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This thesis compiles my work on three projects.

In my first project, we proved a global uniqueness result for an inverse boundary problem

for a first order perturbation of the biharmonic operator on a conformally transversally

anisotropic (CTA) Riemannian manifold of dimension n ≥ 3. Specifically, we established

that a continuous first order perturbation can be determined uniquely from the knowledge

of the Cauchy data set of solutions of the perturbed biharmonic operator on the boundary

of the manifold provided that the geodesic X-ray transform on the transversal manifold is

injective.

In my second project, we showed that a continuous potential can be constructively deter-

mined from the Cauchy data set of solutions to the perturbed biharmonic equation on a CTA

Riemannian manifold of dimension ≥ 3 with boundary, assuming that the geodesic X-ray

transform on the transversal manifold is constructively invertible. This is a constructive

counterpart of our uniqueness result [119]. In particular, our result is applicable and new in

the case of smooth bounded domains in the 3–dimensional Euclidean space as well as in the

case of 3–dimensional CTA manifolds with simple transversal manifold.
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In my third project joint with Katya Krupchyk and Gunther Uhlmann, we solved an inverse

boundary problem for the nonlinear magnetic Schrödinger operator on a compact complex

manifold, equipped with a Kähler metric and admitting sufficiently many global holomorphic

functions.
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Chapter 1

Introduction

In inverse problems, one aims to recover the internal properties of a medium by indirect

measurements, say, measurements along the boundary of the medium or scattering mea-

surements. Such problems arise in many important practical situations such as monitoring

cardiac activity, lung function, and pulmonary perfusion in medical imaging, oil prospecting

in exploration geophysics, and corrosion, cracks in non-destructive testing. For references

see the survey [19].

In 1980, Calderón published a short paper entitled On an inverse boundary value problem

[25], asking the following question:

Calderón’s Problem: Is it possible to determine the electrical conductivity of a medium

by making voltage and current measurements on its boundary?

To state this problem mathematically, let Ω ⊆ Rn, n ≥ 2, be a bounded open set with

smooth boundary and let γ be a positive smooth function on Ω, representing the electrical

conductivity of the domain. Under the assumption of no sources or sinks of current in Ω, a

voltage f at the boundary ∂Ω induces a voltage potential u in Ω, which solves the Dirichlet
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problem for the conductivity equation,

div(γ · ∇u) = 0 in Ω,

u|∂Ω = f.
(1.0.1)

There is a unique weak solution u ∈ H1(Ω) for any boundary value f ∈ H 1
2 (∂Ω). One can

define the Dirichlet–to–Neumann map associated to this problem as follows:

Λγ(f) = (γ∂νu)|∂Ω,

where ν is the unit outer normal to ∂Ω. The Dirichlet–to–Neumann map Λγ encodes the

voltage to current measurements performed along the boundary of the domain. That is,

if the measured currents Λγ(f) are known for all boundary voltages f , one would like to

determine the conductivity γ. To ensure the possibility of unique recovery, one should have

a global uniqueness result stating that if Λγ1 = Λγ2 for two conductivities γ1 and γ2, then

γ1 = γ2.

The inverse conductivity problem has been studied intensively starting with the work [25] of

Calderón in 1980. The first global uniqueness result is obtained by Sylvester and Uhlmann

[115] in their breakthrough work in 1987 for C2 conductivities and n ≥ 3. Haberman and

Tataru [55] extended the uniqueness result to Lipschitz conductivities under a smallness

condition, which has later been removed by Caro and Rogers [27]. The corresponding result

in dimension 2 was given by Nachman [96] for conductivities of Sobolev class W 2,p with some

p > 1, and the regularity was later improved to L∞ conductivities by Astala and Päivärinta

[11]. The main contribution of Sylvester and Uhlmann [115] is the construction of complex

geometric optics (CGO) solutions for the Schrödinger equation, which play an essential role

in solving elliptic inverse problems. Among the three projects we are going to discuss, the

first two rely heavily on the properties of appropriate CGO solutions.
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Once uniqueness results for inverse boundary problems have been established, one is inter-

ested in upgrading them to a reconstruction procedure. The uniqueness result in [115] was

extended to a reconstruction procedure by Nachman [95] and independently by Novikov [99]

for n ≥ 3. The reconstruction procedure for n = 2 is given by [96] along with the uniqueness

result.

Another interesting inverse problem is to consider the stability result, i.e., does the closeness

of Λγ1 and Λγ2 imply the closeness of γ1 and γ2? It is well-known that the Calderón problem

is severely ill-posed. A log-type stability estimate was established by Alessandrini [1] for

conductivities of Sobolev space Hs with s > n
2

+ 2, and it has been shown by Mandache [89]

that this estimate is optimal up to the value of the exponent.

In the discussion above, we considered the case of full data, where one can do measurements

on the whole boundary. However, making measurements on the entire boundary may not be

possible in practice. For instance, one can only cover a tiny part of the Earth’s surface with

measurements devices in geophysical imaging. Inverse problems with such restrictions are

more difficult. The first uniqueness result for partial data measurements is due to Bukhgeim

and Uhlmann [24] for C2 conductivities, where the Dirichlet–to–Neumann map is restricted

to slightly more than half of the boundary. The result has been improved significantly by

Kenig, Sjöstrand, and Uhlmann [63] where they show that the knowledge of the Dirichlet–

to–Neumann map on a possibly very small open subset of the boundary determines the

conductivity uniquely. The corresponding reconstruction procedure of [63] is obtained by

Nachman and Street [97]. The approaches of [24, 63] are based on Carleman estimates with

boundary terms. The reader is referred to the recent survey article [61] by Kenig and Salo

for Calderón problems with partial data.

The results mentioned previously are concerned with isotropic materials with the conduc-

tivity γ being a scalar function. However, there are more complicated anisotropic materials

with the conductivity γ being an n × n matrix, depending on directions. Muscle tissue in
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the human body is an important example of an anisotropic conductor, where cardiac muscle

has a conductivity of 2.3 mho in the transversal direction and 6.3 mho in the longitudinal di-

rection [13]. Unfortunately, in anisotropic case, the knowledge of the Dirichlet–to–Neumann

map Λγ does not determine γ uniquely, an observation due to L. Tartar (see [65] for an ac-

count), and the best we can show is that the recovery is unique up to some diffeomorphism.

It turned out that this is the only obstruction to uniqueness of the conductivity for n = 2;

see [114], [96]. Lee and Uhlmann [83] conjectured that this is also true for n ≥ 3. In the case

n ≥ 3, this is a problem of geometrical nature; see [83]. Thus it is natural to study inverse

problems on more general Riemannian manifolds.

Calderón’s problem can be reduced to the problem of determining an electric potential q

from the Dirichlet–to–Neumann map Λq associated to the Schrödinger operator −∆ + q

with q = γ−
1
2 ∆γ

1
2 , a lower order perturbation the of Laplacian. It is of great interest in

the study of inverse problems to consider more general elliptic PDEs. In spite of 40 years of

intensive research and an impressive body of results in the field of inverse boundary problems,

see [116], [117] for recent surveys, several fundamental questions remain unsolved. In this

thesis, we shall proceed to discuss an inverse boundary problem for the biharmonic operator

on a Riemannian manifold, which is a fundamental problem, arising in the Kirchhoff plate

equation in the theory of elasticity, the Paneitz-Branson operator in conformal geometry, and

the steady Stokes flows in viscous fluids; see [44, 33, 101]. We shall also discuss an inverse

boundary problem for the nonlinear magnetic Schrödinger operator on a compact complex

manifold, manifesting the phenomenon, discovered in [77], that the presence of nonlinearity

may help to solve inverse problems.

The thesis is organized as follows. In Chapter 2, we proved a uniqueness result for inverse

boundary problems for first-order perturbations of biharmonic operators on conformally

transversally anisotropic manifolds with smooth boundaries, provided that the geodesic X-

ray transform on the transversal manifold is injective. The corresponding reconstruction
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procedure for a potential perturbation of the biharmonic operator is established in Chapter

3. Chapter 4 is devoted to inverse boundary problems for nonlinear magnetic Schrödinger

operators on a compact complex manifold, equipped with a Kähler metric and admitting

sufficiently many global holomorphic functions.
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Chapter 2

Inverse boundary problems for

biharmonic operators in transversally

anisotropic geometries

2.1 Introduction and statement of results

Let (M, g) be a smooth compact oriented Riemannian manifold of dimension n ≥ 3 with

smooth boundary ∂M . Let −∆g be the Laplace–Beltrami operator, and let (−∆g)
2 be

the biharmonic operator on M . Let X ∈ C(M,TM) be a complex vector field and let

q ∈ C(M,C). In this paper we shall be concerned with an inverse boundary problem for the

first order perturbation of the biharmonic operator,

LX,q = (−∆g)
2 +X + q.
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Let us now introduce some notation and state the main result of the paper. Let u ∈ H3(M int)

be a solution to

LX,qu = 0 in M. (2.1.1)

Here and in what follows Hs(M int), s ∈ R, is the standard Sobolev space on M int, and

M int = M \ ∂M stands for the interior of M . Let ν be the unit outer normal to ∂M .

We shall define the trace of the normal derivative ∂ν(∆gu) ∈ H−1/2(∂M) as follows. Let

ϕ ∈ H1/2(∂M). Then letting v ∈ H1(M int) be a continuous extension of ϕ, we set

〈∂ν(−∆gu), ϕ〉H−1/2(∂M)×H1/2(∂M) =

∫
M

(
〈∇g(−∆gu),∇gv〉g +X(u)v+ quv

)
dVg, (2.1.2)

where dVg is the Riemannian volume element on M . As u satisfies (2.1.1), the definition of

the trace ∂ν(∆gu) on ∂M is independent of the choice of an extension v of ϕ. Associated to

(2.1.1), we define the set of the Cauchy data,

CX,q = {(u|∂M , (∆gu)|∂M , ∂νu|∂M , ∂ν(∆gu)|∂M) : u ∈ H3(M int), LX,qu = 0 in M}. (2.1.3)

Note that the first two elements in the set of the Cauchy data CX,q correspond to the Navier

boundary conditions for the first order perturbation of the biharmonic operator. Physically,

such operators arise when considering the equilibrium configuration of an elastic plate which

is hinged along the boundary; see [44]. One can also define the set of the Cauchy data for

the first order perturbation of the biharmonic operator, based on the Dirichlet boundary

conditions (u|∂M , ∂νu|∂M), which corresponds to the clamped plate equation,

C̃X,q = {(u|∂M , ∂νu|∂M , ∂2
νu|∂M , ∂3

νu|∂M) : u ∈ H3(M int), LX,qu = 0 in M}.
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The explicit description for the Laplacian in the boundary normal coordinates shows that

CX,q = C̃X,q; see [83], [67].

The inverse boundary problem that we are interested in is to determine the vector field X

and the potential q from the knowledge of the set of the Cauchy data CX,q.

This problem was studied extensively in the Euclidean setting; see [68], [67], [5], [6], [8], [56]

[57] [17], [18], [45], [46], [120]. Specifically, it was shown in [68] that the set of the Cauchy

data CX,q determines the vector field X and the potential q uniquely. Let us note that the

unique determination of a first order perturbation of the Laplacian is not possible due to

the gauge invariance of boundary measurements and in this case the first order perturbation

can be recovered only modulo a gauge transformation; see [98], [111].

Going beyond the Euclidean setting, inverse boundary problems for lower order perturbations

of the Laplacian were only studied in the case when (M, g) is CTA (conformally transversally

anisotropic; see Definition 2.1.1 below) and under the assumption that the geodesic X-ray

transform on the transversal manifold is injective; see the fundamental works [36] and [38]

which initiated this study, and see also [37], [35], [73], [72], [32].

Definition 2.1.1. A compact Riemannian manifold (M, g) of dimension n ≥ 3 with bound-

ary ∂M is called conformally transversally anisotropic (CTA) if M ⊂⊂ R×M int
0 where g =

c(e⊕ g0), (R, e) is the Euclidean real line, (M0, g0) is a smooth compact (n− 1)-dimensional

manifold with smooth boundary, called the transversal manifold, and c ∈ C∞(R ×M0) is a

positive function.

The injectivity of the geodesic X-ray transform is known when the manifold (M0, g0) is

simple, in the sense that any two points in M0 are connected by a unique geodesic depending

smoothly on the endpoints and that ∂M0 is strictly convex (see [4], [94]), when M0 has strictly

convex boundary and is foliated by strictly convex hypersurfaces [110], [118], and also when

M0 has a hyperbolic trapped set and no conjugate points [48], [49]. An example of the latter
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occurs when M0 is a negatively curved manifold.

Turning our attention to the inverse boundary problem of determining the first order pertur-

bation of the biharmonic operator, this problem was solved in [9] in the case when (M, g) is

CTA and the transversal manifold (M0, g0) is simple, extending the result of [36] to the case

of biharmonic operators. To be on par with the best results available for the perturbations of

the Laplacian in the context of Riemannian manifolds, the goal of this paper is to solve the

inverse problem for the first order perturbation of the biharmonic operator in the case when

(M, g) is CTA and the geodesic X-ray transform is injective on the transversal manifold

(M0, g0), generalizing the result of [38] to the case of biharmonic operators.

Let us recall some definitions related to the geodesic X-ray transform following [48], [36]. The

geodesics on M0 can be parametrized by points on the unit sphere bundle SM0 = {(x, ξ) ∈

TM0 : |ξ| = 1}. Let

∂±SM0 = {(x, ξ) ∈ SM0 : x ∈ ∂M0,±〈ξ, ν(x)〉 > 0}

be the incoming (−) and outgoing (+) boundaries of SM0. Here ν is the unit outer normal

vector field to ∂M0. Here and in what follows 〈·, ·〉 is the duality between T ∗M0 and TM0.

Let (x, ξ) ∈ ∂−SM0 and γ = γx,ξ(t) be the geodesic on M0 such that γ(0) = x and γ̇(0) = ξ.

Let us denote by τ(x, ξ) the first time when the geodesic γ exits M0 with the convention

that τ(x, ξ) = +∞ if the geodesic does not exit M0. We define the incoming tail by

Γ− = {(x, ξ) ∈ ∂−SM0 : τ(x, ξ) = +∞}.

When f ∈ C(M0,C) and α ∈ C(M0, T
∗M0) is a complex valued 1-form, we define the
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geodesic X-ray transform on (M0, g0) as follows:

I(f, α)(x, ξ) =

∫ τ(x,ξ)

0

[
f(γx,ξ(t)) + 〈α(γx,ξ(t)), γ̇x,ξ(t)〉

]
dt, (x, ξ) ∈ ∂−SM0 \ Γ−.

A unit speed geodesic segment γ = γx,ξ : [0, τ(x, ξ)] → M0, τ(x, ξ) > 0, is called non-

tangential if γ(0), γ(τ(x, ξ)) ∈ ∂M0, γ̇(0), γ̇(τ(x, ξ)) are nontangential vectors on ∂M0, and

γ(t) ∈M int
0 for all 0 < t < τ(x, ξ).

Assumption 1. We assume that the geodesic X-ray transform on (M0, g0) is injective in

the sense that if I(f, α)(x, ξ) = 0 for all (x, ξ) ∈ ∂−SM0\Γ− such that γx,ξ is a nontangential

geodesic, then f = 0 and α = dp in M0 for some p ∈ C1(M0,C) with p|∂M0 = 0.

The main result of the paper is as follows.

Theorem 2.1.2. Let (M, g) be a CTA manifold of dimension n ≥ 3 such that Assumption

1 holds for the transversal manifold. Let X(1), X(2) ∈ C(M,TM) be complex vector fields,

and let q(1), q(2) ∈ C(M,C). If CX(1),q(1) = CX(2),q(2), then X(1) = X(2) in M . Assuming

furthermore that

q(1)|∂M = q(2)|∂M , (2.1.4)

we have q(1) = q(2) in M .

Remark 2.1.3. Examples of nonsimple manifolds M0 satisfying Assumption 1 include in

particular manifolds with a strictly convex boundary which are foliated by strictly convex

hypersurfaces [110], [118], and manifolds with a hyperbolic trapped set and no conjugate

points [48], [49].

Remark 2.1.4. To the best of our knowledge, Theorem 2.1.2 seems to be the first result

where one recovers a vector field uniquely on general CTA manifolds.
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Remark 2.1.5. The assumption (2.1.4) is made for simplicity only and can be removed by

performing the boundary determination as done in Section 2.5 for the vector fields X(1) and

X(2). This can be done by using the approach of [53] combined with its extensions in [74]

and [41].

Let us proceed to describe the main ideas in the proof of Theorem 2.1.2. The key step in the

proof is a construction of complex geometric optics solutions for the equations LX,qu = 0 and

L−X,− div(X)+qu = 0 inM . Here the operator L−X,− div(X)+q represents the formal L2 adjoint of

the operator LX,q. In contrast to the work [9], where one deals with the same inverse problem

in the case of a simple transversal manifold, here without a simplicity assumption, complex

geometric optics solutions cannot be easily constructed by means of a global WKB method,

and following [38], we shall construct complex geometric optics solutions based on Gaussian

beam quasimodes for the biharmonic operator (−∆g)
2 conjugated by an exponential weight

corresponding to the limiting Carleman weight φ(x) = ±x1 for −h2∆g on the CTA manifold

(M, g); see [36]. To convert the Gaussian beam quasimodes to exact solutions, we shall rely

on the corresponding Carleman estimate with a gain of two derivatives established in [73];

see also [36].

Remark 2.1.6. We would like to note that one can obtain Gaussian beam quasimodes for

the biharmonic operator (−∆g)
2 conjugated by an exponential weight as the Gaussian beam

quasimodes for the Laplacian conjugated by an exponential weight. However, such quasimodes

are not enough to prove Theorem 2.1.2 as in order to recover the vector field uniquely, one

has to exploit a richer set of amplitudes which are not available for the Gaussian beam

quasimodes for the Laplacian.

Remark 2.1.7. When constructing Gaussian beam quasimodes for the Laplacian conjugated

by an exponential weight, one first reduces to the setting when the conformal factor c = 1 by

11



using the following transformation:

c
n+2

4 ◦ (−∆g) ◦ c−
(n−2)

4 = −∆g̃ + q̃,

where

g̃ = e⊕ g0, q̃ = −c
n+2

4 (−∆g)(c
− (n−2)

4 );

see [38]. However, it seems that no such useful reduction is available for the biharmonic

operator and therefore, when constructing Gaussian beam quasimodes for the biharmonic op-

erator (−∆g)
2 conjugated by an exponential weight, we shall proceed directly accommodating

the conformal factor in the construction which makes it somewhat more complicated.

Once complex geometric optics solutions are constructed, the next step is to substitute

them into a suitable integral identity which is obtained as a consequence of the equality

CX(1),q(1) = CX(2),q(2) for the Cauchy data sets. Exploiting the concentration properties of the

corresponding Gaussian beam together with Assumption 1, we first show that there exists

ψ ∈ C1(R ×M0) with compact support in x1 such that ψ(x1, ·)|∂M0 = 0 and X(1) −X(2) =

∇gψ. To show that ψ = 0, i.e., X(1) = X(2), we use the concentration properties of the

Gaussian beam for the biharmonic operator with a richer set of amplitudes which are not

available for the Laplacian, combining with Assumption 1. Finally, we show that q(1) = q(2)

by using the concentration properties of the Gaussian beam together with Assumption 1

once again.

The plan of the paper is as follows. In Section 2.2 we construct Gaussian beam quasimodes for

the biharmonic operator conjugated by an exponential weight corresponding to the limiting

Carleman weight φ and establish some concentration properties of them. In Section 2.3 we

convert the Gaussian beam quasimodes to the exact complex geometric optics solutions.

Section 2.4 is devoted to the proof of Theorem 2.1.2. Finally, in Section 2.5 the boundary
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determination of a continuous vector field on a compact manifold with boundary, from the

set of the Cauchy data, is presented.

2.2 Gaussian beam quasimodes for biharmonic opera-

tors on conformally anisotropic manifolds

Let (M, g) be a CTA manifold so that (M, g) ⊂⊂ (R ×M int
0 , c(e ⊕ g0)). Here (R, e) is the

Euclidean real line, (M0, g0) is a smooth compact (n−1)–dimensional manifold with smooth

boundary, and c ∈ C∞(R ×M0) is a positive function. Let us write x = (x1, x
′) for local

coordinates in R×M0. Note that φ(x) = ±x1 is a limiting Carleman weight for −h2∆g; see

Definition 2.3.1 in Section 2.3, and see also [36].

In this section we shall construct Gaussian beam quasimodes for the biharmonic operator

(−∆g)
2 conjugated by an exponential weight corresponding to the limiting Carleman weight

φ = ±x1, i.e., suitable approximate solutions concentrated on a single curve; see [103], [104].

Due to the presence of the conformal factor c, our quasimodes will be constructed on the

manifold M and will be localized to nontangential geodesics on the transversal manifold M0.

The first main result of this section is as follows. In this result H1(M int) stands for the

standard Sobolev space, equipped with the semiclassical norm,

‖u‖2
H1

scl(M
int) = ‖u‖2

L2(M) + ‖h∇gu‖2
L2(M).

Proposition 2.2.1. Let s = µ + iλ with 1 ≤ µ = 1/h and λ ∈ R being fixed, and let

γ : [0, L] → M0 be a unit speed nontangential geodesic on M0. Then there exist families of

13



Gaussian beam quasimodes vs, ws ∈ C∞(M) such that

‖vs‖H1
scl(M

int) = O(1), ‖esx1(−h2∆g)
2e−sx1vs‖L2(M) = O(h5/2), (2.2.1)

and

‖ws‖H1
scl(M

int) = O(1), ‖e−sx1(−h2∆g)
2esx1ws‖L2(M) = O(h5/2), (2.2.2)

as h → 0. Moreover, in a sufficiently small neighborhood U of a point p ∈ γ([0, L]), the

quasimode vs is a finite sum,

vs|U = v(1)
s + · · ·+ v(P )

s ,

where t1 < · · · < tP are the times in [0, L] where γ(tl) = p. Each v
(l)
s has the form

v(l)
s = eisϕ

(l)

a(l), l = 1, . . . , P, (2.2.3)

where ϕ = ϕ(l) ∈ C∞(U ;C) satisfies for t close to tl,

ϕ(γ(t)) = t, ∇ϕ(γ(t)) = γ̇(t), Im (∇2ϕ(γ(t))) ≥ 0, Im (∇2ϕ)|γ̇(t)⊥ > 0,

and a(l) ∈ C∞(R× U) is of the form

a(l)(x1, t, y) = h−
(n−2)

4 a
(l)
0 (x1, t)χ

(
y

δ′

)
,

where for all l = 1, . . . , P , either a
(l)
0 is given by

a
(l)
0 = e−φ

(l)(x1,t), (2.2.4)

14



defining an amplitude of the first type, or a
(l)
0 satisfies the equation

1

c(x1, t, 0)
(∂x1 − i∂t)(eφ

(l)(x1,t)a
(l)
0 ) = 1, (2.2.5)

defining an amplitude of the second type. Here

φ(l)(x1, t) = log c(x1, t, 0)
n
4
− 1

2 +G(l)(t), ∂tG
(l)(t) =

1

2
(∆g0ϕ

(l))(t, 0), (2.2.6)

(t, y) are the Fermi coordinates for γ for t close to tl, χ ∈ C∞0 (Rn−2) is such that 0 ≤ χ ≤ 1,

χ = 1 for |y| ≤ 1/4 and χ = 0 for |y| ≥ 1/2, and δ′ > 0 is a fixed number that can be taken

arbitrarily small.

