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1 Introduction

Few decision makers can rely on objective probabilities when they make decisions

over an uncertain future. A decision maker’s confidence in a probabilistic descrip-

tion of the future generally varies between scenarios and over different aspects of a

scenario under evaluation. For example, the probability of an earthquake in a given

region might be better assessed than that of a terroristic attack (or the probability

of a nuclear meltdown resulting from either of these). Returns to investment in an

Arab or Asian country might be governed by a confidently known distribution given

a particular political situation. However, the stability of the system is often a less

confidently known guess. Forecasting droughts for a highly perturbed climate results

in a less reliable probability distribution than a similar forecast in a scenario with a

stringent mitigation policy. This paper derives an evaluation framework that permits

the decision maker to take into consideration the confidence in probability distribu-

tions employed to describe the future. The underlying axiomatic framework stays as

close to an intertemporal version of the wide-spread von Neumann & Morgenstern

(1944) setting as possible, making the framework accessible to a general audience.

The present representation gives rise to a decision support framework for economic

agents and policy makers who want to employ probabilities for forecasting the future

and, at the same time, take into account differences in the confidence in or character

of the uncertainties they are facing. The underlying axioms are selected to satisfy

common rationality constraints and to be normatively attractive. In consequence,

the present framework distinguishes itself from the recent ambiguity literature by

taking probabilities and classifications of probabilities as given inputs for the decision

process. The resulting representation shows how this information translates into a

comprehensive evaluation of scenarios.1 In some environments, the decision maker

characterizes his probabilistic beliefs and his confidence in these beliefs himself. In

other environments, the decision maker relies on distributions derived by scientists.

He then either adds his own evaluation of confidence, or asks the scientists to supply

this additional dimension of uncertainty. For example, the recent report by the In-

ternational Panel on Climate Change follows the latter procedure by asking the lead

authors of the different assessments to provide not just probabilistic estimates of the

1In contrast, the behaviorally motivated ambiguity literature tries to reverse engineer the exis-
tence of probabilities or other uncertainty measurements given a sufficiently rich set of decisions.
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uncertainties, but to classify them at the same time as one of three different cate-

gories of increasing confidence or reliability (IPCC 2001, Box TS.1, p 22). Currently

these distinctions end in the science part of the report and are not integrated into the

economic evaluation. The present framework can be applied to cost benefit analysis

or integrated assessment under uncertainty in order to close this gap.

The motivation for the present paper is to construct a decision support framework

that satisfies normative criteria for decision making under uncertainty. However, the

resulting representation generalizes Klibanoff, Marinacci & Mukerji’s (2009) model of

smooth ambiguity aversion, which is motivated from a behavioral viewpoint. There-

fore, the paper also speaks to the behavioral literature on decision making under am-

biguity. I briefly discuss behaviorally plausible attitudes with respect to confidence

or subjectivity of beliefs that are ruled out by the rationality constraints underlying

the current framework. The current paper makes no distinction between indexing

lotteries by confidence or subjectivity. While the word “confidence” might better suit

the normative foundation of the paper, the close relation to Klibanoff et al.’s (2009)

distinction between objective and subjective lotteries makes me use the subjectiv-

ity terminology for large parts of the discussion. The subjectivity terminology here

derives from the concept of probabilities representing beliefs, which only in special

cases are informed by the objectivist’s definition of a probability distribution based

on frequency or symmetry reasoning.

The idea of enriching probabilistic beliefs by a degree of confidence goes back to

Ellsberg’s (1961) suggestion for resolving the paradox today carrying his name. It

basically states that (a good fraction of) people prefer to bet on known as opposed

to unknown probabilities. Over the last two decades, several strands of literature

on decision making under uncertainty evolved around this paradox. One of these

approaches abandons the concept of probabilities and replaces it with a non-additive

set function called a capacity. In the resulting representations “expected values”

are formed using the so called Choquet-integral, which resulted in the name Cho-

quet expected utility (e.g. Schmeidler 1989, Chateauneuf, Grant & Eichberger 2007).

Another approach assigns sets of probabilities to different scenarios and constructs

decision criteria on these sets, e.g. maximizing the minimal expected utility, (e.g.

Gilboa & Schmeidler 1989, Ghirardato, Maccheroni & Marinacci 2004, Maccheroni,

Marinacci & Rustichini 2006). The latter approach is often referred to as a “multi-

prior” approach. Various equivalence results between Choquet expected utility and
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the multiprior approach have been shown. My paper relates most closely to a class

of models that works with second order probabilities to capture non-risk uncertainty,

including Segal (1990), Klibanoff, Marinacci & Mukerji (2005), Seo (2009), Ergin

& Gul (2009), and Klibanoff et al. (2009). For certain consumption paths my rep-

resentation coincides with the intertemporally additive standard model. A utility

function ut evaluates outcomes in every period (and state of the world) and measures

intertemporal substitutability. The aggregation over (various layers of) uncertainty is

carried out by a generalized mean f−1
t [Eft(·)] (Hardy, Littlewood & Polya 1964). The

concavity of the function f captures uncertainty attitude in the sense of intertempo-

ral risk aversion (Traeger 2007). This aversion function ft depends on the degree of

subjectivity of the lottery.

The representation closest to the current paper is Klibanoff et al. (2009). The

authors distinguish between objective versus subjective lotteries, which corresponds

to a binary measure of confidence or subjectivity within my framework. In Klibanoff

et al.’s (2009) model a subjective lottery is by definition a second stage lottery over

first stage objective lotteries. In contrast, this paper makes the degree of subjectiv-

ity an explicit component of the uncertainty characterization and detaches it from a

hierarchical structure of probabilities. Klibanoff et al. (2009) implicitly impose that

objective lotteries are evaluated intertemporally risk neutral, which means that risk

aversion to objective risk is only driven by aversion to intertemporal consumption

fluctuations. There is no intrinsic aversion to risk. Formally, this assumption trans-

lates into the use of expected values rather than a generalized mean to aggregate over

objective risk. In contrast, risk aversion to subjective lotteries incorporates intrin-

sic risk aversion and uses the generalized mean for evaluation. The authors identify

the curvature of the corresponding weight-function with smooth ambiguity attitude.

The generalized framework of this paper incorporates both, intrinsic risk aversion

to objective as well as to subjective risk. Relating the two gives a better under-

standing and a more precise definition of the measure of smooth ambiguity aversion.

Moreover, the current setting facilitates a three-fold disentanglement of dimensions

of preference. One way to span these dimensions is in terms of intertemporal substi-

tutability, aversion to objective risk, and ambiguity aversion. Alternative coordinates

for these dimensions are offered. Finally, the present framework extends the concept

of smooth ambiguity aversion to situations with an arbitrary number of subjectivity

or confidence labels. Here, a generalized form of ambiguity aversion translates into
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an aversion to the degree of subjectivity of (or the lack of confidence in) probabilis-

tic beliefs. In research paralleling the present paper, Hayashi & Miao (2011) extend

Klibanoff et al.’s (2009) setting in a similar direction. The authors adopt a more tech-

nical setting using an Anscombe & Aumann (1963) version of Klibanoff et al. (2009)

and an extension of Seo (2009). Similar to the present paper, the authors develop

a framework that, at least in principle, permits to distinguish between intertempo-

ral substitution, risk aversion, and ambiguity aversion. However, the function whose

curvature the authors identify with risk aversion is only unique up to increasing

transformations. The only function that is not subject to this indeterminacy is their

extended definition of smooth ambiguity aversion. This measure coincides with my

suggested measure of smooth ambiguity aversion, which I generalize to the notion

of aversion to the subjectivity of belief. Hayashi & Miao (2011) stick to the more

limiting hierarchical structure of subjective over objective lotteries discussed already

for the setting of Klibanoff et al. (2009). Both, Klibanoff et al. (2009) and Hayashi

& Miao (2011), go a step further than the present paper in discussing learning and

relating the paper to the standard Bayesian framework.

Section 2 introduces the setting of the paper. Section 3 summarizes the axioms un-

derlying the representation. Section 4 states the representation and demonstrates how

to evaluate a simple example. Section 5 discusses the notions of smooth ambiguity

aversion and aversion to the lack of confidence in beliefs as well as the disentanglement

of the various dimensions of preference. Section 6 analyzes behavioral implications

and sketches normative applications. Section 7 concludes. Proofs are gathered in the

appendix.

2 The Setting

I first provide a graphical illustration of the uncertainty structure underlying the

model and and explain the basic concepts necessary to understand the axioms and

the representation. Then I formalize the general setting.

2.1 Graphical illustration

In every period uncertainty is described by an uncertainty tree that compasses an

arbitrary number of individual lotteries. The left hand side of Figure 1 depicts such
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Figure 1: Example of two decision trees, pt ∈ Z3(X∗ × Pt+1) and prt ∈ Z2(X∗ × Pt+1), depicting
uncertainty resolving in period t. Each uncertainty node is labeled with the degree of subjectivity of
the corresponding lottery. The leaves of the trees are omitted and would consist of differing elements
(xt, pt+1) ∈ X∗×Pt+1. Lottery prt is obtained from lottery pt by collapsing the root lottery with the
subsequent layer of uncertainty sharing the same degree of subjectivity. A decision maker satisfying
axiom A1 is indifferent between the two depicted decision trees.

an uncertainty tree with three layers of uncertainty. Each node of the tree repre-

sents a (sub -) lottery. Each of these (sub -) lotteries is indexed with a label s ∈ S

representing the confidence in (or the subjectivity of) the corresponding lottery. Ele-

ments of S can specify verbal descriptions of relevant characteristics surrounding the

derivation of the probabilities like “careful econometric analysis”, “high frequency

observation”, “expert opinion”, “causality poorly understood”, “wild guess”, “princi-

ple of insufficient reason”, or “maximum entropy”. Alternatively, the decision maker

can employ labels such as “confident”, “less confident”, “not at all confident” or he

can employ the labels “unpredictability”, “structural uncertainty”, and “value uncer-

tainty” suggested by the International Panel on Climate Change (IPCC 2001, Box

TS.1, p 22). The main representation theorem in section 4 does not assume that the

set S is ordered. Only later in section 5 do I assume the existence of an order relation

on S (such as “more confident than”). The branches of the uncertainty trees do not

have to coincide in length. For example, a flip of a coin can decide whether an agent

consumes a certain amount, or enters another lottery. Figure 1 omits the leaves of

the uncertainty tree. The leaves specify the consumption payoff xt of the decision

maker in period t as well as the uncertainty he faces at the beginning of the next

period pt+1.

I define a function ŝ(·) that returns the subjectivity label of the root for every

lottery pt. In Figure 1 it is ŝ(pt) = ŝ(prt ) = s. I refer to the degree of subjectivity ŝ(pt)

of the root lottery as the degree of subjectivity of lottery pt. Similarly, a function n̂(·)

5



Subjective Risk, Confidence, and Ambiguity

s

s
���
HHH

�
��

Q
QQ

1
2

1
2

2
5

3
5

���
PPP

���
XXX

s′′′

s′′

s′
1
2

1
2

4
5

1
5

1

���
HHHs′′

1
3

2
3

s �
�
�
�
�

T
T
T
T
T

���

HHH

1
6

6
15

1
6

4
15

s′

s′′

���
XXX

���
HHH

1
2

1
2

1
3

2
3

s′′′

s′′���
PPP

4
5

1
5

1

pt :

p′t :

pt ⊕
1
3
s p′t :

Figure 2 depicts the decision tree pt ⊕
1

3

s p′t ∈ P s
t that results from mixing the two simple lotteries

pt, p
′

t ∈ P s
t with degree of subjectivity s.

returns the uncertainty layer of the root of a lottery pt or the depth of the representing

uncertainty tree in period t. The lotteries in Figure 1 yield n̂(pt) = 3 and n̂(prt ) = 2.

