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Scalable Sparse Cox’s Regression for
Large-Scale Survival Data via Broken

Adaptive Ridge

Eric S. Kawaguchi, Marc A. Suchard, Zhenqiu Liu, Gang Li ∗

Abstract

This paper develops a new sparse Cox regression method for high-dimensional mas-
sive sample size survival data. Our method is an L0-based iteratively reweighted L2-
penalized Cox regression, which inherits some appealing properties of both L0 and
L2-penalized Cox regression while overcoming their limitations. We establish that it
has an oracle property for selection and estimation and a grouping property for highly
correlated covariates. We develop an efficient implementation for high-dimensional
massive sample size survival data, which exhibits up to a 20-fold speedup over a com-
peting method in our numerical studies. We also adapt our method to high-dimensional
small sample size data. The performance of our method is illustrated using simulations
and real data examples.

Keywords: Censoring; Cox’s proportional hazards model; High-dimensional covariates; Mas-
sive sample size; Penalized regression.
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1 Introduction

Advancing medical informatics tools and high-throughput biological experimentation are
making large-scale data routinely accessible to researchers, administrators, and policy-makers.
This “data deluge” poses new challenges and critical barriers for quantitative researchers
as existing statistical methods and software grind to a halt when analyzing these large-
scale datasets, and calls for a need of methods that can readily fit large-scale data. This
paper primarily concerns survival analysis of sparse high-dimensional massive sample size
(sHDMSS) data, a particular type of large-scale data with the following characteristics:
1) high-dimensional with large number (pn in thousands or tens of thousands) of covari-
ates, 2) massive in sample-size (n in thousands to hundreds of millions), 3) sparse in co-
variates with only a very small portion of covariates being nonzero for each subject, and
4) rare in event rate. A typical example of sHDMSS data is the pediatric trauma mor-
tality data (?) from the National Trauma Databank (NTDB) maintained by the Amer-
ican College of Surgeons (?). This data set includes 210,555 patient records of injured
children under 15 collected over 5 years from 2006 -2010. Each patient record includes
125,952 binary covariates that indicate the presence, or absence, of an attribute (ICD9
Codes, AIS codes, etc.) as well as their two-way interactions. The data matrix is extremely
sparse with less than 1% of the covariates being non zero. The event rate is also very
low at 2%. Another application domain where sHDMSS data are common is drug safety
studies that use massive patient-level databases such as the U.S. FDA’s Sentinel Initiative
(https://www.fda.gov/safety/fdassentinelinitiative/ucm2007250.htm) and the Observational
Health Data Sciences and Informatics (OHDSI) program (https://ohdsi.org/) to study rare
adverse events with hundreds of millions of patient records and tens of thousands of patient
attributes that are sparse in the covariates.

sHDMSS survival data presents multiple challenges to quantitative researchers. First,
not all of the thousands of covariates are expected to be relevant to an outcome of inter-
est. Traditionally, researchers hand-pick subject characteristics to include in an analysis.
However, hand picking can introduce not only bias, but also a source of variability between
researchers and studies. Moreover, it would become impractical and infeasible in large-
scale evidence generation when hundreds or thousands of analyses are to be performed (?).
Hence, automated sparse regression methods are desired. Secondly, the massive sample size
presents a critical barrier to the application of existing sparse survival regression methods in
a high-dimensional setting. While there are available many sparse survival regression meth-
ods including ???????, current methods and standard software become inoperable for large
datasets due to high computational costs and large memory requirements. ? presented tools
for fitting penalized Cox’s regression on sHDMSS data with L2 (ridge) and L1 (LASSO)
penalties. However, it is well known that ridge regression is not sparse and that although
L1-penalized regression produces a sparse solution, it tends to select too many noise variables
and is biased for estimation. Lastly, the commonly used “divide and conquer” strategy for
massive size data is deemed inappropriate for sHDMSS data since each of the divided data
would typically be too sparse for a meaningful analysis. Improved scalable sparse regression
methods for sHDMSS data are critically needed.

The purpose of this paper is to develop a new sparse Cox regression method, named
Cox broken adaptive ridge (CoxBAR) regression, using L0-based iteratively reweighted L2-
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penalized Cox regression, rigorously study its statistical properties for variable selection and
estimation, develop efficient implementation strategies to make it scalable to sHDMSS sur-
vival data, and discuss its use for ultrahigh dimensional settings with small sample size.
The CoxBAR estimator can be viewed as a Cox ridge estimator whose small coefficients
are shrunk towards zero by iteratively applying a reweighted ridge regression that aims to
approximate an L0-penalized regression. There are several considerations that motivated us
to study this approach. First, the CoxBAR algorithm aims to approximates an L0-penalized
Cox regression. It is well known that L0-penalized regression is natural for variable selection,
but has some limitations such as being unstable (?) and not scalable to high-dimensional
settings. Second, our CoxBAR method uses the Cox ridge estimator as its initial value,
which is not sparse, but has desirable predictive and grouping properties. In Lemma 2 of
the appendix, we show that the CoxBAR algorithm essentially leaves the large values of the
initial Cox ridge estimator almost unchanged, but shrinks its small values to zero using an
approximate L0-penalized regression. Consequently, the CoxBAR estimator enjoys the best
of ridge and L0-penalized regression while overcoming their limitations. For example, we will
show that the CoxBAR estimator is selection consistent (an L0-penalized regression prop-
erty), estimation consistent (a ridge estimator property), stable (a ridge estimator property),
and has a grouping property for highly correlated covariates (a ridge estimator property).
Third, the CoxBAR algorithm only involves repeatedly performing reweighted L2-penalized
convex optimization, which allows one to take advantage of existing efficient algorithms for
large scale L2-penalized optimization with only minor modifications. Lastly, we illustrate
in Section 3 that CoxBAR does not require costly data-driven tuning parameter selection,
which is a big advantage over other sparse regression methods for fitting large-scale survival
data.

