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Abstract

Behavioral speech tasks have been widely used to understand the mechanisms of speech

motor control in typical speakers as well as in various clinical populations. However, deter-

mining which neural functions differ between typical speakers and clinical populations

based on behavioral data alone is difficult because multiple mechanisms may lead to the

same behavioral differences. For example, individuals with cerebellar ataxia (CA) produce

atypically large compensatory responses to pitch perturbations in their auditory feedback,

compared to typical speakers, but this pattern could have many explanations. Here, compu-

tational modeling techniques were used to address this challenge. Bayesian inference was

used to fit a state feedback control (SFC) model of voice fundamental frequency (fo) control

to the behavioral pitch perturbation responses of speakers with CA and typical speakers.

This fitting process resulted in estimates of posterior likelihood distributions for five model

parameters (sensory feedback delays, absolute and relative levels of auditory and somato-

sensory feedback noise, and controller gain), which were compared between the two

groups. Results suggest that the speakers with CA may proportionally weight auditory and

somatosensory feedback differently from typical speakers. Specifically, the CA group

showed a greater relative sensitivity to auditory feedback than the control group. There were

also large group differences in the controller gain parameter, suggesting increased motor

output responses to target errors in the CA group. These modeling results generate hypoth-

eses about how CA may affect the speech motor system, which could help guide future

empirical investigations in CA. This study also demonstrates the overall proof-of-principle of

using this Bayesian inference approach to understand behavioral speech data in terms of

interpretable parameters of speech motor control models.
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Author summary

Cerebellar ataxia is a condition characterized by a loss of coordination in the control of

muscle movements, including those required for speech, due to damage in the cerebellar

region of the brain. Behavioral speech experiments have been used to understand this dis-

order’s impact on speech motor control, but the results can be ambiguous to interpret. In

this study, we fit a computational model of the neural speech motor control system to the

speech data of speakers with cerebellar ataxia and the data of typical speakers to determine

what differences in model parameters best explain how the two groups differ in their con-

trol of vocal pitch. We found that group differences may be explained by increased sensi-

tivity to auditory feedback prediction errors (differences between the actual sound speakers

hear of their own speech as they produce it and the sound they expected to hear) and

increased motor response in individuals with cerebellar ataxia. These computational

results help us understand how cerebellar ataxia impacts speech motor control, and this

general approach can also be applied to study other neurological speech disorders.

Introduction

Altered auditory feedback experiments have been widely used to probe the mechanisms of

speech motor control. In this class of experiments, participants speak while listening to a digi-

tally-altered version of their own voice through headphones. This allows experimenters to

observe how the speech motor system responds to a perceived error in some acoustic property

of the voice such as pitch, formant frequencies, or loudness (for a review, see [1]). In a pitch

perturbation task, the auditory feedback of participants’ production of a sustained vowel

sound is, at an unexpected time and for a brief period (usually a fraction of a second), digitally

altered to have a higher or lower fundamental frequency (fo; which is perceived as vocal pitch)

than was actually produced. Participants tend to compensate for this perceived error within

the ongoing production by shifting their produced pitch in the opposite direction of the per-

turbation, demonstrating that people use auditory feedback for online control during speech.

Variations of this task have been used to inform the understanding of speech motor control in

typical speakers [2–4] and, more recently, to compare the responses of typical speakers with

those of various clinical populations (e.g., Alzheimer’s disease [5]; Parkinson’s disease [6];

Hyperfunctional voice disorders [7]; Laryngeal dystonia [8]; Cerebellar ataxia [9, 10]).

However, due to the complexity of the speech motor system, it remains difficult to deter-

mine what specific mechanisms may lead to the observed differences in behavioral results in

different populations. A difference in how two groups respond to a mid-trial pitch perturba-

tion may create multiple hypotheses about the differences in the speech motor control system

between the two groups. A mechanistic computational model can thus be a powerful tool in

evaluating these hypotheses by simulating the effects of specific model changes on the observ-

able output. Tuning the parameters of a computational model to fit observed behavioral data

has the potential to distinguish how different model components contribute to the observed

effect [11–16].

A recent example of mechanistic ambiguity in behavioral speech data is the increased

response to pitch perturbations observed in individuals with cerebellar ataxia (CA; [9, 10]).

CA is a condition characterized by a loss of coordination in limb movements, eye movements,

and gait, as well as speech symptoms such as articulatory impreciseness, harsh or breathy

voice, slowed speech, hypernasality, excessive variation of loudness, scanning speech, and/or
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impaired timing of voice onset [17, 18]. In CA these movement-related symptoms are caused

by cerebellar lesions or degeneration, which is consistent with the idea of the cerebellum as a

likely neural substrate for internal models, or neural representations of the body used in neuro-

motor control [19, 20]. However, open questions remain about the precise impact of cerebellar

lesions on internal models and the speech motor control system.

Previous pitch feedback perturbation studies involving individuals with CA have examined

the effects of CA on speech motor control. Houde et al. [9] found that individuals with CA dis-

played a heightened response to a 400 ms, mid-utterance pitch perturbation of 100 cents, with

the peak of the CA group average response observed to be about twice as high as that of the

control group average. Around 300 ms after the end of the perturbation, however, the response

of the CA group had fallen such that there was no significant difference between the average

normalized pitch of the two groups during the time period from 0.7 to 1.0 s. The latency of the

peak response was approximately the same for the two groups. These results are reproduced in

Fig 1. Similar results were observed by Li et al. [10] using a slightly different paradigm with a

200 ms perturbation of 200 or 500 cents.

Houde et al. [9] proposed two possibilities to explain these findings:

Hypothesis 1: Compared to the control group, the CA group exhibits increased reliance on

auditory feedback in comparison with somatosensory feedback.

