obtained with 80 bins. Each 

line represents a different unit. Right, the median (solid blue line) with the 25
th
 and 75

th
 percentile (shaded 

region) for the population on the left shows the sparsity converges to a stable value with approximately 20 

bins. Using additional bins for reconstruction do not impact the calculated sparsity, and will only serve to 

present a smoother angular tuning map. b, Same as a but for individual VR units. Like the RW units, an 

adequate estimate of the angular sparsity can be obtained with a minimum of 20 bins.  

 

selectivity of tuning, then, should not be influenced by the number of bins used to reconstruct the 

tuning curve. 

These theoretical conclusions are corroborated by the following empirical demonstration. 

Angular modulation of cells in both RW and VR were computed using the GLM. The angular 

maps were then reconstructed using a variable number of bins, from 5 to 100 bins (Fig. 5-2), and 
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the resulting sparsity was normalized to the sparsity obtained when 80 bins are used. 

Reconstruction with a small number of bins (<10) revealed that some units showed large 

differences with the sparsity calculated from 80 bins; though on average, the difference was not 

large (80% of max). Once more than 20 bins were used, there was no appreciable difference in 

angular sparsity. This held true for cells in RW and VR. These results demonstrate one of the 

beautiful advantages of GLM over binning. Once the GLM arrives at an answer y = f(x), the 

value of y can be evaluated at any value of x, no matter how close or far away the values of x 

are, or even if they are non-uniformly spaced. 

Surrogate Data 

As an illustration of the power of the GLM method, we considered a single example cell, 

generated according to the non-parametric method described above (Fig. 5-3a). The spikes from 

this cell were purely spatially modulated, with spikes equally likely to fire in a given position at 

any head angle. This is represented by the light blue circle below the rate map. The angular 

tuning for this cell was computed using both the binning method and the GLM. Due to a 

significant amount of behavioral bias, the binning method incorrectly assigned a high degree of 

angular sparsity to this neuron. The GLM correctly concluded that no angular selectivity was 

present; the spatial factors were able to explain all of the spiking. 

This example was then extended to multiple cells. Surrogate data was generated as described 

above, and the accuracy of the GLM was compared with the accuracy of the binned method in a 

number of situations. First, spiking data from RW were generated according to the non-

parametric method described above. Angular sparsity as reported by the GLM was close to 0 and 

significantly less than that reported by the binning method, demonstrating the accuracy of the  
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Figure 5-3 | Generation of Surrogate Data to Validate the GLM.  

a, Top, Spatial firing rate of a simulated place field (grayscale) overlaid with colored dots indicating the 

position at which spikes occurred. Each color represents a distinct head direction as shown in the color 

wheel to the right. Bottom, The angular part of the input function used for generating the simulated place 

field was uniform and had no head-directional modulation (light blue). The head-directional firing rate 

obtained by using the binning method (gray) exhibited very sharp tuning, due to high behavioral bias at 

the edge of the platform resulting in a non-uniform sampling of the angles. In contrast, the GLM based 

rate (dark blue) followed the input function closely (showing no head-directional modulation). b, 

Surrogate data were generated for all place cells recorded in RW with spatial modulation similar to that in 

experimental data but with no angular modulation, according to the non-parametric method (see 

Methods). Sparsity of the angular ratemaps obtained using the GLM method was close to zero (0.03 ± 

0.00, n = 1066; mean ± s.e.m.) and significantly (p = 2.9x10
-201

, Wilcoxon rank-sum test) smaller (4-fold) 

than that computed using the binning method (0.13 ± 0.00; mean ± s.e.m.). Thus, the binning method 

substantially overestimates the degree of angular modulation of spatially modulated cells, which the GLM 

method avoids. c, Several examples of simulated units constructed using a hybrid approach of the 

parametric and non-parametric methods. Spatial modulation is taken directly from RW place cells, and 

different widths and directions of angular tuning were put in by hand. In all cases, the GLM estimate 

more closely approximated the input angular tuning, unaffected by behavioral biases, unlike the binned 

method. 
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GLM under this extreme condition (Fig. 5-3b). We also used a hybrid approach of the two 

methods of generating surrogate data, taking the original spatial rate map of neurons and adding 

a parametrically generated angular modulation. In all cases, the GLM estimate of the angular 

tuning was more similar to the designed angular tuning than the binned estimate (Fig. 5-3c). 

Firstly, this demonstrates the validity of the methods used to generate surrogate data. 

Additionally, these experiments illustrate the advantage of the GLM method over the binning 

method in estimating angular modulation. 

Confounding Factors 

Behavioral Bias 

As stated above, recording during random foraging tasks can introduce a “behavioral bias” in the 

joint parameter space sampled. Some of this bias is physically constrained; a rat at the north end 

of the recording chamber cannot move north, and so rarely faces north at that position. The bias 

can also arise from the behavioral idiosyncrasies of rats. In our data, we often observe that rats 

have a preferred direction of turning in both RW and VR, such that they prefer turning left over 

turning right, or vice versa. This turning preference, in combination with the unguided nature of 

the random foraging task, can lead rats to take a circular path around the environment, resulting 

in a fairly narrow distribution of head angles sampled at any given location. 

Behavioral bias can be defined in two different ways, global bias and local bias. Global bias is 

defined as follows: For every spatial bin, the distribution of head angles is computed, and the 

sparsity of that angular distribution is assigned to that bin. The global behavioral bias is defined 

as the mean of all bins. This average may also be weighted by the total occupancy time in each 
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bin. The resulting measure is assigned to the entire recording session and all units recorded in 

that session, and serves as a general measure of how stereotyped the rat’s behavior is. 