Unlike other penalized regression methods that produce a sparse solution in a single step,
the CoxBAR method is not sparse per se at each iteration and only achieves sparsity at its
limit. This makes it difficult to study its statistical properties. A key innovation of this paper
is to rigorously develop asymptotic theory for the CoxBAR estimator, establishing its con-
sistency in identifying the sparse structure of the model and in parameter estimation as well
as its grouping property for highly correlated covariates, with diverging dimension. To this
end, we point out that ?? independently introduced similar algorithms for variable selection
in linear models and generalized linear models, but only investigated their statistical prop-
erties using empirical studies. The idea of iteratively reweighted penalizations dates back at
least to the well-known Lawson’s algorithm (?) in classical approximation theory, which has
been applied to various applications including Ld (0 < d < 1) minimization (?), sparse sig-
nal reconstruction (?), compressive sensing (?????), and variable selection for linear models
and generalized linear models (??). However, previous theoretical studies of this approach
have focused only on algorithm convergence properties. This paper not only extends this
approach to Cox’s regression, but also for the first time provides rigorously justified large
sample statistical theory. The second key contribution of this paper is an efficient imple-
mentation of CoxBAR on sHDMSS data by taking advantage of existing efficient large-scale
L2-penalized Cox regression tools, the sparsity in the data and in the Cox partial likelihood,
and showing that CoxBAR does not require costly data-driven tuning parameter selection.
It is also worth noting that the performance of an iteratively reweighted penalization method
depends highly on its initial value, but there is not available an explicit guidance on how
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to choose the initial value in the literature. Our CoxBAR algorithm explicitly uses a Cox
ridge regression estimate as its initial value. This seemingly obvious choice has important
implications on the stability of the CoxBAR method and is responsible for its asymptotic
consistency as well as its grouping property for highly correlated covariates as revealed in our
theoretical derivations. Finally, in addition to its application to sHDMSS survival data, our
large sample theory implies that CoxBAR can be combined with a sure screening method
to yield a new two-stage survival regression procedure that is consistent for simultaneous
variable selection and parameter estimation in ultrahigh dimensional settings with relatively
small sample size.

In Section 2, we formally define the CoxBAR method, state our theoretical results on its
selection and estimation consistency as well as its grouping property, describe an efficient
implementation of CoxBAR on sHDMSS survival data, and discuss how to adapt it as a post-
screening sparse regression method for ultrahigh dimensional covariates with relatively small
sample size. Simulation studies are presented in Section 3 to demonstrate the performance
of the CoxBAR estimator with both moderate and massive sample size in various low and
high-dimensional settings. Real data examples including an application of CoxBAR on the
pediatric trauma mortality data (?) are given in Section 4. Closing remarks and discussion
are given in Section 5. Proofs of the theoretical results and regularity conditions needed
for the derivations are collected in the appendix. An R package for CoxBAR is available at
https://github.com/OHDSI/BrokenAdaptiveRidge.

2 Methodology

2.1 Cox’s broken adaptive ridge regression and its large sample
properties

2.1.1 The Estimator

Suppose that one observes a random sample of right-censored survival data consisting of n
independent and identically distributed triplets, (T̃i, δi,xi), i = 1, . . . , n, where for subject
i, T̃i = min(Ti, Ci) is the observed time, δi = I(Ti ≤ Ci) is the censoring indicator, Ti is a
survival time of interest, and Ci is a censoring time that is conditionally independent of Ti
given a pn-dimensional covariate vector xi.

Assume the Cox (?) proportional hazard model

h(t|x) = h0(t) exp(xTβ), (1)

where h(t|x) is the conditional hazard function of a survival time t given a pn-dimensional
covariate vector x, h0(t) is an unspecified baseline hazard function, and β = (β1, . . . , βpn) is a
vector of regression coefficients. Adopting the counting process notation of ?, the log-partial
likelihood for the Cox model is defined as

ln(β) =
n∑
i=1

∫ 1

0

βTxi(s)dNi(s)−
∫ 1

0

ln

[
n∑
j=1

Yj(s) exp{βTxj(s)}

]
dN̄(s). (2)
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Here Yi(s) = I(T̃i ≥ s) is the at-risk process, Ni(s) = I(Ti ≤ s, Ti ≤ Ci), and N̄ =
∑n

i=1Ni.
Without loss of generality, we work on the time interval s ∈ [0, 1] as in ?, which can be
extended to the time interval [0, τ ] for 0 < τ <∞ without difficulty.