I refer to the number n̂(pt) of a lottery pt as its rank. Lottery prt in Figure 1 is a rank

2 lottery over two lotteries of rank 1 and two certain outcomes of rank 0 (which take

the form (xt, pt+1)). In general, a lottery of rank n can be a lottery over a continuum

of lotteries with rank smaller than n.

The first two uncertainty layers of lottery pt on the left hand side of Figure 1 share

the same degree of subjectivity. Given both uncertainty layers are of the same type, I

define a reduction of these two uncertainty layers into a single layer by multiplying the

corresponding probabilities. The resulting lottery prt is depicted on the right hand

side of Figure 1, where the superindex r denotes the reduction. Finally, Figure 2

shows a mixing of two lotteries pt and p′t. The mixing operator ⊕
1
3
s mixes two

lotteries with degree of subjectivity s assigning probability 1
3
to the first lottery and

probability 1 − 1
3
to the second lottery. Because the operator mixes both lotteries

within the same uncertainty layer, both lotteries have to coincide in the degree of

subjectivity (of their root lottery). In a remark at the end of the next section, I

also introduce an alternative operator ⊙α
s that mixes two lotteries of arbitrary, and

possibly differing, degree of subjectivity on the next higher uncertainty level. Here,

α labels again the probability weight of the first lottery, while s labels the degree

of subjectivity of the mixed lottery (whose rank is one more than that of the higher

ranked lottery entering the mixture).

6
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2.2 The technical setting

Time is discrete with a planning horizon T ∈ IN. In the usual abuse of notation T

denotes at the same time the set {0, . . . , T} . Elements x of a connected compact

metric space X∗ describe outcomes in any period t ∈ T . These elements represent

consumption levels or a collection of general welfare relevant characteristics. To avoid

repetition, I introduce several definitions using a generic compact metric space X

instead ofX∗. The Borel σ-algebra onX is denotedB(X). Let S be a finite index set.

The decision maker employs the index s ∈ S to distinguish between lotteries (denoting

general uncertain situations) that differ in terms of subjectivity of or confidence in the

probabilistic belief. For every s ∈ S, I denote by ∆s(X) a space of Borel probability

measures on X that describe a lottery with degree of subjectivity s. Formally, these

different lottery spaces are a family
{(

∆(X), s
)}

s∈S
. Each space ∆s(X) is equipped

with the Prohorov metric giving rise to the topology of weak convergence. I introduce

an additional element s0 6∈ S and define S̄ = S∪s0. The element s0 serves the purpose

of defining under abuse of notation ∆s0(X) = X, making the space X part of the

family {∆s0(X)}s∈S̄. I introduce higher order lotteries inductively over the parameter

n ∈ N = {0, 1, . . . , N}, which defines the maximal depth of the uncertainty tree

within a period.2 I start by setting Z0(X) = Y 0
s0(X) = X. In the first induction

step, I define for n > 0 the lottery spaces Y n
s (X) = ∆s(Z

n−1(X)) for all s ∈ S̄.

These spaces describe the set of uncertainty trees of maximal depth n with a root

lottery of subjectivity s. In the second induction step, I define the general choice

space Zn(X) = ∪s∈S̄Y
n
s (X), which collects uncertainty trees with different degrees

of subjectivity in the root. The inclusion of s0 in the (disjoint) union allows the

uncertainty tree to have branches of differing length. The spaces Zn(X) are equipped

with the (disjoint) union topology and, thus, compact. In a static setting the decision

maker’s choice objects would be described as elements of ZN(X∗). These elements

represent arbitrary concatenations of lotteries with differing degrees of subjectivity

with a maximal uncertainty tree depth of N . Figure 1 depicts two examples of an

uncertainty structure contained in Z3(·).

2Decision nodes would be introduced at any point in the uncertainty trees the same way as
done in Kreps & Porteus (1978), yielding a decision tree. Optimal choices in the framework always
correspond to the best (sub-) tree and there is no explicit preference for flexibility as e.g. in Kreps
(1979). Therefore, no additional insights derive from explicitly introducing decision nodes and the
more complicated notation would be obstructive. The application of the stated evaluation functional
in a dynamic programming framework with decision making in every period is immediate.
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I construct the general choice space in the intertemporal setting recursively. In

the last period, choices are pT ∈ PT = ZN(X∗). Preceding choice spaces are defined

by Pt−1 = ZN (X∗ × Pt) for all t ∈ {1, . . . , T}, where X∗ × Pt is equipped with the

product topology. Thus, at the beginning of every period uncertainty is described as

a composition of lotteries with differing degrees of subjectivity over current outcomes

and over the uncertainty that describes the decision maker’s future. I call the choice

object pt ∈ Pt in period t a generalized temporal lottery. They generalize Kreps &

Porteus’s (1978) concept of a temporal lottery. I define the rank n of a lottery pt ∈ Pt

by the function n̂ : ∪t∈TPt → N with

n̂(pt) = min
{

n ∈ N | ∃ s ∈ S̄, t ∈ T s.th. pt ∈ Y n
s (X

∗ × Pt+1)
}

The rank captures the level of concatenation of a lottery, which corresponds to the

depth of the representing uncertainty tree (within period t). I define the function

ŝ : ∪t∈TPt → S̄ by

ŝ(pt) = s iff pt ∈ Y n̂(pt)
s (X∗ × Pt+1) .

It maps a generalized temporal lottery into the degree of subjectivity of its root

lottery and assigns s0 if there is no uncertainty resolved in period t. The space

P s
t = {pt ∈ Pt |ŝ(pt) ∈ {s, s0}} denotes the space of all period t lotteries in which the

root lottery has a degree of subjectivity s (as in Figure 1) and includes the certain

outcomes.

I denote the sigma algebra of events evaluated by lotteries pt ∈ Pt of rank n̂(pt) = n

by B
n
t = B (Zn−1(X∗ × Pt+1)) , 0 < n ≤ N . For a set B and 0 < n ≤ N I denote

the set’s restriction to events measurable by lotteries of rank n by Bn
t = B ∩B

n
t . If

pt = (xt, pt+1) ∈ Z0(X∗ × Pt+1), i.e. no uncertainty resolves in period t, I introduce

the notation

pt(B
0
t ) = (xt, pt+1)(B

0
t ) =

{

1 if (xt, pt+1) ∈ B

0 if (xt, pt+1) 6∈ B .

I use these restrictions Bn
t of the event set for composing lotteries of differing rank.

The following composition of two lotteries lies at the core of the independence axiom.

It composes two lotteries sharing the same degree of subjectivity. For any s ∈ S,

pt, p
′
t ∈ P s

t , α ∈ [0, 1] and with n∗ = max{n̂(pt), n̂(p
′
t), 1}, I define a probability α

8
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mixture by the operation ⊕α
s : P s

t × P s
t → P s

t that maps (pt, p
′
t) 7→ pt ⊕

α
s p′t ∈ Y n∗

s

defined by

pt ⊕
α
s p′t

(

B
)

= α pt

(

B
n̂(pt)
t

)

+ (1− α) p′t

(

B
n̂(p′t)
t

)

for all B ∈ B
n∗

t . Note that the lottery resulting from this mixture lives in the same

space as the higher ranked lottery of pt and p′t. An example of such a mixture is

depicted in Figure 2.

Whenever the root lottery pt ∈ Pt shares the same degree of subjectivity with the

subsequent layer of uncertainty (as in the left tree in Figure 1), I define a reduced

lottery that collapses these layers sharing the same degree of subjectivity into a single

layer. For any lottery pt ∈ ∆s (Y
n
s (X

∗ × Pt+1)) of rank n + 1 I define the reduced

lottery prt ∈ Y n
s (X

∗ × Pt+1) of rank n by

prt (B) =
∫

Y n
s (X∗×Pt+1)

p̃t(B) dpt(p̃t) (1)

for all B ∈ B
n
t . An example is given in Figure 1. The lottery prt collapses the root

lottery and the subsequent layer of uncertainty in lottery pt, both sharing the same

degree of subjectivity, into a single layer of uncertainty.

The Cartesian product X = X∗ T+1 ⊂ P0 characterizes the set of all certain

consumption paths faced in the present. A consumption paths x ∈ X is written

x = (x0, ..., xT ). Given x ∈ X, I define (x−i, x) = (x0, ..., xi−1, x, xi+1, ..., xT ) ∈ X

as the consumption path that coincides with x in all but the ith period, in which it

yields outcome x. I denote the set of certain consumption paths faced in period t by

X
t = X∗ T−t+1 ⊂ Pt. In every period t ∈ T the decision maker’s preferences �t are a

binary relation on Pt.

Further Remarks: The operator ⊕α
s mixes same degree of subjectivity lotteries

within a given uncertainty layer (which is given by the lottery with the higher rank).

An alternative composition mixes two arbitrary lotteries on an elevated level. For

defining this alternative composition, I denote lotteries in P s
t that are degenerate in

the root by the indicator function 11spt , which is characterized by

11spt(B) =

{

1 if pt ∈ B

0 if pt 6∈ B

9
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for all B ∈ B
N
t . Note that, in principle, the lotteries pt, 11

s
pt
, and 11s

′

pt
are different

for s 6= s′ (the axioms will imply that all three are evaluated the same). For any

s ∈ S, α ∈ [0, 1], pt, p
′
t ∈ Pt, and with n∗ = max{n̂(pt), n̂(p

′
t)} + 1 ≤ N , I define

an elevating probability α mixture by the operation ⊙α
s : Pt × Pt → P s

t that maps

(pt, p
′
t) 7→ pt ⊙

α
s p′t ∈ Y n∗

s defined by

pt ⊙
α
s p′t(B) = α11spt(B) + (1− α)11sp′t(B) (2)

for all B ∈ B
n∗

t .

If both lotteries pt and p′t share the same degree of subjectivity, it stands to reason

that a decision maker is indifferent whether probabilities are manipulated at the same

lottery level or whether the manipulation takes place at an elevated level. Such an

assumption corresponds to the statement

pt ⊙
α
s p′t ∼t pt ⊕

α
s p′t for all pt, p

′
t ∈ P s

t with n̂(pt), n̂(p
′
t) < N . (3)

Indifference in equation (3) is a special case of an axiom requiring indifference to the

reduction of same degree of subjectivity lotteries introduced in the next section.

3 Axioms

The first axiom makes the decision maker indifferent to the reduction of same de-

gree of subjectivity lotteries. Using the notation of a reduced lottery introduced in

equation (1) the assumption is

A1 (indifference to reduction of lotteries with same degree of subjectivity)

For all t ∈ T , s ∈ S, n < N , pt ∈ ∆s (Y
n
s (X

∗ × Pt+1)): pt ∼t p
r
t .

