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Professor Troy A. Carter, Chair

Understanding the interaction between wave excitation and damping is essential in the

advancement of research on magnetized plasmas in space, laboratory, and astrophysical

settings. Alfvén waves can be excited across all of these settings, and in fusion research

plasmas such as tokamak plasmas, they are present due to energetic particles from neutral

beam injection and fusion reactions. The interplay between wave-particle interaction and

damping processes is at the core of understanding wave excitation.

In the work presented in this dissertation, an experiment was designed to investigate high

frequency Alfvén waves excited through Doppler-shifted cyclotron resonance with energetic

particles from neutral beam injection in the DIII-D tokamak. These waves, compressional

(CAE) and global (GAE) Alfvén eigenmodes, typically have frequencies close to the ion

cyclotron frequency fci; the frequency and amplitude of these modes was measured with

the Ion Cyclotron Emission (ICE) diagnostic. The experiment utilized the unique capa-

bility of the DIII-D neutral beams to separately control the energy and injection rate. A

parametric scan across many magnetic fields and beam geometries was performed to study

the dependencies of these modes on various plasma parameters.

An energetic ion density threshold was observed during a discharge in which the voltage

of an off-axis co-injecting beam was held constant while the current was ramped down by

40%. During this discharge, a spectrum of high frequency AEs at f = 0.58fci was sta-

bilized via a controlled energetic ion density ramp for the first time in a fusion research
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plasma. This observation demonstrates an important property of resonant AEs: that the

growth rate of these waves is set by the balance between fast-ion drive and damping pro-

cesses. The controlled stabilization of this mode also validates previous simulations done

on high frequency AEs in which an instability threshold was observed by varying the beam

density without changing the shape of the distribution.

The scaling of the amplitude of this wave with the beam injection rate was found to be

consistent with predictions for single mode collisional saturation near marginal stability.

Analytic theory found that for the observed beam injection rate threshold, the mode was

near marginal stability throughout the entire beam ramp. This is notably different from

previous simulations of CAEs/GAEs that were in the collisionless regime and often far

from marginal stability.

Modeling codes such as TRANSP and ORB GC were used to model and analyze the fast-

ion distribution for this discharge. This analysis found that the modes were likely excited

by a high energy subset of the fast-ion population with strong gradients in parallel veloc-

ity space. Resonance analysis of this subset of the fast-ion population, in conjunction with

considerations from dispersion relations, shows that the mode is likely a shear-polarized

GAE. This marks the first identification of a GAE excited through Doppler-shifted cy-

clotron resonance with sub-Alfvénic energetic ions, a first in fusion research plasmas.
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CHAPTER 1

Introduction

Nuclear fusion has long been considered the future of clean energy. For decades, scientists

have sought to understand how to harness the energy released as a result of a reduction in

total mass during the fusion reactions of hydrogen nuclei – the same reactions that power

the sun. To do so would promise a nearly endless supply of energy without carbon

emissions, as the fuel sources for nuclear fusion reactions are deuterium, found readily in

sea water, and tritium, which can be obtained from lithium, an abundant resource.

D2 + T3 → He4 + n1 + 17.6 MeV

D2 + D2 → He3 + n1 + 3.27 MeV

D2 + D2 → T3 + H1 + 4.03 MeV

D2 + He3 → He4 + H1 + 18.3 MeV

(1.1)

Eq.1.1: Nuclear fusion reactions that can occur with deuterium [1].

The main challenge in obtaining a positive energy balance in fusion reactions is

maintaining the high temperature and density of the particles for a sufficiently long time.

Thermonuclear fusion refers to the process by which the thermal velocities of the nuclei

are increased through heating to induce the required reactions [1]. At the required

temperature for this to occur (over 100 million degrees Celsius), the particles are fully

ionized and form a plasma. Confinement of a plasma presents its own challenges, and

devices like the z-pinch [2] and the stellarator [3] have attempted to achieve a stable

plasma equilibrium without significant success. The tokamak is a device that confines
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Figure 1.1: Bt, Bp, and Ip in a tokamak. The total magnetic field (shown in red) causes

the field lines to follow a helical trajectory around the torus. Typical coordinates of a

tokamak are also shown (z, R, a, ϕ, θ). The magnetic axis, at R0, is shown in green.

plasma in a toroidal geometry through strong electromagnetic fields, and is considered the

leading candidate for a fusion reactor with break-even or positive energy output.

1.1. Tokamaks

Tokamaks confine plasma toroidally through a magnetic field. The primary component of

the magnetic field is toroidal (Bt) and produced through strong poloidal currents in

external coils. The plasma itself produces a toroidal current (Ip), which then gives rise to a

poloidal magnetic field Bp (it should be noted that the Bp is also comprised of other

sources such as coils used for plasma shaping). An illustration of Bt, Ip, and Bp is shown

in Fig. 1.1. From Ampère’s law, the variation of the toroidal field with respect to radius

can easily be found to be Bt ∝ 1/R [1].

The total magnetic field, formed by Bt and Bp, follows a helical trajectory around the

torus. An illustration of a field line is shown in Fig. 1.1 in red. Fig. 1.1 also shows the
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toroidal coordinate system, where R is the major radius, a is the minor radius, θ is the

poloidal angle, and ϕ is the toroidal angle. R0 indicates the magnetic axis, and the aspect

ratio of a tokamak is defined as the ratio of the major radius to the minor radius R/a.

Because axisymmetric equilibria (independent of toroidal angle ϕ) is generally considered

in tokamaks, a cylindrical coordinate system (R, z, ϕ) is often used.

The total field can be visualized as an infinite set of toroidal magnetic surfaces, with field

lines that wind around the torus on their respective magnetic surface in a helix [1].

Considering axisymmetric equilibrium, the magnetic force on the plasma must balance the

force due to the plasma pressure. This implies that magnetic surfaces are surfaces with no

pressure gradient. These magnetic surfaces are referred to as magnetic flux surfaces, as the

poloidal magnetic flux function ψ is a constant on each surface. This flux function is

important in solving for tokamak equilibria, and a more in-depth derivation and

explanation follows in the next section. The normalized effective plasma radius ρeff based

on toroidal flux is often used in tokamak physics, where ρeff =
√
ψN , and ψN is the

normalized toroidal flux, with ψ = 0 at the magnetic axis and ψ = 1 at the last closed flux

surface.

The safety factor q in a tokamak describes the relative “twist” of a field line. Each field

line follows a helical trajectory along its corresponding flux surface, and returns to its

starting point after some change of toroidal angle ∆ϕ. The q-value of this line would then

be q = ∆ϕ
2π

. Fig. 1.1 shows a q = 2 field line in red that returns to its starting point after

two rotations around the torus. An approximate definition of q in a tokamak is q = aBt

RBp
.

It is also apparent that each flux surface has a constant q.

1.1.1. Flux functions

The magnetic force must balance the force due to the plasma pressure at all points in the

plasma, and this can be expressed as:

J ×B = ∇p (1.2)

where J is the current density.
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From this it follows that

B · ∇p = 0

J · ∇p = 0
(1.3)

which indicates that magnetic surfaces have constant pressure, and that current lines lie in

magnetic surfaces.

The poloidal magnetic flux function ψ is a function that is determined by the poloidal flux

in each magnetic surface. ψ is necessarily a constant on each surface, so

B · ∇ψ = 0 (1.4)

Using a cylindrical coordinate system, since ∇ ·B = 0,

1

R

∂

∂R
(RBR) +

∂Bz

∂z
= 0 (1.5)

it follows that the poloidal magnetic field is related to the poloidal magnetic flux function

ψ as:

BR = − 1

R

∂ψ

∂z
, Bz =

1

R

∂ψ

∂R
(1.6)

There necessarily also exists a current flux function f = f(ψ) and is related to poloidal

current density as:

JR = − 1

R

∂f

∂z
, Jz =

1

R

∂f

∂R
(1.7)

It also follows that

f =
RBϕ

µ0

(1.8)

This derivation was taken from Ref. [1].

1.1.2. Particle orbits

A charged particle in a uniform magnetic field follows a Larmor orbit, which is a helical

orbit comprised of a circular orbit with gyroradius ρr = mv⊥
qB

with constant velocity along

the magnetic field, where m is the mass of the particle, v⊥ is the velocity perpendicular to
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the field, q is the charge, and B is the magnitude of the magnetic field. In a non-uniform

magnetic field, this motion is subject to drifts of the guiding center of the Larmor orbit

due to E ×B effects, ∇B effects, curvature of B, and/or polarization effects from a

time-varying electric field E. An in-depth derivation of these drifts can be found in Ref.

[1].

In tokamaks, the non-uniform magnetic field results in two types of guiding center orbits:

passing and trapped. Passing particles will orbit around the torus because they have an

adequately large parallel velocity with respect to the magnetic field, and their trajectory is

illustrated in Fig. 1.2(b). Trapped particles have low parallel velocity with respect to the

magnetic field. Because Bt varies as 1/R, the outer side of the torus has a weaker

magnetic field. As particles move towards the region of higher field, they undergo a

magnetic mirror effect that causes their trajectory to reflect [1]. These particles are

trapped in the low field side of the torus, bouncing back and forth, and the orbit of these

trapped particles is known as a banana orbit. Fig. 1.2(a) shows the banana orbit and its

projection onto a poloidal plane, and Fig. 1.2(c) shows the trajectory of a trapped particle.

1.2. MHD instabilities

Tokamaks are subject to a wide range of instabilities, including equilibrium scale events

that can disrupt plasma confinement and cause current collapse, such as edge localized

modes (ELMs) or neoclassical tearing modes [1]. The results presented in this thesis are

from L-mode (low confinement) discharges in DIII-D. In comparison to H-mode (high

confinement) plasmas, ELMs are not typically present and the effect of other instabilities

that can disrupt plasma operation are reduced; this is true of the plasmas in the results

discussed here. A comprehensive summary of the different types of instabilities present in

tokamaks can be found in Ref. [1]. These instabilities are collectively referred to as

magnetohydrodynamic (MHD) instabilities as they can be approximated by MHD plasma

theory.

MHD is a model that treats the plasma as a conducting fluid in order to describe the
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Magnetic surface

Projection on to poloidal plane

Flux
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Figure 1.2: (a) The banana orbit of a trapped particle with its projection onto a poloidal

plane. (b) Diagram illustrating drift surfaces for the orbit of a passing particle. (c) Dia-

gram illustrating drift surfaces for the banana orbit of a trapped particle. Figures taken

from Ref.[1].

equilibrium. Ideal MHD describes plasmas with Maxwellian particle distributions, strong

collisionality, and negligible resistivity (no diffusion). It does not take into account kinetic

effects. Despite its limitations, MHD theory is sufficient in describing many important

properties of plasma instabilities in tokamaks and has been shown to be approximately

qualitatively accurate in experiment [4].

The set of ideal MHD equations combines the fluid equations and Maxwell’s equations [1]:
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dρm
dt

= −ρm∇ · v

ρm
dv

dt
= J ×B −∇p

dp

dt
= −γp∇ · v

µ0J = ∇×B

∂B

∂t
= −∇×E

E + v ×B = 0

(1.9)

Eq. 1.9: Ideal MHD equations.

where ρm ' min is the mass density, v is the fluid velocity, p is the plasma pressure, J is

the current density, B and E are the magnetic and electric fields, γ = 5/3 is the ratio of

specific heats, and µ0 is the vacuum permeability.

These equations can be linearized to solve for instabilities that arise in MHD plasmas by

perturbing quantities and solving for wave-like solutions that vary as ei(k·r−ωt), where ω is

the angular frequency, k is the wavenumber, and r is the displacement. In a tokamak,

toroidal axisymmetry is assumed and the equilibrium is constant along the toroidal angle

ϕ. The eigenfunction wave solutions to the ideal MHD equations can thus be expressed as

ei(mθ−nϕ) as long as the variation in the poloidal angle θ is sufficiently small [1].

Conventionally, the eigenvalues m and n are used to describe the poloidal and toroidal

mode number of the corresponding wave, respectively.

1.2.1. The sawtooth instability

Sawtooth oscillations are a relaxation that occurs in the core of the tokamak, appearing as

a slow rise followed by a sharp drop in temperature and density that gives the instability

its name. Unlike other macro-scale instabilities, its existence does not typically lead to a

disruption in plasma confinement. The plasma core recovers after each sawtooth crash,

and the instability occurs repeatedly. Sawtooth oscillations are a ubiquitous instability in

7



     

0.42

0.44

0.46

0.40
2300 2350 2400 2450 2500

0.1

0.2

0.3

0.4

0.5

0.6

Time (ms)

E
le

c
tr

o
n

 T
e

m
p

e
ra

tu
re

 (
k
e

V
)

(a)

(b)

Figure 1.3: Electron cyclotron emission (ECE) diagnostic data showing the temperature at

(a) the core of the plasma and (b) the edge.

that they occur under a wide range of plasma conditions in all tokamaks, both

conventional and spherical.

The sawtooth instability begins with a perturbation that develops at the q = 1 flux

surface. The temperature and density in the core of the plasma rise slowly and linearly

with time, and as the core temperature increases, the q in the core drops below unity. This

causes a fast collapse of the temperature and density. During this collapse, hot electrons in

the core are quickly expelled and transported across flux surfaces to colder regions of the

plasma, accompanied by a flattening of the temperature and density profiles [5]. The cycle

repeats as core temperature and density are again increased through heating.

An example of sawteeth is shown in Fig. 1.3, where the electron temperature (Te) is

measured through the electron cyclotron emission (ECE) diagnostic [6]. Fig. 1.3(a) shows

Te in the core of the plasma during sawtooth oscillations; the temperature rises during the

ramp and then experiences a crash as the thermal energy is dissipated to the outer region
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of the plasma. This pattern is inverted in the outer region, as seen in Fig. 1.3(b).

1.3. Motivation

The focus of this dissertation is on compressional (CAE) and global (GAE) Alfvén

eigenmodes, which are a type of MHD wave that are excited through Doppler-shifted

cyclotron resonance (DCR) with energetic particles in tokamak plasmas. These waves

typically have frequencies that are close to the ion cyclotron frequency fci.

Figure 1.4: Taken from Ref. [7]. The correlation between GAE activity, Te flattening, and

an increase in χe in NSTX H-mode discharges heated by neutral beams at varying powers.