Local behavioral bias is computed on a unit-by-unit basis. As before, the angular sparsity is 

computed for each spatial bin. The total number of spikes a given unit fired in each bin is also 

computed and used to weight the average of the global map. The number of spikes is used as 

weighting because the original map is weighted by time spent in each bin, measured in seconds. 

If we multiply by the firing rate, in spikes/second, the time cancels out and we are left with the 

number of spikes. This measure captures the behavioral bias that is most relevant for each 

 

Figure 5-4 | Global Behavioral Biases.  

a, Top, average behavioral bias maps for all sessions run in RW (left) and VR (right). Each pixel’s value 

indicates the sparsity of angular occupancy in that bin. A value of 0 means that all angles were evenly 

sampled and a value of 1 means that only one head direction was sampled at that position. In both 

environments, behavioral bias is high at the edges, but this bias extends farther into the middle of the 

environment in VR compared to RW. Bottom, the average global behavioral bias was higher in VR 

sessions (red) than in RW sessions (blue). b, Same as in a, but for individual rats. All three rats show the 

same pattern as the aggregate data in a, with higher behavioral bias in VR compared to RW.  
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particular neuron, uninfluenced by behavior in a region of the environment that it does not fire 

in. Figure 5-4a shows averaged behavioral bias maps in RW and VR random foraging 

experiments. Rat behavioral bias was clearly more stereotyped in VR, and the global behavioral 

bias was significantly higher for VR sessions than RW. This was true for individual rats as well, 

showing that the results were not due to individual differences (Fig. 5-4b). 

The fact that there exists a significant difference between behavioral bias in RW and VR means 

that any other statistical difference between neurons in either condition may be attributable to 

this difference. Indeed, plotting angular sparsity or mean vector length (MVL) against either 

global behavioral bias (Fig. 5-5a) or local behavioral bias (Fig. 5-5b) showed a significant 

correlation between the two. Thus, a potentially important difference between RW and VR, that 

there is better angular tuning in VR compared to RW, could potentially be explained away by 

differences in behavioral bias. Methods to address this confound are discussed below (Mitigation 

of Spurious Correlations). 

Firing Rate and Number of Spikes 

Two additional differences between RW and VR data present themselves as potential hurdles in 

data analysis. First, neurons tend to have higher mean firing rates in RW compared to VR
34,36

. 

Compounding this issue, VR recording sessions are often of shorter duration, and so the total 

number of spikes contributing to the tuning of a VR cell is smaller. Theoretically, neither of 

these should affect the angular sparsity, as they would both be expected to scale the rate map by 

a constant factor, and the sparsity measure is invariant to constant scaling. In practice, this is not 

the case. 
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Figure 5-5 | Effect of Behavioral Bias on Tuning.  

a, Top, angular sparsity plotted as a function of global behavioral bias in RW (left, blue), VR (right, red), 

and in both conditions (middle). Each data point is one unit, and all units from a single recording session 

are assigned the same global behavioral bias. Angular sparsity was significantly correlated with global 

behavioral bias for RW (r=0.23, p=9.9x10
-9

), VR (r=0.31, p=1.6x10
-12

), and the two conditions combined 

(r=0.53, p=9.5x10
-78

). Bottom, same as above but for angular MVL (RW: r=0.12, p=3.6x10
-3

; VR: r=0.25, 

p=2.2x10
-8

; Combined: r= 0.31, p=2.5x10
-25

). b, Top, same as a (top), but with angular sparsity plotted 

against local behavioral bias, showing a similar correlation of sparsity with behavioral bias (RW: r=0.20, 

p=8.7x10
-7

; VR: r=0.10, p=2.6x10
-2

; Combined: r= 0.41, p=4.1x10
-44

). Bottom, same as a (bottom), but 

with MVL plotted against local behavioral bias, showing a similar correlation as above (RW: r=0.17, 

p=5.9x10
-5

; VR: r=0.12, p=6.7x10
-3

; Combined: r= 0.26, p=4.1x10
-18

). A two-sided t test was used for all 

tests of significance in this figure. 

 

We calculated the mean firing rate of cells in RW and VR and plotted the angular sparsity as a 

function of mean firing rate (Fig. 5-6a). We found a reliable negative correlation between the 

two variables. Interestingly, this negative correlation was present using both the binned method 
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and the GLM. A similar relationship was found between mean firing rate and spatial sparsity. 

There was also a significant negative correlation of the number of spikes with angular sparsity, 

angular MVL, and spatial sparsity (Fig. 5-6c).  

 

Figure 5-6 | Dependence of Tuning on the Mean Firing Rate and the Number of Spikes.  

a, Top, angular sparsity plotted against mean firing rate (in Hz), calculated using both the GLM (left 

plots) and the binned method (right plots). Blue and cyan points represent data recorded in RW; red and 

orange points represent data recorded in VR. Middle plots show the data grouped into bins of similar 

mean firing rate. Bottom, same as above but for MVL, which shows a similar relationship with mean 

firing rate. b, Angular sparsity (left), angular MVL (middle) and spatial sparsity (right) plotted as a 

function of the number of spikes a unit fires in a recording session. Blue data points represent units 

recorded in RW; red data points represent units recorded in VR. All three measures are significantly 

negatively correlated with the number of spikes in both RW (angular sparsity, r=-0.5, p=1.1x10
-44

; MVL, 

r=-0.38, p=5.2x10
-25

; spatial sparsity, r=-0.42, p=4.8x10
-31

) and VR (angular sparsity, r=-0.48, p=1.7x10
-

40
; MVL, r=-0.39, p=2.4x10

-25
; spatial sparsity, r=-0.45, p=4.8x10

-35
).  
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Thus 3 measures that are significantly different between RW and VR – Behavioral Bias, Mean 

Firing Rate, and Number of Spikes – are all significantly correlated with tuning parameters. Two 

possibilities thus present themselves. It could be that these relationships are genuine and have a 

basis in biology. It could also be the case that these are artefactual, stemming from shortcomings 

in the analytical methods or a paucity of data. We addressed these possibilities with a number of 

statistical experiments based in resampling. 

