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Measurement Errors and Outliers in Seasonal Unit Root Testing

NIELS HALDRUP? ANTONIO MONTANES** AND ANDREU SANSO***

June 14, 2000

ABSTRACT. Frequently, seasonal and non-seasonal data (especially macro
time series) are observed with noise. For instance, the time series can have ir-
regular abrupt changes and interruptions following as a result of additive or
temporary change outliers caused by external circumstances which are irrele-
vant for the series of interest. Equally, the time series can have measurement
errors. In this paper we analyse the above types of data irregularities on the
behaviour of seasonal unit root tests. It occurs that in most cases outliers
and measurement errors can seriously affect inference towards the rejection of
seasonal unit roots. It is shown how the distortion of the tests will depend
upon the frequency, magnitude, and persistence of the outliers as well as on
the signal to noise ratio associated with measurement errors. Some solutions
to the implied inference problems are suggested.

KEYWORDS: Seasonal unit roots, HEGY tests, additive outliers, measurement

errors, Brownian motion.
JEL CrAssIFICATION: C12, C2, C22,

1. INTRODUCTION
It is often the case that observed time series are measured with noise. The noise
can take many different forms. For instance, data measurement can be inaccurate
due to inappropriate availability of data or because the definitions used by statistical
offices do not correspond to the desired series intended for statistical or economic
analysis. Data series like personal taxable income and unemployment rate series are
typical series that are likely to be measured with a significant measurement error
component. However, there might be other sources which contaminate the data. For

*Department of Economics, University of Aarhus, and Centre for Dynamic Modelling in Eco-
nomics, Building 350, DK-8000 Aarhus C, Denmark. E-mail: nhaldrup@econ.au.dk. **Department
of Economic Analysis, University of Zaragoza, Gran Via 2, 50005 Zaragoza, Spain. E-mail:
amontane@posta.unizar.es.***Department of Econometrics, University of Barcelona, Diagonal 690,
08034 Barcelona, Spain. E-mail: asanso@campus.uoc.es. This paper was written while the first
author was visiting University of California, San Diego, in the spring of 2000. The Economics De-
partment at UCSD is gratefully acknowledged for its hospitality. We appreciate helpful comments
from Robert Taylor. The Aarhus University Research Foundation and the Danish Social Sciences
Research Council is acknowledged for financial support.



MEASUREMENT ERRORS AND OUTLIERS IN SEASONAL UNIT RoOT TESTING 2

instance, outliers may occur as a result of computer breakdown in the registration
of data, union strikes, governmental interventions, and other reasons for some non-
repetitive events that may flaw data quality. Also, such events may tend to persistent
for some time but eventually will die out. In this paper we study the implications of
measurement errors and different types of additive and temporary change outliers on
tests for seasonal unit roots.

The implications of additive outliers in the levels of economic time series (as
opposed to the differences) on unit root tests has previously been examined by Franses
and Haldrup (1994) and Vogelsang (1999), see also Cati, Garcia and Perron (1999)
for a slightly different class of models. These studies indicate that zero frequency
unit roots may too often be rejected in the presence of outliers of the aforementioned
type. The implications are the opposite of those analyzed by Perron (1989, 1990) and
Perron and Vogelsang (1992), amongst others, who find that level shifts and trend
breaks may bias unit root tests towards the acceptance of the unit root hypothesis.
Focusing on seasonal data, Franses and Vogelsang (1998) examine the implications
of additive and innovational outliers in the seasonally differenced series. Their type
of outliers are fundamentally different from those examined in the present exposition
because additive outliers in the seasonally differenced series will produce shifting
seasonal means. In this situation the seasonal unit roots are too frequently accepted
and hence the Franses and Vogelsang study is much more in line with the setup of
Perron and his work with Vogelsang for non-seasonal data.

Here we focus our attention particularly on the behavior of seasonal unit root test
statistics (but also non-seasonal) of the Hylleberg, Engle Granger, and Yoo (1990)
(HEGY) type when the observed series contains measurement errors as well as addi-
tive and temporary change outliers in the levels of the series. We allow for data being
non-seasonal, biannual, quarterly, or monthly. The design of our statistical model
is such that we can control the impact on the various tests when the frequency, the
magnitude, and the persistence of outliers changes. Also, the noise resulting from
measurement errors can be controlled via an appropriately defined signal to noise
ratio. Generally, the outliers and measurement errors imply that the regression er-
rors will have an autocorrelation type component that is similar to a moving average
process with a negative coefficient, and hence the size distortions that are known to
arise in unit root testing for exactly this case, see e.g. Schwert (1989), are not sur-
prisingly seen to apply to the present kind of problems as well. However, because of
the irregularity of outliers, for instance, these kind of problems needs to be dealt with
differently (compared to usual autocorrelation problems) because we may be able to
identify the location of the outliers. It appears that the HEGY tests will be affected
differently depending upon the frequency being tested for a unit root, and also, the
way the tests are distorted will generally depend upon the type of outliers that occurs.
In most cases, however, the biases of the tests turn out to be towards rejection of
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seasonal unit roots. We suggest different routes to correct for outliers and measure-
ment errors. One route is to extend the suggestion of Franses and Haldrup (1991) to
seasonal data and hence the idea is to add dummy variables in an augmented HEGY
regression which will yield asymptotic distributions that are the same as when no
outliers are present in the data. It remains to identify possible outliers and in so
doing a new procedure building on Vogelsang (1999) is suggested for seasonal data.
It appears that a combination of augmentation of the HEGY regression and outlier
removal (where possible) capture much of the distortion resulting from the outliers
although the remedy is far from being perfect. The second route one can pursue is to
use modified Phillips-Perron type of tests to remove the influence from the outliers.
However, such a generalization turns out not to be straightforward when applied to
seasonal data.

The paper proceeds as follows. In the next section we present a representation of
a seasonal random walk process which is due to Osborn and Rodrigues (1999) that is
useful for deriving our analytical results. Section 4 presents the HEGY class of tests
for any (even) value of s and the limiting distributions of the relevant test statistics
are subsequently derived and discussed under the maintained assumption of noisy
data. In section 5 a Monte Carlo study is presented to quantify the implications of
our analytical findings. The subsequent section suggests some ways of solving the
problems with outliers and measurement errors and in particular we suggest a new
outlier detection procedure for seasonal data. An empirical illustration is given in
section 7, and finally we conclude.

2. 'THE STATISTICAL MODEL

Consider the univariate (seasonal) process
Asyt:5t7 = 1,2,T (1)

where &, is as 7.1.d.(0,0?), s is the sampling frequency of the data, and A, is the
seasonal differencing filter. Hence, in practical situations we have s = 1,2,4, and 12
corresponding respectively to annually, biannually, quarterly, and monthly sampled
data. In order to telescope on particular problems associated with measurement

errors and outliers, the observed series is!

2t =Y + ¢ (2)

where v, is an error term contaminating ;. In particular, we consider the noise
mechanism

6c + 1y (3)

Ve =

(1—aB)

'We abstract from the possibility of deterministic components such as seasonal dummy variables
and trends. Such components will have no influence on our qualitative conclusions as long as we
allow for these components in the relevant regression models.
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where 1, ~ i.i.d(0, 0727) is a measurement error. The first term in (3) is a general outlier
component where we assume || < 1, with B being the lag-operator. If & =0, 6, is
a noise term generated by irregularly observed additive outliers (AQO). The parameter
0 is the magnitude of the outliers, whilst §; is an indicator (Bernoulli) variable which
can take either of the values 1 or -1 with a specified probability p/2. Otherwise, the
value of §; equals zero. Hence AQO’s are characterized by some non repetitive events
which occur irregularly and are unaffected by the dynamics of the 7y process. A
different kind of outliers occur when a # 0. In this situation the outliers also appear
irregularly but tend to persistent although eventually their effect will die out given
the assumption |o| < 1. We will refer to such outliers as temporary change (TC)
outliers. The above classification of outliers follows the terminology of Chen and Liu
(1993). Note that neither of the noise components are such that their presence is
dependent upon the season?.

As can be seen, the design of the model is such that we can control the impact on
the various tests when the frequency, the (relative) magnitude, and the persistence
of the outliers changes. Also, the noise resulting from measurement errors can be
controlled via the variance signal to noise ratio (o, / 05)2 .

In Figures 1 and 2 examples are given of how the various kinds of data irregularities
may appear in actual series. The series v, (following a seasonal random walk with
s = 4) has been contaminated with the three different kinds of outliers, one at a time.
For the measurement error case (0,/0.)” = {2,4} whilst for the AO and TC cases
p,0={(p=.050=4),(p=.01,0 =20)} and o = {.75}. These cases correspond to
situations with moderate and strong noise, respectively. Observe that the TC outliers
tend to persist for some time compared to the additive outliers.

Insert Figure 1 about here

Insert Figure 2 about here

Before presenting the HEGY test procedure and the various test statistics of
interest, we will present a representation of a seasonal random walk that is useful for
our analytical derivations.