Hypothesis 2: Compared to the control group, the CA group displays an increased reliance on

all types of sensory feedback collectively due to impairment of the feedforward system.

The current study further investigated these two hypotheses by estimating parameter values

to fit a computational model of voice fo to the empirical pitch perturbation responses of CA

and control groups (as observed in Houde et al. [9]). A recently developed Bayesian inference

method called simulation-based inference (SBI; https://sbi-dev.github.io/sbi/; [21, 22] was

used to estimate posterior likelihood distributions for each model parameter based on each

data set. The above hypotheses were investigated by comparing posterior probability distribu-

tions of parameters between the two groups and observing the impact of parameter ablation

on the quality of model fit.

Fig 1. Behavioral data. Group averaged response (thick dotted line) to a 400 ms pitch perturbation of 100 cents for the

CA group (blue) and control group (red) [9]. The thin dotted lines indicate standard error. The CA group response

showed a significantly larger magnitude than that of the control group with no change in peak latency.

https://doi.org/10.1371/journal.pcbi.1011986.g001
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Model

Overview of state feedback control

The computational model used in this investigation implements a state feedback control (SFC)

architecture to simulate a participant’s response to an unexpected pitch perturbation during a

sustained vowel production. The theory of state feedback control has been well established as a

plausible neural mechanism for non-speech motor tasks [23, 24] and has more recently been

explored in the field of speech motor control [14, 25, 26].

This SFC model of voice control we consider is greatly simplified from the full task of voice

control. Our model simulates only the control of fo in ongoing voice output, which we idealize

as controlling the rest-length of a spring in a single damped spring-mass system that is some-

what analogous to the cricothyroid muscle’s control of pitch [25, 27]. The controls generated

by laryngeal motor cortex are modeled as desired changes in the rest-length of a single muscle

determining fo in our simplified larynx.

The SFC architecture for motor control of this simplified larynx is shown in Fig 2. Motor

controls are calculated by comparing the desired laryngeal state to an internal estimate of the

current state of the larynx, which is maintained by a process of state prediction and subsequent

correction based on auditory and somatosensory feedback signals. The controls are scaled by a

tunable controller gain gc. An efference copy of these commands is used to predict the state of

the larynx for the following time step, and consequently the expected auditory and somatosen-

sory feedback. Meanwhile, the actual sensory feedback is generated by the larynx model. This

simulated feedback can be altered to simulate the effects of a pitch perturbation experiment.

Each sensory feedback signal contains Gaussian noise with zero mean and tunable variance σ
and has some tunable delay Δ. The delayed and noisy feedback is compared with the predicted

Fig 2. Overview of state feedback control. A state feedback model of vocal fo control where Δa is auditory feedback delay, Δs is somatosensory feedback delay, σ is overall

feedback noise variance, r is feedback noise ratio, and gc is controller gain. Parameters tuned in this investigation are highlighted in red.

https://doi.org/10.1371/journal.pcbi.1011986.g002
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feedback to generate an error signal. The error signals from each feedback modality are used

to correct the internal estimate of laryngeal state. The error signals are weighted by a Kalman

gain matrix, which is calculated based on the noise in each signal, to determine the appropriate

correction to the internal state estimate. Across multiple frames, the auditory output of the lar-

ynx model can be compared to a behavioral pitch perturbation response.

State space representation

The plant of the control system, the larynx, is modeled using a state space representation of a

dynamical system (Eqs 1 and 2; [28]). Specifically, the larynx is modeled as a simple spring-

mass system in which the length of the spring represents muscle tension on the vocal folds,

and is therefore linearly related to vocal pitch. There exist many more complicated and accu-

rate models of the generation of voice by the complex system of muscles controlling the larynx

(see [29–31]); however, for the current study, a very simple model was used to represent

broadly the dynamics of the plant that must be controlled.

_x½t� ¼ Ax½t � 1� þ Bu½t � 1� þ w½t� ð1Þ

y½t� ¼ Cx½t� þ v½t� ð2Þ

In these equations, x is the state (position and velocity of the mass on the spring) of the

larynx dynamical system (elsewhere referred to as “larynx”), t is the current time step, u is

the control input, and w is Gaussian process noise. The variable y is a vector containing

auditory and somatosensory feedback and v is Gaussian measurement noise. A and B are

matrices encoding the spring constant k, damping constant b, and mass of the system m

(A ¼ 0 1

� k=m � b=m

� �

, B ¼ 0

k=m

� �

), which would be determined by the anatomy of the

individual (stiffness of laryngeal muscles, muscle damping, and mass of vocal folds, respec-

tively), and C encodes the transformation from state to sensory feedback. These three matri-

ces are constants of the larynx plant (Eq 3) and remain fixed throughout the study at the

values used by Houde et al. [27]. Including these plant constants k, b, and m as tunable

parameters across a wide range of values did not substantially change the results of the inves-

tigation, and the values used here are within the 95% Bayesian credible interval of those

inferred to optimally fit the Houde et al. [9] data set.

A ¼
0 1

� 160000 � 1600

" #

;B ¼
0

160000

" #

;C ¼
1 0

1 0

" #

ð3Þ

Process noise w is defined such that

Q ¼ E½wwT� ¼

sq 0

0 sq

2

4

3

5 ð4Þ

where σq is the variance of noise applied to each element of laryngeal state. σq was held con-

stant at 1e-8 throughout the simulations, a value that was found to produce stable simulator

output.

Measurement noise v is defined such that

R ¼ E½vvT� ¼
sa 0

0 ss

" #

ð5Þ
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where σa is the variance of Gaussian noise on the auditory feedback signal and σs is the vari-

ance of Gaussian noise on the somatosensory signal.