A decision maker who satisfies axiom A1 is indifferent between the two lotteries

depicted in Figure 1. Note that the literature mentioned in the introduction that em-

ploys second order probabilities employs the uncertainty layer in order to distinguish

between objective and subjective lotteries. In these papers, uncertainty attitude is

tied to the layer and layers cannot be reduced. Instead, I tie the difference in un-

certainty attitude directly to subjectivity and confidence as opposed to the level or

order in which uncertainty strikes the agent. This way I can impose axiom A1 (and

satisfy equation 3) without losing the desired additional dimension of uncertainty.

10
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The following three axioms largely replicate the standard von Neumann & Mor-

genstern (1944) axioms for the compact metric space setting (e.g. Grandmont 1972).

A2 (weak order) For all t ∈ T preferences �t are transitive and complete, i.e.:

− transitive: For all pt, p
′
t, p

′′
t ∈ Pt : pt � p′t and p′t � p′′t ⇒ pt � p′′t

− complete: For all pt, p
′
t ∈ Pt : pt � p′t or p

′
t � pt .

A3 (independence) For all s ∈ S, α ∈ [0, 1], and t ∈ T :

For all pt, p
′
t, p

′′
t ∈ P s

t : pt �t p
′
t ⇒ pt ⊕

α
s p′′t �t p′t ⊕

α
s p′′t .

A4 (continuity) For all t ∈ T , for all pt∈Pt :

{p′t∈Pt : p
′
t � pt} and {p′t∈Pt : pt � p′t} are closed in Pt .

The independence axiom is the only axiom that is slightly modified. I could call

it “independence with respect to same degree of subjectivity mixing”. It is mostly

a technical assumption to require the same degree of subjectivity for the lotteries

pt, p
′
t, p

′′
t ∈ P s

t and the ⊕α
s operator. This assumption is necessary to permit a mean-

ingful mixing at a given uncertainty layer. The fact that mixing takes place only for

lotteries with coinciding degrees of subjectivity and within the uncertainty layer of

the higher ranked lottery is further discussed in the remark at the end of this section.

The remark also discuss an alternative independence axiom that mixes lotteries of

differing degrees of subjectivity at a higher uncertainty level.

I add additive separability on certain consumption paths in order to replicate the

predominant framework for certain intertemporal choice. I employ the axiomatization

of Wakker (1988).3

A5 (certainty separability)

i) For all x, x′ ∈ X, x, x′ ∈ X∗ and t ∈ T :

(x−t, x) �1 (x
′
−t, x) ⇔ (x−t, x

′) �1 (x
′
−t, x

′)

ii) If T = 1 additionally: For all xt, x
′
t, x

′′
t ∈ X∗, t ∈ {0, 1}

(x0, x1) ∼1 (x
′
0, x

′′
1) ∧ (x′

0, x
′
1) ∼1 (x

′′
0, x1) ⇒ (x0, x

′
1) ∼1 (x

′′
0, x

′′
1) .

3Other axiomatizations of additive separability include Koopmans (1960), Krantz, Luce, Suppes
& Tversky (1971), Jaffray (1974a), Jaffray (1974b), Radner (1982), and Fishburn (1992).
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Wakker (1988) calls part i) of the axiom coordinate independence. It requires that

the choice between two consumption paths does not depend on period t consumption,

whenever the latter coincides for both paths. Part ii) is known as the Thomsen

condition. It is required only if the model is limited to two periods.4 Preferences in

different periods are related by the following consistency assumption adapted from

Kreps & Porteus (1978).

A6 (time consistency) For all t ∈ {0, ..., T − 1}:

(xt, pt+1) �t (xt, p
′
t+1) ⇔ pt+1 �t+1 p

′
t+1 ∀ xt ∈ X∗, pt+1, p

′
t+1 ∈ Pt+1 .

The axiom is a requirement for choosing between two consumption plans in period t,

both of which are degenerate and yield a coinciding outcome in the respective period.

For these choice situations, axiom A6 demands that in period t, the decision maker

prefers the plan that gives rise to the lottery that is preferred in period t+ 1.

Further Remarks: I pointed out that the operator ⊕α
s and, thus, the independence

axiom A3, mixes same degree of subjectivity lotteries within the root level of the

higher ranked lottery. In the remark of the preceding section, I defined an alternative

mixture composition ⊙α
s where the mixture of two lotteries happens at an elevated

level, incrementing the rank. An alternative to axiom A3 is the following axiom

A3’ (elevating independence) For all s ∈ S, α ∈ [0, 1], t ∈ T , and pt, p
′
t, p

′′
t ∈ Pt

with n̂(pt), n̂(p
′
t), n̂(p

′′
t ) < N : pt �t p

′
t ⇒ pt ⊙

α
s p′′t �t p′t ⊙

α
s p′′t .

The axiom differs from axiom A3 in two respects. First, it no longer requires that

the lotteries pt, p
′
t, and p′′t share a common degree of subjectivity. Second, it creates

the lottery mixture on a higher level than either of the individual lotteries, which

is necessary to accommodate the differing degrees of subjectivity. The first change

makes it stronger, however, the second change disconnects the levels of the primitive

lotteries and the mixed lottery.

The final paragraph discusses the relation between axioms A3’ and A3. It is

easily verified that indifference between the ⊕α
s and the ⊙α

s operations holds in the

sense of equation (3) under the assumption of indifference to the reduction of same

4In the case of two periods parts i) and ii) can also be replaced by the single requirement of
triple cancellation (see Wakker 1988, 427).
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degree of subjectivity lotteries axiom A1.5 Therefore, under assumption A1, axiom

A3’ implies axiom A3,6 and axiom A3 implies axiom A3’ restricted to same degree

of subjectivity lotteries. It might be less obvious that already axiom A2 ensures that

axiom A3 implies axiom A3’ for same degree of subjectivity lotteries. The reason is

that axiom A3 itself already contains a mild version of an assumption of indifference

to the reduction of degenerate lotteries. See appendix A for details.

4 The Representation

This section gives a welfare representation for preferences satisfying the axioms in-

troduced in the preceding section. A detailed discussion of the representation is

delegated to section 5. I close the current section by illustrating how to apply the

theorem to an evaluation of the uncertainty tree depicted in Figure 1.

4.1 The represenation theorem

The representation recursively constructs a welfare function ût : X
∗×Pt+1 → IR that

evaluates degenerate outcomes in every period. Within a period, the representation

recursively evaluates the different layers of uncertainty (subtrees of the uncertainty

tree in Figure 1). The risk aversion in evaluating a lottery at a particular node is

tied to the degree of subjectivity. This risk aversion can be captured by a set of

continuous functions f̂t = {f s
t }s∈S, f

s
t : IR → IR. I call these functions uncertainty

aggregation weights. I define the generalized uncertainty aggregator Mf̂t
ût

: Pt → IR

for a given continuous bounded function ût : X∗ × Pt+1 → IR and a given set of

uncertainty aggregation weights f̂t = {f s
t }s∈S as follows. For degenerate lotteries

pt = (xt, pt+1) ∈ Pt set Mf̂t
ût
(xt, pt+1) = ût(xt, pt+1). Then inductively increase the

domain to lotteries of rank n̂(pt) = 1, 2, ..., N by defining

Mf̂t
ût
pt =

(

f
ŝ(pt)
t

)−1

◦

∫

B
n̂(pt)
t

f
ŝ(pt)
t ◦Mf̂t

ût
p′t dpt(p

′
t) , (4)

5Use the definition of ⊙α
s along with equation (2) and equation (1).

6For lotteries satisfying n̂(pt), n̂(p
′

t), n̂(p
′′

t ) < N . Otherwise the elevating independence axiom
creates a mixture outside of the preference domain.
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where the sign ◦ emphasizes functional composition as opposed to multiplication and

the superindex −1 inverts the function in brackets. For any step in the recursion

the expression Mf̂t
ût

p′t captures certainty equivalent welfare for the lottery p′t. The

certainty equivalent welfare of each of these p′t subtrees is transformed with the un-

certainty aggregation weight f
ŝ(pt)
t , corresponding to the degree of subjectivity of the

lottery pt. The integral sums over these probability weighted values and, finally, the

inverse function
(

f
ŝ(pt)
t

)−1
renormalizes the expression. The basic structure of the

right hand side of equation (4) is that of a generalized mean of the form f−1 [Ef(z)],

where the variable z is the certainty equivalent welfare at a given layer of the un-

certainty tree. A generalized mean of the form f−1 [Ef(z)] results in a lower welfare

equivalent than Ez if the function f is increasing and concave. Therefore the con-

cavity of f captures a form of risk aversion that will be discussed in detail in section

5. In equation (4) the function f , and thus risk aversion, generally depends on the

subjectivity ŝ(pt) of the lottery over which expectations are taken.

Theorem 1: The sequence of preference relations (�t)t∈T satisfies axioms A1-A6 if,

and only if, for all t ∈ T there exist a set of strictly increasing and continuous

functions f̂t = {f s
t }s∈S, f

s
t : IR → IR, and a continuous and bounded function

ut : X
∗ → U ⊂ IR such that by defining recursively the functions ûT = uT and

ût−1 : X
∗ × Pt → IR by

ût−1(xt−1, pt) = ut−1(xt−1) + Mf̂t
ût
pt (5)

holds for all t ∈ T and all pt, p
′
t ∈ Pt

pt �t p′t ⇔ Mf̂t
ût
pt ≥ Mf̂t

ût
p′t . (6)

Preferences (�t)t∈T over the space of generalized temporal lotteries can be represented

by the sequence (ut, f̂t)t∈T . The functions ut represent per period utility and inform

the recursive construction of the intertemporal welfare function ût (equation 5). For

the evaluation of a certain scenario, the per period utility functions provide suffi-

cient information as Mf̂t
ût
xt =

∑T

τ=t uτ (xτ ). The functions f̂t inform the generalized

uncertainty evaluation. Every layer of uncertainty resolving in period t is evaluated

according to its degree of subjectivity according to equation (4).

Note that the representation in Theorem 1 is linear in every time step. In a setting

where lotteries are not distinguished by their degree of subjectivity, the representation
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of this paper closely corresponds to Kreps & Porteus (1978). In their representation,

Kreps & Porteus (1978) use a linear uncertainty aggregation at the expense of a non-

linear time aggregation. Traeger (2007) shows how to shift this non-linearity between

the time and the risk dimension. In the current setting, however, lotteries vary in their

degree of subjectivity. Here, giving up linearity in the time step in equation (5) would

only facilitate the linearization of f s
t for one s ∈ S and would not permit a linear

aggregation over uncertainty in general. Thus, I consider the employed linearization

over time as the preferred representation. Finally, note that affine transformation of

the functions f̂ s
t leave the represented preferences unchanged. Affine transformation

of the functions ut have to share a common multiplicative constant (in the different

periods) and have to be accompanied with a coinciding transformation of the functions
(

f̂ s
t

)−1
for all s ∈ S.7

Further Remarks: The representation building on axioms A1 to A6 satisfies as

well elevating independence, axiom A3’, which mixes lotteries of differing degrees of

subjectivity (the proof is appended to the proof of Theorem 1). Axiom A3’ can be

considered a normatively desirable property. Axiom A1 is responsible for connecting

the uncertainty weights on the different layers. It implies the existence of a set f̂t

that is independent of the uncertainty layer.