3. PRELIMINARIES ON THE REPRESENTATION OF A SEASONAL RANDOM WALK
In a recent paper, Osborn and Rodrigues (1999) have developed an appealing and very
elegant approach for deriving asymptotic results for estimators and test statistics in
seasonal models with unit roots. In the sequel we will follow their exposition closely,

2Such a generalization could be considered of course, but it is not clear why in practical situations
data irregularities should be seasonally dependent.
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although alternative approaches are available, see e.g. Smith and Taylor (1999)3. The
idea of Osborn and Rodrigues is to use a particular parameterization of the model
such that for seasonally integrated data of frequency s, the model can be written as a
sequence of s mutually independent random walks {x1,}, ..., {Zs,}, that is, the series
y; defined in (1) can be written in terms of

Tin = Tin-1+Em, n=12 ... N=T/s (4)

where we make the simplifying assumption that z;0 = 0,7 = 1,...,s, while g;, ~
i.i.d.(0,02). Independency is across both indices i and n. More explicitly, (4) and (1)
are related through

Yt X [ Sl] 1

where 7 = ¢ mod s, with the exception that 1 = s when ¢ mod s = 0. We have used
the notation n = [%} + 1, where [.] takes the integer value of its argument.
A convenient way of writing the process in compact form is

X, =X, 1+, n=1..N
where

Xn = <x1n7$2n7"'7x5n)/

gn = (£1n,89m, 0, Esn) ~ i.0.d.(0,071,).

Also, we will define the partial sum vector

N N N
Sn — (Sln7 SQ’H,J LARS] SS’R)/ = (Z 51n7 ZanJ trtt ngn)/' (5)
n=1 n=1 n=1

It occurs that the vector representation of the seasonally integrated process is espe-
cially useful in deriving asymptotic results. The multivariate invariance principle, see

e.g. Phillips (1986) and Phillips and Durlauf (1986), implies that
N 128, = oW (r) (6)

for N — oo where ”= 7 signifies weak convergence, W (r) = (Wy(r), Wa(r), ...., Ws(r)),
and W;(r) for i = 1,2,..., s are standard Wiener processes defined on [0,1]. As can
be seen, the seasonal random walk model can be appropriately formulated such that
much of the theory applying for unit root processes (at the zero frequency) can readily
be applied to this extended class of processes.

3Smith and Taylor (1999) develop an integrated framework based on a spectral representation
upon which asymptotic theory for seasonal data can be described for any frequency of observations.
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To relate the process y; to the seasonal random walks (5), it can be seen that
Y = Tip, = €S, = €,.(Sp_1 + £n) (7)

where ¢; is an (s x 1) selection vector which picks out the k’th row of a matrix, (i.e.
the season in which y; occurs) and lagged values can be expressed as

Yi—i = e;gAz(Snfl + Difin), for i = 1, 2, .y S (8)

The s X s matrix D; takes the form D; = diag(I;_;,0;) whilst the A, matrices
are ”circulant” or permutation matrices, see also Barnett (1990) and Kunst (1997),
which appear to play an important role for the results to follow. The matrices allocate
the various lags of y; to the relevant Wiener processes associated with a particular
season. In particular, A;X will move the last i rows of the matrix X to the top with
the remaining rows correspondingly moved down. The A; matrices have a number of
algebraic properties which are well described in Osborn and Rodrigues’ paper. The
interested reader is advised to consult their paper for further details.

4. THE HEGY TEST WITH NOISY DATA

The HEGY test procedure, see Hylleberg et al. (1990) and Engle et al. (1993), is
widely used in seasonal unit root testing and references to applied papers seem to be
unnecessary. Although originally developed for quarterly data, extensions to bian-
nual and monthly observations, say, are relatively straightforward, see e.g. Beaulieu
and Miron (1993), Taylor (1998), and Smith and Taylor (1999). Basically, the HEGY
test is based upon an auxiliary regression where the regressors are transformed in
such a way that they are orthogonal which equally implies that the frequency specific
roots of the autoregressive process can be examined separately. In addition to pro-
viding a convenient interpretation of model parameters, the orthogonalization of the
regressors greatly simplifies analytical derivations. In the present context, given that
the observations are measured with noise as indicated in (2), the auxiliary regression
using the 2; series can be written as®

)
— S .8 8 _ 8 .8
Agzy = E T2 Ty = 7wy (9)
=1

where 25, j = 1,2, ..., s are the filtered 2; series, z{ = (2};, 23, ..., 25;) and w°= (7§, 73, ..
). If a (real) unit root at a particular frequency is present, the associated 7 co-

efficient will be zero; imaginary unit roots implies pairs of 77 coefficients to be zero,

“In the following we let a superscript ”s” indicate the sampling frequency of the data.
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in particular 7} = 7TJ+1 for 7 odd and larger than one. The least squares estimate of
the m* coeﬂiments is given by

T = (Z zfzf’) (Z zf’AsZt> (10)

t=1 t=1
T T T -1 /7
. . 2 s1\2 s/
- dlag E th ) E Z2t PRRES! § (Zst) E Zy ASZt
t=1 t=1 t=1 =1

due to the orthogonality of the regressors. The f—statistic of a zero coefficient null
associated with a particular parameter reads

8

where
1z
=7 > a (12)
=1

is an estimate of the regression standard error. Also, because of the orthogonality of
the regressors, joint hypothesis testing is especially simple. If a joint hypothesis of
the form Hy : 7} = 73 = 7; = 0 is considered with a total of m coefficients being
tested, then the F'- test statistic of the joint hypothesis can be written as a simple
average of the associated squared t—ratios:

g

1
Frems,ms = (tfﬁ + 12, + .. +t3rs) . (13)
[3 7 k

In particular, it is of interest to consider joint tests of the form Froms, for j odd and
larger than one which entails a test of complex pairs of the unit roots.
The following Lemma applies:

Lemma 1. Assume that z, = y; + v, where Ay, = g, with g, ~ i.i.d.(0,0?) and the
noise term v; = ﬁét + 1, satisfies , n, ~ 1.i.d.(0, 0727), la| < 1, and 6, is a Bernoulli
indicator variable taking the values +1 with probability p/2, (0 < p < 1). Let initial

observations be zero, i.e. 20 =2 1=2 9= ..=2 411 =0. Then, as'l' —
a) T3/2 Zt 1Zt k= 3/2 fo 1 AkW< )dr k=12 ..5s
b) T2 Zt:l 2= fo W(r)dr k=12 ..5
c) % 23:1 Rtk Rt—j :> fo r)ALA;W (r )dr2 k5
k s—k
d) LT oA = fo PYALW(r) + 8D s 1

0_ 2 as—
T 0w wlze = % fy W) AW (r) + (P —02) k=

1-a?
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Proof: See appendix.

The regression (9) and the form of the regressors will depend upon the frequency
of the data. However, we need some further notation to derive our main results. Let
¢j(B) be the polynomial filter adopted to define the 2, | series:

21 = ¢;(B)ae. (14)

Then we define B; to be the matrix consisting of an appropriate sum of A; matrices,
each of which is associated with a particular power B* of the ¢;(B) filter. In other
words, if

¢;(B) = sz‘jBi (15)

then .
B, = bjA;
=0

As clarified by Osborn and Rodrigues, it appears that the B, matrices have a number
of algebraic properties that make them easy to manipulate, see Appendix B.2 of their
paper. A complete list of the B; matrices for s = 1,2,4, and 12 are given in the
appendix of the present paper. Let us consider some examples which also serve to
clarify the particular forms the auxiliary regressions will take for given frequencies of
the data observed.

4.1. Examples.
Biannual data. With s = 2 the filter (1 — B?) factors as
(1-B*)=(1-B)(1+B)

which corresponds to a zero frequency unit root, +1, and a seasonal unit root, -1,
with two cycles per year. The associated frequencies are 0 and 7. The regressors in the
HEGY auxiliary regression are respectively 22, | = (14 B)z; and 22, , = —(1— B)z
and hence it follows that B = A| + Ay, By = —A; + A,.

Quarterly data. With s = 4 the differencing filter (1 — B*) decomposes as
(1-BY=(1-B)(1+B)(1+ B?

and thus (compared to biannual data) gives the additional unit roots 4i which forms
a complex pair at one cycle per year and correspond to the frequencies +7/2. In this
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case the HEGY regression has the regressand A,z; and the regressors

2,1 = (B+ B>+ B*+ BYz
2y 1 = (=B+B*—B*+ BY%
Z;:tfl = (‘BQ + B4>Zt

Zy1 = (~B+ Bz

Note that 23; 1 = 24+ 2 and hence there is a phase shift between these two series. The
variable 2y, filters away the seasonal roots associated with (14+B) and (1 + BQ), 2ot 18
adjusted for (1 — B) and (1 + BQ), whilst z3; 1 and 24 1 jointly filter away the roots
concerning (1 — B) and (14 B). From these transformations we can define the 4x4
matrices

Bl - A1+A2+A3+A4

B2 = —A1+A2—A3+A4
B; = —-Ay+ Ay
B4 = _Al —I— A3.

Monthly data. Finally, for monthly data, s = 12, the differencing filter (1 —
B'%) can be decomposed as

(1-B"%) = (1-B)(1+B)(1+B*(1-B+ B
x(1+ B+ BY)(1— V3B + B*)(1+ V3B + B?)

which corresponds to a non-seasonal unit root +1, and the seasonal unit roots, —1; 4-7;
—%(1 + V/30); %(1 + v/30); —%(\/g + i); %(\/g + i) which respectively correspond to
6,3,9,8,4,2,10,7,5,1, and 11 cycles per year®. Note that the last ten unit roots form
complex conjugate harmonic frequency pairs.

The necessary data transformations required to orthogonalize the regressors in (9)
of the HEGY regression are rather involved in the monthly case and are well described
in Beaulieu and Miron® (1993). From the pattern given above the associated B;
12x 12 matrices follow naturally, see Osborn and Rodrigues for details.