Our Cox’s broken adaptive ridge (CoxBAR) estimation of β starts with an initial Cox
ridge regression estimator (?)

β̂(0) = arg min
β
{−2ln(β) + ξn

pn∑
j=1

β2
j }, (3)

which is updated iteratively by a reweighed L2-penalized Cox regression estimator

β̂(k) = arg min
β

{
−2ln(β) + λn

pn∑
j=1

β2
j

(β̂
(k−1)
j )2

}
, k ≥ 1. (4)

where ξn and λn are non-negative penalization tuning parameters. The CoxBAR estimator
is defined as

β̂ = lim
k→∞

β̂(k). (5)

Remark 1 (Computation of CoxBAR) For small to moderate size data, one may simply
calculate the CoxBAR estimator through iterating a Newton-Raphson type procedure as in
?, who outlined an iterative reweighted least squares algorithm for generalized linear models.
However, the procedure calls for calculating both the gradient and Hessian at each iteration,
which will become infeasible in large-scale settings with large n and pn due to high computa-
tional costs, high memory requirements, and numerical instability. In the Section 2.2, we will
discuss an efficient algorithm that adapts efficient algorithms for L2-penalized Cox regression
and accounts for the sparsity in sHDMSS data and in the partial likelihood to make CoxBAR
scalable to sHDMSS data.

Remark 2 Since L2 penalization yields a non-sparse solution, defining the CoxBAR esti-
mator as the limit is necessary to produce sparsity. Although λn is fixed at each iteration, it
is weighted inversely by the square of the ridge regression estimates from the previous iter-
ation. Consequently, coefficients whose true values are zero will have larger penalties in the
next iteration; whereas penalties for truly non-zero coefficients will converge to a constant.
Theorem 1 below proves that the estimates of the truly zero coefficients shrink closer towards
zero while the estimates of the truly non-zero coefficients converge to their true values.

2.1.2 Oracle properties

Below we establish the oracle properties for the CoxBAR estimator for simultaneous variable

selection and parameter estimation. Define β0 =
(
βT01,β

T
02

)T
as the true parameter values

of the model where, without loss of generality, β01 = (β01, ..., β0q) is a vector of q non-zero

values and β02 = 0 is a pn − q dimensional vector of zeros. Let β̂1 and β̂2 be the first q and
the remaining pn − q components of the CoxBAR estimator, β̂, respectively.

Theorem 1 (Oracle Properties) Assume the regularity conditions (C1) - (C6) from Ap-
pendix A.1 hold. Then, with probability tending to 1,
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(a) the CoxBAR estimator β̂ =
(
β̂T1 , β̂

T
2

)T
exists and is unique with β̂2 = 0 and β̂1 being

the unique fixed point of f(β1), where f(β1) is a solution to Q̇n1(θ) = 0 for

Qn1(θ1) = −2ln1(θ1) + λnθ
T
1D1(β1)θ1,

with D1(β1) = diag(β−21 , β−22 , . . . , β−2q ) and ln1(θ1) being the first q components of ln(θ).

(b)
√
n(β̂1−β01)

D−→ N(0, I1(β)−1), where I1(β)−1 is the leading q×q submatrix of I(β)−1.

2.1.3 The grouping property

When the true model has a group structure, it is desirable for a variable selection method to
either retain or drop all variables that are clustered within the same group. Ridge regression
has a grouping property, and it is intuitive to conjecture that the CoxBAR method would
as well since the estimator is based on an iterative ridge regression. The following theorem
states the grouping property of the CoxBAR estimator for highly correlated covariates.

Theorem 2 Let λn, {(T̃i, δi,xi)}ni=1, and the CoxBAR estimator β̂ be given, and assume that
X = (xTi , . . .x

T
n ) is standardized. That is, for all j = 1, . . . , pn,

∑n
i=1 xij = 0, xT[,j]x[,j] = n−1,

where x[,j] is the jth column of X. Then for any β̂i 6= 0 and β̂j 6= 0,

|β̂−1i − β̂−1j | ≤
1

λn

√
2{(n− 1)− (n− 1)rij}

√
n(1 + d)2, (6)

with probability tending to one, where dn =
∑n

i=1 δi, and rij = 1
n−1x

T
[,i]x[,j] is the sample

correlation of x[,i] and x[,j].

We can see that as rij → 1, the absolute difference between β̂i and β̂j approaches 0 implying
that the estimated coefficients of two highly correlated variables will be similar in magnitude.

2.1.4 Selection of tuning parameters

The CoxBAR method depends on two tuning parameters: ξn for the initial ridge estima-
tor in (3) and λn for the iterative ridge step in (4). Commonly used data-driven meth-
ods such as k-fold cross-validation (?), Akaike information criterion (AIC) (?), Bayesian
information criterion (BIC) (??) could be used to search for the optimal pair, (ξn, λn).
While the data-driven selection methods work for moderate-size data, they are computa-
tionally costly for large-scale data. Because the iteratively reweighted ridge regression aims
to approximate L0-penalized Cox regression, it is natural to consider fixing λn at ln(n) or
ln(dn) ≡ ln(number of uncensored events), which correspond to the regular and censored
BIC penalty, respectively (???).

