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Abstract

Background: Introgressive hybridization can reassort genetic variants into beneficial
combinations, permitting adaptation to new ecological niches. To evaluate
evolutionary patterns and dynamics that contribute to introgression, we investigate
six wild Vitis species that are native to the Southwestern United States and useful for
breeding grapevine (V. vinifera) rootstocks.

Results: By creating a reference genome assembly from one wild species, V.
arizonica, and by resequencing 130 accessions, we focus on identifying putatively
introgressed regions (pIRs) between species. We find six species pairs with signals of
introgression between them, comprising up to ~ 8% of the extant genome for some
pairs. The pIRs tend to be gene poor, located in regions of high recombination and
enriched for genes implicated in disease resistance functions. To assess potential pIR
function, we explore SNP associations to bioclimatic variables and to bacterial levels
after infection with the causative agent of Pierce’s disease (Xylella fastidiosa). pIRs are
enriched for SNPs associated with both climate and bacterial levels, suggesting that
introgression is driven by adaptation to biotic and abiotic stressors.

Conclusions: Altogether, this study yields insights into the genomic extent of
introgression, potential pressures that shape adaptive introgression, and the
evolutionary history of economically important wild relatives of a critical crop.

Keywords: Adaptive introgression, Pierce’s disease, Grapevines, Climate

Background
Species emerge from complex interactions among evolutionary processes. For example,

genetic drift and local adaptation drive divergence between populations, which ultim-

ately leads to genetic isolation and eventual speciation [1, 2]. The process of divergence

can be slowed, in turn, by gene flow between populations, which maintains genetic

similarity. There is growing evidence, however, that introgressive hybridization be-

tween populations and species does more than homogenize gene pools. It may also be

a source of novelty that reassorts genetic variants into beneficial combinations,
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permitting adaptation to new ecological niches [3]. This ability to reassort genetic vari-

ation may partially explain the highly reticulated evolutionary history of adaptive radia-

tions like Heliconius butterflies [4], tomatoes [5], Darwin’s finches [6], and African

cichlids [7]. Introgression has also played a major role in the diversification and speci-

ation of angiosperms [8], because hybridization affects an estimated ~ 25% of flowering

plant species [9].

It is generally not known how frequently introgression occurs between species,

whether introgression events are adaptive, and, if so, the traits that have been affected.

Fortunately, genomic approaches have begun to provide some insights into these cen-

tral questions. For example, the analysis of Heliconius genomes suggests that a large in-

version was transferred between species and that this event was adaptive because the

inversion contains a color pattern locus that controls mimicry and crypsis [4]. Similarly,

a large chromosomal region was exchanged between distinct sunflower subspecies,

likely facilitating genetic adaptation to xeric environments [10]. Recent work in cypress

[11], oaks [12, 13], maize [14], and cultivated date palms [15] also suggest that intro-

gression between plant species facilitates adaptation to local environments. The work

in maize and date palms further highlights the importance of studying the wild relatives

of crop species, because they are potential sources of traits for agronomic improvement

[16]. Indeed, numerous studies have documented introgression between a crop and its

wild relative, leading to a growing understanding of how introgression contributes to

important agronomic traits like highland adaptation in maize [14], stress tolerance in

potatoes [17], and perhaps fruit quality in apple [18]. We nonetheless emphasize that

for many genomic studies of introgression among wild species, the potential phenotypic

basis for adaptation has been either unclear or unstudied.

Here we explore the genomic extent and evolutionary dynamics of introgression

among wild relatives of cultivated grapevines (Vitis vinifera ssp. sativa). The genus Vitis

likely originated in North America ~ 45 my [19] and contains two subgenera [Muscadi-

nia (2n = 40) and Vitis (2n = 38)] that encompass ~ 70 species across varied environ-

ments. The subgenus Vitis has a disjunct distribution across North America and

Eurasia [19], with the ~ 25 North American species [20] distributed broadly across the

continent, including the American Southwest, where extreme temperature changes and

drought are pervasive abiotic stressors. All species within the subgenus are dioecious,

interfertile, and often sympatric [21], suggesting the possibility of an extensive history

of introgression among species [22, 23]. However, the extent and genomic location of

introgressed regions remain unexplored among Vitis species, as do the potential func-

tions and evolutionary forces that may shape successful introgression events.

Vitis is also an important study system because cultivated V. vinifera (hereafter vinif-

era) is the most valuable horticultural crop in the world [24] and also because it is a

model for the study of perennial fruit crops [25]. It is not always appreciated, however,

that the cultivation, sustainability, and security of grapevine cultivation relies on North

American (NA) Vitis species as rootstocks that provide resistance to abiotic and biotic

stress [21, 26, 27]. There is a need to identify additional sources of resistance to biotic

and abiotic stress, however, because the major rootstock cultivars currently utilized

represent a narrow genetic foundation [28]. One biotic stress is Pierce’s disease (PD),

which is a global threat to the sustainability of wine production [29]. PD is caused by a

bacterium (Xyllela fastidiosa) that spreads from plant to plant by xylem-feeding insect
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vectors. Several Vitis species are polymorphic for resistance to PD, including V. arizo-

nica [30] and other species native to the Southwestern United States [31]. These obser-

vations open interesting questions about the potential introgression of pathogen

resistance loci among wild grape species.

In this study, our goal is to characterize the genomic extent of introgression among

wild Vitis species from the American Southwest. To do so, we have assembled a refer-

ence genome from one species (V. arizonica) and generated whole-genome resequen-

cing data from 130 accessions representing six Vitis species from portions of their

native ranges (Fig. 1). Some of these species have largely overlapping distributions (e.g.,

V candicans and V. berlandieri in Texas), others have disjunct distributions (e.g., V. ari-

zonica), and still another (V. riparia) has populations in the Southwest at the edge of a

broader continental distribution. To complement our genetic data, we have also

assessed PD resistance for each accession and gathered bioclimatic data from their lo-

cation of origin. Given this multifaceted dataset, we address four sets of questions. First,

given that species are interfertile and can overlap substantively in geographic range, are

they genetically distinct? Second, if they are distinct, is there nonetheless genetic evi-

dence for introgression? Third, if there is evidence for introgression, what are the gen-

omic characteristics of introgressed regions, in terms of locations, size, and gene

content? Finally, is there evidence that introgression events have played an adaptive

role, as evidenced by genetic associations with either disease resistance or bioclimatic

variables? In addressing these questions, this study provides novel insights into the evo-

lutionary dynamics that shape the radiation of Vitis and identifies potentially useful

genomic targets for breeding.

Results
Population structure and phylogeny

We generated a reference genome of V. arizonica from previously reported long-read

sequences [32] that we assembled with the aid of a new optical map. The reference as-

sembly contained 19 anchored pseudomolecules, an N50 of 25.9Mb, a size of 503Mb,

and a BUSCO score of 96.4% (Additional File 1: Table S1 & Table S2). We generated

short- and long-read RNAseq data to annotate genes within the genome, ultimately

Fig. 1 Geographic distribution of sampled populations of wild grapes. Shapes correspond to different
genetic clusters. Samples colored red or black were classified as resistant or susceptible to Pierce’s
disease, respectively
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predicting 28,259 gene models. We then resequenced the genome of 130 Vitis samples

from throughout the native range of six species (V. arizonica, V. berlandieri, V. candi-

cans, V. girdiana, V. monticola, and V. riparia) (Fig. 1, Additional File 1: Table S3).