Another state space system defined by A = 0, B = 1, C = 1 is connected in series preceding

this main system, serving to integrate over the main system and thus produce a laryngeal posi-

tion from the motor commands output by the main system. Additionally, the full continuous

system is discretized using zero-order hold methods with a 0.004 s sampling time.

Pitch perturbation

The variable y is a two-element vector containing auditory and somatosensory feedback from

the larynx. The pitch perturbation is implemented as an addend to the auditory component of

the vector as follows:

y½t� ¼
ya½t�

ys½t�

" #

þ
� 100

0

" #

; 0 � t < 400ms ð6Þ

Controller

The controller command to change the state of the larynx is defined by

u½t� ¼ gc ∗ ðxtarget½t� � xestimate½t�Þ ð7Þ

where gc is the controller gain, xtarget is the desired laryngeal state and xestimate is the internal

estimate of the laryngeal state.

Observer

The observer provides the internal estimate of the state of the larynx through iterative predic-

tion of state and subsequent update of the prediction using sensory feedback. The state is pre-

dicted by

xpredicted½t� ¼ Axestimate½t � 1� þ Bu½t � 1� ð8Þ

where A and B matrices are identical to those used to define the larynx (Eq 3) and u[t − 1] is

the efference copy of the controller commands from the previous timestep (Eq 7). Predicted

state is used to predict the sensory feedback by

ypredicted½t� ¼ Cxpredicted½t� ð9Þ

where C is identical to the state-to-feedback transformation matrix of the laryngeal system

(Eq 3). The error between the predicted sensory feedback and the actual sensory feedback is

then determined by

yerror½t � D� ¼ y½t � D� � ypredicted½t � D�; where D ¼
Da

Ds

" #

ð10Þ

where Δa is auditory feedback delay and Δs is somatosensory feedback delay. Sensory feedback

error is used to estimate the error in laryngeal state by

xerror½t� ¼ K ∗ yerror½t � D� ð11Þ

where K is the steady-state Kalman gain. Kalman gain is the optimal gain matrix calculated by
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first solving the discrete-time algebraic Ricatti equation (Eq 12) using the Python Control Sys-

tems Library (python-control; [32]) for P̂ where the equation is satisfied when P ¼ P̂.

ATPA � P � ATPBðBTPBþ RÞ� 1BTPAþ Q ¼ 0 ð12Þ

In the above equation, A and B are defined by the larynx dynamical system (Eq 3) and Q
and R are defined by noise variances (Eqs 4 and 5). Optimal Kalman gain is then calculated as

follows where C is defined by the larynx dynamical system (Eq 3).

K ¼ P̂CTðRCP̂CTÞ
� 1 ð13Þ

Finally, the predicted laryngeal state is updated by the error to find the estimated state using

xestimate½t� ¼ xpredicted½t� þ xerror½t� ð14Þ

Tunable parameters

The values of a set of tunable parameters in the SFC model affect the shape of the model out-

put, a simulated time course of vocal fo in response to a mid-trial pitch perturbation. These

parameters include the sensory delay parameters Δa and Δs, controller gain gc, and sensory

feedback noise variance parameters. In order to separate the effects of absolute feedback noise

level from the relative amount of noise between the two sensory feedback modalities, the noise

variance parameters σa and σs were parameterized to σ and r such that σa = σ and σs = σ/r. Thus

σ represents the variance of sensory feedback noise overall in both auditory and somatosensory

feedback modalities and r represents the ratio of auditory feedback noise variance to somato-

sensory feedback noise variance. Overall feedback noise variance σ was explored on a log10

scale in order to more effectively search many orders of magnitude of noise variance. Thus the

parameter set tuned in this investigation was θ = {Δa, Δs, σ, r, gc}.

Expression of study hypotheses in the context of the SFC model

Houde et al. [9] proposed two possible explanations for the behavioral pitch perturbation

response differences between CA and control groups: 1) an increase in the CA group’s

reliance on auditory feedback, or 2) an increase in the CA group’s reliance on all types of

sensory feedback collectively compared to that of the control group. These hypotheses

can be examined using the feedback noise parameters, which are inversely related to reli-

ance on sensory feedback through the calculation of Kalman gain K. K can be broken down

into

K ¼ Ka Ks½ � ð15Þ

where Ka scales auditory feedback error and Ks scales somatosensory feedback error. To be

precise, Ka and Ks are each vectors containing Kalman gains on both position and velocity

error, but since we are simply conceptually illustrating the effect of feedback noise on error

scaling, we will imagine these as single values. An increase in the variance of the noise dis-

tribution of a particular feedback modality (e.g., σa) results in a lower Kalman gain on that

feedback signal (e.g., Ka). Thus the hypotheses can be conceptualized in terms of the SFC

model as follows:
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Hypothesis 1: Compared to the control group, the CA group exhibits increased reliance on

auditory feedback over somatosensory feedback. Mathematically, this can be expressed as:

Ka

Ks

� �

CA

>
Ka

Ks

� �

control
ð16Þ

Since Kalman gain is inversely related to noise variance, this is equivalent to:

sa
ss

� �

CA

<
sa
ss

� �

control
ð17Þ

or

rCA < rcontrol ð18Þ

Hypothesis 2: Compared to the control group, the CA group displays an increased reliance

on all types of sensory feedback collectively due to impairment of the feedforward system.