Understanding the interaction between Alfvén waves, energetic particle drive, and wave

damping is essential in advancing research on magnetized plasmas in space, laboratory,

and astrophysical settings. Alfvén waves can be resonantly excited by high energy cosmic

rays and cause them to scatter, leading to transport [8]. Energetic protons in the Earth’s
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radiation belts can excite Electromagnetic Ion Cyclotron (EMIC) waves that contribute to

scattering and precipitation of trapped relativistic electrons [9]. And in tokamak plasmas,

energetic particles from heating schemes such as neutral beam injection (NBI) and fusion

reactions can excite Alfvén waves by creating gradients in the ion velocity distribution at

the location of the wave-particle resonance [10]. Wave-particle interaction and damping

are at the core of understanding wave excitation and particle scattering processes across

all of these settings.

CAEs and GAEs have been found to correlate with enhanced core electron transport in

the National Spherical Torus Experiment (NSTX) [7]. This is shown in Fig. 1.4: as the

power of the neutral beam increases, GAEs are excited in the plasma. GAE activity is

correlated with a flattening of the electron temperature (Te) profile, and with an increase

in the electron heat diffusivity χe. Notably, the safety factor q-profile and the electron

density ne profile were the same in all discharges during this transport correlation. This

correlation is important because it shows that advancing our understanding of the role of

these waves in electron thermal transport is essential for developing a predictive capability

for current and future fusion experiments. Future burning plasmas such as those on ITER

will be primarily heated by NBI and energetic alpha particles from fusion reactions which

can excite AEs and cause anomalous transport.
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1.4. Outline of the dissertation

This dissertation focuses on the study of CAE/GAE activity in DIII-D and its dependence

on plasma parameters. The major result presented here is the stabilization of a high

frequency AE through a controlled energetic ion density ramp.

First, the theoretical background of these AEs, which are driven unstable through

Doppler-shifted cyclotron resonance with fast-ions, is presented. The dispersion relation

for these waves is derived in the finite-frequency limit (ω ∼ ωci), as well as the fast-ion

drive for these modes in an anisotropic beam distribution. Finally, the resonance

conditions for DCR are shown.

The DIII-D tokamak and its diagnostics are discussed next, with emphasis on neutral

beam injection and its capabilities. Specifically, the DIII-D tokamak features NBI that

uniquely uses its ability to separately vary beam voltage and current. The various

diagnostics on DIII-D will be discussed with particular emphasis on the Ion Cyclotron

Emission (ICE) diagnostic, which is used to measure magnetic fluctuations and give

spectral information about CAE/GAEs. This will be followed with a description of the

experimental design, including plasma conditions and considerations.

Finally, the analysis showing the controlled fast-ion density ramp stabilizing the mode is

presented. The comparison with analytic theory is given, showing that the mode

amplitude scaling with beam injection rate is consistent with collisional saturation near

marginal stability. Modeling codes are used to compare the frequency and amplitude of

the AE with theoretical expectations. Specifically, TRANSP and ORB GC are used for

resonance analysis of the fast-ion population, allowing the identification of a resonant

population of energetic particles that are likely responsible for mode drive. Through this

analysis and considerations from dispersion relations, the mode is identified as a

shear-polarized GAE, the first identification of a GAE excited by sub-Alfvénic beam ions

in a fusion research plasma.
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CHAPTER 2

Theoretical background of Doppler-shifted cyclotron

resonant Alfvén eigenmodes

Compressional (CAE) and global (GAE) Alfvén eigenmodes are a type of MHD wave that

are driven unstable by energetic ions from neutral beam injection. The free energy

destabilizing these modes is provided by fast-ions that are Doppler-shifted cyclotron

resonant with the AEs.

This chapter will first show CAE/GAE theory in the framework of MHD, in which CAEs

correspond to the compressional and GAEs correspond to the shear branches of MHD

waves. This will be generalized to show the derivation for the CAE/GAE dispersion

relations in the local approximation for a cold plasma. Following, fast-ion drive and

damping will be derived assuming a two-component plasma consisting of a cold bulk

plasma and a hot fast-ion population. Finally, the resonance conditions for CAE/GAEs

will be discussed, which includes the condition for Doppler-shifted cyclotron resonance and

the orbit-averaged resonance equation.
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2.1. MHD Waves

Beginning with the MHD equations, first shown in Section 1.3, which combine the fluid

equations and Maxwell’s equations:

dρm
dt

= −ρm∇ · v

ρm
dv

dt
= J ×B −∇p

dp

dt
= −γp∇ · v

µ0J = ∇×B

∂B

∂t
= −∇×E

E + v ×B = 0

(1.9)

In order to solve for MHD waves, we linearize these equations by perturbing quantities

and solve for wave-like solutions that vary as exp[i(k · r − ωt)]. Equilibrium quantities will

be denoted with the 0 symbol.

In Cartesian coordinates, without loss in generality we can assume that the equilibrium

magnetic field is B0 = B0ẑ and the wave vector is k = k⊥x̂+ k‖ẑ.

Define the Alfvén velocity as:

v2
A ≡

B0

µ0ρ0

=
B0

µ0nm
(2.1)

and the sound speed as:

v2
s ≡

γp0

ρ0

(2.2)

Letting θ be the angle between B0 and k, for a non-trivial solution, the determinant of

the matrix 
ω2 − k2v2

A − k2v2
s sin2 θ 0 −k2v2

s sin θ cos θ

0 ω2 − k2v2
A cos2 θ 0

−k2v2
s sin θ cos θ 0 ω2 − k2v2

s cos2 θ

 (2.3)

must be zero.

13



This leads us to the dispersion relation for MHD waves:

(ω2 − k2v2
A cos2 θ)

[
ω4 − ω2k2(v2

A + v2
s) + k4v2

Av
2
s cos2 θ

]
= 0 (2.4)

or:

(ω2 − k2
‖v

2
A)
[
ω4 − ω2k2(v2

A + v2
s) + k2k2

‖v
2
Av

2
s

]
= 0 (2.5)

corresponding to three non-trivial solutions.

The first of these is the shear Alfvén wave, which has the dispersion relation

ω = k‖vA (2.6)

The other two solutions correspond to the slow and fast magnetosonic wave, with the

dispersion relations

ω = kv± (2.7)

where

v2
± =

1

2

[
v2
A + v2

s ±
√

(v2
A + v2

s)
2 − 4v2

Av
2
s cos2 θ

]
(2.8)

The shear Alfvén wave is a transverse wave and propagates parallel to the equilibrium

magnetic field B0, while the magnetosonic wave is a longitudinal wave that propagates

perpendicular to B0. In the cold plasma limit, letting vs → 0, the magnetosonic dispersion

relation is reduced to

ω = kvA (2.9)

which is the dispersion relation for the compressional Alfvén wave.

The perturbation of the magnetic field by shear and compressional Alfvén waves is shown

in Fig. 2.1. Shear Alfvén waves propagate parallel to the equilibrium magnetic field B0

and tend to bend the magnetic field lines, while magnetosonic waves propagate

perpendicular to B0 and tend to compress the magnetic field lines.

GAEs are a type of shear Alfvén wave, and CAEs are, of course, compressional. The

dispersion relations for shear and compressional Alfvén waves (Eqs. 2.6 and 2.9) derived in

this section apply to Alfvén waves in a cold, uniform plasma and serve as a general

approximation for the AEs discussed in this dissertation. A more accurate dispersion

relation is derived in the next section.
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Figure 2.1: Magnetic field perturbation of MHD waves: (a) shear Alfvén waves propagate

parallel to the magnetic field and (b) magnetosonic waves propagate perpendicular to the

magnetic field.
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2.2. Waves in an anisotropic medium

The derivation that follows is for plasma waves in an anisotropic medium. We begin with

three of Maxwell’s equations:

J =←→σ ·E

∇×E = −∂B
∂t

∇×B =
1

c2

∂E

∂t
+ µ0J

(2.10)

where ←→σ is the conductivity tensor.

Again, we linearize by assuming waves of the form exp[i(k · r − ωt)]. Define the dielectric

tensor ←→ε as

←→ε = 1−
←→σ
iωε0

(2.11)

where ε0 = 8.854× 10−12 F ·m−1 is the vacuum permittivity. With some algebra, Eq. 2.10

reduces to

k(k ·E)− k2E +
ω2

c2
←→ε ·E (2.12)

Define the index of refraction n as:

n ≡ kc

ω
(2.13)

Then for a non-trivial solution the following must be satisfied:∣∣∣εij − n2
(
δij −

kikj
k2

)∣∣∣ = 0 (2.14)

As in the previous section, without loss in generality we may assume B0 = B0ẑ and

k = k⊥x̂+ k‖ẑ. Additionally, in the MHD limit we may assume that Ez is negligible, so

the dispersion is determined by: ∣∣∣∣∣∣ε11 − n2
‖ ε12

ε21 ε22 − n2

∣∣∣∣∣∣ = 0 (2.15)
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2.3. Dielectric tensor in cold plasma approximation

In order to solve for the dispersion relation, the dielectric tensor must be determined. This

is done so through the cold plasma formulation, in which the thermal motion of the

particles is ignored (i.e. ω/k � vth). In the cold plasma formulation the plasma is assumed

to be homogeneous and quasineutral; the background plasma is assumed to have E0 = 0

and B = B0. Taking B0 = B0ẑ, we start with the equation of motion

m
∂v

∂t
= q(E + v ×B) (2.16)

and perturb v,E ∝ exp[i(k · r − ωt)]. Noting that J = qnv =←→σ ·E, and defining the

plasma frequency as:

ω2
p =

q2n

ε0m
(2.17)

and the cyclotron frequency as:

ωc =
qB0

m
(2.18)

we arrive at a general expression for the dielectric tensor ←→ε , where the subscript j

denotes particle species.

ε =



1−
∑
j

ω2
pj

ω2 − ω2
cj

−i
∑
j

ωcj
ω

ω2
pj

ω2 − ω2
cj

0

i
∑
j

ωcj
ω

ω2
pj

ω2 − ω2
cj

1−
∑
j

ω2
pj

ω2 − ω2
cj

0

0 0 1−
∑
j

ω2
pj

ω2


(2.19)

This can also be written as

ε =


S −iD 0

iD S 0

0 0 P

 (2.20)

with
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S = 1−
∑
j

ω2
pj

ω2 − ω2
cj

D =
∑
j

ωcj
ω

ω2
pj

ω2 − ω2
cj

P = 1−
∑
j

ω2
pj

ω2

(2.21)

2.4. Dispersion relation

Using the values from the dielectric tensor ←→ε found in the previous section, we solve for

the dispersion relation using Eq. 2.15. Following the notation from Ref. [11], we define

ω = ω/ωci0, N = kvA/ω, A = 1
1−ω2 , F 2 = k2

‖/k
2, and G = 1 + F 2, with ωci0 being the ion

cyclotron frequency on-axis. The dispersion relation in uniform geometry is

N2 =
AG

2F 2

[
1±

√
1− 4F 2

AG2

]
(2.22)

with the “–” solution corresponding to CAEs and the “+” solution corresponding to

GAEs. In the low frequency limit (ω � ωci) this dispersion relation reduces to Eqs. 2.6

and 2.9. Importantly, Eq. 2.22 takes into account finite-frequency effects which were

precluded by previous studies of CAE/GAEs such as those in Refs. [12, 13] and others.

Finite-frequency effects also affect the polarization of CAE/GAEs [14]. In the simplest

model in the MHD formulation described in Section 2.1, CAEs are polarized such that

E = Eŷ, perpendicular to the wave vector k = k⊥x̂+ k‖ẑ, and propagate perpendicular to

the equilibrium magnetic field B0 = B0ẑ; shear Alfvén waves such as GAEs are polarized

such that E = Ex̂, parallel to the perpendicular wave vector k⊥ = k⊥x̂, and propagate

parallel to B0. After taking into account finite-frequency effects, the polarizations of

CAE/GAEs become mixed such that both waves have |Ex| ≈ |Ey| in the limit of k‖ � k⊥

[14].
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2.5. Eigenmodes and radial structure in a tokamak

In practice, CAE/GAEs are subject to spatial irregularities in toroidal geometries and

thus have spatial dependence in non-uniform plasmas that depend on equilibrium plasma

profiles and on the details of the toroidal geometry.

2.5.1. Compressional Alfvén eigenmodes

Figure 2.2: From Ref. [14], the CAE mode structure is calculated from simulation. The

effective potential Veff is shown in black with the shaded region marking where Veff < 0 and

the wave can propagate. The primary mode fluctuation δB‖ is localized in this potential

well. The other fluctuations, δB⊥ and δE‖, near major radius R = 0.6 m, arise due to

mode conversion to a kinetic Alfvén wave at the location of the resonance where Veff = 0.

In toroidal geometry, boundary conditions imposed on CAEs give rise to a discrete

spectrum of eigenfrequencies and eigenfunctions. Detailed derivations of the toroidal

eigenmodes have been performed in references such as Refs. [15] and [16]. For the research

presented here, it is sufficient to approximate that CAEs are poloidally localized in a
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effective potential “well” in the R-z plane where Veff(r, θ) = k2
‖ + ω2/v2

A ≈
n2v2A
R2 , such that

the wave propagates in regions where
n2v2A
R2 − ω2 < 0 and is evanescent where

n2v2A
R2 − ω2 > 0.

CAEs are typically edge-localized in tokamaks at the low field side [12]. Fig. 2.2 shows the

mode structure of a CAE as calculated through simulation, taken from Ref. [14], localized

within the potential well where Veff < 0. In this simulation, the other coherent fluctuations

δB⊥ and δE‖ arise from mode conversion to a kinetic Alfvén wave where Veff = 0.

2.5.2. Global Alfvén eigenmodes

Shear Alfvén waves in toroidal geometry have radial dependence approximately through

the general dispersion relation

ω = k‖(r)vA(r) (2.23)

The parallel wave vector k‖ has radial dependence; in the cylindrical approximation of a

tokamak plasma it can be expressed as

k‖ =
n−m/q(r)

R
(2.24)

where n is the toroidal mode number, m is the poloidal mode number, r is the minor

radius, R is the major radius, and q(r) = rBt

RBp
is the tokamak safety factor.

Shear Alfvén waves satisfying this dispersion relation are part of the Alfvén continuum.