4.2. Limiting distributions of HEGY test statistics. We now have the re-
quired results to obtain the relevant distributions of the various estimators and test
statistics for an arbitrary frequency of data s. First, using Lemma 1, the following
second Lemma can be derived.

5The associated frequencies of the roots are respectively: 0,m,+m/2,4+27/3, £7/3,£57/6, and
+7/6.

8Note that in Beaulieu and Miron (1993) there is a misprint in the expressions for yg; and y10¢.
The filters defining these processes should both be multiplied by minus one.
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Lemma 2. Given the assumptions of Lemma 1

a) %z;zlz;t,lAszt o fo r)YB;dW(r) + K; — 02 for j=1,2,3,57,.,s—1
T B 1Dz = o fo r)B;dW (r) + K; for j=4,68,..s
2 :
b) T?Zt 1<Jt 1) :>?2f0W( )/BW< )dr Jor j=1,2
T2 Etzl(ﬁ )’ ;‘%U—gf W (r)B,;W (r)dr for j=23,57,...s—1
T? S l(ﬁ )= 1% W )YB, W (r)dr for j=4,68,..s
) G.= 02+ ph*i= 2 + 202
where
(—0%p (=%) for j=1,2,3,5,7,.... ,s—1
—20%por (}70‘4) for j =4
c. - —/30%pa (@® —a” + a4 a® —a+1) for j=6
T —V30Ppa(af 4+’ +af +a’+a+1) forj=8
—\/382}904(04 V3a™ + 3a8 — 2/30° + 4a* — 24/3a® +3a—\/_a+1) for =10
| —V30%pa (0 + v3a™ + 308 + 2v/30” + 4a* 4+ 2v/30% +30” + VBa+ 1) for j =12

Proof. See appendix.

Using Lemma 2 it is now straightforward to show the following main theorem.

Theorem 3. Given the assumptions of Lemma 1 the t-ratios from the auxiliary
HEGY regression Agzy = Y ] | 525, | +uj = z7w4u] have the distributions
fd W(r)’Bde(rHWLT—Q
s —>
T () ea(3E)) (1 woyB W)

0‘

W () B AW (r) /5L

J \/s/2<1+p<0—5)2%+2<%)2> (fo V\)/C(‘) 'B;wW(r)dr)'”
Iy W(r)’Bde(r)+\/§;§-

for =12

/2

for =357 ..,s—1

c) lrs = or j =468, ... s
) 5/2<1+p(ai)2f:—33+2(%)2>W(fol W(r)Bj_1W(r)dr)'/? for

_ 1 2 2 -
d) Fraqes, =3 (tW; +t7r;+1) for j=357, ...s—1

Proof. See appendix.

Note that all the statistics presented in Theorem 3 simplify to the distributions
reported in Dickey and Fuller (1979), Phillips (1987), Engle, Granger, Hylleberg, and
Lee (1993), Beaulieu and Miron (1993), Osborn and Rodrigues (1999), and Smith
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and Taylor (1999) for s = 1,2,4,12 when K; = 0727 = 0 for all 7, that is, when there
is no outliers or measurement errors in the model”.

Generally, with noisy data the distributions are seen to be affected through a scale
1/2

2 8 o 2 . ‘*0’2 :
factor, <1 +p (U%) %:32 +2 (ﬁ) > , and a location factor, \/EICJU2 1 (or \/E%)

To discuss the implications we separate the discussion to special cases.

4.3. Measurement errors. In this situation we assume that 0 = 0, 0727 # 0, so
the focus is entirely on measurement errors. As seen, the distribution of lrs is shifted
to the left for j = 1,2,3,5, ..., s—1 whilst for even values of j exceeding two, there is no

location shift. On the other hand, the scale effect tends to narrow the distributions
2

of the ¢ statistics. The larger the noise to signal ratio, (Z—”) , the narrower the

distribution becomes. For j even and exceeding two, the results therefore tend to
indicate that for these values of j, the single t—tests will reject the null hypothesis
less often than indicated by the significance level. For j = 1,2,3,5,....s — 1 the
location and shift effects are of opposite sign and hence it is difficult to predict the
summary effect for a particular value of the noise-signal ratio. However, as this ratio
increases, the location effect is clearly going to dominate and hence leading to inflated
test size compared to the nominal significance level. Too frequently we will thus reject
the seasonal unit root associated with these particular statistics.

It is frequently suggested to test the complex paired unit root via the joint F-
test, Froms, = % (t?r; + ti;ﬂ) ,for j = 3,5,7,...,11. The implications for this test
follow those of Lrs with j odd which have just been discussed. However, because Lrs is
expected to have actual size in excess of the nominal size when j is even, the overall
size distortion of FW?”?H is anticipated to lie between the corresponding sizes of the
single © tests.

It will be instructive to explain the nature of measurement errors in the present
context. In fact, the population error from the HEGY regression will take the form

Agze = e +m — Mg

which is equivalent to an MA(s) process® Agz = (1 + A;B?). For instance, when the

TAlthough it is not obvious from the present exposition, it occurs that ;s will have the same
distribution for j = 3,5,7,...,s — 1, and similarly brs will have identical distributions for 7 =
4,6,8,...,s.

81n terms of the present notation the MA parameter reads

T (<‘W (“4@—3)2))'
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noise-signal ratio ranges from .5 to 1 the associated MA parameter is in the range
.38 to .46 and in the limit as the noise-signal ratio tends to infinity, the parameter
approaches minus one. Traditionally in unit root testing, error autocorrelation is
accounted for either parametrically or semi-parametrically. However, both types of
corrections appear to have especially bad properties when the errors are negatively
autocorrelated®.

4.4. Additive outliers. Turning to additive outliers we assume 0727 =a=0,0+#
0. In this case the distribution results, (both scale and location effects), of the various
statistics are qualitatively similar to those applying for measurement errors. Hence
size will be affected: For 7 = 1,2, and all odd values of j, the test size will tend to
be larger than the significance level, while the size will be smaller for even values of
j that exceed two. Concerning the interpretation, it is also apparent that some kind
of MA errors arise. In particular, we have

Aszt =&+ QAS(St

where the MA parameter is as in the measurement error case with 6%p in place of 0727.
However, because additive outliers are irregularly observed and often of a magnitude
that makes them easily identifiable, simple correction via extended autoregressive
schemes or semi-parametric correction is a less attractive way of proceeding. Instead,
we would prefer to identify the (few) outliers that might exist and subsequently adjust
the testing procedure. We return to this topic in section 6.

4.5. Temporary change outliers. TC outliers occur irregularly, like additive
outliers, but tend to persist for some time. Here we assume 0727 = 0 and hence leaving
@, 0 non-zero, with |a| < 1. Because dynamics is now introduced in the outliers, it
occurs that all statistics will have both scale and location affected. Qualitatively, all
statistics are shifted to the left whilst, quantitatively, the actual shift will depend
upon which statistic is considered. As opposed to measurement errors and additive
outliers we thus have that for TC outliers the size of all tests will be in excess of the
nominal level if the outliers are not being properly dealt with. Hence we will tend to
reject seasonal unit roots too frequently. Again, a moving average interpretation can
be given although the irregular nature of the outliers clearly makes the comparison
less straightforward for empirical considerations.

5. A MoNTE CARLO STUDY

In order to analyze the quantitative implications of our analytical findings discussed
in the previous section a small Monte Carlo study was conducted. The purpose of this

In the limiting case where A\, ~v —1 this is hardly surprising because any test will have difficulties
in identifying a unit root when there is near cancellation of the AR and MA roots of the model.
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study is two fold. First, we want to get an idea of the magnitude of the asymptotic
size-distortions that we know will exist according to the theoretical analysis, and
second, the distortions for finite stretches of data will be of separate interest. To
simplify the presentation of the results, we have limited our analysis to quarterly
data, s = 4. Essentially, the model with quarterly data covers all of the qualitative
cases that follow more generally from the theoretical analysis. The experimental
design is given as follows:

A4yt = &

2t = Yt O + 1y

(1—aB)
where we assume zero initial values and £, ~ N(0,1). Each of the AO, TC and mea-
surement error models are analyzed separately to ease the comparisons and in order
to discriminate between the implications of the various types of data irregularities.
From our theoretical findings, AO’s and measurement errors have identical asymp-

9n

2 2
= ) =p ( o ) . However, because time series
€

totic size for a fixed value of s = ( o
contaminated with either measurement errors or AQ’s appear to be much different in
nature, c.f. section 2, we decided to conduct the simulations for both cases. For the
additive AO model parameter values were chosen such that p0*> = {.4,.8}. It occured
that different values of p and 6, yielding a fixed value of p?, would entail quite similar
distributions even in small samples. Hence we only report the values for fixed values
of ph?. For comparison with the measurement error model we considered the noise
generating mechanism 7, ~ N (0, 0727 = p§2). The parameters of the additive outlier
model were further extended to allow for TC outliers. In particular, we chose the
following parameter values of the autoregressive parameter: o = {.25,.75}. All ex-
periments were conducted for sample sizes of T = {48,100, 200,400} and the number
of Monte Carlo repetitions was 1000. The RNDN and RNDU routines of the Gauss
programming language were used to generate the data series.