Mathematically, this can be expressed as:

ðKaÞCA > ðKaÞcontrol and ðKsÞCA > ðKsÞcontrol ð19Þ

which is equivalent to:

ðsaÞCA < ðsaÞcontrol and ðssÞCA < ðssÞcontrol ð20Þ

or simply:

sCA < scontrol ð21Þ

Thus Hypothesis 1 can be examined by comparing the feedback noise ratio parameter r
between the two groups, while Hypothesis 2 can be examined by comparing the overall feed-

back noise variance parameter σ between groups. The finding of a smaller value for r in the CA

group compared with the control group would support Hypothesis 1, while a smaller value for

σ in the CA group would support Hypothesis 2.

Results

Parameter effect size

Bayesian inference was used to fit a five-parameter SFC model of voice fo to the empirical pitch

perturbation responses of CA and control groups as observed in Houde et al. [9]. For each

empirical data set, simulation-based inference (SBI; https://github.com/sbi-dev/sbi/; [21, 22]

was used to generate a posterior likelihood distribution across values for each parameter. To

improve robustness, the posterior distributions from 10 repetitions of the inference procedure

were combined [13, 33]. Fig 3 shows the combined posterior distributions generated for each

parameter, with the median and 95% Bayesian credible interval marked in each distribution.

Since tests of significance lose meaning under the high statistical power of simulated data [34],

effect size was used to quantify which parameters were most different between control and CA

groups. Glass’s delta effect size was used because it is designed to compare populations with

unequal variances. The mean and standard error of effect size calculated from 100 bootstrap

samples of size 1000 are annotated on each subplot. Controller gain and feedback noise ratio

had the largest effect size, while somatosensory feedback delay, auditory feedback delay and

overall feedback noise variance had relatively small effect size. Notably, feedback noise ratio

had a much larger effect size than the overall variance of sensory feedback noise, suggesting

that the relative amount of noise between feedback modalities contributed much more to
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group differences than the overall level of feedback noise. All of the distributions are unimodal,

which suggests there was a single optimal parameter set rather than several local optima.

Model fit

The median of each marginal likelihood distribution was chosen as the inferred parameter set

for each participant group (see Table 1). The inferred parameter sets were validated by using

them in the SFC simulator to check that the results were broadly similar to the empirical data

from each group. The close alignment of the tuned model with the empirical data can be seen

in Fig 4. The mean of 100 simulator outputs using each group’s inferred parameter set were

plotted to account for stochasticity within the SFC simulator. The standard error of these sim-

ulator outputs was also plotted, but was too small to be distinguished from the mean. Root

mean square error (RMSE) between the simulator output and the behavioral data was used to

quantify the quality of model fit for each group with a statistic not explicitly optimized during

training. RMSE (mean ± standard error across 100 simulations) was 0.8613 ± 0.0002 cents for

the control group (4.06% of the range of the data) and 1.5544 ± 0.0003 cents for the CA group

(3.84% of the range of the data).

Ablation study

Above, we have shown a successful model fit of the pitch perturbation responses for CA and

control groups and quantified the parameter distribution differences between groups; how-

ever, the impact of these parameter differences on the simulator output are not immediately

clear from previous results. Thus, ablation techniques [35] were used to understand the extent

to which differences in inferred parameter values may translate to meaningful changes in

model output. In this ablation study, the impact of each parameter on group differences was

assessed by fitting the behavioral data set from the CA group with a series of reduced models.

For each reduced model, one of the five original parameters was fixed to the control group’s

Fig 3. Parameter likelihood distributions. Posterior likelihood distributions (pooled from 10 repetitions of inference) for each parameter, with control group

distributions on the left (red) and CA group distributions on the right (blue). The 95% Bayesian credible interval is indicated by horizontal bars and the median value of

each distribution is indicated by a black dot. Glass’s delta effect size (mean and standard error from bootstrap samples) is printed at the top of each subplot.

https://doi.org/10.1371/journal.pcbi.1011986.g003

Table 1. Inferred values for control and CA groups.

Parameter Aud Delay (ms) Somat Delay (ms) Fb Noise Var (log10 scale) Fb Noise Ratio (Aud:Somat) Controller Gain

Symbol Δa Δs σ r gc

Control 102.7 35.3 -5.8 2.0 1.9

CA 91.5 15.5 -5.6 1.0 3.1

https://doi.org/10.1371/journal.pcbi.1011986.t001
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inferred value for that parameter (as listed in Table 1) and a model composed of the four

remaining parameters was used to fit the behavioral data. This allowed us to quantify the

impact of each parameter on group differences and simulate the pitch perturbation response

we might expect to see if speakers with CA did not differ from controls in terms of each

parameter.

As seen in Fig 5, the quality of the model fit for the CA group was most greatly impacted by

fixing the feedback noise ratio parameter, followed by the controller gain parameter. This pro-

vided additional evidence that these parameters were the most impactful in explaining the dif-

ferences between the pitch perturbation responses of the two groups. Fixing either the

somatosensory feedback delay or feedback noise variance parameter did not seem to change

the quality of model fit from that of the full five-parameter model, supporting the idea that

these parameters have low impact in explaining the differences between CA and control

groups. Once again, the impact of the feedback noise ratio parameter was much greater than

that of the feedback noise variance parameter, showing that the absolute amount of noise in

each feedback signal is less impactful than the relative amount of noise between signals. To val-

idate the method, the reduced models were also used to fit the control group data. As expected,

RMSE between the simulated and behavioral control group responses remained similar to that

of the full model, showing that changes in the RMSE of the CA group in the reduced model

fits are attributable to group differences in parameter values rather than an artifact of reducing

the number of parameters.

For each four-parameter model, the optimized simulator output of control and CA group

data are shown in Fig 6, along with the posterior distributions of the remaining parameters.

The optimized simulator output for each four-parameter model provides insight regarding the

impact of each parameter on the shape of the pitch perturbation response, while the distribu-

tions of the remaining parameters indicate which parameters may interact with the ablated

parameter.