However, these waves are strongly damped through phase mixing because they have

different phase velocities across its radial extent, causing rapid dispersion of the wave

packet [10] – this is known as continuum damping.

In toroidal geometry, however, frequency gaps exist due to periodicity constraints on the

Alfvén speed vA [10, 17]. This is illustrated in Fig. 2.3, taken from Ref. [10]. Discrete

shear Alfvén waves can exist within these frequency gaps (“gap modes”) that do not

experience the strong continuum damping; the most important of these is the

toroidicity-induced Alfvén eigenmode (TAE) which exists due to the toroidal coupling of

poloidal harmonics of continuum modes [17].

In addition to continuum and gap modes, another type of shear Alfvén wave exists in
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Figure 2.3: Taken from Ref. [10], showing the dispersion relation for a n = 4 shear Alfvén

wave in the cylindrical approximation without toroidal coupling (dashed lines) and in the

toroidal approximation (solid).
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tokamak plasmas – “extremum” modes. These modes exist because of an extremum in the

frequency of the Alfvén continuum, causing the radial variation of vA to vanish and

forming an effective potential well with radial localization near the location of the

extremum (where d(k‖(r)vA(r))/dr = 0). These modes have frequencies just above or

below an extremum in the Alfvén continuum – GAEs fall into this category.

Figure 2.4: Taken from Ref. [18], (a) the Alfvén continuum for n = −3 in an NSTX

plasma calculated by the NOVA simulation code, with GAE frequency shown by the

dashed line; (b) the mode structure of the GAE for two dominant poloidal harmonics.

GAEs exist below a minimum of the Alfvén continuum [10, 13, 19], and form at a

minimum in the q-profile that leads to an extremum in the continuum. GAEs are

commonly observed on spherical tokamaks like NSTX(-U) [20, 21, 22, 23, 13]. The mode

structure of a GAE is shown for an NSTX plasma, calculated through simulation, in

Fig. 2.4, taken from Ref. [18]. Fig. 2.4(a) shows the n = −3 Alfvén continuum with the

dashed line indicating the frequency of the GAE. Fig. 2.4(b) shows the mode structure of

the GAE for two dominant poloidal harmonics, radially localized near the minimum in the

continuum. Tokamak plasmas such as the ones studied in this dissertation typically

feature flat q profiles, so GAEs are expected to be core-localized near the magnetic axis.
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2.6. Fast-ion drive for anisotropic beam distribution

CAE/GAEs are driven unstable by Doppler-shifted cyclotron resonant fast-ions from NBI

[24]. A main source of mode drive is anisotropy in the beam ion velocity distribution

function [13, 18], with the energy source for the instability being provided by a “bump on

tail” in the v⊥ direction. The excitation of these modes requires large enough velocity

space gradients to overcome damping from the background plasma through processes like

phase mixing [25] and Landau damping [11].

Fast-ion drive and damping is derived by assuming a two-component homogeneous plasma

consisting of the bulk plasma in the cold plasma limit and a hot kinetic fast-ion

population. The full analytic derivation may be found in Ref. [11], and the derivation

presented here follows that reference closely to produce a simplified equation for the

growth rate.

In the previous section it was found that the general dispersion relation is given by∣∣∣∣∣∣ε11 − n2
‖ ε12

ε21 ε22 − n2

∣∣∣∣∣∣ = 0 (2.15)

where it was assumed, without loss of generality, that the equilibrium magnetic field is

B0 = B0ẑ and the wave vector is k = k⊥x̂+ k‖ẑ.

The bulk plasma components may be described using the cold plasma formulation:

δij + εth,eij + εth,iij =

 S −iD

iD S

 (2.25)

where S,D are defined as in Eq. 2.21, and the superscripts e, i refer to electrons and ions

respectively.

S and D may be approximated by taking ω � ωpe, |ωce|, giving

S ≈ Ac2/v2
A

D ≈ −ωAc2/v2
A

(2.26)

where A and ω are defined earlier as A = 1/(1− ω2) and ω = ω/ωci0.
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Defining Kij = v2
Aε

b
ij/c

2 and y = ω2/(k2v2
A) = N−2, where the superscript b denotes the

beam component, the full dispersion is

(y − F 2A−1 − yA−1K11)(y − A−1 − yA−1K22)− y2(ω + A−1K12)2 = 0 (2.27)

This dispersion relation is solved perturbatively to first order in Kij ∼ nb/ne � 1 by

letting ω = ω0 + ω1 with ω1 � ω0:

ω1

ω0

=
y0[K11(y0 − A−1

0 )− 2ω0y0|K12|+ (y0 − F 2A−1
0 )K22]

2(y2
0 − F 2)

(2.28)

The full analytic solution for this is solved by calculating the tensor elements Kij. The

growth rate can be solved for as γEP = Im(ω1), and the full derivation and expression for

γEP may be found in Ref. [11]. For the purposes of this dissertation it is sufficient to

simplify this as:

γEP ∝ − nEP

∫
h (χ, v)

∂fEP(χ, v)

∂χ
dχ

∣∣∣∣
vb‖=v‖,res

(2.29)

showing that CAE/GAE drive from fast-ions (γEP) is an integral over velocity space

gradients from the fast-ion distribution, with one term dominating because anisotropy is

large. Here, χ = v‖/v is the fast-ion pitch, and h(χ, v) is a positive function including

finite Larmor radius effects, k⊥ dependencies, and other terms which weight velocity space.

The integral is taken along a vb‖ = v‖,res resonance contour where vb‖ is the parallel

velocity of the injecting beam. Eq. 5.7 is valid for sub-cyclotron modes driven by DCR.

fEP is the normalized fast-ion distribution (
∫
fEP(v)d3v = 1) and the partial derivative

∂fEP/∂χ is taken at constant energy. The value of nEP determines the fast-ion number

density. From Eq. 5.7 it can be seen that fast-ion drive occurs when ∂fEP/∂χ < 0, and

that fast-ion damping occurs when ∂fEP/∂χ > 0.
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2.7. Resonance condition

The tensor elements Kij from the previous section can be calculated as [11]:

Kij =
nb
ne

ω2
ci

ω

∫
v⊥dv⊥dv‖

∞∑
`=−∞

v2
⊥g

`
ij(ξ)

ω − k‖v‖ − `ωci
π̂f0 (2.30)

with

π̂ =
1

v⊥

∂

∂v⊥
+
k‖
ω

(
∂

∂v‖
−
v‖
v⊥

∂

∂v⊥

)
(2.31)

and

g`ij(ξ) =

 `2J2
` /ξ

2 i`J ′`J`/ξ

−i`J ′`J`/ξ (J ′`)
2

 , ξ = k⊥ρ⊥b (2.32)

where ρ⊥b is the Larmor radius for fast-ions, and J`(ξ) is the `th order Bessel function of

the first kind.

The expression for the tensor element Kij in Eq. 2.30 has a resonant denominator from

which the DCR resonance equation is given [13]:

`ωci ≈ ω − k‖vb‖ (2.33)

where ` = 0 corresponds to direct resonance and |`| = 1 corresponds to cyclotron

resonance, with ` = 1 being ordinary cyclotron resonance and ` = −1 being anomalous

cyclotron resonance. The focus of this thesis will be on ` = 1 DCR modes; Eq. 5.7 is valid

for modes driven by the ` = 1 resonance – those driven by ` = 0 or ` = −1 would have

opposite leading signs and differing h functions.

Eq. 2.33 is a local resonance condition, and orbit averaging is necessary to satisfy the

global resonance and describe a net resonance between the wave and particle, averaged

over its orbit, while not being locally in resonance everywhere because of the spatial

inhomogeneity of the plasma [11].

Taking into account this spatial inhomogeneity and particle orbits, the growth rate of AEs
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is [26]:

γ ' −ω
2

∑
j

Im

∫
E∗1 ε̂

A
j11E1d

3r∫
E2

1 |ε̂11|d3r
(2.34)

where E1 is the perturbed electric field in the direction of mode propagation and the

integral is taken over the plasma volume that the mode exists in. From Ref. [12], part of

the numerator in this equation can be written as:∫
E∗1 ε̂

A
11E1d

3r =
8π2e2B

ωcω2T

∫
dPϕdµdEτb

∑
`,p

F ′∗`p(ω − ωT∗ )F`p

ω − `〈ωc〉 − 〈ωD〉 − pωb
f (2.35)

where E is the particle energy, Pϕ is the toroidal canonical momentum, µ is the adiabatic

moment, τb is the bounce frequency, f is the equilibrium distribution function, and F ′`p are

functions that account for wave particle interactions. Here ωD and ωb are the drift and

bounce frequencies respectively and the brackets 〈· · · 〉 refer to an orbit-averaged quantity.

From this resonant denominator, the orbit-averaged resonance condition is [26]:

ω − nωϕ + pωθ − `〈ωci〉 = 0 (2.36)

where ωϕ and ωθ are the characteristic poloidal and toroidal orbit frequencies for passing

particles as described in Section 1.2 (positive for passing ions moving in the beam

direction), n is the toroidal mode number, p = m+ s where m is the poloidal mode

number and s is the toroidicity-induced sideband number (or resonance order), and 〈ωci〉 is

the orbit-averaged beam ion cyclotron frequency. Here, ` refers to the different types of

resonance as in Eq. 2.33. It is important to note that previous studies of beam-driven

Alfvén eigenmodes have found that a small s is required for strong wave-particle

interactions, and thus mode resonances are implausible for large s [27].

2.8. Damping sources

CAE/GAEs are subject to damping through interactions with the thermal bulk plasma.

The dominant source of damping is likely continuum damping, which as described earlier
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and in Ref. [25] is when the wave is damped strongly through phase mixing as it has

different phase velocities at different radii. For CAEs this is apparent because simulations

have commonly shown mode conversion near the location of the Alfvén resonance [28, 29].

Many studies have shown that GAEs are also expected to primarily experience continuum

damping [30, 25].

In practice Alfvén waves are also expected to be damped by thermal bulk electrons

through Landau damping and transit-time damping [18, 31]. These processes have been

heavily reviewed in textbooks like Ref. [32] and [1]. Landau damping occurs when there is

a gradient in the particle velocity distribution function at the location of the resonance:

energy is exchanged between the wave and particles in the bulk plasma that have

velocities comparable to the phase velocity vph of the wave and therefore interact strongly

with it. Particles with velocities slightly less than vph are accelerated while particles with

velocities greater than vph are decelerated. Landau damping occurs when a gradient in the

distribution function exists such that there are more particles gaining energy from the

wave. Transit-time damping occurs when transiting particles exchange energy with the

wave; the net exchange in energy results in wave damping [33]. Both of these damping

processes involve particles that move along the magnetic field with the phase velocity of

the wave [34].

For the work presented in this dissertation, a comprehensive identification of CAE/GAE

damping was not conducted and would require calculations of kinetic effects of the bulk

plasma in addition to the fast-ions; this constitutes future work.

Generally the background damping rate depends only plasma parameters and not on

properties of the fast-ions. In Ref. [34], the electron damping rate in a slab is derived for

compressional modes. This calculation is generalized to shear waves in Ref. [14]; in this

approximation, both CAEs and GAEs will have electron damping scaling as

γdamp ∼ βeye
−y2 (2.37)

where γdamp is the damping rate, βe = Pe

B2/2µ0
is the electron beta where Pe is the electron

pressure and B is the magnetic field, and y = ω/k‖vth,e. Thermal ions in the population
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are not considered because they are unlikely to have sufficient energy to resonate with and

damp the waves.
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CHAPTER 3

The DIII-D tokamak

3.1. Overview of DIII-D

The DIII-D tokamak is a fusion research experiment operated by General Atomics in San

Diego, CA [35, 36]. The results presented in this dissertation are from L-mode (low

confinement) beam-heated plasmas. Typical operating parameters for L-mode plasmas are

listed in Table 3.1, and a cutaway view of the DIII-D tokamak is shown in Fig. 3.1 [37].

Symbol Parameter Value

Bt Toroidal magnetic field 2 T

Ip Plasma current 1 MA

R0 Major radius 1.67 m

a Minor radius 0.67 m

τpulse Plasma duration 5− 6 s

〈ne〉 Line averaged electron density 1− 3× 1013 cm−3

Te(0) Electron temperature at magnetic axis 2− 4 keV

D Main ion species Deuterium

β Plasma beta < 0.5

Table 3.1: Typical operating parameters for L-mode plasmas in DIII-D.
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Figure 3.1: Cutaway view of DIII-D showing three of the four neutral beam injectors [37].

3.2. Neutral beam injection

The largest heating system on the DIII-D tokamak is the neutral beams [37]. There are

four neutral beam injectors in total, and each injector contains two sources that inject at

different angles, with the capability of cumulatively providing up to 20 MW of heating

power to the plasma via < 80 keV deuterium ions [38]. The beamlines can also operate

with hydrogen and helium, but the results discussed in this thesis are from deuterium

plasmas only. Fig. 3.3 shows the four neutral beam injectors, with eight separate

beamlines that inject onto the midplane. The beams inject ions with energies (beam

voltages) in the range of 40 ≤ Vb ≤ 85 kV and currents in the range of 40 ≤ Ib ≤ 65 A.

Each beam can be turned on for a minimum of 5 ms with a minimum spacing of 10 ms

between beam pulses, allowing for modulation of beams to control the injected energy and

torque [39]. Additionally, the beams also serve as diagnostic beam sources for the charge

exchange recombination (CER) diagnostic [40], used for ion temperature profiles and

plasma rotation measurements, and the motional Stark effect (MSE) diagnostic [41, 42],

used for measurements of the plasma q profile.
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Neutral beam production consists of several stages [1]. In DIII-D, a filament-based plasma

source first produces ions that are accelerated to the required energy [38]. This results in

an ion beam that is passed through a large gas chamber in order to be neutralized – this is

necessary because a neutral beam is required in order to cross the magnetic field of the

tokamak and penetrate the plasma. Finally, the resulting neutral stream of particles is

collimated as it enters the tokamak. The final apertures of the neutral beams entering the

tokamak are 12 cm wide by 48 cm tall [38]; when the neutral beams actually enter the

plasma they have an approximately Gaussian distribution and have a full-width at

half-maximum at a horizontal width of 10 cm and vertical height of 26 cm [43].