Mitigation of Spurious Correlations 

There are a number of possible ways to mitigate these unintended correlations. The first way is 

to see how much of these correlations arise under a null assumption of zero angular sparsity. To 

test this, we generated surrogate data for each unit, using the same spatial firing map but with no 

angular modulation (Fig. 5-7). The angular modulation of these surrogate data also showed a 

slight negative correlation with firing rate, but the effect size was smaller. By subtracting the 

sparsity of the surrogate data from the original data, we arrived at an estimate of “excess 

sparsity” expressed by the neurons, which cannot be explained by the confounding variable. 

Implementing this subtractive strategy on mean firing rate and number of spikes mitigated the 

dependence of sparsity on firing rate, but did not eliminate it completely. The largest effect was 

on the estimated sparsity of units in VR, demonstrating that the subtractive method is effective in 

eliminating spurious tuning due to the larger behavioral bias in VR. It is still unclear with this 

method if the relationship with sparsity and mean firing rate is a real relationship or spurious, but 

a similar analysis on the remaining correlation with another variable may further reduce the 

dependence. 
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Figure 5-7 | Correcting for Latent Correlations.  

a, Same color convention as in Figure 5-6a. Top, same as Figure 5-6a, top, showing a negative 

relationship between mean firing rate and angular sparsity. Surrogate data with no angular tuning was 

created for each unit using the non-parametric method of generating data. The resulting sparsity of the 

surrogate units is plotted against mean firing rate. Despite no angular tuning put in, both the GLM and 

binned methods still show a negative relationship between mean firing rate and sparsity. Bottom, the 

“corrected” sparsity was computed as the sparsity of the original unit less the sparsity of the matching 

surrogate unit. Though a relationship between mean firing rate and sparsity still exists, the effect size is 

much smaller in all cases. b, Same as a, but for MVL. The same effect of lessening the effect size of 

mean firing rate is replicated with MVL.  

 

Another method of eliminating spurious correlations is to normalize the relevant measure to 

time-shifted (shuffled) data. Time-shifted data is the more accurate term, because the spike times 

are shifted with respect to behavior by a constant amount. This preserves the short-term 

dynamics of the spike trains, which is particularly relevant because hippocampal neurons tend to 
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fire in motifs of long bursts of spikes
36

. Thus, if a neuron fires only one motif consisting of 10 

spikes within 2 seconds, most of those spikes are going to be clustered at similar head angles, 

resulting in high sparsity. Time-shifted control data will also show high sparsity, revealing the 

high sparsity of the original data to be non-significant. Shuffled data would likely show very 

little angular sparsity, giving the false impression that the original data was significantly tuned. 

Data is circularly shifted by large amounts (±10 to 100 seconds) and the sparsity of the shifted 

data is computed. This is repeated multiple times for each neuron to form a null distribution for 

each neuron. If the null distribution is Gaussian-distributed, then the original data can be 

expressed in terms of Z-scores, or number of standard deviations from the mean. Measures that 

fall above 2 standard deviations can be said to be statistically significant at the p<0.05 level. If 

the null distribution is not Gaussian, then significance can be evaluated by calculating the 

percentage of data the original measure is larger (or smaller) than. The resolution of the p-value 

obtained this way depends on the number of values in the null distribution. With n resamples, the 

p-value can only take values of integer multiples of 1/n. So 20 samples are needed to claim 

p<0.05, 100 samples are needed to claim p<0.01, and so on. Because there is a dependence of 

sparsity on many other variables such as behavioral bias, mean firing rate, and the total number 

of spikes, it is important that each unit be compared to its own null distribution, rather than 

compared to distribution from the entire population.  

This method of preparing data is very useful, and allows us to make claims about the percentages 

of units are significantly modulated in each population. When Z-scoring, it is tempting to 

interpret the z-scores as a measure of how well-tuned a unit is, but this is not statistically correct. 

The Z-score is a proxy for the p-value, and the same limitations that restrict the comparison of p-
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values restrict the comparison of Z-scores. Importantly, the Z-score depends not just on the 

original value but the entire null distribution. Hence, the Z-scores from two units can only be 

compared if they come from the same null distribution, which is not the case for the majority of 

our data. 

These issues certainly can benefit through the use of ANOVA. While ANOVA can indeed find 

significant differences in the presence of confounding factors, many assumptions are made that 

are often not true. Balanced experiments are ideal, in which sample sizes are equal for each 

treatment. This is difficult to fulfill using electrophysiological data in freely behaving animals 

without discarding large amounts of data. Further, data are often not independent, as multiple 

units are recorded in the same behavioral condition. Additionally, normality of the distributions 

of residuals is often difficult to demonstrate. Finally, the variance in the different groups is often 

not equal, another assumption of ANOVA. Despite these difficulties, it can be instructive to 

group data together to check for systematic relationships. Unfortunately, in our data, the 

confounding variables can be largely non-overlapping, resulting in very few bins with a good 

number of cells in both conditions.  