After mapping resequencing data to the reference, we identified ~ 20 million SNPs

among all samples (Additional File 1: Table S4) and used them to assess genetic struc-

ture using NGSadmix [33] with K = 2 to 10 clusters. The highest support was for K = 7

clusters, corresponding to one per species, except for V. girdiana, which had two dis-

junct groups from different geographical locations (Figs. 1 and 2A, Additional File 2:

Figure S1). Based on NGSadmix results, we found and removed 19 hybrid individuals

that had < 80% of the admixture proportion assigned to a single cluster [34, 35], leaving

a final dataset of 111 accessions. Of these, four individuals (“vber09,” “vrip15,” “vcan26,”

and “vcan27”) did not fit neatly into their initially proposed species group based on our

genetic clustering; we treated each of the four as mis-named and assigned them to a

species based on genetic grouping. Altogether, the 111 samples included accessions

from V. arizonica (n = 22), V. candicans (n = 24), V. berlandieri (n = 22), V. girdiana

(n = 18), V. riparia (n = 19), and V. monticola (n = 6) (Fig. 2A). Genome-wide nucleo-

tide diversity per base pair (π) averaged 0.00284 across species and ranged from

0.00211 in V. berlandieri to 0.00353 in V. monticola (Additional File 1: Table S5).

We created a consensus phylogenetic tree based on a reduced number of SNPs that

limit the effects of linkage disequilibrium (see “Methods”). The phylogeny had median

bootstrap support of 88.5% for all nodes and strong support (> 76%) for nodes that sep-

arated species groups (Fig. 2B, Additional File 2: Figure S2). In addition, the accessions

from each species formed a well-supported monophyletic clade, demonstrating that

species are genetically identifiable and also justifying treating each named species as a

separate group. Given the phylogeny, we calculated divergence times using a calibration

point of 28.32 million years [22] for the separation of M. rotundifolia from the Vitis

subgenus (Additional File 2: Figure S3). Divergence time estimates indicated that the

deepest node of individual species often dated to ~ 10 million years or older, but the di-

vergence between species typically exceeded 20 million years (Additional File 2: Figure

S3). Despite strong support for the consensus tree, phylogenies based on individual

10Kb genomic regions from throughout the genome were highly discordant, represent-

ing “clouds” around species (Fig. 2B). These clouds illustrate potentially reticulate line-

ages and suggest the possibility of incomplete lineage sorting and/or a history of

introgression among species.

Tests for introgression and geographic overlap among species

To formally test for introgression, we calculated the D statistic [36–38]. D is a genome-

wide statistic that measures the excess of shared ancestral alleles based on a tree model

of four populations, designated as (((P1,P2),P3),O), where P1, P2, and P3 are ingroups

and O is the outgroup. D is expected to be zero under the null hypothesis of incom-

plete lineage sorting but deviates from zero when there is introgression between P2

and P3 [36, 37, 39]. We calculated D for all combinations of three Vitis ingroup species

(hereafter called “trios”) that had an appropriate topology for the test according to the

consensus tree (Fig. 2B, Additional File 1: Table S6). We used Muscadinia rotundifolia

as the outgroup for all trios and estimated significance using a block jackknife approach
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[37]. Of 11 trios tested, nine had a significant D value at p < 0.0031 (Additional File 1:

Table S6), representing a total of six P2-P3 species pairs (Fig. 2C, Table 1).

The D statistic is useful for detecting introgression but a poor estimator of the intro-

gressed proportion of genome [39, 40], so we applied the f4-ratio [37] to estimate the

proportion of the genome with the signal of introgression. The values ranged from ~

2.3% of the genome in comparisons between V. riparia and V. candicans, to ~ 8.0% be-

tween V. arizonica and V. monticola (Table 1). For some comparisons, we were able to

test the same species pairs with different “control” P1 species. In two cases, the same

species pairs yielded similar estimates (Table 1) providing some reassurance about the

results. In contrast, the f4-ratio estimate varied widely, from 2.1 to 8.0%, for tests be-

tween V. monticola and V. arizonica depending on the P1 control species; notably,

however, D was significant with either control. Following calculation of the f4-ratio, we

Fig. 2 Genetic history of the wild grapes sampled. A Genetic structure of samples detected by the structure
analysis (K = 7). Hybrid samples are not included but see Additional File 2: Figure S1. B The phylogenetic
tree in black corresponds to the consensus tree. Each node has a pie chart with the black portion
indicating the proportion of supporting bootstrap replicates. The red phylogenies in the background
correspond to 500 highly supported consensus trees (median bootstrap support > 70%) based on separate
10-kb windows throughout the genome. The scale bar represents 0.2 average substitutions per nucleotide.
C Diagram of the tree models used for the nine trios that had significant introgression signals, structured
from top to bottom of each tree as follows: outgroup, P3, P2, and P1. In this diagram, the species are
abbreviated as mrot: M. rotundifolia, vari: V. arizonica, vcan: V. candicans, vmon: V. monticola, vber: V.
berlandieri, vrip: V. riparia and vgir: V. girdiana. D Examples of SDM overlaps from pairs of species with
evidence of introgression projected in one of three periods: Pleistocene, Holocene and the Present. The
inset in the bottom left corner shows the area of overlap per period. The overlap corresponds to the
number of overlapped pixels from the raster objects at a 2.5-arcsecond resolution. See Additional File 2:
Figures S5, S6 and S7 for additional SDMs featuring pairs of species
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also calculated the f-branch statistic [41], which recognizes that trios are not independ-

ent because they share branches. The f-branch statistic did not yield significant values

for any of the internal branch nodes (Additional File 2: Figure S4), suggesting that

introgression signals are due to multiple recurrent events instead of a single ancestral

event. Taken together, these results show that (i) D and f4-ratio support historical

introgression among species, (ii) the history of introgression is complex, potentially in-

volving multiple species pairs and multiple events, and (iii) V. riparia was most com-

monly implicated in introgression events with other species (Fig. 2C).

A puzzling feature of these results is that some P2-P3 species pairs currently have

few or no regions of geographic overlap (Figure S5; Additional File 2: Figure S5), sug-

gesting limited opportunities for hybridization. To explore the potential for sympatry

between species, we performed species distribution modeling (SDM). SDMs identify cli-

matic factors that define the geographic distribution of a species and predict the change

in species’ distribution over time, given climate prediction models [42–44]. We con-

structed SDMs based on bioclimatic data from the present, the Holocene (~ 6000 ya),

and the Pleistocene (~ 18,000 ya) (see “Methods”) (Fig. 2D). Some of the species pairs

had no predicted geographic overlap in any of the three periods (Additional File 2: Fig-

ure S6), and none of these yielded genetic evidence for introgression. Others had over-

lapping distributions but without detected introgression events (Additional File 2:

Figure S7). Finally, all species pairs with genomic evidence for introgression had some

geographic overlap (Additional File 2: Figure S5). In some cases, however, the predicted

geographic overlap between species was higher in the past. For example, V. candicans

and V. riparia had little predicted overlap in the present and in the Pleistocene, but

substantial predicted overlap in the Holocene (Fig. 2D). These SDMs support current

or historical sympatry of species that yielded evidence for introgression, and they also

suggest that detected introgression events are unlikely to have occurred very recently.