This process is illustrated in Fig. 3.2, which is taken from the DIII-D internal website.

The high voltage feedthrough brings in over 80,000 Volts DC into the ion source enclosure.

This ion beam is aligned and enters the neutralizer which consists of a deuterium gas

target. This yields a neutral beam, and any remaining charged particles are turned by the

reflecting magnet into the ion dumps which consist of a set of thick copper plates with

water cooling channels. Finally, the beam path is collimated through the gas baffle and

other magnetic collimators before entering the vessel. The cryopanels inside the beamline

help to maintain vacuum pumping for the deuterium used for the ion source and

neutralizer and consist of a liquid Helium surface shielded by a liquid Nitrogen panel.

A deuterium ion source will produce both the atomic ion D+ and the molecular ions D+
2

and D+
3 . All three of these species will pass through the accelerator and acquire the same

energy, but the molecular ions D+
2 and D+

3 will have lower velocity due to their higher

mass. These particles dissociate in the neutralizer and the resulting beam will have atoms

that are at full energy, one-half energy, and one-third energy. In DIII-D, for 80 keV

deuterium, the injected beam is typically 76% full, 16% half, and 7% third energy [37].

Beam current and voltage are measured at the source, before the neutralization and

collimation processes. During these processes, while voltage remains the same, current is

lost due to neutralization efficiency and transmission efficiency (determined from the ion

dump and calorimeter shown in Fig. 3.2). Because of this, for the analysis presented here,

the beam injection rate is considered in place of the beam current. The injection rate is
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Figure 3.2: The anatomy of a DIII-D beamline, taken from the DIII-D internal website.

calculated as beam power divided by voltage in keV, and is expressed for convenience in

Amps.

3.2.1. Beam geometry

The DIII-D beamlines are located at toroidal angles of 30◦, 150◦, 210◦, and 330◦ at the

midplane, as shown in Fig. 3.3. Each beam is named according to its toroidal location and

orientation within the beam housing (e.g., 30L, 30R) [38]. An example of the separate

injection geometries (tangential, perpendicular) within a neutral beam injector is shown in

Fig. 3.3 for the 150L and 150R beams. The two tangential and perpendicular sources

inject at angles of 47◦ and 63◦ tangent to the magnetic axis, with tangency radii (RTAN) of

1.14 and 0.74 m respectively [37].

The 30◦, 150◦, and 330◦ beamlines inject in the co-current direction, where the plasma

current Ip is counter-clockwise viewed from above and the toroidal magnetic field Bt is

clockwise for the results discussed in this thesis. The 210◦ beamline injects in the

counter-current direction, and is important for driving rotation and heating plasmas [38,
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Figure 3.3: Top view of DIII-D showing the neutral beam system. An example beam in-

jection geometry is labeled for the beam at 150 for the tangential and perpendicular beam-

lines. The two ICE systems are also shown at their approximate location on the machine

[44].
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45].

The 150◦ beamline, consisting of the 150L and 150R beams, can be tilted downward [46,

47] by up to 16.4◦, allowing for off-axis heating and current drive. For the toroidal field

direction (clockwise), tilting the beam results in more perpendicular injection, allowing

exploration of a wider parameter space. For the results presented in this thesis, the 150R

beam was fully tilted at 16.4◦ to inject off-axis.

3.2.2. Variable beam perveance

A feature of the DIII-D beams is the capability of variable beam perveance (VBP) [38],

which allows the voltage (energy) and current (injection rate) of the beams to be

independently varied within certain limits while maintaining acceptable beam divergence.

As mentioned earlier, historically the pulse widths of the beams can be modulated to

control the total time-averaged injected power; this is the typical approach for machines

like DIII-D, NSTX-U, and others [48]. Other forms of in-shot beam power variation have

been implemented on other machines; on the Mega Ampere Spherical Tokamak (MAST),

the beam source current was controlled in real time to allow variations in neutral beam

power [49], and on the Tokamak Experiment for Technology Oriented Research

(TEXTOR), the vertical aperture of the neutral beam injector was varied in-shot to

achieve NBI power variation [50]. However, VBP on the DIII-D beams has been used in a

unique way by allowing for the first simultaneous in-shot variation of beam voltage

(energy) and current (injection rate/density) [48] to investigate the stability of a fast-ion

driven mode.

The perveance Π of a beam is a parameter that accounts for the requirement for neutral

beams to maintain acceptable beam divergence while undergoing changes to beam power,

current, and voltage. Perveance is related to the current Ib and voltage Vb as Π = Ib/V
3/2

b ,

and the technical challenges and considerations of the development of VBP are discussed

in Refs. [39, 51].

As mentioned earlier, neutral beam production involves the extraction of an ion beam that
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Figure 3.4: The voltage of the 150R beam is held constant while the beam current is

ramped down by approximately 40%, taken from discharge #172026.

is passed through a large gas chamber for neutralization. The space charge of the

un-neutralized ions can affect the path and direction of the eventual produced neutral

beam: electrostatic fields arising from the space charge can deflect particles from the

desired path [38]. Perveance is a parameter that indicates the amount to which space

charge affects the deflection, and therefore divergence, of the neutral beam. In DIII-D, for

each neutral beam there is typically an ideal value of perveance for which the accelerated

ions are deflected minimally. Variable beam perveance allows for NBI to operate away

from this optimum value. The NBI system has a built-in machine protection circuit

measuring stray ion impacts that will shut off the beam if the perveance reaches a value

that deviates too much from the optimum value; the allowable perveance range is

estimated through experience to be approximately 15% from optimum [38].

Because an acceptable beam divergence must be maintained, any variation of beam

current or voltage is limited by their relationship through perveance Π = Ib/V
3/2

b . A

typical operating mode uses the Plasma Control System (PCS) to automatically adjust the
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beam current to maintain optimum perveance with a pre-programmed voltage [38, 52]. For

the results presented in this thesis, however, during VBP both the beam voltage and

current are pre-programmed: the neutral beam power is controlled by holding either

voltage or current constant, and varying the other parameter while staying within the

allowable perveance range. The maximum voltage slew rate was 40 kV/s with a variation

of ∆V = 20 kV in a single shot across a range of beam current changes [38]. An example

of one of these VBP ramps is shown in Fig. 3.4, where the current of the 150R (off-axis)

beam is ramped down by approximately 40% while the voltage is held constant.

3.3. Diagnostics on DIII-D

DIII-D features a wide variety of diagnostics that contribute to experimental

measurements. The following section consists of a brief overview of the main diagnostics

that were used during the experiment, but is by no means a comprehensive summary of all

available diagnostics. Some of the more prominent and/or relevant tokamak diagnostics

and their measurements on DIII-D are listed in the table below.

Name of Diagnostic Measurement

Motional Stark Effect (MSE) Pitch angle of magnetic field

Charge exchange recombination (CER) Ti, impurity density, rotation speed

Electron cyclotron emission (ECE) Te(r, t)

Thomson scattering Te(r, t), ne(r, t)

Multi-channel CO2 interferometer Line-averaged density fluctuations

Beam emission spectroscopy (BES) Localized long-wavelength density fluctuations

Phase contrast imaging (PCI) Multiscale electron density fluctuations

Fast-ion loss detector (FILD) Pitch angle and gyroradii of lost fast-ions

Fast-ion deuterium-alpha (FIDA) Diagnosing fast-ion population
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3.3.1. Motional Stark effect (MSE)

The motional Stark effect (MSE) diagnostic is primarily used to measure the pitch angle

profile of the magnetic field, providing valuable information about the tokamak safety

factor q as well as the profile of the radial electric field Er. MSE data is also extremely

vital in providing accurate equilibrium reconstruction estimates. In DIII-D, MSE utilizes

the Balmer alpha line emitted from high-energy neutrals that are injected into the plasma

[42]. As the neutrals travel across the magnetic field in the plasma, they are subject to a

strong Lorentz electric field E ∝ v ×B. This causes the alpha emission to undergo Stark

splitting, with 9 distinct lines and two polarization states (parallel and perpendicular to

the electric field). Given the initial velocity of beam injection, measuring the polarization

angle of the emission gives the pitch angle of the magnetic field.

Figure. 3.5 shows the MSE diagnostic on DIII-D. The original MSE diagnostic was an

8-channel system (shown in the figure as “Central MSE”), designed for radial resolution in

the core. The multichord MSE system was improved later to include an additional 8

chords (shown in the figure as “edge MSE”) to expand radial resolution to the outer 30 cm

of the plasma. The current MSE system provides reliable measurements for beam energies

of > 65 keV and toroidal magnetic fields of > 0.8 T [42].

3.3.2. Charge exchange recombination (CER)

The charge exchange recombination (CER) spectroscopy systems on DIII-D are used to

measure ion temperature, impurity density, and rotation speed profiles [40]. Charge

exchange recombination refers to the process by which spectral lines are excited through

charge exchange between ions in the plasma and energetic particles from NBI. The

reaction associated with this process is:

D0 + AZ+ −→ D+ + A(Z−1)+∗ −→ D+ + A(Z−1)+ + γ (3.1)

where D is the injected deuterium atom from NBI, A is an ion in the bulk plasma, and γ

is the excited spectral line.
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Figure 3.5: Taken from Ref. [42]. This schematic shows the geometry of the 16-chord MSE

diagnostic on DIII-D.

Spectroscopically measuring the emitted spectral line gives valuable information about the

plasma: determining the Doppler shift allows the calculation of bulk plasma motion, and

measuring the Doppler broadening of the line gives the ion temperature of the plasma.

The intensity of the line, indicated in Eq. 3.1 by γ, is determined solely by the charge

exchange that takes place.

Fig. 3.6 shows the plan and cross section views of the CER spectroscopy system. The

system consists of 80 spatial views, with 48 tangential and 32 vertical, that intersect the

neutral beams at the midplane. The measurement from each cord is spatially localized at

the intersection of the viewchord and the neutral beam. In order for CER to function, one

of the beams at either the 30◦ or 330◦ tangential position needs to be on (30L/R or

330L/R). These beams are typically modulated in order to eliminate signal interference

and provide good localization of the measurement.
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(a) (b)

Figure 3.6: (a) The plan view and (b) the cross section view of the CER system, showing

where the chords are in the DIII-D vessel.
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3.3.3. Electron cyclotron emission (ECE)

The electron cyclotron emission (ECE) diagnostic measures the electromagnetic radiation

emitted by the gyration of electrons around the field lines of a magnetically confined

plasma [1] and correlates the intensity of this emission to Te. The diagnostic is able to

obtain spatial resolution of Te(r, t) through the spatial dependence of the magnetic field.

The ECE heterodyne radiometer on DIII-D has 40 channels, upgraded in 2003 from its

original 32 [6]. This upgrade allowed for Te measurements into the magnetic axis at

maximum field (2.15 T), as well as improving on central Te measurements in low-field

discharges. An example of the electron temperature profile measured from ECE is shown

in Fig. 3.7.

Figure 3.7: Electron temperature (Te) profile as a function of normalized effective plasma

radius ρ for a DIII-D discharge measured from the ECE radiometer [6].

3.3.4. Thomson scattering

The Thomson scattering system is a spectral diagnostic and is used to measure electron

temperature and density. A laser is shot into the plasma, and Te is determined from the
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degree of broadening of the spectrum of the scattered radiation [1]. From electromagnetic

theory it follows that the power scattered per unit solid angle per unit frequency is:

Ps(ω) = P0r
2
e sin2 ψneLS(k, ω) (3.2)

where P0 is the total incident laser power, re is the electron radius, ψ is the angle between

the electric field vector of the incident ray and the scattered ray, L is the interaction

length, and S(k, ω) is the spectral density function [1]. S(k, ω) is dependent on the

electron velocity distribution.

The intensity of the spectrum of scattered light is proportional to plasma density, while

the spectral width and blue-shift give the electron temperature of the plasma.

Figure 3.8: Viewing chords of the DIII-D Thomson scattering system. The red lines indi-

cate the chords on the core laser path; the blue indicate chords on the divertor path; and

the green indicate the horizontal/tangential chords.

The DIII-D Thomson scattering system uses neodymium-doped yttrium aluminum garnet

lasers which have three entry points to the plasma, shown in Fig. 3.8: the core laser path,
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the divertor path, and the horizontal/tangential path. Combined, these give data from up

to 70 simultaneous spatial points through viewing chords, providing the electron

temperature and density profiles.

3.3.5. Multi-channel CO2 interferometer

DIII-D uses a heterodyne CO2 interferometer to measure the electron density of the

plasma [53]. Theoretically, the phase change of a coherent beam passing through a plasma

is proportional to the electron density integrating along the beam path [1]:

∆φ =
λe2

4πε0mec2

∫
nedl (3.3)

where λ is the wavelength of the beam.

Typical interferometers on tokamaks use a two-color system in order to separate

mechanical vibrations in the measurement; essentially, a two-color system means that

there are two interferometers that operate at different wavelengths along the same optical

path. This is true of the interferometer on DIII-D, shown in Fig. 3.9, which utilizes a 10.6

µm CO2 laser in order to reduce the effects of refraction of the beams by transverse

density gradients, which can be large on non-circular tokamak plasmas like those in DIII-D

[54]. The small wavelength ensures that any phase shifts from refraction due to density

gradients is minimized. The CO2 laser is combined with a 0.63 µm He-Ne laser in the

implementation of the two-color system. There are four interferometer chords in total, as

shown in the figure: three vertical and one radial. Each chord yields a line-integrated

electron density along the chord. The CO2 interferometer can also be used as a forward

scattering diagnostic for low-k density fluctuations by measuring line-integrated density

perturbations.

3.3.6. Fast-ion loss detector (FILD)

The fast-ion loss detector (FILD) is located on the outer wall of DIII-D and provides

measurements of the pitch angles and gyroradii of energetic ions that reach its position
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Figure 3.9: The two-color interferometer layout on DIII-D [54].
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[55]. Currently, there are two operating FILDs, located at the 225◦ and 165◦ toroidal

positions.

Figure 3.10: A schematic of the FILD diagnostic [55].