For each Monte Carlo repetition the various HEGY test statistics ¢, tr,, trg, try,s
Frorys Fromame, and Iy oy 2o 2, were calculated and the rejection frequencies were
subsequently calculated. Table 1, panels A and B, respectively display the rejection
frequencies for the measurement error and AO models. It appears that although
measurement errors and AQ’s of the specified types are rather different in their ap-
pearance, the implications concerning finite sample distributions are rather similar
as we also know would be the case asymptotically. As seen, if no proper account
is made to adjust for the outliers or noisy errors, then the size distortions can be
huge in some cases. The finite sample distortions appear similar for the trs and r4
statistics which is suggested by the asymptotic results as well. Also, according to the
asymptotic formulae, the tr4 statistic will have an actual size which is smaller than
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the nominal size. Because the 74 4 test is constructed from a combination of an
over-sized and an under-sized test statistic, it is not surprising that the overall size
distortion is a convex combination of the simple t—test sizes.

The results for the TC model are displayed in Table 2. For moderate values of
the outlier persistence parameter, (o = .25 more particularly), it is seen that the size
distortions are much similar to when « = 0. However, the distortions of the L4 test
appears to be somewhat moderated and as a result size distortions for Fra x4 tend to
worsen compared to the AO case. Generally, the actual sizes are seen to become far
larger when the persistency parameter increases.

Insert Table 1 about here

Insert Table 2 about here

6. IDENTIFICATION AND CORRECTION FOR OUTLIERS
6.1. Correction for outliers. As discussed in the previous section both mea-
surement errors and outliers give rise to (negative) moving average errors, and hence
any procedure attempting to adjust for autocorrelation may be considered in the
correction for noisy data. However, as is well known from the unit roots literature,
the cure is especially problematic when autocorrelation exhibits negative moving av-
erage behavior. Parametric corrections via long autoregressive approximations, as
suggested by Said and Dickey (1984), may cause practical problems because a large
10 Similarly, with
respect to the semi-parametric tests of the Phillips-Perron type, the results of Schwert
(1989) generalize to seasonal unit root testing, (Breitung and Franses (1999)), and

number of lags may be necessary to effectively whiten the errors

hence, although negative autocorrelation can be allowed for in theory, serious size
inflation of the tests may still occur in finite samples.

For (zero frequency) unit root models some successful attempts have been made
to further adjust the Phillips-Perron statistics to account for the difficulties with MA
processes, see Stock (1990), Perron and Ng (1996), and Ng and Perron (1996). In
particular, Ng and Perron (1997) use a combination of GLS detrending and semi-
parametric correction for nuisance parameters. Vogelsang (1999) shows how their
approach can be used in the context of additive outliers; in fact, he shows that the
Ng and Perron modifications of the Phillips-Perron tests are rather robust to the
presence of additive outliers.

In principle, the Ng-Perron idea could be generalized to seasonal data. However,
such an extension is not straightforwardly conducted. Also, one might expect that

10Said and Dickey (1984) show that if the order of the autoregression is 0,(7"/?), the influence
from MA errors can be effectively annihilated asymptotically.
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the potential allowance for seasonal dummy variables for instance, may considerably
complicate the analysis. It is beyond the scope of the present paper to solve these
problems and we leave it for future research to develop modified semi-parametric tests
for seasonal unit roots that are robust to negative moving average errors, measurement
errors, and various types of outliers.

As has been demonstrated, the most serious problems with noisy data occur when
the measurement error component has a relatively large variance or if the outliers are
sufficiently large or frequent. In applied work, it might be hard to identify when there
is a problem. What we might expect, however, is that if the outliers are sufficiently
large, we can hope to identify them and correspondingly can take some action towards
reduction of their effect. In Franses and Haldrup (1994) it is suggested to augment the
Dickey-Fuller regression with an appropriate number of dummy variables associated
with the outlying observations. In so doing, the resulting test statistics can be shown
to follow the distributions that would apply if no outliers were present. Of course,
this presupposes that the outliers are satisfactorily identified.

A similar approach can be pursued when the focus is on seasonal unit root testing.
Assume that g additive outliers have been identified for the time periods Ty, 77, ..., T
An appropriate way of reformulating the HEGY auxiliary regression is given by:

s—1 s k stk q
Az = us—l—z uijt+ﬂt+Z szj’t,l—l-z oszszt,j—l—Z Z fyijD(Tg)t,i—l—ut. (16)
Jj=1 j=1 j=1 =0 j=1

This regression is somewhat more general than previously assumed. In particular, as
opposed to (9) we allow for deterministic regressors such as a constant and seasonal
dummy variables (and hence allowing for seasonally varying intercepts), as well as for
a time trend!!. Moreover, since the order of the autoregressive process for z; might be
larger than s, the auxiliary regression is augmented by k lags of Agz;. The presence
of outliers is accounted for via the dummy variables D(Tg)t, for j =1,2,...q, and lags
thereof; the lags are included due to the presence of autoregressive lags in the model!2.
In a similar fashion (16) can be augmented with dummy variables accounting for TC
outliers. Compared to (16) this will require further lags of (or clusters of) the outlier
dummies to capture the temporal dependence.

6.2. Identification of outliers. It remains to suggest how outliers can be iden-
tified to conduct HEGY tests based on a regression such as (16). A large literature
exists which focuses on this problem for univariate time series models. In much of

' This does not affect the qualitative conclusions of the previous discussion. In practice, a range
of deterministic regressors should be considered in the auxiliary HEGY regression.

2Tn case the outliers overlap, one should naturally exclude the superflous regressors to avoid
perfect collinearity of the regressors.
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this literature the approach is to estimate a fully parameterized ARMA model and
constructing supremum ¢ type of tests for the presence of an outlier across all possi-
ble dates in the sample, see e.g. Tsay (1986), Chen and Liu (1993), and Franses and
Haldrup (1994).

In this paper we take a different route of departure in the detection of additive or
temporary change outliers, and in so doing extend the analysis of Vogelsang (1999).
The suggested outlier detection procedure is fairly simple to implement and it does
not require any knowledge about the parametric form of the model. Neither is it
required to estimate unknown serial correlation parameters. The idea is to test for
additive outliers, one at a time, and sequentially to remove these from the sample as
they are identified. The test relies on an auxiliary ordinary least squares regression
which in the most general case takes the form

s—1
a=0+Y 8;Dj+ Bt +0D(Ty), + 5 (17)
G=1

where D(Tp) is a dummy variable with the value one in period Ty, and is zero oth-
erwise. Three subcases will be considered: a) model with constant, b) model with
constant and seasonal dummies, and finally ¢) model with constant, seasonal dummies
and trend. Under the null hypothesis # = 0 and hence, abstracting from measurement
errors, Yy = 2. Define A = % to be the fixed proportion of the data, where a possible
outlier is considered. For the asymptotic theory to work we assume this number to

be a fixed constant!®

. The test statistic 7 is based on the supremum value of #4(7p)
from the regression (17) for all possible dates Tj in the sample. We have the following

result:

Theorem 4. Assuming data is generated according to the process Ay, = £, and
the auxiliary regression (17) is conducted with a particular choice of deterministic
regressors (constant, seasonal dummies, and trend). Then for T'= Ns — oo

s/2el W*())
fol WH(r)yW+(r)dr

T = sup |t(To)| = sup
To A

where ey, k=1,2,..s, is a vector selecting (any) element of W*(\) = (W (r), W5 (r), ..., Wx(r))’
which consists of independent Brownian motion processes appropriately corrected for
deterministic regressors.

Proof. See appendix.

BThis is a standard assumption in the unit root literature allowing for structural breaks and
outliers.
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A number of observations are worth mentioning in relation to the asymptotic dis-
tribution reported in Theorem 4. First, note that in the distribution above e}, W*(\)
selects the k'th row of W*(\) where k indicates the season in which the outlier
might occur. However, because the single elements of W*(\) are uncorrelated, any
row can be picked and hence the limiting distribution will be unaffected by the season
in which the outlier is assumed'. This is an intuitively reasonable property. The
asymptotic distribution will depend upon the frequency of the observations, s. Also,
the distribution is affected by the deterministic regressors included in the auxiliary
regression. The precise way the Brownian motion expressions will be affected in the
presence of constant, seasonal intercepts, and trend can be found in e.g. Smith and
Taylor (1999).

Tables 3-5 report the asymptotic and finite sample critical values for s = 2,4, and
12 and for the three cases with additional deterministic regressors.

Insert Table 3 about here
Insert Table 4 about here

Insert Table 5 about here

The outlier detection procedure can be accomplished according to the following
steps.

1. First the T—statistic is calculated for the entire sample. If 7 exceeds a particular
critical value an outlier has been detected at time argmaxy, |t(7p)|. The outlier is
subsequently dropped from the sample.

2. The regression (17) is re-conducted but now on the reduced sample. If a second
outlier is detected, it is removed from the sample as well, and yet another iteration
is performed.

3. The procedure continues until no outliers occur to be left.

4. Given the outliers that have been detected, the auxiliary HEGY regression (16)
is conducted upon which inference about unit roots is subsequently drawn.

The procedure outlined above has a number of caveats as Vogelsang (1999) rightly
argue. First, the iterative nature of the algorithm will obviously affect the overall
size in the outlier detection phase of the procedure. And secondly, the maintained
assumption of a seasonal unit root is likely to affect the properties of the outlier

Hence, in the expression for the distribution of the T statistic, we can replace e, W*()\) by
Wr(A), for instance.
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detection procedure when, in fact, one or several of the unit roots are absent. Also,
depending upon the sign of the outliers and the interaction with the season in which
they occur, it might be difficult to identify some of the outliers. In order to examine
these potential problems, a small Monte Carlo experiment was conducted for the
situation with quarterly data, s = 4.