The results of the ablation of the feedback noise ratio parameter are shown in Fig 6A. We

can see from the posterior distributions that while the somatosensory feedback delay, feed-

back noise variance, and auditory feedback delay parameter distributions remained mostly

Fig 4. Model fit. The simulator output (solid lines) using the inferred parameter set for each group closely aligned with

the behavioral data (dotted lines) previously seen in Fig 1. For simulator output and behavioral data, the mean is

plotted with a thick line and standard error with a thin line, although standard error on simulator output was too small

to visibly distinguish from the mean. Blue lines indicate data associated with the CA group and the corresponding

simulator output, while red lines indicate those associated with the control group.

https://doi.org/10.1371/journal.pcbi.1011986.g004
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similar to those of the full model, the controller gain parameter distribution for the CA

group shifted up to a much larger median value. This allowed the simulated response to

nearly reach the peak response of the behavioral CA data, but it dipped far below the behav-

ioral CA data during the period from 0.7 to 1.0 s after perturbation onset, resulting in a large

RMSE.

Alternately, when the controller gain parameter was ablated, the feedback noise ratio greatly

increased in effect size as the median value of the CA group distribution shifted down from

1.04 to 0.62. The median value of the somatosensory delay parameter also increased but the

effect size of this parameter increased only slightly due to the large variance of the distribution.

These changes allowed the simulator output to nearly reach the peak magnitude of the behav-

ioral data of the CA group, but with the controller gain fixed at the value of the control group,

the optimized simulator output was higher and more oscillatory than the behavioral data dur-

ing the period from 0.7 to 1.0 s after perturbation onset. Thus contributions from both the

feedback noise ratio and controller gain parameters are needed to replicate both the large mag-

nitude of the CA group response and the flat, moderate time course of fo after the end of the

perturbation.

When auditory feedback delay was fixed to the inferred value for the control group (Fig

6C), the CA group response became more oscillatory, contributing to a small increase in error

from the behavioral data. Fixing either somatosensory feedback delay or overall feedback noise

variance, meanwhile, did not appear to change the model fit. Each of these four-parameter

models achieved similar RMSE to the full model, and Fig 6D and 6E show similar fit and

parameter distributions to the full model (Figs 3 and 4). Thus small changes in the remaining

four parameters can account for the group differences in these parameters.

Fig 5. Quality of fit for reduced models. Quality of fit for each 4-parameter model with one parameter fixed to the

inferred value for the control group. The quality of each model’s fit is quantified by RMSE between empirical data and

optimized model output (mean RMSE across 100 simulator runs).

https://doi.org/10.1371/journal.pcbi.1011986.g005
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Marginal sensitivity analysis

To ensure that the ablation study was not confounded by the amount of change each parame-

ter effects in the model output, a marginal sensitivity analysis was conducted. Specifically, each

parameter was varied one and two standard deviations of the posterior distribution above and

below the inferred value while keeping all other parameters fixed at their inferred values for

each group. Fig 7 shows that the parameters that were least important in the ablation study,

somatosensory feedback delay and feedback noise variance, were actually the most sensitive to

standard deviation-sized changes, while the parameters that were most important in the abla-

tion study, feedback noise ratio and controller gain, were the least sensitive. The model param-

eters were fairly robust within two standard deviations of their inferred values, with

Fig 6. Reduced models: Simulator output and posterior distributions of remaining parameters. Inference results for each of five reduced models in which a single

parameter is fixed to the inferred value of the control group from the full model fit and the remaining four parameters are used to fit the behavioral pitch perturbation

data. Shown for each reduced model are the posterior distributions of the four remaining parameters and the simulator output (mean of 100 simulations) using the

inferred reduced parameter set.

https://doi.org/10.1371/journal.pcbi.1011986.g006
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differences from baseline <4 cents, except for somatosensory feedback delay. When other

parameters were set to the inferred values of the control group, somatosensory delay was sensi-

tive to high values due to instability. Additionally, no RMSE value could be obtained for

somatosensory delay two standard deviations less than the inferred value of the CA group,

because this was an invalid parameter value less than the frame rate of the model.

The model outputs resulting from varying individual parameters are also shown in Fig 7.

Somatosensory feedback delay and feedback noise variance seem to affect the oscillations in

the model output, although somatosensory delay seems to have greater effect on the magnitude

of the oscillations while feedback noise variance has greater effect on the frequency of the oscil-

lations. Auditory feedback delay translates the curve on the time axis relative to perturbation

onset. Controller gain and feedback noise ratio both adjust the magnitude of the response, but

with distinct effects on the persistence of the response after 0.7 s. As can be seen from the dif-

ferences between the second and third rows of Fig 7, the effects of each parameter on model

output are dependent on the context of the other parameter values. This highlights the impor-

tance of performing parameter fitting using techniques like simulation-based inference which

account for changes in multiple parameters simultaneously.

Discussion

In this study, simulation-based Bayesian inference was used to disambiguate possible mecha-

nisms underlying the observed differences in the pitch perturbation responses of speakers with

CA and typical speakers by identifying speech motor control model parameter differences

between these two groups. The results indicate that most of the differences between the pitch

perturbation responses of speakers with CA and typical speakers can be explained by differ-

ences in the feedback noise ratio and controller gain. These parameters showed both (a) the

largest effect size between groups when comparing the posterior distributions and (b) the great-

est loss of fit accuracy for the CA group when fixed to the inferred value of the control group.