The FILD diagnostic includes a scintillator-based particle detector system. The schematic

for the FILD is shown in Fig, 3.10. It is installed just below the outer midplane of DIII-D

and can be inserted past the first wall; because of this capability, the scintillator is

protected by a graphite heat shield with a narrow slit cut into it as seen in the figure. The

red circle in the figure is drawn to visualize a fast-ion orbit that might reach the

scintillator. The bellows linear translator allows the radial position of the FILD to be

adjusted manually. The light from the scintillator is then split through a beam splitter

cube into two paths: one goes to a CCD camera providing images of the scintillator

surface, while the other enters a photomultiplier tube and provides a two-dimensional light

pattern that yields information on the gyroradii and pitch angle of escaped fast-ions.

44



3.3.7. Fast-ion deuterium-alpha detector (FIDA)

The fast-ion deuterium-alpha (Dα) (FIDA) diagnostic is used, essentially, to diagnose one

component of the fast-ion velocity [56]. The measured signal is a combination of fast-ion

pitches (v‖/v) and total energies in a portion of velocity space. Currently, there are two

FIDA systems on DIII-D that work towards diagnosing the fast-ion population; these are

shown in Fig. 3.11.

FIDA functions by utilizing the charge exchange between the injected atoms from NBI and

the energetic ions in the bulk plasma. After charge exchange occurs, a portion of the

neutralized fast deuterons are in the n = 3 atomic orbital state; these particles emit

photons during the n = 3→ n = 2 transition. Since these fast deuterons are travelling at

velocities much higher than the thermal speed of the plasma, the emitted photon

undergoes a Doppler shift. The resulting emitted spectral line is thus modified with a

broad low-intensity feature that consists of blue- and red-shifted wings about the Dα line

[57].

Figure 3.11: (a) Cross-section and (b) plan view of DIII-D showing poloidal projection of

the 2 FIDA systems and their viewing chords, taken from Ref. [57].

The emitted photons are collected using an array of viewing chords. The locations of these

45



chords are shown in Fig. 3.11. The old FIDA system utilizes one of DIII-D’s co-injecting

beams, while the new system utilizes a counter-injecting beam. The different sightline

geometries combined with the neutral sources are used in analyzing the signal by providing

different weightings in fast-ion velocity space. FIDA uses beam modulation to optimize its

measurement acquisition.

3.4. Magnetic fluctuation measurements via ICE coils

The Ion Cyclotron Emission (ICE) fast magnetic fluctuation diagnostic was utilized for

magnetic fluctuation measurements [44], and consists of two sets of magnetic sensors

located at the plasma edge in the outboard midplane (i.e. at the vertical midplane of the

plasma, on the high major radius side). The ICE diagnostic measures emission in the Ion

Cyclotron Range of Frequencies (ICRFs) excited by energetic ions from the neutral beams,

and is capable of analyzing signals between 1− 100 MHz. ICE features high bandwidth,

high speed acquisition (up to 200 MHz, 8 GB/shot), and has digitizers that allow

exploitation of the full bandwidth of other fluctuation diagnostics (e.g. the CO2

interferometer [54]).

The systems that constitute the ICE diagnostic are shown in Fig. 3.12. System 1

(Fig. 3.12)(a) consists of two antenna straps located approximately at the toroidal angle of

180◦, toroidally separated by 13.3◦. System 2, restored in 2017, consists of a set of

magnetic field sensing loops incorporated into the carbon tiles located toroidally at 231.7◦

and 249.3◦ with a toroidal separation of 17.6◦, shown in Fig. 3.12(b). ICE also includes a

poloidally separated toroidal coil [58] that is used for bandpass measurements [59]. The

results discussed in this dissertation consist of data acquired from ICE System 2. The

locations of the two ICE systems can be seen in a top view of DIII-D in Fig. 3.3.

The electronic components of the ICE diagnostic are shown in a block diagram in Fig. 3.13

from Ref. [44], and described thusly:

The outputs of the antenna straps (System 1) connect to a plastic enclosure via

a RG58 cable. Within the vacuum vessel, the antenna probes (System 2)
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Figure 3.12: The ICE diagnostic consisting of (a) a set of antenna straps at 180◦, (b) a set

of tile antennae at 240◦, and a tile probe used for bandpass measurements [44].

connect to a SubMiniature version A (SMA) feedthrough via a semi-rigid

bakeable vacuum-compatible coaxial cable with a characteristic impedance of

about 30 Ω. On the air side of the feedthrough, the SMA connectors are

connected in parallel to a 75 Ω impedance-matching resistor and 50 Ω

semi-rigid cables. Another semi-rigid coaxial cable transmits the signal to a

BNC breakout panel within the plastic box. Inside this box, both ICE systems

then connect to safety breaks, designed to provide 5 kV DC isolation for both

inner and outer conductors. All three systems use slightly different DC break

designs, but all originate from the RF program. The signal is transmitted to

the electronic annex via RG213 (System 1) or RG214 (System 2) cables that

have an electrical length of at least 75 m. In the annex, the cables terminate

on a BNC breakout panel. Within the DIII-D annex, RG58 cables are used.
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First, the signals are amplified by 5×(14 dB) with a 350 MHz SR445A

preamplifier, and then, they are digitized using a 200 MHz GaGe CSE1642

digitizer. Typically, the signals are anti-aliased using a Mini-Circuits

BLP-100+ low-pass filter before the amplifier, providing data below the 100

MHz Nyquist frequency. [· · · ] The frequency response of these systems is

limited by the DC breaks. These breaks have an approximately flat electrical

response from 1 MHz to ∼120 MHz, with a 3 dB point at ∼150 MHz. [· · · ] As

this magnetic diagnostic is unshielded in the machine hall, it is also susceptible

to electrical noise and pickup.

Figure 3.13: Electronic components of the ICE diagnostic [44].

The effects of the DC breaks on the results discussed in this dissertation are negligible as

the frequency range of interest is sub-cyclotron (< 10 MHz).
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3.4.1. Data analysis

ICE data is stored in MDSplus in 80 ms segments, for up to 5 s of data per shot, and

recorded in Volts. An example of one 80 ms segment of the raw signal obtained from one

of the loops of ICE System 2 is shown in Fig. 3.14, where magnetic fluctuations are

correlated with neutral beam injection. Spectral analysis is performed by calculating δb(t)

through numerical integration of the measured d(δb)/dt at each loop. δb(t) is divided into

time records with a 50% overlap, and each record undergoes Fast Fourier Transform

(FFT) analysis after conditioning with a Hanning window to reduce the effects of artificial

discontinuities and spectral leakage in the FFT. This results in a set of complex values

δb(t, f) at each loop, and the power of the magnetic fluctuation measured from ICE is

|δb|2.

When a single toroidal mode number is dominant at the measured mode frequency, a

two-point toroidal mode number n can be obtained using the toroidally separated

magnetic field sensing loops that constitute ICE System 2. The resolution of this toroidal

mode number is limited by the toroidal separation of the loops as |n| ≤ 180/∆φ . 10.

Toroidal mode numbers with |n| > 10 are not resolvable, and any mode number

measurement obtained has a possibility of being aliased by integer multiples of ∼ 20.

Unfortunately, there is an unknown and non-negligible path length difference between the

two signals obtained from ICE System 2 (the set of tile antennae at ∼ 240◦). The signal

path is from each of the loops to the digitizer located in the DIII-D annex noted in

Fig. 3.13. Preliminary tests of the RG214 coaxial cables that exit the DC breaks at the

top of the vessel and enter the DIII-D annex show that there is variation in signal

amplitude on the order of 50% between certain cables, indicating varying lengths and/or

losses between the cables. The cables have since been replaced without an accurate

measure of the path length difference, so the error associated with a mode number

measurement is too high to accurately quantify a toroidal mode number associated with a

coherent wave. However, the relative difference between the measured mode numbers in a

spectrum of modes can still be evaluated without loss in reliability.
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Figure 3.14: An example of the raw signal obtained from one of the magnetic field sens-

ing loops of ICE System 2. Several bursts of magnetic fluctuations are seen in response to

neutral beam injection.
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CHAPTER 4

Experimental design

CAE/GAE stability was studied over a broad range of parameters during the experiment.

These modes are driven unstable by Doppler-shifted cyclotron resonance with fast-ions and

are approximately governed by the resonance condition [12] as described in Chapter 2:

ωci ≈ ω − k‖vb‖ (4.1)

where ωci is the cyclotron frequency, k‖ is the parallel wave number, and vb‖ is the parallel

beam velocity. Anisotropy in the fast-ion population is necessary for fast-ion drive of

CAE/GAEs [11], so the gradient of the fast-ion distribution with respect to vb‖ and vb⊥ is

also important in mode stability. The experiment was designed with these considerations

in mind.

4.1. Plasma conditions and considerations

The experiment was designed as a phase space parameter scan to determine stability

thresholds. The primary focus of the experiment was directed towards beam perveance

scans in order to separately determine beam density and velocity dependencies of the

excited modes for a variety of different beam energies, injection angles, and directions in

deuterium plasmas. Bt, Ip, and ne ramps were also performed to investigate the vA and ωci

dependence of the modes. Table 4.1 summarizes the plasma parameters that this

experiment operated under.
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Parameter Value

Plasma Current Ip 0.7–1.0 MA (Normal dir.)

Toroidal Field Bt 1.28–2.0 T (Normal dir.)

Shape Inner wall-limited, elliptical

Safety Factor on-axis q0 0.95

Safety Factor at 0.95 flux surface q95 4.80

Aspect Ratio R/a 1.72/0.67 = 2.57

Elongation κ on-axis 1.25

Table 4.1: Experimental parameters.

Here, the “normal direction” indicates that the plasma current Ip is counter-clockwise and

the toroidal magnetic field Bt is clockwise as viewed from above, as described in

Chapter 3. The shape of the plasma was chosen to be an inner wall-limited, elliptical

plasma for simplicity, as shown in an equilibrium reconstruction of the flux surfaces in

Fig. 4.1. As mentioned earlier, only L-mode plasmas were studied during this experiment.

4.2. Parametric scans

The focus of this experiment was on understanding how different beam geometries,

injection energies, and injection rates affect CAE/GAE activity. To accomplish this, a

unique beam programming was utilized to separate the dependence of mode activity on

each beam geometry. The beam programming is shown in Fig. 4.2, and the order of the

injecting beams is chosen such that it is least likely to cause a disruption of locking due to

sudden rotation change. The beams are labeled as described in Chapter 3, and six beams

with different injecting geometries were cycled through during each discharge, summarized

in Table 4.2. It should be noted that DIII-D has eight beamlines in total, but the

beamlines at toroidal angles of 30◦ and 330◦ have identical injecting geometries.
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Figure 4.1: For this experiment, the plasma was chosen to be an inner wall-limited, ellipti-

cal plasma. The flux surfaces from an equilibrium reconstruction are shown, with the last

closed flux surface shown in bold.
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Beam Name Injection Direction Co- or Ctr- Ip Tangential/Perpendicular

330L On-axis Co-Ip Tangential

150R Off-axis Co-Ip Tangential

330R On-axis Co-Ip Perpendicular

150L Off-axis Co-Ip Perpendicular

210L On-axis Ctr-Ip Tangential

210R On-axis Ctr-Ip Perpendicular

Table 4.2: The different beams and their injection geometries used during the experiment.

Diagnostic 

Beam Blips

2500 3100 3700 4300 4900 5500 6100

Time (ms)

Co-Ip

Tang

On-axis

330L

Co-Ip

Perp

Off-axis

150R

Co-Ip

Perp

On-axis

330R

Co-Ip

Tang

Off-axis

150L

Ctr-Ip

Perp

On-axis

210L

Ctr-Ip

Tang

On-axis

210R

Figure 4.2: The beam programming for the experiment. Each of the six beams with differ-

ent injection geometries is cycled through during each discharge, preceded by a < 100 ms

period of diagnostic beam blips.

As mentioned in Chapter 3, several diagnostics rely on NBI. CER uses the charge

exchange process between bulk ions and energetic particles from NBI to measure the ion

temperature, impurity density, and rotation speed profiles. FIDA analyzes the spectral line

of this charge exchange process to diagnose components of the fast-ion velocity

distribution. MSE utilizes the spectral emission from injected energetic particles to

provide measurements of the pitch angle profile of the magnetic field, giving information

on the tokamak safety factor q as well as the profile of the radial electric field. The

information provided by these diagnostics are all essential in calculations such as
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equilibrium reconstruction and modeling of the fast-ion population. The programming for

these diagnostic beam blips is shown in Fig. 4.3. Each beam blip lasts 10 ms and involved

a beam injecting at full power (81 keV).

2500 2515 2545 2575 2600

Time (ms)

10 ms

Duration Blips

30L

MSE, CER

210R

FIDA, CER

330L

FIDA, CER

2500 2600 2700 2800 2900 3000 3100

Time (ms)

Diagnostic

Beam Blips

Current or Voltage Ramping Beam

500 ms Duration

Start Times = 

[2600, 3200, 3800, 4400, 5000, 5600] ms

Figure 4.3: Diagnostic beam blips used during the experiment. These blips occurred before

the start of each beam-on period.

4.2.1. Beam perveance scans

Beam perveance scans were an essential part of this experiment. This is a uniquely applied

capability of the DIII-D beams, and it allowed for the separate variation of beam current

and voltage, which offers an opportunity to separately determine beam density and

velocity dependencies of any excited modes. Each of these scans was performed at

magnetic fields between 1.28− 2.0 T.

The process of doing these perveance scans is visualized in Fig. 4.4. The optimal operating

parameters for the beams to maintain acceptable beam divergence are approximately

between voltages of 60− 75 keV, source currents of 46.25− 62.5 A and powers of 1.0− 2.0

MW, though in practice each beam had different operating capabilities in terms of
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60keV 80keV

Step 1

Step 2

Step 3

Step 4

Figure 4.4: Beam perveance scans performed during the experiment. Sequentially, the

beam current and voltage were varied separately.

maximum power and voltage. These scans utilized the programming as shown in the

upper figure of Fig. 4.3. Following the diagnostic beam blips, a current or voltage ramp

lasting 500 ms occurred. Each of the six beams was cycled through throughout the

duration of the discharge, and every step in Fig. 4.4 refers to a separate discharge. For

example, a beam was held at constant high source current (PH) and the voltage was

scanned from 75→ 60 keV (VH → VL) in Step 1. In the next discharge, in Step 2, the

beam was held at constant high voltage (VH) and the source current was scanned from

62.5→ 46.25 A, nominally, such that the power ramped from 2.0→ 1.0 MW (PH → PL),

and so on. As mentioned in Chapter 3, it is important to note that the nominal value for

the source current is not the same as the current that enters the plasma due to losses from

neutralization and collimation processes in the beamline. Therefore, for the analysis

presented here, the beam injection rate will be used and is calculated as beam power

divided by voltage in keV, expressed for convenience in Amps. During each discharge, the

injection rate was ramped down by up to ∼ 40%.
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Figure 4.5: The toroidal magnetic field Bt was ramped from ∼ 2.0 → 1.3 T during a mag-

netic field scan. The plasma current Ip was ramped concurrently to keep Bt/Ip constant.

