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Concept Learning and Flexible Weighting
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The Johns Hopkins University
Laurel, MD 20723
aha@cs.jhu.edu

Abstract

We previously introduced an exemplar model,
named GCM-ISW, that exploits a highly flexible
weighting scheme. OQOur simulations showed that it
records faster learning rates and higher asymptotic
accuracies on several artificial categorization tasks
than models with more limited abilities to warp in-
put spaces. This paper extends our previous work;
it describes experimental results that suggest human
subjects also invoke such highly flexible schemes. In
particular, our model provides significantly better fits
than models with less flexibility, and we hypothesize
that humans selectively weight attributes depending
on an item’s location in the input space.

We need more flexible models
of concept learning

Many theories of human concept learning posit that
concepts are represented by prototypes (Reed, 1972)
or exemplars (Medin & Schaffer, 1978). Prototype
models represent concepts by the “best example” or
“central tendency” of the concept." A new item be-
longs in a category C if it is relatively similar to C’s
prototype. Prototype models are relatively inflexible;
they discard a great deal of information that people
use during concept learning (e.g., the number of ex-
emplars in a concept (Homa & Cultice, 1984), the
variability of features (Fried & Holyoak, 1984), cor-
relations between features (Medin et al., 1982), and
the particular exemplars used (Whittlesea, 1987)).
Exemplar models instead represent concepts by
their individual exemplars; a new item is assigned to

1Other summary information may also be stored by more
advanced prototype models; our concerns primarily target
problems with “pure" prototype models. More accurately, we
are interested in supporting the learning behavior displayed
by the advanced exemplar models described in Section 3 re-
gardless of the models’ representation for categories (Barsalou,
1989).

Robert L. Goldstone
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a category C if it is relatively similar to C’s known
exemplars. Exemplar representations are far more
flexible than prototype representations since they re-
tain sensitivity to all of the information listed above.
This flexibility often translates to increased catego-
rization accuracy. For example, unlike prototype
models, humans and exemplar models can learn some
non-linearly separable categories as easily as linearly
separable categories (Medin & Schwanenflugel, 1981).
This capability is not limited to flat learning archi-
tectures; several researchers capture this flexibility in
radial basis networks (e.g., Kruschke, 1992; Hurwitz,
1991).

While existing exemplar models are more flexible
than prototype models, they are still not sufficiently
flexible. We argue that people represent categories
not only with category exemplars, but also with a
set of specific weights associated with each exem-
plar’s (or set of exemplars) attributes. The subject
experiments described in Section 2 suggest that the
weight given to an attribute depends on its exem-
plar’s “neighborhood” in psychological space, where
exemplars are assumed to be describable by their
attributes’ values. Our claim is that concepts are
not represented simply by a set of attribute weights.
Rather, an attribute’s importance in similarity calcu-
lations depends on its contezt — the other attributes
that are true for a particular exemplar. For example,
the relative importance of the “date of next deadline”
attribute for predicting membership in the “will work
this weekend” category varies depending on the “up-
coming computer downtime” attribute’s value (e.g.,
when a deadline exists for the middle of the follow-
ing week, one might be more likely to work during
the preceding weekend when it is known that the
computers will not be functioning on the days im-
mediately preceding the deadline). Moreover, people
can learn the importance of an attribute in concept-
learning situations even when they have little guid-
ance for assigning attribute weight settings. Since
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people have almost no background information on the
artificial stimuli used in the experiments described in
Section 2, and since the exemplars in those exper-
iments exhibit somewhat arbitrary regularities, we
can be confident that our subjects are actively attend-
ing to the stimuli’s regularities rather than applying
knowledge that they previously acquired.

The work presented here has several precursors.
Medin and Schaffer (1978) developed an exemplar
model for representing concepts that was subse-
quently generalized by Nosofsky (1984; 1986). In
turn, Aha and McNulty (1989) created a learning
algorithm for Nosofsky’s model and extended its se-
lective attention mechanism to be a function of the
target concept. We further augmented this learning
model to include exemplar-specific weights; each ex-
emplar in each concept was given its own set of at-
tribute weights (Aha & Goldstone, 1990). This new
model, named GCM-ISW, achieved faster learning
rates and higher asymptotic performance than other
models on artificial categorization tasks whose con-
cepts were best modeled by using context-sensitive
settings for attribute weights.