In a sufficiently small neighborhood U of a point p ∈ γ([0, L]), the quasimode ws is a finite

sum,

ws|U = w(1)
s + · · ·+ w(P )

s ,

where t1 < · · · < tP are the times in [0, L] where γ(tl) = p. Each w
(l)
s has the form

w(l)
s = eisϕ

(l)

b(l), l = 1, . . . , P, (2.2.7)

where ϕ(l) is the same as in (2.2.3), and b(l) ∈ C∞(R× U) is of the form

b(l)(x1, t, y) = h−
(n−2)

4 b
(l)
0 (x1, t)χ

(
y

δ′

)
,

where

b
(l)
0 = e−φ̃

(l)(x1,t). (2.2.8)
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Here

φ̃(l)(x1, t) = log c(x1, t, 0)
n
4
− 1

2 + F (l)(t), ∂tF
(l)(t) =

1

2
(∆g0ϕ

(l))(t, 0). (2.2.9)

Remark 2.2.2. Note that the first type of the amplitudes, i.e., a
(l)
0 given by (2.2.4), will be

used to recover the potential q as well as the vector field X up to a suitable gauge transforma-

tion, while to recover X uniquely, we shall have to work with the second type of amplitudes,

i.e., a
(l)
0 solving (2.2.5).

Proof. To construct Gaussian beam quasimodes, we shall follow the standard approach; see

[38], [73]. The novelty here is that when working with the biharmonic operator we have to

accommodate the presence of the conformal factor c throughout the construction. We are

also led to consider a richer class of amplitudes for the Gaussian beam quasimodes.

Step 1. Preparation. Let us isometrically embed the manifold (M0, g0) into a larger closed

manifold (M̂0, g0) of the same dimension. This is possible as we can form the manifold

M̂0 = M0t∂M0M0, which is the disjoint union of two copies of M0, glued along the boundary;

see [38, Proof of Proposition 3.1]. We extend γ as a unit speed geodesic in M̂0. Let ε > 0

be such that γ(t) ∈ M̂0 \M0 and γ(t) has no self-intersection for t ∈ [−2ε, 0) ∪ (L,L + 2ε].

This choice of ε is possible since γ is nontangential.

Our aim is to construct Gaussian beam quasimodes near γ([−ε, L + ε]). We shall start by

carrying out the quasimode construction locally near a given point p0 = γ(t0) on γ([−ε, L+

ε]). Let (t, y) ∈ U = {(t, y) ∈ R × Rn−2 : |t − t0| < δ, |y| < δ′}, δ, δ′ > 0, be Fermi

coordinates near p0; see [60]. We may assume that the coordinates (t, y) extend smoothly to

a neighborhood of U . The geodesic γ near p0 is then given by Γ = {(t, y) : y = 0}, and

gjk0 (t, 0) = δjk, ∂ylg
jk
0 (t, 0) = 0.
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Hence, near the geodesic

gjk0 (t, y) = δjk +O(|y|2). (2.2.10)

Let us first construct the quasimode vs in (2.2.1) for the operator esx1(−h2∆g)
2e−sx1 . In

doing so, we consider the following Gaussian beam ansatz:

vs(x1, t, y) = eisϕ(t,y)a(x1, t, y; s). (2.2.11)

Here ϕ ∈ C∞(U,C) is such that

Imϕ ≥ 0, Imϕ|Γ = 0, Imϕ(t, y) ∼ |y|2 = dist((y, t),Γ)2, (2.2.12)

and a ∈ C∞(R× U,C) is an amplitude such that supp(a(x1, ·)) is close to Γ; see [104], [59].

Notice that here we choose ϕ to depend on the transversal variables (t, y) only while a is a

function of all the variables.

Let us first compute esx1(−h2∆g)
2e−sx1vs. To that end, letting

ϕ̃(x1, t, y) = x1 − iϕ(t, y), ϕ̂ = shϕ̃, (2.2.13)

we first get

e
ϕ̂
h (−h2∆g)e

− ϕ̂
h = −h2∆g + h(2〈∇gϕ̂,∇g·〉g + ∆gϕ̂)− 〈∇gϕ̂,∇gϕ̂〉g. (2.2.14)

Here and in what follows we write 〈·, ·〉g to denote the Riemannian scalar product on tangent

and cotangent spaces. In view of (2.2.14), we see that

esϕ̃(−h2∆g)
2e−sϕ̃ = h4

(
−∆g + s(2〈∇gϕ̃,∇g·〉g + ∆gϕ̃)− s2〈∇gϕ̃,∇gϕ̃〉g

)2
,
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and therefore,

esx1(−h2∆g)
2e−sx1vs = eisϕh4

(
−∆g+s(2〈∇gϕ̃,∇g·〉g+∆gϕ̃)−s2〈∇gϕ̃,∇gϕ̃〉g

)2
a. (2.2.15)

Step 2. Solving an eikonal equation to determine the phase function ϕ(t, y). Following the

WKB method, we start by considering the eikonal equation

〈∇gϕ̃,∇gϕ̃〉g = 0,

and we would like to find ϕ = ϕ(t, y) ∈ C∞(U,C) such that

〈∇gϕ̃,∇gϕ̃〉g = O(|y|3), y → 0, (2.2.16)

and

Imϕ ≥ d|y|2, (2.2.17)

with some d > 0. Using that g = c(e⊗ g0) and (2.2.13), we see that

〈∇gϕ̃,∇gϕ̃〉g = c−1(1− 〈∇g0ϕ,∇g0ϕ〉g0),

and therefore, in view of (2.2.16), we have to find ϕ satisfying the standard eikonal equation,

1− 〈∇g0ϕ,∇g0ϕ〉g0 = O(|y|3), y → 0.

As in [38], [103], and [104], we can choose,

ϕ(t, y) = t+
1

2
H(t)y · y, (2.2.18)
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where H(t) is a unique smooth complex symmetric solution of the initial value problem for

the matrix Riccati equation,

Ḣ(t) +H(t)2 = F (t), H(t0) = H0, (2.2.19)

with H0 being a complex symmetric matrix with Im (H0) positive definite and F (t) being a

suitable symmetric matrix, determined by the metric tensor; see [38, Proof of Proposition

3.1]. Hence, as explained in [38], [103], and [104], Im (H(t)) is positive definite for all t.

Step 3. Solving a transport equation to find an amplitude a. We look for a smooth amplitude

a = a(x1, x
′) satisfying the transport equation,

L2a = O(|y|), (2.2.20)

as y → 0. Here

L := 2〈∇gϕ̃,∇g·〉g + ∆gϕ̃. (2.2.21)

To proceed let us first simplify the operator L. To that end, in view of (2.2.13), a direct

computation shows that

〈∇gϕ̃,∇g·〉g =
1

c
(∂x1 − ig−1

0 (x′)ϕ′x′ · ∂x′), (2.2.22)

∆gϕ̃ = ∆gx1 − i∆gϕ(x′), (2.2.23)
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where

∆gx1 =

(
n

2
− 1

)
1

c2
∂x1c, (2.2.24)

and

∆gϕ =
1

c
∆g0ϕ+

(
n

2
− 1

)
1

c2
〈∇g0c,∇g0ϕ〉g0 . (2.2.25)

In view of (2.2.22), (2.2.23), (2.2.24), (2.2.25), the operator L given by (2.2.21) becomes

L =
2

c
(∂x1−ig−1

0 (x′)ϕ′x′ ·∂x′)+

(
n

2
−1

)
1

c2
∂x1c−

i

c
∆g0ϕ−

(
n

2
−1

)
i

c2
〈∇g0c,∇g0ϕ〉g0 . (2.2.26)

Let us proceed to simplify the operator L further. Using (2.2.10) and (2.2.18), we see that

g−1
0 (x′)ϕ′x′ · ∂x′ = ∂t +O(|y|2)∂t +H(t)y · ∂y +O(|y|2) · ∂y. (2.2.27)

Using (2.2.10) and (2.2.18), we also have

(∆g0ϕ)(t, 0) = |g0|−1/2∂x′j(|g0|1/2gjk0 ∂x′kϕ)|y=0 = δjk∂x′j∂x′kϕ|y=0

= δjkHjk = trH(t),

and therefore

(∆g0ϕ)(t, y) = (∆g0ϕ)(t, 0) +O(|y|) = trH(t) +O(|y|). (2.2.28)

Finally, using (2.2.10) and (2.2.18), we get

〈∇g0c,∇g0ϕ〉g0 = ∂tc+O(|y|). (2.2.29)
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Using (2.2.27), (2.2.28), (2.2.29), the operator L in (2.2.26) becomes

L =
2

c

[
∂x1 − i∂t − iH(t)y · ∂y +

(
n

4
− 1

2

)
(∂x1 − i∂t) log c− i

2
trH(t)

+O(|y|) +O(|y|2)∂t +O(|y|2)∂y

]
=

2

c(x1, t, 0)

[
∂x1 − i∂t − iH(t)y · ∂y + (∂x1 − i∂t) log c(x1, t, 0)

n
4
− 1

2

− i

2
trH(t) +O(|y|) +O(|y|)(∂x1 , ∂t) +O(|y|2)∂y

]
.

(2.2.30)

Let χ ∈ C∞0 (Rn−2) be such that χ = 1 for |y| ≤ 1/4 and χ = 0 for |y| ≥ 1/2. We look for

the amplitude a in the form

a(x1, t, y) = h−
(n−2)

4 a0(x1, t)χ

(
y

δ′

)
, (2.2.31)

where a0(·, ·) ∈ C∞(R×{t : |t− t0| < δ}) is independent of y. In view of (2.2.20), a0 should

satisfy the equation

L2a0 = O(|y|), (2.2.32)

as y → 0. In view of (2.2.30), we write

L =
2

c(x1, t, 0)
(L0 +R), (2.2.33)

where

L0 = (∂x1 − i∂t) + (∂x1 − i∂t) log c(x1, t, 0)
n
4
− 1

2 − i

2
trH(t) (2.2.34)

and

R = −iH(t)y · ∂y +O(|y|) +O(|y|)(∂x1 , ∂t) +O(|y|2)∂y. (2.2.35)
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To solve our inverse problem, we need two types of amplitudes. Let us proceed to construct

the first type of amplitudes. In doing so, first note that as a0 is independent of y, if a0 solves

the equation

L0a0 = 0, (2.2.36)

then a0 satisfies (2.2.32). Let us proceed to find a solution to (2.2.36). To that end, letting

φ(x1, t) = log c(x1, t, 0)
n
4
− 1

2 +G(t), ∂tG(t) =
1

2
trH(t), (2.2.37)

we see that

L0 = e−φ(x1,t)(∂x1 − i∂t)eφ(x1,t). (2.2.38)

We solve (2.2.36) by taking

a0 = e−φ = c(x1, t, 0)
1
2
−n

4 e−G(t), ∂tG(t) =
1

2
trH(t). (2.2.39)

Now we proceed to find the second type of amplitudes, which is given by more general

solutions to (2.2.32). As a0 is independent of y, using (2.2.33), (2.2.34), and (2.2.35), equation

(2.2.32) becomes

2

c(x1, t, 0)
[L0 +R]

(
2

c(x1, t, 0)
L0a0(x1, t) +O(|y|)

)
= O(|y|),

or simply

L0

(
1

c(x1, t, 0)
L0

)
a0(x1, t) = 0. (2.2.40)
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Using (2.2.38), we see that (2.2.40) becomes

(∂x1 − i∂t)
(

1

c(x1, t, 0)
(∂x1 − i∂t)(eφ(x1,t)a0)

)
= 0. (2.2.41)

To solve (2.2.41), we choose a0(x1, t) to be a solution to

1

c(x1, t, 0)
(∂x1 − i∂t)(eφ(x1,t)a0) = 1. (2.2.42)

Note that (2.2.42) can be solved as it is a standard inhomogeneous ∂ equation in the complex

plane z = x1 − it,

∂(eφ(x1,t)a0) = c/2. (2.2.43)

Step 4. Establishing the estimates (2.2.1) locally near the point p0. First it follows from

(2.2.11) and (2.2.31) that

vs(x1, t, y) = eisϕ(t,y)h−
(n−2)

4 a0(x1, t)χ

(
y

δ′

)
. (2.2.44)

Using (2.2.17), we have

|vs(x1, t, y)| ≤ O(1)h−
(n−2)

4 e−
1
h
d|y|2χ

(
y

δ′

)
, (x1, t, y) ∈ J × U, (2.2.45)

and therefore,

‖vs‖L2(J×U) ≤ O(1)‖h−
(n−2)

4 e−
1
h
d|y|2‖L2(|y|≤δ′/2) = O(1), h→ 0, (2.2.46)

where J ⊂ R is a large fixed bounded open interval. Similarly, it follows from (2.2.44) that

‖∇vs‖L2(J×U) = O(h−1). (2.2.47)
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Let us next estimate ‖esx1(−h2∆g)
2e−sx1vs‖L2(J×U). To that end, letting

f = 〈∇gϕ̃,∇gϕ̃〉g = O(|y|3) (2.2.48)

(cf. (2.2.16)), we obtain from (2.2.15) with the help of (2.2.21) that

esx1(−h2∆g)
2e−sx1vs = eisϕh4

(
(−∆g)

2a− s∆g(La) + s2∆g(fa)

+ sL(−∆ga) + s2L2a− s3L(fa) + s2f(∆ga)− s3fLa+ s4f 2a
)
.

(2.2.49)

We shall proceed to bound each term in (2.2.49) in L2(J × U). First using (2.2.31) and

(2.2.17), we get

‖eisϕh4(−∆g)
2a‖L2(J×U) = h4‖eisϕh−

(n−2)
4 (−∆g)

2(a0χ)‖L2(J×U)

= O(h4)‖h−
(n−2)

4 e−
d
h
|y|2‖L2(|y|≤δ′/2) = O(h4),

(2.2.50)

and similarly,

‖eisϕh4s∆g(La)‖L2(J×U) = O(h3) (2.2.51)

and

‖eisϕh4sL(∆ga)‖L2(J×U) = O(h3). (2.2.52)

Now to bound eisϕh4s2∆g(fa) in L2(J × U) we note that the worst case occurs when ∆g

falls on f , and in this case we have, using (2.2.48) and (2.2.31),

‖eisϕh4s2∆g(f)a‖L2(J×U) ≤ O(h2)‖h−
(n−2)

4 |y|e−
d
h
|y|2‖L2(|y|≤δ′/2) = O(h5/2),
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and therefore,

‖eisϕh4s2∆g(fa)‖L2(J×U) = O(h5/2). (2.2.53)

Here we have used the following bound:

‖h−
(n−2)

4 |y|ke−
d
h
|y|2‖L2(|y|≤δ′/2) = O(hk/2), k = 1, 2, . . . . (2.2.54)

Similarly, using (2.2.32) and (2.2.54), we get

‖eisϕh4s2L2a‖L2(J×U) ≤ O(h2)‖h−
(n−2)

4 |y|e−
d
h
|y|2‖L2(|y|≤δ′/2) = O(h5/2). (2.2.55)

Using (2.2.48), (2.2.54), and the fact that L(O(|y|3)) = O(|y|3), we obtain that

‖eisϕh4s3L(fa)‖L2(J×U) ≤ O(h)‖h−
(n−2)

4 |y|3e−
d
h
|y|2‖L2(|y|≤δ′/2) = O(h5/2),

‖eisϕh4s2f(∆ga)‖L2(J×U) ≤ O(h2)‖h−
(n−2)

4 |y|3e−
d
h
|y|2‖L2(|y|≤δ′/2) = O(h7/2),

‖eisϕh4s3fLa‖L2(J×U) ≤ O(h)‖h−
(n−2)

4 |y|3e−
d
h
|y|2‖L2(|y|≤δ′/2) = O(h5/2),

‖eisϕh4s4f 2a‖L2(J×U) ≤ O(1)‖h−
(n−2)

4 |y|6e−
d
h
|y|2‖L2(|y|≤δ′/2) = O(h3).

(2.2.56)

Combining (2.2.49), (2.2.50), (2.2.51), (2.2.52), (2.2.53), (2.2.55), (2.2.56), we get

‖esx1(−h2∆g)
2e−sx1vs‖L2(J×U) = O(h5/2). (2.2.57)

This completes verification of (2.2.1) locally.

For later purposes we need estimates for ‖vs(x1, ·)‖L2(∂M0). If U contains a boundary point

x0 = (t0, 0) ∈ ∂M0, then ∂t|x0 is transversal to ∂M0. Let ρ be a boundary defining function

for M0 so that ∂M0 is given by the zero set ρ(t, y) = 0 near x0. Then ∇ρ(x0) is normal to

∂M0, and hence, ∂tρ(x0) 6= 0. By the implicit function theorem, there is a smooth function
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y 7→ t(y) near 0 such that ∂M0 near x0 is given by {(t(y), y) : |y| < r0} for some r0 > 0

small; see also [60]. Then using (2.2.45), we get

‖vs(x1, ·)‖2
L2(∂M0∩U) =

∫
|y|<r0

|vs(x1, t(y), y)|2dS(y)

≤ O(1)

∫
Rn−2

h−
(n−2)

2 e−2 d
h
|y|2dy = O(1).

(2.2.58)

Step 5. Establishing estimates (2.2.1) globally. Now let us construct the quasimode vs

in M by gluing together quasimodes defined along small pieces of the geodesic. As γ :

(−2ε, L + 2ε) → M̂0 is a unit speed non-tangential geodesic, an application of [60, Lemma

7.2] shows that γ|[−ε,L+ε] self-intersects only at finitely many times tj with

0 ≤ t1 < · · · < tN ≤ L.

We let t0 = −ε and tN+1 = L + ε. By [38, Lemma 3.5], there exists an open cover

{(Uj, κj)}N+1
j=0 of γ([−ε, L + ε]) consisting of coordinate neighborhoods having the follow-

ing properties:

(i) κj(Uj) = Ij ×B, where Ij are open intervals and B = B(0, δ′) is an open ball in Rn−2.

Here δ′ > 0 can be taken arbitrarily small and the same for each Uj,

(ii) κj(γ(t)) = (t, 0) for each t ∈ Ij,

(iii) tj only belongs to Ij and Ij ∩ Ik = ∅ unless |j − k| ≤ 1,

(iv) κj = κk on κ−1
j ((Ij ∩ Ik)×B).

To construct the quasimode vs globally, we first find a function v
(0)
s = eisϕ

(0)
a(0), a(0) =

h−
(n−2)

4 a
(0)
0 χ, in U0 as above. Choose some t′0 with γ(t′0) ∈ U0 ∩ U1. To construct the phase

ϕ(1) in U1, we solve the Riccati equation (2.2.19) with the initial conditionH(1)(t′0) = H(0)(t′0).

Continuing in this way, we obtain the phases ϕ(0), ϕ(1), . . . , ϕ(N+1) such that ϕ(j) = ϕ(j+1) on
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Uj ∩ Uj+1. In a similar way, by solving ODE in (2.2.37) with prescribed initial conditions

we get φ(0), . . . , φ(N+1), and therefore, in view of (2.2.39) we obtain a
(0)
0 , a

(1)
0 , . . . , a

(N+1)
0 , and

hence, we construct the amplitude of the first type globally.

To construct the amplitude of the second type, we need to solve the inhomogeneous ∂̄–type

equations (2.2.43). To that end, we first find a
(0)
0 and a

(1)
0 which are solutions of (2.2.43) on

J̃ × I0 and on J̃ × I1, respectively. Here J̃ ⊂ R is a bounded open interval. Then we see that

eφ
(1)
a

(1)
0 −eφ

(0)
a

(0)
0 is holomorphic on J̃×(I0∩I1). By [16, Example 3.25], there are holomorphic

functions g1, g0 on J̃ × I1 and J̃ × I0, respectively, such that eφ
(1)
a

(1)
0 − eφ

(0)
a

(0)
0 = g0 − g1 on

J̃ × (I0 ∩ I1). Thus, modifying a
(0)
0 and a

(1)
0 , we can always arrange so that a

(0)
0 = a

(1)
0 on

J̃ × (I0 ∩ I1). Proceeding in the same way, we can find a
(2)
0 , . . . , a

(N+1)
0 so that a

(j)
0 = a

(j+1)
0

on J̃ × (Ij ∩ Ij+1), and hence, we construct the amplitude of the second type globally.

Thus, we obtain the quasimodes v
(0)
s , . . . , v

(N+1)
s such that

v(j)
s (x1, ·) = v(j+1)

s (x1, ·) in Uj ∩ Uj+1 (2.2.59)

for all x1. Let χj = χj(t) ∈ C∞0 (Ij) be such that
∑N+1

j=0 χj = 1 near [−ε, L + ε], and define

our quasimode v globally by

vs =
N+1∑
j=0

χjv
(j)
s .

Let us next give a local description of the quasimode vs near self-intersecting points of the

geodesic γ and near the other points of γ. To that end, let p1, . . . , pR ∈ M0 be the distinct

points where the geodesic self-intersects, and let 0 ≤ t1 < · · · < tR′ be the times of self-

intersections. Let V1, . . . , VR be small neighborhoods in M̂0 around pj, j = 1, . . . , R. Then
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choosing δ′ small enough we obtain an open cover in M̂0,

supp (vs(x1, ·)) ∩M0 ⊂ (∪Rj=1Vj) ∪ (∪Sk=1Wk), (2.2.60)

where in each Vj, the quasimode is a finite sum,

vs(x1, ·)|Vj =
∑

l:γ(tl)=pj

v(l)
s (x1, ·), (2.2.61)

and in each Wk (where there are no self-intersecting points), in view of (2.2.59), there is

some l(k) so that the quasimode is given by

vs(x1, ·)|Wk
= vl(k)

s (x1, ·). (2.2.62)

We also have

supp (vs) ∩M ⊂ (∪Rj=1J̃ × Vj) ∪ (∪Sk=1J̃ ×Wk),

where J̃ ⊂ R is a bounded open interval.

Finally, the bounds in (2.2.1) follows from the bounds (2.2.46), (2.2.47), (2.2.57), and the

representations (2.2.61) and (2.2.62) of v.

Step 6. Construction of the Gaussian beam quasimodes ws. Now look for a Gaussian beam

quasimode for the operator e−sx1(−h2∆g)
2esx1 in the form

ws(x1, t, y) = eisϕ(t,y)b(x1, t, y; s), (2.2.63)

where ϕ ∈ C∞(U) is the phase function given by (2.2.18), and b ∈ C∞(R×U) is an amplitude,
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which we shall proceed to determine. To that end, first, similarly to (2.2.15), we get

e−sx1(−h2∆g)
2esx1ws = eisϕh4

(
−∆g−s(2〈∇g

˜̃ϕ,∇g·〉g+∆g
˜̃ϕ)−s2〈∇g

˜̃ϕ,∇g
˜̃ϕ〉g)2

b, (2.2.64)

where

˜̃ϕ(x1, t, y) = x1 + iϕ(t, y). (2.2.65)

With ϕ given by (2.2.18), we have

〈∇g
˜̃ϕ,∇g

˜̃ϕ〉g = O(|y|3),

as y → 0. We thus look for the smooth amplitude b = b(x1, x
′) satisfying the transport

equation,

L̃2b = O(|y|), (2.2.66)

where

L̃ = 2〈∇g
˜̃ϕ,∇g·〉g + ∆g

˜̃ϕ. (2.2.67)

Let us simplify the operator L̃. First using (2.2.65), we get

〈∇g
˜̃ϕ,∇g·〉g =

1

c
(∂x1 + ig−1

0 (x′)ϕ′x′ · ∂x′), (2.2.68)

∆gϕ̃ = ∆gx1 + i∆gϕ(x′). (2.2.69)

Hence, using (2.2.68), (2.2.69), (2.2.24), and (2.2.25), the operator L̃ given by (2.2.67) be-
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comes

L̃ =
2

c
(∂x1 +ig−1

0 (x′)ϕ′x′ ·∂x′)+

(
n

2
−1

)
1

c2
∂x1c+

i

c
∆g0ϕ+

(
n

2
−1

)
i

c2
〈∇g0c,∇g0ϕ〉g0 . (2.2.70)

Using (2.2.27), (2.2.28), (2.2.29), the operator L̃ in (2.2.70) becomes

L̃ = =
2

c(x1, t, 0)

[
∂x1 + i∂t + iH(t)y · ∂y + (∂x1 + i∂t) log c(x1, t, 0)

n
4
− 1

2

+
i

2
trH(t) +O(|y|) +O(|y|)(∂x1 , ∂t) +O(|y|2)∂y

]
.