Implications for Future Analyses 

The above statistical experiments should be a call to diligence in data analysis. It is easy to 

become enamored with new techniques that promise to solve previously insurmountable 

problems, especially when applied to novel problem spaces. New methods must be rigorously 

vetted and validated using examples that are as simple and as easily interpretable as possible. Co-

variation of measures of interest with “background” measures should be taken seriously, with 

differences between experimental conditions viewed with a suspicious eye. The question of 
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whether a result can be attributable to firing rate should be one of the first to be asked in any 

analysis of in vivo electrophysiological data. Finally, it is critically important to interpret control 

data the correct way. Values should only be z-scored if their null distributions are Gaussian. 

Even when non-parametric measures of significance are used, it is crucial to either compare each 

unit to its own null distribution or validate that all data come from an approximately equal null 

distribution. Comparing a population of neurons to the “distribution of shuffled data
84

” is a 

dangerous proposition if the population varies widely in firing rate and the relevant variable is 

dependent on firing rate. In our case, this would bias more cells with low firing rates to be 

significant, as their sparsity values are generally higher than shifted data from high-rate cells. 

New statistical methods hold the promise of being able to interrogate data deeper than before, 

and it is incumbent upon the data analyst to use these methods carefully, clearly, and properly. 
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6. Hippocampal neural dynamics in a 
virtual water maze 

Introduction 

The Morris Water Maze
2,29,30,103

 (MWM) has become the gold standard behavioral experiment 

for spatial navigation and spatial memory
20

. The effects of LTP
104,105

, NMDA antagonists
106–108

, 

psychoactive drugs
109–111

, and other molecular or genetic modifications are often evaluated by 

performance in the hippocampus-dependent MWM
3,30,112

. However, beyond the necessity of 

long-term potentiation for this task, the neural mechanisms underlying this behavior are not well-

characterized.  

Morris stated that the ability to perform this task “[provides] support for the cognitive mapping 

theory of spatial localization,” which states that to solve the task, the rats must form an 

allocentric mental representation of the area they are moving in
29

. The possible neural basis of 

such a cognitive map of space had been discovered more than a decade prior, in the form of 

“place cells” in the dorsal hippocampus
4,5

. Different cells are active in different regions of the 

environment, and enough cells can cover and represent an entire environment. It seems natural to 

conclude that these place cells form the cognitive map necessary for MWM performance. 

Multiple questions arise from this theory: What do place cells do in the water maze? Are they 

necessary for MWM performance? Do place cell responses change as the subject’s performance 

gets better? These questions have not been directly addressed using in vivo electrophysiology. 

This gap in knowledge is largely attributable to the immersion of the subject in water in the task; 

the presence of water eliminates any local cues, such that the goal object is invisible, inaudible, 
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and undetectable by smell
29

. Thus all navigation must be landmark-based, and the subjects must 

learn the spatial location of the goal relative to distal cues, rather than forming simple stimulus-

response associations
29

. Although there is always the risk of incomplete elimination of non-

specific cues in RW, this task minimizes the possibility that the subjects might form alternate 

strategies to solve the task. But this environment provides several hindrances to 

electrophysiological interrogation. First, the water environment is stressful for rodents. As stress 

can alter neural responses and interfere with mechanisms of plasticity
113–117

, this represents a 

difficulty in interpreting any neural data in this version of the task. Second, every trial begins 

with the experimenter releasing the rat from a start location, and the experimenter can serve as a 

very salient cue for the rat or mouse. Third, the nature of the task limits the number of trials the 

rat can perform, typically to 4 or 8 trials per day, limiting the data available for analysis. This is a 

major hurdle for characterizing putative place cells, as a region must be visited several times to 

form a good estimate of a place cell’s receptive field. Finally, water is a physical hazard to in-

vivo electrophysiology. Splashing or dunking the head underwater can easily damage expensive 

electrophysiology systems. Customized, state-of-the-art waterproof electrode housings are 

necessary to obtain valid recordings, and these are only recently available and limit the number 

of implantable electrodes
31–33

. 

To overcome these difficulties, we utilized a body-fixed virtual reality (VR) system
34,36,37

 which 

was previously shown to support virtual water maze learning in rats
35

. This virtual adaptation has 

several advantages over the traditional MWM: stress is reduced in this appetitive task, as the rats 

are comfortable and relaxed in the VR; after the rat is harnessed into the VR, there is absolutely 

no experimenter-rat interaction, eliminating possible complications introduced by the presence of 

the experimenter; this version of the task allows rats to perform more than 100 trials in a single 
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day, yielding much more data and denser coverage of the environment than before; finally, there 

is no water involved, but proximal cues still provide no information about the location of the 

reward zone. This preserves the landmark-based nature of the water maze task while permitting 

electrophysiological recordings to be performed simultaneously. This allowed us to investigate 

the firing patterns in the hippocampus during this spatial navigation task. 