Fig 7. Marginal sensitivity analysis. The top row of plots shows the change in model output when the parameter is varied one and two standard deviations of the

posterior distribution above and below the inferred value while all other parameters are fixed at their inferred values. The change in model output is quantified as RMSE

from the baseline model output where all parameters are set to their inferred values. Also shown are the model outputs that result from varying each parameter around

the inferred values of the control group (second row) and the CA group (third row).

https://doi.org/10.1371/journal.pcbi.1011986.g007
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Our finding that the feedback noise ratio was lower in the CA group than in the control

group with substantial effect size supports Hypothesis 1, which suggests increased reliance on

auditory feedback relative to somatosensory feedback in the CA group. In contrast, we did not

find evidence in support of Hypothesis 2, the idea that the CA group displays an increased reli-

ance on all types of sensory feedback collectively. The small effect size for the overall sensory

feedback noise parameter and the minimal change when this parameter was ablated were

inconsistent with this hypothesis.

Here we will discuss how these findings fit into the previous literature regarding pitch per-

turbation response in individuals with CA, new hypotheses generated by the model, and the

strengths and limitations of the modeling techniques used in this analysis.

Evidence for overreliance on auditory feedback

The high effect size of the feedback noise ratio suggests that the CA group may show increased

reliance on auditory feedback relative to somatosensory feedback. This may appear to conflict

with the results of Li et al. [10], which showed in individuals with spinocerebellar ataxia a

decreased cortical P2 response in the right superior temporal gyrus (STG), primary auditory

cortex (A1), and supramarginal gyrus (SMG) during a pitch perturbation task. However, while

this finding may provide evidence against the idea that the absolute value of auditory feedback

error gain is larger in the CA group than the control group ((Ka)CA > (Ka)control), we argue

that it does not rule out the idea of increased sensitivity to auditory feedback as we have

defined it in this study, that is, relative to somatosensory feedback (
Ka
Ks

� �

CA
>

Ka
Ks

� �

control
;

Hypothesis 1). If both auditory and somatosensory gains are smaller in the CA group com-

pared to controls, it is possible that the resulting ratio between auditory gain and somatosen-

sory gain may still be larger in the CA group compared to the control group (i.e., if the

somatosensory gain in the CA group were much smaller compared that of the control group).

Defining feedback noise in terms of a ratio between sensory modalities has been previously

used by Crevecoeur et al. [23] to model relative sensitivity to visual and proprioceptive feed-

back in arm reaching. Furthermore, the P2 response may not be a direct measure of gain on

auditory feedback error; the functional relevance of P2 response remains controversial and has

been suggested to have contributions from multiple sensory modalities including auditory and

somatosensory [36]. Although this view is highly speculative, we argue that the measurement

of decreased P2 response in the CA group [10] does not completely rule out Hypothesis 1 and

that our findings warrant further investigations.

Lack of evidence for overall overreliance on feedback

Given the ties between internal models and the cerebellum [19, 20], it is indeed somewhat sur-

prising that we did not find evidence of overreliance on sensory feedback overall. It would be

reasonable to expect that if the internal models, and thus the state prediction process, are dis-

rupted in CA, sensory feedback would be more heavily weighted to compensate for

impairment in the state prediction [9]. However, our results indicated similar weighting of

sensory feedback overall between the two groups, with perhaps even slightly lower weighting

(increased noise) of sensory feedback in the CA group. If future studies find similar results

across speech tasks, we speculate that perhaps the nature of the disruption of internal models

impairs the integration of sensory feedback, which may have a similar effect to a slightly

decreased weighting. However, it is possible that this is an artifact of the nature of the task; for

example, perhaps studying an auditory rather than a somatosensory perturbation created a

result in which auditory feedback appears to be emphasized rather than overall feedback, or
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perhaps an unexpected rather than a consistent perturbation created a result in which differ-

ences in feedback systems were emphasized. Future work should examine somatosensory per-

turbation studies and adaptation studies involving speakers with CA to better understand this

result.

Novel hypothesis generated by the model: Controller gain parameter

In addition to support for the previously stated hypothesis that individuals with CA show

increased reliance on auditory feedback relative to somatosensory feedback, our results lead us

to propose an additional hypothesis to be tested in future investigations. The high impact of

the controller gain parameter suggests a difference between speakers with CA and typical

speakers in the scaling of the motor command to the larynx, which has likely neural substrate

in the motor cortex [25]. While Kalman gain can be interpreted as sensitivity to prediction
error, or the difference between the actual sensory consequences of an action and those pre-

dicted by the internal model, the controller gain parameter can be interpreted as sensitivity to

target error, or the difference between the actual production and the goal, or desired produc-

tion. Although any direct ties between this parameter and the cerebellum are unknown, we

speculate that perhaps the increased value of controller gain in the CA group may indicate a

learned mechanism in the motor cortex to compensate for deficits related to the disorder.

Another possibility is the weakening of an inhibitory effect on controller gain, similar to the

mechanism suggested by Behroozmand et al. [37] in their study of pitch perturbation response

in individuals with Parkinson’s disease. Further study is needed to investigate this hypothesis

in the context of CA.

Efficacy of simulation-based inference for model parameter estimation

Simulation-based inference allowed us to obtain posterior likelihood distributions across each

parameter rather than a single set of optimal values. This made it possible to take into account

the spread of each distribution in addition to the inferred value and thus determine the effect

size of the difference between groups for each parameter. Additionally, in a complex system it

is possible to have many locally optimal parameter sets that can achieve high quality fit to the

empirical data. Obtaining a unimodal posterior likelihood distribution for each parameter

showed that the parameter set selected could approximate a globally optimal solution within

the bounds of the prior. Simulation-based inference also offers advantages over other Bayesian

methods since it does not require an analytical form of the model (allowing us to analyze a

complex model like state feedback control) and is more computationally efficient than other

numerical techniques such as Markov Chain Monte Carlo methods [38]. Since an analytical

form of the model is not required, simulation-based inference can be performed using any

computational model of speech motor control, and future work comparing parameter distri-

butions generated using other models could be valuable.