(2.2.71)

We look for the amplitude b in the form

b(x1, t, y) = h−
(n−2)

4 b0(x1, t)χ

(
y

δ′

)
, (2.2.72)

where b0(·, ·) ∈ C∞(R × {t : |t − t0| < δ}) is independent of y, and in view of (2.2.66), b0

should satisfy

L̃2b0 = O(|y|), y → 0. (2.2.73)

It follows from (2.2.70) that

L̃ =
2

c(x1, t, 0)
(L̃0 + R̃), (2.2.74)

where

L̃0 = (∂x1 + i∂t) + (∂x1 + i∂t) log c(x1, t, 0)
n
4
− 1

2 +
i

2
trH(t), (2.2.75)

and

R̃ = iH(t)y · ∂y +O(|y|) +O(|y|)(∂x1 , ∂t) +O(|y|2)∂y. (2.2.76)
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In contrast to the construction of the Gaussian beam quasimodes vs, we shall only need

amplitudes of the first type. To construct such amplitudes, we note that as b0 is independent

of y, if b0 solves the equation

L̃0b0 = 0, (2.2.77)

then b0 satisfies (2.2.73). To find a solution to (2.2.77), we note that

L̃0 = e−φ̃(x1,t)(∂x1 + i∂t)e
φ̃(x1,t), (2.2.78)

where φ̃(x1, t) is given by

φ̃(x1, t) = log c(x1, t, 0)
n
4
− 1

2 + F (t), ∂tF (t) =
1

2
trH(t). (2.2.79)

We solve (2.2.77) by taking

b0 = e−φ̃ = c(x1, t, 0)
1
2
−n

4 e−F (t). (2.2.80)

Proceeding further as in the construction of the quasimode vs above, we obtain the quasimode

ws ∈ C∞(M) such that (2.2.2) holds.

We shall need the following result.

Proposition 2.2.3. Let X ∈ C(M,TM) be a complex vector field, let ψ ∈ C(M0), and let

x′1 ∈ R. Then there exist the Gaussian beam quasimodes vs and ws given by Proposition
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2.2.1 such that vs is obtained using amplidutes of the first type and we have

lim
h→0

∫
{x′1}×M0

vswsψdVg0 =

∫ L

0

e−2λtc(x1, γ(t))1−n
2ψ(γ(t))dt (2.2.81)

and

lim
h→0

h

∫
{x′1}×M0

X(vs)wsψdVg0 = i

∫ L

0

Xt(x
′
1, γ(t))e−2λtc(x1, γ(t))1−n

2ψ(γ(t))dt. (2.2.82)

Here Xt(x
′
1, γ(t)) = 〈X(x′1, γ(t)), (0, γ̇(t))〉g.

Proof. Step 1. Proof of (2.2.81). Let ψ ∈ C(M0), x′1 ∈ R. Using a partition of unity, in

view of (2.2.60), it suffices to establish (2.2.81) for ψ having compact support in one of the

sets Vj or Wk. First, assume that ψ ∈ C0(M0), supp (ψ) ⊂ Wk. Thus, in view of (2.2.62),

(2.2.44), (2.2.63), (2.2.72), on supp (ψ), we have

vs = eisϕh−
(n−2)

4 a0(x′1, t)χ

(
y

δ′

)
, ws = eisϕh−

(n−2)
4 b0(x′1, t)χ

(
y

δ′

)
. (2.2.83)

To proceed, we shall need the consequence of (2.2.10),

|g0|1/2 = 1 +O(|y|2), (2.2.84)

as well as

isϕ− isϕ = −2
1

h
Imϕ− 2λReϕ. (2.2.85)
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Using (2.2.83), (2.2.84), (2.2.85), (2.2.18), we get

∫
{x′1}×M0

vswsψdVg0

=

∫ L

0

∫
Rn−2

e−2 1
h

Imϕe−2λReϕh−
(n−2)

2 a0(x′1, t)b0(x′1, t)χ
2

(
y

δ′

)
ψ(t, y)|g0|

1
2dydt

=

∫ L

0

∫
Rn−2

e−
1
h

ImH(t)y·ye−2λteλO(|y|2)h−
(n−2)

2 a0(x′1, t)b0(x′1, t)χ
2

(
y

δ′

)
ψ(t, y)(1 +O(|y|2))dydt.

(2.2.86)

Making the change of variable y = h1/2ỹ in (2.2.86), we obtain that

∫
{x′1}×M0

vswsψdVg0 =

∫ L

0

∫
Rn−2

e−ImH(t)ỹ·ỹe−2λteλhO(|ỹ|2)a0(x′1, t)b0(x′1, t)

χ2

(
h1/2ỹ

δ′

)
ψ(t, h1/2ỹ)(1 + hO(|ỹ|2))dtdỹ.

(2.2.87)

Using that

∫
Rn−2

e−ImH(t)y·ydy =
π(n−2)/2√

det(ImH(t))
, (2.2.88)

and the dominated covergence theorem, we get from (2.2.87) that

lim
h→0

∫
{x′1}×M0

vswsψdVg0

=

∫ L

0

e−2λta0(x′1, t)b0(x′1, t)ψ(t, 0)

∫
Rn−2

e−ImH(t)y·ydydt

=

∫ L

0

e−2λta0(x′1, t)b0(x′1, t)
π(n−2)/2√

det(ImH(t))
ψ(t, 0)dt.

(2.2.89)

Let us proceed to simplify the expression in (2.2.89) in the case when a0 is the amplitude of

the first type, i.e., a0 be given by (2.2.39), and let b0 be given by (2.2.80). Then

a0(x′1, t)b0(x′1, t)
π(n−2)/2√

det(ImH(t))
= c(x1, t, 0)1−n

2 e−(G(t)+F (t)) π(n−2)/2√
det(ImH(t))

. (2.2.90)
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Now it follows from (2.2.39) and (2.2.79) that

G(t) + F (t) = G(t0) + F (t0) +

∫ t

t0

tr Re(H(s))ds. (2.2.91)

Using (2.2.91) and the property of solutions of the matrix Riccati equation [59, Lemma 2.58],

det (ImH(t)) = det (ImH(t0))e
−2

∫ t
t0

tr Re(H(s))ds
,

we see that

e−(G(t)+F (t)) π(n−2)/2√
det(ImH(t))

= e−(G(t0)+F (t0)) π(n−2)/2√
det(ImH(t0))

(2.2.92)

is a constant in t. To fix this constant, when constructing the amplitude a0 and b0, specifically,

when solving (2.2.39) and (2.2.79) in U0, we choose initial conditions for G and F so that

the constant in (2.2.92) is equal to 1. With this choice, it follows from (2.2.89), (2.2.90),

(2.2.92) that

lim
h→0

∫
{x′1}×M0

vswsψdVg0 =

∫ L

0

e−2λtc(x1, t, 0)1−n
2ψ(t, 0)dt. (2.2.93)

This completes the proof of (2.2.81) in the case when supp (ψ) ⊂ Wk.

Let us now establish (2.2.81) when supp (ψ) ⊂ Vj. Here on supp (ψ) we have

vs =
∑

l:γ(tl)=pj

v(l)
s , ws =

∑
l:γ(tl)=pj

w(l)
s , (2.2.94)

and hence,

vsws =
∑

l:γ(tl)=pj

v(l)
s w

(l)
s +

∑
l 6=l′,γ(tl)=γ(tl′ )=pj

v(l)
s w

(l′)
s . (2.2.95)
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We shall use a nonstationary phase argument as in [38, end of proof Proposition 3.1] to show

that the contribution of the mixed terms vanishes in the limit h→ 0, i.e., if l 6= l′,

lim
h→0

∫
{x′1}×M0

v(l)
s w

(l′)
s ψdVg0 = 0. (2.2.96)

In doing so, write

v(l)
s = ei

1
h

Reϕ(l)

p(l), p(l) = e−λReϕ(l)

e−sImϕ(l)

a(l)

and

w(l′)
s = ei

1
h

Reϕ(l′)
q(l′), q(l′) = e−λReϕ(l′)

e−sImϕ(l′)
b(l′),

and therefore,

v(l)
s w

(l′)
s = ei

1
h
φp(l)q(l′), (2.2.97)

where

φ = Reϕ(l) − Reϕ(l′).

Thus, in view of (2.2.96) and (2.2.97) we shall show that for l 6= l′,

lim
h→0

∫
{x′1}×M0

ei
1
h
φp(l)q(l′)ψdVg0 = 0. (2.2.98)

Since ∂tϕ
(l)(t, 0) = ∂tϕ

(l′)(t, 0) = 1 and the geodesic intersects itself transversally, as ex-

plained in [60, Lemma 7.2], we see that dφ(pj) 6= 0. By decreasing the set Vj if necessary,

we may assume that dφ 6= 0 in Vj.

To prove (2.2.98), we shall integrate by parts and in doing so, we let ε > 0 be fixed, and
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decompose ψ = ψ1 + ψ2, where ψ1 ∈ C∞(M0), supp (ψ1) ⊂ Vj and and ‖ψ2‖L∞(Vj∩M0) ≤ ε.

Notice that ψ may be nonzero on ∂M0. We have

∣∣∣∣ ∫
{x′1}×M0

ei
1
h
φp(l)q(l′)ψ2dVg0

∣∣∣∣ ≤ ‖v(l)
s ‖L2‖w(l)

s ‖L2‖ψ2‖L∞ ≤ O(ε). (2.2.99)

For the smooth part ψ1, we integrate by parts using that

ei
1
h
φ =

h

i
L(ei

1
h
φ), L =

1

|dφ|2
〈dφ, d·〉g0 .

We have∫
{x′1}×M0

ei
1
h
φp(l)q(l′)ψ1dVg0 =

∫
{x′1}×(Vj∩∂M0)

h
∂νφ

i|dφ|2
ei

1
h
φp(l)q(l′)ψ1dS

+ h
1

i

∫
{x′1}×M0

ei
1
h
φLt(p(l)q(l′)ψ1)dVg0 ,

(2.2.100)

where Lt = −L− divL is the transpose of L.

In view of (2.2.58), the boundary term is of O(h) as h→ 0. To estimate the second term in

the right-hand side of (2.2.100), we recall that

p(l)q(l′) = e−λ(Reϕ(l)+Reϕ(l′))e−iλ(Imϕ(l)−Imϕ(l′))e−
1
h

(Imϕ(l)+Imϕ(l′))h−
(n−2)

2

a
(l)
0 (x′1, t)b

(l′)
0 (x′1, t)χ

2

(
y

δ′

)
.

This shows that to bound the second term in the right-hand side of (2.2.100), it is enough

to analyze the contributions occurring when differentiating

e−
1
h

(Imϕ(l)+Imϕ(l′)),

as all the other contributions are of O(h), as h→ 0.
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As in [38], using (2.2.17), we have

|L(e−
1
h

(Imϕ(l)+Imϕ(l′)))| ≤ O(h−1)|d(Imϕ(l) + Imϕ(l′))|e−
1
h
d|y|2 ≤ O(h−1|y|)e−

1
h
d|y|2 ,

which shows that the corresponding contribution to the second term in the right-hand side

of (2.2.100) is of O(h1/2). This shows that the integral in the left-hand side of (2.2.100) goes

to 0 as h→ 0, and this together with (2.2.99) establishes (2.2.96).

Using (2.2.93) for each of the factors v
(l)
s w

(l)
s in (2.2.95), we get

lim
h→0

∫
{x′1}×M0

v(l)
s w

(l)
s ψdVg0 =

∫
Il

e−2λtc(x1, t, 0)1−n
2ψ(t, 0)dt.

Summing over Il, appearing in the Fermi coordinates, such that tl ∈ Il and γ(tl) = pj, we

get (2.2.81) when supp (ψ) ⊂ Vj and hence, in general.

Step 2. Establishing (2.2.82). Let X ∈ C(M,TM) be a complex vector field, ψ ∈ C(M0),

and x′1 ∈ R. Using a partition of unity, it is enough to verify (2.2.82) in the following two

cases: supp (ψ) ⊂ Wk and supp (ψ) ⊂ Vj. Assume first that supp (ψ) ⊂ Wk. Using (2.2.83),

we get

h

∫
{x′1}×M0

X(vs)wsψdVg0 = I1,1 + I1,2 + I2, (2.2.101)

where

I1,1 =

∫
{x′1}×M0

iX(ϕ)vswsψdVg0 , (2.2.102)

I1,2 = −h
∫
{x′1}×M0

λX(ϕ)vswsψdVg0 , (2.2.103)
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I2 = h

∫
{x′1}×M0

h−
(n−2)

4 eisϕX(a0χ)wsψdVg0 . (2.2.104)

Using (2.2.1) and (2.2.2), we have

|I1,2| ≤ O(h)‖vs(x′, ·)‖L2(M0)‖ws(x′1, ·)‖L2(M0) = O(h),

|I2| ≤ O(h)‖eisϕh−
(n−2)

4 ‖L2({|y|≤δ′/2})‖ws(x′1, ·)‖L2(M0) = O(h).

(2.2.105)

Let us now compute limh→0 I1,1. To that end, we write

X = X1∂x1 +Xt∂t +Xy · ∂y, x = (x1, t, y). (2.2.106)

Using (2.2.18), we get

∂tϕ = 1 +O(|y|2), ∂yϕ = O(|y|). (2.2.107)

As X is continuous, it follows from (2.2.106) and (2.2.107) that

X(ϕ) = (Xt(x1, t, 0) + o(1))(1 +O(|y|2)) +O(|y|) = Xt(x1, t, 0) + o(1), (2.2.108)

as y → 0, uniformly in x1 and t. Using (2.2.108), as in (2.2.86), we obtain from (2.2.102)

that

I1,1 =

∫ L

0

∫
Rn−2

i(Xt(x
′
1, t, 0) + o(1))h−

(n−2)
2 e−

1
h

ImH(t)y·ye−2λteλO(|y|2)

a0(x′1, t)b0(x′1, t)χ
2

(
y

δ′

)
ψ(t, y)(1 +O(|y|2))dydt.

(2.2.109)

We first observe that

lim
h→0

I1,1,2 = 0, (2.2.110)
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uniformly in x′1 and t, where

I1,1,2 =

∫
Rn−2

g(x′1, t, y)dy, g(x′1, t, y) = o(1)h−
(n−2)

2 e−
1
h

ImH(t)y·ye−2λt

eλO(|y|2)a0(x′1, t)b0(x′1, t)χ
2

(
y

δ′

)
ψ(t, y)(1 +O(|y|2)).

Indeed, let ε > 0 and let δ > 0 be such that |o(1)| ≤ ε when |y| ≤ δ. Then

|I1,1,2| ≤
∣∣∣∣ ∫
|y|≤δ

g(x′1, t, y)dy

∣∣∣∣+

∣∣∣∣ ∫
|y|≥δ

g(x′1, t, y)dy

∣∣∣∣
≤ εO(1)

∣∣∣∣ ∫
Rn−2

h−
(n−2)

2 e−
1
h

ImH(t)y·ydy

∣∣∣∣+O(e−dδ
2/h) ≤ εO(1) +O(e−dδ

2/h),

showing (2.2.110).

Using (2.2.110), making the change of variables y = h1/2ỹ in (2.2.109), using the dominated

convergence theorem, and (2.2.88), we get

lim
h→0

I1,1 = i

∫ L

0

Xt(x
′
1, t, 0)e−2λta0(x′1, t)b0(x′1, t)ψ(t, 0)

π(n−2)/2√
det(ImH(t))

dt. (2.2.111)

It follows from (2.2.101) with the help of (2.2.105) and (2.2.111) that

lim
h→0

h

∫
{x′1}×M0

X(vs)wsψdVg0

= i

∫ L

0

Xt(x
′
1, t, 0)e−2λta0(x′1, t)b0(x′1, t)ψ(t, 0)

π(n−2)/2√
det(ImH(t))

dt.

(2.2.112)

When a0 is the amplitude of the first type, i.e. a0 be given by (2.2.39), and b0 be given by

(2.2.80), using (2.2.90), (2.2.92), we get from (2.2.112) that

lim
h→0

h

∫
{x′1}×M0

X(vs)wsψdVg0 = i

∫ L

0

Xt(x
′
1, t, 0)e−2λtc(x1, t, 0)1−n

2ψ(t, 0)dt. (2.2.113)

This establishes (2.2.82) when supp (ψ) ⊂ Wk.
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Assume now that supp (ψ) ⊂ Vj, and therefore, on supp (ψ), vs and ws are given by (2.2.94).

Then

h

∫
{x′1}×M0

X(vs)wsψdVg0 =h
∑

l:γ(tl)=pj

∫
{x′1}×M0

X(v(l)
s )w

(l)
s ψdVg0

+ h
∑

l 6=l′:γ(tl)=γ(tl′ )=pj

∫
{x′1}×M0

X(v(l)
s )w

(l′)
s ψdVg0 .

(2.2.114)

As before, we shall show that the mixed terms, i.e., l 6= l′, vanish in the limit as h→ 0,

lim
h→0

h

∫
{x′1}×M0

X(v(l)
s )w

(l′)
s ψdVg0 = 0. (2.2.115)

It follows from (2.2.101), (2.2.102), (2.2.103), (2.2.104), (2.2.105) that we only have to prove

that

lim
h→0

∫
{x′1}×M0

iX(ϕ(l))v(l)
s w

(l′)
s ψdVg0 = 0. (2.2.116)

Now (2.2.116) follows by repeating a nonstationary phase argument as in the proof of (2.2.96)

replacing ψ by X(ϕ(l))ψ ∈ C(M0). Thus, using (2.2.114) and (2.2.116), we see that

lim
h→0

h

∫
{x′1}×M0

X(vs)wsψdVg0

=
∑

l:γ(tl)=pj

i

∫
Il

Xt(x
′
1, t, 0)e−2λtc(x1, t, 0)1−n

2ψ(t, 0)dt;

completing the proof of (2.2.82) when supp (ψ) ⊂ Vj.

We shall also need the following result.

Proposition 2.2.4. Let ψ ∈ C1(R ×M0) be such that ψ(x1, ·)|∂M0 = 0 and with compact

support in x1. Then there exist Gaussian beam quasimodes vs and ws given by Proposition
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2.2.1 such that vs is obtained using amplitudes of the second type and

lim
h→0

[
h

∫
R
e−2iλx1

∫
M0

(∇gψ)(vs)wsc(x1, x
′)
n
2 dVg0dx1

−
∫
R
e−2iλx1

∫
M0

(∇gψ)1vswsc(x1, x
′)
n
2 dVg0dx1

]
=

∫
R

∫ L

0

e−2iλ(x1−it)ψ(x1, γ(t))c(x1, γ(t))dtdx1.

(2.2.117)

Proof. In view of (2.2.60), using a partition of unity, it suffices to check (2.2.117) for ψ

such that supp (ψ(x1, ·)) is in one of the sets Vj or Wk. Let us first consider the case when

supp (ψ(x1, ·)) ⊂ Wk. Thus, on supp (ψ(x1, ·)), vs and ws are given by (2.2.83) with a0 being

an amplitude of type two. To proceed, we note that

∇gψ =
1

c
(∂x1ψ∂x1 + g−1

0 ∂x′ψ · ∂x′), (2.2.118)

and therefore, using (2.2.10), we see that

(∇ψ)t(x1, t, 0) =
∂tψ(x1, t, 0)

c(x1, t, 0)
. (2.2.119)

Using (2.2.83), (2.2.118), and (2.2.119), a computation similar to that in the proof of Propo-

sition 2.2.3 (cf. (2.2.89) and (2.2.112)) gives

I = lim
h→0

[
h

∫
R
e−2iλx1

∫
M0

(∇gψ)(vs)wsc(x1, x
′)
n
2 dVg0dx1

−
∫
R
e−2iλx1

∫
M0

(∇gψ)1vswsc(x1, x
′)
n
2 dVg0dx1

]
= −

∫
R

∫ L

0

e−2iλx1e−2λt((∂x1 − i∂t)ψ(x1, t, 0))a0(x1, t)b0(x1, t)

π(n−2)/2√
det(ImH(t))

c(x1, t, 0)
n
2
−1dtdx1.

(2.2.120)

When solving (2.2.37) and (2.2.79) for G and F , respectively, we choose the initial conditions
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G(t0) and F (t0) so that the constant in (2.2.92) is equal to 1. Then using (2.2.80), (2.2.37),

(2.2.92), we see that

a0(x1, t)b0(x1, t)
π(n−2)/2√

det(ImH(t))
c(x1, t, 0)

n
2
−1

= a0(x1, t)c(x1, t, 0)
n
4
− 1

2 e−F (t) π(n−2)/2√
det(ImH(t))

= a0(x1, t)c(x1, t, 0)
n
4
− 1

2 eG(t) = a0(x1, t)e
φ(x1,t).

(2.2.121)

Combining (2.2.120) and (2.2.121), integrating by parts, using the fact that ψ compact

support in x1 and ψ(x1, ·)|∂M0 = 0, and using (2.2.42), we get

I =−
∫
R

∫ L

0

e−2iλ(x1−it)((∂x1 − i∂t)ψ(x1, t, 0))a0(x1, t)e
φ(x1,t)dtdx1

=

∫
R

∫ L

0

e−2iλ(x1−it)ψ(x1, t, 0)(∂x1 − i∂t)(a0(x1, t)e
φ(x1,t))dtdx1

=

∫
R

∫ L

0

e−2iλ(x1−it)ψ(x1, t, 0)c(x1, t, 0)dtdx1.

(2.2.122)

This completes the proof of (2.2.117) in the case when supp (ψ(x1, ·)) ⊂ Wk.

Let us now show (2.2.117) when supp (ψ(x1, ·)) ⊂ Vj. Then on supp (ψ), vs and ws are given

by (2.2.94), and we have

∫
R
e−2iλx1

∫
M0

(h(∇gψ)(vs)− (∇gψ)1vs)wsc(x1, x
′)
n
2 dVg0dx1

=
∑

l:γ(tl)=pj

∫
R
e−2iλx1

∫
M0

(h(∇gψ)(v(l)
s )− (∇gψ)1v

(l)
s )w

(l)
s c(x1, x

′)
n
2 dVg0dx1+

∑
l 6=l′:γ(tl)=γ(tl′ )=pj

∫
R
e−2iλx1

∫
M0

(h(∇gψ)(v(l)
s )− (∇gψ)1v

(l)
s )w

(l′)
s c(x1, x

′)
n
2 dVg0dx1.