Introgression at chromosomal scales

For each of the nine trios with significant D values, we identified putative introgressed

chromosomal regions by calculating fd [39] and fdM [41] in non-overlapping windows

of 1000 SNPs along chromosomes (Additional File 2: Figures S8-S11). The two metrics

were significantly correlated (R > 0.75, p < 2.2e−16) along the genome (Additional File

2: Figure S12) and gave qualitatively similar results; we focused on fdM because positive

values are interpretable as exchange of derived alleles between P2 and P3 [41]. For each

trio, we defined putative introgressed regions (pIRs) (Dataset S1) [45] as the top fdM
windows that summed to the genomic proportion estimated by the f4-ratio (Table 1).

With pIRs identified, we evaluated their basic characteristics. For example, the mean

length of pIRs ranged from 154 kb in the AGR trio (see Table 1 and Fig. 2C for trio

definitions) to 271 kb in GRM, with the number of pIRs ranging from 54 to 269 (Table

1). The total complement of pIRs contained from 455 to 2282 genes across trios, repre-

senting an estimated 1.6 to 8.1% of all genes. We evaluated GO enrichment for the set

of putatively introgressed genes and found 15 terms significantly enriched within pIRs

(hypergeometric test, p value < 0.048, Additional File 1: Table S7), including cell-cell

signaling (GO:0007267), signaling receptor activity (GO:0038023), and nucleotide bind-

ing (GO:0000166). However, pIRs had significantly lower gene density per kilobase than
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the genome-wide average in 6 of 9 trios (Table 1, Additional File 1: Table S8 & Add-

itional File 2: Figure S13), and in no case were pIRs significantly enriched for gene

density.

Finally, we assessed three additional features of pIRs. First, we reasoned that if pIRs

result from introgression events, they should not follow the species consensus tree. We

therefore investigated the phylogeny of pIRs for each trio using twisst [46], expecting

P2 and P3 to be topologically reversed within introgressed regions. Indeed, for each trio

the predominant phylogenetic weight was for the tree ((P1,P3),P2,O), as expected if

there were introgression between P2 and P3 (Additional File 2: Figure S14). Second,

some studies have suggested that introgressed regions should be in genomic regions of

high recombination [47]. We used a genetic map to measure recombination in cM/kb

[48]; in every trio, pIRs were in regions of higher recombination than the genomic aver-

age (Table 1, Additional File 1: Table S9). Third, we sought to determine if pIRs repre-

sent adaptive events by assessing their overlap with inferred selective sweeps. To do so,

we evaluated sweeps in the P2 population (see “Methods”), focusing on 10-kp windows

within the highest 5% μ statistic support. On average, 12.2% of pIRs had at least one

putative sweep across the trios. However, sweeps were generally not enriched within

pIRs; only one trio (ARC) had significantly more sweeps in pIRs than expected at ran-

dom (p < 2.0e−3, permutation test) (Table 1). This trio provided an interesting example

of a potentially adaptive pIR between V. riparia and V. candicans on chromosome 16,

where the pIR at 14–15Mb contained multiple putative sweeps (Fig. 3).

pIRs may be enriched for biotic associations

pIRs were not enriched for selective sweeps, which suggests superficially that they may

not have resulted from recent adaptive events. However, another way to evaluate the

potential for adaptation is to focus on function, especially potential roles of pIR genes

in biotic resistance. We therefore subjected all 28,259 predicted genes to a pipeline de-

signed to identify disease resistance genes [49] and tallied genes in the four most-

studied types of pathogen recognition genes (PRGs)—i.e., CC-NB-LRR (CNL), TIR-NB-

LRR (TNL), Receptor Like Proteins (RLP), and Receptor Like Kinases (RLK) genes. We

found 208 CNLs, 55 TNLs, 258 RLKs, and 336 RLPs in the V. arizonica reference

(Dataset S2) [45], representing 3% of all genes. We then assessed whether pIRs were

Fig. 3 Introgression statistics along chromosome 16 in the ARC trio, which consists of V. arizonica as P1, V.
riparia as P2, and V. candicans as P3. A Introgression signal measured as fdM in windows across the
chromosome. Windows within 1000 bp of each other were merged. The red line shows the cutoff value to
define pIRs, calculated by highest x% of fdM values, where x was determined for each trio by the f4-ratio
estimate. B The μ statistic showing potential locations of selective sweeps in V. riparia
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functionally enriched in PRGs among genes. Notably, PRGs were enriched within the

pIRs for seven trios, with five significantly enriched (hypergeometric test, p value <

3.66e−04) (Fig. 4A, Table 1). Regions introgressed between V. candicans and V. riparia

were especially noteworthy, because all four PRG types were significantly enriched. Il-

lustrative examples include the pIRs at 3Mb and 22Mb on chromosome nine, which

had 53.7% and 33.3% of their genes annotated as PRGs, respectively (Fig. 4B). The pIR

at 14Mb in chromosome 16 of the ARC trio was another region of interest (Fig. 3), be-

cause it contained multiple selective sweeps and had 39.1% of genes annotated as PRGs.

Finally, we note that the enrichment of PRGs with pIRs is not due to the confounding

effects of recombination. We separated the genome into four quadrants based on re-

combination rate (high, medium, low, and no recombination) and found that genome-

wide PRGs are enriched only in low recombination genomic regions (p = 0.0004).

Hence, pIRs are rare among high recombination genomic regions because they are

enriched for PRGs.

The enrichment for PRGs suggests that pIRs could provide an adaptive benefit to bi-

otic challenges. To pursue this idea further, we used quantitative measurements of X.

fastidiosa bacterial levels in plant stems after manual infection (see “Methods”). We

gathered X. fastidiosa data for 108 of the 111 accessions [30, 31] (Fig. 1) and performed

genome-wide associations studies (GWAS) using bacterial levels as a quantitative

phenotype (Additional File 1: Table S10). Our dataset was not ideal for GWAS because:

(i) individual species had small sample sizes, which limits statistical power within

Fig. 4 Biotic and abiotic signals in pIRs. A Illustrates the pIRs that were either enriched (black arrows) or
significantly enriched (green arrows) in at least one category of disease resistance genes, based on
permutation of genes across the genome. The four categories of disease resistance genes are CNL: CC-NB-
LRR, TNL: TIR-NB-LRR, RLP: Receptor Like Proteins, and RLK: Receptor Like Kinases. Asterisks denote
significant categories. B Shows windows with introgression signals with pIRs (above the red line) from V.
candicans into V. berlandieri (based on the ARB trio) across chromosome 9. The details show two pIRs that
are highly enriched in disease resistance genes in green, with non-disease genes shown in black. C Number
of SNPs associated with all 19 bioclimatic variables per species. D Shows the pIRs that were significantly
enriched (blue) in at least one of the top three bioclimatic variables. Asterisks denote significant enrichment
in pIRs, based on permutation tests. E The diagram shows the distributions of the number of climate-
associated SNPs within pIRs based on permutation for the top three bioclimatic variables for the ARC trio.
The distributions based on permutations are in black and the observed value is in magenta
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species and (ii) the entire dataset, while much larger, contained accessions from mul-

tiple species that reflect strong genetic structure (Fig. 2A). We nonetheless performed

GWAS on the entire dataset, with a specific focus on whether pIR regions have

enriched numbers of SNPs that associate with variation in bacterial levels.