Limitations

It is important to note that the current work is beneficial for generating hypotheses, rather

than drawing conclusions. The larynx was modeled here as a simple spring-mass system.

While this implementation may approximate many of the dynamics of laryngeal movement,

future studies should investigate how results may vary when a more detailed model of laryn-

geal muscles (e.g., [29–31]) is implemented as the plant. Future, more detailed models may

also explore integrating sensory feedback delays into the state space equations to maintain the

optimal properties of Kalman gain.
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Additionally, real speakers vary in their vocal tract dimensions, damping, and other proper-

ties that are not possible to measure. The model cannot quantitatively reflect all of these prop-

erties to represent the vocal tract anatomy of an actual speaker. However, in a follow-up

analysis that included the anatomical parameters spring constant k, damping constant b, and

mass m as tunable parameters, the effect size between groups was very small for each of these

parameters (< 0.1) and the 95% Bayesian credible interval for each parameter contained the

value that was used in the original study. Thus the anatomical parameter values used were

appropriate to the data set and no differences were indicated between the CA group and the

control group in terms of these parameters.

Although the anatomical parameter values used for this investigation were determined to

be appropriate for fitting the group-average data sets, leaving these properties unchanged

throughout the present set of simulations may not represent the physiological diversity of the

individuals included in the behavioral data set. Each model output plotted in this investigation

was the mean output of 100 simulator runs, which helped account for stochasticity in the

model. However, standard error on model output was so small (< 0.1 cent) that it could not be

differentiated from the mean production on the plot, while standard error on the empirical

mean was larger, in the range of 0–3 cents. This demonstrates that the model does not account

for the variation that is present among individual speakers, and future work may investigate

variation among individuals and subgroups.

The present study was also limited to the model changes that could be captured by five

model parameters. The same model architecture was used to model both control and CA

groups, with all differences captured in the tuning of model parameters. Thus possible differ-

ences in the structure of neural systems between the groups were not tested in the current

study. Furthermore, many of the model parameters tested here are abstract concepts whose

precise neural implementation is not yet fully understood. Each parameter that is represented

in the model as a single value may in fact be the result of multiple complex neural processes.

Furthermore, only five parameters were considered in the present study. Since training data

was generated by testing values for each parameter in combination with all other parameters,

the number of parameters tested was in exponential tradeoff with the resolution of values

tested and the range of the prior for each one. While the irrelevance of other untested model

parameters cannot be proven, the tested parameters can be argued to be sufficient since the

model output for each set of inferred values closely matched the behavioral data.

Finally, this investigation focused on fitting behavioral responses to an unpredictable pitch

perturbation, which provided insight regarding within-utterance control of the larynx. Future

work is needed to fit the model to data from a pitch adaptation paradigm, in which can provide

insight regarding control of the larynx before sensory feedback impacts behavior. To our

knowledge, this behavior has not yet been studied in individuals with CA, so additional data

collection will be needed. Future work is also needed to fit the model to behavioral responses

to shifts in formant frequencies. While here control of the larynx was simplified to a one-

dimensional model, the control of multiple articulators needed to adjust formant frequencies

will require a multi-dimensional model.

Conclusion

This work has shown that the controller gain and feedback noise ratio parameters have high

effect size and large contributions to the group differences between the pitch perturbation

responses of speakers with CA and typical speakers. These results (a) provide support for the

previous hypothesis that individuals with CA show increased sensitivity to auditory feedback

prediction error and (b) generate a new hypothesis of increased sensitivity to target error in
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the CA group. Furthermore, this work demonstrates the value of simulation-based inference

methods in analyzing behavioral speech data using tunable parameters of a state feedback con-

trol model.

Materials and methods

Simulation-based inference overview

The SBI package in Python (https://github.com/sbi-dev/sbi/; [21, 22]) was used to obtain pos-

terior likelihood distributions of five tunable parameters in the SFC model (see Model section

for an overview of SFC) for the CA and control group average pitch perturbation responses

observed in Houde et al. [9]. As detailed in Fig 8, SBI takes as input a computational model

with a finite set of input parameters (“simulator”), a prior distribution for each parameter, and

an empirical observation analogous to the output of the simulator. It generates a training set

by running the simulator with inputs from the prior distributions of the parameters, and then,

using the Sequential Neural Posterior Estimation (SNPE) option for inference, trains a deep

neural density estimator to predict the posterior distributions of parameters given the empiri-

cal observation.

Fig 8. SBI overview. A pipeline for performing simulation-based inference [21, 22]. Parameter values are inferred for a

particular empirical observation given a mechanistic model (“simulator”) and a prior distribution for each tunable

parameter.

https://doi.org/10.1371/journal.pcbi.1011986.g008
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Simulator

A Python implementation (https://github.com/jessicagaines/1d-sfc) of a state feedback control

model of fo [25, 27] was used as the simulator (see Model section for more details). The input

parameter set included the following parameters: auditory feedback delay Δa, somatosensory

feedback delay Δs, controller gain gc, feedback noise variance σ, and feedback noise ratio r. The

parameters σ and r are parameterizations of auditory feedback noise variance σa and somato-

sensory feedback noise variance σs such that σa = σ and σs = σ/r. This idea of exploring relative

levels of feedback noise between different sensory modalities was also used by Crevecoeur

et al. [23] in their state feedback control model of arm reaching. The output simulated a time

course of voice fo in response to a -100 cent, 400 ms, mid-utterance perturbation of fo auditory

feedback. Random noise was added to model output during training as Jin et al. [33] found

that this increased reconstruction accuracy. Uniform noise distributions of increasing width

were tested and since the quality of model fit stopped improving for training noise distribution

wider than 7 cents, noise with distribution *U(−3.5, 3.5) was added to the simulator output

during training.