(2.2.123)

Now when l 6= l′, as in (2.2.96) and (2.2.115), by a nonstationary phase argument we see
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that

lim
h→0

∫
M0

(h(∇gψ)(v(l)
s )− (∇gψ)1v

(l)
s )w

(l′)
s c(x1, x

′)
n
2 dVg0 = 0,

uniformly in x1, and therefore, the limit h→ 0 of the second sum in (2.2.123) is equal to 0.

Hence,

lim
h→0

∫
R
e−2iλx1

∫
M0

(h(∇gψ)(vs)− (∇gψ)1vs)wsc(x1, x
′)
n
2 dVg0dx1

=
∑

l:γ(tl)=pj

∫
R

∫
Il

e−2iλ(x1−it)ψ(x1, t, 0)c(x1, t, 0)dtdx1,

showing (2.2.117) when supp (ψ(x1, ·)) ⊂ Vj.

2.3 Construction of complex geometric optics solutions

based on Gaussian beam quasimodes

Let (M, g) be a CTA manifold so that (M, g) ⊂⊂ (R × M int
0 , c(e ⊕ g0)). Let X, Y ∈

L∞(M,TM) be complex vector fields, and let q ∈ L∞(M,C). Consider the following opera-

tor:

PX,Y,q = (−∆g)
2 +X + div(Y ) + q. (2.3.1)

Note that the operator PX,Y,q comprises both the operator LX,q as well as its formal adjoint

L∗X,q = (−∆g)
2 −X − div(X) + q. Here div(Y ) ∈ H−1(M int) is given by

〈div(Y ), ϕ〉M int := −
∫
Y (ϕ)dV, ϕ ∈ C∞0 (M int), (2.3.2)
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where 〈·, ·〉M int is a distributional duality on M int. We shall also view div(Y ) as multiplication

operator,

div(Y ) : C∞0 (M int)→ H−1(M int). (2.3.3)

Therefore, it follows from (2.3.1) that

PX,Y,q : C∞0 (M int)→ H−1(M int).

In this section, we will construct complex geometric optics solutions to the equation PX,Y,qu =

0 in M based on the Gaussian beam quasimodes for the conjugated biharmonic operator,

constructed in Section 2.2.

Assume, as we may, that (M, g) is embedded in a compact smooth manifold (N, g) without

boundary of the same dimension, and let U be open in N such that M ⊂ U . Let ϕ ∈

C∞(U,R) and let us consider the conjugated operator

Pϕ = e
ϕ
h (−h2∆g)e

−ϕ
h = −h2∆g − |∇ϕ|2g + 2〈∇ϕ, h∇〉g + h∆gϕ

with the semiclassical principal symbol

pϕ = |ξ|2g − |dϕ|2g + 2i〈ξ, dϕ〉g ∈ C∞(T ∗U).

Following [63], [36], we have the following definition.

Definition 2.3.1. We say that ϕ ∈ C∞(U,R) is a limiting Carleman weight for −h2∆g on

(U, g) if dϕ 6= 0 on U , and the Poisson bracket of Re pϕ and Im pϕ satisfies

{Re pϕ, Im pϕ} = 0 when pϕ = 0.

44



We refer to [36] for a characterization of Riemannian manifolds admitting limiting Carleman

weights as well as for examples of limiting Carleman weights. In particular, note that

φ(x) = ±x1 is a limiting Carleman weight for −h2∆g on a CTA manifold; see [36].

Our starting point is the following Carleman estimates for −h2∆g with a gain of two deriva-

tives, established in [73]; see also [36] and [106].

Proposition 2.3.2. Let φ be a limiting Carleman weight for −h2∆g on U . Then for all

0 < h� 1 and t ∈ R, we have

h‖u‖Ht+2
scl (N) ≤ C‖e

φ
h (−h2∆g)e

−φ
hu‖Ht

scl(N), C > 0, (2.3.4)

for all u ∈ C∞0 (M int).

Here H t(N), t ∈ R, is the standard Sobolev space, equipped with the natural semiclassical

norm,

‖u‖Ht
scl(N) = ‖(1− h2∆g)

t
2u‖L2(N).

Iterating (2.3.4), we get the following Carleman estimates for (−h2∆g)
2, for 0 < h� 1 and

t ∈ R:

h2‖u‖Ht+4
scl (N) ≤ C‖e

φ
h (−h2∆g)

2e−
φ
hu‖Ht

scl(N), C > 0, (2.3.5)

for all u ∈ C∞0 (M int).

To construct complex geometric optics solutions for PX,Y,qu = 0, we shall need the following

Carleman estimates for the operator PX,Y,q. In what follows we extend X, Y , and q to N

by zero and we denote these extensions by the same letters so that X, Y ∈ L∞(N, TN) and

q ∈ L∞(N,C).
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Proposition 2.3.3. Let φ be a limiting Carleman weight for −h2∆g on U . Then for all

0 < h� 1, we have

h2‖u‖H1
scl(N) ≤ C‖e

φ
h (h4PX,Y,q)e

−φ
hu‖H−3

scl (N), C > 0, (2.3.6)

for all u ∈ C∞0 (M int).

Proof. First letting t = −3 in (2.3.5), we get for all 0 < h� 1,

h2‖u‖H1
scl(N) ≤ C‖e

φ
h (−h2∆g)

2e−
φ
hu‖H−3

scl (N) (2.3.7)

for all u ∈ C∞0 (M int). We also have

‖e
φ
hh4X(e−

φ
hu)‖H−3

scl (N) ≤ ‖h
4X(u)− h3X(φ)u‖L2(N) = O(h3)‖u‖H1

scl(N). (2.3.8)

In order to estimate ‖h4 div(Y )u‖H−3
scl (N), we shall use the following characterization of the

semiclassical norm in the Sobolev space H−3(N):

‖v‖H−3
scl (N) = sup

06=ψ∈C∞(N)

|〈v, ψ〉N |
‖ψ‖H3

scl(N)

.

Using (2.3.2), for 0 6= ψ ∈ C∞(N), we get

|〈h4e
φ
h div(Y )e−

φ
hu, ψ〉N | ≤

∫
N

h4|Y (uψ)|dV ≤ O(h3)‖u‖H1
scl(N)‖ψ‖H3

scl(N),

and therefore,

‖h4 div(Y )u‖H−3
scl (N) ≤ O(h3)‖u‖H1

scl(N). (2.3.9)
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Finally, we have

‖h4qu‖H−3
scl (N) ≤ O(h4)‖u‖H1

scl(N). (2.3.10)

Combining (2.3.7), (2.3.8), (2.3.9), and (2.3.10), we obtain (2.3.6) for all 0 < h � 1 and

u ∈ C∞0 (M int).

Note that the formal L2 adjoint of PX,Y,q is given by P−X,−X+Y ,q. Using the fact that if φ is

a limiting Carleman weight then so is −φ, we obtain the following solvability result; see [36]

and [70] for the details.

Proposition 2.3.4. Let X, Y ∈ L∞(M,TM) be complex vector fields, and let q ∈ L∞(M,C).

Let φ be a limiting Carleman weight for −h2∆g on (U, g). If h > 0 is small enough, then for

any v ∈ H−1(M int), there is a solution u ∈ H3(M int) of the equation

e
φ
h (h4PX,Y,q)e

−φ
hu = v in M int,

which satisfies

‖u‖H3
scl(M

int) ≤
C

h2
‖v‖H−1

scl (M int).

Let

s = µ+ iλ, 1 ≤ µ =
1

h
, λ ∈ R, λ fixed.

We shall construct complex geometric optics solutions to the equation

PX,Y,qu = 0 in M int (2.3.11)
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of the form

u = e−sx1(vs + rs), (2.3.12)

where vs is a Gaussian beam quasimode for (−h2∆g)
2, constructed in Proposition 2.2.1.

Thus, u is a solution to (2.3.11) provided that

esx1h4PX,Y,qe
−sx1rs =− esx1h4PX,Y,qe

−sx1vs = −esx1(−h2∆g)
2e−sx1vs

− esx1h4X(e−sx1vs)− esx1h4 div(Y )(e−sx1vs)− h4qvs =: F.

(2.3.13)

Let us estimates the terms in the right-hand side of (2.3.13) in H−1
scl (M int). First, it follows

from (2.2.1) that

‖esx1(−h2∆g)
2e−sx1vs‖H−1

scl (M int) ≤ ‖e
sx1(−h2∆g)

2e−sx1vs‖L2(M) = O(h5/2) (2.3.14)

and

‖esx1h4X(e−sx1vs)‖H−1
scl (M int) ≤ ‖h

4X(vs)− h4sX(x1)vs‖L2(M) = O(h3). (2.3.15)

Letting 0 6= ρ ∈ C∞0 (M int) and using (2.3.2), we obtain that

|〈esx1h4 div(Y )(e−sx1vs), ρ〉M int| ≤ h4

∫
|Y (vsρ)|dV

= O(h3)‖vs‖H1
scl(M

int)‖ρ‖H1
scl(M

int) = O(h3)‖ρ‖H1
scl(M

int),

and therefore,

‖esx1h4 div(Y )(e−sx1vs)‖H−1
scl (M int) = O(h3). (2.3.16)
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We also have

‖h4qvs‖H−1
scl (M int) = O(h4). (2.3.17)

Using (2.3.14), (2.3.15), (2.3.16), (2.3.17), we get from (2.3.13) that ‖F‖H−1
scl (M int) = O(h5/2).

An application of Proposition 2.3.4 to (2.3.13) gives that for all h > 0 small enough, there

exists rs ∈ H3(M int) such that ‖rs‖H3
scl(M

int) = O(h1/2). To summarize, we have proven the

following result.

Proposition 2.3.5. Let X, Y ∈ L∞(M,TM) be complex vector fields, and let q ∈ L∞(M,C).

Let s = 1
h

+ iλ with λ ∈ R being fixed. For all h > 0 small enough, there is a solution

u1 ∈ H3(M int) of PX,Y,qu1 = 0 in M int having the form

u1 = e−sx1(vs + r1),

where vs ∈ C∞(M) is the Gaussian beam quasimode given in Proposition 2.2.1 and r1 ∈

H3(M int) such that ‖r1‖H3
scl(M

int) = O(h1/2) as h→ 0.

Similarly, for all h > 0 small enough, there is a solution u2 ∈ H3(M int) of PX,Y,qu2 = 0 in

M int having the form

u2 = esx1(ws + r2),

where ws ∈ C∞(M) is the Gaussian beam quasimode given in Proposition 2.2.1 and r2 ∈

H3(M int) such that ‖r2‖H3
scl(M

int) = O(h1/2) as h→ 0.

2.4 Proof of Theorem 2.1.2

Our starting point is the following integral identity.
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Proposition 2.4.1. Let X(1), X(2) ∈ C(M,TM) with complex valued coefficients, and q(1), q(2) ∈

C(M,C). If CX(1),q(1) = CX(2),q(2), then

∫
M

(
(X(1) −X(2))(u1)u2 + (q(1) − q(2))u1u2

)
dVg = 0 (2.4.1)

for u1, u2 ∈ H3(M int) satisfying

LX(1),q(1)u1 = 0 and L−X(2),− div(X(2))+q(2)u2 = 0. (2.4.2)

Proof. First, using that u2 solves the equation

L−X(2),− div(X(2))+q(2)u2 = 0, (2.4.3)

similar to (2.1.2), we define the boundary trace ∂ν(∆gu2) ∈ H−1/2(∂M) as follows. Letting

ϕ ∈ H1/2(∂M) and letting v ∈ H1(M int) be a continuous extension of ϕ, we set

〈∂ν(−∆gu2), ϕ〉H−1/2(∂M)×H1/2(∂M) = −
∫
∂M

(X(2) · ν)u2vdSg

+

∫
M

(
〈∇g(−∆gu2),∇gv〉g + u2X

(2)(v) + q(2)u2v
)
dVg.

(2.4.4)

It follows from (2.4.3) that the definition of the trace ∂ν(∆gu2) is independent of the choice

of extension v of ϕ.

As CX(1),q(1) = CX(2),q(2) , there exists v2 ∈ H3(M int) such that

LX(2),q(2)v2 = 0 in M (2.4.5)

and

u1|∂M = v2|∂M , (∆gu1)|∂M = (∆gv2)|∂M , ∂νu1|∂M = ∂νv2|∂M ,

∂ν(∆gu1)|∂M = ∂ν(∆gv2)|∂M .
(2.4.6)
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It follows from (2.4.6) in particular that

〈∂ν(∆gu1), u2〉H−1/2(∂M)×H1/2(∂M) = 〈∂ν(∆gv2), u2〉H−1/2(∂M)×H1/2(∂M). (2.4.7)

Using that v2 solves (2.4.5) and (2.1.2), we get

〈∂ν(−∆gv2), u2〉H−1/2(∂M)×H1/2(∂M)

=

∫
M

(
〈∇g(−∆gv2),∇gu2〉g +X(2)(v2)u2 + q(2)v2u2

)
dVg.

(2.4.8)

Using (2.4.4) and integration by parts, we obtain that

〈∂ν(−∆gu2),v2〉H−1/2(∂M)×H1/2(∂M) = −
∫
∂M

(X(2) · ν)u2v2dSg

+

∫
M

(
〈∇gu2,∇g(−∆g)v2〉g + u2X

(2)(v2) + q(2)u2v2

)
dVg

+

∫
∂M

(∂νu2)∆gv2dSg −
∫
∂M

(∆gu2)∂νv2dSg.

(2.4.9)

Combining (2.4.8) and (2.4.9), using (2.4.6), we obtain that

〈∂ν(−∆gv2),u2〉H−1/2(∂M)×H1/2(∂M) = 〈∂ν(−∆gu2), v2〉H−1/2(∂M)×H1/2(∂M)

+

∫
∂M

(X(2) · ν)u2v2dSg −
∫
∂M

(∂νu2)∆gv2dSg +

∫
∂M

(∆gu2)∂νv2dSg

= 〈∂ν(−∆gu2), u1〉H−1/2(∂M)×H1/2(∂M) +

∫
∂M

(X(2) · ν)u2u1dSg

−
∫
∂M

(∂νu2)∆gu1dSg +

∫
∂M

(∆gu2)∂νu1dSg

=

∫
M

(
〈∇gu2,∇g(−∆g)u1〉g + u2X

(2)(u1) + q(2)u2u1

)
dVg.

(2.4.10)

On the other hand, using (2.4.2) for u1 and (2.1.2), we get

〈∂ν(−∆gu1),u2〉H−1/2(∂M)×H1/2(∂M)

=

∫
M

(
〈∇g(−∆g)u1,∇gu2〉g +X(1)(u1)u2 + q(1)u1u2

)
dVg.

(2.4.11)
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The claim follows from (2.4.7), (2.4.10), and (2.4.11).

Now by Proposition 2.3.5, for h > 0 small enough, there are u1, u2 ∈ H3(M int) solutions to

LX(1),q(1)u1 = 0 and L−X(2),− div(X(2))+q(2)u2 = 0 in M int, of the form

u1 = e−sx1(vs + r1), u2 = esx1(ws + r2), (2.4.12)

where vs, ws ∈ C∞(M) are the Gaussian beam quasimode given in Proposition 2.2.1 and

‖r1‖H1
scl(M

int) = O(h1/2), ‖r2‖H1
scl(M

int) = O(h1/2), (2.4.13)

as h→ 0.

Let us denote X = X(1) − X(2) and q = q(1) − q(2). By the boundary determination of

Proposition 2.5.1, we have that X(1)|∂M = X(2)|∂M , and therefore, we may extend X by zero

to the complement of M in R×M0 so that the extension X ∈ C(R×M0, T (R×M0)).

Step 1. Proving that there exists ψ ∈ C1(R × M0) with compact support in x1 such that

ψ(x1, ·)|∂M0 = 0 and ∇gψ = X. In this step, we shall work with solutions u1 and u2 given

by (2.4.12) with vs and ws being the Gaussian beam quasimode for which Proposition 2.2.3

holds. In particular, here vs has an amplitude of the first type. Next, we would like to

substitute u1 and u2 into the integral identity (2.4.1), multiply it by h, and let h → 0. To

that end, first using (2.4.13), (2.2.1), and (2.2.2), we get

∣∣∣∣h∫
M

qu1u2dVg

∣∣∣∣ =

∣∣∣∣h∫
M

qe−2iλx1(vs + r1)(ws + r2)dVg

∣∣∣∣ = O(h). (2.4.14)

Writing x = (x1, x
′), x′ ∈M0, and X = X1∂x1 + X̃ · ∂x′ , we obtain that

h

∫
M

X(u1)u2dVg = I1 + I2 + I3 + I4, (2.4.15)
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where

I1 = h

∫
M

e−2iλx1X(vs)wsdVg −
∫
M

X1(x1, x
′)e−2iλx1vswsdVg, (2.4.16)

I2 = −hiλ
∫
M

X1(x1, x
′)e−2iλx1(vs + r1)(ws + r2)dVg, (2.4.17)

I3 = −
∫
M

X1(x1, x
′)e−2iλx1(vsr2 + wsr1 + r1r2)dVg, (2.4.18)

I4 = h

∫
M

e−2iλx1(X(vs)r2 +X(r1)ws +X(r1)r2)dVg. (2.4.19)

Using (2.4.13), (2.2.1), and (2.2.2), we get

|I2| = O(h), |I3| = O(h1/2), |I4| = O(h1/2). (2.4.20)

It follows from (2.4.1) with the help of (2.4.14), (2.4.15), and (2.4.20) that

lim
h→0

I1 = 0. (2.4.21)

Using that X = 0 outside of M , dVg = c
n
2 dx1dVg0 , Fubini’s theorem, and Proposition 2.2.3,
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we obtain from (2.4.21) that

0 = lim
h→0

h

∫
R
e−2iλx1

∫
M0

X(vs)wsc(x1, x
′)
n
2 dVg0dx1

− lim
h→0

∫
R
e−2iλx1

∫
M0

X1(x1, x
′)vswsc(x1, x

′)
n
2 dVg0dx1

=−
∫
R
e−2iλx1

∫ L

0

(
X1(x1, γ(t))− iXt(x1, γ(t))

)
c(x1, γ(t))e−2λtdtdx1.

(2.4.22)

Now the Riemmanian metric g on M induces a natural isomorphism between the tangent

and cotangent bundles given by

TM → T ∗M, (x,X) 7→ (x,Xb), (2.4.23)

where Xb(Y ) = 〈X, Y 〉. In local coordinates, Xb =
∑n

j,k=1 gjkXjdxk, and using that g =

c(e⊕ g0), and (2.2.10), we get

Xb
1(x1, γ(t)) = c(x1, γ(t))X1(x1, γ(t)), Xb

t (x1, γ(t)) = c(x1, γ(t))Xt(x1, γ(t)).

Hence, it follows from (2.4.22), replacing 2λ by λ, that

∫
R

∫ L

0

e−iλx1−λt(Xb
1(x1, γ(t))− iXb

t (x1, γ(t)))dtdx1 = 0. (2.4.24)

Letting

f(λ, x′) =

∫
R
e−iλx1Xb

1(x1, x
′)dx1, x′ ∈M0,

α(λ, x′) =
n∑
j=2

(∫
R
e−iλx1Xb

j (x1, x
′)

)
dxj,

(2.4.25)

54



we have f(λ, ·) ∈ C(M0), α(λ, ·) ∈ C(M0, T
∗M), and (2.4.24) implies that

∫ L

0

[f(λ, γ(t))− iα(λ, γ̇(t))]e−λtdt = 0, (2.4.26)

along any unit speed nontangential geodesic γ : [0, L]→M0 on M0 and any λ ∈ R. Arguing

as in [73, Section 7], [32], using the injectivity of the geodesic X-ray transform on functions

and 1-forms, we conclude from (2.4.26) that there exist pl ∈ C1(M0), pl|∂M0 = 0, such that

∂lλf(0, x′) + lpl−1(x′) = 0, ∂lλα(0, x′) = idpl(x
′), l = 0, 1, 2, . . . . (2.4.27)

To proceed we shall follow [40, Section 5] and let

ψ(x1, x
′) =

∫ x1

−a
Xb

1(y1, x
′)dy1, (2.4.28)

where supp (Xb(·, x′)) ⊂ (−a, a). It follows from (2.4.27), (2.4.25) that

0 = f(0, x′) =

∫
R
Xb

1(y1, x
′)dy1,

and therefore, ψ has compact support in x1. Thus, the Fourier transform of ψ with respect

to x1, which we denote by ψ̂(λ, x′), is real analytic with respect to λ, and therefore, we have

ψ̂(λ, x′) =
∞∑
k=0

ψk(x
′)

k!
λk, (2.4.29)

where ψk(x
′) = (∂kλψ̂)(0, x′). It follows from (2.4.28) that

∂x1ψ(x1, x
′) = Xb

1(x1, x
′), (2.4.30)
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and therefore, taking the Fourier transform with respect to x1, and using (2.4.25)

iλψ(λ, x′) = f(λ, x′). (2.4.31)

Differentiating (2.4.31) (l + 1)-times in λ, letting λ = 0, and using (2.4.27), we get

∂lλψ̂(0, x′) = ipl(x
′), l = 0, 1, 2, . . . . (2.4.32)

Substituting (2.4.32) into (2.4.29), we obtain that

ψ̂(λ, x′) =
∞∑
k=0

ipl(x
′)

k!
λk,

and taking the differential in x′ in the sense of distributions, and using (2.4.27), (2.4.25), we

see that

dx′ψ̂(λ, x′) =
∞∑
k=0

idpl(x
′)

k!
λk =

∞∑
k=0

∂kλα(0, x′)

k!
λk = α(λ, x′) =

n∑
j=2

X̂b
j (λ, x

′)dxj. (2.4.33)

Taking the inverse Fourier transform λ 7→ x1 in (2.4.33), we get

dx′ψ(x1, x
′) =

n∑
j=2

Xb
j (x1, x

′)dxj. (2.4.34)

We also have from (2.4.30) that

dx1ψ(x1, x
′) = Xb

1(x1, x
′)dx1. (2.4.35)

It follows from (2.4.34) and (2.4.35) that

dψ = Xb. (2.4.36)
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Using the inverse of (2.4.23), we see from (2.4.36) that

∇gψ = X. (2.4.37)

Recall that ψ ∈ C(R×M0) with compact support in x1 and ψ(x1, ·)|∂M0 = 0. It follows from

(2.4.37) that ψ ∈ C1(R×M0).

Step 2. Showing that X = 0. Returning to (2.4.1) and using (2.4.37), we get

∫
M

(
(∇gψ)(u1)u2 + qu1u2

)
dVg = 0, (2.4.38)

for u1, u2 ∈ H3
scl(M

int) satisfying LX(1),q(1)u1 = 0 and L−X(2),− div(X(2))+q(2)u2 = 0. Let now u1

and u2 be given by (2.4.12) with vs and ws being the Gaussian beam quasimode for which

Proposition 2.2.4 holds. In particular, here vs has an amplitude of the second type. We

would like to substitute u1 and u2 into the integral identity (2.4.38), multiply it by h, and

let h→ 0. Similar to (2.4.21), using (2.4.14) and (2.4.20), we get

lim
h→0

h

∫
M

e−2iλx1(∇gψ)(vs)wsdVg −
∫
M

(∇gψ)1e
−2iλx1vswsdVg = 0. (2.4.39)

It follows from (2.4.39) with the help of Proposition 2.2.4,

∫
R

∫ L

0

e−2iλ(x1−it)ψ(x1, γ(t))c(x1, γ(t))dtdx1 = 0. (2.4.40)

Now (2.4.40) can be written as

∫
γ

ψ̂c(2λ, γ(t))e−2λtdt = 0 (2.4.41)
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for any λ ∈ R and any nontangential geodesic γ in M0, where

ψ̂c(2λ, x′) =

∫ ∞
−∞

e−2iλx1(ψc)(x1, x
′)dx1.