Previous studies have explored the responses of CA1 pyramidal cells when the rats explore this 

virtual environment. In the simplest task, in which the rats travel back and forth on a linear track, 

we observe place fields similar to those seen in real world one-dimensional tracks
34

. However, 

when the rats are free to do random foraging across the 2-D environment, spatial selectivity is 

severely diminished
36

. This reduced selectivity could be due to a number of reasons. We 

previously concluded that distal visual cues are not enough to generate spatial selectivity; 

multiple cues (visual olfactory, self-motion, tactile, auditory, etc.) must be repeatedly paired with 

each other to form stable place fields. Some may also argue that the task of random foraging is 

not demanding enough, that the task does not require attention to be paid to the visual cues; in 

essence, because a map is not needed, a map does not form. Successful navigation in the virtual 

water maze task would dispel such an argument based on task demand, so we demonstrated the 

ability of rats to perform this task and then characterized the neural responses  

The Virtual Water Maze 

The virtual reality system used was identical to that described previously
35

. In the majority of 

data, the virtual environment consists of a table 2m in diameter placed in the center of a square 

room 450 x 450cm (Fig. 6-1a). The visual texture on the table is patterned to provide optic flow 

but provide no local cues about position. Each wall has a different, salient visual cue; for the  
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Figure 6-1 | The Virtual Water Maze Task.  

a, Overhead view of the virtual environment. The central table is 2 m in diameter, and is placed 75 cm 

above the floor. The walls define a square room 4.5x4.5 m and provide distal visual cues. See methods for 

additional information. b, Schematic diagram defining one trial. b1, The rat begins a trial in one of 4 (or 

8) start locations on the edge of the table, facing radially outward. b2, The rat explores the environment. 

b3, Upon entry into the reward zone, a white dot appears, and sugar water reward is dispensed for 2.7 

seconds. b4, The entire environment is blacked out, and the ball is decoupled from movement in virtual 

space. b5, During the blackout, the rat is “teleported” to a new, randomly chosen start position. b6, After a 

2.5 second wait period, the ball is re-activated, the lights turn on, and the next trial begins. During 

training, this is repeated until 45 minutes have elapsed or 40 trials are completed. During testing, sessions 

last as long as the rat shows motivation to perform the task. 

 

 

majority of data the reward zone was in the north-east quadrant of the table. During training, the 

reward zone was 30 cm in radius. After 6 days of training, the reward zone was shrank to 25 cm 

and then 20 cm on the 7
th

 and 8
th

 days, respectively. 

One trial is defined as follows. The rat starts in of the 4 (or 8) start locations, facing radially 

outward (Fig. 6-1b1). The reward zone is completely hidden from sight. The rats explore the 

environment in an unguided fashion until they enter the reward zone (Fig. 6-1b2). Once they 

enter, the reward zone appears as a white dot, and a sugar-water reward is dispensed to the rats, 

available for 2.7 seconds, or until the rat leaves the reward zone (Fig. 6-1b3). At that point, the 

virtual world is “blacked out” and the ball is decoupled, such that the rat’s movements do not 
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induce a change in virtual position (Fig. 6-1b4). During this blackout period, the rat is teleported 

to a new random start location (Fig. 6-1b5). After a delay of 2.5 seconds, the ball is activated and 

the visual scene returns, beginning the next trial (Fig. 6-1b6). During training, this is repeated 

until 45 minutes have elapsed or 40 trials are completed. All data presented are from rats that 

have completed the 8-day training. 

Behavioral Results 

We previously reported that rats learned the task well and showed behavioral measures 

comparable to RW water mazes, including latency and distance to reward and time spent in the 

target quadrant during a probe test
35

. Further analysis of behavior trajectories showed that rats 

took near-optimal paths from any start location to the reward. Both individual paths (Fig. 6-2a, 

light colored traces) and average paths (Fig. 6-2a, thick black traces) showed direct routes from 

any start position to the goal, with little indication of random circling, or attraction to the edge of 

the virtual table (thigmotaxis in RW environments).  

We also considered the possibility that the rats might have learned to execute a particular series 

of motions from any start position which would guarantee reward. To rule this out, we took the 

average path from each start location and rotated them so they are starting from the same 

position (Fig. 6-2b). The mean paths diverged as the rat traveled greater distances, demonstrating 

start position-specific trajectories. To quantify this divergence, we computed the correlation 

between environmental occupancy for paths taken across several start locations and for paths 

taken within a single start location (Fig. 6-2c). Occupancy correlation taken from different start 

locations (0.55) was significantly smaller (p=1.4x10
-17

) than the correlation taken from within 

the same start location (0.77). This demonstrates that paths taken from different start locations  
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Figure 6-2 | Trajectories are Efficient, Repeated, and Differ between Start Locations.  

a, Behavioral data from an example recording session. Light traces show the rat’s trajectory, color coded 

by start position (red, top; green, right; magenta, bottom; blue, left). Thick black traces show the mean 

trajectory from each start location. The magenta circle denotes the boundary of the reward location. Rats 

take near-optimal paths from any start location to the goal location. b, The mean trajectories shown in a 

are rotated such that they all start from the south position, and color coded by original start position. The 

mean paths are initially similar, but diverge as trials progress, indicating the rat is not executing a single 

stereotyped trajectory from all start locations. c, The correlation between environmental occupancy (see 

Methods) taking paths across start positions (0.55, [0.49, 0.58], n=60 recording sessions) was 

significantly smaller (p=1.4x10
-17

, Wilcoxon signed-rank test) than that defined within start positions 

(0.77, [0.74, 0.81], n=60 recording sessions), demonstrating both similar trajectories from a given start 

location and differing trajectories from different start locations. 

 

are indeed different, and that paths taken from the same start location are largely the same. This, 

combined with a previous study showing that rats cannot perform this task in the absence of 

visual cues
35

, shows that rats are using the distal visual cues to solve the task, and do not rely on 

alternate strategies. 