To analyze the dataset, we applied Latent Factor Mixed Models (LFFM2) [50]

while correcting for seven discrete genetic clusters (Fig. 2A) with seven Latent Fac-

tors (LFs) (Fig. 2A, Additional File 2: Figure S15A) and using a genome inflation

factor to correct for population structure (Additional File 2: Figure S15B-C and

Additional File 2: Figure S16). We also used a reduced set of 397,723 SNP sites

that had no missing data across all 108 accessions and were polymorphic in at

least one species. With this approach, we found bacterial levels were significantly

associated (FDR adjusted p < 0.05) with 261 SNPs across the genome (Dataset S3,

Additional File 2: Figure S17) [45], of which 25% (64/261) were located in pIRs of

at least one of the nine trios. We then measured, for each trio, the relative enrich-

ment of SNPs per kilobase within pIRs compared to the remainder of the genome;

pIRs had higher densities of associated SNPs in six of nine trios (Table 1). Finally,

we assessed the significance of this enrichment using a randomization approach

that takes into account SNP densities (see “Methods”); the level of enrichment was

significantly higher than expected at random in three of the nine trios (p < 3.32e−2;

permutation test) (Table 1, Additional File 1: Table S11).

Because genetic structure can increase the number of false positives (Additional File 2:

Figure S16), we also tested the effect of increasing the number of LFs to further control

for population structure. Based on Q-Q plots, we found that increasing the number of

LFs reduced the impact of genetic structure, but led to fewer significantly positive associ-

ated SNPS—particularly for increasing LF = 7 to LF = 8—but with similar overall patterns

(Additional File 2: Figure S18). At LF = 8, there were 129 associated SNPs. Although up

to 10% of these outlier SNPs were found within pIRs for some trios, statistical tests for en-

richment within pIRs were no longer significant. We suspect that the increase of LFs may

better control for genetic structure but likely at the cost of statistical power in both

GWAS (see ref. [51]) and enrichment tests. We conclude that pIRs house SNPs associated

with bacterial levels and tend to be enriched for such SNPs in some analyses.

pIRs are enriched for abiotic associations

Given evidence for pIR enrichment for both defense-related genes and for SNPs associ-

ated with one biotic interaction (with X. fastidiosa), we also performed genome envir-

onment associations (GEA) to assess abiotic associations. We used BayPass [52] to

identify associations between SNPs and 19 bioclimatic variables for each Vitis species

separately. Outlier SNPs were defined as having Bayes Factor (BF) > 10 [52, 53]. For

each species, we then identified the three bioclimatic variables with the highest number

of outlier SNPs (Fig. 4C, Additional File 2: Figure S19). For most species, outlier SNPs

were especially associated with low temperatures during the coldest period (BIO11 and

BIO6), the temperature of the driest months (BIO9), and/or mean diurnal range

(BIO2). The number of candidate SNPs associated with each of the three strongest bio-

climatic variables ranged from 3380 SNPs (for BIO9 in V. candicans) to 39,587 (for

BIO11 in V. arizonica) (Dataset S4) [45].
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We then assessed whether pIRs in the P2 species were enriched for outlier SNPs,

doing so separately for each trio and for each of the three bioclimatic variables. Out of

27 potential combinations (= 3 bioclimatic variables × 9 trios), 16 combinations were

enriched for candidate SNPs within pIRs across seven trios (p < 2.65e−2; permutation

test) (Fig. 4E, Additional File 1: Table S12, Dataset S5) [45]. Thus, despite the fact that

they tend to represent gene-poor and high recombination regions of the genome, pIRs

are enriched for SNPs associated with bioclimatic variables.

Discussion
Genomic analyses have fueled a growing realization that introgression is an important

evolutionary process. These genomic studies have been enhanced by the application of

population genomic approaches, like D statistics [36, 37] and related metrics. Nonethe-

less, these studies often suffer from one (or more) of three limitations. First, a surpris-

ing number have relied on reduced representation sequencing methods and poor

reference genomes [54]. As a consequence, these studies often have the power to iden-

tify a signal of introgression but lack the genomic resolution to adequately characterize

the location and content of introgressed regions. Second, many—and perhaps most—

studies have focused on introgression between a single pair of taxa [54]. While this sim-

plifies analysis and interpretation, it makes it difficult to infer general evolutionary pat-

terns. Finally, many studies lack information about the potential phenotypic effects of

introgressed regions [55], although introgression events into a crop from a wild relative

constitute notable exceptions [56]. Ultimately, information about potential phenotypic

effects are crucial for understanding the evolutionary processes that affect retention of

introgressed regions.

In this study, we have used whole genome resequencing data to identify putatively

introgress regions (pIRs) across six wild Vitis species. Vitis is an interesting system for

studying introgression because it is an example of an adaptive radiation [19], because

several species grow in sympatry (Figs. 1 and 2D & Additional File 2: Figure S5) and be-

cause all wild species have the potential to be (or already are) agronomically important.

Moreover, all Vitis species are inter-fertile, with hybrid individuals found in nature

[21]. To facilitate our study of historical introgression, we first generated a reference

genome assembly for V. arizonica. To date, four genomes have been published from

other wild Vitis species, two from V. riparia [57, 58], Vitis labrusca L. [59], and one

genome from V. amurensis [60]. However, the V. arizonica genome is more contiguous

than other North American Vitis genomes (e.g., scaffold N50 of ~ 1Mb [57] vs. 25.9

Mb), which presents a clear advantage for its use. Nonetheless, the use of a single gen-

ome raises the spector of reference bias. Our use of high coverage (~ 25× average

coverage) whole-genome resequencing data should prevent substantial ascertainment

biases [61], but reference bias may also influence estimates of heterozygosity and allele

frequencies [62, 63] and cannot capture true variants that are not present in reference

haplotypes [64]. Full amelioration of reference bias likely requires a genome from all

six species in the study, which are not currently available. If they do become available,

the optimal strategy for reducing reference bias is not yet clear, but strategies like align-

ing the resequencing data to multiple assemblies, e.g., [65, 66] or to a Vitis pangenome

may prove fruitful. Fortunately, however, at least two studies have evaluated reference
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bias in population genetics analyses, and they concluded that the effect of the reference

bias is unlikely to bias broad demographic and evolutionary genomic analyses [62, 63].

Evidence for extensive effects of introgression on genomes

Using the V. arizonica reference, we have produced a dataset of ~ 20 million SNPs

from high coverage (~ 25×) data representing 130 accessions. We first used the SNPs

to investigate genetic clustering and phylogenetic relationships. After the removal of 19

inferred hybrid individuals, we found that individuals from each species formed a

monophyletic clade and also that inter-species relationships had strong support (Fig. 2).

This last point is interesting because phylogenetic treatments of Vitis have not yet

reached a broad consensus about species’ relationships [67]. The lack of phylogenetic

resolution is not surprising given the rapid radiation and inter-fertility of Vitis species,

but our results suggest that further phylogenetic analyses based on whole genome data

and population-level sampling may clarify relationships within this model genus.

Despite the well-supported inter-species phylogeny, we have also detected introgres-

sion. D and f statistics detect introgression between six distinct pairs of species, among

a total of eight tested pairs (Fig. 2C). These analyses also suggest that four of the six

taxa (and most notably V. riparia) have complex histories of hybridization and intro-

gression with potentially more than one species. The results also imply that 2 to 8% of

the genomes of some species owe their origins to introgression (Fig. 2C and Table 1).