Equation (2.4.41) says that the attenuated geodesic ray transform of ψ̂c with constant at-

tenuation −2λ vanishes along all nontangential geodesics in M0. Arguing as in [38, Proof

of Theorem 1.2] and using the injectivity of the geodesic X-ray transform on functions, we

conclude that ψc = 0, and therefore ψ = 0, and hence X = 0.

Step 3. Proving that q = 0. Returning to (2.4.1) and substituting X(1) = X(2), we get

∫
M

qu1u2dVg = 0 (2.4.42)

for u1, u2 ∈ H3
scl(M

int) satisfying LX(1),q(1)u1 = 0 and L−X(2),− div(X(2))+q(2)u2 = 0. Let now

u1 and u2 be given by (2.4.12) with vs and ws being the Gaussian beam quasimode for

which Proposition 2.2.3 holds. In particular, here vs has an amplitude of the first type.

Substituting u1 and u2 into (2.4.42), we obtain that

0 =

∫
M

qu1u2dVg = I1 + I2, (2.4.43)

where

I1 =

∫
M

e−2iλx1qvswsdVg =

∫
R
e−2iλx1

∫
M0

qvswsc
n
2 dVg0dx1,

I2 =

∫
M

e−2iλx1q(vsr2 + r1ws + r1r2)dVg.

Here in view of the assumption (2.1.4), we extended q by zero to the complement of M in

R×M0 so that the extension q ∈ C(R×M0,C).
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Using (2.4.13), (2.2.1), and (2.2.2), we see that

|I2| = O(h1/2). (2.4.44)

Letting h→ 0, we obtain from (2.4.43), (2.4.44) with the help of Proposition 2.2.3 that

∫
R
e−2iλx1

∫ L

0

e−2λt(qc)(x1, γ(t))dtdx1 = 0.

Arguing as in [38, Proof of Theorem 1.2] and using the injectivity of the geodesic X-ray

transform on functions, we conclude that qc = 0, and therefore q = 0. This complete the

proof of Theorem 2.1.2.

2.5 Boundary determination of a first order perturba-

tion of the biharmonic operator

When proving Theorem 2.1.2, an important step consists in determining the boundary values

of the first order perturbation of the biharmonic operator. The purpose of this section is to

carry out this step by adapting the method of [22], [73].

Proposition 2.5.1. Let (M, g) be a CTA manifold of dimension n ≥ 3. Let X(1), X(2) ∈

C(M,TM) with complex vector fields and q(1), q(2) ∈ L∞(M,C). If Cg,X(1),q(1) = Cg,X(2),q(2),

then X(1)|∂M = X(2)|∂M .

Proof. We shall follow [22], [73] closely. We shall construct some special solutions to the

equations LX(1),q(1)u1 = 0 and L−X(2),− div(X(2))+q(2)u2 = 0, whose boundary values have an

oscillatory behavior while becoming increasingly concentrated near a given point on the

boundary of M . Substituting these solutions into the integral identity (2.4.1) will allow us
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to prove that X(1)|∂M = X(2)|∂M .

In doing so, let x0 ∈ ∂M and let (x1, . . . , xn) be the boundary normal coordinates centered

at x0 so that in these coordinates, x0 = 0, the boundary ∂M is given by {xn = 0}, and M int

is given by {xn > 0}. We shall assume, as we may, that

gαβ(0) = δαβ, 1 ≤ α, β ≤ n− 1, (2.5.1)

and therefore T0∂M = Rn−1, equipped with the Euclidean metric. The unit tangent vector

τ is then given by τ = (τ ′, 0) where τ ′ ∈ Rn−1, |τ ′| = 1. Associated to the tangent vector τ ′

is the covector ξ′α =
∑n−1

β=1 gαβ(0)τ ′β = τ ′α ∈ T ∗x0
∂M .

Let η ∈ C∞0 (Rn,R) be a function such that supp (η) is in a small neighborhood of 0, and

∫
Rn−1

η(x′, 0)2dx′ = 1. (2.5.2)

Following [22], in the boundary normal coordinates, we set

v0(x) = η

(
x

λ1/2

)
e
i
λ

(τ ′·x′+ixn), 0 < λ� 1, (2.5.3)

so that v0 ∈ C∞(M) with supp (v0) in O(λ1/2) neighborhood of x0 = 0. Here τ ′ is viewed

as a covector.

Let v1 ∈ H1
0 (M int) be the solution to the following Dirichlet problem for the Laplacian:

−∆gv1 =∆gv0 in M,

v1|∂M =0.

(2.5.4)

Let δ(x) be the distance from x ∈M to the boundary of M . As proved in the [73, Appendix],
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the following estimates hold:

‖v0‖L2(M) ≤ O(λ
n−1

4
+ 1

2 ), (2.5.5)

‖v1‖L2(M) ≤ O(λ
n−1

4
+ 1

2 ), (2.5.6)

‖dv1‖L2(M) ≤ O(λ
n−1

4 ), (2.5.7)

‖dv0‖L2(M) ≤ O(λ
n−1

4
− 1

2 ), (2.5.8)

‖δd(v0 + v1)‖L2(M) ≤ O(λ
n−1

4
+ 1

2 ), (2.5.9)

‖v0‖L2(∂M) ≤ O(λ
n−1

4 ). (2.5.10)

We shall also need Hardy’s inequality,

∫
M

|f(x)/δ(x)|2dVg ≤ C

∫
M

|df(x)|2dVg, (2.5.11)

where f ∈ H1
0 (M int); see [34].
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Next we would like to show the existence of a solution u1 ∈ H3(M int) to the equation

LX(1),q(1)u1 = 0 in M, (2.5.12)

of the form

u1 = v0 + v1 + r1, (2.5.13)

with

‖r1‖H3(M int) ≤ O(λ
n−1

4
+ 1

2 ). (2.5.14)

To that end, plugging (2.5.13) into (2.5.12), we obtain the following equation of r1:

LX(1),q(1)r1 = −((−∆g)
2 +X(1) + q(1))(v0 +v1) = −(X(1) + q(1))(v0 +v1) in M. (2.5.15)

Applying Proposition 2.3.4 with h > 0 small but fixed, we conclude the existence of r1 ∈

H3(M int) such that

‖r1‖H3(M int) ≤ O(1)‖(X(1) + q(1))(v0 + v1)‖H−1(M int). (2.5.16)

Let us now bound the norm in the right-hand side of (2.5.16). To that end, letting ψ ∈

C∞0 (M int) and using (2.5.11), (2.5.9), we get

|〈X(1)(v0 + v1), ψ〉M int| ≤ O(1)‖X(1)‖L∞(M)‖δd(v0 + v1)‖L2(M)‖ψ‖H1(M int)

≤ O(λ
n−1

4
+ 1

2 )‖ψ‖H1(M int).

(2.5.17)
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By (2.5.5) and (2.5.6), we have

|〈q(1)(v0 + v1), ψ〉M int| ≤ ‖q(1)‖L∞(M0)‖v0 + v1‖L2(M)‖ψ‖L2(M)

≤ O(λ
n−1

4
+ 1

2 )‖ψ‖H1(M int).

(2.5.18)

The estimate (2.5.14) follows from (2.5.16), (2.5.17), and (2.5.18).

Let us show that there exists a solution u2 ∈ H3(M int) of L−X(2),− div(X(2))+q(2)u2 = 0 in M

of the form

u2 = v0 + v1 + r2, (2.5.19)

where r2 ∈ H3(M int) with

‖r2‖H3(M int) ≤ O(λ
n−1

4
+ 1

2 ). (2.5.20)

Applying Proposition 2.3.4 with h > 0 small but fixed to the equation,

L−X(2),− div(X(2))+q(2)r2 = (X(2) + div(X(2))− q(2))(v0 + v1) in M, (2.5.21)

we conclude the existence of r2 ∈ H1(M int) such that

‖r2‖H3(M int) ≤ O(1)‖(X(2) + div(X(2))− q(2))(v0 + v1)‖H−1(M int). (2.5.22)

To bound the norm in the right-hand side of (2.5.22), we let ψ ∈ C∞0 (M int), and using
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(2.5.11), (2.3.2), (2.5.5), (2.5.6), (2.5.9), we get

|〈 div(X(2))(v0 + v1), ψ〉M int| =
∣∣∣∣ ∫ X(2)((v0 + v1)ψ)dVg

∣∣∣∣
≤
∣∣∣∣ ∫ ψX(2)(v0 + v1)dVg

∣∣∣∣+

∣∣∣∣ ∫ (v0 + v1)X(2)(ψ)dVg

∣∣∣∣
≤ O(1)‖δd(v0 + v1)‖L2(M)‖ψ‖H1(M int) +O(1)‖v0 + v1‖L2(M)‖ψ‖H1(M int)

≤ O(λ
n−1

4
+ 1

2 )‖ψ‖H1(M int).

(2.5.23)

The bound (2.5.20) follows from (2.5.22), (2.5.23), (2.5.17), (2.5.18).

The next step is to substitute the solution u1 and u2, given in (2.5.13) and (2.5.19), into the

integral identity (2.4.1), multiply by λ−
(n−1)

2 , and compute the limit as λ→ 0. In doing so,

we write

I := λ−
(n−1)

2

∫
M

X(u1)u2 + qu1u2dVg = I1 + I2 + I3 + I4 + I5 + I6, (2.5.24)

where

I1 = λ−
(n−1)

2

∫
M

X(v0)v0dVg, I2 = λ−
(n−1)

2

∫
M

X(v0)v1dVg,

I3 = λ−
(n−1)

2

∫
M

X(v0)r2dVg, I4 = λ−
(n−1)

2

∫
M

X(v1)u2dVg,

I5 = λ−
(n−1)

2

∫
M

X(r1)u2dVg, I6 = λ−
(n−1)

2

∫
M

qu1u2dVg.

Let us compute limλ→0 I1. To that end, writing X = Xj∂xj , we have

Xv0 = e
i
λ

(τ ′·x′+ixn)
[
λ−

1
2 (Xη)

( x
λ

1
2

)
+ iλ−1X(x) · (τ ′, i)η

( x
λ

1
2

)]
(2.5.25)
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and

Xv0v0 = e−
2xn
λ

[
λ−

1
2 (Xη)

( x
λ

1
2

)
η
( x
λ

1
2

)
+ iλ−1X(x) · (τ ′, i)η2

( x
λ

1
2

)]
. (2.5.26)

Making the change of variable y′ = x′

λ1/2 , yn = xn
λ

, using that X ∈ C(M,TM), η has compact

support, (2.5.1) and (2.5.2), we get

lim
λ→0

I1 = lim
λ→0

∫
Rn−1

∫ ∞
0

e−2ynλ
1
2 (Xη)(y′, λ

1
2yn)η(y′, λ

1
2yn)|g(λ

1
2y′, λyn)|

1
2dyndy

′

+ lim
λ→0

∫
Rn−1

∫ ∞
0

e−2yniX(λ
1
2y′, λyn) · (τ ′, i)η2(y′, λ

1
2yn)|g(λ

1
2y′, λyn)|

1
2dyndy

′

=
i

2
X(0) · (τ ′, i).

(2.5.27)

The fact that v1 ∈ H1
0 (M int) together with the estimates (2.5.11), (2.5.9), (2.5.7) gives that

|I2| ≤ O(λ−
(n−1)

2 )‖X‖L∞(M)‖δdv0‖L2(M)‖
v1

δ
‖L2(M) = O(λ

1
2 ). (2.5.28)

To estimate I3, first assume that (M, g) is embedded in a compact smooth manifold (N, g)

without boundary of the same dimension. Let us extend X ∈ C(M,TM) to a continuous

vector field on N , and still write X ∈ C(N, TN). Using a partition of unity argument

together with a regularization in each coordinate patch, we see that there exists a family

Xτ ∈ C∞(N, TN) such that

‖X −Xτ‖L∞ = o(1), ‖Xτ‖L∞ = O(1), ‖∇Xτ‖L∞ = O(τ−1), τ → 0. (2.5.29)

We write

I3 = I3,1 + I3,2, (2.5.30)
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where

I3,1 = λ−
(n−1)

2

∫
M

(X −Xτ )(v0)r2dVg, I3,2 = λ−
(n−1)

2

∫
M

Xτ (v0)r2dVg. (2.5.31)

Using (2.5.29), (2.5.8), (2.5.20), we get

|I3,1| ≤ O(λ−
(n−1)

2 )‖X −Xτ‖L∞(M)‖dv0‖L2(M)‖r2‖L2(M) = o(1), (2.5.32)

as τ → 0. To estimate I3,2, integrating by parts, we obtain that

I3,2 = J1 + J2 + J3, (2.5.33)

where

J1 = −λ−
(n−1)

2

∫
M

v0Xτ (r2)dVg, J2 = −λ−
(n−1)

2

∫
M

div(Xτ )v0r2dVg,

J3 = λ−
(n−1)

2

∫
∂M

(ν ·Xτ )v0r2dSg.

(2.5.34)

Using (2.5.29), (2.5.20), (2.5.5), we get

|J1| ≤ O(λ−
(n−1)

2 )‖Xτ‖L∞(M)‖v0‖L2(M)‖dr2‖L2(M) = O(λ),

|J2| ≤ O(λ−
(n−1)

2 )‖ divXτ‖L∞(M)‖v0‖L2(M)‖r2‖L2(M) = O(τ−1λ).

(2.5.35)

Using (2.5.10), (2.5.29), (2.5.20), and the trace theorem, we obtain that

|J3| ≤ O(λ−
(n−1)

2 )‖ν ·Xτ‖L∞(M)‖v0‖L2(∂M)‖r2‖H1(M) = O(λ1/2). (2.5.36)

Choosing τ = λ1/2, we conclude from (2.5.30), (2.5.31), (2.5.32), (2.5.33), (2.5.34), (2.5.35),

(2.5.36) that

|I3| = o(1), λ→ 0. (2.5.37)
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Now (2.5.5), (2.5.6), (2.5.20) imply that

‖u2‖L2 = O(λ
n−1

4
+ 1

2 ). (2.5.38)

Using (2.5.38) together with (2.5.7), we have

|I4| ≤ O(λ−
(n−1)

2 )‖dv1‖L2(M)‖u2‖L2(M) = O(λ
1
2 ). (2.5.39)

Using (2.5.38) together with (2.5.14), we get

|I5| ≤ O(λ−
(n−1)

2 )‖dr1‖L2(M)‖u2‖L2(M) = O(λ). (2.5.40)

Last let us estimate |I6|. Using (2.5.38) and a similar bound for u1, we see that

|I6| ≤ O(λ−
(n−1)

2 )‖q‖L∞(M)‖u1‖L2(M)‖u2‖L2(M) = O(λ). (2.5.41)

Now it follows from (2.5.24), (2.5.27), (2.5.28), (2.5.37), (2.5.39), (2.5.40), and (2.5.41) that

lim
λ→0

I =
i

2
X(0) · (τ ′, i) = 0,

and therefore,

X(1)(0) · (τ ′, i) = X(2)(0) · (τ ′, i),

for all τ ′ ∈ Rn−1. This completes the proof of Proposition 2.5.1.
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Chapter 3

Reconstructing a potential

perturbation of the biharmonic

operator on transversally anisotropic

manifolds

3.1 Introduction and statement of results

Let (M, g) be a smooth compact oriented Riemannian manifold of dimension n ≥ 3 with

smooth boundary ∂M . Let γ be the Dirichlet trace operator defined by

γ : H2(M int)→ H3/2(∂M)×H1/2(∂M), γu = (u|∂M , ∂νu|∂M), (3.1.1)

which is bounded and surjective, see [47, Theorem 9.5]. Here and in what follows M int =

M \ ∂M , Hs(M int) and Hs(∂M), s ∈ R, are the standard L2–based Sobolev spaces on M int

and its boundary ∂M , respectively, and ν is the exterior unit normal to ∂M . We also let
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H2
0 (M int) = {u ∈ H2(M int) : γu = 0}. Let −∆g = −∆ be the Laplace–Beltrami operator on

M , and let ∆2 be the biharmonic operator on M . Let q ∈ C(M). By standard arguments,

see for instance [71, Appendix A], the operator

∆2 + q : H2
0 (M int)→ H−2(M int) = (H2

0 (M int))′, (3.1.2)

is Fredholm of index zero and has a discrete spectrum. We shall assume throughout the

paper that

(A) 0 is not in the spectrum of the operator (3.1.2).

Thus, for any f = (f0, f1) ∈ H3/2(∂M)×H1/2(∂M), the Dirichlet problem


(∆2 + q)u = 0 in M int,

γu = f on ∂M,

(3.1.3)

has a unique solution u ∈ H2(M int), depending continuously on f . Physically, the Dirichlet

boundary condition in (3.1.3) corresponds to the clamped plate equation, see [44]. We define

the Dirichlet–to–Neumann map Λq by

〈Λqf, g〉H−3/2(∂M)×H−1/2(∂M),H3/2(∂M)×H1/2(∂M) =

∫
M

(∆u)(∆v)dV +

∫
M

quvdV, (3.1.4)

where g = (g0, g1) ∈ H3/2(∂M)×H1/2(∂M), v ∈ H2(M int) is such that γv = g, and u is the

solution to (3.1.3). The linear map Λq is well defined and

Λq : H3/2(∂M)×H1/2(∂M)→ H−3/2(∂M)×H−1/2(∂M)

is continuous, see [71, Appendix A]. This corresponds to the fact that in the weak sense we

have Λqf = (−∂ν(∆u)|∂M ,∆u|∂M).
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Note that working with solutions u ∈ H4(M int) of the equation (∆2 + q)u = 0, the explicit

description for the Laplacian in the boundary normal coordinates, see (3.2.2) below, together

with boundary elliptic regularity, see [47, Theorem 11.14], shows that the knowledge of

the graph of the Dirichlet–to–Neumann map Λq, {(f,Λqf) : f ∈ H
7
2 (∂M) × H

5
2 (∂M)} is

equivalent to the knowledge of the set of the Cauchy data,

{(u|∂M , ∂νu|∂M , ∂2
νu|∂M , ∂3

νu|∂M) : u ∈ H4(M int), (∆2 + q)u = 0 in M int}.

The areas of physics and geometry where biharmonic operators occur, include the study

of the Kirchhoff plate equation in the theory of elasticity, and the study of the Paneitz-

Branson operator in conformal geometry, see [44, 33]. In particular, in the elasticity theory,

the biharmonic operator is used to model small transversal vibrations of a plate of negligible

thickness, according to the Kirchhoff–Love model for elasticity. Furthermore, the biharmonic

equation also arises in the theory of steady Stokes flows of viscous fluids, where it is the

equation satisfied by the stream function, see [101].

The inverse boundary problem for a potential perturbation of the biharmonic operator is to

determine the potential q in M from the knowledge of the Dirichlet–to–Neumann map Λq.

In the case of domains in the Euclidean space Rn with n ≥ 3, this problem was solved in [56],

[57] showing that the bounded potential q can indeed be recovered from the knowledge of the

Dirichlet–to–Neumann map Λq, see [71] for the case of unbounded potentials. We refer to

[68], [67] where the inverse boundary problem of determination of a first order perturbation

of the biharmonic operator was studied in the Euclidean case, see also [21], [6], [5], [8] for the

case of non-smooth perturbations, and [18], [46] for the case of second order perturbations.

Going beyond the Euclidean setting, the global uniqueness in the inverse boundary problem

for zero and first order perturbations of the biharmonic operator was only obtained in the

case when the manifold (M, g) is admissible in [9], see Definition 3.1.2 below, and in the more
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general case when (M, g) is CTA (conformally transversally anisotropic, see Definitions 3.1.1)

with the injective geodesic X-ray transform on the transversal manifold (M0, g0) in [119]. The

works [9] and [119] are extensions of the fundamental works [36] and [38] which initiated this

study in the case of perturbations of the Laplacian. We refer to the works [80], [43], [42], [74],

for inverse boundary problems for nonlinear Schrödinger equations on CTA manifolds, and

we remark that that there are no assumptions on the transversal manifold in these works.

Definition 3.1.1. A compact Riemannian manifold (M, g) of dimension n ≥ 3 with bound-

ary ∂M is called conformally transversally anisotropic (CTA) if M ⊂⊂ R × M int
0 where

g = c(e ⊕ g0), (R, e) is the Euclidean real line, (M0, g0) is a smooth compact (n − 1)–

dimensional manifold with smooth boundary, called the transversal manifold, and c ∈ C∞(M)

is a positive function.

Definition 3.1.2. A compact Riemannian manifold (M, g) of dimension n ≥ 3 with bound-

ary ∂M is called admissible if it is CTA and the transversal manifold (M0, g0) is simple,

meaning that for any p ∈ M0, the exponential map expp with its maximal domain of defini-

tion in TpM0 is a diffeomorphism onto M0, and ∂M0 is strictly convex.

The proofs of the global uniqueness results in the works [36, 38, 9, 119] rely on construction

of complex geometric optics solutions based on the techniques of Carleman estimates with

limiting Carleman weights. Thanks to the work [36], we know that the property of being a

CTA manifold guarantees the existence of limiting Carleman weights.

Once uniqueness results for inverse boundary problems have been established, one is inter-

ested in upgrading them to a reconstruction procedure. The reconstruction of a potential

perturbation of the Laplacian from boundary measurements in the Euclidian space was ob-

tained in the pioneering works [95] and [99], see also [100]. We refer to [97] for reconstruction

in the case of partial data inverse boundary problems. In the case of admissible manifolds,

a reconstruction procedure for a potential perturbation of the Laplacian was given in [62],
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complementing the uniqueness result of [36], see also [7]. In the case of more general CTA

manifolds whose transversal manifolds enjoy the constructive invertibility of the geodesic

ray transform, a reconstruction procedure for a potential perturbation of the Laplacian was

established in [41], complementing the uniqueness result of [38]. We refer to [14], [15] for the

reconstruction of a Riemannian manifold from the dynamical data.

Turning the attention to inverse boundary problems for a potential perturbation of the

biharmonic operator, to the best of our knowledge, there is no reconstruction procedure

available in the literature and the purpose of this paper is to provide such a reconstruction

procedure. Our result will be stated in the most general setting possible, i.e. on a CTA

manifold whose transversal manifold enjoys the constructive invertibility of the geodesic ray

transform, but it is applicable and new already in the case of smooth bounded domains in

the 3–dimensional Euclidean space and in the case of 3–dimensional admissible manifolds.

To state our result, we shall need the following definition.

Definition 3.1.3. We say that the geodesic ray transform on the transversal manifold

(M0, g0) is constructively invertible if any function f ∈ C(M0) can be reconstructed from

the knowledge of its integrals over all non-tangential geodesics in M0. Here a unit speed

geodesic γ : [0, L] → M0 is called non-tangential if γ̇(0), γ̇(L) are non-tangential vectors on

∂M0 and γ(t) ∈M int
0 for all 0 < t < L.

Our main result is as follows, and it gives a constructive counterpart of the uniqueness result

of [119].

Theorem 3.1.4. Let (M, g) be a given CTA manifold and assume that the geodesic ray

transform on the transversal manifold (M0, g0) is constructively invertible. Let q ∈ C(M)

be such that assumption (A) is satisfied. Then the knowledge of Λq determines q in M

constructively.

Combining Theorem 3.1.4 with the constructive invertibility of the geodesic ray transform
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on a simple two-dimensional Riemannian manifold, see [102], [66], [107], see also [90], [91],

we obtain the following unconditional result.