Allocentric Spatial Responses 

We computed the allocentric spatial responses of 523 putative pyramidal neurons from dorsal 

CA1 as described before (see Methods)
36

. If place cells support the cognitive map proposed to be 
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necessary for the MWM, neurons should show robust place fields during the task. Surprisingly, 

we found very little allocentric spatial selectivity in CA1 pyramidal units, the classic “place 

cells” (Fig. 6-3a). Very few cells have an elevated firing rate in only one region of space and  

 

Figure 6-3 | CA1 Pyramidal Neurons Lack Allocentric Spatial Selectivity in the Virtual Water 

Maze.  

a, Example trajectory-spike (left) and rate-map (right) plots from three putative pyramidal cells in dorsal 

CA1. Light traces indicate the rat’s trajectory, and dark dots mark the position of spikes from a single 

neuron; both paths and spikes are color coded according to start position. The rate maps are scaled such 

that the lowest firing rate is deep blue and the highest firing rate is deep red; these values are indicated in 

the titles of each map. Note that these neurons fire spikes at all positions, without a large increase in firing 

rate in a restricted region of the environment. b, The information content, a standard measure of spatial 

selectivity for place cells, was quite small (0.28, [0.26, 0.31] bits/spike, n=523 pyramidal units) in the 

virtual water maze task, despite near-optimal behavioral performance (see Fig. 6-2). c, The information 

content in a 2-dimensional random foraging task in the same VR had comparable information content to 

information content in the Virtual Water Maze; both were substantially less than information content in a 

2-dimensional random foraging task in RW. This indicates that the level of task demand is not a 

determining factor in the presence or absence of spatial information content. Subpanel c adapted from 

Aghajan et al., 2015
36

.  
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minimal firing everywhere else; instead, firing is diffuse throughout the environment. This lack 

of spatial selectivity is quantified by the low information content (0.28 bits/spike, Fig. 6-3b). 

This is at a similar level as information content in cells from a previous study with rats 

performing a random foraging task in the same VR (Fig. 6-3c)
36

. This demonstrates that there is 

no simple task-type or task-complexity dependence of spatial selectivity in our VR. Because rats 

must pay attention to the visual cues to show the quality of behavior shown in Figure 6-1, this 

also rules out the possibility that cells in the random foraging task showed no selectivity because 

the rats were not paying attention to the visual cues. 

Episodic Distance Selectivity 

We next asked if there was any selectivity to distance traveled, as several neurons show such 

tuning during random forging
36

 and one-dimensional running in VR
34

. We aligned position to the 

start of each trial, such that all trials began at 0 cm. In contrast to allocentric spatial selectivity, 

we saw robust distance selectivity (Fig. 6-4a). Different cells were tuned to different distances 

traveled, elevating their firing rates only around a particular distance, and suppressing their firing 

at other times, bearing a resemblance to place fields on one-dimensional tracks. This firing was 

largely independent of starting position. Of 523 putative pyramidal neurons, 127 (24%) had 

significant tuning to distance. All distances up to 300 cm were represented (Fig. 6-4b), with 

greater selectivity at shorter distances, perhaps reflecting an accumulation of error in path 

integration. For the entire population, the information content in the distance domain (0.56 

bits/spike) was significantly higher (p=1.1x10
-74

) than information content in the position 

domain, and the two measures were also positively correlated (r=0.70) (Fig. 6-4c). 
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We also compared the information content in the distance domain with information content in 

the time domain
99

. We calculated time as the total time spent moving since the trial start, 

excluding pauses. On a population level, information content for distance was comparable to but 

slightly lower (p=0.008) than information content for time (0.56 bits/spike). The two measures 

were also strongly correlated (r=0.94). This similarity is likely due to a high correlation between  

 

 
Figure 6-4 | CA1 Pyramidal Neurons Show Strong Egocentric Distance Selectivity in the Virtual 

Water Maze.  

a, Example trajectory-spike (left) and distance raster (right) plots from three putative pyramidal cells in 

dorsal CA1. Raster ticks are color-coded based on starting position. All trials begin at distance 0 and end 

at the interface between the white and gray region. These neurons have high firing rates at specific 

distances along the rat’s path, regardless of starting position. Different cells code for different distances. 

b, All units with significant information content in the distance domain (127/523, 24%) were sorted 

according to the location of the peak in their firing rate map, and normalized to their peak firing. All 

distances up to 300 cm are represented by the population of cells. c, Information content in the egocentric 

distance domain (0.56, [0.53, 0.61] bits/spike, n=523 pyramidal units) was significantly larger (p=1.1x10
-

74
, Wilcoxon signed-rank test) than information content in the allocentric domain (0.28, [0.26, 0.31] 

bits/spike, n=523 pyramidal units), and the two were strongly correlated (r=0.70, p=2.5x10
-79

, two-sided t 

test). d, Information content in the egocentric distance domain was highly correlated (r=0.94, p=2.6x10
-

237
, two-sided t test) with information content in the time domain (0.56, [0.52, 0.62], n=523 pyramidal 

units). Information content in the time domain was slightly but significantly greater than that in the 

distance domain (p=3x10
-2

, Wilcoxon signed-rank test).  
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distance and time in well-trained rats that run at a fairly constant velocity and do not spend much 

time pausing. Additional experiments with untrained rats or with modifications to the gain of the 

VR system will be needed to truly tell if these cells are responding to distance or time. 