For comparison, the lower value is similar to the 2% of the human genome inferred as

having neanderthal origin [68], and the higher value exceeds the 5% percentage of gen-

ome introgressed between Z. mays ssp. mays and ssp. mexicana [69]. Overall, our work

supports the idea that introgression shapes substantial regions of wild extant plant

genomes.

It remains difficult, however, to infer the evolutionary forces that lead to the retention

of introgressed regions within hybrid individuals [70]. One hypothesis is that they are

retained because they reduce genetic load, particularly when deleterious alleles are re-

cessive. Under this model, the introgressed region from a donor population contributes

to lower load in a hybrid compared to non-introgressed members of the receptor popu-

lation, thereby creating a fitness advantage. This scenario may be most likely for regions

of the genome that (i) are unlikely to contribute numerous deleterious mutations (and

hence likely to be gene poor); (ii) have high recombination rates, where interference

among mutations is minimized [47]; and (iii) come from donor populations with higher

effective population sizes (Ne) than recipient species. This last point reflects the fact

that high Ne species are generally expected to have a lower deleterious load. In our spe-

cies, however, we do not find substantial variation in Ne, because nucleotide diversity

varies < 2-fold, making it hard to assess any relationship between population size and

hybridization outcomes. Our results are, however, consistent with the first two points,

because pIRs are gene poor in 5 of 9 trios (relative to randomly chosen genomic re-

gions of the same size) and also because the pIRs in all trios are in regions with higher

recombination rates than the genome-wide average (Table 1). Here we must recognize

an important caveat: our trios are neither evolutionary nor statistically independent. As

a consequence, conclusions based solely on the proportion of trios may be misleading.

Nonetheless, these two specific trends are clear, because none of the nine trios have
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enriched gene density within the pIRs and because all nine trios have pIRs with higher

recombination rates than the genomic background (Table 1).

Potential adaptive significance of introgressed regions

Another non-exclusive hypothesis is that introgression is fueled by adaptation. Indeed,

a recent simulation study has found that adaptation (and not deleterious load by itself)

may be necessary to produce positive introgression statistics, particularly for regions

that have high recombination rates and low gene density [71], like our pIRs. To investi-

gate potential signals and causes of adaptation in our data, we have performed two dis-

tinct types of analyses. The first is selective sweep mapping within recipient species.

While there were some compelling examples of overlapping sweeps and pIRs (Fig. 3),

pIRs are generally not enriched for selective sweeps (Table 1). The lack of enrichment

does not completely nullify an adaptive explanation for introgression, however, both

because selective sweep mapping is inherently noisy and because sweeps are detectable

only over a finite time frame. To the latter point, we believe that some pIRs reflect old

events, based on two sources of information. First, most species pairs that show evi-

dence for introgression do not currently grow in sympatry; SDMs suggest they were

sympatric only in the past (Fig. 2D & Additional File 2: Figure S5). Second, some pIRs

overlapped among trios, suggesting that introgression events pre-date the origin of

current species (despite the lack of significant f-branch statistics on internal branches).

For example, we compared two trios that had V. riparia as the P2 species. The first

(GRM) had V. monticola as P3 and the second (GRB) had V. berlandieri as P3. The

two trios had 142 and 293 pIRs, with 73 overlapping. This observation suggests the

possibility that the introgression events contributing to these 73 pIRs pre-date the spe-

ciation of V. monticola and V. berlandieri.

Another approach to assess adaptation is to investigate associations with potentially

adaptive functions. Accordingly, we have assessed gene content and explored associa-

tions with biotic and abiotic variables. For gene content, the pIRs have a consistent

over-enrichment of genes involved in defense functions; seven of nine trios have pIRs

that have more than the expected number of disease resistance genes, with five of seven

statistically significant (Table 1). This phenomenon is most pronounced for V. riparia,

because it is the P2 species in all five of these trios. Nonetheless, when we extend our

work to include a quantitative phenotype—i.e., an assay of X. fastidiosa quantity after

infection—we find that six of nine trios have pIRs enriched for SNPs associated with

bacterial level, with three significantly so (Table 1). Interestingly, one of the three in-

volves V. arizonica, so that our joint approach based on significant enrichments in gene

content and bacterial levels implicates pIRs in disease function from a total of six of the

nine trios (Table 1). We caution that pIR enrichment for associated SNPs is less

marked when the GWAS model includes more latent factors (Additional File 2: Figure

S18), and we must again recognize inherent limitations of our GWAS analyses and the

lack of independence among trios. Nonetheless, the data on bacterial level and disease

resistance enrichment (Fig. 4A) suggest that pathogen interactions could be a major

feature shaping adaptive retention of introgressed regions in Vitis. Our results comple-

ment findings that plant-pathogen interactions play dominant roles in shaping the gen-

etic diversity [72–74] and evolutionary dynamics [74–76] of plant populations, but they
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also extend these findings by suggesting that pathogen interactions shape the outcome

of introgression events [77]. More empirical work is merited toward this end, both for

Vitis species and plants more generally.

We have also assessed the potential for adaptive introgression by performing

genome-environment associations, which show that climate-associated SNPs are highly

significantly enriched within pIRs for at least one of the top three bioclimatic variables

in eight of the nine trios (Table 1). One interesting pattern is that the results imply that

cold-adapted alleles (e.g., as indicated by pIR associations with BIO6) have introgressed

into V. riparia. This is puzzling, both because V. riparia is the most cold-hardy species

among North America wild Vitis [78] and also because our sample represents a geo-

graphic region that is likely to experience warmer temperatures than most V. riparia

populations. However, recent studies about the physiological processes involved in

grape cold hardiness may provide clues to this puzzle [79, 80]. Perennial plants reduce

seasonal cold hardiness by the process of deacclimation, and the rate of deacclimation

varies among wild grape species [79]. Because deacclimation affects the time of bud-

break, it is a critical process for reproduction. We speculate that historical introgres-

sions into V. riparia may have facilitated adaptation to southern regions by

contributing alleles that avoid premature budbreak during the midwinter temperature

increases that can be common in the Southwest. Clearly, this speculation requires fur-

ther study to be tested thoroughly.

There is, however, another intriguing possibility, which is that climate-associations

do not directly reflect adaptation to climate but rather serve as indirect indicators of bi-

otic stressors within a particular climate. Some evidence from this possibility comes

from the observation that, on average, 17.8% of the genes annotated as plant resistance

genes in pIRs had a candidate SNP associated with a bioclimatic variable. If true, this

idea strengthens the hypothesis that the complex history of introgression among Vitis

species is driven in part by adaptation to biotic stress, which parallels inferences based

on introgression events between neanderthals and humans [81] and between Populus

species [77]. Overall, these results suggest that evolution has promoted the exchange of

resistance alleles and genes among species, which—somewhat paradoxically—is one of

the major goals of modern rootstock breeders. Hence, the pIRs identified by this study

may prove to be valuable regions for agronomic focus.