4.2.2. Magnetic field scans

In addition to the beam perveance scans, other parameter scans were also performed

throughout the course of the experiment. These included toroidal magnetic field scans, as

shown in Fig. 4.5. During these discharges, the magnetic field Bt was ramped down

through decay from ∼ 2.0→ 1.3 T with the motivation of identifying a magnetic field

threshold for the onset of CAE/GAEs. The plasma current Ip was concurrently ramped in

order to keep Bt/Ip constant; this was intended to keep the tokamak safety factor q

constant, which is important in the stability of GAEs as mentioned in Chapter 2.

4.3. Measurements of Alfvén eigenmodes

In this experiment, a wide variety of parameter scans were performed. Notably, high

frequency AEs were observed at most Bt ≤ 1.8 T. Beam perveance scans were performed

at magnetic fields of 1.28− 2.0 T and beam energies ranging from Vb ∼ 60− 75 keV.
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Figure 4.6: During a Bt = 1.28 T discharge, beam injection rate scans were performed

at constant high beam voltage of Vb ∼ 75 keV for six different beam geometries. Differ-

ent beams excited modes at different frequencies, and four of the six total geometries were

found to excite modes.

4.3.1. Dependence on beam geometry

Fig. 4.6 shows discharge #172026, a beam perveance scan at the lowest magnetic field of

Bt = 1.28 T and highest beam voltage of Vb ∼ 75 keV, yielding a wide range of CAE/GAE

activity. At this field, the cyclotron frequency was fci = 9460 kHz at the magnetic axis,

and the observed mode activity occurs at a high fraction of fci (f ∼ 0.6fci). It is seen from

the figure that high frequency AEs were excited by four of the six different beam

geometries (33L, 15R, 33R, and 21R), including a counter-Ip injecting beam (21R) and an

off-axis beam (15R). The perveance scans are shown in the lower plot of Fig. 4.6; notably,
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not all beams operated at full voltages and currents. Table 4.3 summarizes the operating

parameters of the beams used during this scan. Different beams were found to excite

modes at different frequencies.

Beam name Operating voltage Source current range

33L 75 keV 72→ 51 A

15R 75 keV 58→ 43 A

33R 75 keV 66→ 49 A

15L 75 keV 58→ 43 A

21L 62 keV 37→ 37 A

21R 76 keV 56→ 44 A

Table 4.3: Beam operating parameters during the beam perveance scan. Each beam was

held at constant high voltage while the source current was ramped down.

The focus of the analysis in the next chapter will be on the spectrum of modes at

∼ 2250− 2750 ms excited by the off-axis co-injecting tangential beam 15R. This spectrum

of modes is the only threshold observed across the wide range of beam perveance scans,

though other beams do excite modes that closely approach a threshold. Seen in Fig. 4.6,

the modes excited by the 21R beam appear to have amplitude that decreases with current

and are almost stabilized. The 33L and 33R beams also appear to excite modes that may

decrease in power with current. These are not analyzed in this dissertation and are the

subject of future work. Importantly, the observed threshold from the 15R beam was

repeatable as approximately the same threshold was observed during several repeat

discharges during the experiment that had the same plasma parameters and beam

injection rate scans.

4.3.2. Dependence on other plasma parameters

The following section describes observations that were made during the experiment but

deeper analysis is left to future work.
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4.3.2.1. Bt ramp observations

A Bt threshold was observed for AE excitation during a discharge in which the toroidal

field was ramped down from ∼ 2.0→ 1.2 T, as seen in Fig. 4.7. The modes appear to be

driven unstable once the toroidal field reaches a value of Bt < 1.6 T, corresponding to an

Alfvén velocity of vA = 3.41× 106 m/s with a beam injection velocity of vb = 2.8× 106

m/s. As mentioned earlier, the plasma current Ip was ramped down concurrently to

maintain a constant q.
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Figure 4.7: A Bt threshold of ∼ 1.6 T was observed for the excitation of high frequency

AEs during a Bt ramp discharge.

During this discharge, it is interesting to note that the frequencies of the excited modes

are consistent with analytic theory which predicts high frequency AEs to be driven

unstable at frequencies of f/fci > 0.5 [60], which is shown by the 0.5fci line in Fig. 4.8.

The spectrum consists of several, likely distinct, bursting modes. Additionally, the

frequencies of the excited modes appear to be proportional to the Alfvén velocity vA as

shown in Fig. 4.9. However, because the electron density ne is relatively constant over the

Bt ramp, there is no way to distinguish between the frequency scaling with fci or with vA.
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Figure 4.8: The 0.5fci line is plotted on top of the AE spectrum during a Bt ramp, show-

ing that the frequencies of the modes are consistent with analytic theory predicting unsta-

ble AEs above f/fci > 0.5.
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Figure 4.9: The Alfvén velocity vA is plotted on top of the AE spectrum during a Bt

ramp, showing that the frequency of the modes is proportional to vA.
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4.3.2.2. ne ramp observations

An electron density ramp was performed on a discharge at Bt = 1.33 T. As shown in the

bottom plot of Fig. 4.10, the density ne is increased by a factor of ∼ 2 from ∼ 2.2× 1013

cm−3 to > 4.0× 1013 cm−3. Mode onset occurs before the electron density increases

appreciably, at around ne = 2.4× 1013 cm−3. An interesting observation here is that the

frequency is not proportional to the Alfvén speed vA; the density rises by a factor of ∼ 2,

but the frequency does not drop by a factor of
√

2 as expected by the low frequency

Alfvén dispersion relations in Section 2.1. This is likely because the low frequency

dispersion relations are not valid in the regime where f ∼ fci, which is certainly true here:

the cyclotron frequency fci in this discharge is around 10 MHz, so f/fc ∼ 0.6.
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Figure 4.10: An ne scan in which the electron density is increased by a factor of ∼ 2 shows

the frequencies of the unstable modes are not proportional to the Alfvén speed vA.

Within a single mode within the spectrum, however, the frequency does scale with the

Alfvén speed, as shown in Fig. 4.11. The green line in the figure is drawn to be
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proportional to vA calculated from the electron density. Clearly, the frequency of the mode

follows vA within each burst of mode activity; as density ramps upwards, vA decreases, and

frequency decreases as well. This may indicate that the mode number is changing with

each burst in the spectrum, since the overall frequency of the spectrum does not follow the

Alfvén speed.
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Figure 4.11: Within a burst of mode activity, the frequency scales with the Alfvén speed

(drawn in green).

Throughout the parameter scans in the experiment, many thresholds for mode onset were

observed. As stated earlier, the focus of the analysis in the following chapter will be on the

only threshold observed for a beam perveance scan, in which a spectrum of modes was

controllably stabilized during a beam current ramp.
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CHAPTER 5

Controlled fast-ion density ramp stabilizing AEs

The discharge of interest is one in which the beam injection rate was ramped down by

∼ 40% while beam voltage (energy) was held constant. During this discharge, the 150R

beam (the off-axis perpendicular beam) was held at constant beam energy of V ∼ 75 keV

for a Bt ∼ 1.28 T plasma. Shortly after the 150R beam began to inject, a highly coherent

spectrum of modes was observed to be excited, shown in Fig. 5.2. It is important to note

that in this plasma, the cyclotron frequency was fci = 9460 kHz at the magnetic axis,

R0 = 1.72 m, and the Alfvén velocity was vA = 3.26× 106 m/s on axis for this plasma.

The slowing-down time of the beam ions is t < 50 ms, calculated from the transport

modeling code TRANSP [61, 62]. These values are summarized in Table. 5.1.

Plasma parameter Value

Toroidal magnetic field Bt 1.28 T

Ion cyclotron frequency fci 9460 kHz

Magnetic axis R0 1.72 m

Alfvén velocity vA 3.26× 106 m/s on axis

Slowing-down time of fast-ions < 50 ms

Electron temperature Te 1.2 keV

Electron density ne 3.45× 1013 cm−3 on axis

Electron thermal velocity ve,th 1.45× 107 m/s

Ion thermal velocity vi,th 2.19× 105 m/s

ve,th/vA 4.45

vi,th/vA 0.0675
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Table 5.1: Plasma parameters during the experiment.

It should also be noted that the toroidal field Bt and plasma current Ip were constant

during the time range of interest, and other parameters such as temperature and density

were effectively constant variations of < 12%. The cyclotron frequency fci has a fractional

variation of about 28% from its value at the magnetic axis across the radial extent of the

plasma. These are summarized in Table 5.2.

Plasma parameter % Variation

Toroidal magnetic field Bt < 2%

Plasma current Ip < 0.4%

Electron density ne < 11%

Electron temperature Te < 12%

Table 5.2: Plasma parameters and their % variation during the time range of interest.

This plasma featured a peaked density profile, with safety factor q ∼ 1 for minor radius

r < 20 cm (corresponding to normalized effective plasma radius ρeff < 0.3), rising steeply

for r > 20 cm. The density profile, as well as the ion temperature, electron temperature,

and q profiles are shown in Fig. 5.1. The ion temperature Ti and plasma rotation

frequency fROT are estimated from the CER diagnostic, which utilizes a diagnostic beam

blip taken ∼ 20− 30 ms before the turn-on of the exciting 150R beam. They are

approximated to be Ti ∼ 1 keV and fROT ∼ 7 kHz.

5.1. Stabilization of AEs

Fig. 5.2(a) shows the magnetic fluctuation level |δb|2 versus frequency and time on a

logarithmic color scale under a 60 dB mask (meaning only portions of the spectrum within

six orders of magnitude of the maximum mode power are shown). Fig. 5.2(b) shows the

raw signal of the magnetics measurement from the ICE loops. The onset of this spectrum
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Figure 5.1: Profiles for ion temperature Ti, electron temperature Te, electron density ne,

and tokamak safety factor q during the experiment.
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of modes was at t = 2260 ms, about ∼ 10 ms after the beam was turned on. These modes

were observed at frequencies of f ∼ 5500− 5600 kHz, or f ∼ 0.58fci. As shown in Fig. 5.3,

the spectrum at the time of mode onset (t ∼ 2260 ms) appears to consist of a broader

band, lower power structure at f ∼ 5550 kHz, combined with two narrow band modes, one

with high power at f ∼ 5520 kHz and one with lower power at f ∼ 5490 kHz, separated

by a ∼ 30 kHz frequency gap. The f ∼ 5520 kHz narrow band peak is overwhelmingly

higher power than the other peaks by ∼ 2− 3 orders of magnitude, and the noise level of

the ICE diagnostic was over six orders of magnitude below the highest power peak.

Fig. 5.2(c, d) shows the time history of mode power with relation to the injection rate of

the exciting 150R beam. As the beam injection rate crosses below a threshold of ∼ 18.5 A,

the mode power |δb|2 abruptly drops to zero. |δb|2 does not undergo a smooth decrease to

the noise level; it drops over 6 orders of magnitude in power in less than 3 ms. The

spectrum is briefly re-excited at t ∼ 2585 ms, but shuts off immediately. During this

re-excitation, a higher frequency mode becomes the dominant mode in the spectrum. This

feature will be discussed in detail below. The raw fluctuation trace from the ICE loops is

shown in Fig. 5.5 along with RMS power for the time range during which the mode is

stabilized and then briefly re-excited. In Fig. 5.5(c) the time window around mode

stabilization is shown in detail, where the voltage envelope of the signal decays

approximately exponentially.

The 10 ms delay between beam turn-on and mode onset (shown in Fig. 5.2(b,c)) is

expected because a delay is required for resonant fast-ions to build up for mode drive.

This delay is likely also caused in part by a remnant population of fast-ions from a beam

with different injection geometry that turned off ∼ 20 ms before the turn-on of the 150R

beam, since the slowing-down time was < 50 ms. A similar delay is not expected between

the injection rate crossing the threshold and stabilization of the modes because the beam

distribution evolves very slowly. The raw fluctuation trace from the ICE loops is shown in

Fig. 5.4 along with the RMS power for the time range during which the mode is first

excited.
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Figure 5.2: (a) |δb|2 spectrum on a logarithmic scale showing a highly coherent spectrum

of high-frequency Alfvén eigenmodes at f ∼ 5550 kHz. (b) The raw fluctuation trace from

the ICE loops. (c) Mode power |δb|2 versus time and (d) beam injection rate versus time.

Mode onset is ∼ 10 ms after turn-on of the 150R beam, and the mode shuts off once beam

injection rate crosses a threshold of ∼ 18.5 A.
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Figure 5.3: Mode power versus frequency at mode onset (t = 2260 ms) shows the highest

power, narrow band peak at 5520 kHz.

5.2. Effects of sawtooth oscillations on mode stability

5.2.1. The Kadomtsev Model

Several models of the sawtooth instability have been proposed to be able to predict its

properties in tokamak experiments. The most well-known of these is the Kadomtsev

model, which describes a fast magnetic reconnection that occurs during the sawtooth crash

[63]. In the Kadomtsev model, during each sawtooth oscillation an m = 1 magnetic island

[1] forms when field lines inside and outside of the q = 1 flux surface reconnect with each

other. This magnetic island grows, causing the hot plasma in the core to mix with the

cooler plasma outside the q = 1 flux surface, flattening the temperature and density

profiles. Eventually, the magnetic island replaces the plasma core and restores the q on

axis to unity. This model is known as the Kadomtsev model with full magnetic

reconnection [63], and an illustration of how the magnetic field evolves during the

instability is shown in Fig. 5.6.
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Figure 5.4: (a) The raw fluctuation trace from the ICE loops and (b) the RMS power, av-

eraged over each 1 µs, versus time for the time range during which the mode is excited.
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Figure 5.5: (a) The raw fluctuation trace from the ICE loops and (b) the RMS power,

averaged over each 1 µs, versus time for the time range during which the mode is stabi-

lized and then briefly re-excited. (c) The time window around mode stabilization in detail

showing the exponential decay of the voltage envelope.
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(i) (ii) (iii)

(iv) (v) (vi)

Figure 5.6: Development of the magnetic field structure during the sawtooth instability

according to Kadomtsev’s model, following Ref. [1]. The shaded region shows where q < 1,

and the m = 1 instability displaces it and restores q at the core to unity.