Head-Direction Selectivity 

Another feature that pyramidal units respond to during random foraging is head direction within 

the virtual space
37

. However, due to the stereotyped trajectories the well-trained rats take in the 

virtual water maze, distance and head direction can be easily confounded. The best way to 

disentangle these sources of tuning is to analyze firing using a generalized-linear model
37

. Here, 

we approximated angular tuning by only considering the 365 units without significant distance 

tuning. 85 of these 365 units (23%) showed significant angular tuning, with elevated firing only 

at selective head-directions and minimal firing at other directions (Fig. 6-5a). The angular tuning 

maps of these units showed different preferred directions of firing and different types of 

selectivity; several maps show bimodal tuning, and some exhibit a “negative map
118

,” with 

decreased firing for a limited range of head angles (Fig. 6-5a). The entire population of non-

distance cells had a median angular sparsity of 0.17; units with significant angular tuning had a 

median angular sparsity of 0.27 (Fig. 6-5b). The nature of these responses, as well as their 

overall prevalence, is comparable to that seen in units during random foraging
37

. 

We next analyzed the tuning of the population of significantly tuned units, to see if there was a 

bias towards any particular salient distal visual cue
37

 that might guide the rat to the reward zone. 

The distribution of the preferred direction for significantly tuned units (mean angle 51.4°) was 

not different from a uniform distribution (p=0.37), with a small mean vector length (0.11), 

indicating that there was no bias in the direction of peak firing (Fig. 6-5c, left). We also 
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computed the mean firing rate of all significantly tuned units as a function of head angle; this 

distribution, too, was not significantly different from a uniform distribution (p=0.85), with a 

small mean vector length (0.04, mean angle 118°) (Fig. 6-5c, right). This demonstrates that all  

 

Figure 6-5 | Head-direction Tuning in the Virtual Water Maze.  

a, Example polar rate plots from four pyramidal cells. The angles correspond with the environmental 

schematic in Figure 6-1. The first and second sample neurons are tuned for a single head angle, firing 

maximally in one direction and minimally in all others. The third sample neuron has multimodal tuning, 

preferring to fire in two separate directions. The fourth sample neuron has suppressed firing in 90 degrees 

of the head-angle space but equal firing at all other angles. b, To avoid confounds of distance and head 

angle, only units without significant distance selectivity (365 units) were used for population analyses. 85 

of these 365 (23%) had significant angular sparsity. Histogram shows the distribution of angular sparsity 

for all non-distance modulated units (blue, 0.17, [0.15, 0.19], n=365 pyramidal units) and for the subset of 

units with significant angular sparsity (red, 0.27, [0.17, 0.31], n=85 pyramidal units). c, Left, distribution 

of the preferred direction of firing for units with significant angular sparsity covered the entire range of 

head angles and the distribution was not significantly different from a uniform distribution (p=0.37, 

Rayleigh test for circular data, n=85 pyramidal units). The mean vector of the distribution is plotted in the 

center, scaled up by a factor of 4 for visibility. Right, mean firing rate as a function of head angle for units 

with significant angular sparsity showed little clustering towards a particular angle; the distribution was 

not significantly different from a uniform distribution (p=0.85, Rayleigh test for circular data, n=85 

pyramidal units). The mean vector of the distribution is plotted in the center, scaled up by a factor of 4. 
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head angles are represented during the virtual water maze task, and provides cellular-level 

evidence that the rats are not overly relying on any particular distal visual cue to help in 

navigation.  

Modulation by Reward 

We also investigated the response of these units to the delivery and anticipation of reward. 

Rather than align spikes to the beginning of a trial, we aligned spikes to the time at which the rat 

entered the reward zone for each trial, including 2.7 seconds before and after. Several cells 

showed elevated firing rates immediately before the reward was dispensed which then shut down 

as soon as the reward is given (Fig. 6-6a, top row). Note that there is no direct stimulus that 

represents the location of the reward, and the rats approach the reward from a range of places and 

angles (Fig. 6-2a); hence, these cells can be seen as responding to the expectation of reward, 

rather than any particular stimulus. Other cells were quiet before the reward was dispensed, and 

greatly increased their firing rates after reward (Fig. 6-6a, bottom row). Some cells even fired 

with a significant delay after reward. We quantified these responses with the reward modulation 

index (RMI, see Methods), calculated only for those cells with a mean firing rate greater than 1.5 

Hz near the reward (94 units, 18%). Far more cells had a negative RMI, indicating a propensity 

to fire at higher rates before the reward than after. This is reminiscent of dopamine neurons 

coding for the discrepancy between expected reward and actual reward, though the purpose of 

such coding in hippocampal pyramidal neurons in unclear. 
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Figure 6-6 | Rate Modulation by Reward.  

a, Example peri-reward raster plots from four pyramidal cells. 2.7 seconds before and after entry into the 

reward zone (red line at 0) are plotted. The neurons in the top row show anticipatory firing and then 

quickly shut off after reward. The neurons in the bottom row dramatically increase their firing after 

reward. Responses can be punctate (bottom left) or sustained (bottom right). b, Histogram of the reward 

modulation index for all units with a mean rate greater than 1.5 Hz across the time span of 2.7 seconds 

before and after the reward (94 pyramidal units). Both anticipatory and retrospective modulation is 

present, but the population has a bias towards negative values (-0.23, [-0.31, -0.18], n=94 pyramidal units; 

p=9.2x10
-8

, Wilcoxon signed-rank test), indicating a preference to reduce firing rate after reward is 

dispensed. 