4.2 Example

Assume that the decision maker faces a two period problem with a certain payoff in

period 0 and an uncertain payoff in period 1 that is described by the lottery depicted

on the left hand side of Figure 1. The payoffs at the leaves, omitted in the graph, are

from top to bottom x, x, x∗, x∗, x, x. The payoff in the first period is x∗. Assume

that the corresponding utility values are u(x) = 6, u(x) = 0, and u(x∗) = 5 and

that second period utility is discounted by the factor β = 40
41

implying a rate of pure

time preference of approximately 2.5%. In a unidimensional setting these utilities can

be generated by setting x = 20, x = 0, x∗ = 12, and employing the utility functions

u0(x0) = ln(1+x2
0) and u1(x1) = β ln(1+x2

1), rounding at the second decimal. Assume

that the decision maker’s risk aversion function is f s(z) = z for lotteries of confidence

7This transformation is equivalent to composing the functions f̂s
t with the inverse transformation

from the right.
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level s, f s′(z) = z
1
2 for lotteries of confidence level s′, and f s′′(z) = z

1
3 for lotteries of

confidence level s′′, where z ∈ IR+. The scenario is evaluated recursively in time and,

in every period, recursively in the uncertainty layer. First, the two lotteries of degree

of subjectivity s′ and s′′ in the lowest uncertainty layer in period 1 are evaluated by

calculating the certainty equivalent utilities

m1 ≡ (f s′)−1
[

1
2
f s′ [u(x)] + 1

2
f s′ [u(x)]

]

=
[

1
2
6

1
2 + 1

2
0

1
2

]2

= 3
2

m2 ≡ (f s′′)−1
[

1
2
f s′′ [u(x)] + 1

2
f s′′ [u(x)]

]

=
[

1
2
3

1
3 + 1

2
0

1
3

]3

= 3
4
.

The uncertainty tree comprises two more layers of uncertainty. By axiom A1 the de-

cision maker could alternatively evaluate a single reduced layer of uncertainty, which

is depicted in the tree on the right hand side of Figure 1. The following calculation

illustrates this equivalence by tackling the two remaining uncertainty layers simulta-

neously, where curly brackets relate to the uncertainty aggregation in the root and

square brackets correspond to uncertainty aggregation in the subsequent layer:

m3 ≡ (f s)−1
{

1
3
f s

{

(f s)−1
[

1
2
f s[m1] +

1
2
f s[u(x∗)]

]}

+ 2
3
f s

{

(f s)−1
[

2
5
f s[u(x∗)] + 3

5
f s[m2]

]}

}

= (f s)−1
{

1
6
f s[m1] +

1
6
f s[u(x∗)] + 4

15
f s[u(x∗)] + 6

15
f s[m2]

}

= 1
6
3
2
+ 1

6
5 + 4

15
5 + 6

15
3
4
= 41

20

The intermediate step is equivalent to directly evaluating the reduced lottery. The

certainty equivalent utility m3 is discounted, resulting in a present value utility of

β m3 =
40
41

41
20

= 2. Adding the utility u(x∗) = 5 that the decision maker obtains with

certainty in period 0, he evaluates the scenario with an overall present value welfare

of 7 units.

The above decision maker is risk averse with respect to lotteries of degree of

subjectivity s′ and s′′ (in a way made precise in the next section). I compare his

evaluation to that of a decision maker who is risk neutral with respect to all lotteries

(and, thus, is described by the intertemporally additive standard model). Such an

evaluation with f s(z) = f s′(z) = f s′′(z) = z leads to an overall welfare of 5+ 40
41

52
15

≈

8.5 units. Using the utility functions u0(x0) = ln(1 + x2
0) and u1(x1) = β ln(1 + x2

1) I

compare the risk neutral and the original evaluation in terms of certainty equivalent
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consumption. In the original evaluation the decision maker is indifferent to the lottery

and to receiving 2.6 consumption units with certainty in the second period, while

the risk neutral decision maker is indifferent between the lottery and receiving 6.8

consumption units with certainty. Observe that not only the risk averse, but also the

risk neutral decision maker has a preference for smoothing consumption over time:

He is willing to accept a reduction of 0.6 units in overall consumption in order to

smooth his uneven certainty equivalent consumption path of 12 units in period 0 and

6.8 units in period 1 to a welfare equivalent consumption path where he consumes

9.1 units in both periods.

5 Discussion of the Representation

The discussion of the representation in Theorem 1 proceeds in two steps. First, I

analyze a restricted version of the model limiting the space S to only two degrees of

subjectivity. This restricted version of the model is a straight-forward generalization

of Klibanoff et al.’s (2009) smooth ambiguity setting. I show that, in the generalized

setting, Klibanoff et al.’s (2009) definition of smooth ambiguity aversion is “ambigu-

ous” and I offer a more precise definition. Moreover, I disentangle intertemporal

substitutability from risk aversion and ambiguity aversion. Then, I proceed to dis-

cuss the general setting with an arbitrary number of degrees of subjectivity in the

lottery space. In particular, I generalize the definition of smooth ambiguity aversion

to a notion of aversion to subjectivity or to the lack of confidence.

5.1 A binary classification of subjectivity or confidence

I start by interpreting a special case of the representation obtained from restricting the

degrees of subjectivity to #S = 2. I associate the two elements s ∈ S = {subj, obj}

with subjective and objective beliefs. Two further restrictions transform it into the

smooth ambiguity model of Klibanoff et al. (2009) – translated into the von Neumann-

Morgenstern setting. First, the evaluation of objective lotteries in Klibanoff et al.’s

(2009) setting is (intertemporally) risk neutral in the sense that f obj
t is absent from

their representation. This latter point will be discussed in detail further below. Sec-

ond, Klibanoff et al. (2009) restrict the number of uncertainty layers in every time

period to N = 2 and impose a hierarchy of beliefs implying that decision makers can
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only face subjective lotteries over objective lotteries, but not vice versa. Uncertainty

resolving in period t of the form depicted by lottery prt on the right of Figure 1 would

qualify for the restricted setting if s = subj and s′ = s′′ = obj (but not if s = obj

and s′ = s′′ = subj, e.g. representing a coin flip over whether to enter a situation of

subjective risk). In contrast, the representation in Theorem 1 permits an arbitrary

sequence of subjective and objective lotteries (within every period).

Maintaining these restrictions, the first interesting insight is that the representa-

tion in Theorem 1 is close to the standard von Neumann-Morgenstern setting. Lotter-

ies simply have to be labeled by their degree of subjectivity and even the independence

axiom is preserved. Thus, explicitly introducing the dimensions that Ellsberg (1961)

already found missing in the Savage framework, i.e. a degree of confidence or subjec-

tivity of belief, leads straight forwardly from von Neumann & Morgenstern (1944) to

a model of smooth ambiguity aversion. The next insight concerns the interpretation

of Klibanoff et al.’s (2009) concept of smooth ambiguity aversion. For this purpose,

I briefly relate the representation in Theorem 1 to the generalized isoelastic model

of Epstein & Zin (1989) and Weil (1990). A priori, a decision maker’s propensity

to smooth consumption over time is a different preference characteristic than his

risk aversion. However, the intertemporally additive expected utility standard model

implicitly assumes that these different dimensions of preference coincide. Epstein

& Zin (1989) and Weil (1990) observed that in a one commodity version of Kreps

& Porteus’s (1978) recursive utility model of temporal lotteries disentangles these

two dimensions of preference. Traeger (2007) shows in a setting corresponding to a

#S = 1 version of the current model, that the function ft measures the difference be-

tween Arrow Pratt risk aversion and aversion to intertemporal substitution. As there

is only one type of risk in the cited analysis, there is only one function ft in every

period used for uncertainty aggregation. He names ft a measure of intertemporal risk

aversion. It measures the part of risk aversion that is not simply a cause of a decision

maker’s propensity to smooth over time, but due an intrinsic aversion to risk. The

concept of intertemporal risk aversion is not limited to the one-commodity setting of

the Epstein & Zin (1989) framework, but generalizes to arbitrary dimensions and to

settings without a naturally given measure scale of the good under observation. The

following axiomatic characterization is put forth in Traeger (2007). For two given

consumption paths x, x′ ∈ X
t, I define the ‘best of combination’ path x

high(x, x′) by

(xhigh(x, x′))τ = argmaxx∈{xτ ,x′
τ}
uτ (x) and the ‘worst off combination’ path x

low(x, x′)
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by (xlow(x, x′))τ = argminx∈{xτ ,x′
τ}
uτ (x) for all τ ∈ {t, ..., T}.8 In every period the

consumption path x
high(x, x′) picks out the better outcome of x and x

′, while xlow(x, x′)

collects the inferior outcomes. A decision maker is called (weakly)9 intertemporal risk

averse in period t if and only if for all consumption paths x, x′ ∈ X
t

x ∼ x
′ ⇒ x �t

1
2
x
high(x, x′) + 1

2
x
low(x, x′), (7)

where 1
2
x
high(x, x′) + 1

2
x
low(x, x′) denotes a lottery of equal chance over the paths

x
high(x, x′) and x

low(x, x′). The premise states that a decision maker is indifferent

between the certain consumption paths x and x
′. Then, an intertemporal risk averse

decision maker prefers the consumption path x (or equivalently x
′) with certainty

over a lottery that yields with equal probability either a path combining all the best

outcomes or a path combining all the worst outcomes. The cited paper shows that

the function ft in the representation is concave if and only if equation (7) holds. In

a certainty additive representation, as employed in the current paper, intertemporal

risk aversion can also be interpreted as risk aversion with respect to utility gains and

losses.

The definition of intertemporal risk aversion extends straight forwardly to a set-

ting with differing degrees of risk aversion to objective versus subjective lotteries.

I characterize intertemporal risk aversion to objective lotteries by requiring for all

x, x′ ∈ X
t

x ∼ x
′ ⇒ x �t x

high(x, x′) ⊕
1
2
obj x

low(x, x′) (8)

implying concavity of f
obj
t , and similarly intertemporal risk aversion to subjective

lotteries by requiring for all x, x′ ∈ X
t

x ∼ x
′ ⇒ x �t x

high(x, x′) ⊕
1
2
subj x

low(x, x′) (9)

implying concavity of f subj
t . Klibanoff et al. (2009) implicitly assume that f obj = id,

which corresponds to indifference in equation (8). This assumption implies that un-

certainty evaluation with respect to objective (or first order) lotteries is intertemporal

8Traeger (2007) shows how these paths can be defined purely in terms of preferences.
9Analogously, a strict intertemporal risk averse decision maker can be defined by assuming in

addition that there exists some period t∗ such that u(xt∗) 6= u(x′

t∗) and requiring a strict preference
≻ rather than the weak preference � in equation (7).
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risk neutral. Only when it comes to subjective lotteries, Klibanoff et al. (2009) in-

troduce a non-trivial function f subj and, thus, allow for intertemporal risk aversion.

Klibanoff et al. (2009) define ambiguity aversion by the concavity of f subj
t (in the

setting assuming f
obj
t = id). This concept earned the name smooth ambiguity aver-

sion in the decision theoretic literature. Relaxing the restriction f
obj
t = id sheds

more light onto this definition. In principle, there are two sensible ways of extending

Klibanoff et al.’s (2009) representation to incorporate the missing non-linearity f
obj
t .