In Section 2, we extend our previous work by show-
ing that human subjects are highly flexible in that
they can selectively weight an attribute differently de-
pending on the region of the instance space in which
it is located. In Section 3, we show that GCM-ISW
can fit these subjects’ predictions better than two
concept-learning systems with less flexible weighting
schemes for warping the instance space. Like humans,
GCM-ISW can allow the importance of attributes to
be a function of its region of instance space.

Experiments on weighting
attributes

An experiment was conducted to determine whether
human subjects can learn categories that require at-
tributes to be weighted differently for different cat-
egory exemplars. That is, this experiment inves-
tigates whether subjects are constrained to weight
attributes equally regardless of their context. This
experiment also investigates whether subjects subse-
quently generalize their categories according to the
attribute weights that they have learned. First, the
subjects learn to distinguish category A from cate-
gory B exemplars until they can accurately classify
a set of training exemplars. The subjects are then
given a set of test exemplars to classify. We can indi-
rectly ascertain the weights that subjects assigned to
the attributes by observing how these test exemplars
were classified.

During training, 40 undergraduate subjects were

told to categorize picture items, corresponding to ex-
emplars, into category A or category B. These pic-
tures varied along two dimensions: size of square and
position of line in square. Each dimension is defined
over eight evenly-spaced values. Square size varied
from 2.0 cm to 7.5 cm. Position of line in square
varied from the far left side to the far right side.

Subjects were presented with twelve training items,
where half belonged to each category. The partic-
ular items shown to the subjects in Experiments 1
and 2 are shown in Figure 1. The first matrix shows
the two groups of items in Experiment 1. Each cell
in this matrix represents a possible stimulus item.
For example, the bottom-leftmost cell represents the
itemn very small square with line on the far left side
of the square. The twelve items that were shown in
the training stage were labeled A or B according to
their category. The cluster of items in the top-right
of the first matrix is characterized by relatively large
squares with lines relatively far to the right. The
other cluster has relatively small squares with lines
further to the left. Line position was the more im-
portant dimension for distinguishing category A from
category B items for the first cluster; items with the
value six for line position belonged in category B
whereas items with the value seven belonged in cat-
egory A. Conversely, size was the more important
dimension for the other cluster of items; items with
a value of seven on the size dimension were exem-
plars of category B, while items with a value of six
belonged in category A.

During training, after the twelve items’ ordering
was randomized, they were subsequently presented
to the subjects on a Macintosh SE. For each item,
the subject pressed A or B to indicate their category
prediction. Subjects were told whether their classifi-
cation was correct immediately after their response.
Training continued until the subject performed four
error-free classifications of the complete set of train-
ing items.

During testing, all 64 possible combinations of line
position and square size were displayed to subjects
in a random order. For each item, subjects indicated
whether they believed the item belonged in category
A or B. Only twelve of these items were previously
shown to the subjects; the remaining 52 were novel
items, and their placement in category A or B repre-
sent generalizations of these categories.

The results from the test stage of Experiment 1 are
displayed in Figure 2. The number in each cell indi-
cates the percentage of times that subjects placed the
item into category B during testing. The percentages
indicate fairly good retention of the items that were
presented during training and widespread generaliza-
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Experiment #1:
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Figure 1: Training sets and critical test items for the two experiments. The horizontal and vertical axes
denote (increasingly right) line positions and (decreasing) square size dimensions respectively. The categories
of the training items are shown as A and B. The four critical test items per experiment are marked with

one of (W, X,Y, Z}.