Our simulations in Section 3 suggest that while fixing λn at ln(n) or ln(dn), the CoxBAR
estimator is very stable to the choice of ξn over a wide range interval (Figure 1). Furthermore,
both λn = ln(n) and λn = ln(dn) work well in practice for the pn < n setting (Table 1).
Thus, costly data-driven determination of the tuning parameters can be avoided by using
pre-specified values for λn and ξn, which is crucial to reducing the computational burden for
fitting large-scale survival data as discussed in the next two subsections.
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2.2 CoxBAR for sparse high-dimensional massive sample size (sHDMSS)
data

As mentioned earlier, the Newton-Raphson algorithm used for each iteration of the CoxBAR
algorithm will become infeasible in large-scale settings with large n and pn due to high com-
putational costs, high memory requirements, and numerical instability. Because CoxBAR
only involves fitting a reweighted Cox’s ridge regression at each of its iteration step, it allows
us to take advantage of existing efficient algorithms for large-scale Cox ridge regression with
only minor modifications as detailed below.

2.2.1 Adaptation of existing algorithms for fitting massive L2-penalized Cox’s
regression

? developed an efficient implementation of the massive Cox’s ridge regression for sHDMSS
data using a Bayesian framework, under which finding the maximum a posteriori (MAP)
estimates of β based on the joint penalized partial likelihood Lp(β) ∝ Ln(β|D)π(β) is
equivalent to fitting a Cox ridge regression with tuning parameter φ, where Ln(β|D) =
exp{ln(β)}, D = {(T̃i, δi,xi) : i = 1, . . . n}, and π(β) is the prior distribution of β with
independent marginal normal distributions

π(βj|φ) ∼ N(0, φ−1), φ > 0 (7)

for j = 1, . . . , pn (??). For parameter estimation, ? adopted the column relaxation with
logistic loss (CLG) algorithm of ?, which is a type of cyclic coordinate descent algorithm
that estimates the coefficients using 1D updates. The CLG easily scales to high-dimensional
data (???) and has been recently implemented for fitting massive ridge and LASSO penalized
generalized linear models (?), parametric survival models (?), and Cox ’s model (?). When

fitting this Cox ridge regression model, the CLG algorithm involves finding β
(new)
j , the value

of the jth entry of β, that minimizes −lp(β), assuming that the other values of βj’s are
held constant at their current values. Using the prior from Equation (7) and ignoring the

constants in the posterior partial likelihood, finding β
(new)
j is equivalent to finding the z that

minimizes,

g(z) = −z
n∑
i=1

δixij +
n∑
i=1

δi ln

 ∑
y∈R(T̃i)

exp

(
pn∑

k=1,k 6=j

βkxyk + zxyj

)+
z2

2φ
, (8)

where R(T̃i) = {j : T̃j > T̃i} is the risk set for observation i. Even for this 1D problem,
an optimization procedure needs to be used since there is no closed form solution. Using a
Taylor series approximation at the current βj, one can approximate g(·) through

g(z) ≈ g(βj) + g′(βj)(z − βj) +
1

2
g′′(βj)(z − βj)2, (9)

where

g′(βj) =
d

dz
g(z)

∣∣∣∣
z=βj

= −
n∑
i=1

xijδi +
n∑
i=1

δi

∑
y∈R(T̃i)

xyj exp(βTxy)∑
y∈R(T̃i)

exp(βTxy)
+
βj
φ
, (10)
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and

g′′(βj) =
d2

dz2
g(z)

∣∣∣∣
z=βj

=
n∑
i=1

δi

∑
y∈R(T̃i)

x2yj exp(βTxy)∑
y∈R(T̃i)

exp(βTxy)
(11)

−

(
n∑
i=1

δi

∑
y∈R(T̃i)

xyj exp(βTxy)∑
y∈R(T̃i)

exp(βTxy)

)
+

1

φ
.

Consequently, the Taylor series approximation in Equation (9) has its minimum at

β
(new)
j = βj + ∆βj = βj −

g′(βj)

g′′(βj)
. (12)

Furthermore, the above algorithm of ? adopts multiple aspects of the work by ? and ?. For
CLG, a trust region approach is implemented so that |∆βj| is not allowed to be too large
on a single iteration. This prevents large updates in regions where a quadratic is a poor
approximation to the objective. Second, rather than iteratively updating β

(new)
j = βj + ∆βj

until convergence, CLG does this only once before going on to the next variable. Since the
optimal value of β

(new)
j depends on the current value of the other βj’s, there is little reason

to tune each β
(new)
j with high precision. Instead, we simply want to decrease −lp(β) before

going on to the next βj.
The above discussed techniques for fitting massive Cox’s ridge regression is adapted

directly within each step of our CoxBAR algorithm with the following priors: for j = 1, . . . , pn

π(β
(0)
j |ξn) ∼ N(0, ξ−1n ), (13)

for k = 0, and for k ≥ 1

π(β
(k)
j |λn, β̂(k−1)) ∼ N(0, (β̂

(k−1)
j )2/λ−1n ). (14)

We iterate with respect to k until convergence is attained.

