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Structure and Function

in the carly processing of visual information

Shimon Ullman

‘The Artificical [ntelligence Laboratory

Massachusetts !nstitute of Technology

1. Introduction

A central notion in contemporary cognitive scicnce is that mental
processes involve computations defined over internal represcentations.
‘This general view suggests a distinction between the study of the rep-
resentation and computations peiformed by our cognitive systems on
the onc hand. and the physical brain mechanisims supporting these com-
putations on the other. The two studies proceed along different paths,
and ncither is completely reducible to the other. 1t is the hope of cogni-
uve science. however. that the studies of function and mechanism can
complemient cach other, and that theories can be developed for various
cognitive subsystems that will describe and explain their computational
aspects, their underlying mechanisms, and the interactions between the
two.

In this paper | shall desciibe some attempts to combine the study
of brain mechanisms with computational considerations in the first
stages of visual information processing. This work combines the con-
tributions of many mdividuals. most notably the late David Marr, and
a group of people who were fortunate to work with him, primarily at

M.LT"s Artificial Intelbgence Laboratory and I'sychology Department.

2. Representing intensity changes in images

The first cemputational problem that arises in the carly processing
of visual intormation s the inital organization and representation of
the input rcgmtered by the eves, At the photoreceptors Tevel, the input
to the visual system consists of a2 210 nolhon hight ntenaty measare-
ments (registered by over 120 ustion cones and tods e cach ey o) ‘This
i an umackdy Liree and unstectnad ser ef meaearements. W can
therefore expect the visual system to construct a more cconomical repre-
sentation of the input, that will make explicit the relevant information

for later processing stages.

A recasonable candidate for the task 1s a representation that can be
roughly described as an edge representation of the image. The idea is
to make explicit the locations in the image where light intensity changes
sharply from onc level o another. e motivations for this type of a
representation are (i) it will achicve a more concise description of the
image than the original array of intensity values , and (ii) sharp changes
in light intensity values usually have a physical significance. They are
often associated. for example, with object boundarics, markings on ob-
jects’ surfaces, and so forth An edge representation is theiefore uscful in
making the transition from the domain of light intensities in the image
to analyzing the physical structure of the visible environment.  One
general observation often raised in support of the edge representation

approach is that many objects arc recognizable from a sketch of their

cdges and contours alone, although in terms of the underlying light
intensity distributions, the sketch and the original image are markedly

different.

The representation of localized intensity changes is not the only
approach that has been proposed for the first stages of analyzing visual
information. Onc popular alternative is the Fourier analysis approach
that received wide attention in the psychophysical literature following
Campbell and Robson’s [1968] discovery of spatial frequency tuned
channcls in the visual system. ‘The approach presented here is in a
sensc a combination of the frequency channcls and the edge detection
approaches, but it is concerned primarily with the detection of intensity

changes.

A Tlarge varicty of technigues have been proposed in the past
(primatily within the engineering ficld of image processing) for the
detection of mtensity changes i images. A major problem that has
heen discovered in the comse of developing these techniques. is that
significant mensity changes in an mage can oceur at a varicty of scales.
Some changes are gradual and smoath: they can also be described in
trequency domam erminology a low liequency cduanges. Others are
high frequency and sharply localized changes. To capture all of the
significant intensity changes, it is possible to examine the image at a
number of different resolutions, or scales. A low resolution “copy™ will
serve for capturing the gradual, gross changes, a high resolution “copy”
for the finc details. Figure 1 shows an example of what it means for the
same imagc to be examined at three different resolutions. The resolution
dccreases from la to lc. It can be scen that in the lower resolution
copics fine details are progressively blurred. The low resolution copy
can be obtained by a process called gaussian filtering (and this filtering
is in a scnse optimal, sce Marr & Hildreth 1980). ‘T'his simply means
that at every point a local average is taken of the intensity valucs, using
a gaussian weighting function. The resolution of the resulting copy is
controlled by the size of the gaussian. A larger guassian averages the
intensity values over a wider ncighborhood, and hence is less sensitive
to finc details. ‘The gaussian smoothing is also called in mathematical
terms the convolution of the image with a gaussian filter, denoted by
G*I (where [ is the image. G is the gaussian smoothing function).