Corollary 3.1.5. Let (M, g) be a given 3–dimensional admissible manifold, and let q ∈

C(M) be such that assumption (A) is satisfied. Then the knowledge of Λq determines q in

M constructively.

Remark 3.1.6. As explained in [36], bounded smooth domains in the Euclidean space are

examples of admissible manifolds, and therefore, Corollary 3.1.5 is applicable and new in

this case.

Remark 3.1.7. Beyond the case of a simple two-dimensional Riemannian manifold, the

constructive invertibility of the geodesic ray transform is also known in particular in the

following situations:

• (M0, g0) is a two-dimensional Riemannian manifold with strictly convex boundary, no

conjugate points, and the hyperbolic trapped set (these conditions are satisfied in nega-

tive curvature, in particular), see [50].

• (M0, g0) is of dimension n ≥ 3, has a strictly convex boundary and is globally foliated

by strictly convex hypersurfaces, see [118].

Remark 3.1.8. The work [119] establishes that not only a continuous potential but an entire

continuous first order perturbation can be determined uniquely from the knowledge of the set

of the Cauchy data on the boundary of a CTA manifold provided that the geodesic ray trans-

form on the transversal manifold is injective, and therefore, it would be interesting to propose

a reconstruction procedure of the recovery of a full first order perturbation. We shall address

this question in a future work. To the best of our knowledge, there are no reconstruction

results even in the case of a first order perturbation of the Laplacian on admissible mani-

folds and the only available result is the work [26] in the case of compact domains contained

in cylindrical manifolds of the form R × Td with Td being the d-dimensional torus, d ≥ 2,
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see also [105] for the Euclidean case. Note that the problem of determining a first order

perturbation of the biharmonic operator appears to be more challenging, as here one has to

recover a first order perturbation uniquely while in the case of the Laplacian, one only needs

to determine it up to a gauge transformation, which is only the first step in the corresponding

program for the biharmonic operator, see [119].

Let us proceed to discuss the main ideas in the proof of Theorem 3.1.4. The first step is the

derivation of the integral identity,

∫
M

qu1u2dV = 〈(Λq − Λ0)γu1, γu2〉H1/2(∂M)×H3/2(∂M),H−1/2(∂M)×H−3/2(∂M), (3.1.5)

where u1, u2 ∈ L2(M) are solutions to (∆2 +q)u1 = 0 and ∆2u2 = 0 in M int. The next step is

to test the integral identity (3.1.5) agains suitable complex geometric optics solutions u1 and

u2. Working on a general CTA manifold, we shall obtain such solutions based on Gaussian

beam quasimodes for the conjugated biharmonic operator, constructed on M and localized

to non-tangential geodesics on the transversal manifold M0 times Rx1 . Such solutions were

constructed in [119] without any notion of uniqueness involved. In this paper, we propose an

alternative construction to produce complex geometric optics solutions enjoying a uniqueness

property. The key step in the proof is the constructive determination of the Dirichlet trace

γu1 on ∂M of the unique complex geometric optics solution u1 from the knowledge of the

Dirichlet–to–Neumann map Λq. Once this step is carried out, the quantity on the right hand

side of (3.1.5) is reconstructed thanks to the knowledge of the manifold M and Λq. Another

ingredient in the proof is the boundary reconstruction formula for q|∂M from the knowledge

of Λq. Using it together with the constructive invertibility of the geodesic ray transform and

following the standard argument, see [38], [41], we reconstruct the potential q from the left

hand side of (3.1.5), with u1 and u2 being the complex geometric optics solutions.

To the best of our knowledge there are two approaches to the reconstruction of the Dirichlet
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boundary traces of suitable complex geometric optics solutions to the Schrödinger equation

in the Euclidean space in the literature. In the first one, suitable complex geometric optics

solutions are constructed globally on all of Rn, enjoying uniqueness properties characterized

by decay at infinity, see [95], [99], while in the second one, complex geometric optics solutions

are constructed by means of Carleman estimates on a bounded domain, and the notion of

uniqueness is obtained by restricting the attention to solutions of minimal norm, see [97]. In

both approaches, the boundary traces of the complex geometric optics solutions in question

are determined as unique solutions of well posed integral equations on the boundary of the

domain, involving the Dirichlet–to–Neumann map along with other known quantities. In the

proof of Theorem 3.1.4 in order to reconstruct the Dirichlet trace γu1 = (u1|∂M , ∂νu1|∂M) on

∂M of the unique complex geometric optics solution u1 from the knowledge of the Dirichlet–

to–Neumann map Λq, we follow the second approach, adapting the simplified version of it

given in [41] to the case of perturbed biharmonic operators. Compared to [41], we not only

need to reconstruct the boundary trace u1|∂M but also the boundary trace ∂νu1|∂M of the

normal derivative. In doing so, we introduced the single layer operator associated to the

Green operator of the conjuagated semiclassical biharmonic operator.

Finally, let us mention that similarly to the reconstructions results of [62] and [41], we make

no claims regarding practicality of the reconstruction procedure developed in this paper.

Our purpose merely is to show that all the steps in the proof of the uniqueness result of [119]

can be carried out constructively.

This article is organized as follows. In Section 3.2 we collect some essentially well known re-

sults related to the maximal domain of the biharmonic operator and boundary traces needed

in the proof of Theorem 3.1.4. The derivation of the integral identify (3.1.5) is also given in

Section 3.2. In Section 3.3 we present an extension of the Nachman–Street method [97] for

the constructive determination of the boundary traces of suitable complex geometric optics

solutions, developed for the Schrödinger equation, to the case of the perturbed biharmonic
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equation. In Section 3.4, we give a construction of complex geometric optics solutions to

the perturbed biharmonic equations enjoying uniqueness property and complete the proof

of Theorem 3.1.4. Finally, a reconstruction formula for the boundary traces of a continuous

potential from the knowledge of Λq for the perturbed biharmonic operator is established in

Section 3.5.

3.2 The Hilbert space H∆2(M) and boundary traces

The purpose of this section is to collect some essentially well known results needed in the

proof of Theorem 3.1.4, see also [47], [88]. Since we are dealing with the biharmonic operator

∆2 rather than the Laplacian, some of the proofs are provided for the convenience of the

reader.

Let (M, g) be a smooth compact oriented Riemannian manifold of dimension n ≥ 3 with

smooth boundary ∂M . We shall need the following Green formula for ∆2, valid for u, v ∈

H4(M int),

∫
M

(∆2u)vdV −
∫
M

u(∆2v)dV =

∫
∂M

∂νu(∆v)dS −
∫
∂M

u∂ν(∆v)dS

+

∫
∂M

∂ν(∆u)vdS −
∫
∂M

(∆u)∂νvdS,

(3.2.1)

where ν is the unit exterior normal vector to ∂M , dV and dS are the Riemannian volume

elements on M and ∂M , respectively, see [47].

We shall also need the following expressions for the operators ∆ and ∂ν∆ on the boundary

of M , valid for v ∈ H4(M int),

∆v = ∂2
νv +H∂νv + ∆tv on ∂M,

∂ν∆v = ∂3
νv + ∂νH∂νv +H∂2

νv + ∆t∂νv on ∂M,

(3.2.2)
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where H = 1
2
∂ν log |detg| ∈ C∞(M) and ∆t = ∆g|∂M is the tangential Laplacian on ∂M , see

[83].

Consider the Hilbert space

H∆2(M) = {u ∈ L2(M) : ∆2u ∈ L2(M)},

equipped with the norm

‖u‖2
H∆2 (M) = ‖u‖2

L2(M) + ‖∆2u‖2
L2(M).

The space H∆2(M) is the maximal domain of the bi-Laplacian ∆2, acting on L2(M).

We shall need the following result concerning the existence of traces of functions in H∆2(M).

Lemma 3.2.1. (i) The trace map γj : C∞(M) → C∞(∂M), u 7→ ∂jνu|∂M , j = 0, 1,

extends to a linear continuous map

γj : H∆2(M)→ H−j−1/2(∂M). (3.2.3)

(ii) The trace map γ̃j : C∞(M)→ C∞(∂M), u 7→ ∂jν(∆u)|∂M , j = 0, 1, extends to a linear

continuous map

γ̃j : H∆2(M)→ H−j−5/2(∂M).

Proof. We follow the arguments of [24, Section 1], carried out in the case of ∆.

(i). Let j = 0, u ∈ C∞(M), and w ∈ H1/2(∂M). By the Sobolev extension theorem, see [47,

Theorem 9.5], there exists v ∈ H4(M int) such that

v|∂M = 0, ∂νv|∂M = 0, ∂2
νv|∂M = 0, ∂3

νv|∂M = w, (3.2.4)
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and

‖v‖H4(M int) ≤ C‖w‖H1/2(∂M). (3.2.5)

It follows from (3.2.1), (3.2.2), (3.2.4) that

−
∫
∂M

uwdS =

∫
M

(∆2u)vdV −
∫
M

u(∆2v)dV,

and therefore, using (3.2.5), we get

∣∣∣∣ ∫
∂M

uwdS

∣∣∣∣ ≤ C‖u‖H∆2 (M)‖v‖H4(M int) ≤ C‖u‖H∆2 (M)‖w‖H1/2(∂M).

Hence,

‖γ0u‖H−1/2(∂M) ≤ C‖u‖H∆2 (M). (3.2.6)

By the density of the space C∞(M) inH∆2(M), see [88, Chapter 2, Section 8.1, page 192], and

also [47, Theorem 9.8, and page 233], we conclude that the map γ0 extends to a continuous

linear map: H∆2(M) → H−1/2(∂M) and (3.2.6) holds for all u ∈ H∆2(M). This shows (i)

with j = 0.

Let next j = 1 in (i) and let us now prove that γ1 extends to a continuous linear map:

H∆2(M) → H−3/2(∂M). To that end, let u ∈ C∞(M) and let w ∈ H3/2(∂M). By the

Sobolev extension theorem, there is v ∈ H4(M int) such that

v|∂M = 0, ∂νv|∂M = 0, ∂2
νv|∂M = w, ∂3

νv|∂M = −Hw, (3.2.7)

where H is defined in (3.2.2), and

‖v‖H4(M int) ≤ C‖w‖H3/2(∂M). (3.2.8)
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It follows from (3.2.2) and (3.2.7) that

∆v|∂M = w, ∂ν(∆v)|∂M = 0. (3.2.9)

Using (3.2.1), (3.2.7), (3.2.9), we get

∫
∂M

(∂νu)wdS =

∫
M

(∆2u)vdV −
∫
M

u(∆2v)dV,

and therefore, using (3.2.8), we see that

∣∣∣∣ ∫
∂M

(∂νu)wdS

∣∣∣∣ ≤ C‖u‖H∆2 (M)‖w‖H3/2(∂M).

Thus,

‖γ1u‖H−3/2(∂M) ≤ C‖u‖H∆2 (M). (3.2.10)

By the density of the space C∞(M) in H∆2(M), we obtain that the map γ1 extends to a

continuous linear map: H∆2(M)→ H−3/2(∂M) and (3.2.10) holds for all u ∈ H∆2(M). This

shows (i) with j = 1.

(ii). The proof here follows along the same lines as in the case (i). Let us only mention that

when j = 0, we shall work with w ∈ H5/2(∂M) and v ∈ H4(M int) such that

v|∂M = 0, ∂νv|∂M = w, ∂2
νv = −Hw, ∂3

νv = −(∂νH)w +H2w −∆tw.

Therefore, this together with (3.2.2) implies that

∆v|∂M = 0, ∂ν∆v|∂M = 0.

We also have ‖v‖H4(M int) ≤ C‖w‖H5/2(∂M).
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When j = 1, we shall work with w ∈ H7/2(∂M) and v ∈ H4(M int) such that

v|∂M = w, ∂νv|∂M = 0, ∂2
νv = −∆tw, ∂3

νv = H∆tw.

Therefore, by (3.2.2), we get

∆v|∂M = 0, ∂ν∆v|∂M = 0.

We also have ‖v‖H4(M int) ≤ C‖w‖H7/2(∂M). This completes the proof of Lemma 3.2.1.

By Lemma 3.2.1, we have the following consequence of (3.2.1).

Corollary 3.2.2. For any u ∈ H∆2(M) and v ∈ H4(M int), we have the following generalized

Green formula,

∫
M

(∆2u)vdV −
∫
M

u∆2vdV =

∫
∂M

∂νu(∆v)dS −
∫
∂M

u∂ν(∆v)dS

+

∫
∂M

∂ν(∆u)vdS −
∫
∂Ω

(∆u)∂νvdS,

(3.2.11)

where

∫
∂M

∂νu(∆v)dS := 〈γ1u,∆v〉H−3/2(∂M),H3/2(∂M),∫
∂M

u∂ν(∆v)dS := 〈γ0u, ∂ν(∆v)〉H−1/2(∂M),H1/2(∂M),∫
∂M

∂ν(∆u)vdS := 〈γ̃1u, v〉H−7/2(∂M),H7/2(∂M),∫
∂Ω

(∆u)∂νvdS := 〈γ̃0u, ∂νv〉H−5/2(∂M),H5/2(∂M).

We shall need the following extension of [39, Theorem 26.3] to the case of the biharmonic
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operator ∆2. Here for u ∈ H∆2(M), we set

γu = (γ0u, γ1u), (3.2.12)

where γj, j = 0, 1, are given by (3.2.3). Note γ in (3.2.12) is an extension of the trace map

in (3.1.1).

Theorem 3.2.3. For each g = (g0, g1) ∈ H−1/2(∂M) × H−3/2(∂M), there exists a unique

u ∈ L2(M) such that


∆2u = 0 in M int,

γu = g on ∂M,

(3.2.13)

and

‖u‖L2(M) ≤ C‖g‖H−1/2(∂M)×H−3/2(∂M). (3.2.14)

Here ‖g‖2
H−1/2(∂M)×H−3/2(∂M)

= ‖g0‖2
H−1/2(∂M)

+ ‖g1‖2
H−3/2(∂M)

.

Proof. We shall follow the proof of [39, Theorem 26.3]. Let v ∈ H4(M int) be such that

v|∂M = 0, ∂νv|∂M = 0. If there is u ∈ L2(M) satisfying (3.2.13) then by the generalized

Green formula (3.2.11), we obtain

∫
M

u∆2vdV = 〈g0, ∂ν(∆v)〉H−1/2(∂M),H1/2(∂M) − 〈g1,∆v〉H−3/2(∂M),H3/2(∂M). (3.2.15)

Consider the subspace

L := {∆2v : v ∈ H4(M int), v|∂M = 0, ∂νv|∂M = 0} ⊂ L2(M).
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In view of (3.2.15), we define the linear functional F on L by

F (∆2v) := 〈g0, ∂ν(∆v)〉H−1/2(∂M),H1/2(∂M) − 〈g1,∆v〉H−3/2(∂M),H3/2(∂M). (3.2.16)

Using the Cauchy–Schwarz inequality, the following Sobolev trace theorem

‖(v, ∂νv, ∂2
νv, ∂

3
νv)‖(H7/2×H5/2×H3/2×H1/2)(∂M) ≤ C‖v‖H4(M int),

and (3.2.2), we obtain from (3.2.16) that

|F (∆2v)| ≤ ‖g0‖H−1/2(∂M)‖∂ν(∆v)‖H1/2(∂M) + ‖g1‖H−3/2(∂M)‖∆v‖H3/2(∂M)

≤ C‖g‖H−1/2(∂M)×H−3/2(∂M)‖v‖H4(M int).

(3.2.17)

Using the fact that v|∂M = 0, ∂νv|∂M = 0, and boundary elliptic regularity, see [47, Theorem

11.14], we get

‖v‖H4(M int) ≤ C‖∆2v‖L2(M). (3.2.18)

Combining (3.2.17) and (3.2.18), we obtain that

|F (∆2v)| ≤ C‖g‖H−1/2(∂M)×H−3/2(∂M)‖∆2v‖L2(M),

which shows that F is bounded on L. Thus, by the Hahn-Banach theorem, F can be extended

to a bounded linear functional on L2(M), and by Riesz representation theorem, there exists

u ∈ L2(M) such that

F (∆2v) =

∫
M

(∆2v)udV, (3.2.19)

and (3.2.14) holds. Letting v ∈ C∞0 (M int), we conclude from (3.2.19) and (3.2.16) that
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∆2u = 0 in M int.

Using (3.2.19), (3.2.16), and the generalized Green formula (3.2.11), we get

〈γ0u, ∂ν(∆v)〉H−1/2(∂M),H1/2(∂M) − 〈γ1u,∆v〉H−3/2(∂M),H3/2(∂M)

= 〈g0, ∂ν(∆v)〉H−1/2(∂M),H1/2(∂M) − 〈g1,∆v〉H−3/2(∂M),H3/2(∂M),

(3.2.20)

for all v ∈ H4(M int) such that v|∂M = 0, ∂νv|∂M = 0.

Letting w ∈ H1/2(∂M), and taking v ∈ H4(M int) such that (3.2.4) holds, we see from

(3.2.20) that γ0u = g0. Furthermore, letting w ∈ H3/2(∂M) and taking v ∈ H4(M int) such

that (3.2.7) holds, in view of (3.2.9), we conclude from (3.2.20) that γ1u = g1.

The uniqueness follows from the fact that if u ∈ L2(M) solves the Dirichlet problem (3.2.13)

with g = 0 then by the boundary elliptic regularity, see [47, Theorem 11.14], u ∈ H4(M int),

and therefore, u = 0.

Corollary 3.2.4. Let q ∈ C(M) be such that assumption (A) is satisfied, and let

Hq := {u ∈ L2(M) : (∆2 + q)u = 0} ⊂ H∆2(M).

Then the trace map

γ : Hq → H−1/2(∂M)×H−3/2(∂M) (3.2.21)

is bijective.

Proof. We begin by showing that the map γ in (3.2.21) is surjective. To that end, letting

g ∈ H−1/2(∂M) × H−3/2(∂M), by Theorem 3.2.3, we get a unique u ∈ L2(M) satisfying
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(3.2.13). Assumption (A) implies that there is a unique v ∈ H2
0 (M int) such that


(∆2 + q)v = qu in M int,

γv = 0 on ∂M.

(3.2.22)

Now letting w = u − v ∈ L2(M), in view of (3.2.13) and (3.2.22), we see that w ∈ Hq and

γw = g. This shows the surjectivity of γ in (3.2.21).

The injectivity of γ in (3.2.21) follows from the fact that if u ∈ Hq is such that γu = 0 then

the boundary elliptic regularity, see [47, Theorem 11.14], shows that u ∈ (H4 ∩H2
0 )(M int),

and by assumption (A), u = 0.

In view of Corollary 3.2.4, we can define the Poisson operator as follows,

Pq = γ−1 : H−1/2(∂M)×H−3/2(∂M)→ Hq. (3.2.23)

We have

‖Pqf‖L2(M) ≤ C‖f‖H−1/2(∂M)×H−3/2(∂M), (3.2.24)

for all f ∈ H−1/2(∂M)×H−3/2(∂M).

Finally, let us derive the integral identity which will be used to reconstruct the potential. To

that end, let f, g ∈ H3/2(∂M) × H1/2(∂M), let u = uf ∈ H2(M int) be the unique solution

to the Dirichlet problem


(∆2 + q)u = 0 in M int,

γu = f on ∂M,

(3.2.25)
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and let v = vg ∈ H2(M int) be the unique solution to the Dirichlet problem


∆2v = 0 in M int,

γv = g on ∂M.

(3.2.26)

By the definition of the Dirichlet–to–Neumann map (3.1.4), we get

〈Λqf, g〉H−3/2(∂M)×H−1/2(∂M),H3/2(∂M)×H1/2(∂M) =

∫
M

(∆uf )(∆vg)dV +

∫
M

qufvgdV, (3.2.27)

and

〈Λ0g,f〉H−3/2(∂M)×H−1/2(∂M),H3/2(∂M)×H1/2(∂M) =

∫
M

(∆vg)(∆uf )dV

=

∫
M

(∆vg)(∆vf )dV = 〈Λ0f, g〉H−3/2(∂M)×H−1/2(∂M),H3/2(∂M)×H1/2(∂M).

(3.2.28)

In the penultimate equality of (3.2.28) we used the fact that the definition of the Dirichlet–

to–Neumann map Λ0 is independent of the choice of extension of f ∈ H3/2(∂M)×H1/2(∂M)

to an H2(M int) element whose trace is equal to f . Considering the difference of (3.2.27) and

(3.2.28), we obtain the following integral identity,

〈(Λq − Λ0)f, g〉H−3/2(∂M)×H−1/2(∂M),H3/2(∂M)×H1/2(∂M) =

∫
M

quvdV, (3.2.29)

where u = uf , v = vg ∈ H2(M int) are solutions to (3.2.25) and (3.2.26), respectively.

We would like to extend the Nachman–Street argument [97] to reconstruct the potential

q from the knowledge of the Dirichlet–to–Neumann map for the biharmonic operator and

therefore, as in [97], we shall work with L2(M) solutions rather than H2(M int) solutions to

the Dirichlet problems (3.2.25), (3.2.26). Thus, we shall need to extend the integral identity

(3.2.29) to such solutions. In doing so, we first claim that Λq − Λ0 extends to a linear
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continuous map

Λq − Λ0 : H−1/2(∂M)×H−3/2(∂M)→ H1/2(∂M)×H3/2(∂M). (3.2.30)

To that end, letting f, g ∈ C∞(∂M) × C∞(∂M), we conclude from (3.2.29), (3.2.14), and

(3.2.24) that

|〈(Λq − Λ0)f, g〉L2(∂M)×L2(∂M),L2(∂M)×L2(∂M)| ≤ C‖u‖L2(M)‖v‖L2(M)

≤ C‖f‖H−1/2(∂M)×H−3/2(∂M)‖g‖H−1/2(∂M)×H−3/2(∂M).

Hence,

‖(Λq − Λ0)f‖H1/2(∂M)×H3/2(∂M) ≤ C‖f‖H−1/2(∂M)×H−3/2(∂M),

which together with the density of C∞(∂M)×C∞(∂M) in the spaceH−1/2(∂M)×H−3/2(∂M)

gives the claim (3.2.30).

Now letting f, g ∈ H−1/2(∂M)×H−3/2(∂M), approximating them by C∞(∂M)×C∞(∂M)–

functions, using (3.2.30), (3.2.14), and (3.2.24), we obtain from (3.2.29) that

〈(Λq − Λ0)f, g〉H1/2(∂M)×H3/2(∂M),H−1/2(∂M)×H−3/2(∂M) =

∫
M

quvdV, (3.2.31)

where u = uf , v = vg ∈ L2(M) are solutions to (3.2.25) and (3.2.26), respectively.

86



3.3 The Nachman–Street argument for biharmonic op-

erators

The goal of this section is to extend the Nachman–Street argument [97] for constructive de-

termination of the boundary traces of suitable complex geometric optics solutions, developed

for the Schrödinger equation, to the case of the perturbed biharmonic equation. Specifically,

we shall extend to the case of the perturbed biharmonic equation the simplified version of the

Nachman–Street argument, presented in [41] in the full data case in the setting of compact

Riemannian manifolds with boundary admitting a limiting Carleman weight.