Insert Table 6 about here
Insert Table 7 about here
Insert Table 8 about here
Insert Table 9 about here

Insert Table 10 about here

Table 6 demonstrates the properties of the HEGY testing procedure when a single
additive outlier of the magnitudes # = {5,10,15} occur for sample sizes of T =
{48,100,200}. It is assumed that the outlier appears in the middle of the sample and
that the supremum 7 statistic is used to identify the outlier. As seen, the largest size
distortions occur when the outlier happens to be large in magnitude. However, when
the outlier is identified and subsequently corrected for, the inflated size is effectively
reduced to something near the nominal significance level.

In Table 7 a similar experiment is conducted, but now the additive outliers occur
systematically in accordance with the setup in section 2 (and elsewhere in the paper).
Outliers of magnitude +60 = {5,15} occur with probabilities p = {.01,.05} and for
the same sample sizes as given above. Overall, the HEGY-tests appear to be seriously
size distorted when no correction is made with respect to the presence of the outliers.
When the outliers are corrected for, (given that they are identified by use of the
supremum 7 statistic), some improvement of the sizes will occur for large outliers
(0 = 15), 1.e. for @ = 5 there is hardly any improvement. This could reflect that when
the outliers are relatively small, then they might be hard to identify and hence the
size distortions tend to persist after the data has been through the outlier detection
filter. In other words, we might expect the supremum 7 test to have low power when
the additive outliers are small in magnitude.

Finally, Table 8 shows the experiment similar to the setup of the previous exercise,
but now the outliers are allowed to persist with a = .75. For this case there is only
very minor improvements when correcting for outliers. In fact, there is indication
that in many cases the size distortion actually deteriorates. This is especially so when
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addressing the 74 statistic. The reasons for this could be that when the outliers are
actually identified, then the subsequent reduction in available observations is reduced
so much that the finite sample distribution of the test statistic will change. Hence,
when TC outliers are present or otherwise many outliers appear to be present because
their probability of occurence is high, then our simulations seem to indicate that the
suggested procedure will suffer from degrees of freedom problems that introduce new
size difficulties. Hence outlier correction might be infeasible if too many outliers
appear to exist.

In the detection of outliers via the supremum 7 test one might fear that too few
outliers are identified because the seasonal fluctuations and the sign of the outliers
coincidentally interfere. One way to adjust for this is to identify outliers by use of the
7 statistic applied to the filtered series S(B)z; which equals (1+ B+ B2+ B?)z in the
quarterly case. The resulting 7—statistic will thus follow the distribution reported in
Vogelsang (1999).

In Tables 7 and 8 we have deliberately excluded lags of A,z; in the auxiliary
HEGY regression because we know the associated coefficients are zero (provided the
outliers are correctly identified and removed). However, as we have previously argued,
additive outliers (and TC outliers, in particular) introduce dynamics in the model and
hence, to the extent that the outlier detection appears insufficient, a combination
of outlier correction and augmentation og the HEGY test might show useful. The
augmentation counterparts'® of Tables 7 and 8 are displayed in Tables 9 and 10. Also,
the identification of outliers is now based on the transformed series S(B)z. As it can
be seen, the combined effect of augmentation and outlier removal helps improving
the size properties of the tests remarkably. In comparing Tables 7 and 9 (respectively
8 and 10), it can also be seen that the augmentation captures relatively more of the
size-distortion compared to the case with outlier correction. This applies to both the

AO and TC cases.

7. EMPIRICAL APPLICATION
In order to illustrate the suggested procedure for outlier detection and correction, we
analyze the time properties of two economic variables: the Brazilian inflation rate and
the Production Index of the US Transportation industry. For the Brazilian inflation
rate the data is sampled monthly and covers the period 1974:1 to 1993:5. The sample
corresponds with the data used in Cati et al. (1998), where an exact description of
the data sources can be found. For the Production Index of the US Transportation
industry, the quarterly data covers the period 1934:1 to 1991:2. A description of this
Index is given in Cooper (1998), although note that the author uses the monthly
version of the index. We have graphed the evolution of the two variables in Figures

15See the note of Table 9 for details on how the augmented HEGY regression was truncated.
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3 and 4. It is quite remarkable that a simple visual inspection of these figures allow
us to conclude that the presence of some outliers seems to be a sensible hypothesis.
Thus, a priori we could expect that the use of standard methods to determine the
time series properties, the HEGY tests for example, to be distorted by their existence.

Let us begin the analysis by using standard methods, that is to say, those which
do not account for the removal of the possible outliers. Given that the two variables
are seasonal, the use of the HEGY-type tests is advisable. In Table 11 we report
the results for the Production Index of the US Transportation industry, obtained
by using the quarterly version of the HEGY test. Table 12 presents the monthly
version of these statistics when applied to the Brazilian inflation rate. In both cases,
an intercept, a deterministic trend and the corresponding seasonal dummy variables
have been included. Finally, we also had to include some lags of the seasonally
differenced variable in order to remove the possible autocorrelation pattern. Although
a number of methods for the selection of the lag truncation parameter are available,
we have chosen to use the k(t) procedure recommended in Ng and Perron (1995). This
method involves a general-to-specific strategy, starting with a predetermined value of
the lag truncation parameter (kmaz) and then testing the significance of the single
coeflicient associated with the last lag until a significant statistic is encountered. The
single significance of the lags is analyzed by comparing their ¢-ratios with the value
1.65.

When we analyze the first row of Table 11, we can clearly reject the presence of a
unit root at the non-seasonal frequency for the production series, whilst more evidence
is found in favor of the seasonal unit root hypothesis. However, we should take into
account that these results may be influenced by the presence of some outliers and,
therefore, it is possible that the rejection of the non-seasonal unit root null hypothesis
to have a spurious nature. To confirm this point, we have used the statistic 7 proposed
in the previous section in order to determine whether some outliers are contaminating
the evolution of this variable. Thus, when using the liberal 10% significance level for
the determination of the number of outliers, then the statistic 7 finds 11 outliers,
all of which being related to the 1942:4-1945:2 period. The economic interpretation
of this result is easy to understand, in that they are clearly related to the increase
of the economic activity of the Transportation industry during the US participation
in the World War II. Therefore, we should remove the presence of these outliers in
order to carry out a proper inference on the time properties of this variable. To that
end, we include impulse dummy variables, each of which is associated with the data
points where the 11 outliers were found; compare (16). Once the presence of these
outliers is removed, the conclusions on the time series properties of the variable are
quite different in that now we cannot reject the non-seasonal unit root hypothesis.
The presence of a unit root in the seasonal frequency is still accepted.

When analyzing the Brazilian inflation rate, qualitatively similar results are ob-
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tained. First, the application of the monthly version of the HEGY tests (without
accounting for the presence of outliers) lead us to conclude that there is a unit root
at the non-seasonal frequency'®, whilst the presence of unit roots in all the seasonal
frequencies is not so clear. For example, the statistics I g, Fy10 and Fij 19 can reject
the seasonal unit root hypothesis for their corresponding frequencies. By contrast,
we accept the presence of a unit root for the rest of the frequencies. Once again, we
should interpret these results with caution, as they may have a spurious nature due
to the influence of some outliers which have not been born in mind. To determine the
possible existence of these outliers, we again apply the 7 statistic. When using the
liberal 10% significance level, the 7 statistic finds 5 outliers, related to the 1989:9-
1990:1 period. This coincides with the results presented in Cati et al. (1999), where
the seasonal component is not taken into account. As it is explained in greater detail
in their paper, these outliers are related to the period of very rapid inflation growth
previous to the implementation of an inflation stabilization plan; see their paper for
details. The removal of the outlier influence clearly changes the results obtained from
the use of the HEGY tests. As we can now observe in the second row of Table 12,
the HEGY tests do not provide any evidence against the seasonal /nonseasonal unit
root hypothesis for any of the different frequencies.

In summary, the analysis of the two previous variables alerts us on the distor-
tionary effect on seasonal /nonseasonal unit root inference caused by the presence of
outliers.

Insert Table 11 about here
Insert Table 12 about here

Insert Figure 3 about here

Insert Figure 4 about here

8. CONCLUSION
Data irregularities in economic time series are probably more the rule than the ex-
ception. As has been demonstrated in this paper, measurement errors and outliers
of various types introduce a particular form of dynamics - negative moving average
errors - that appears to be particularly difficult to deal with when using standard

6This contrasts the finding by Cati et al. (1999) who rejected a zero frequency unit root for
the full sample when no outlier correction was made. A likely explanation behind this difference
could be the fact that the dynamics (especially the seasonal properties of the data) is dealt with
differently.
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procedures in testing for unit roots at both the seasonal and the non-seasonal fre-
quencies. We have given some suggestions to deal with noise in the form of large
additive or temporary change outlying observations. In particular, a combination of
augmented HEGY tests and outlier removal, where it is possible, will help improving
the size-distortions that otherwise will be present. However, this does not change the
fact, that minor outliers and measurement errors, that we cannot generally identify,
will bias standard tests and existing procedures are not well designed to account for
this caveat. On the other hand, if (large) outliers appear too frequently the correction
for the outliers can lead to serious ”degrees of freedom”-difficulties which will make
outlier correction infeasible in practice.