The representation I have chosen in Theorem 1 introduces the function f
obj
t in such

a way that it measures intertemporal risk aversion with respect to objective lotteries

without changing the interpretation that f subj
t measures intertemporal risk aversion

with respect to subjective lotteries. Given the hierarchical order of subjective over

objective lotteries in Klibanoff et al.’s (2009) setting, I can introduce an alternative

function famb
t ≡ f

subj
t ◦ (f obj

t )−1 to eliminate f
subj
t from the representation. Observe

the following transformation of the representing equation (6) where pt and p′t are

different subjective lotteries over the set of objective lotteries, whose representatives

are p̃t

pt �t p′t ⇔ Mf̂t
ût
pt ≥ Mf̂t

ût
p′t

⇔
(

f
subj
t

)−1
◦
∫

Z1(X∗×Pt+1)

f
subj
t ◦

(

f
obj
t

)−1

[

∫

X∗×Pt+1

f
obj
t ◦ût(xt, pt+1) dp̃t(xt, pt+1)

]

dpt(p̃t)

≥
(

f
subj
t

)−1
◦
∫

Z1(X∗×Pt+1)

f
subj
t ◦

(

f
obj
t

)−1

[

∫

X∗×Pt+1

f
obj
t ◦ût(xt, pt+1) dp̃t(xt, pt+1)

]

dp′t(p̃t)

⇔
(

famb
t

)−1
◦
∫

Z1(X∗×Pt+1)

famb
t

[

∫

X∗×Pt+1

f
obj
t ◦ ût(xt, pt+1) dp̃t(xt, pt+1)

]

dpt(p̃t)

≥
(

famb
t

)−1
◦
∫

Z1(X∗×Pt+1)

famb
t

[

∫

X∗×Pt+1

f
obj
t ◦ ût(xt, pt+1) dp̃t(xt, pt+1)

]

dp′t(p̃t)

This new function famb
t = f

subj
t ◦ (f obj

t )−1 then measures the additional aversion

to subjective risk as opposed to objective risk. For this interpretation, note that

f
subj
t ◦ (f obj

t )−1 concave is a definition of f subj
t being more concave than f

obj
t (Hardy

et al. 1964).10 Because Klibanoff et al.’s (2009) setting assumes f obj
t = id, their defi-

10Hereto observe that famb
t concave and f

subj
t = famb

t ◦ (fobj
t ) implies that f

subj
t is a concave

transformation of fobj
t .
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nition of ambiguity aversion does not pin down whether smooth ambiguity aversion

should be captured by intertemporal aversion to subjective risk, captured in f
subj
t and

characterized by the lottery choice (9), or whether it should be characterized by the

functions famb
t measuring the additional risk aversion to subjective risk as opposed to

objective risk. I suggest calling the latter a measure of smooth ambiguity aversion.

Definition 1: A decision maker exhibits (strict) smooth ambiguity aversion in pe-

riod t if the function

famb
t = f

subj
t ◦ (f obj

t )−1

in the preference representation of Theorem 1 is (strictly) concave.

I follow Klibanoff et al. (2009) in defining the term by means of characteristics of the

representation. However, (strict) concavity of the function famb
t is a characteristic

of preferences that is independent of a particular version of the representation. Em-

ploying equations (8) and (9) the condition famb
t = f

subj
t ◦ (f obj

t )−1 concave translates

smooth ambiguity aversion in period t into the requirement that for all x, x′, x′′ ∈ X
t

x ∼ x
′ �t x

high(x, x′)⊕
1
2
obj x

low(x, x′) ⇒ x �t x
high(x, x′)⊕

1
2
subj x

low(x, x′) .

However, ambiguity aversion can be characterized more simply by recognizing that

the intertemporal aspect of the risk comparison can be dropped.

Proposition 1: A decision maker exhibits (strict) smooth ambiguity aversion in the

sense of Definition 1 if, and only if, for all x, x′ ∈ X
t

x⊕
1
2
obj x

′ �t ( ≻t ) x⊕
1
2
subj x

′ .

In a one-commodity setting,11 the model gives rise to a three-fold disentanglement

that can be expressed in terms of six different but related concepts (sharing three

degrees of freedom):

• the functions ut characterize aversion to intertemporal substitution,

• the functions f subj
t characterize intertemporal risk aversion to objective risk,

11Only in the one-commodity setting are the inverse of u, the Arrow Pratt measure of risk aversion,
and the measure of intertemporal substitution unidimensional and well defined.
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• the functions f obj
t characterize intertemporal risk aversion to subjective risk,

• the functions famb
t = f

subj
t ◦ (f obj

t )−1 characterize smooth ambiguity aversion,

• the functions gobjt ≡ f
obj
t ◦ ut measure Arrow Pratt risk aversion with respect to

objective lotteries, and

• the functions gsubjt ≡ f
subj
t ◦ ut measure Arrow Pratt risk aversion with respect

to subjective risk.

If follows immediately that, in the one-commodity setting, smooth ambiguity aversion

can be expressed also as the difference in Arrow Pratt risk aversion with respect to

subjective risk and Arrow Pratt risk aversion with respect to objective risk:

famb
t = g

subj
t ◦ (gobjt )−1 .

5.2 The general representation and aversion to the subjec-

tivity of belief

A unique measure of ambiguity aversion is tied to the setting with #S = 2. In

general, a decision maker will not always be able to employ a binary classification

scheme for the subjectivity of or confidence in lotteries. While objective probabil-

ities are generally classified as those derived from symmetry reasoning or long-run,

high frequency observations, subjective risk is basically any probabilistic belief not

obtained in that way, which leaves a wide range of belief types for a single category.

Examples include the odds based on a short time series or a slightly irregular dice, a

horse race lottery, the odds of a 2◦C global warming by 2050 due to climate change,

or weather characteristics in Tomboctou on November 22nd 2012. In general, dif-

ferent decision makers are likely to classify different lotteries in different categories.

Assume that a decision maker has a complete order over the elements in S in terms

of subjectivity. Let s ⊲ s′ denote that a lottery labeled s is more subjective than a

lottery labeled s′.

Definition 2: A decision maker is (strictly) averse to subjectivity of belief if

s ⊲ s′ ⇔ f s
t ◦ (f

s′

t )
−1 (strictly) concave ∀s, s′ ∈ S .
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Alternatively, the situation s ⊲ s′ can be interpreted as a decision maker being less

confident in lotteries of category s than in lotteries of categories s′. Then, aversion

to subjectivity of belief is equivalent to aversion to a lack of confidence in beliefs.

For example, assume that the decision maker in the example of section 4.2 is most

confident in the lotteries labeled s in Figure 1 and least confident when it comes

to his probability estimates labeled s′′, i.e. s′′ ⊲ s′ ⊲ s. It is easily verified that the

decision maker exhibits aversion to the subjectivity of belief: f s′′

t ◦ (f s′

t )
−1(z) = z

2
3

and f s′

t ◦ (f s
t )

−1(z) = z
1
2 are both concave (and the remaining case follow from tran-

sitivity). Definition 1 of smooth ambiguity aversion is the special case of aversion to

the subjectivity of belief (or to the lack of confidence) in the case where #S = 2. Its

characterization in terms of preferences straight-forwardly carries over to the gener-

alization.

Proposition 2: A decision maker exhibits (strict) aversion to the subjectivity of

belief in the sense of Definition 2 if, and only if, for all x, x′ ∈ X
t and s, s′ ∈ S

with s ⊲ s′

x⊕
1
2

s′ x
′ �t ( ≻t ) x⊕

1
2
s x

′ .

A decision maker with aversion to the subjectivity of belief would prefer a scenario

with better known probabilities over one with more subjective probabilities. He would

be willing to pay for reducing subjectivity and increasing confidence. The next section

relates the analysis of this paper to the behaviorally motivated literature. In such a

context one can employ proposition 2 in order to construct an order on S. As I will

point out, for some behaviorally plausible situations such an order might not exist.

Finally note that a decision maker who is averse to the subjectivity of belief might

exhibit standard risk aversion (or even risk neutrality) with respect to objective risk,

but shy away from situations where he feels that he cannot assess the risk involved. If

he exhibits extreme aversion to the subjectivity of belief and feels that he completely

lacks the ability to assess the involved probabilities his decision criteria gets arbitrar-

ily close to the framework of decision making under ignorance suggested by Arrow

& Hurwicz (1972). Here the decision maker simply maximizes the worst possible

outcome. If this completely subjective lottery (or the complete lack of confidence)

appears in the second uncertainty layer the decision maker behaves arbitrarily close

to the decision maker in Gilboa & Schmeidler’s (1989) wide-spread maximin expected
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utility model, where a decision maker maximizes the worst expected outcome (which

here would be expectations over first order lotteries). While Arrow & Hurwicz’s

(1972) axioms yield maximin over deterministic outcomes and Gilboa & Schmeidler’s

(1989) axioms yield maximin over expectation, a general decision maker in the current

framework can exhibit a decision criteria arbitrarily close to maximin on any layer,

including maximin over evaluations employing the smooth ambiguity model, or risk

(or ambiguity avers) expectations over maximin models. Thus, a single preference

relation in the current framework can nest and interact the wide spread models of risk

neutrality, Arrow Pratt risk aversion, maximin utility, maximin expected utility and

smooth ambiguity aversion, depending on the situation the decision maker is facing.12

6 Implications and applications

The section starts out relating the present framework to the Ellsberg paradox. I then

discuss how the representation restricts behavior. Finally, I sketch two normative

applications of the model.

6.1 Relation to behavioral analysis

The axioms underlying the representation are selected on a normative basis. Never-

theless, the framework incorporates observed behavior as in the Ellsberg (1961) para-

dox that cannot be captured within the economic standard model. In this section,

I briefly discuss how the present framework relates to the behaviorally motivated

ambiguity literature in accommodating Ellsberg type behavior. I then proceed to

point out a type of behavior relating to subjectivity attitude that is ruled out by the

rationality constraints of the current paper.

In the experiments underlying the Ellsberg (1961) paradox, a decision maker has

to bet on the color of a ball that is drawn from an urn. The crucial feature of the

various variants of the experiment can be reflected by the following simplified choice

situation. In one urn, the decision maker knows that half of the balls are red. In

another urn, the decision maker only knows that it contains nothing but red and blue

12As preferences are continuous in the set of probability distributions, the maximin decision criteria
are only reached in the limit. However, the preferences permit an arbitrarily close approximation,
e.g. by using f ignorance(z) = −z−L with an arbitrarily large L ∈ IR.
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balls. For the first urn, the draw can be characterized by an objective probability of
1
2
for drawing a red ball. For the second urn, the principle of insufficient reason would

give rise to a probability of 1
2
as well. However, a good fraction of the individuals

in comparable settings prefer betting on the first urn where they know the number

of red balls.13 The Choquet expected utility approach to explaining the seemingly

paradoxical choice abandons the concept of a probability and replaces it with a non-

additivity set function. The latter captures the decision maker’s ambiguity about the

red balls in the second urn. Choquet integrating over the capacities induces aversion

to ambiguity. The multiple prior approach, instead, attaches a range of different

probability distributions to drawing a red ball from the second urn and, e.g. in the

simplest such approach formulated by Gilboa & Schmeidler (1989), evaluates the bet

by the worst expected outcome possible within the range of priors. The Klibanoff

et al. (2009) approach assigns two layers of probability distributions to the urn with

the unknown number of balls. The lower level probability distributions are inter-

preted as the possible urn compositions. Each such urn composition is interpreted

as giving rise to an objective lottery. The higher level distribution assigns a subjec-

tive probability weight to each of these possible urn compositions identified with the

objective lotteries. Obviously, the representation in Theorem 1 can handle the Ells-

berg paradox in the same way. However, there is an alternative way to describe the

behavior by means of the representation in Theorem 1. The decision maker attaches

a probability of one half to the event drawing a red ball for both urns. However, he

labels the urn where he knows the number of balls to be an objective lottery and he

labels the lottery where the probability of a half is only obtained from the principle

of insufficient reason to be a subjective lottery. If the decision maker is averse to the

subjectivity of probabilistic beliefs, he prefers to bet on the “objective urn”. Note

that, in general, some fraction of the participants of an Ellsberg type experiment do

not show the “paradoxical behavior” discussed above. The current framework can

explain their behavior in two different ways. Either, they are not averse to the sub-

jectivity of belief (ambiguity averse), or they might simply label any fair urn setting

as objective.