As a result of the first operation we have a number of "copies” of
the original image, at a number of different resolutions, as determined
by the sizes of the gaussian filters (figure 2). ‘The next step is to iso-
late the sharp intensity changes in each copy. We shall consider this
problem first in the context of onc-dimensional signals. In this case,
the image I is a function of a single variable, denoted by z. A sharp
change in the signal /(z) can be defined as a peak in its first derivative,
since the derivative, by definition. measures the signal’s slope. FFrom
clementary calculus, peaks in the first derivative can also be located by
7ero—crossings of the secend derivative (i.e. places where the second
derivative changes sign).  Mathematically the two criteria are cquiv-
alent. but the second characterization has certain advantages when (wo-

dimensional signals are concerned [Marr & Hildreth 1980).
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In summary, the localization of sharp changes is obtained by per-

forming:
o’

D) (1)

The zeto cossmes e the onput will indicate the Tocations of sharp
intensity changes in the image at the scale determined by the gaussian.
‘This means that the image 7 is first passed through a gaussian
smoothing function G, and then a second derivative of the result is
taken. “Fhe two operations of scaling and diffcientiation be combined
in a convenient manner, ‘The combination is based on a mathematical
identity that states that the order of differentiation and convolution can

be changed without affecting the result. In mathematical notation:
d? . d?
Y — G

I'he implication is that the two operations can he collapsed into a
single once: simply filter the image not through a gaussian function, but
through ‘;’:;G (the sccond derivative of a gaussian). ‘T'his function is
shown in figure 3a (3b shows its fourier transform). ‘The analogue in two
dimensions would be a similar but circularly syimmetric function which
has the appearance of a "mexican hat™  Mathematically, in the two-
dimensional ¢ise the filter is V2G, where V2 s the laplacian and G a
two-dimensional gaussian function.

The scheme is now suaightforward: the representation of intensity

changes is obtained from the sero-crossing in the result of passing the

image through filters that have the shape of V2G.

Those who hive some familiarity with the physiology of the visual
system would readily recognize the shape of these filters as correspond-
ing to the shape of retinal ganglion receptive ficlds. In other words, the
retinal structure can be viewed as approximating the convolution of the
image with the ©2G filters. (IFor more detarl see Marr & Hildeeth 1980,
NMarr & Ulliman 1981,

IFigure 4 shows examples of images fullowing this retinal operation,
and the resulung sero—crossings representations (generated by 1len
Hildieth). The first row shows two images prior to the filtering stage.
I he sccond row shows the images filtered thiough the ietinal operation.
It gives some idea of the toom of the inmage st avels ap the optic
nerve trem the exe. via an intermedute station called the TGN, o
the visual cortex in arca 17 ok the bram  Fhe thud row llnsinates the
resultme zcio crossine representations | enre S shows an i ee (of
sculpture by Henry Moore) and its zcro-crossing represeéntation at three

different resolutions.

Before turning to the physiological aspects of the zero—crossing
representations, it will be of interest o note that zero—crossings in
bandpass flters arc known to be, in a sense, “rich in information”
. 1 ogan of the Bell Laboratories has shown that a one-dimensional
signal with a bandvidth of less than one octave can be completely
reconstructed (up to an overall muluplicative constant) from its scro-
crossings alone, provided that some simple conditions are met [I ogan
1977). It is not clear, however, whether the thcorem can be extended

to two dimensions, and under what conditions the one-octave restric-

tion can be relaxed (this problem arises since the filters in the human
visual system are probably more than an octave wide). If appropriate
extensions along these lines can be made, it would imply that the 7zcro-
crossings provide not only a convenient representation that capturcs the
sighificant aspects of the image, but also a complete one. ‘That is, no
essential information is lost by discarding the image and analyzing the
zero-crossing representation alone. (Sce Marr, Poggio & Ullman 1979,

for further discussion of this issue.)

3. Ihe hiological detection of 7ero-crossings

I'he analysis so far leads to the general suggestion that following
the retinal operation the next step is to locate and represent a map of the
zero—crossings in the output. If this suggestion is correct, then a main
function of the primary visual cortex should be the construction of the
7ero-crossings representation. I shall next turn to consider briefly how

rero—crossings may be detected by the mechanisms of the visual cortex.