Average of the Subjects’ Predictions:
1 2 3 4 5 6 7 8

1[50 45 45 40 50 65 10 30
2165 60 80 80 8 90 20 25
3|55 50 55 60 70 8 0 20
4140 55 45 40 65 8 0 15
5/20 20 15 25 30 70 0 20
6(10 0 5 10 10 5 5 15
718 90 90 95 90 8 75 80
8155 60 65 60 55 60 55 60

GCM-ISW's Predictions:

1 2 3 4 5 6 T 8
67 74 77 18 18 176 34 31
50 63 72 76 78 78 33 30
31 43 58 69 74 T4 29 28
20 26 37 52 64 69 26 24
17 19 23 32 46 57 23 21
21 21 22 27 37 48 26 25
74 75 77 78 78 74 53 61
78 78 78 78 T6 72 42 49

Q0 =1 O OV b OB

Figure 2: The subjects’ averaged predictions and GCM-ISW’s probabilistic guess that the test

Experiment 1 belong to category B.

tion of the training knowledge to the new items.
Particular test items of interest to us are labeled
by the letters W, X, Y, and Z in Figure 1. These
items were not presented during training. Their pat-
tern of classification seems to confirm that subjects
generalized their categories by differentially weight-
ing the attributes for different items. For example,
item W was categorized as an exemplar of category
B by 90% of the subjects in Experiment 1, although
it is as close to category A items as it is to cate-
gory B items. Similarly, item X in Experiment 1
was categorized as a member of category A by 90%
of the subjects. These results indicate that subjects
strongly weight the size dimension in these catego-
rizations. It is as if the subjects are siretching the
vertical axis in this area of the space, so that the A
and B items become separated by a greater psycho-
logical distance. However, the entire vertical axis is
not stretched. Instead, it is selectively stretched in
this single region of the space (i.e., the lower-left).
Similarly, the horizontal axis is selectively stretched
in the upper-right region; item Y was categorized as

items in

a B by 70% of the subjects while item Z was catego-
rized as an A by 80% of the subjects, indicating that
subjects considered line position to be more impor-
tant than square size for categorizing items in this
region. In summary, subjects generalized their con-
cepts on the basis of the square size dimension for one
cluster and on the basis of the line position dimension
for the other cluster.

Experiment 2 replicates Experiment 1 with a relo-
cation of the training items. One possible explana-
tion of Experiment 1’s results is that, perceptually,
there was a bigger difference between size six and
size seven squares than there is between size two and
three squares and/or a relatively large perceptual dif-
ference between lines in positions six and seven. If
this were true, then our generalization results could
be explained without requiring that subjects learned
to selectively weight dimensions in particular regions
of the space. Experiment 2’s results refute this possi-
ble explanation; if one assumed that there is a large
perceptual difference between size six and size seven
squares, then precisely the wrong prediction would be
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Average of the Subject’s Predictions:
1 2 3 4 o 6 7 8

1166 50 65 55 55 60 65 60
2170 75 8 90 90 90 90 80
3(15 10 15 15 10 10 O 10
4115 5 8 3 15 16 & 25
5020 5 90 60 35 40 50 35
6120 0 85 70 50 60 50 60
7130 15 90 80 75 75 60 60
8130 10 70 55 55 50 55 50

GCM-ISW'’s Predictions:
1 2 3 4 5 6 7 8

1[47 39 69 75 77 718 78 18
2159 60 72 77 77 U7 76 74
3124 25 46 36 27 23 21 21
4122 22 58 49 36 28 23 21
5126 26 68 65 55 42 32 25
6128 30 75 74 T0 61 48 36
7130 31 76 77 76 72 65 54
8129 31 74 77T T7 76 T4 68

Figure 3: The subjects’ averaged predictions and GCM-ISW'’s probabilistic guess that the test

Experiment 2 belong to category B.

GCM-SW'’s Predictions:
1 2 3 4 5 6 7 8

1[5 64 71 74 72 67 59 51
2144 53 64 T3 69 63 47 39
3133 38 49 51 38 31 25 27
4128 27 43 47 39 32 27 25
5(31 33 59 57 50 41 34 30
6137 40 66 67 62 B3 45 38
7(48 59 76 74 70 63 56 48
8158 66 74 76 74 69 63 57

Figure 4: GCM-SW’s probabilistic guess that the
test items in Experiment 2 belong to category B.

made for Experiment 2, where item W is now placed
in category A based on its line position. More specif-
ically, 85% of the subjects categorized both items W
and Y as members of category A, whereas items X
and Z were predicted to belong to category B by 85%
and 90% of the subjects respectively. The results for
Experiment 2 are summarized in Figure 3.