2.2.2 Efficient computing and storage by accounting for sparsity in the covariate
structure and partial likelihood

Recall that the design matrix X for sHDMSS data has few non-zero entries for each subject.
Storing such a sparse matrix as a dense matrix is inefficient and may increase computation
time and/or cause a standard software to crash due to insufficient memory allocation. To
the best of our knowledge, popular penalization packages such as glmnet (?) and ncvreg

(?) do not support a sparse data format as an input for right-censored survival models,
although the former supports the input for other generalized linear models. For sHDMSS
data, we propose to use specialized, column-data structures as in ? and ?. The advantage of
this structure is two-fold: it significantly reduces the memory requirement needed to store
the covariate information, and performance is enhanced when employing cyclic coordinate
descent. For example when updating βj, efficiency is gained when computing and storing

the inner product ri = βTxi using a low-rank update r
(new)
i = ri+xij +∆βj for all i (?????).

8



Furthermore, as seen in equations (10) and (11) , one would need to calculate the series
of cumulative sums introduced through the risk set R(T̃i) = {j : T̃j > T̃i} for each subject i.
These cumulative sums would need to be calculated when updating each parameter estimate
in the optimization routine. This can prove to be computationally costly, especially when
both n and pn are large. By taking advantage of the sparsity of the design matrix, one can
reduce the computational time needed to calculate these cumulative sums by entering into
this operation only if at least one observation in the risk set has a non-zero covariate value
along dimension j and embarking on the scan at the first non-zero entry rather than from
the beginning, which have been implemented for massive Cox’s ridge regression by ? and
for a conditional Poisson regression model by ?.

Our CoxBAR implementation naturally exploits the sparsity in the data matrix and in
the partial likelihood by imbedding an adaptive version of ?’s massive Cox’s ridge regression
within each iteration of the iteratively reweighted Cox’s ridge regression.

We finally highlight that our CoxBAR method uses pre-specified tuning parameters as
discussed in Section 2.1.4, which provides huge computation savings.

2.3 CoxBAR for Ultrahigh-Dimensional Data

We now discuss how to CoxBAR to the ultrahigh dimensional survival data setting where
the number of covariates far exceeds the number of observations in the dataset. When pn is
much higher than n, it is crucial to first employ some screening procedure to reduce the num-
ber of covariates to be less than the sample size while simultaneously having the true model
be nested within the screened out model, before applying CoxBAR. There are a number of
screening methods for right-censored survival data, which include marginal screening meth-
ods (????) and joint screening methods (?). For example, the sure independent screening
method of ?, SIS measures the importance of the covariates based on the marginal partial
likelihood, which is fast, but may overlook important covariates that are jointly correlated,
but not marginally correlated, with the observed survival time. The sure joint screening
method of ? is based on the joint partial likelihood of potentially important covariates using
a sparsity-restricted maximum partial likelihood estimate. Under certain regularity condi-
tions, these methods have been shown to possess the sure screening property in the sense
that the subset of retained covariates includes the true model with probability tending to
one.

Our theoretical results in Section 2.1 guarantee that our CoxBAR estimator has the
oracle property and grouping property when applied after a sure screening procedure. For
example, let SJS-CoxBAR denote the two-step estimator obtained by first performing the
SJS method of ? and then applying CoxBAR postscreening. The following theorem proves
that SJS-CoxBAR is an oracle estimator under certain conditions.

Theorem 3 Let pn = O(nd), 0 ≤ d < 1. For the full model suppose that Conditions (C1)
- (C3) from Appendix A.1 and Conditions (D1) - (D7) from ? hold. Furthermore, suppose
Conditions (C4) - (C6) from Appendix A.1 hold for the sub model, ŝ, obtained after sure
joint screening. Define lŝ(β) as the log-partial likelihood of the model corresponding to ŝ.
Then with probability tending to one,
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(a) the CoxBAR estimator β̂ =
(
β̂T1 , β̂

T
2

)T
exists and is unique with β̂2 = 0 and β̂1 being

the unique fixed point of f(β1), where f(β1) is a solution to Q̇ŝ1(θ) = 0 for

Qŝ1(θ1) = −2lŝ1(θ1) + λnθ
T
1D1(β1)θ1,

with D1(β1) = diag(β−21 , β−22 , . . . , β−2q ) and lŝ1(θ1) being the first q components of lŝ(θ).

(b)
√
n(β̂1−β01)

D−→ N(0, I1(β)−1), where I1(β)−1 is the leading q×q submatrix of I(β)−1.

3 Simulations

In this section we demonstrate the performance of the CoxBAR estimator using simulations.
We first show, in Section 3.1, that our method is robust to the selection of ξn, thus suggesting
that data-driven methods such as cross-validation for selecting ξn are unnecessary. In Section
3.2, we evaluate and compare the variable selection and parameter estimation performance
of our CoxBAR method to some popular variable selection methods under various pn ≤ n
settings. Section 3.3 presents a large-scale sparse data simulation. Finally, Section 3.4
presents results of the two-stage CoxBAR procedure for ultrahigh dimensional data.

With the exception of Section 3.3 we use the same structure to simulate the data for the
empirical studies. Observations for each of the 100 Monte Carlo samples are drawn from the
following exponential hazard model,

h(ti|xi) = exp(xi
Tβ∗) i = 1, . . . , n, (15)

where β∗ = (0.2, 0.2, 0, 0.5, 0.5, 0, 0, 0.7, 0.7,0pn−9)
T . The design matrix X = (xT1 , . . . ,x

T
n )

was generated from a pn-dimensional normal distribution with mean zero and covariance
matrix Σ = (σij) with an autoregressive structure such that σij = 0.5|i−j|. To simulate

independent censoring we let δi
iid∼ Bern(.8), which corresponds to 20% censoring.