Other models of the sawtooth instability have been developed, such as the Wesson model

[64] which describes a quasi-interchange instability [65] causing the crash, or the Porcelli

model [66] which predicts sawtooth trigger times. The Kadomtsev model has also been

modified such that the magnetic flux is only partially reconnected during each sawtooth

crash [67]; this model works well for discharges with q values that remain below unity even

after each crash. For the results discussed in this thesis, however, only the Kadomtsev

model with full magnetic reconnection was used.

5.2.2. Sawtooth oscillations during experiment

Sawtooth oscillations were present in this plasma before, during, and after the time range

of interest. This can be seen in Fig. 5.7, which shows ECE data for electron temperature

near the edge of the plasma varying with each sawtooth crash (referencing Fig. 5.2, the

150R beam injects from t = 2250− 2770 ms).
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Figure 5.7: ECE data showing electron temperature at the outer region of the plasma

modulating during sawtooth oscillations. The red line indicates the time that the 150R

beam turns on.

73



From Fig. 5.2(b), it is apparent that sawtooth oscillations modulate the mode power by as

much as 50%. A sawtooth event is likely responsible for the brief re-excitation in the

spectrum at t ∼ 2575 ms as it causes small changes to the equilibrium and fast-ion

distribution. A double sawtooth crash is also responsible for the change in the spectrum at

t ∼ 2320 ms, where the lower frequency mode at f ∼ 5490 kHz temporarily becomes the

dominant mode. It is important to note that the presence of sawteeth complicate this

analysis, as the oscillations cause intermittent fast-ion transport throughout the beam

ramp. A complete picture of the effects of sawtooth oscillations on mode stability is not

known and constitutes future work.

5.3. Damping considerations

As mentioned in Section 2.8, AEs are expected to be damped primarily by continuum

damping and electron thermal damping such as Landau damping. The background

damping rate does not have dependence on properties of the fast-ions or the fast-ion

distribution. Table 5.2 shows that plasma parameters such as toroidal magnetic field Bt,

plasma current Ip, electron density ne, and electron temperature Te were effectively

constant during the current ramp. ne and Te in the core of the plasma (at the magnetic

axis) are shown in Fig. 5.8.

From Eq. 2.37, AEs should have electron thermal damping that scales as βe, the electron

beta, where βe = Pe

B2/2µ0
where Pe is the electron pressure and B is the magnetic field. The

poloidal electron beta, over the time range in which the current ramp took place, is shown

in Fig. 5.9. It is apparent that βe decreases slightly during the current ramp, by about

12%, which suggests that the electron thermal damping rate should also decrease during

this time.

From these considerations, it can be estimated that background damping of these modes

should be either constant or decreasing slightly and that the effects of damping on mode

stabilization should be negligible compared to the changes in fast-ion drive.
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Figure 5.8: (a) Electron density and (b) electron temperature at the magnetic axis over

the time range of the current ramp, calculated from TRANSP.
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Figure 5.9: The poloidal electron beta of the plasma during the current ramp, calculated

from TRANSP.

5.4. Beam current scaling with mode power

Fig. 5.10 shows the mode power |δb|2 versus beam injection rate Ib, with the instability

threshold at Ib ∼ 18.5 A. Due to sawteeth being present during the lifetime of the mode,

only the points within 7 ms preceding a sawtooth crash were considered for determining

the scaling between mode power and injection rate. This window allows for maximum

relaxation to the fast-ion distribution without sawteeth as the minimum time between

sawtooth crashes is 14 ms. However, sawtooth oscillations were likely responsible for

residual redistributions of the fast-ion population that were not accounted for in this

analysis and could cause significant deviations from the expected scaling. The marginal

excitation of the mode, however, is present regardless of sawteeth.

The observation of a threshold demonstrates a fundamental property of resonant-driven

AEs: that the growth rate of these modes is set by the competition between fast-ion drive

and damping processes like Landau damping. Previous simulations of CAEs have

demonstrated this property, as shown in Fig. 5.11. The beam density was varied while
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Figure 5.10: Mode power |δb|2 versus beam injection rate Ib shows that the mode is unsta-

ble for a threshold of Ib ∼ 18.5 A. The theoretical scaling |δb|2 ∼ (1− Ib,threshold/Ib) [68] is

shown in red.

keeping the shape of the distribution constant, leading to the observation of an instability

threshold [28]. In this study, it is posited that fast-ion drive increases with beam density

such that there is a critical value where fast-ion drive balances damping from other

sources, leading to a beam density threshold.

This argument, given for CAEs in simulation, is applicable to other energetic ion driven

AEs. Particularly, this experiment as designed should yield a similar beam density

threshold because the slow injection rate ramp is expected to approximately produce a

distribution that changes self-similarly over time (i.e. only by a scale factor).

The mode power scaling as seen in Fig. 5.10 is consistent with predictions for single mode

collisional saturation near marginal stability [68], |δb|2 ∼ (1− γd/γL) ∼ (1− Ib,threshold/Ib),

where γd is the growth rate from fast-ion drive and γL is the damping rate. A fit on the

data was performed using a non-linear least squares fit to the function y = A(1−B/x),

where y = |δb|2 and x = Ib, and A (a scale factor) and B = Ib,threshold were determined

through the fit. This scaling is plotted over the data in Fig. 5.10 and is a reasonably good

fit with correlation coefficient R2 = 0.54. It is worth noting that there is a deviation from
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Figure 5.11: From Ref. [28], the growth rate γ of a CAE is shown versus the beam density.

the fit, as seen in Fig. 5.2(c) around t ∼ 2380− 2450 ms, corresponding to an injection

rate of Ib ∼ 21− 22.5 A in Fig. 5.10. The reason for this issue in the monoticity of the

scaling is unknown and constitutes future work; however, the overall scaling is still

qualitatively consistent with the theory for single mode collisional saturation.

The observed beam injection rate threshold implies γd/γL > 0.84, indicating that the mode

was near marginal stability during the entire beam ramp. Previous simulations of CAEs

found a much stronger saturation scaling of |δb|2 ∼ γ4 ∼ (Ib − Ib,threshold)4 due to being in

the collisionless regime and likely far from marginal stability [28].

In practice, transients in the fast-ion population after beam turn-on complicate this simple

picture of the distribution evolving self-similarly. The remnant population of fast-ions

(mentioned earlier, from a beam with different injection geometry) that existed before

beam turn-on also affected the shape of the distribution. Nonetheless, the threshold,

observed at the end of the beam ramp, is unlikely to be affected by these considerations,

which occurred early in the ramp. Sawteeth are more likely to complicate this picture

because the mode is at marginal stability; the mode amplitude modulation caused by

sawteeth could have resulted from only minor changes in the distribution function or bulk

plasma.
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5.5. Comparison of AE frequency and amplitude with theoretical expectations

5.5.1. Orbit-averaged resonance condition

The fast-ion population was analyzed in order to determine the resonant particles and the

source of mode drive. Existing theory predicts AEs in this sub-cyclotron frequency range

are excited through Doppler-shifted cyclotron resonance with fast-ions [12]. Fast-ion drive

comes from resonant ions that satisfy the orbit-averaged resonance equation [12]:

ω − nωφ + pωθ − `〈ωci〉 = 0 (5.1)

where n is the toroidal mode number; ωφ and ωθ are the characteristic toroidal and

poloidal orbit frequencies and are positive for passing ions moving in the beam direction;

and 〈ωci〉 is the orbit-averaged cyclotron frequency. p = m+ s where m is the poloidal

mode number and s is the toroidicity-induced sideband number (or resonance order), and

s, ` are integers, with ` = 0 corresponding to direct resonance and ` = 1 corresponding to

Doppler-shifted cyclotron resonance.

5.5.2. Modeling codes

5.5.3. The ORB GC code

The ORB GC code [69] is used to calculate the characteristic poloidal and toroidal orbit

frequencies. ORB GC is a code that calculates orbit frequencies using a constants of

motion (COM) approach. Given equilibrium, initial position, and velocity, a pitch

(χ = v‖/v) is determined everywhere along major radius and vertical position (R, z) using

conservation of energy (E), adiabatic moment (µ0), and toroidal canonical angular

momentum (Pφ), where [69]

µ0 = Miv
2
⊥/2B =

E

B
(1− χ2) (5.2)

and

Pφ = ψ −
Fv‖
ωci

= ψ − Fχ

ZeB
(2MiE)1/2 (5.3)
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where F = BtR. ORB GC uses poloidal flux (ψ) and magnetic field (B) that are

computed by the equilibrium fitting code (EFIT, described below) on the (R, z) grid. The

pitch and energy, in combination with the spatial structure of the magnetic field, then give

the information needed to calculate the curvature and gradient drift velocities. Finally, the

total guiding center velocity including drifts is integrated for one poloidal transit, and this

gives the toroidal and poloidal frequencies, ωφ and ωθ respectively. For this analysis,

ORB GC was modified to include a gyrophase integration, which then gives an

orbit-averaged cyclotron frequency 〈ωci〉.

5.5.4. The TRANSP code

The integrated transport modeling code TRANSP was used to model the evolution of the

fast ion distribution as a function of pitch, energy, position, and time. TRANSP is a

time-dependent equilibrium and transport solver for tokamak plasma discharges [70] first

developed at the Princeton Plasma Physics Laboratory (PPPL) in the 1970s; it has since

been continually advanced and is one of the primary codes used for both prediction and

analysis of experimental tokamak data [71]. TRANSP can be used to calculate beam

deposition, fast-ion orbits, charged particle collisions, charge exchange transport of beam

particles, and beam-driven currents and momentum transfer [70] through Monte Carlo

techniques, taking inputs from external measurements and from the equilibrium fitting

code EFIT, described in the next section. The TRANSP code has been found to be

reasonably accurate with comparisons for many kinds of problems from experimental data

from various tokamaks. An example of the high level of agreement between TRANSP

simulation and experimental measurements is shown in Fig. 5.12, which is taken from a

2000 study by R. V. Budny on local transport in the Joint European Tokamak (JET) [72]

and shows a comparison of neutron emission rates from measurement and TRANSP

simulation.

This analysis uses the NUBEAM [71] module in TRANSP to predict the fast-ion

distribution everywhere in (R, z) space, and has multiple models for taking into account
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Figure 5.12: Neutron emission rates from measurement and from TRANSP simulation

show good agreement in this study from Ref. [72].

the effect of sawtooth oscillations. NUBEAM is a Monte Carlo package for time-dependent

NBI physics, evaluating the deposition, slowing down, and thermalization of fast ions in

tokamaks. It includes NBI physics such as neutral beam deposition, fast-ion orbiting,

power deposition, beam driven current, and momentum transfer, in addition to accounting

for particle collisions, charge exchange, and beam particle transport [71]. In this analysis,

NUBEAM used the full reconnection Kadomtsev model [63] for sawtooth oscillations, and

assumed no anomalous fast ion diffusion otherwise. TRANSP and ORB GC resonance

analysis were managed via the OMFIT (One Modeling Framework for Integrated Tasks)

[73] modeling framework. OMFIT is a modeling and data analysis software for

magnetically confined fusion research experiments, and utilizes modules that cover a wide

range of different physics areas. Some of these include equilibrium reconstruction, profiles

analysis, gyrokinetic simulations, transport modeling, plasma heating, and stability

analysis.
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5.5.5. Equilibrium reconstruction via EFIT

5.5.5.1. The Grad-Shafranov equilibrium equation

The Grad-Shafranov equation is an equilibrium equation that is typically used to describe

axisymmetric scenarios like tokamak equilibria. It is written as a differential equation for

the poloidal flux function ψ mentioned earlier, using p(ψ) and f(ψ) as functions for

plasma pressure and current flux. A detailed derivation may be found in Ref. [1], and the

derivation for the Grad-Shafranov equation will be summarized briefly.

Beginning with the equilibrium equation:

J ×B = ∇p (1.2)

This equation can be written it in terms of the poloidal flux function ψ in cylindrical

coordinates. Working in Ampère’s law, we arrive at the Grad-Shafranov equation:

R
∂

∂R

1

R

∂ψ

∂R
+
∂2ψ

∂z2
= −µ0R

2p′(ψ)− µ2
0f(ψ)f ′(ψ) (5.4)

The Grad-Shafranov equation can be numerically solved for equilibrium reconstruction in

tokamak plasmas. Equilibrium reconstruction can give valuable information such as

location of flux surfaces, current density profiles, plasma pressure profiles, plasma

geometry, and more.

5.5.5.2. The EFIT code

Equilibrium reconstruction of tokamaks is important in understanding quantitative

measurements taken during experiment. The predecessors of the EFIT code [74, 75] used

magnetic measurements from outside of the plasma to determine information like plasma

geometry, stored plasma energy, and current profiles. These external magnetic

measurements are from diagnostics such as the Motional Stark Effect (MSE) diagnostic

[42], which measures the direction of magnetic field lines within the plasma, as well as

other external diagnostics like magnetic probes and poloidal flux loops. Equilibrium
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reconstruction is done by solving the Grad-Shafranov equilibrium equation [1], using

measurements as constraints on the toroidal current density. EFIT builds on its

predecessors by implementing a Picard linearization scheme for computational efficiency

while allowing for a distributed plasma current source [76] within MHD equilibrium

constraints. The analysis shown in this dissertation uses external magnetics data as well as

MSE as constraints on equilibrium reconstruction.

5.5.6. The hybrid MHD code HYM

HYM is a hybrid MHD code that is used to model the effects of energetic beam ions on

the equilibria of tokamak plasmas, and in particular the physics and properties of fast-ion

driven Alfvén eigenmodes [22, 28]. It was first adapted for NSTX but has since also been

adapted for use on DIII-D plasmas; the results of these simulations will be discussed later.

The HYM code is a 3-dimensional nonlinear global stability code in toroidal geometry [28].