At the zero frequency, unit root tests that are very little sensitive to negative mov-
ing average autocorrelation, measurement errors, and outliers have been developed
by Ng and Perron (1997). One suggestive route for future research is to generalize
these tests to the seasonal frequencies to avoid, or at least to reduce, the problems
described in the present paper.

9. APPENDIX A
DEFINITION OF B MATRICES USED IN SECTION 4.

The B matrices displayed below correspond to the relevant linear filters of the
23, ; regressors and whose exact form can be found in Hylleberg, Engle, Granger and

Yoo (1990) and in Beaulieu and Miron (1993).

Bi=), A for s =1,2/4,12
By =30 (-1)'A, for s =2,4,12
B; = Efﬁ;l<—1 HAgiya for s =4,12

B, = Zfﬁfl(—l)iHAQiH for s =4,12

Bs = —3(02 A —330 Ag)

B¢ = _§<A1 — Ay + AL — AsHA7—As+A— An)

3O 0 Aniit = Do Avia +33 1 (—1) Asg)

Bg = —@(Al + Ay — Ay — A+ A7 A — A — Ay)

By = —%(\/§A1 — Ay + Ay — VBAH+2A6 — VBA; + Ag— Ajg +V3A — 2A45)
By = _%<A1 — V3Ay +2A5 — V3A+As — Ay +V3As — 2A0 + V3A0 — Ayy)
(\/§A1 +Ay— Ay —V3A5—2A6 — V3A7 — Ag + Ay +V3BA, + 2A45)

(A1 + V3As +2A3 + V3ALH+As — Ay — V3Ag — 2A9 — V3A g — Aqy)

e
I

N[N

10. APPENDIX B
PROOFS OF LEMMAS AND THEOREMS.
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The proofs are essentially based on a combination of Lemma A.1 of Osborn and
Rodrigues (1999) and an extension of the Lemma provided in Franses and Haldrup
(1994). First, we need the following Lemma:

Lemma 5. For the process v, = ﬁét + n, which satisfies the conditions exposed
in Lemma 1, it follows as T’ — oo

a) T E;:l 5 x=p k>0
b) T Zt:l 6tfk6t7j =0 k 7é ]
c) T Ethl 6t kA0 = —p k=s
d) T 23:1 6t 1 Asyr = 0p(1) k=12 ..
e) T3 zT:tT:l 8¢ Ytk = 0p(1) 5, k=12 ..
f) T Zt:l ytkas(st = 0p2<1) k=12..
k s—k
g) T 23:1%ka5%=> % k=12 ..s5s—1
h) T ZtT:l Ve kAU = % - 0727 k=s

Proof. a) Welet §, = 6 46, where § = 1 with probability p/2 and §, = —1 with
probability p/2. Hence it follows that limg . 7' 307 62, =E(62) =E( (65 + 6;)2) =
E(((SZ“)Q + (6;)2 +2616,) = 2p/2 = p.  The result b) follows a similar line of
proof: E(6; x6r;) = limra T 1YL 8 w6y =B((67, +6.) (65, +6.,)) =
E((8¢8e5) + (8o y) + (8i-4bij) + (8-4biy)) = /2= p/2+p/2 = p/2=0.

The limit ¢) follows trivially given b). Because the single &, s are independently
distributed, the result d) follows because Zthl 1Dy = Zthl O¢_res asymptotically
will follow a Gaussian distribution with mean zero and variance po?T’, hence

T
1
\/_T Zétkasyt = N(O,p0'2>.
t=1

Next, we see that e) applies since Zthl Ot yr—r 1s also a Gaussian process in the
limit. It is straightforward to see that the mean is zero and the variance is given by

p(;?% and hence as T — o0

T
1 1
W Z (St,jyt,k = N(O, gp0'2).
t=1

f) follows because 7! Zthl Y wD6 =T 1 Zthl £t 10t = 0,(1) according to d).
g) and h) are given as follows.

T
E(”Ut,kAS”UQ = lim Til UtkasrUt =

T— 00
=1

0 0
') <<1 “ b Ot + mk> <mA55t + Asm>> .
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Since ¢; ; and 7, ; are uncorrelated for any value of i, j we can focus on each term
constituting v; in separation. First we note that F(n, Asn,) = —0727 for k = s and is
zero otherwise. With respect to the ¢; terms we get by using a) — ¢) of Lemma 5

p((orer) (ame)) -
() G 5o

6 pa® B 6*pa 92
 l1—-a? 1-—a? 1-— a2
This yields the desired results |

Proof of Lemma 1.

We now return to the proof of Corolloray 1. In fact, results a) — ¢) follow straight-
forwardly from the analysis of Osborn and Rodrigues (1999). Using the notation of
section 3, we see that

N

T
1 1
— %y = s Y Wk +vg)
A -

N 1
1 O ,
= W tgl Ye—k + Op<1) = S?’T/O 1 AkW(T’)d’f'

and hence the type of outliers considered are of an order in probability that makes
them have no impact on the limiting results. The results for b) and ¢) follow accord-
ingly. See Osborn and Rodrigues for a full proof.

With respect to d) we use the Lemma proven above jointly with the results of

Osborn and Rodrigues (1999), Lemma A.1. We have that

T T
1 1
T Z 2 Dz = T Z (ytfk + v g) (€t + Aguvy)
t=1 t=1
1 <& 1 &
= T Z Ykt + T ; (VAN IAES Op<1)
T T
1 1 05, OAS 1
= F vt 73 (1) (2ag) 7 b+ anlh
t=1 t=1

0_2 1 82p<Oék _ @57k> )
— 0 ]k
s Jo 1—a? K
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where [;, = 1 for k = s and is zero otherwise. |
Proof of Corollory 2.

The proof of a) and b) for the case with no noise is given in Osborn and Rodrigues
(1999). Using the same line of arguments as in the proof of Corollory 1, result b)
follows immediately. In a) the task is to show how the localization parameters K;
appear. Naturally these parameters will depend upon which filter 2%, | = %(B)zt is
applied to the original series, c.f. (14) and (15). For instance, when considering the
filter 25, ;=Y. | B'zy = (B+B*4+..+B%)zs =2 1+ 29+ ...+2 sfor s =1,24
and 12, it follows that

1 T 1 T s .
TzzigtflAszt = TZZ <BZZt> Aszt =
t=1

t=1 =1

1
= 7 Z (Y1 + Yot ...t yes)ee +

2 T s
TZZ <1—aB " Z> <1—ozBA56t> +%Zznt1Asm+0p(1)

t=1 =1 t=1 =1

= —5/ W (r)B1dW(r) + Ky — o}
s Jo

from which it can be seen that

T s
o1 0
Ka Tlgrc}o ZZ<1—@B > <1—ozBA56t>

Also note that

lim _ZZTH Ay = hm —Zm S(=np ) =—0

T*)OO
t=1 =1

In general, the location parameters are calculated according to the following formula:
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where the b;; coefficients are defined from (14) and (15). The second location param-
eter, which we may denote k;, can be deduced from the expression

jlljgo T Z Z bijng Dsn; = bsy

t=1 =1

Note that by; is the coefficient associated with B?® in the filter ¢j(B) where thfl =
¢;(B)z. The remaining IC; coefficients can thus be found by direct application to
the filters described in Appendix A.

It remains to prove ¢). It will be shown in the proof of Theorem 3 that the
estimates 7t° given in (10) are consistent. Hence 0 = 7 Et L U? is a consistent
estimator of 02, and

_ 0 ?
jliirgooi = FE <<5t—|— 1_aBA55tk+Asntk> )

2 —
= ol+0°p;

’ 2
5 + 2077.

This ends the proof of Corollory 2. |

Proof of Theorem 3.

The proof is straightforward given Lemma 2. It follows from (10) that

T T T -1 1
~ . 2 2
Tn® = diag { Z th ; Z (23)" oy T2 Z (25) } (f Z Zf/Aszt>
t=1 =1 =1 t=1
(18)
and hence ©° is consistent even when outliers and measurement errors are present.

The distribution of the t—ratios (11) now follow directly from Lemma 2, the contin-
uous mapping theorem, and the formula

T7

; 172"
s (ANT s /
u \ T8 2t=1 %t

Proof of Theorem 4.
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Let y; denote the residual series from the projection of y; on a constant, seasonal
dummies, and possibly a time trend (in fact, any combination of these deterministic
regressors may be considered). Similarly, we let D*(1y); denote the projection resid-
uals of the outlier dummy. According to well-known results using the Frisch-Waugh
lemma, see Smith and Taylor (1999), y; will tend to appropriately detrended and
de-seasonalized Brownian Motion processes W*(r) rather than W(r), the limit of
the process 1 after appropriate scaling.

The least squares estimate of 6 will be diverge because essentially the regression
(17) is a spurious regression. In particular, we have that

T
~ *D*('T
> i1 D*(To)3
since
d 1 o
-1/2 E * Ty _mp=1/2, % __ IQk ol W*
! t—1 Do)y =T, = (Ns)l/QekS[ﬂTlN] = 5z *

and Zthl D~ (To)f = 1. In the above expression e is § X 1 and selects row number
k = To — [2] of the matrix W*(r) = (W (r), W5 (r),.... W (r)) ([ . ] takes the
integer value of its argument), see the results (6) and (7) presented in section 3.
Also, we have defined A = %

Now the t—ratio of ¥ for a zero coefficient null will have the distribution

Y TS D (T

1/2

~9 ~
Ty 4 T S D) = 2T Sy DA (To)| S D (Ta)?