3.1 Sensitivity of CoxBAR with respect to ξn

Recall that the CoxBAR method relies on two tuning parameters: ξn for the initial Cox
ridge regression and λn for the subsequent iteratively reweighted ridge regression. While
fixing λn at ln(n) or ln(dn), as discussed in Section 2.1.4, we illustrate below that CoxBAR
is not sensitive to ξn. Using Model (15) we simulated a random sample of size n = 300 and
pn = 10. We fix λn = ln(n) or ln(dn), and vary ξn over [10−2, 2000]. The solution path plots
are displayed in Figure 1. It is seen that the CoxBAR estimator is essentially unchanged
over a large interval of ξn, suggesting that any pre-specified value in this interval for ξn would
produce a reasonable CoxBAR estimate.

3.2 Model selection and parameter estimation

In this simulation study, we numerically compare the model selection and parameter estima-
tion performance of CoxBAR with three popular sparse survival regression methods: LASSO
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(a) Path plot for CoxBAR with λn = ln(n).
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(b) Path plot for CoxBAR with λn = ln(dn).

Figure 1: Path plot for CoxBAR regression with varying ξn and fixed λn = ln(n) and
λn = ln(dn) for a random sample of size n = 300 and pn = 10.

(?), SCAD (?) , and adaptive LASSO (?). Estimation bias is summarized through the mean
sum of squared bias (SSB), E{

∑pn
i=1(β̂i−β∗i )

2}. Variable selection performance is measured
by the mean number of false positives (FP), the mean number of false negatives (FN), and
the mean number of misclassified coefficients (MC). All simulations were conducted using
R. We use the R packages glmnet for LASSO (Cox-LASSO), and adaptive LASSO (Cox-
ALASSO), and ncvreg for SCAD (Cox-SCAD) in our simulations. As mentioned earlier,
Cox-ALASSO requires initial estimates for its weights. Since Section 3.1 yields evidence that
cross validating over ξn is not needed for the CoxBAR method, we fixed ξn = 20. Five-fold
cross validation is used for selecting the optimal tuning parameter for Cox-LASSO, Cox-
SCAD, and Cox-ALASSO. For the CoxBAR method we propose to look at λn = ln(n) and
λn = ln(dn), which are labeled CoxBAR1 and CoxBAR2, respectively. We simulate data
from Model (15) by fixing n = 300, and varying pn = 10, 50, and 100. We simulated 100
Monte Carlo samples for each scenario. The results are summarized in Table 1.

It is seen from Table 1 that for variable selection, both CoxBAR1 and CoxBAR2 tend
to have a much smaller MC with a much smaller FP and a slightly larger FN than other
methods. For estimation, all considered methods with the exception of Cox-LASSO, have
similar SSB. In summary, in comparison with other methods, CoxBAR1 and CoxBAR2 tend
to yield more sparse and accurate models, with comparable estimation performance.
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Table 1: (Low dimensional, moderate sample size) Simulated estimation and variable selec-
tion performance of CoxBAR, Cox-LASSO, Cox-SCAD, and Cox-ALASSO (CoxBAR1 and
CoxBAR2 denote CoxBAR with λn = ln(n) and λn = ln(dn) respectively; SSB=mean sum
of squared bias; FP=mean number of false positives; FN=mean number of false negatives;
MC=mean number of misclassified coefficients (MC); Each entry is based on 100 Monte
Carlo samples of size n = 300)

pn Method SSB FP FN MC
10 CoxBAR1 0.09 0.01 1.08 1.09

CoxBAR2 0.09 0.01 1.07 1.08
Cox-LASSO 0.07 2.00 0.05 2.05
Cox-SCAD 0.07 1.30 0.23 1.53
Cox-ALASSO 0.06 0.86 0.24 1.10

50 CoxBAR1 0.10 0.04 1.16 1.20
CoxBAR2 0.10 0.04 1.14 1.18
Cox-LASSO 0.12 8.56 0.03 8.59
Cox-SCAD 0.10 3.46 0.29 3.75
Cox-ALASSO 0.10 5.14 0.21 5.35

100 CoxBAR1 0.10 0.08 1.09 1.17
CoxBAR2 0.09 0.11 1.04 1.15
Cox-LASSO 0.14 10.68 0.15 10.83
Cox-SCAD 0.10 5.04 0.34 5.38
Cox-ALASSO 0.11 8.09 0.25 8.34
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3.3 Large-scale sparse data

In this large scale data simulation, we generated a sHDMSS dataset with n = 60000 and
pn = 20000. Observed survival times are generated from an exponential model similar to
Model (15) with β∗ = (0.710,−0.710,0.510,−0.510,0pn−40). We allow the censoring rate to
be 90% and the sparseness level to be 95%, such that each row of X has, on average, only
5% of the entries being assigned a non-zero value. We compared our CoxBAR method with
the massive sparse Cox’s regression for LASSO (mCox-LASSO) using the Cyclops package
(??) which, to the best of our knowledge, is the only software available today that exploits
the sparsity of the large-scale survival data for efficient computing. For mCox-LASSO, cross
validation, combined with an efficient noncovex optimization technique instead of a grid
search, was used to find the optimal value for the tuning parameter. For the CoxBAR
method, we considered λn = ln(n) (CoxBAR1) and λn = ln(dn) (CoxBAR2) while fixing
ξn = 20. The results are summarized in Table 2.