Conclusions
In this study, we show that six wild Vitis species are genetically distinct, but there is

widespread evidence of introgression among species, encompassing up to 8.0% of the

genome. We also found that all species-pairs with evidence for introgression had some

geographic overlap either in the present or in the past. The identified pIR were charac-

terized by lower gene density and high recombination rates, matching theoretical ex-

pectations for introgressed regions. Phylogenetic analysis of the pIRs was also

consistent with a history of introgression. Finally, we found some evidence that muta-

tions significantly associated with pathogenic bacterial levels and bioclimatic variables

are overrepresented in the pIRs, suggesting that these genomic regions have been ex-

changed and retained because of their adaptive benefits. The putative adaptive benefits

suggest a model—in Vitis and perhaps more generally—for which biotic interactions

are a major factor shaping the outcome of hybridization.
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Methods
V. arizonica genome

Genome assembly

The V. arizonica genome was assembled using a hybrid strategy combining Single Mol-

ecule Real-Time (SMRT; Pacific Biosciences) data, which were reported previously [32],

with the addition of Bionano NGM maps (Bionano Genomics). Genome sequences

were assembled using SMRT reads following the custom procedure reported in https://

github.com/andreaminio/FalconUnzip-DClab [82]. The pipeline performs the marking

of repetitive content in SMRT reads using the TANmask and REPmask modules from

DAmasker suite [83], both on raw reads before error correction and on the corrected

reads used by FALCON ver. 2017.06.28-18.01 [84] to assemble the genome. Multiple

combinations of assembly parameters were tested to reduce the sequence fragmenta-

tion. We used the following parameters for the final assembly:

length cutoff pr ¼ 7500

ovlp DBsplit option ¼ −� 500

ovlp HPCdaligner option ¼ −mtan−mrep2−v−B128−M60−t60−k20−h256−e:9−l1000−s100−T16

overlap filtering setting ¼ −− max diff 100−− max cov 400−− min cov 3

FALCON_unzip was applied with default parameters to produce the primary contigs

and the associated contigs [84] that were then polished from sequence error using Pac-

Bio reads with Arrow (from ConsensusCore2 ver. 3.0.0). Primary assembly contiguity

was improved by scaffolding with SSPACE-Longread ver. 1.1 [85], followed by a gap-

closing procedure with PBJelly (PBsuite ver. 15.8.4) [86, 87].

An optical map was based on Bionano molecules (Bionano Genomics) that were gen-

erated and assembled at the genome center of the University of California, Davis

(Ming-Cheng Luo). Ultra-high molecular weight DNA (> 500 kbp) was extracted from

young leaves by Amplicon Express (Pullman, WA). DNA was then labeled with a DLE-

1 non-nicking enzyme (CTTAAG) and stained according to the Bionano Prep™ Direct

Label and Stain (DLS) Kit (Bionano Genomics, San Diego, CA) instructions. Labeled

DNA was loaded onto the SaphyrChip nanochannel array for imaging on the Saphyr

system (Bionano Genomics, San Diego, CA). Optical maps were assembled with Bio-

Nano Solve ver. 3.3 [88]. The optical maps obtained were then used to scaffold the Pac-

Bio assembled sequences using HybridScaffold ver. 04122018 [88]. The procedure was

performed in four iterations. In the first iteration, both sequences and optical maps

were broken (“-B 2 -N 2”) when in conflict one with the other. In the second iteration,

the scaffolds produced as results of the first iteration were compared to the optical

maps, again both sequences and optical maps were broken (“-B 2 -N 2”) when in con-

flict. In the third iteration, scaffolds resulting from the previous step were compared to

the optical maps, conflicts were resolved by breaking nucleotide sequences (“-B 1 -N

2”). In the fourth iteration, results of the previous scaffolding were used, conflicts were

again resolved by breaking nucleotide sequences (“-B 1 -N 2”). The genomic sequences

obtained were organized and sorted into two sets of chromosomes by using HaploSync

ver. 0.1beta (https://github.com/andreaminio/HaploSync) and based on synteny with

Vitis vinifera PN40024 chromosomes.

Morales-Cruz et al. Genome Biology          (2021) 22:254 Page 15 of 27

https://github.com/andreaminio/FalconUnzip-DClab
https://github.com/andreaminio/FalconUnzip-DClab
https://github.com/andreaminio/HaploSync


cDNA library preparation and sequencing

To help annotate the genome, we performed RNAseq using both short- and long-read

sequencing technologies. Total RNA from V. arizonica leaves was isolated using a

Cetyltrimethyl Ammonium Bromide (CTAB)-based extraction protocol as described in

Ref. [89]. A Nanodrop 2000 spectrophotometer (Thermo Scientific, Hanover Park, IL)

was then used to evaluate RNA purity. The RNA quantity was evaluated with the RNA

broad range kit of the Qubit 2.0 Fluorometer (Life Technologies, Carlsbad, CA) and the

integrity using electrophoresis and an Agilent 2100 Bioanalyzer (Agilent Technologies,

CA). Total RNA (300 ng, RNA Integrity Number > 8.0) was used for cDNA synthesis

and library construction. An RNA-Seq library was prepared using the Illumina TruSeq

RNA sample preparation kit v.2 (Illumina, CA, USA) following Illumina’s Low-

throughput protocol. This library was evaluated for quantity and quality with the High

Sensitivity chip in an Agilent 2100 Bioanalyzer (Agilent Technologies, CA) and was se-

quenced in 100 bp single-end reads, using an Illumina HiSeq4000 sequencer (DNA

Technology Core Facility, University of California, Davis). To prepare a cDNA long-

read SMRTbell library, first-strand synthesis and cDNA amplification were accom-

plished using the NEBNext Single Cell/Low Input cDNA Synthesis & Amplification

Module (New England, Ipswich, MA, USA). The obtained cDNAs were then purified

with ProNex magnetic beads (Promega, WI) following the instructions in the Iso-Seq

Express Template Preparation for Sequel and Sequel II Systems protocol (Pacific Bio-

sciences, Menlo Park, CA). Amplified cDNA was size-selected with a mode of 2 kb

using ProNex magnetic beads (86 μl). At least 80 ng of the size-selected, amplified

cDNA was used to prepare the cDNA SMRTbell library using the SMRTbell Express

Template Prep Kit 2.0 (Pacific Biosciences, Menlo Park, CA), following the manufac-

turer’s protocol. One SMRT cell was sequenced on the PacBio Sequel I platform (DNA

Technology Core Facility, University of California, Davis). RNAseq data were submitted

to NCBI under accession BioProject: PRJNA705722.

Genome annotation

The structural annotation of the V. arizonica genome was performed with the pipeline

described here: https://github.com/andreaminio/AnnotationPipeline-EVM_based-

DClab, an adaptation of a pipeline used previously [90] to use IsoSeq data as primary

experimental evidence. In brief, high-quality Iso-Seq data from V. arizonica were used

in PASA ver. 2.3.3 [91] to generate a set of high-quality gene models for the training of

the following ab initio predictions software: Augustus ver. 3.0.3 [92], GeneMark ver.

3.47 [93], and SNAP ver. 2006-07-28 [94]. Gene predictions were generated also using

BUSCO ver. 3.0.2 [95] with OrthoDB ver. 9 Plant conserved proteins. Repeats were an-

notated using RepeatMasker ver. open-4.0.6 [96] with the Vitis custom repeat library

reported in Ref. [97].