It includes multiple fluid and kinetic models that can be combined to treat the

components of a plasma. The combination used in simulations of NSTX and DIII-D treats

the plasma as consisting of two components: first, the thermal background plasma is

treated using a one-fluid MHD model; second, the energetic beam ions are treated with a

kinetic Vlasov description [22, 28]. These are then coupled through a current coupling

scheme, using the momentum equation for the thermal background plasma [28]:

ρdV /dt = −∇p+ µ0(J − J b) + B − qnb(E − ηδJ) + ν∆V (5.5)

where ρ is the thermal plasma density, V is the thermal plasma velocity, p is the pressure,

nb is the beam ion density, J b is the beam ion induced current, B = B0 + δB is the total

magnetic field, E is the perturbed electric field, J = 1
µ0
∇×B is the plasma current and

δJ is the perturbed plasma current, and ν is a viscosity coefficient. Quasineutrality is

assumed (ne = nb + ni). This momentum equation enters in with the rest of the fluid

equations to describe the thermal plasma.

HYM implements a numerical model for simulation which assumes that the total energy in
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the system, consisting of the sum of the thermal plasma energy and the beam energy, is

conserved [19]:

Etot =

∫
(2µ0B

2 +
p

γ − 1
+ ρ

V 2

2
)d3x +

∫
mi
v2

2
Fd3vd3x (5.6)

where F is the beam ion distribution function.

Figure 5.13: Taken from Ref.[28]. Frequency versus toroidal mode number for GAEs (red)

and CAEs (blue) from experimental measurements and HYM simulations.

The beam ions are modeled using the full-orbit equations of motion and a particle-in-cell

(PIC) simulation method in conjunction with the delta-f method [77]. The delta-f method,

described in detail in Ref. [77], essentially evolves the perturbed beam ion distribution

function F along a set of characteristics that solve the full-orbit equations; it is used in the

HYM code to reduce numerical noise. This method requires the equilibrium distribution

function of the beam ions to be known, and the perturbed distribution function

δF = F − F0 is then integrated along particle trajectories from the full-orbit equations of

motion. The equilibrium distribution function F is chosen to account for parameters like

the injection velocity and pitch-angle distribution of the beam, the plasma flux, and
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prompt-loss boundaries [28]. In particular HYM can take the beam ion density, magnetic

field, and plasma profiles from TRANSP modeling. HYM simulations have been

extensively run on experimental data for NSTX and NSTX-U, yielding detailed

measurements of CAE/GAE amplitudes and mode structures over different ranges of

toroidal and poloidal mode numbers. Figure. 5.13 shows the results from a 2017 study of

CAEs and GAEs on NSTX, found in Ref. [28], from both experimental measurements and

from HYM numerical simulations. It can be seen that there is reasonably good agreement

between experimental observations and HYM.

5.6. Analysis of fast-ion population with TRANSP

The fast-ion population was modeled via TRANSP simulation, using the NUBEAM

module to predict the physics of NBI during the discharge. Fast-ion density is shown in

Fig. 5.14, averaged over ρeff < 0.3 where ρeff is the normalized effective plasma radius

based on toroidal flux described earlier. This value is chosen to indicate the region over

which the q-profile is flat. The fast-ion density in this figure is plotted versus pitch (v‖/v)

and energy for times before beam turn-on, shown in Fig. 5.14(a), and after mode onset,

shown in Fig. 5.14(b).

As mentioned in Chapter 2, CAE/GAEs are driven by resonant fast-ions in an anisotropic

population, with CAE/GAE drive (γEP) approximated as an integral over the velocity

space gradients of the distribution, assuming large anisotropy:

γEP ∝ − nEP

∫
h (χ, v)

∂fEP(χ, v)

∂χ
dχ

∣∣∣∣
vb‖=v‖,res

(5.7)

where χ = v‖/v is the pitch. From this equation it is clear that CAE/GAE drive γEP is

dependent on the sign of the gradient of the fast-ion population with respect to pitch

(∂fEP/∂χ) at the location of resonance.

Before beam turn-on, in Fig. 5.14(a), the resonance lines drawn show that the resonances

for p = 0, 5 intersect a region at pitch of v‖/v ∼ 0.65 and energy of ∼ 45 keV where
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Figure 5.14: Fast-ion density as a function of pitch v‖/v and energy in keV, for times (a)

before beam turn-on and (b) after mode onset, averaged over ρ < 0.3. The resonance lines

for n = −28, p = 0, 5 are plotted.
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∂fEP/∂χ > 0; because of this, the mode would be damped by the fast-ions as γEP < 0. In

comparison, after beam turn-on and mode onset, the resonance lines pass through a region

at v‖/v ∼ 0.3 and high energy of ∼ 60− 75 keV with ∂fEP/∂χ < 0, leading to drive from

the fast-ions. In this figure, p = 0 corresponds to s = 0 for the observed frequency as

calculated from the finite-frequency corrected dispersion relations discussed in Chapter 2

and derived in Ref. [11].

5.7. Identification of a GAE

The mode shown in Fig. 5.2 is identified as a GAE from analysis of the fast-ion population

in Fig. 5.14(b) and considerations of the dispersion relations and the DCR resonance

equation, ωci ≈ ω − k‖v‖, which is an ` = 1 approximation of the orbit-averaged resonance

equation (Eq. 5.1) as stated earlier:

ω − nωφ + pωθ − `〈ωci〉 = 0 (5.1)

First, it will be shown that this mode is implausible to be a CAE. From the dispersion

relations, discussed in Chapter 2, it is clear that CAEs must have parallel phase velocity of

ω/k‖ > vA, while GAEs must have ω/k‖ < vA. The fast-ion population in Fig. 5.14(b)

shows that the resonant subset of particles peaks at high energy, ∼ 60− 75 keV, for a

pitch of v‖/v ∼ 0.3. It is also clear that there are little to no particles above a pitch of

v‖/v ∼ 0.7. The frequency of the mode (f ∼ 5520 kHz) in conjunction with the beam

energy (60− 75 keV) indicate that the only particles present are sub-Alfvénic, with

v0/vA ≤ 0.8 where v0 is the injection velocity calculated from the beam energy.

Referencing the orbit-averaged resonance equation (Eq. 5.1) above, the ` = 0 resonance

requires super-Alfvénic particles (v‖/vA > 1) for CAEs without large sideband resonances

(s� 1). As discussed earlier, mode resonances are implausible for large s because strong

wave-particle interactions require a small s [27]. Precluding the ` = 0 resonance for CAEs,

we consider the ` = 1 resonance, which at this frequency corresponds to v‖/vA = 0.9. Since

the only particles present have v0/vA ≤ 0.8, it is clear that an ` = 0 resonance for CAEs

also cannot be satisfied without a large toroidal sideband number s. Therefore, we can
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conclude that this mode is highly unlikely to be a CAE.

On the other hand, analysis of this mode shows that it is likely a GAE. As discussed

earlier, GAEs are typically core-localized [13, 19] and form at a minimum in the q-profile.

Because this plasma features a peaked density profile with q ∼ 1 for ρ < 0.3, this indicates

that the location of the mode is near the magnetic axis.

Again considering the DCR resonance equation ωci ≈ ω − k‖v‖, the lowest possible ω/k‖

occurs for passing particles at k⊥ ∼ 0; any non-zero k⊥ pushes the resonance lines to the

higher pitch region in Fig. 5.14(b) in the fast-ion distribution where there are less

particles. Since k⊥ ∼ 0 is the most plausible resonance, the data is consistent with an

m = 0 mode to minimize k⊥.

From the dispersion relation for GAEs [11], an m = 0 mode at this frequency has toroidal

mode number of |n| = 28. In this convention, a positive toroidal mode number indicates a

co-propagating mode (in the direction of plasma current), while a negative toroidal mode

number indicates a counter-propagating mode. Again referencing the orbit-averaged

resonance equation (Eq. 5.1), it is clear that a n = +28 mode satisfying this equation for

Doppler-shifted cyclotron resonance (` = 1) requires an implausible large toroidal sideband

number s. Direct resonance (` = 0) requires even larger values of s. We can therefore rule

out n = +28, and the resonance line for n = −28, p = 0 is shown in Fig. 5.14(b) to pass

through the region of the fast-ion population with the high energy peak at 60-75 keV

where ∂fEP/∂χ < 0 leading to fast-ion drive. The n = −28, p = 5 line shows that a

relatively small sideband number moves the resonance lines closer to the peak. These

considerations show that the mode is most likely a GAE.

5.8. Comparison with analytic theory

The results presented here are consistent with predictions from analytic theory and

simulations of GAE excitation and suppression in NSTX/NSTX-U. A 2017 study of GAEs

(Ref. [78]) found that counter-propagating GAEs were the most unstable modes on NSTX,

driven by high pitch-angle fast-ions in the distribution, supported by simulation and

88



experimental measurements. Similarly, a 2019 study (Ref. [19]) on simulations of GAEs in

NSTX-U found that unstable counter-propagating GAEs were suppressed through neutral

beam injection from a beam source with large tangency radius, confirming experimental

results.

The beam density threshold presented in 5.1 can be explained through consideration of

Eq. 5.7, which is derived from analytic theory of DCR CAE/GAEs. As the beam density

nEP is slowly ramped down over time, the partial derivative of the fast-ion distribution

with respect to pitch ∂fEP/∂χ is not expected to change significantly; therefore, the

fast-ion drive γEP decreases in time as nEP decreases. At a certain point, the fast-ion drive

is no longer large enough to overcome the mode damping from the thermal plasma, and

the mode then rapidly decays.

Quantitative predictions from analytic theory [11] also agree well with experimental

measurements. Analytic theory predicts GAEs to be driven unstable by a neutral beam

distribution with normalized injection velocity v0/vA = 0.8 and peak v‖/v ≈ 0.3 when

0.5 < f/fci < 0.8, as shown in Fig. 5.15. This theory takes into account finite frequency

corrections, which are required for accuracy in analysis of modes at frequencies at a large

fraction of fci. The observed frequency of the mode of interest in the lab frame is

f/fci = 0.58; taking into account the plasma rotation, the observed frequency in the

plasma frame is f = fmeasured + nfROT, where fROT is the plasma rotation frequency, and is

estimated from charge-exchange recombination spectroscopy (CER) to be fROT = 7 kHz.

This frequency falls comfortably within the frequency range predicted from quantitative

analytic theory calculations.

The identification of this mode as a GAE is also consistent with analytic theory and

simulation. Fast-ion drive for ` = 1 GAEs is predicted to be the largest for modes with

k‖ � k⊥ [11], which reinforces the argument made in favor of the mode having a poloidal

mode number of m = 0. Additionally, the HYM code [28], described earlier, was used to

model a repeat DIII-D discharge (#172019). The simulations searched for unstable modes

within a broad range of toroidal mode numbers and found unstable counter-propagating

GAEs with f ≥ fci for mode numbers n = −22,−23,−24,−25. It also found that GAEs
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Figure 5.15: Predictions from analytic theory showing counter-propagating GAEs driven

unstable by NBI with normalized injection velocity v0/vA = 0.8 and v‖/v ≈ 0.3 at frequen-

cies of 0.5 < f/fci < 0.8

.

90



were the most unstable mode for all toroidal harmonics, and that a wide range of

toroidicity-induced sideband number (∆p ∼ 10) had significant effects to mode drive. The

HYM code is believed to overestimate frequencies and underestimate toroidal mode

numbers for unstable modes with significant f/fci because it uses a one-fluid MHD model

for the background thermal plasma; two-fluid corrections to HYM simulations give smaller

frequencies and higher values of toroidal mode numbers [79].
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CHAPTER 6

Summary and Conclusions

6.1. Review of results

The focus of this dissertation was to study compressional (CAE) and global (GAE) Alfvén

eigenmode activity in DIII-D and how the spectral characteristics and stability of these

modes depend on plasma parameters. For this study, magnetic fluctuation measurements

were obtained via the Ion Cyclotron Emission (ICE) diagnostic. DIII-D features neutral

beam injection (NBI) that have the capability to independently vary beam energy and

current; this capability was used in a unique manner to explore a wide parameter space for

the experiment to determine stability thresholds for mode excitation.

The major result presented in this thesis is the controlled stabilization of one of these high

frequency AEs, excited through Doppler-shifted cyclotron resonance (DCR) with fast-ions

from NBI. This was achieved during a 1.28 T discharge where the energy of one of the

off-axis neutral beams was kept constant while the injection rate was ramped down. This

marks the first time a controlled energetic ion density ramp has stabilized a fast-ion driven

Alfvén wave. Moreover, the scaling of mode power with beam injection rate was found to

be consistent with theoretical expectations for collisional saturation near marginal

stability.

The fast-ion population was analyzed through modeling codes like TRANSP and

ORB GC, allowing the identification of the resonant energetic particles in the population

that were likely responsible for driving the mode. Through this analysis, as well as

considerations from dispersion relations and resonance equations, this mode is identified as

a shear-polarized GAE, which is the first identification of a GAE excited by sub-Alfvénic
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fast-ions in a fusion research plasma.

6.2. Diagnostic development

For the analysis presented here, the ICE diagnostic was utilized for magnetic fluctuation

measurements. Unfortunately, a toroidal mode number measurement was unable to be

reliably obtained due to an unknown path length difference between the two toroidal loops

comprising the ICE diagnostic system utilized for this experiment. Since the time of this

experiment, the ICE system has been updated such that the current path length

differences on the diagnostic are well-documented.

Future studies of fast-ion driven modes within the bandwidth of the ICE diagnostic

(between 1− 100 MHz) should be able to obtain reliable toroidal mode number

measurements, allowing for a more direct comparison with analytic theory and simulations

and a significant improvement in resonance analysis.

6.3. Future work

In addition to toroidal mode number measurements in future experiments, there are many

aspects of this experiment that can still be explored. The results presented at the end of

Chapter 4 comprise of many interesting observations that can be analyzed. These include

the observation of a toroidal magnetic field Bt threshold, an electron density ne threshold,

the scaling of mode frequency with vA, and possible stability thresholds from other

injecting beams. Understanding these different aspects of AE excitation is essential in

furthering the physics knowledge of wave-particle interaction and the interplay between

wave drive and damping. With the improvements on the ICE diagnostic, the modes can be

characterized over a wider parameter space as intended in the experimental design.
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