Table 2: (High dimensional, massive sample size) Runtime, estimation, and variable selection
results of CoxBAR and the massive Cox regression with LASSO penalty (mCox-LASSO,
?) for a simulated sHDMSS dataset with n = 60, 000 and pn = 20, 000. (CoxBAR1 and
CoxBAR2 denote CoxBAR with λn = ln(n) and λn = ln(dn) respectively; SSB= sum of
squared bias; FP= number of false positives; FN= number of false negatives; MC= number
of misclassified coefficients (MC). )

Method Runtime (minutes) SSB FP FN MC
CoxBAR1 20 0.39 0 0 0
CoxBAR2 26 0.20 1 0 1
mCox-LASSO 400 3.19 20 0 20

As one would expect, mCox-LASSO has retained all 40 true nonzero coefficients, together
with 20 noise variables. In contrast, CoxBAR1 selected exactly the true model with 40
correctly retained nonzero coefficients with no noise variable. CoxBAR2 has a similar per-
formance to CoxBAR1 with 1 noise variable. Both CoxBAR1 and CoxBAR2 have much
smaller bias (SSB ≈ 0.39 and SSB ≈ 0.20, respectively) than mCox-LASSO (SSB ≈ 3.2).
Moreover, although optimized in the Cyclops package, mCox-LASSO took over 400 min-
utes to run, whereas CoxBAR1 or CoxBAR2 took only around 20 minutes that represents a
20-fold speedup.

We further compared the solution paths of mCox-LASSO and CoxBAR in Figure 2.
The black dashed line in the mCox-LASSO solution path plot (Figure 2(a)) represents the
estimates at the optimal tuning parameter obtained via cross validation. We can see that
the mCox-LASSO solution path changes rapidly as its tuning parameter varies. Thus it is
important to use an optimal value for mCox-LASSO, which has to be selected using a data-
driven procedure. mCox-LASSO also tends to keep a substantial number of noise variables
with large estimation bias even at its optimal penalty value. In contrast, the CoxBAR
solution path plot (Figure 2(b)) with respect to λn changes very slowly over a relative large
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interval that includes ln(n) (black solid vertical line) and ln(dn) (black dotted vertical line),
and correctly selects the true model with small estimation bias. For the CoxBAR method,
we also made a CoxBAR solution path plot with respect to ξn, while fixing λn = ln(n) in
Figure 2(c). It shows that the CoxBAR estimates are very stable and, in fact, correctly
identifies the true model over a large range of ξn, which affirms our observation in Section
3.1 with small scale data.

3.4 Ultrahigh dimensional data

This section presents a simulation to illustrate the performance of our two-stage estimator
SJS-CoxBAR described in Section 2.3 in ultrahigh dimensional settings where pn is much
larger than n. We generated data from model (15) with different combinations of n = 300,
500 and pn = 1660, 5200. The sure joint screening method of ? was initially used to choose
a sub-model of size m = b n

2 ln(n)
c, whereb·c is the floor function. We then compared the

performance of Cox-LASSO (SJS-LASSO), Cox-SCAD (SJS-SCAD), Cox-ALASSO (SJS-
ALASSO) and CoxBAR (SJS-CoxBAR) on the screened model. Five-fold cross validation
was used for SJS-LASSO, SJS-SCAD, and SJS-ALASSO whereas λn = ln(n) and λn =
ln(dn), and ξn = 1 was used for SJS-CoxBAR. Part of the simulation results are reported in
Table 3.

Similar to Section 3.2, we observe that the SJS-CoxBAR method has much fewer false
positives (FP) and misclassifications (MC) than the other methods across all considered
scenarios. The false negatives (FN) of SJS-CoxBAR is slightly higher than, but within the
same order of magnitude as the other methods.

4 Real data examples

4.1 Primary biliary cirrhosis data

We first provide an example on small data by revisiting the primary biliary cirrhosis dataset
(?). ? has a more detailed account of this dataset and we refer the readers to their paper for
more information. We analyze the data similarly to ? and ? by focusing on the 276 complete
cases and all 17 standardized covariates. The number of events, dn, was 111. Five-fold cross
validation was used to select the optimal tuning parameters for Cox-LASSO, Cox-SCAD,
and Cox-ALASSO. For the CoxBAR method we fixed ξn = 1 and compared both λn = ln(n)
and λn = ln(dn). We obtain very similar estimates when using different values of ξn, which
are omitted from this paper.

Table 4 compares the four sparse Cox regression methods with the maximum partial
likelihood estimates. It is seen that our method selects fewer variables with smaller BIC
scores compared to Cox-LASSO, Cox-SCAD, Cox-ALASSO.