Transcriptomic data was based on new data from V. arizonica, data from previous

work [97], Vitis ESTs (NCBI, download date: 2016.03.15) and Vitis mRNA excluding

transposable element-related proteins (NCBI, download date: 2016.03.15). RNAseq data

were processed using Stringtie ver. 1.3.4d [98] and Trinity ver. 2.6.5 [99] with both on-

genome and de novo protocols. Transcriptomic data was mapped, along with transcrip-

tome assemblies and from the Iso-Seq data described above, on the V. arizonica
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genome using PASA ver. 2.3.3 [91] and MagicBLAST v.1.4.0 [100]. Protein evidence

obtained from swissProt viridiplantae (download date: 2016.03.15) and Vitis proteins

excluding transposable element-related proteins (NCBI, download date: 2016.03.15)

were mapped on the genomic sequences using Exonerate ver. 2.2.0 [101]. Predictions

and experimental evidence were then processed by EvidenceModeler ver. 1.1.1 [102] to

generate consensus gene models and alternative splicing information integrated from

the available transcriptomic data using PASA ver. 2.3.3 [91]. The final functional anno-

tation was produced integrating into Blast2GO ver. 4.1.9 [103] hits from the blastp ver.

2.2.28 [104] results against the Refseq plant protein database (ftp://ftp.ncbi.nlm.nih.gov/

refseq, retrieved January 17th, 2017) and InterProScan ver. 5.28-67.0 [105].

Disease-related gene functions were annotated using the HMM models from the Dis-

ease Resistance Analysis and Gene Orthology (DRAGO 2) database [49]. All the 28,259

predicted proteins from the primary reference chromosomes were evaluated in

DRAGO2. Enrichment analysis of functional categories was tested using GeneMerge

v1.4 [106].

Genetic diversity data and analyses

Plant material

We collected fresh leaf tissue from 130 individuals from six American Vitis species in

the wild grape germplasm collection at Davis, California. The germplasm reported in

this study was collected from 1997 to 2016 as cuttings across the southwestern states

and maintained at the Department of Viticulture and Enology, University of California,

Davis, CA. Additional File 1: Table S3 provides details of global positioning coordinates

and species designation based on the morphological features of leaves and growth habit

of the field grown plants.

Genome resequencing

For the 130 samples, genomic DNA was extracted from leaf samples with the Qiagen

DNeasy plant kit. The sequencing libraries were constructed with an insert size of ~

300 bp using Illumina library preparation kits and were sequenced using the Illumina

HiSeq 2500 platform with 2 × 150 bp paired reads to a target coverage of 25× following

ref. [107]. The raw sequencing data has been deposited in the Short Read Archive at

NCBI under BioProject ID: PRJNA731597.

SNP call and filtering

We filtered and evaluated raw reads using Trimmomatic-0.36 [108] and FastQC

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Filtered reads were then

mapped to the reference genome with the BWA-MEM algorithm [109] implemented in

bwa-0.78 [110]. Joint SNP calling was conducted using the HaplotypeCaller in the

GATK v.4.0 pipeline following ref. [107]. We then filtered raw SNPs with bcftools v1.9

(https://samtools.github.io/bcftools/) and vcftools v0.1.15 (https://vcftools.github.io/).

We kept SNP sites for downstream analysis if they were biallelic, had quality higher

than 30, had a depth of coverage higher than five reads, had no more than three times

the median coverage depth across accessions, and also had less than 25% of missing

data among all samples. Additionally, the following expression was applied under the
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exclusion argument of the filter function in bcftools: “QD < 2.0 | FS > 60.0 | MQ < 40.0

| MQRankSum < − 12.5 | ReadPosRankSum < − 8.0 | SOR > 3.0”.

Population structure and phylogenetic analyses

We used NgsAdmix to evaluate the genetic structure and the thetastat program to

measure genetic diversity (π) within species from the ANGSD package v0.915 [33]. We

tested values of K from 1 to 10 and used a minMaf filter of 0.05. We then employed

the Cluster Markov Packager Across K (Clumpak) software [111] to detect the best K

number of clusters. For the overall consensus phylogenetic tree, we used the SNPhylo

pipeline (v20180901) to reduce the number of SNPs [112], using a linkage disequilib-

rium threshold of 0.5 and resulting in 15,893 informative sites. We then created a max-

imum likelihood phylogeny with the sites from SNPhylo using IQ-TREE v1.6.12 [113].

We used the Model Finder algorithm [114] implemented in IQ-TREE to search for the

substitution model best among 550 different combinations and ultimately applied the

“VT + F + R5” model. We used the ultrafast bootstrap option with 1000 replicates to

obtain support values for each node. For the densitree (in red, Fig. 1C), we divided the

genome in 10 kb windows but focused on used windows with at least 800 variable sites,

resulting in 3342 windows. We created a consensus tree for each of the 3342 windows

with 1000 replicates. We then focused on trees with a median bootstrap value higher

than 70% across all nodes, reducing the number of windows to 1172, and randomly

chose 500 of the 1172 trees for plotting. We used the R packages ape v5.4 [115] and

phangorn v2.5.5 [116] to create the densitree plot and calculate tree statistics.

We also created a clock calibrated tree with BEAST v2.6.4 [117] using the 15,893 in-

formative sites found by SNPphylo. BEAST was run in a chain length of 10 million with

sampling every 500. A 10% burn-in was used to create the final tree (Additional File 2:

Figure S3). To calibrate the time estimates, we used the estimates from ref. [22] of sep-

aration of M. rotundifolia with the Vitis subgenera as a prior, with a log normal distri-

bution. For the time estimation, we used the Gamma Site Model distributions with the

JTT site substitution model, a strict clock model, and the calibrated Yule model. We

plotted multiple tree from BEAST using densitree v2.6.4 [118].

Admixture proportions

To test for introgression, we used the ABBA-BABA test as part of the Dsuite software

[40]. First, we used the program Dtrios to calculate the overall D statistic and perform

a block jackknifing of the statistic to obtain an associated p value, treating non-hybrid

samples of each species as populations. The trios that were concordant with the 4-

taxon topology of the test and had a p value < 0.001 were then used for more detailed

analysis. For the fd and fdM tests of introgression, we used the program Dinvestigate

from Dsuite, choosing non-overlaping windows of 1000 bp SNPs throughout the whole

genome. We defined a pIR as windows with highest x% of fdM values, where x was de-

termined for each trio by the f4-ratio estimate (Table 1). To test for potential false posi-

tives of the f4-ratio estimates in closely related species we also calculated the f-branch

statistic using Dsuite. We evaluated the phylogenies in the pIRs by creating phylogen-

etic trees of 10 kb SNP windows using the “phyml_sliding_windows.py” script and then
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using the “twisst.py” script to calculate average topology weights from the software

twisst (https://github.com/simonhmartin/twisst) [46].

Selective sweeps

To detect selective sweeps, we used RAiSD v2.8 [119] for each species separately, with

default parameters. We removed the gaps of the reference genome from the analysis to

avoid potential errors. We split the genome into non-overlapping 10 kb windows cre-

ated by bedtools v2.27.1 [120] and focused on the windows with top 5% of the μ statis-

tic in the corresponding P2 population and defined those as highly supported sweeps.

We first calculated the number of top 5% μ windows from the P2 species overlapping

the IRs of each trio, using bedtools with a requirement of at least 50% of the window

overlapping with the IR (-f 0.5). For the enrichment analysis, we randomly chose the

same number of 10 kb windows as the number of HSSs chosen from the whole genome

with 10,000 replicates. We counted the number of the random windows overlapping

IRs in the same way as described before. We then compared the distribution of the ob-

served values with the randomly generated distribution and performed a t-test to evalu-

ate statistical significance. For plotting, we calculated average μ values for a 100 kb

window using the bedtools mapping function.