Behaviorally, aversion to subjectivity might not always be as convincing as in an

13The real versions of the Ellsberg (1961) paradox are set up slightly more sophisticatedly in
order to assure that no possible probability assignment can explain the described choice within the
standard expected utility setting.
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Figure 3 depicts a possible choice behavior corresponding to a non-global attitude with respect to
subjectivity of belief.

Ellsberg (1961) type setting. Take a preference over lotteries as depicted on the left

of Figure 3. Here, a decision maker faces a large probability of a terrible outcome x

delivering welfare u = u(x) and a small probability of a great outcome x delivering

welfare u = u(x).14 Agents in such a choice situation prefer the subjective over the

objective lottery if they prefer that the probability, stating a terrible event is likely,

is not objective or is of low confidence. Note that from a normative perspective, such

a subjectivity loving behavior is probably judged undesirable as it implies that the

decision maker would be willing to pay for reducing the quality of the probability

assessment keeping expectations the same (a thought experiment only). Now assume

that the same agent also exhibits the preference depicted on the right hand side of

Figure 3. The choice situation yields the good outcome with a high probability and

the terrible outcome with a low probability. I suggest that, in such a situation, the

same agent might prefer the objective over the subjective lottery for a similar mo-

tive that implied the opposite attitude above: He prefers the objective lottery over

the subjective lottery because it makes the small probability (or the smallness of the

probability) of the terrible event objective.15 In summary, the choice behavior in Fig-

ure 3 can be characterized as a preference for being less confident about distributions

giving a bad outcome with high probability (or a bad expected outcome) as opposed

to a preference for being confident about distributions that yield a good outcome with

a high probability (or in expectation). As I show in Appendix A, such a preference

is reflected by a convex-concave function famb = f
subj
t ◦ (f obj

t )−1 in the representation

of Theorem 1. An example of such a convex-concave ambiguity aversion function is

depicted on the left hand side of Figure 4.

14In keeping with the intertemporal nature of the general framework each of the explicitly depicted
outcomes can be interpreted as a one period entry in a setting with a common future that is
independent of the lottery realizations. Alternatively, the utility levels u and underline u can be
interpreted as the welfare û(·) of different futures.

15I would like to thank Steiner Holden and the participants of the departmental seminar at the
University of Oslo for elaborating this example.
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famb

y y

famb

y y1 y2 y3 y
fobj ◦ u(x) fobj ◦ u(x)

Figure 4 represents a function famb satisfying the necessary convex-concave characteristics for a
global attitude reversal as in Figure 3 (left graph) and for multiple attitude reversals (right graph).
The solid line in the right graph explains a choice according to Figure 3 for a lottery with outcomes
x and x2 as well as a lottery with outcomes x2 and x. The dashed line accommodates the convex-
concave characteristics corresponding to a subjectivity attitude reversal in a choice as in Figure 3
for a lottery with outcomes x1 and x3, which is incompatible with the preference represented by the
solid line. The points on the horizontal axis are yi = fobj ◦ u(xi).

The example above does not violate any of the axioms underlying the represen-

tation in Theorem 1, but goes against a global subjectivity attitude. However, a

related behavior can violate the axioms of the representation themselves. Assume

that a decision maker exhibits a behavior as depicted in Figure 3 for a sufficiently

large set of lotteries, rather than just for a lottery over a worst outcome x and a best

outcome x. Given sufficient knowledge regarding the agent’s choice on objective lot-

teries, I can select outcomes x1, x2, x3 ∈ X∗ such that the points yi = f obj ◦ u(xi) are

spread approximately equidistantly with y = f obj(u) < y1 < y2 < y3 < f obj(u) = y

as depicted on the horizontal axis of the right graph in Figure 4. Assume that the

decision maker exhibits the subjectivity attitude reversal depicted in Figure 3 for a

lottery over x and x2 as well as for a lottery over x2 and x. Then these preferences can

be represented by a function famb that is convex-concave on both, the interval [y, y2]

as also the interval [y2, y]. An example for an ambiguity attitude function satisfying

these requirements is depicted by the solid line in the right graph of Figure 4. Now

let the same type of subjectivity attitude reversal also hold for a lottery over x1 and

x3. Then famb needs to exhibit convex-concave behavior also on the interval [y1, y3] as

represented by the dashed line in the right graph of Figure 4. However, the curvature

of the dashed line is contradicting the curvature of famb implied by the earlier choices.

The graph illustrates why a sufficiently rich set of subjectivity reversals as in Figure
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3 with overlapping welfare implications cannot be represented by a single function

famb and, therefore, violates the axiomatic framework underlying the representation

in Theorem 1.

Finally, let me point out a slightly different interpretation of the model in a

behavioral context. Individuals could identify the index s with a degree of familiarity

with a particular risk. Even when they are rationally aware that, for example, the

risk of a tragic plane accident is lower than the risk of dying in a car accident, their

familiarity with exposure to ground traffic related risk could imply a relatively lower

aversion, while they shy away relatively more from a means of transportation they

use less frequently, even if they are aware of the information that the risk is lower.

6.2 Employing the model as a decision support framework -

example and further thoughts

I briefly sketch two examples on how to apply the model as a decision support frame-

work. The first is an open loop scenario assessment. The second relates to the ques-

tion of learning. I draw both examples from the context of climate change economics,

where the International Panel on Climate Change encourages a disentanglement of

different types of uncertainties.

In the first example, an uncertainty tree for a given period in the future starts

with the root lottery capturing uncertainty about the stock of greenhouse gases in

the atmosphere. For a given pollution stock there is a subtree describing uncer-

tainty about the temperature in the same period. For a given temperature there is

uncertainty about precipitation. Given precipitation, there is uncertainty about agri-

cultural yield. Given agricultural yield there is uncertainty about market prices and

so on. Given such an uncertainty tree, the decision maker has to assign his degree of

confidence or of subjectivity to each of these lotteries. For example, he assigns rela-

tively more confidence to the subtrees determining a temperature and precipitation

distribution if the parent corresponds to a low emission scenario resulting in a more

familiar climate. In contrast, if the subtrees branch out from a very high realization

of the greenhouse gas stock, the decision maker considers the probabilistic estimates

of the temperature and the precipitation distribution less reliable, labeling the nodes

with a lower confidence level. Assume that the decision maker is averse to subjectiv-

ity of belief as formalized in Definition 2. Then, he attaches a relatively lower value
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to the more subjective subtrees stemming from a higher perturbation of the climate

system than a decision maker who does not distinguish lotteries by their confidence

or subjectivity. Thus, a first conjecture would be that a decision maker with aversion

to the subjectivity of belief would be willing to invest more into measures keeping

him in a climate region that he can predict more confidently.

In the second example, a decision maker anticipates learning about the future as

time goes by. The recursive structure of the welfare representation naturally invites

a dynamic programming setup where the agent takes anticipated learning into ac-

count in his current decisions. Let me consider two layers of parametric uncertainty

stacked over a layer of stochasticity that cannot be resolved. To make the example

concrete, consider once more an agent deciding in the climate change context. A deci-

sion maker’s payoffs are determined by local temperature and precipitation patterns,

depending on the system’s variables. In order to predict future temperatures and

precipitation he employs a regional climate model that is coupled to a global model.

However, there are unknowns θ1 in the characterizations of the regional climate model

and unknowns θ2 characterizing the global model. Given both, θ1 and θ2, the weather

characteristics w relevant to his payoffs are purely stochastic and given by the condi-

tional distribution µ0(w|θ1, θ2). Given θ1 and θ2 he trusts his model enough to label

this lottery µ0(w|θ1, θ2) objective. In contrast, he assigns a low confidence level to his

prior µ1(θ1|θ2) over the information state θ1 characterizing the regional model (the

prior might depend on the information underlying the global model θ2). He assigns a

higher confidence level to the prior µ2(θ2), given that local climate models frequently

face even harder challenges than global ones. The important difference to the first

example is that the current decision maker spells out how the informational variables

evolve over time in order to derive an optimal decision. A standard way to model this

learning process would be Bayesian. The decision maker updates his priors µ1 and

µ2 based on observing regional and global characteristics related to the informational

states by means of a likelihood function. In general, the informational states will be

informed by a variety of observations with a subset being the payoff relevant charac-

teristics w governed by µ0. However, in the climate context, the physical observations

might even play a minor role as opposed to advancements in the models, driven by

computer power and modeling techniques. These advances may be treated by consid-

ering the generated results as new observations. However, such a treatment would be

somewhat arbitrary in deciding when the results of improved models should be con-
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sidered a new observation. Moreover, it has to be decided whether old ‘observations’

based on outdated models should be eliminated from the observation set. With this

example I want to point out that confidence in models that generate predictions is

likely to change over time. Such a change is not easily captured by means of Bayesian

learning. Bayesian learning in a multi-layer ambiguity model could only shrink priors

within a given level. With sufficient information, in the long run, the priors could

shrink to a singleton and the decision maker would be left with objective uncertainty

or stochasticity. In contrast, it might be desirable to formulate a learning process that

changes the confidence label of a lottery over time. The current framework permits an

arbitrary number of confidence levels and changes over time. It thereby encourages

the development of a richer framework for learning incorporating the confidence di-

mensions into the learning process. Finally, let me point out that the decision maker

can calculate a reduced expected probability distribution over the weather character-

istics by integrating over the priors: p(w) =
∫ ∫

µ0(w|θ1, θ2)dµ1(θ1|θ2)dµ2(θ2). For

inference purposes, or, for obtaining a ‘best guess’ of the final outcomes the decision

maker can treat all probability distributions the same, at least in a straight forward

probabilistic application. However, the different layers of uncertainty corresponding

to different degrees of confidence or subjectivity have to be distinguished for the

welfare evaluation. Here the layers have to be evaluated recursively, each with the

corresponding degree of aversion.

7 Conclusions

The paper presents a model for evaluating scenarios that involve probabilistic beliefs

that differ in their degree of subjectivity or confidence. It respects the normatively

desirable axioms of von Neumann & Morgenstern (1944) and of time consistency.