Let (M, g) be a smooth compact Riemannian manifold of dimension n ≥ 3 with smooth

boundary ∂M , and let −h2∆g = −h2∆ be the semiclassical Laplace–Beltrami operator on

M , where h > 0 is a small semiclassical parameter. Assume, as we may, that (M, g) is

embedded in a compact smooth Riemannian manifold (N, g) without boundary of the same

dimension, and let U be open in N such that M ⊂ U . When ϕ ∈ C∞(U ;R), we let

Pϕ = e
ϕ
h (−h2∆)e−

ϕ
h

be the conjugated operator, and let pϕ be its semiclassical principal symbol. Following [63],

[36], we say that ϕ ∈ C∞(U ;R) is a limiting Carleman weight for −h2∆ on (U, g) if dϕ 6= 0

on U , and the Poisson bracket of Re pϕ and Im pϕ satisfies,

{Re pϕ, Im pϕ} = 0 when pϕ = 0.

Using Carleman estimates for −h2∆, established in [36], it was shown in [97], see also [41,

Proposition 2.2], that for all 0 < h � 1 and any v ∈ L2(M), there exists a unique solution
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u ∈ (Ker(Pϕ))⊥ of the equation

Pϕu = v in M int.

Here

Ker(Pϕ) = {u ∈ L2(M) : Pϕu = 0}.

Based on this unique solution, the Green operator Gϕ for Pϕ was constructed in [97], see

also [41, Theorem 2.3], enjoying the following properties: for all 0 < h � 1, there exists a

linear continuous operator Gϕ : L2(M)→ L2(M) such that

PϕGϕ = I on L2(M), ‖Gϕ‖L(L2(M),L2(M)) = O(h−1),

G∗ϕ = G−ϕ, GϕPϕ = I on C∞0 (M int).

(3.3.1)

Here G∗ϕ denotes the L2(M)–adjoint of Gϕ. Letting P ∗ϕ be the formal L2(M)–adjoint of Pϕ,

we see that P ∗ϕ = P−ϕ. Note also that if ϕ is a limiting Carleman weight for −h2∆ then so

is −ϕ.

In this paper we shall work with the semiclassical biharmonic operator (−h2∆)2. We have

P 2
ϕ = e

ϕ
h (−h2∆)2e−

ϕ
h .

We shall use G2
ϕ : L2(M)→ L2(M) as Green’s operator for P 2

ϕ. It follows from (3.3.1) that

G2
ϕ enjoys the following properties,

P 2
ϕG

2
ϕ = I on L2(M), ‖G2

ϕ‖L(L2(M),L2(M)) = O(h−2),

(G2
ϕ)∗ = G2

−ϕ, G2
ϕP

2
ϕ = I on C∞0 (M int).

(3.3.2)
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Furthermore, the first identity in (3.3.2) implies that

G2
ϕ : L2(M)→ eϕ/hH∆2(M). (3.3.3)

Next we shall proceed to introduce single layer operators associated to the Green operator

G2
ϕ. First note that the trace map γ given by (3.2.12) has the following mapping properties,

γ : e±ϕ/hH∆2(M) → e±ϕ/h(H−1/2(∂M)×H−3/2(∂M)) = H−1/2(∂M)×H−3/2(∂M), (3.3.4)

and therefore, using (3.3.3), we get

γ ◦G2
ϕ : L2(M)→ H−1/2(∂M)×H−3/2(∂M)

is continuous. Here and below the operator norms for the various continuous maps depend on

the semiclassical parameter h, and we only indicate explicitly this dependence when needed.

This implies that the L2–adjoint

(γ ◦G2
ϕ)∗ : H1/2(∂M)×H3/2(∂M)→ L2(M) (3.3.5)

is also continuous. For any g ∈ H1/2(∂M)×H3/2(∂M), we have

P 2
−ϕ((γ ◦G2

ϕ)∗g) = 0 in D′(M int). (3.3.6)

The proof is based on the following observation. Letting f ∈ C∞0 (M int), using the fourth
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property in (3.3.2), we get

(P 2
−ϕ((γ ◦G2

ϕ)∗g), f)L2(M) = ((γ ◦G2
ϕ)∗g, P 2

ϕf)L2(M)

= (g, (γ ◦G2
ϕ)P 2

ϕf)H1/2(∂M)×H3/2(∂M),H−1/2(∂M)×H−3/2(∂M) = 0.

Now (3.3.5) and (3.3.6) imply that eϕ/h(γ ◦ G2
ϕ)∗g ∈ H∆2(M), and therefore, we have the

following mapping properties for the operator (γ ◦G2
ϕ)∗,

(γ ◦G2
ϕ)∗ : H1/2(∂M)×H3/2(∂M)→ e−ϕ/hH∆2(M),

which improves (3.3.5). Thus, in view of (3.3.4), we have that the map

γ ◦ (γ ◦G2
ϕ)∗ : H1/2(∂M)×H3/2(∂M)→ H−1/2(∂M)×H−3/2(∂M)

is well defined and continuous, and therefore, its L2–adjoint

(γ ◦ (γ ◦G2
ϕ)∗)∗ : H1/2(∂M)×H3/2(∂M)→ H−1/2(∂M)×H−3/2(∂M)

is also continuous. We introduce the single layer operator associated to the Green operator

G2
ϕ as follows:

Sϕ =e−ϕ/h(γ ◦ (γ ◦G2
ϕ)∗)∗eϕ/h

∈ L(H1/2(∂M)×H3/2(∂M), H−1/2(∂M)×H−3/2(∂M)).

(3.3.7)

Note that definition (3.3.7) looks similar to the corresponding single layer operator in the

case of the Laplacian in [97], see also [41], with the only difference that here the Green

operator is G2
ϕ instead of Gϕ and the trace γ has two components.

90



Now in view of (3.2.30) and (3.3.7), we have

Sϕ(Λq − Λ0) : H−1/2(∂M)×H−3/2(∂M)→ H−1/2(∂M)×H−3/2(∂M).

is continuous. We claim that

Sϕ(Λq − Λ0) = γ ◦ e−ϕ/h ◦G2
ϕ ◦ eϕ/h ◦ q ◦ Pq (3.3.8)

in the sense of linear continuous operators on the space H−1/2(∂M)×H−3/2(∂M). Here Pq

is the Poisson operator given by (3.2.23). To see (3.3.8), letting f, g ∈ C∞(∂M)×C∞(∂M),

we get

〈γ◦e−ϕ/h ◦G2
ϕ ◦ eϕ/h ◦ q ◦ Pqf, g〉H−1/2(∂M)×H−3/2(∂M),H1/2(∂M)×H3/2(∂M)

= 〈q ◦ Pqf, eϕ/h(γ ◦G2
ϕ)∗e−ϕ/hg〉L2(M),L2(M)

= 〈(Λq − Λ0)f, γ ◦ eϕ/h(γ ◦G2
ϕ)∗e−ϕ/hg〉H−1/2(∂M)×H−3/2(∂M),H1/2(∂M)×H3/2(∂M)

= 〈Sϕ(Λq − Λ0)f, g〉H−1/2(∂M)×H−3/2(∂M),H1/2(∂M)×H3/2(∂M),

showing (3.3.8). Here in the penultimate equality, we used the fact that ∆2(eϕ/h(γ ◦

G2
ϕ)∗e−ϕ/hg) = 0 in M int in view of (3.3.6) and the integral identity (3.2.31), and in the

last equality we used (3.3.7).

Similar to [41, Proposition 2.4], we have the following result.

Proposition 3.3.1. Let f, g ∈ H−1/2(∂M)×H−3/2(∂M). Then

(1 + h4Sϕ(Λq − Λ0))f = g (3.3.9)

if and only if

(1 + e−ϕ/h ◦G2
ϕ ◦ eϕ/hh4q)Pqf = P0g. (3.3.10)
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Proof. Assume first that (3.3.9) holds. To show that (3.3.10) holds, we first observe that

(h2∆)2Pqf = −h4qPqf . Using the first property in (3.3.2), we also obtain that

(h2∆)2(1 + e−ϕ/h ◦G2
ϕ ◦ eϕ/hh4q)Pqf = 0 in M int. (3.3.11)

Furthermore, (3.3.8) and (3.3.9) imply that

γ(1 + e−ϕ/h ◦G2
ϕ ◦ eϕ/hh4q)Pqf = f + h4Sϕ(Λq − Λ0))f = g. (3.3.12)

By the uniqueness result of Theorem 3.2.3 applied to (3.3.11) and (3.3.12), we obtain (3.3.10).

Now if (3.3.10) holds then (3.3.9) can be obtained by taking the trace γ on both sides of

(3.3.10).

The recovery of the boundary traces of suitable complex geometric optics solutions to the

equation (∆2 + q)u = 0 will be based on the following result, which is similar to [41, Propo-

sition 2.5].

Proposition 3.3.2. The operator 1+h4Sϕ(Λq−Λ0) : H−1/2(∂M)×H−3/2(∂M)→ H−1/2(∂M)×

H−3/2(∂M) is a linear homemorphism for all 0 < h� 1.

Proof. First using that ‖G2
ϕ‖L2(M)→L2(M) = O(h−2), see (3.3.2), we observe that the operator

1 + e−ϕ/h ◦ G2
ϕ ◦ eϕ/hh4q in (3.3.10) is a linear homemorphism on L2(M) for all 0 < h � 1.

Thus, for all 0 < h� 1 and for all v ∈ L2(M), the equation

(1 + e−ϕ/h ◦G2
ϕ ◦ eϕ/hh4q)u = v in M int

has a unique solution u ∈ L2(M). Furthermore, if v ∈ H0 then u ∈ Hq by the first property

of (3.3.2). Hence, for all 0 < h � 1, the operator 1 + e−ϕ/h ◦ G2
ϕ ◦ eϕ/hh4q : Hq → H0 is

an isomorphism. It follows from (3.2.23) that the operator (1 + e−ϕ/h ◦G2
ϕ ◦ eϕ/hh4q) ◦ Pq :
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H−1/2(∂M) × H−3/2(∂M) → H0 is an isomorphism for all 0 < h � 1. This together with

Proposition 3.3.1 implies the claim.

3.4 Proof of Theorem 3.1.4

Let (M, g) be a CTA manifold so that (M, g) ⊂⊂ (R × M int
0 , c(e ⊕ g0)). Since (M, g) is

known, the transversal manifold (M0, g0) as well as the conformal factor c are also known.

Therefore, the Dirichlet–to–Neumann map Λ0 is also known. Furthermore, we assume the

knowledge of the Dirichlet–to–Neumann map Λq. Using the integral identity (3.2.31), we

would like to reconstruct the potential q from this data.

Let x = (x1, x
′) be the local coordinates in R ×M0. We know from [36] that the function

ϕ(x) = x1 is a limiting Carleman weight for the semiclassical Laplacian −h2∆. Our start-

ing point is the following result about the existence of Gaussian beam quasimodes for the

biharmonic operator, constructed on M and localized to non-tangential geodesics on the

transversal manifold M0 times Rx1 , established in [119, Propositions 2.1, 2.2]. See also [12],

[103], [104], [38], [69] for related constructions of Gaussian beam quasimodes for second order

operators and applications to inverse boundary problems.

Theorem 3.4.1. [119, Propositions 2.1, 2.2] Let s = 1
h

+ iλ, 0 < h < 1, λ ∈ R and let

γ : [0, L] → M0 be a unit speed non-tangential geodesic on M0. Then there are families of

Gaussian beam quasimodes vs, ws ∈ C∞(M) such that

‖vs‖H1
scl(M

int) = O(1), ‖esx1(h2∆)2e−sx1vs‖L2(M) = O(h5/2), (3.4.1)

‖ws‖H1
scl(M

int) = O(1), ‖e−sx1(h2∆)2esx1ws‖L2(M) = O(h5/2), (3.4.2)
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as h→ 0. Furthermore, letting ψ ∈ C(M0), and letting x1 ∈ R, we have

lim
h→0

∫
{x1}×M0

vswsψdVg0 =

∫ L

0

e−2λtc(x1, γ(t))1−n
2ψ(γ(t))dt. (3.4.3)

We shall use the Gaussian beam quasimodes of Theorem 3.4.1 to construct solutions u2, u1 ∈

L2(M) to the biharmonic equation ∆2u2 = 0 and the perturbed biharmonic equation (∆2 +

q)u1 = 0 in M , which will be used to test the integral identity (3.2.31). Note that some

solutions of the perturbed biharmonic equations based on the Gaussian beam quasimodes

of Theorem 3.4.1 were constructed in [119] with the help of Carleman estimates. Here

our construction will be different as we need to be able to reconstruct their traces γu1 =

(u1|∂M , ∂νu1|∂M). Specifically, we construct complex geometric optics solutions enjoying a

uniqueness property based on the Green operator G2
ϕ for the conjugated biharmonic operator

P 2
ϕ.

First, let us define u2 ∈ L2(M) by

u2 = esx1(ws + r̃2), (3.4.4)

where ws is the Gaussian beam quasimode given by Theorem 3.4.1 and r̃2 ∈ L2(M) is the

remainder term. Now u2 solves ∆2u2 = 0 if r̃2 satisfies

P 2
−ϕe

iλx1 r̃2 = −eiλx1e−sx1h4∆2esx1ws. (3.4.5)

Looking for r̃2 in the form r̃2 = e−iλx1G2
−ϕr2 with r2 ∈ L2(M), we see from (3.4.5) and

(3.3.2) that r2 = −eiλx1e−sx1h4∆2esx1ws. It follows from (3.4.2) that ‖r2‖L2(M) = O(h5/2),

and therefore, using (3.3.2), we get

‖r̃2‖L2(M) = O(h1/2), (3.4.6)
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as h→ 0.

Next we look for u1 ∈ L2(M) solving

(∆2 + q)u1 = 0 in M int (3.4.7)

in the form,

u1 = u0 + e−sx1 r̃1. (3.4.8)

Here u0 ∈ L2(M) is such that

∆2u0 = 0 in M int, (3.4.9)

and u0 has the form,

u0 = e−sx1(vs + r̃0), (3.4.10)

where vs is the Gaussian beam quasimode given by Theorem 3.4.1, and r̃0, r̃1 ∈ L2(M) are

the remainder terms. First in view of (3.4.9), r̃0 should satisfy

P 2
ϕe
−iλx1 r̃0 = −e−iλx1esx1h4∆2e−sx1vs. (3.4.11)

Looking for r̃0 in the form r̃0 = eiλx1G2
ϕr0, we conclude from (3.4.11) that

r0 = −e−iλx1esx1h4∆2e−sx1vs.

Thus, it follows from (3.4.1) that ‖r0‖L2(M) = O(h5/2), and therefore, using (3.3.2), we obtain
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that

‖r̃0‖L2(M) = O(h1/2), (3.4.12)

as h→ 0. Now u1 given by (3.4.8) is a solution to (3.4.7) provided that

(P 2
ϕ + h4q)e−iλx1 r̃1 = −h4eϕ/hqu0 in M int. (3.4.13)

Looking for r̃1 in the form r̃1 = eiλx1G2
ϕr1 with r1 ∈ L2(M), we see from (3.4.13) that

(1 + h4qG2
ϕ)r1 = −h4eϕ/hqu0 in M int. (3.4.14)

In view of (3.3.2), (3.4.10), (3.4.1), and (3.4.12), for all 0 < h � 1, there exists a unique

solution r1 ∈ L2(M) to (3.4.14) such that

‖r1‖L2(M) = O(h4)‖eϕ/hu0‖L2(M) = O(h4),

and therefore,

‖r̃1‖L2(M) = O(h2). (3.4.15)

Next we would like to reconstruct the boundary traces γu1 = (u1|∂M , ∂νu1|∂M), where the

complex geometric optics solution u1 to (3.4.7) is given by (3.4.8), from the knowledge of

the Dirichlet–to–Neumann map Λq. First we claim that u1 satisfies the equation

(1 + h4e−ϕ/hG2
ϕqe

ϕ/h)u1 = u0. (3.4.16)
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Indeed, applying the operator G2
ϕ to (3.4.14) and then multiplying it by e−ϕ/h, we get

e−sx1 r̃1 + h4e−ϕ/hG2
ϕqe

ϕ/hu1 = 0. (3.4.17)

Adding u0 to both sides of (3.4.17) gives us (3.4.16).

Using Proposition 3.3.1, we obtain from (3.4.16) that f = γu1 ∈ H−1/2(∂M) ×H−3/2(∂M)

satisfies the boundary integral equation

(1 + h4Sϕ(Λq − Λ0))f = γu0. (3.4.18)

Since (M, g) is known, u0 and therefore, γu0 are also known as well as the single layer

operator Sϕ, and the Dirichlet–to–Neumann map Λ0. Furthermore, Dirichlet–to–Neumann

map Λq is known as well. By Proposition 3.3.2, for all 0 < h � 1, the boundary trace

f = γu1 can be reconstructed as the unique solution to (3.4.18).

Now substituting u1 and u2, given by (3.4.8) and (3.4.4), respectively, into the integral

identity (3.2.31), we get

∫
M

qu1u2dV = 〈(Λq − Λ0)γu1, γu2〉H1/2(∂M)×H3/2(∂M),H−1/2(∂M)×H−3/2(∂M). (3.4.19)

Now as u2 solves ∆2u2 = 0 in M int, it is a known function. This together with the reconstruc-

tion of γu1 shows that the expression in the right hand side of (3.4.19) can be reconstructed

from our data. Thus, we can reconstruct the integral

∫
M

qu1u2dV =

∫
M

qe−2iλx1(wsvs + r̃2(vs + r̃0 + r̃1) + ws(r̃0 + r̃1))dV

=

∫
M

qe−2iλx1wsvsdV +O(h1/2).

(3.4.20)

Here we have used (3.4.8), (3.4.10), (3.4.4), (3.4.1), (3.4.2), (3.4.6), (3.4.12), and (3.4.15).
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By Theorem 3.5.1, we can determine q|∂M from the knowledge of Λq and (M, g) in a con-

structive way. Thus, we extend q to a function in C0(R×M int
0 ) in such a way that q|(R×M0)\M

is known. This together with (3.4.20) and dV = c
n
2 dx1dVg0 allows us to reconstruct

∫
R
e−2iλx1

∫
M0

q(x1, x
′)ws(x1, x′)vs(x1, x

′)c(x1, x
′)n/2dVg0dx1 +O(h1/2). (3.4.21)

Letting h→ 0 in (3.4.21), and using (3.4.3), we obtain from (3.4.21) that

∫
R
e−2iλx1

∫ L

0

e−2λtq(x1, γ(t))c(x1, γ(t))dtdx1 =

∫ L

0

̂̃q(2λ, γ(t))e−2λtdt, (3.4.22)

for any λ ∈ R and any non-tangential geodesic γ in M0. Here q̃ = qc and

̂̃q(λ, x′) =

∫
R
e−iλx1 q̃(x1, x

′)dx1.

The integral in the right hand side of (3.4.22) is the attenuated geodesic ray transform of̂̃q(2λ, ·) with constant attenuation −2λ. Note that if M0 is simple then it was shown in [107]

that the attenuated ray transform is constructively invertible for any attenuation, and using

the inversion procedure in [107], we reconstruct the potential q.

In general, proceeding similarly to the end of the proof of [41, Theorem 1.4], using the

constructive invertibility assumption of the geodesic ray transform on M0, we reconstruct

the potential q in M . This completes the proof of Theorem 3.1.4.

98



3.5 Boundary reconstruction of a continuous potential

for the perturbed biharmonic operator

The goal of this section is to give a reconstruction formula for the boundary values of a

continuous potential q from the knowledge of the Dirichlet–to–Neumann map for the per-

turbed biharmonic operator ∆2 +q on a smooth compact Riemannian manifold of dimension

n ≥ 2 with smooth boundary. In the case of Schrödinger operator, the constructive deter-

mination of the boundary values of a continuous potential from boundary measurements is

given in [41, Appendix A], and our reconstruction here will rely crucially on this work. For

the non-constructive boundary determination of a continuous potential in the case of the

Schrödinger operator, we refer to the works [53], [74], [87]. For the boundary determination

of smooth perturbations based on pseudodifferential techniques, see [83] and [68]. Our result

is as follows.

Theorem 3.5.1. Let (M, g) be a given compact smooth Riemannian manifold of dimension

n ≥ 2 with smooth boundary, and let q ∈ C(M) be such that assumption (A) is satisfied. For

each point x0 ∈ ∂M , there exists an explicit family of functions fλ ∈ C∞(∂M)× C∞(∂M),

0 < λ� 1, depending only on (M, g), such that

q(x0) = 2 lim
λ→0
〈(Λq − Λ0)fλ, fλ〉H−3/2(∂M)×H−1/2(∂M),H3/2(∂M)×H1/2(∂M).

Proof. Let f ∈ H3/2(∂M)×H1/2(∂M) and let us start by considering the special case of the

integral identity (3.2.29),

〈(Λq − Λ0)f, f〉H−3/2(∂M)×H−1/2(∂M),H3/2(∂M)×H1/2(∂M) =

∫
M

quvdV. (3.5.1)
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Here u, v ∈ H2(M int) are solutions to


(∆2 + q)u = 0 in M int,

γu = f on ∂M,

(3.5.2)

and 
∆2v = 0 in M int,

γv = f on ∂M,

(3.5.3)

respectively.

We would like to construct suitable solutions to (3.5.2) and (3.5.3) to test the integral

identity (3.5.1). The construction of these solutions will be based on an explicit family of

functions vλ, whose boundary values have a highly oscillatory behavior as λ → 0, while

becoming increasingly concentrated near a given point on the boundary of M . Such a family

of functions vλ was introduced in [20], [22], see also [41], [73], [74], [68].

To define vλ, we let x0 ∈ ∂M and let (x1, . . . , xn) be the boundary normal coordinates

centered at x0 so that in these coordinates, x0 = 0, the boundary ∂M is given by {xn = 0},

and M int is given by {xn > 0}. In these local coordinates, we have Tx0∂M = Rn−1, equipped

with the Euclidean metric. The unit tangent vector τ is then given by τ = (τ ′, 0) where

τ ′ ∈ Rn−1, |τ ′| = 1. Associated to the tangent vector τ ′ is the covector ξ′α =
∑n−1

β=1 gαβ(0)τ ′β =

τ ′α ∈ T ∗x0
∂M .

Let η ∈ C∞0 (Rn;R) be such that supp (η) is in a small neighborhood of 0, and

∫
Rn−1

η(x′, 0)2dx′ = 1. (3.5.4)

Let 1
3
≤ α ≤ 1

2
. Following [22], [74, Appendix C], [41, Appendix A] in the boundary normal
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coordinates, we set

vλ(x) = λ−
α(n−1)

2
− 1

2η

(
x

λα

)
e
i
λ

(τ ′·x′+ixn), 0 < λ� 1, (3.5.5)

so that vλ ∈ C∞(M), with supp (vλ) in O(λα) neighborhood of x0 = 0. Here τ ′ is viewed as

a covector. A direct computation shows that

‖vλ‖L2(M) = O(1), (3.5.6)

as λ→ 0, see also [74, Appendix C]. Following [41, Appendix A], we let

v = vλ + r1, (3.5.7)

where r1 ∈ H1
0 (M int) is the solution to the Dirichlet problem,


−∆r1 = ∆vλ in M int,

r1|∂M = 0.

(3.5.8)

By boundary elliptic regularity, we have r1 ∈ C∞(M), and therefore, v ∈ C∞(M). It was

established in [41, Appendix A] that when α = 1/3,

‖r1‖L2(M) = O(λ1/12), (3.5.9)

as λ→ 0. In what follows, we fix α = 1/3.

Note that v ∈ C∞(M) solves the Dirichlet problem (3.5.3) with

f = fλ := (vλ|∂M , ∂ν(vλ + r1)|∂M). (3.5.10)

Now since the manifold (M, g) is known, the harmonic function v as well as the trace fλ are
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known.