Protocols were also obtained from the subjects. In
Experiment 1, the modal protocol, given by 15 out
of the 20 subjects, can be expressed by the following
subject’s statement:

I looked at the size of the square. If it was
big, then I looked at where the bar was, If it
was a little further to the right, then I put it
in A. Otherwise, I put it in B. If the square
was small, I looked carefully at its size. A
squares were slightly bigger than B squares.

This protocol reveals a two-step process whereby a
subject (1) determines the region in which an item
belongs and (2) focuses on the particular dimension
that is important for that region.

items in

Simulations on weighting
attributes

Three exemplar-based process models were evaluated
in simulations for their ability to fit the subjects’
responses. These models, GCM-NW, GCM-SW,
and GCM-ISW, were previously described in (Aha
& Goldstone, 1990), are all derived from Nosofsky’s
(1986) Generalized Context Model (GCM), and dif-
fer only in how they weight attribute dimensions.
The least flexible, GCM-NW, weights all attributes
equally. GCM-SW instead uses a single set of at-
tributes and, in keeping with Nosofsky’s attention-
optimization hypothesis, tunes attribute weights so
as to optimize categorization performance. Finally,
GCM-ISW is an extension of GCM-SW that main-
tains a separate set of attribute weight settings with
each stored exemplar.

These models process training items incrementally
and, for each item z, compute an estimate of the
probability that z is a member of each category C as
follows:

>yese Similarity(z, y)

Probability(z € C) = S s S (s, 0)

where S¢ is category C’s stored exemplars and S is
the set of all stored exemplars. Similarity is defined
as:

Similarity(z, y) = e—cDist.ance(x,y),

where

Distance(z,y) = JZ (i, z,y) x (zi — %),

and where i ranges over the set of attributes used to
describe the exemplars, parameter ¢’s setting (fixed
at 10 in our experiments) determines the slope of the
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exponential decay, and function f determines the nor-
malized weight for attribute i (i.e., ), f(i,z,y) =1
and Vi{0 < f(i, z,y) < 1}).

Function f is a constant function for GCM-NW.
For GCM-SW, f(i,z,y) = w;, which is an es-
timate of the conditional probability that two ex-
emplars will be in the same category given that
they have high similarity and highly similar val-
ues for attribute dimension i. Weights are initially
equal and their settings are updated after each train-
ing item is presented via a strategy akin to the
delta rule (Rumelhart, McClelland, & the PDP Re-
search Group, 1986).2 Finally, GCM-ISW’s func-
tion f combines the category-specific weight settings
learned by GCM-SW with a separate set of weight
settings stored with exemplar y. Exemplar-specific
weight settings are updated in the same manner as
category-specific weights except that they are only
updated for similarity computations involving their
exemplar. More specifically, f(i, z, y) interpolates be-
tween the category-specific weight for attribute ¢ and
y’s exemplar-specific weight for ¢, This value is more
similar to the exemplar-specific setting when |z; — y;|
is small and more similar to the category-specific set-
ting when this difference is high.

GCM-NW, GCM-SW, and GCM-ISW have
three, four, and six free parameters respectively. In-
formal manual searches were used to find values for
these parameters that allowed the models to perform
well: 10 for ¢, which determines the slope of the ex-
ponential decay defining similarity; 1 for the GCM’s
concept bias parameters; 0.01 for GCM-SW’s and
GCM-ISW's learning rate parameter for updating
category-specific weights; 0.1 for GCM-ISW'’s simi-
lar parameter for exemplar-specific weights; and 0.5
for GCM-ISW'’s parameter for combining exemplar-
and category-specific weights in function f. GCM-
ISW'’s additional parameters certainly contributed to
its superior performance. However, alternative val-
ues for the other models’ parameters would not af-
fect their relative behavior because the concepts were
equally probable during training and different slopes
would still not allow GCM-NW and GCM-SW to
locally warp the instance space.

These models were trained and tested in the same
way as the subjects except that their items were rep-
resented as two-dimensional vectors and they yield
estimates of the probability that items are members
of category B rather than a binary categorization pre-
diction.

2Briefly, the magnitudes of weight changes are a decreas-
ing function of Similarity(z,y) and an exponentially decreas-
ing function of |z, — yi|- Weight settings are increased when =
and y are in the same category and otherwise are decreased.