Prior distribution of parameters

The SBI inference procedure requires the input of a prior distribution for each parameter,

which defines the search space of the training data. A uniform prior was used for each parame-

ter. For some parameters, the bounds of the prior could be estimated from measurable quanti-

ties. For example, Abbs and Gracco [39] indicate that latencies in response to a somatosensory

perturbation are on the order of tens of milliseconds, so a prior of 3 to 80 ms was used for

somatosensory delay. Latencies to auditory perturbations, meanwhile, have been reported in

the range of 100–200 ms [40], so a prior of 50 to 200 ms was used. Measurable latencies may

be greater than delays since they include motor response time, so the lower bounds were set

lower than the measured response latencies. The lower bound for somatosensory delay is quite

low, in the range of what is typically associated with non-cortical reflex [41], but since no mini-

mum delay value can be definitively measured, we opted not to restrict the prior based on this

information. The remaining parameters could not be estimated from measurable quantities, so

wide initial priors were selected to fully explore the space. Initial bounds of 0.1 to 10 were

selected for the feedback noise ratio and controller gain parameters to include two orders of

magnitude, and the range of 1e-10 to 1e-1 was selected for feedback noise variance. The audi-

tory feedback noise variance parameter was converted to a base-10 logarithmic scale to search

many orders of magnitude more effectively. For likely parameter sets in this regime, the simu-

lator was found to be unstable for feedback noise variance less than 1e-6.5, and so the lower

bound for this parameter was increased to 1e-6.5 to train the likelihood estimator on stable

simulator outputs. Finally, the results of the wide prior showed that the tails of the posterior

likelihood distributions of feedback noise variance, feedback noise ratio, and controller gain

parameters were far from the upper bounds of each prior. The bounds were narrowed slightly

to increase the search resolution for each parameter and decrease the computational resources

needed. The final bounds selected are shown in Table 2. This choice of prior is validated by the

Table 2. Uniform priors with the following bounds were selected for each parameter.

Parameter Aud Delay (ms) Somat Delay (ms) Fb Noise Var (log10 scale) Fb Noise Ratio (Aud:Somat) Controller Gain

Symbol Δa Δs σ r gc

Lower bound 50 3 -6.5 0.1 0.1

Upper bound 200 80 -3 6 8

https://doi.org/10.1371/journal.pcbi.1011986.t002
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result that the likelihood distributions for each parameter (see Fig 3) lie comfortably within

these bounds, except for feedback noise variance, which was restricted for stability, and

somatosensory delay, which by definition cannot be less than one frame of simulator

operation.

Empirical observation

As described in the Introduction, behavioral group-average pitch perturbation responses from

CA and control groups previously published by Houde et al. [9] were used as empirical obser-

vations to sample the posterior. Participants in the behavioral study included 16 individuals

with cerebellar degeneration of various subtypes (10 male, 6 female, mean age 50 ± 12 years)

and 11 age-matched controls (7 male, 4 female, mean age 51 ± 11 years). Many subtypes of CA

were represented including spinocerebellar ataxia (SCA) type 2, SCA type 3, SCA type 5, SCA

type 6, SCA type 7, SCA type 8. There were also six participants with unknown/idiopathic cer-

ebellar atrophy [9]. Each behavioral data set was downsampled from 413 to 300 frames per 1.2

s trial to match the output of the simulator.

Inference

105 simulations were used to train the neural density estimator [33]. The posterior was then

sampled 104 times for each group. To improve robustness, this procedure was repeated 10

times [13, 33, 42] and the samples from each repetition were pooled to obtain the final parame-

ter distributions. A 95% Bayesian credible interval was calculated for each distribution. Glass’s

delta was used to calculate the effect size of each parameter between groups. To assess the qual-

ity of model fit, the median of each pooled distribution was considered the “inferred value” for

each parameter and each inferred parameter set was supplied as input to the simulator. To

account for stochasticity within the simulator, 100 simulations were run with each inferred

parameter set and the mean of these was plotted. The quality of the fit was assessed quantita-

tively by calculating the point-wise root mean square error (RMSE) between the model output

and the empirical data [13, 42]. This statistic was not used in training the neural network and

therefore provided a separate method of quantifying the success of the model fit.

Ablation study

Next, an ablation study was used to further understand the impact of each parameter on

model output [35]. One at a time, each parameter was ablated by fixing it to the inferred value

(the median value of the pooled posterior distribution) of the control group and repeating the

inference procedure to generate posterior distributions for the four remaining parameters.

The medians of these distributions were once again used in the simulator to assess the quality

of fit for each reduced model using RMSE and compare the result to that of the full model. A

greater increase in error for a particular reduced model indicated that the parameter ablated in

that model had greater impact on group differences.

Marginal sensitivity analysis

Finally, a marginal sensitivity analysis was used to determine the sensitivity of the model out-

put to changes in each parameter. First, a baseline output was determined by averaging 100

simulations using the inferred parameter set for each group. Then each parameter was varied,

one at a time, while all other parameters remained fixed at their inferred values. Using the

standard deviation from each parameter’s posterior distribution, parameter values 0, 1, and 2

standard deviations above and below the inferred value were tested (and again averaged across
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100 simulations). The resulting model output of each test was plotted and the difference from

baseline model output was quantified using RMSE.

Supporting information

S1 Appendix. Noise parameters influence simulator output mainly through the calculation

of Kalman gain.
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