Next we look for a solution u to (3.5.2) with the Dirichlet data f = fλ given by (3.5.10) in

the form

u = vλ + r1 + r2. (3.5.11)

Thus, r2 ∈ H2(M int) is the solution to the following Dirichlet problem,


(∆2 + q)r2 = −q(vλ + r1) in M int,

γr2 = 0 on ∂M.

(3.5.12)

It follows from [47, Section 11, p. 325, 326] that for all s > 3/2,

‖r2‖Hs(M int) ≤ C‖q(vλ + r1)‖Hs−4(M int). (3.5.13)

In particular, letting s = 3 in (3.5.13), we get

‖r2‖L2(M) ≤ C‖q(vλ + r1)‖H−1(M int) ≤ C(‖qvλ‖H−1(M int) + ‖r1‖L2(M))

= o(1) +O(λ1/12) = o(1),

(3.5.14)

as λ→ 0. Note that here we used the following bound

‖qvλ‖H−1(M int) = o(1),

as λ→ 0, cf. [41, Appendix A, (A.20)], together with (3.5.9).

Substituting v and u given by (3.5.7) and (3.5.11), respectively, into (3.5.1) and taking the
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limit λ→ 0, we obtain that

lim
λ→0
〈(Λq − Λ0)fλ, fλ〉H−3/2(∂M)×H−1/2(∂M),H3/2(∂M)×H1/2(∂M) = lim

λ→0
(I1 + I2), (3.5.15)

where

I1 =

∫
M

q|vλ|2dV, I2 =

∫
M

q(vλr1 + (r1 + r2)(vλ + r1))dV.

Using (3.5.9) and (3.5.14), we get

lim
λ→0

I2 = 0. (3.5.16)

A direct computation shows that

lim
λ→0

I1 =
1

2
q(0), (3.5.17)

cf. [41, Appendix A, (A.24)]. Combining (3.5.15), (3.5.16), and (3.5.17), we see that

q(0) = 2 lim
λ→0
〈(Λq − Λ0)fλ, fλ〉H−3/2(∂M)×H−1/2(∂M),H3/2(∂M)×H1/2(∂M).

This completes the proof of Theorem 3.5.1.
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Chapter 4

A remark on inverse problems for

nonlinear magnetic Schrödinger

equations on complex manifolds

4.1 Introduction

Let M be an n–dimensional compact complex manifold with C∞ boundary, equipped with

a Kähler metric g. Consider the nonlinear magnetic Schrödinger operator

LA,V u = d∗
A(·,u)

dA(·,u)u+ V (·, u),

acting on u ∈ C∞(M). Here the nonlinear magnetic A : M × C → T ∗M ⊗ C and electric

V : M × C→ C potentials are assumed to satisfy the following conditions:

(i) the map C 3 w 7→ A(·, w) is holomorphic with values in C∞(M,T ∗M ⊗ C),

(ii) A(z, 0) = 0 for all z ∈M ,
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(iii) the map C 3 w 7→ V (·, w) is holomorphic with values in C∞(M),

(iv) V (z, 0) = ∂wV (z, 0) = 0 for all z ∈M .

Thus, A and V can be expanded into power series

A(z, w) =
∞∑
k=1

Ak(z)
wk

k!
, V (z, w) =

∞∑
k=2

Vk(z)
wk

k!
, (4.1.1)

converging in C∞(M,T ∗M ⊗ C) and C∞(M) topologies, respectively. Here

Ak(z) := ∂kwA(z, 0) ∈ C∞(M,T ∗M ⊗ C), Vk(z) := ∂kwV (z, 0) ∈ C∞(M).

We write T ∗M ⊗ C for the complexified cotangent bundle of M ,

dA(·,w) = d+ iA(·, w) : C∞(M)→ C∞(M,T ∗M ⊗ C), w ∈ C, (4.1.2)

where d : C∞(M)→ C∞(M,T ∗M⊗C) is the de Rham differential, and d∗A(·,w) : C∞(M,T ∗M⊗

C)→ C∞(M) is the formal L2–adjoint of dA(·,w) taken with respect to the Kähler metric g.

It is established in [74, Appendix B] that under the assumptions (i)-(iv), there exist δ > 0

and C > 0 such that for any f ∈ Bδ(∂M) := {f ∈ C2,α(∂M) : ‖f‖C2,α(∂M) < δ}, 0 < α < 1,

the Dirichlet problem for the nonlinear magnetic Schrödinger operator


LA,V u = 0 in M int,

u|∂M = f,

(4.1.3)

has a unique solution u = uf ∈ C2,α(M) satisfying ‖u‖C2,α(M) < Cδ. Here C2,α(M) and

C2,α(∂M) stand for the standard Hölder spaces of functions on M and ∂M , respectively,

and M int = M \ ∂M stands for the interior of M . Associated to (4.1.3), we introduce the
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Dirichlet–to–Neumann map

ΛA,V f = ∂νuf |∂M , f ∈ Bδ(∂M), (4.1.4)

where ν is the unit outer normal to the boundary of M .

The inverse boundary problem for the nonlinear magnetic Schrödinger operator that we are

interested in asks whether the knowledge of the Dirichlet–to–Neumann map ΛA,V determines

the nonlinear magnetic A and electric V potentials in M . Such inverse problems have been

recently studied in [74] in the case of conformally transversally anisotropic manifolds and in

[78] and [86] in the case of partial data in the Euclidean space and on Riemann surfaces,

respectively.

To state our result, following [51], we assume that the manifold M satisfies the following

additional assumptions:

(a) M is holomorphically separable in the sense that if x, y ∈M with x 6= y, there is some

f ∈ O(M) := {f ∈ C∞(M) : f is holomorphic in M int} such that f(x) 6= f(y),

(b) M has local charts given by global holomorphic functions in the sense that for every

p ∈M there exist f1, . . . , fn ∈ O(M) which form a complex coordinate system near p.

As explained in [51], examples of complex manifolds satisfying all of the assumptions above

including (a) and (b) are as follows:

• any compact C∞ subdomain of a Stein manifold, equipped with a Kähler metric,

• any compact C∞ subdomain of a complex submanifold of CN , equipped with a Kähler

metric,
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• any compact C∞ subdomain of a complex coordinate neighborhood on a Kähler man-

ifold.

The main result of this note is as follows.

Theorem 4.1.1. Let M be an n–dimensional compact complex manifold with C∞ boundary,

equipped with a Kähler metric g, satisfying assumptions (a) and (b). Let A(1), A(2) : M×C→

T ∗M ⊗ C and V (1), V (2) : M × C → C be such that the assumptions (i)–(iv) hold. If

ΛA(1),V (1) = ΛA(2),V (2) then A(1) = A(2) and V (1) = V (2) in M × C.

Remark 4.1.2. Theorem 4.1.1 in the case of a semilinear Schrödinger operator, i.e. when

A = 0, was obtained in [87].

Remark 4.1.3. The corresponding inverse problems for the linear Schrödinger operator

−∆g+V0, V0 ∈ C∞(M), as well as for the linear magnetic Schrödinger operator d∗
A0
dA0 +V0,

A0 ∈ C∞(M,T ∗M ⊗C), in the geometric setting of Theorem 4.1.1 are open. Theorem 4.1.1

can be viewed as a manifestation of the phenomenon, discovered in [77], that the presence

of nonlinearity may help to solve inverse problems. We refer to [51] for the solution of the

linearized inverse problem for the linear Schrödinger operator in this geometric setting, and

would like to emphasize that our proof of Theorem 4.1.1 is based crucially on this result.

We also refer to [52], [53], [54] for solutions to inverse boundary problems for the linear

Schrödinger and magnetic Schrödinger operators on Riemann surfaces.

Remark 4.1.4. The known results for the inverse boundary problem for the linear Schrödinger

and magnetic Schrödinger operators on Riemannian manifolds of dimension ≥ 3 with bound-

ary beyond the Euclidean ones, see [115], [98], [70], and real analytic ones, see [82], [81],

[83], all require a certain conformal symmetry of the manifold as well as some additional

assumptions about the injectivity of geodesic ray transforms, see [36], [38], [32], [73]. The

known results for inverse problems for the nonlinear Schrödinger operators L0,V [43], [80],

and nonlinear magnetic Schrödinger operators LA,V [74] still require the same conformal

symmetry of the manifold, while the injectivity of the geodesic transform is no longer needed.
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Note that the need to require a certain conformal symmetry of the manifold in all of the

known results in dimensions n ≥ 3 is to due to the existence of limiting Carleman weights on

such manifolds, see [36], which are crucial for the construction of complex geometric optics

solutions used for solving inverse problems for elliptic PDE since the fundamental work [115].

However, it is shown in [85], [2] that a generic manifold of dimension n ≥ 3 does not admit

limiting Carleman weights.

Remark 4.1.5. As in [51, Theorem 1.1], manifolds considered in Theorem 4.1.1 need not

admit limiting Carleman weights. For example, it was established in [3] that CP 2 with the

Fubini-Study metric g does not admit a limiting Carleman weight near any point. However,

(CP 2, g) is a Kähler manifold, and as explained in [51], compact C∞ subdomains of it provide

examples of manifolds where Theorem 4.1.1 applies.

Remark 4.1.6. In contrast to the inverse boundary problem for the linear magnetic Schrödinger

equation, where one can determine the magnetic potential up to a gauge transformation only,

see for example [98], [70], in Theorem 4.1.1 the unique determination of both nonlinear mag-

netic and electric potentials is achieved. This is due to our assumptions (ii) and (iv) which

lead to the first order linearization of the nonlinear magnetic Schrödinger equation given

by −∆gu = 0 rather than by the linear magnetic Schrödinger equation, see also [74] for a

similar unique determination in the case of conformally transversally anisotropic manifolds.

Let us finally mention that inverse problems for the semilinear Schrödinger operators and for

nonlinear conductivity equations have been investigated intensively recently, see for example

[43], [79], [80], [84], [76], [75], and [30], [64], [29], [28], [93], [109], respectively.

Theorem 4.1.1 is a direct consequence of the main result of [51], combined with some bound-

ary determination results of [87] and of Section 4.3, as well as the higher order linearization

procedure introduced in [77] in the hyperbolic case, and in [43], [80] in the elliptic case. We

refer to [58] where the method of a first order linearization was pioneered in the study of
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inverse problems for nonlinear PDE, and to [10], [31], [112], and [113] where a second order

linearization was successfully exploited. The crucial fact used in the proof of the main result

of [51], indispensable for our Theorem 4.1.1, is that both holomorphic and antiholomorphic

functions are harmonic on Kähler manifolds. The assumptions (a) and (b) in Theorem 4.1.1

are needed as they are used in [51] to construct suitable holomorphic and antiholomorphic

functions by extending the two dimensional arguments of [23] and [53] to the case of higher

dimensional complex manifolds.

The plan of the note is as follows. The proof of Theorem 4.1.1 is given in Section 4.2. Section

4.3 contains the boundary determination result needed in the proof of Theorem 4.1.1.

4.2 Proof of Theorem 4.1.1

First using that d∗A = d∗ − i〈A, ·〉g and (4.1.2), we write the nonlinear magnetic Schödinger

operator LA,V as follows,

LA,V u = d∗
A(·,u)

dA(·,u)u+ V (·, u)

= −∆gu+ d∗(iA(·, u)u)− i〈A(·, u), du〉g + 〈A(·, u), A(·, u)〉gu+ V (·, u),

for u ∈ C∞(M). Here 〈·, ·〉g is the pointwise scalar product in the space of 1-forms induced

by the Riemannian metric g, compatible with the Kähler structure.

Using the mth order linearization of the Dirichlet–to–Neumann map ΛA,V and induction on

m = 2, 3, . . . , we shall show that the coefficients Am−1 and Vm in (4.1.1) can all be recovered

from ΛA,V .

First, let m = 2 and let us proceed to carry out a second order linearization of the Dirichlet–

to–Neumann map. To that end, let f1, f2 ∈ C∞(∂M) and let uj = uj(x, ε) ∈ C2,α(M) be
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the unique small solution of the following Dirichlet problem,


−∆guj + id∗(

∑∞
k=1A

(j)
k (x)

ukj
k!
uj)− i〈

∑∞
k=1A

(j)
k (x)

ukj
k!
, duj〉g

+〈
∑∞

k=1A
(j)
k (x)

ukj
k!
,
∑∞

k=1 A
(j)
k (x)

ukj
k!
〉guj +

∑∞
k=2 V

(j)
k (x)

ukj
k!

= 0 in M int,

uj = ε1f1 + ε2f2 on ∂M,

(4.2.1)

for j = 1, 2. It was established in [74, Appendix B] that for all |ε| sufficiently small, the solu-

tion uj(·, ε) depends holomorphically on ε = (ε1, ε2) ∈ neigh(0,C2). Applying the operator

∂εl |ε=0, l = 1, 2, to (4.2.1) and using that uj(x, 0) = 0, we get


−∆gv

(l)
j = 0 in M int,

v
(l)
j = fl on ∂M,

where v
(l)
j = ∂εluj|ε=0. By the uniqueness and the elliptic regularity, it follows that v(l) :=

v
(l)
1 = v

(l)
2 ∈ C∞(M), l = 1, 2. Applying ∂ε1∂ε2|ε=0 to (4.2.1), we obtain the second order

linearization,


−∆gwj + 2id∗(A

(j)
1 v(1)v2)− i〈A(j)

1 , d(v(1)v(2))〉g + V
(j)

2 v(1)v(2) = 0 in M int,

wj = 0 on ∂M,

(4.2.2)

where wj = ∂ε1∂ε2uj|ε=0, j = 1, 2. Using that

d∗(Bv) = (d∗B)v − 〈B, dv〉g, (4.2.3)

for any B ∈ C∞(M,T ∗M ⊗ C) and v ∈ C∞(M), (4.2.2) implies that


−∆gwj − 3i〈A(j)

1 , d(v(1)v(2))〉g + (2id∗(A
(j)
1 ) + V

(j)
2 )v(1)v(2) = 0 in M int,

wj = 0 on ∂M,

(4.2.4)
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j = 1, 2. The equality ΛA(1),V (1)(ε1f1 + ε2f2) = ΛA(2),V (2)(ε1f1 + ε2f2) yields that ∂νu1|∂M =

∂νu2|∂M , and hence, ∂νw1|∂M = ∂νw2|∂M . Multiplying the difference of two equations in

(4.2.4) by a harmonic function v(3) ∈ C∞(M), integrating over M and using Green’s formula,

we obtain that

∫
M

(
3i〈A, d(v(1)v(2))〉gv(3) − (2id∗(A) + V )v(1)v(2)v(3)

)
dVg = 0, (4.2.5)

valid for all harmonic functions v(l) ∈ C∞(M), l = 1, 2, 3. Here A = A
(1)
1 − A

(2)
1 and

V = V
(1)

2 − V (2)
2 . Interchanging v(3) and v(1) in (4.2.5), we also have

∫
M

(
3i〈A, d(v(3)v(2))〉gv(1) − (2id∗(A) + V )v(1)v(2)v(3)

)
dVg = 0. (4.2.6)

Subtracting (4.2.6) from (4.2.5) and letting v(3) = 1, we get

∫
M

〈A, dv(1)〉gv(2)dVg = 0, (4.2.7)

for all harmonic functions v(1), v(2) ∈ C∞(M). Applying Proposition 4.3.1 to (4.2.7), we

conclude that A|∂M = 0. Using this together with Stokes’ formula,

∫
M

〈dw, η〉gdVg =

∫
M

wd∗ηdVg +

∫
∂M

ω(nη), ω ∈ C∞(M), η ∈ C∞(M,T ∗M ⊗ C),

where the (2n− 1)-form nη on the boundary is the normal trace of η, see [108, Proposition

2.1.2], we obtain from (4.2.5) that

∫
M

(
3id∗(Av(3))− (2id∗(A) + V )v(3)

)
v(1)v(2)dVg = 0, (4.2.8)

for all harmonic functions v(l) ∈ C∞(M), l = 1, 2, 3. Applying [51, Theorem 1.1] together
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with the boundary determination result of [87, Proposition 3.1] to (4.2.8), we get

3id∗(Av(3))− (2id∗(A) + V )v(3) = 0, (4.2.9)

for every harmonic function v(3) ∈ C∞(M). Using (4.2.3), we obtain from (4.2.9) that

(id∗(A)− V )v(3) − 3i〈A, dv(3)〉g = 0, (4.2.10)

for every harmonic function v(3) ∈ C∞(M). Letting v(3) = 1 in (4.2.10), we get

id∗(A)− V = 0, (4.2.11)

and therefore,

〈A, dv(3)〉g = 0, (4.2.12)

for every harmonic function v(3) ∈ C∞(M). Let p ∈M int and by assumption (b), there exist

f1, . . . , fn ∈ O(M) which form a complex coordinate system near p. Hence, dfj(p), dfj(p) is

a basis for T ∗pM ⊗ C. Since on a Kähler manifold the Laplacian on functions satisfies

∆g = d∗d = 2∂∗∂ = 2∂
∗
∂,

see [51, Lemma 2.1], [92, Theorem 8.6, p. 45], we have that all functions f1, . . . , fn as well

as f1, . . . , fn are harmonic, and therefore, it follows from (4.2.12) that

〈A, dfj〉g(p) = 0, 〈A, dfj〉g(p) = 0.

Hence, A = 0, and therefore, A
(1)
1 = A

(2)
1 in M . It follows from (4.2.11) that V = 0, and

therefore, V
(1)

2 = V
(2)

2 in M .
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Let m ≥ 3 and let us assume that

A
(1)
k = A

(2)
k , k = 1, . . . ,m− 2, V

(1)
k = V

(2)
k , k = 2, . . . ,m− 1. (4.2.13)

To prove that A
(1)
m−1 = A

(2)
m−1 and V

(1)
m = V

(2)
m , we shall use the mth order linearization of

the Dirichlet–to–Neumann map. Such an mth order linearization with m ≥ 3 is performed

in [74], and combining with (4.2.13), it leads to the following integral identity,

∫
M

(
(m+ 1)i〈A, d(v(1) · · · v(m))〉gv(m+1)− (mid∗(A) + V )v(1) · · · v(m+1)

)
dVg = 0, (4.2.14)

for all harmonic functions v(l) ∈ C∞(M), l = 1, . . . ,m + 1, see [74, Section 5]. Here A =

A
(1)
m−1 − A

(2)
m−1 and V = V

(1)
m − V (2)

m . Letting v(1) = · · · = v(m−2) = 1 in (4.2.14) and arguing

as in the case m = 2, we complete the proof of Theorem 4.1.1.

Remark 4.2.1. Thanks to the density of products of two harmonic functions in the geometric

setting of Theorem 4.1.1 established in [51], we recover the nonlinear magnetic and electric

potentials of the general form (4.1.1) here. On the other hand, in the case of conformally

transversally anisotropic manifolds of real dimension ≥ 3, only the density of products of four

harmonic functions is available, see [43], [80], [74], and therefore, the nonlinear magnetic

and electric potentials of the form (4.1.1) with k ≥ 2 and k ≥ 3, respectively, were determined

from the knowledge of the Dirichlet–to–Neumann map in [74].

4.3 Boundary determination of a 1-form on a Rieman-

nian manifold

When proving Theorem 4.1.1, we need the following essentially known boundary deter-

mination result on a general compact Riemannian manifold with boundary, see [22], [72,
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Appendix A], [74, Appendix C], [86] for similar results. We present a proof for completeness

and convenience of the reader.

Proposition 4.3.1. Let (M, g) be a compact smooth Riemannian manifold of dimension

n ≥ 2 with smooth boundary. If A ∈ C(M,T ∗M ⊗ C) satisfies

∫
M

〈A, du〉gudVg = 0, (4.3.1)

for every harmonic function u ∈ C∞(M), then A|∂M = 0.

Proof. In order to show that A|∂M = 0, we shall construct a suitable harmonic function

u ∈ C∞(M) to be used in the integral identity (4.3.1). When doing so, we shall use an

explicit family of functions vλ, constructed in [20], [22], whose boundary values have a

highly oscillatory behavior as λ→ 0, while becoming increasingly concentrated near a given

point on the boundary of M . We let x0 ∈ ∂M and we shall work in the boundary normal

coordinates centered at x0 so that in these coordinates, x0 = 0, the boundary ∂M is given

by {xn = 0}, and M int is given by {xn > 0}. We have Tx0∂M = Rn−1, equipped with the

Euclidean metric. The unit tangent vector τ is then given by τ = (τ ′, 0) where τ ′ ∈ Rn−1,

|τ ′| = 1. Associated to the tangent vector τ ′ is the covector
∑n−1

β=1 gαβ(0)τ ′β = τ ′α ∈ T ∗x0
∂M .

Letting 1
3
≤ α ≤ 1

2
and following [22], see also [41, Appendix A], we set

vλ(x) = λ−
α(n−1)

2
− 1

2η

(
x

λα

)
e
i
λ

(τ ′·x′+ixn), 0 < λ� 1,

where η ∈ C∞0 (Rn;R) is such that supp (η) is in a small neighborhood of 0, and

∫
Rn−1

η(x′, 0)2dx′ = 1.

Here τ ′ is viewed as a covector. Thus, we have vλ ∈ C∞(M) with supp (vλ) in O(λα)
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neighborhood of x0 = 0. A direct computation shows that

‖vλ‖L2(M) = O(1), (4.3.2)

as λ→ 0, see also [41, Appendix A, (A.8)]. Furthermore, we have

‖dvλ‖L2(M) = O(λ−1), (4.3.3)

as λ→ 0, see [74, Appendix C, bound (C.42)].

Following [22], we set

u = vλ + r, (4.3.4)

where r ∈ H1
0 (M int) is the unique solution to the Dirichlet problem,


−∆gr = ∆gvλ in M int,

r|∂M = 0.

(4.3.5)

Boundary elliptic regularity implies r ∈ C∞(M), and hence, u ∈ C∞(M). Following [41,

Appendix A], we fix α = 1/3. The following bound, proved in [41, Appendix A, bound

(A.15)], will be needed here,

‖r‖L2(M) = O(λ1/12), (4.3.6)

as λ → 0. The proof of (4.3.6) relies on elliptic estimates for the Dirichlet problem for the

Laplacian in Sobolev spaces of low regularity. We shall also need the following rough bound

‖r‖H1(M int) = O(λ−1/3), (4.3.7)
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as λ→ 0, established in [74, Appendix C, bound (C.41)].

Substituting u into (4.3.1), and multiplying (4.3.1) by λ, we get

0 = λ

∫
M

〈A, dvλ + dr〉g(vλ + r)dVg = λ(I1 + I2 + I3), (4.3.8)

where

I1 =

∫
M

〈A, dvλ〉gvλdVg, I2 =

∫
M

〈A, dr〉g(vλ + r)dVg, I3 =

∫
M

〈A, dvλ〉grdVg.

It was computed in [74, Appendix C], see bounds (C.44) and (C.45) there, that

lim
λ→0

λI1 =
i

2
〈A(0), (τ ′, i)〉. (4.3.9)

It follows from (4.3.7), (4.3.2), and (4.3.6) that

λ|I2| ≤ O(λ)‖dr‖L2(M)‖vλ + r‖L2(M) = O(λ2/3). (4.3.10)

Using (4.3.3) and (4.3.6), we get

λ|I3| ≤ O(λ)‖dvλ‖L2(M)‖r‖L2(M) = O(λ1/12). (4.3.11)

Passing to the limit λ → 0 in (4.3.8) and using (4.3.9), (4.3.10), (4.3.11), we obtain that

〈A(0), (τ ′, i)〉 = 0, and arguing as in [74, Appendix C], we get A|∂M = 0. This completes the

proof of Proposition 4.3.1.
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