T Yy D (Ty),
ST 172
[Tﬁ Do Ui+ op(1)
s1/2el W*()\) ‘
fol WH(r) W+ (r)dr

The denominator of the expression follows straightforwardly from Osborn and Ro-
drigues (1999), Lemma A.1, applied to the ’corrected’ data y;. Hence the limiting
result of Theorem 4 follows accordingly by use of the continuous mapping theorem.

1/2
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TABLES

Panel A: Measurement errors

T

t7r411

tﬁg
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F44

T3,

&
04

0.8

48
100
200
400

48
100
200
400

0.097
0.121
0.145
0.155

0.156
0.216
0.224
0.252

0.101
0.133
0.147
0.175

0.145
0.208
0.248
0.260

0.133

0.17
0.157
0.175

0.24
0.299
0.293
0.300

0.015
0.009
0.009
0.010

0.009
0.007
0.006
0.003

0.072
0.103
0.081
0.097

0.135
0.183
0.158
0.181

Panel B: Additive Outliers
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0.105
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0.12
0.134
0.162

0.153
0.215
0.222
0.256

0.145
0.168
0.170
0.173

0.242
0.287
0.296
0.287

0.017
0.010
0.009
0.012

0.014

0.01
0.006
0.005

0.087
0.100
0.100
0.093

0.131
0.178
0.186
0.178

30

Table 1. Rejection frequencies of the HEGY tests for quarterly data with measure-
ment errors and additive outliers. Data is generated according to the data generating
process z; = yt—l—(lf;aB)ét—l—nt with Ay, = ¢, « = 0,1, ~ N(0,07), and g, ~ N(0,1).
The number of Monte Carlo repetitions was 1000 and no standard errors exceeded

0.015.
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Temporary Change Outliers
pgz o T bra bra brd bra Fﬁgﬂri
04 025 48 0.094 0.112 0.149 0.027 0.090
100 0.102 0.139 0.170 0.019 0.113
200 0.146 0.148 0.178 0.024 0.109

400 0.155 0.172 0.180 0.017 0.111

075 48 0.103 0.146 0.182 0.057 0.165
100 0.114 0.188 0.208 0.079 0.198
200 0.190 0.193 0.241 0.106 0.213
400 0.199 0.218 0.239 0.088 0.221

0.8 0.25 48 0.147 0.180 0.243 0.024 0.162
100 0.193 0.228 0.301 0.035 0.205
200 0.235 0.232 0.313 0.029 0.217
400 0.243 0.270 0.308 0.024 0.217

075 48 0.162 0.260 0.293 0.106 0.277
100 0.228 0.297 0.382 0.194 0.368
200 0.295 0.314 0.397 0.253 0.402
400 0.312 0.348 0.417 0.267 0.424

Table 2. Rejection frequencies of the HEGY tests for quarterly data with tem-
porary change outliers. Data is generated according to the data generating process
e = Yy + uf;aB)ét with Ayy; = &4, and ¢ ~ N(0,1). The number of Monte Carlo
repetitions was 1000 and no standard errors exceeded 0.015.
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Probability of a smaller value
T 1.0% 2.5% 5.0% 10.0% 50.0% 90.0% 95.0% 97.5% 99.0%
Constant
48 1.29 135 140 1.49 1.99 2.64 2.86 3.07 3.35
100 1.40 147 154 1.64 2.12 2.73 2.94 3.14 3.39
200 1.50 1.7 165 1.75 2.21 2.80 3.00 3.18 3.44
400 1.57 164 1.73 1.83 2.28 2.85 3.05 3.23 3.44
o 163 1.70 179 1.90 2.35 2.91 3.11 3.30 3.53
Constant and seasonal dummies
48 1.78 186 1.93 2.02 2.44 3.10 3.34 3.60 3.91
100 1.84 192 2.00 2.09 2.49 3.10 3.33 3.53 3.83
200 1.88 196 204 2.14 2.54 3.12 3.33 3.55 3.80
400 192 199 2.07 217 2.58 3.16 3.38 3.57 3.85
oo 194 203 210 2.20 2.61 3.20 3.41 3.63 3.89
Constant, seasonal dummies, and trend
48 1.78 186 1.94 2.03 2.46 3.12 3.38 3.62 3.99
100 1.84 193 2.00 211 2.52 3.15 3.36 3.60 3.88
200 1.88 1.97 205 2.16 2.58 3.17 3.38 3.60 3.86
400 1.92 200 210 2.20 2.62 3.21 3.42 3.62 3.88
oo 195 201 212 2.23 2.66 3.25 3.46 3.64 3.91

Table 3. Asymptotic and finite sample critical values of the supremum 7 statistic

for bi-annual data (s = 2). The critical values were computed from 20,000 replications
of the data generating process Agy; = ¢ with &, ~ N(0,1).
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Probability of a smaller value
T 1.0% 2.5% 5.0% 10.0% 50.0% 90.0% 95.0% 97.5% 99.0%
Constant
48 153 155 1.69 1.77 2.10 2.61 2.81 3.04 3.27
100 1.68 1.75 182 1.91 2.25 2.79 2.99 3.16 3.42
200 178 1.85 1.92 2.01 2.37 2.91 3.11 3.30 3.58
400 1.86 194 2.01 2.09 2.47 3.02 3.22 3.41 3.66
oo 193 2.00 209 218 2.57 3.12 3.31 3.50 3.76
Constant and seasonal dummies
48 192 201 2.08 218 2.64 3.37 3.64 3.87 4.24
100 2.03 211 218 2.28 2.72 3.40 3.65 3.88 4.19
200 211 219 227 235 2.78 3.42 3.65 3.90 4.15
400 2.16 225 232 242 2.84 3.47 3.70 3.91 4.16
oo 220 228 236 2.46 2.89 3.51 3.73 3.94 4.19
Constant, seasonal dummies, and trend
48 193 202 209 219 2.64 3.36 3.64 3.90 4.22
100 2.05 213 220 230 2.72 3.39 3.64 3.89 4.16
200 212 2.20 228 2.37 2.78 3.43 3.67 3.88 4.15
400 2.19 226 234 243 2.85 3.48 3.71 3.92 4.20
oo 223 231 239 248 2.89 3.51 3.73 3.92 4.20

Table 4. Asymptotic and finite sample critical values of the supremum 7 statistic

for quarterly data (s = 4). The critical values were computed from 20,000 replications
of the data generating process Ayy; = ¢ with &, ~ N(0,1).
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Probability of a smaller value
T 1.0% 2.5% 5.0% 10.0% 50.0% 90.0% 95.0% 97.5% 99.0%
Constant
48 1.81 188 1.95 2.04 2.45 3.05 3.27 3.50 3.72
100 1.97 205 212 220 2.62 3.23 3.44 3.63 3.84
200 2.11 218 226 2.35 2.79 3.41 3.63 3.82 4.07
400 2.22 230 2.38 247 2.91 3.55 3.76 3.97 4.22
oo 232 240 248 2.58 3.03 3.69 3.91 4.11 4.34
Constant and seasonal dummies
48  2.02 210 219 230 2.80 3.61 3.92 4.18 4.57
100 2.23 232 240 250 3.00 3.74 4.00 4.30 4.59
200 2.39 248 256 2.67 3.14 3.87 4.12 4.36 4.68
400 2.50 259 2.67 277 3.24 3.96 4.19 4.44 4.69
oo 259 2,69 276 2.86 3.34 4.03 4.26 4.50 4.75
Constant, seasonal dummies, and trend
48 2.02 211 220 231 2.82 3.63 3.91 4.24 4.54
100 2.23 233 241 252 3.01 3.77 4.03 4.26 4.60
200 2.39 248 256 2.67 3.14 3.87 4.12 4.35 4.68
400 2.51 260 2.67 277 3.24 3.93 4.17 4.43 4.66
oo 259 270 276 2.86 3.34 4.02 4.26 4.51 4.77

Table 5. Asymptotic and finite sample critical values of the supremum 7 statistic

for monthly data (s = 12). The critical values were computed from 20,000 replications
of the data generating process Aoy, = £, with g, ~ N(0,1).
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Single fixed Outlier

HEGY-test (non corrected) HEGY-test (corrected)
0 T twt ey leg tnt Pt lwt teg leg Gt P

5 48 .043 .065 .077 .007  .098 027 036 .029 .022 .049
100 .072 .084 .092 .015  .099 060 .068 .077 .022 .085
200 .059 .074 .063 .027  .059 057 073 .062 .029 .062

10 48 .138 .146 .337 .000  .357 022 .020 .015 .036 .038
100 .202 .230 .365 .000  .329 037 044 .036 .041 .055
200 .159 .174 .220 .005  .178 071 .093 .088 .028 .078

15 48 .256 .274 .678 .000  .688 022 .020 .015 .036 .038
100 466 468 .716 .000  .663 028 .036 .030 .044 .050
200 .350 .375 .495 .000 414 .040 .059 .038 .050 .048

Table 6. Size of HEGY tests for s = 4 in the presence of single fixed additive
outliers. The cases with and without outlier correction are considered.