The evaluation of scenarios employs only simple tools from risk analysis, where the

risk measures become confidence dependent. The representation facilitates a unified

framework for representing aversion to intertemporal substitution, aversion to ob-

jective risk, aversion to subjective risk, and smooth ambiguity aversion. Moreover,

the representation facilitates a better understanding and a more precise definition of

smooth ambiguity aversion as the additional intertemporal risk aversion to subjective

as opposed to objective lotteries. The previous literature formulates the concept of
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smooth ambiguity aversion in a hierarchical and binary context of purely subjective

second order beliefs over purely objective first order beliefs. The present representa-

tion frees the subjectivity characterization form this straitjacket by incorporating the

degree of subjectivity directly into the notion of a lottery. I introduce the concept

of aversion to the subjectivity of belief or, equivalently, aversion to the lack of confi-

dence in beliefs. It generalizes the concept of smooth ambiguity aversion to settings

with more than just two types of lotteries (a binary measurement of confidence).

A given set of preferences can nest and interact behavior exhibiting risk neutrality,

Arrow-Pratt risk aversion, and smooth ambiguity aversion as well as decision criteria

arbitrarily close to Arrow & Hurwicz’s (1972) maximin under ignorance and Gilboa

& Schmeidler’s (1989) maximin expected utility under ambiguity, depending on the

situation the decision maker is facing, his confidence (or ignorance), and his aversion

to the lack of confidence. I discussed behavioral implications and sketched two ap-

plications as a decision support framework in the context of climate change, an area

where the International Panel on Climate Change has promoted an according quali-

tative distinction of probabilistic estimates. The modeling framework can be applied

to all fields of economics where uncertainty plays a major role. The paper invites a

wide alley of research on learning in terms of simultaneous updating of probabilities

and confidence.

Appendix A

Axiom A2 implies A3 ⇒ A3′ for same degree of subjectivity lotteries:

In axiom A3 choose lotteries pt, p
′
t, p

′′
t ∈ P s

t satisfying n̂(pt) = n < N and n̂(p′t) =

n̂(p′′t ) = n+ 1. Then, an α = 1 mixture of the lotteries delivers

pt �t p
′
t ⇒ pt ⊕

α
s p′′t �t p′t ⊕

α
s p′′t ⇒ 11spt �t p′t .

By completeness of preferences (axiom A2) I therefore obtain

11spt ∼t pt . (10)

Thus, for arbitrary lotteries pt, p
′
t, p

′′
t ∈ P s

t and n∗ = max{n̂(pt), n̂(p
′
t), n̂(p

′′
t )}+1 ≤ N :

pt �t p
′
t ⇒ 11spt �t 11sp′t ⇒ 11spt ⊕

α
s 11sp′′t �t 11sp′t ⊕

α
s 11sp′′t

⇒ pt ⊙
α
s p′′t �t p′t ⊙

α
s p′′t
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using first equation (10) and then axiom A3.

�

Choice in Figure 3 implies a convex-concave function famb:

Let p = 0.1 and p = 0.9 and let u = u(x) and u = u(x). Then, the choice on the left

hand side of Figure 3 translates into the condition

f subj−1 [
pf subj(u) + pf subj(u)

]

> f obj−1 [
pf obj(u) + pf obj(u)

]

⇔ pf subj ◦ f obj−1
(y) + pf subj ◦ f obj−1

(y) > f subj ◦ f obj−1 [
p y + p y

]

⇔ pfamb(y) + pfamb(y) > famb
[

p y + p y
]

,

where y = f obj(u) and y = f obj(u). Thus, the function famb at the point 0.9 y+0.1 y

has to lie below the straight line connecting famb(y) and famb(y). Similarly, defining

p = 0.9 and p = 0.1, the right hand side choice depicted in Figure 3 implies that famb

at the point 0.1 y + 0.9 y has to lie above the straight line connecting famb(y) and

famb(y). In consequence, the function famb has to be convex somewhere in the lower

region [y, 0.9 y+0.1 y) and concave somewhere in the higher region (0.1 y+ 0.9 y, y]

(subsequently to being convex).

�

Appendix B

Proof of Theorem 1:

Part I develops the representation for a single layer of uncertainty in a given period.

Part II builds the recursive evaluation of a general uncertainty tree within a given

period. Part III constructs the intertemporal aggregation. Part IV shows that all

axioms are satisfied by the representation.

Part I 1) Let Xt = X∗ × Pt+1 ∀ t < T and XT = X∗. By axioms A2 and A4 there

exists an ordinal representation V 0
t : Xt → IR of the preference relation �t |Xt

, which

is restricted to degenerate period t outcomes. 2) For a given parameter s, axioms

A2-A4 on ∆s(Xt) are the standard von Neumann-Morgenstern axioms for a compact

metric setting that permit an expected utility presentation on ∆s(Xt). The only

distinction of the current setting is that elements pt are formally distinguished from

the the degenerate lotteries 11pt . However, as I explain in the context of equation
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(10) in Appendix A, axioms A2 and A3 (or, alternatively, axiom A1) imply pt ∼ 11spt .

Therefore, the standard mixture space arguments apply and the usual reasoning im-

plies the existence of a particular V 0
t

∗
that makes it possible to represent preferences

over lotteries in the expected utility form. Instead of using this standard represen-

tation, I follow Traeger (2007) and build the representation on an arbitrary function

V 0
t : Xt → IR representing degenerate choices �t |Xt

. So far, V 0
t can be the func-

tion singled out by von Neumann-Morgenstern as well as any strictly increasing and

continuous transformation. For a given parameter s, Theorem 1 in Traeger (2007)

translates into the following preference representation:

Given is V 0
t : Xt → IR with range(V 0

t ) = U representing preferences �t |Xt
.

Then �t |∆s(Xt) satisfies axioms A2-A4 if, and only if, there exists a strictly

increasing and continuous function f s
t : U → IR such that

(f s
t )

−1 ◦

∫

Xt

f s
t ◦ V

0
t dp

represents �t |∆s(Xt) for all p ∈ ∆s(Xt). Moreover, f and f ′ both represent � in

the above sense if, and only if, there exist a, b ∈ IR, a > 0 such that f ′ = af+b .

3) Carrying out step 2) for all s ∈ S results in a set of increasing and continuous

functions f̂t = {f s
t }s∈S, f

s
t : IR → IR, as stated in the theorem, and a representation

of �t |Z1
t (Xt) by

V̄ 1
t (pt) =

{

V 0
t (pt) if n̂(pt) = 0

V 1
t (pt) =

(

f
ŝ(pt)
t

)−1 ∫

Xt
f
ŝ(pt)
t ◦ V 0

t dpt if n̂(pt) = 1 .

Part II constructs inductively a representation of �t |Zn
t (Xt) for n ∈ N .

4) Let V̄ n
t : Zn

t (Xt) → IR represent �t |Zn
t (Xt). By equation (10) degenerate lotteries

in ∆s(Z
n
t (Xt)) are assigned the same values as the corresponding elements in Zn

t (Xt).

That identification makes V̄ n
t a representation for degenerate lotteries in Zn+1

t (Xt).

Thus, for a given s, by axioms A2-A4 and Theorem 1 in Traeger (2007), cited in

step 2, preference over lotteries in ∆s(Z
n
t (Xt)) can be represented by

V n+1
s (pt) = (f̃ s

t )
−1

∫

Zn(Xt)
f̃ s
t ◦ V

n̂(p̃t)
t (p̃t) dpt(p̃t)

for some strictly increasing and continuous function f̃ s
t : range(V n

t ) → IR. Employing

the representation theorem for each s ∈ S delivers a representation over the union
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Zn+1(Xt) = ∪s∈S̄Y
n+1
s (Xt) (including Y n+1

s0
(Xt) = Zn(Xt)) that evaluates lotteries

pt ∈ Zn+1(Xt) by

V̄ n+1
t (pt) =







































V 0
t (pt) = ũt(pt) if n̂(pt) = 0

V 1
t (pt) =

(

f
ŝ(pt)
t

)−1
◦
∫

Xt

f
ŝ(pt)
t ◦ ũt dpt if n̂(pt) = 1

...
...

...

V n+1
t (pt) =

(

f̃
ŝ(pt)
t

)−1
◦
∫

Zn(Xt)

f̃
ŝ(pt)
t ◦V

n̂(p̃t)
t (p̃t) dpt(p̃t) if n̂(pt) = n+1.

5) I show that the f̃ s
t in V n+1

t can be chosen to coincide with the f s
t in V n

t (and, thus,

in all the V i≤n
t ). Let pt, p

′
t, p

′′
t ∈ Y n

s ⊂ Zn
t (Xt). Reduction of the lottery 11spt ⊕

α
s 11sp′t

gives

[

11spt ⊕
α
s 11sp′t

]r

(B) =
∫

Y n
s (Xt)

p̃t(B) d
(

11spt ⊕
α
s 11sp′t

)

(p̃t)

= α
∫

Y n
s (Xt)

p̃t(B) d
(

11spt
)

(p̃t) + (1− α)
∫

Y n
s (Xt)

p̃t(B) d
(

11sp′t

)

(p̃t)

= α pt(B) + (1− α) p′t(B)

for all B ∈ B
n
t and, thus,

[

11spt ⊕
α
s 11sp′t

]r

= pt ⊕
α
s p′t. Then, by axiom A1

11spt ⊕
α
s 11sp′t ∼t

[

11spt ⊕
α
s 11sp′t

]r

= pt ⊕
α
s p′t

Evaluating the left hand side by means of the representation derived in step 4) I find:

V n+1
s (11spt ⊕

α
s 11sp′t) = (f̃ s

t )
−1
[

α
∫

B
n+1
t

f̃ s
t ◦ V

n
t (p̃t) d

(

11spt
)

(p̃t)

+(1− α)
∫

B
n+1
t

f̃ s
t ◦ V

n
t (p̃t) d

(

11sp′t

)

(p̃t)
]

= (f̃ s
t )

−1
[

αf̃ s
t ◦ (f

s
t )

−1
∫

B
n
t

f s
t ◦ V

n−1
t (p̃t) dpt(p̃t)

+(1− α)f̃ s
t ◦ (f

s
t )

−1
∫

B
n
t

f s
t ◦ V

n−1
t (p̃t) dp

′
t(p̃t)

]

,
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which has to equal the evaluation of the right hand side:

V n
s (pt ⊕

α
s p′t) = (f s

t )
−1
[

α
∫

B
n
t

f s
t ◦ V

n−1
t (p̃t) dpt(p̃t)

+(1− α)
∫

B
n
t

f s
t ◦ V

n−1
t (p̃t) dp

′
t(p̃t)

]

.

Abbreviating K(p) =
∫

B
n
t
f s
t ◦ V

n−1
t dp, equivalence of the two expressions results in

V n+1
s (11spt ⊕

α
s 11sp′t) = V n

s (pt ⊕
α
s p′t)

⇔ (f̃ s
t )

−1
[

αf̃ s
t ◦ (f

s
t )

−1 ◦K(pt) + (1− α)f̃ s
t ◦ (f

s
t )

−1 ◦K(p′t)
]

= (f s
t )

−1 [αK(pt) + (1− α)K(p′t)]

⇔ αf̃ s
t ◦ (f

s
t )

−1 ◦K(pt) + (1− α)f̃ s
t ◦ (f

s
t )

−1 ◦K(p′t)

= f̃ s
t ◦ (f

s
t )

−1 [αK(pt) + (1− α)K(p′t)] .