‘I'he fibers of the optic nerve coming from the eye to the brain carry
the image filtered through the V¢ receptive fields (U is, of course, a
computatonal idealization). This neural image s in fact carricd by unite
of two complementary types, called on-center and off-center units. 'The
olf-center unmits are sunply “inverted mesican hats™ with negative centen
and posiove surround T et us now consider the retmal output in the
vty ol an edee. Pieure Gadepicts astep edee, and 6 is the resal
of posstoe Oy thvongh retimal-like receptive iekds. Fhis ontpat containe
both negative and positive values, o contrast, the optic nerve carrics
no negative valucs; the positive part of the signal is carricd by the on-
center units, and the negative part by the off-center ones. | his means
that within the system the zero—crossing itself is always flanked by two
peaks of activity: of on—center cells on one side, and off-center cells on
the other. ‘The detection of a zero—crossing can casily be accomplished,
therefore, by a simple combination of the on- and off-center units.
When two adjacent units, once off-center, the other on-center, are aclive
simultancously, they indicate the cxistence of a zero~crossing running
midway between them. Note that a point of zero valuc is detected in this

scheme by detecting peaks of activity rather than zero activity.

The basic zero-crossing detector is shown in figure 7a. It is com-
poscd of the two sub-units (on- and off-center) combined with an
“and" operation. This means that the two units are required to be active
simultancously to produce a response. The unit can be made oriented
by combining a number of such detectors lying in a row (figure 7b).
Such an oricnted unit will exhibit many of the propertics of cortical
simple cells ("edge detectors™) originally discovered by FHubel & Wiesel
in the visual cortex of the cat [1962] and monkey [1968]. 1t will still lack,
however, one fundamental property: cells in the visual cortex are also
often sclective for direction of motion. ‘They respond well when their
preferred stimulus moves in one direction, but little or not at all when it

moves in the oppaosite direction.

4. Adding directional selectivity

With the addition of one subunit it is possible to make the basic

7ero-crossing detector direc tionally selective, and use it for the measure-



ment of visual motion. 1o see how, consider again the zero-crossing
associated with an intensity cdge (figure 6b). At the sero-iossing itself
the cunrent value is. of course, zero. It can be readily seen from the
figure that if the profile now moves to the nght. the value at this point
will be mereasing. 1t move o the left. the value will be deareasmg.
Iy simply inspecting the sien of the termporal chamge it therelore be-
comies posaible to determine the ducction of motion. e is not difticalt
o establish that ot s fuether posable o mieasre the specd of maotion
in the direction of the unit by comparing the slope of the zero—rossing
and the rate of temporal change. ‘The extra sub-unit should respond
therefore to temporal changes. Ideally, it should behave like the tme

denvative of the signal, i.e. §;(V?G).

As it turns out. the population of retinal cells contain a natural
candidate for this task. These are the so called Y-type cells, originally
discovered by Fnroth-Cugell & Robson [1966). ‘This is a relatively small
sub-population of cells that are known to be “transient™  [hat is, they
respond to a steady stimulus by a short and brisk response when the
stimulus is turned on or off, ‘The other major population of retinal cells
are the sustained, X-type cells. Such a cell responds to a stationary
stunulus with a sustaned response that usually continucs as long as the

stmulus is present within its receptine field.

Our schematic model of the simplest directionally selective units is
therefore constructed from three types of sub-units. As before, it has
a row of on-center cells. and a row of off—center cells, both of the sus-
tained type. In addition, it has an input from at least one transient Y-
type unit (figure 7¢). A more detailed discussion of this general scheme

citn be found in [Narr & Ullman 1981].

‘I'his general scheme for zero-crossing and motion detection wi
diven primanly by computational considerations. Physiologically, al
though Y-type units were often described as transient, it was not clea
whether they can also be described as at Ieast approximating the re
guired time dernvative operation. We therefore compared the response
recquited by the computational scheme with physiological response
(taken from Rodieck & Stone, 1965, Dicher & Sanderson 1973; sce
Mo & Ullman 1981 for details) Some companisons are shown in figure
3 (Tor \ cells) and 9 (for Y cells). Fhe top row in figure & is the comolu
tion of various profiles (edge. thin hai, wide bar) with VG, On
center eells are expected to carry the positnee part of these profiles, anc
oll center the negative part Inothe neat two rows the posinne part ol
e stenal i compared with recordmes from on-center cells, and m the
Lastrons the negative paatis compoed swith recardmes from oft -centey
cebls Samlar compareons are shoninm fegie 9 betscen the compata
tional madcl, hased on ; (G*1). and physiological recordings. It can be
seen that even m the cases where the profiles are rather complicated. the

general agreement is good.