 

Discussion 

This is the first electrophysiological study of single-unit responses in a landmark-based 

navigation task. Rats demonstrated a clear ability to solve the task in a way which depended on 

the visual cues, and we made a number of exciting discoveries that call into question many 

assumptions about spatial navigation.  
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First, we find that there is very little allocentric spatial selectivity in the form of place fields in 

dorsal CA1. These responses are supposed to form the basis of the cognitive map required to 

perform the MWM, but our rats’ performance is intact without this allocentric map. This is 

contrary to many theories of spatial navigation, but not without precedent: one of the original 

papers describing the water maze stated  

 

“… given that place units detected so far in the hippocampus respond only with respect to places 

in which the rat is presently situated as opposed to places to which it intends to go, these results 

pose a challenge for electrophysiologists attempting to explain the neural mechanisms by which 

the hippocampus processes spatial information
30

.”  

 

 

 

This issue can partly be resolved by the finding of forward mental sweeps of place cells during 

decision points
119,120

, but such activity has not been shown to be necessary for successful 

navigation, particularly in a water maze task. A possible explanation for the lack of spatial 

selectivity but intact navigational ability might be overtraining
107

. It is possible that the rats in the 

current study are overtrained to the point where the virtual water maze task is no longer 

hippocampus-dependent, but striatum-dependent
121

. We find this unlikely, as robust place fields 

are present during a linear track task in RW and VR
34

, a simple task that is not hippocampus-

dependent. There is also little precedent for neural representations totally degrading once they 

are no longer needed for a particular task.  

Instead of allocentric spatial selectivity, we see an episodic distance map in about one quarter of 

units. This is expressed in terms of the distance traveled since the beginning of any trial, 

independent of start position, and covers all distances from the beginning of a trial up to 300 cm 

of distance traveled. This cutoff could be due to increased error accumulation with distance, or 
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might reflect the fact that rats had very few trials that went beyond 300 cm. Information content 

in the egocentric distance domain was greater than that in the allocentric spatial domain, and 

comparable to that in the time domain. Future experiments with changes in the gain of the VR 

ball or with untrained rats will be needed to differentiate tuning to distance from tuning to time. 

In addition to coding for distance traveled, about one quarter of the remaining neurons had 

significant tuning to the rat’s head angle. All directions were represented, with no bias in either 

the distribution of the preferred angles or the mean firing rate of the population. This serves as an 

additional, cellular level, verification that the rats’ behavior was not unduly influenced by distal 

visual cues, as no particular angle was over-represented, at least in the hippocampus. Recording 

in other head-direction nuclei in this task may indeed reveal a bias. There may also be head-

direction tuning not in a world-centered reference frame but a goal-centered frame, where 

neurons would have increased firing when facing the reward zone, independent of head angle. 

The stereotyped behavior of the rats in the current study precludes this kind of analysis, as there 

is insufficient sampling of all head angles at all positions or distances to detect such a difference. 

Similar future experiments with a larger table and rats more naïve to the task will be necessary to 

explore this possibility.  

Finally, approximately 20% of neurons had increased activity around the time the rat entered the 

reward zone. Rather than responding to the delivery of reward, the majority of these units had a 

larger firing rate just before the reward was delivered, and suppressed their firing once the 

reward was delivered. These units may represent the discrepancy between expected reward and 

actual reward, operating in a similar manner to dopamine systems responding to reward. We 

observed some units that preferentially fired when the rat was in the reward zone, but there were 
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not enough to fully analyze. Additional data will be necessary to determine the short- and long-

term dynamics of these reward-modulated neurons and their relation to learning the virtual water 

maze task.  

Hence the allocentric “cognitive map” associated with place cells is not necessary for navigation 

based on distal visual cues. Without place cells, how is it possible for rats to navigate to the 

reward zone? We propose that a combination of episodic distance selectivity and allocentric 

head-direction selectivity provides sufficient information to be able to solve this task. In this 

model, head-direction selective neurons would first provide information about the starting 

position of the rat. Integration of continuous head-direction signals
122

 coupled with distance will 

allow the construction of a path from any start position to the goal
122,123

. Distance coding, as well 

as firing at times near the presentation of reward, could represent each instant in one “episode” 

of a trial, with angular tuning anchoring these episodes to the allocentric space. Finally, it is 

possible that the receptive fields of these neurons may change with experience, as is the case on 

1-dimensional tracks. Such changes, tracked over the course of learning the virtual water maze, 

may reveal important links between neural activity and behavior in a way not previously 

possible. 
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7. Conclusions 

By utilizing the above novel technologies, we are bringing closer the two worlds of the 

hippocampus, one of in vivo electrophysiology of spatial coding, and the other of the integral 

function of the hippocampus in episodic memory. In view of the fact that sensorimotor 

information is egocentric by nature, our insights about self-movement representations, the 

possible computations carried out by dendrites, as well as the predictive nature of coding in PPC 

will be essential in determining how self-motion and self-referenced sensory information can be 

translated to an allocentric map. But it is clear from our studies in VR that the view of 

hippocampal cells as only representing allocentric space is in need of revision. This network also 

has representations of head-angle and distance that are sometimes, but not always, concurrent 

with allocentric spatial representations.  

Quite surprising is our finding that rats can learn a landmark based navigation task, in the form 

of the Virtual Water Maze, in the complete absence of hippocampal spatial selectivity. While this 

does not mean that allocentric representations are never used during spatial navigation, it does 

mean that this behavior is not dependent on such a representation. In our hands, the 

representations of episodic distance and allocentric head angle are enough to support spatial 

navigation. In this view, hippocampal cells become active during particular points in an episode 

of a single trial, rather than at a particular location. Perhaps allocentric “place” is less of an 

absolute measure in the brain, and more akin to the representation of episodes of previous 

experiences. The way such representations form through nonlinear dendritic computations on 

multiple sources of information will be fascinating to study as these technologies improve 

further, and will lead us to a more complete understanding of episodic memory. 
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