Because preferences are non-degenerate, K(p) can be varied on a continuum and

by Hardy et al. (1964, p 74) the continuous function f̃ s
t ◦ (f s

t )
−1 has to be linear

implying f̃ s
t = af s

t + b for some a ∈ IR++ and b ∈ IR (on the domain relevant to the

representation). Affine transformations of the uncertainty aggregation weights do not

change the representation (see step 2), thus, I can choose f̃ s
t = f s

t .

6) Steps 4) and 5) can be applied inductively for n ∈ {1, . . . , N − 1}, yielding a

representation for �t |ZN
t (Xt) =�t. Given the uncertainty aggregation weights f s

t

coincide (step 5) for the different levels, I can construct the functions V̄ n
t as well

inductively by defining V̄ 0
t = V 0

t and

V̄ n
t (pt) = (f

ŝ(pt)
t )−1 ◦

∫

B
n̂(pt)
t

f
ŝ(pt)
t ◦ V̄

n̂(p̃t)
t (p̃t) dpt(p̃t)

for n ∈ N (noting that n̂(p̃t) < n). Then, for a given sequence of uncertainty weights

f̂t and a given function V 0
t it is Mf̂t

V 0
t

pt = V̄ N
t (pt). I have established the existence

of the sequences f̂t as in the theorem and the existence of some V 0
t such that the

representation equation (6) in the theorem holds.

Part III shows that the sequence ût, t ∈ T constructed in equation (5) indeed gives

rise to a feasible set of Bernoulli utility functions V 0
t , t ∈ T .

7) Recall that the only requirement on the functions V 0
t is that they have to be an
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ordinal representation of preferences on the space of degenerate outcomes in period t,

i.e. for �t |Xt
. Axioms A2, A4, and A5 imply a certainty additive representation for

preferences restricted to the subspace of certain consumption paths (Wakker 1988,

theorem III.4.1).16 I denote the corresponding continuous per period utility functions

by ut : X∗ → IR. They are unique up to affine transformations with a coinciding

multiplicative constant (and heterogeneous additive constants).

8) For the last period I can choose V 0
t = ûT = uT . I show recursively that ût−1(xt−1, pt) =

ut−1(xt−1)+Mf̂t
ût
pt is an (ordinal) representation of �t−1 |Xt−1 given that ût is an (or-

dinal) representation of �t |Xt
. By construction of the uncertainty aggregator Mf̂t

ût
, a

certain consumption path xt = (xt, xt+1, . . . , xT ) is evaluated to ût(x
t) =

∑T

τ=t uτ (xτ ).

I define a certainty equivalent of a lottery pt ∈ Pt to be a lottery (xpt
t , p

pt
t+1) ∈ Pt that

satisfies (xpt
t , p

pt
t+1) ∼t pt. For any lottery there exists such a certainty equivalent and

it does not matter which one is chosen.17 By the representation already constructed,

I know that Mf̂t
ût
pt = ût(x

pt
t , p

pt
t+1). Moreover, by inductively replacing p

pt
t+1 with a

certainty equivalent, I obtain a certainty equivalent to the lottery pt that is a certain

consumption path, which I denote by x
pt
t .

9) By time consistency

pt ∼t x
pt
t

⇔ (xt−1, pt) ∼t−1 (xt−1, x
pt
t )

and therefore

(xt−1, pt) �t−1 (x′
t−1, p

′
t)

⇔ (xt−1, x
pt) �t−1 (x′

t−1, x
p′t)

⇔ ut−1(pt) +
∑T

τ=t uτ (x
pt
τ ) ≥ ut−1(p

′
t) +

∑T

τ=t uτ (x
p′t
τ )

⇔ ut−1(pt) +Mf̂t
pt
ût ≥ ut−1(p

′
t) +Mf̂t

ût
pt .

16A note on the details of the theorem’s applicability: If the sets {p′0 ∈ P0 : p′0 �0 x} and
{p′0 ∈ P0 : x �0 p′0} are closed in P0 for all x ∈ XT+1 ⊂ P0, then the sets {p′0 ∈ P0 : p′0 �0

x} ∩ XT+1 = {x′ ∈XT+1 : x′ �0 x} and {p′0 ∈ P0 : x �0 p′0} ∩ XT+1 = {x′ ∈XT+1 : x �0 x′}
are closed in XT+1 endowed with the relative topology for all x ∈ XT+1. Moreover the relative
topology on XT+1 is the product topology on XT+1.

17The existence is most easily observed from the representation already constructed. The uncer-
tainty aggregator is a generalized mean and, thus, the value of any lottery lies between the value of
the worst and the best outcome. For more details see induction hypothesis H2 in proof of theorem 2
in Traeger (2007).
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Hence ût−1 : X
∗ × Pt → IR with ût−1(xt−1, pt) = ut−1(xt−1) + Mf̂t

ût
pt is an (ordinal)

representation of �t−1 |X∗×Pt
.

Part IV proofs necessity of the axioms. The lottery pt ∈ ∆s (Y
n
s (X

∗ × Pt+1)) on the

left hand side of axiom A1 evaluates as

(f s
t )

−1 ◦
∫

B
n+1
t

f s
t ◦ (f

s
t )

−1 ◦
∫

B
n
t

f s
t ◦M

f̂t
ût

p′t dp̃t(p
′
t) dpt(p̃t)

= (f s
t )

−1 ◦
∫

B
n+1
t

∫

B
n
t

f s
t ◦M

f̂t
ût

p′t dp̃t(p
′
t) dpt(p̃t)

= (f s
t )

−1 ◦
∫

B
n
t

f s
t ◦M

f̂t
ût

p′t d

[

∫

B
n+1
t

p̃t dpt(p̃t)

]

(p′t)

= (f s
t )

−1 ◦
∫

B
n
t

f s
t ◦M

f̂t
ût

p′t dprt (p
′
t)

and, thus, equivalently to the right hand side of axiom A1. Axiom A2 is obviously

satisfied. Regarding axiom A3 observe that for all t ∈ T , pt, p
′
t, p

′′
t ∈ P s

t , and α ∈ [0, 1]:

pt �t p
′
t ⇒ Mf̂t

ũt
pt ≥ Mf̂t

ũt
p′t

⇒
(

f
ŝ(pt)
t

)−1

◦
∫

B
n̂(pt)
t

f
ŝ(pt)
t ◦Mf̂t

ût
p̃t dpt(p̃t)

≥
(

f
ŝ(p′t)
t

)−1

◦
∫

B
n̂(p′

t
)

t

f
ŝ(p′t)
t ◦Mf̂t

ût
p̃t dp

′
t(p̃t)

⇒
(

f
ŝ(pt)
t

)−1





∫

B
n̂(pt)
t

α f
ŝ(pt)
t ◦Mf̂t

ût
p̃t dpt(p̃t) +K





≥
(

f
ŝ(p′t)
t

)−1





∫

B
n̂(p′

t
)

t

α f
ŝ(p′t)
t ◦Mf̂t

ût
p̃t dp

′
t(p̃t) +K



 ,

where ŝ(pt) = ŝ(p′t). Setting

K =
∫

B
n̂(p′′

t
)

t

(1− α) f
ŝ(p′t)
t ◦Mf̂t

ût
p̃t dp

′′
t (p̃t)
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it follows

(

f
ŝ(pt)
t

)−1

◦
∫

B
n∗
t

f
ŝ(pt)
t ◦Mf̂t

ût
p̃t d(pt ⊕

α
s p′′t )(p̃t)

≥
(

f
ŝ(p′t)
t

)−1

◦
∫

B
n∗
t

f
ŝ(p′t)
t ◦Mf̂t

ût
p̃t d(p

′
t ⊕

α
s p′′t )(p̃t)

with n∗ = max{n̂(pt), n̂(p
′
t), n̂(p

′′
t )} and, thus,

pt ⊕
α
s p′′t �t p′t ⊕

α
s p′′t .

To see that axiom A4 is satisfied note that in the union topology a set is closed

if each preimage of the set under the injection maps18 is closed. Thus, given that

the functions f s
t ◦ ût and V n

t are continuous (in the topology of weak convergence)

the sets in axiom A4 are closed. Axiom A5 is easily observed to be satisfied by

recognizing that the evaluation on certain consumption paths reduces to the formula

ût(x
t) =

∑T

τ=t uτ (xτ ). An inspecting of equation (5) shows that axiom A6 is satisfied.

Finally, Axiom A3’ is satisfied as well:

pt �t p
′
t ⇔ Mf̂t

ũt
pt ≥ Mf̂t

ũt
p′t ⇔ (f s

t )
−1

[

αMf̂t
ũt

pt

]

≥ (f s
t )

−1
[

αMf̂t
ũt

p′t

]

⇔ f s
t

[

αMf̂t
ũt

pt

]

+ f s
t

[

(1− α)Mf̂t
ũt

p′′t

]

≥ f s
t

[

αMf̂t
ũt

p′t

]

+ f s
t

[

(1− α)Mf̂t
ũt

p′′t

]

⇔ (f s
t )

−1

{

∫

B
max{n̂(pt),n̂(p′′

t
)}+1

t

f s
t ◦M

f̂t
ũt

p̃t d
[

α11spt + (1− α)11sp′′t

]

(p̃t)

}

≥ (f s
t )

−1

{

∫

B
max{n̂(p′

t
),n̂(p′′

t
)}+1

t

f s
t ◦M

f̂t
ũt

p̃t d
[

α11sp′t + (1− α)11sp′′t

]

(p̃t)

}

⇔ pt ⊙
α
s p′′t �t p′t ⊙

α
s p′′t .

�

Proof of Proposition 1:

For all x, x′ ∈ X
t I have

x⊕
1
2
obj x

′ �t x⊕
1
2
subj x

′

18The s-th injection map injs assigns an element of ∆(·) to the corresponding element in (∆(·), s) =
∆s(·) (e.g. Cech 1966, 85).
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⇒
(

f
obj
t

)−1
[

1

2
f
obj
t ◦Mf̂t

ût
x+

1

2
f
obj
t ◦Mf̂t

ût
x
′

]

≥
(

f
subj
t

)−1
[

1

2
f
subj
t ◦Mf̂t

ût
x+

1

2
f
subj
t ◦Mf̂t

ût
x
′

]

.

Defining K(x) = f obj ◦Mf̂t
ût

x = f obj ◦
∑T

τ=t uτ (xτ ) I find

⇒ f
subj
t ◦

(

f
obj
t

)−1
[

1

2

[

K(x)
]

+
1

2

[

K(x)
]

]

≥
1

2
f
subj
t ◦

(

f
obj
t

)−1
[

K(x)
]

+
1

2
f
subj
t ◦

(

f
obj
t

)−1

[K(x′)]

and, thus, famb
t = f

subj
t ◦

(

f
obj
t

)−1

concave by Hardy et al. (1964, 75) on the range

relevant for the representation. Analogously, I find strict concavity to hold by replac-

ing �t by ≻t and ≥ by >. �

Proof of Proposition 2:

For every pair s, s′ ∈ S with s ⊲ s′ the proof is a copy of the proof of Proposition 1.

�
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