Finally in this scction, figure 10 shows an example of applying the
motion detection scheme described above to a moving random texture.
I igures 10a and b show a pair of tandom dot patterns. A central square

in 10a is shifted in 10b slightly to the right, while the backgrounds of

the two figures are uncorrclated. When these figures are presented o
human observers In a rapid alternation, the central squarc is immedately
perccived to move hack and forth against a background of uncorrelated
motion.  Figure 10¢ shows the zero—crossings representation of 10a.
Figure 10d is the result of the motion analysis of the zero—crossing (the
light dots indicate the direction of motion of the zcro-crossings). In
figure 10c the light dots where removed from the area where coherent
motion (to the right) was found. The motion assignment was correct,
with the exception of a few isolated points, and as a result the inoving

squarc was detected.

I have sketched above some aspects of an evolving theory of carly
visual information processing. The main goal has been not to present a
comprchensive review of the theory, but to illustrate an attempt aimed
at combining the study of structure and function in the carly stages of
visual pereeption. Major parts of the theory were consequently lelt out
of the discussion, most notably, the use of the carly representations in

stereo vision [Marr & Poggio 1979, Grimson 1981].

Finally, T would like to end with two brief cautionary notes. ‘The
first has to do with the specific problem of analyzing image contours.
Even if the zero-crossing analysis is along the right track, it provides
anly the fiest stages e the analysis of edges and image cutous Figure
1T illustrates examples of contonrs that are ¢ wily perecived but cannot
be captured by any simple intensity - based analysis of the image. In
ficure Tlha all the hnes he along the 45 deg. diagonals  The horizantal
and vertieal houndanes which are appaient in the image are produced
not by abrapt antensity changes but by certin eronpima processes.,
Figtire TTh s an example of soclled "cosnitine contom. They do
not exist in the image. and cannot be detected by simple intensity--based
operations. These example serves to illustrate that even a scemingly
simple and clementary task such as the detection of image contours, re-
quires in fact complex processing that s still far from being completely
understood.

‘I'he second and more general comment has to do with the integra-
tion of theories of function and structure in more complex systems. The
cxamples I have outlined come from a system that is relatively simple
and casy to explore. Its anatomical structure is orderly, the input to the
system is relatively casy to control and manipulate experimentally, and
much is known about its physiology. Even under these favorable condi-
tions, the integration of structure and function proves to be exceedingly
diflicult. What is the hope, then, for achieving comprehensive theories
of structure and function for Ingher, more complicated, cognitive sys-
tems?

The task is certainly formidable, but it is probably worthy of
cxploration at least in certain instancs, since 1t appears unlikely that
the structure of complex systemns can be understood without some
guidelines supplicd by computational theories, It has to be admitted,
however, that given the difficultics of the task it 1s unclear whether
coherent and detailed theories combining structure and function can be

achicved at present beyond the simplest congnitive systemns.

Achnowledgment: T wish o thank 17 Hildicth and K. Stevens for

therr invaluable help.
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Fig. 1

The same image at three different resolutions.

Gi¥*1
—) Gy I

G3* I

Figure 2. Different resolution copics of the original image are obtained

by convolving the image with gaussian filters of diflerent sizes.
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Iigure ¥ a.  The shape of 4%G. b, Its Vourier transform.

dr

Figure 4. Examples of zero—crossing representations.  I7irst row: the

original #mages. Sccond row: the images following the convolution with

V2G . Third rwo: the resulting zero—crossings representations.
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Fig. 5

Zero—crossing representations of the same image at three diflerent resolutions.

Figure 6. A step edge before (a) and after the convolutiion with the

rctinal operator (b).




FFigure 7 A schematic diagram of the basic 7ero—crossing detector. a.

b. A row of

On-center and off-center units are ANDed together.

such subunits niakes the detector orientation-specific.

c. Wilh the

addition of a time derivative subunit the dete tor becomes directionally

sclective.
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