Notes: The data-generating process is given by 2, = y + v, t = 1,2,...T", where
Ay = g4, 8¢ ~ N(O,Ug), and v; = 0D(0.57);. In the model with no correction for
outliers the HEGY test was conducted using the regression Agzy = gy + Ej;i piDje +

4 . . . .
> 1™ ;%z’;-ltfl + u;. The tests with outlier correction were based on the regression Az =

Py + Ej;i pi Dy + Z?:l W;%Z;l,tfl + 221:0 v, D(0.5T);_; + uy, where the T supremum

statistic was used to identify the outliers. 1000 replications were used to construct the sizes.
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Additive Outliers

HEGY-test (non corrected) HEGY-test (corrected)

p 0 o T b b b b Fan bet gt gt lpe Fra g

01 5 0 48 .044 .040 .049 .021 .081 046 .033 .040 .026 .069
100 .0v6 .079 .121 .018  .108 071 .075 .101 .020 .096
200 .097 .096 .124 .024  .107 094 093 .122 .023 .104

15 0 48 142 158 .259 .022  .278 055 .055 .055 .035 .080
100 373 .390 475 .016  .462 068 .078 .070 .041 .079
200 .506 .529 .657 .016  .604 089 .091 .103 .041 .101

05 5 0 48 119 125 .209 .021 261 093 107 .166 .023  .206
100 .278 .297 411 .014  .402 250 .279 376 .012  .366
200 .385 .363 .535 .008  .464 383 364 538 .006  .468

15 0 48 430 453 .695 .028  .739 184 180 .232 .047  .253
100 .885 .891 .959 .017  .953 223 227 259 053 .265
200 970 970 996 .022  .994 392 396 473 .036  .463

Table 7. Size of HEGY tests for s = 4 in the presence of additive outliers. The
cases with and without outlier correction are considered.

Notes: The data-generating process is given by 2, = y + v, t = 1,2,...T", where
Ay = &4, 8¢ ~ N(0,02%), and v, = (lf;aB)ét. 0, is a Bernoulli variable with parameter p. In
the model with no correction for outliers the HEGY test was conducted using the regression
Agze = py+ Ej;i i D+ E;%:l W?Zﬁtﬂ +u¢.The tests with outlier correction were based

. —1 4 4 j
on the regression Ayz; = p1,+ Ej.:l i D+ Zj:l W?Zﬁt,l +> o 3:1 %jD(Tg)H +
where the 7 supremum statistic was used to identify the outliers. 1000 replications were
used to construct the sizes.
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Temporary Change Outliers

HEGY-test (non corrected)

HEGY-test (corrected)

p 0 o T o b g g Fragna bet gt gt lpe Fra g
01 5 .75 48 .029 .075 .064 .077 .166 068 .060 .059 .070 .131
100 .030 .122 .168 .101 228 082 109 148 082 .198

200 .049 154 .191 .113 .238 089 145 183 103 .225

15 .75 48 046 .210 .217 .285 .368 268 064 .075 077 120
100 .083 .449 .533 .549 .602 465 190 .230 188  .258

200 .233 .607 737 .737 .802 703 .326 .391 354 415

05 5 75 48 .021 .229 246 .288 .bb4 081 211 .242 242  .506
100 .059 445 .532 .470 720 A27 424 520 412 692

200 .152 507 .691 .635 828 232 507 .689 B84 820

15 .75 48 .062 .b36 .b71 .694 .879 339 358 380 418 568
100 .335 .909 .974 .955 989 612 772 840 800 .876

200 .810 .996 .998 .996 .999 908 922 977 959 981

Table 8. Size of HEGY tests for s = 4 in the presence of temporary change

outliers. The cases with and without outlier correction are considered.

Notes: See note of table 7.
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Additive Outliers

Aug-HEGY-test (non corrected) Aug-HEGY-test (corrected)
p 0 a Tt tws ta b Fhaga T I O A L

01 5 0 48 .049 .051 .059 .043 .099 047 052 .058 .045 .095
100 .056 .076 .069 .046 087 055 075 .066 .045 .084
200 .051 .051 .058 .061 .069 045 .049 .058 .058 .069

15 0 48 142 158 .245 .039 284 091 .097 137 .047 .181
100 .228 .231 .287 .037 292 100 130 .141 .045 .153
200 .073 .090 .118 .038 114 .049 .060 .088 .044 .087

05 5 0 48 .118 .139 .188 .026 242 1120 131 181 .024 227
100 .139 .138 .185 .023 179 131 136 180 .020 .173
200 .070 .061 .080 .033 077 .068 .061 .075 .032 .074

15 0 48 377 405 .644 .032 677 312 318 496 .031  .523
100 .548 .554 .661 .022 .666 476 463 562 .014  .563
200 .249 245 .332 .011 302 209 220 .283 .016  .255

Table 9. Size of augmented HEGY tests for s = 4 in the presence of additive
outliers with and without outlier correction. Lags of Ayz; are included in the auxiliary
regression.

Notes: The data-generating process is given by 2, = y + v, t = 1,2,...T", where
Ay = g, &4 ~ N(O,Jg), and v; = = aB)(St 0; is a Bernoulli variable Wlth parameter
p. In the model with no correction for outliers the augmented HEGY test was conducted

using the regression Az, = p, + E] 1D+ EJ 1 J J 1T EJ 1 ’yJA4Zt ] + u;. The
tests with outlier correction were based on the regression Ag2y = iy + > o i1 /L]Djt +
Z;l 1 ] gt 1+ EJ 1 ’yJA4Zt i+ Ek+4 J 1 ’yZ]D(Tg)t,i + u¢ where the 7 supremum
statisticon S(B)z, = (1+ B+ B? —I—B3)Zt was used to identify the outliers. The lag length
for the parametric correction was chosen by testing the significance of the last included lag
using a 10% two-tail test based on the asymptotic normality. kpya, = 8 * [1/100], except
for T'=48 where kpna, = 4. 1000 replications were used to construct the sizes.



MEASUREMENT ERRORS AND OUTLIERS IN SEASONAL UNIT RoOT TESTING

39

Temporary Change Outliers

Aug-HEGY-test (non corrected)

Aug-HEGY-test (corrected)

p 0 o T L b b L Fran bet gt gt dpe Fra g
01 5 75 48 .053 .060 .067 .085 150 057 .048 .042 .083 .113
100 .127 .066 .068 .064 .092 078 .061 .051 .069 .074

200 .116 .052 .059 .072 073 063 .050 .048 .069 .066

15 .75 48 074 .183 .209 .263 338 063 .063 .061 .095 .111
100 .282 .152 .239 .161 .303 Jd14 .052 .043 .066  .062

200 .339 .061 .106 .108 138 099 024 .028 .049 .043

05 5 75 48 102 .143 .170 .176 .320 097 132 143 172 281
100 .2v6 .071 .162 .081 .192 215 062 133 .075 .154

200 .244 .050 .072 .075 082 181 .040 .068 073  .073

15 .75 48 110 487 486 .5&4 .760 096 377 345 444 555
100 437 .404 497 .442 624 320 312 362 343 .462

200 .b44 123 186 .212 284 324 .098 135 166  .197

Table 10. Size of augmented HEGY tests for s = 4 in the presence of temporary
change outliers with and without outlier correction. Lags of A,z are included in the

auxiliary regression.

Notes: See note of table 9.
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Outlier Correction bry Iy, Fosa Floss
No —-3.62** —1.14 4.85 3.67 6.60*
Yes —2.80 —1.33 5.01 4.07 5.20

Table 11. HEGY tests for the Production Index of the US Transportation Industry
1934:1-1991:2.

Note: This table reports the values of the HEGY tests, quarterly case, with and without
the correction of the outliers that have been detected by the 7 statistic. All the regressions
include an intercept, a deterministic trend and the seasonal dummy variables, whilst the
value of lag truncation parameter has been selected by way of the use of the k(f) method
recommended in Ng and Perron (1995), with kmax=24.

Rejection of the unit root null hypothesis using a 1,5 and 10 % significance level is
denoted by 7*¥*7 7K and ”*” | respectively.

Outlier COI‘I‘eCtiOD tﬂ—l tﬂ—g F3’4 F5’6 F7’3 FQ,lO FH’ 12
No —0.99 —-1.43 225 5.58* 184 15.62** 7.97*
Yes —-1.31 —-1.80 150 1.30 1.65 4.06 2.04

Table 12. HEGY tests for the Brazilian Inflation Rate 1974:1-1993:5.

Note: This Table reports the values of the HEGY tests, monthly case, without and with
the correction of the outliers that have been detected by the 7 statistic. All the regressions
include an intercept, a deterministic trend and the seasonal dummy variables, whilst the
value of lag truncation parameter has been selected by way of the use of the k() method
recommended in Ng and Perron (1995), with kmaxr=36 for the non-outlier correction case
and kmax=48 when the influence of the outliers is corrected.

Rejection of the unit root null hypothesis using a 1,5 and 10 % significance level is
denoted by 7*¥*7 7R and ¥ respectively.
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Figure 1. Examples of simulated series: moderate noise. For each panel, the quar-
terly random walk y, has been contaminated with measurement errors ((o,/ 05)2 =2),
additive outliers (p = .05,0 = 4), and temporary change outliers (p = .05,0 =4, =
.75), respectively.
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Figure 2. Examples of simulated series: strong noise. For each panel, the quarterly
random walk y; has been contaminated with measurement errors ((o,/ 05)2 = 4),
additive outliers (p = .01,0 = 20), and temporary change outliers (p = .01, =
20, v = .75), respectively.
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Figure 3. Brazilian inflation rate, Monthly Data 1974:1-1993:5
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Figure 4. Production Index of the US Transportation Industry, Quarterly Data
1934:1-1991:2