Recombination

To estimate the location of pIRs relative to recombination rates across the genome, we

employed the genetic mapping data from a previous study [48]. Briefly, the map data

defined the recombination rate between two markers, based on a consensus of four dif-

ferent mapping populations that used both wild and cultivated Vitis parents. The phys-

ical location of 1662 markers was provided on the PN40024 V. vinifera reference. Since

the V. arizonica assembly was anchored on the PN40024 V. vinifera reference, we were

able to transform the markers and recombination values [48] and then assign recom-

bination values (in cM/kb) to discrete regions of the V. arizonica genome.

Phenotype data, climate data, and SNP associations

Pierce’s disease assays

Evaluations for Pierce’s disease (PD) resistance were carried out using a greenhouse-

based screen [121, 122]. Accessions with strong and intermediate PD resistance and in-

oculated and un-inoculated susceptible V. vinifera cultivar Chardonnay were used in all

experiments as reference control plants. Nineteen screens were carried out from 2011

to 2020, and a minimum of four biological replicates of each accession were tested. Dis-

ease severity was accessed 10 to 14 weeks post inoculation and ELISA was used to

measure the X. fastidiosa levels in the stem. Statistical analysis was performed using

JMP Pro14 software (Copyright 2020, SAS Institute Inc.) to determine the variability of

ELISA for the reference control plants across 19 experiments. In the next step, ELISA

values of wild accessions were analyzed with the inclusion of the reference plants to ad-

just for variation among the 19 screens. PD resistance data for 38 of the 108 accessions

used in this study were from a previous study [122] (Additional File 1: Table S10).
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Genome-wide association studies (GWAS)

We used LFFM2 to evaluate the association between SNPs and X. fastidiosa bacterial

level [123]. To control for demographic structure in the across-species associations, we

used 7 latent factors (LF) based on the genetic clusters inferred by Admixture and PCA

analyses (Additional File 2: Figure S15). We first used the function lfmm_ridge and K =

7 to compute the regularized least squares using a ridge penalty. Next, we used the

lfmm_test function to estimate the genomic inflation factor based on the median Z

scores. We verified that the calibrated p values had a flat distribution with a slight peak

near zero (Additional File 2: Figure S15B-C). Since genetic structure could increase the

number of false positives, we also compared GWAS models based on a linear regres-

sion model that does not control for genetic structure (see [51, 124, 125]), and models

using LFMM with LF values ranging from K = 6 to K = 12 (Additional File 2: Figure

S18).

To avoid biases associated to imputation (LFMM needs non-missing data), all GWAS

models were applied to the subset of 397,723 SNPs that had no missing data across the

dataset of n = 108 accessions. We also used an FDR of 0.05 to detect candidate SNPs

and applied GWAS to data with and without a minor allele frequency of < 5%, with no

change in results. Once candidate SNPs were identified, we tested for enrichments of

SNP density within pIRs. To do so, we randomized the state (candidate-associated SNP

or non-candidate SNP) of observed SNPs across the genome. For each randomization,

we counted the total number (ti) of randomly assigned candidate SNPs within pIRs.

We performed 10,000 randomizations and compared the distribution of ti to the ob-

served value (tobs) to compute a p value. Note that this approach inherently accounts

for any differences in the density of SNPs across chromosomal regions.

Genome environment associations (GEA)

Genome environment association studies identify outlier loci that correlate with the en-

vironment while controlling for demographic structure [126]. We used BayPass version

2 [52] to identify outlier loci that correlated with 19 bioclimatic variables. BayPass first

uses the entire set of SNPs to estimate the covariance between populations and identify

populations that are genetically closer because of recent co-ancestry or lower genetic

structure. In a second step, BayPass analyzes the correlation between the allelic fre-

quency of each SNPs (response variable) and independent environmental, phenotypic,

and/or categorical variables. SNPs are considered candidates if they show a strong cor-

relation with the independent variable after controlling for the co-ancestry between

populations.

We obtained 19 bioclimatic variables from Worldclim [127] for the location of each

accession, using the extract function of the raster package [128] in R (R Core Team).

For each species, we ran BayPass using all the default parameters, using all polymorphic

SNPs without any missing data (Nlocarizonica = 5,456,474 SNPs; Nlocberlandieri =

3,859,330 SNPs; Nloccandicans = 4,971,805 SNPs; Nlocgirdiana = 3,598,951; Nlocmonticola =

4,664,260 SNPs; Nlocriparia = 5,630,334 SNPs) and the 19 bioclimatic variables. Outlier

SNPs were defined using Jeffreys’ rule [53], so that they were considered outliers if they

had a BF > 10. For each species, we identified three bioclimatic variables that showed

the highest number of outlier loci and focused on outlier SNPs. We further analyzed
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the set of outlier SNPs to see if they were enriched in pIRs. We used bedtools v2.27.1

[120] to obtain the overlap between the candidate SNPs of the top 3 bioclimatic vari-

ables of each species and the pIRs. For each trio showing evidence of introgression, we

used the randomization approach described above for PD associations to test whether

pIRs in the P2 species were enriched with outlier SNPs associated with a bioclimatic

variable.

Species distribution models

We constructed species distribution models (SDMs) to identify whether species having

evidence of introgression had overlapping distributions in the present, the Holocene (~

6000 ya) and the Pleistocene (~ 18,000 ya). For each species, we obtained occurrence

records by combining coordinates data from the Global Biodiversity Information Facil-

ity (GBIF.org, 7 August 2020). Most of the six species analyzed had adequate occur-

rence data (> 70 entries), except V. monticola with 20 entries. The low values for V.

monticola are likely to lead to an overestimation of its geographic distribution. We also

obtained 19 bioclimatic variables from WorldClim [127] at a 2.5 resolution for the

present, Holocene, and Pleistocene layers. For the past layers, we obtained bioclimatic

data projected with the general circulation model CCSM [127].

We employed Maxent V. 3.4.1 [129] to construct and train the SDM of each species

and then projected them onto the landscape for each time period. For each species, we

ran 30 bootstrap replicates and used 70% and 30% of data for training and validating

the models, respectively. Additionally, we evaluated the fit of the models by analyzing

the area under the curve (AUC) of the receiver-operating characteristic curve (ROC).

For each species, we binarized each replicate by defining as the probability of existence

all areas that had a probability value in which the omission rate of the training and test-

ing was above the 10% of prevalence, and/or that predicted the accessions we sampled.

For each species, we summed all the binarized models and defined as the final distribu-

tion all geographic areas that were predicted by > 60% of the bootstrap replicates.

We used SDM to predict areas of overlap between pairs of species at different time

periods. To simplify the data, for each period, first, we summed the SDM of each pair

of 15 species pairs retained areas that were predicted by both species. The present,

Holocene, and Pleistocene overlapped regions were arbitrarily set at values of 2, 5, and

10. Second, we summed the three time periods to identify the areas where each pair of

species were potentially sympatric at different periods. Areas with values 2, 5, and 10

correspond to areas where there have been overlaps only in the present, Holocene, or

Pleistocene, respectively. Areas with values 7, 12, or 15 are areas where there have been

overlaps in the present and Holocene, present and Pleistocene, or Holocene and Pleis-

tocene, respectively. Areas with value 17 are areas where there has been a continuous

overlap between the pair of species. For each pair of species, we obtained the geo-

graphic area (measured by the number of overlapping pixels) that were predicted to

have an overlap in the SDMs in the different periods.
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