The testing results for GCM-ISW in Experiment
1 are summarized earlier in Figure 2 alongside the
subjects’ average predictions. Fisher’s method for
converting correlations (r) to Z-scores was used to
evaluate the fits of each model to the subject data.
The correlation between GCM-ISW'’s results and
the averaged subject data for the 64 test items
was 0.81 and 0.85 for Experiments 1 and 2 respec-
tivelyy. GCM-SW’s was 0.66 for both experiments
and GCM-NW'’s was 0.65 and 0.68. GCM-ISW's
results correlated significantly better with the subject
data from the first experiment than did GCM-NW
(Z = 2.75,p < 0.01) and GCM-SW (Z = 2.61,p <
0.01). This is also true for Experiment 2’s results (i.e.,
(Z =3.62,p < 0.0005) and (Z = 3.36,p < 0.002) re-
spectively). For example, visual inspections help to
confirm that GCM-SW/’s predictions for Experiment
2, shown in Figure 4, are not as similar to the sub-
jects’ predictions as are GCM-ISW’s, as shown in
Figure 3.

GCM-ISW'’s correlations with the subjects’ aver-
aged responses for the four critical test items were
significantly better than GCM-SW’s and GCM-
NW'’s for both experiments (i.e., Z(1) = 1.92,p <
0.1;Z(1) = 2.53,p < 0.025 and Z(1) = 3.05,p <
0.0025; Z(1) = 2.28,p < 0.025 respectively). More
specifically, GCM-ISW’s correlations for these two
sets of four test items were 0.97 and 0.95 respec-
tively. GCM-SW's respective correlations were 0.17
and -0.84 while GCM-NW’s were -0.42 for both ex-
periments. GCM-ISW’s categorization predictions
matched the predictions made by the majority of sub-
jects on all eight critical test items, whereas GCM-
SW agreed on only two and GCM-NW on only four.

In summary, GCM-ISW provides a better fit to
the subject data than do the other models. Its combi-
nation of category-specific and exemplar-specific at-
tribute weights captures the context sensitivity of at-
tribute importance in these experiments. Thus, these
results support our claim that a psychologically plau-
sible learning algorithm’s selective attention processes
must be a contert-dependent function; a simple strat-
egy of using one weight per attribute will not neces-
sarily provide optimal fits to subject data.

Discussion

Many other exemplar models of human concept for-
mation can “locally” stretch the input space. For ex-
ample, Nosofsky, Clark, and Shin (1989) described
a model that associates a weight with each value
of each dimension. However, this strategy is less
flexible than GCM-ISW’s; it constrains items shar-
ing an attribute’s value to also share its weight set-
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ting. Medin and Edelson (1988) proposed a pro-
cess model similar to GCM-ISW that uses exemplar-
specific attribute weights to account for subjects’
context-specific sensitivity to base rate information
during categorization tasks. However, their model
does not ensure that exemplar-specific weights are
used only in a local region of the instance space;
they may be used to help classify dissimilar items.
This constraint should always be applied to models
with localized weighting schemes. Medin and Shoben
(1988) investigated an ezemplar-directed attribute-
weighting scheme that distinguishes between direc-
tions along numeric-valued attribute dimensions. We
plan to evaluate an extension of GCM-ISW that in-
corporates this increased flexibility. We also plan to
study models with region-specific weighting schemes,
in which a region’s weights are abstracted so as to
specify the relative importance of attributes for sim-
ilarity decisions within a small region of the instance
space. Such models blur the distinction between rule-
and exemplar-based models since they use both ex-
emplars and rule-like abstractions derived from them
to guide categorization decisions. Furthermore, our
model will vary the degree to which abstraction is
performed in a region-specific manner, thus increas-
ing its flexibility to represent complex concepts.

Several other researchers have also advocated that
psychologically plausible process models should cat-
egorize items in a context-sensitive manner (e.g.,
Barsalou & Medin, 1986; Tversky, 1977). We believe
that many future models will incorporate a context-
sensitive categorization capability and that they will
continue to fit subject data significantly better than
models that do not support this flexibility.
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