4.2 Pediatric national trauma data bank (NTDB) data

For an application of CoxBAR regression in the large-scale sparse data setting, we will look
at a subset of the National Trauma Data Bank that involves children and adolescents. This
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(b) Path plot for CoxBAR with fixed ξn = 20.
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(c) Path plot for CoxBAR with fixed λn =
ln(n).

Figure 2: Path plots for mCox-LASSO and CoxBAR regression: (a) Path plot for mCox-
LASSO regression, where the black dashed line represents the estimates when using cross
validation to find the optimal value of the tuning parameter; (b) Path plot for CoxBAR
regression with ξn = 20 and varying λn, where the black solid and dashed line represent
estimates for λn = ln(n) and λn = ln(dn), respectively; (c) Path plot for CoxBAR regression
with λn = ln(n) and varying ξn, where the black dashed line represent the estimates for
CoxBAR when ξn = 20.
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Table 3: (High dimensional, moderate sample size) Simulated estimation and variable se-
lection performance of SJS-CoxBAR, SJS-LASSO, SJS-SCAD, and SJS-Adaptive LASSO
(SJS-ALASSO) (SJS-CoxBAR1 and SJS-CoxBAR2 denote SJS-CoxBAR with λn = ln(n)
and λn = ln(dn), respectively; SSB=mean sum of squared bias; FP=mean number of false
positives; FN=mean number of false negatives; MC=mean number of misclassified coeffi-
cients (MC); Each entry is based on 100 Monte Carlo samples)

n m pn Method SSB FP FN MC
300 26 1660 SJS-CoxBAR1 0.12 1.00 1.16 2.16

SJS-CoxBAR2 0.13 1.11 1.13 2.24
SJS-LASSO 0.58 20.30 0.80 21.10
SJS-SCAD 0.94 20.30 0.80 21.10
SJS-ALASSO 0.65 18.41 0.80 19.21

5200 SJS-CoxBAR1 0.17 1.78 1.22 3.00
SJS-CoxBAR2 0.19 2.28 1.23 3.51
SJS-LASSO 0.58 20.22 1.10 21.32
SJS-SCAD 0.93 19.85 1.10 20.95
SJS-ALASSO 0.64 17.39 1.10 18.49

500 40 1660 SJS-CoxBAR1 0.06 0.50 0.70 1.20
SJS-CoxBAR2 0.07 0.66 0.70 1.36
SJS-LASSO 0.41 33.11 0.28 33.39
SJS-SCAD 0.69 33.76 0.28 34.04
SJS-ALASSO 0.46 29.61 0.28 29.89

5200 SJS-CoxBAR1 0.09 1.42 0.84 2.26
SJS-CoxBAR2 0.10 1.70 0.81 2.51
SJS-LASSO 0.49 33.31 0.47 33.78
SJS-SCAD 0.82 33.64 0.47 34.11
SJS-ALASSO 0.56 29.61 0.47 30.08

dataset was previously analyzed by ? as an example for efficiently massive Cox regression
with LASSO (mCox-LASSO) and ridge regression to high-dimensional and massive sample
size (HDMSS) data. The dataset includes 210,555 patient records of injured children under
15 that was collected over 5 years (2006 -2010). Each patient record includes 125,952 binary
covariates which indicate the presence, or absence, of an attribute (ICD9 Codes, AIS codes,
etc.) as well as the two-way interactions between attributes. The outcome of interest is
mortality after time of injury. The data is extremely sparse, with less than 1% of the
covariates being non-zero and has a censoring rate of 98%. Since the data is too large to
fit other popular oracle procedures, we compare the CoxBAR method, with λn = ln(n) and
λn = ln(dn) and with ξn = 20, to mCox-LASSO with cross validation. We run both models
on the full dataset and record the partial log-likelihood, number of non-zero covariates, BIC
score, and computing time in Table 5. As shown in Table 5, the two CoxBAR methods
selects fewer covariates than mCox-LASSO with a four or five-fold speedup in computing
time. Further, the BIC score for the two CoxBAR methods are approximately 1500 or 2000
less than that of the mCox-LASSO method.
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Table 4: (PBC data) Selected variables, estimated regression coefficients, and BIC scores
of Cox-LASSO, Cox-SCAD, Cox-ALASSO, and CoxBAR regression for the PBC data.
(CoxBAR1 and CoxBAR2 denote CoxBAR with λn = ln(n) and λn = ln(dn), respectively;
asterisk denotes non-zero values < 0.01)

MPLE Cox-LASSO Cox-SCAD Cox-ALASSO CoxBAR1 CoxBAR2

trt -0.12 - - - - -
age 0.03 0.01 0.01 0.01 - 0.02
sex -0.37 - - - - -

ascites 0.09 0.11 0.13 - - -
hepato 0.03 - - - - -
spiders 0.10 - - - - -
edema 1.01 0.63 0.30 0.62 - 0.69

bili 0.08 0.08 0.12 0.10 0.11 0.10
chol 0.00∗ - - - - -

albumin -0.74 -0.53 -0.38 -0.50 -0.88 -0.69
copper 0.00∗ 0.00∗ 0.00∗ 0.00∗ 0.00∗ 0.00∗

alk.phos 0.00∗ - - - - -
ast 0.00∗ 0.00∗ - - -
trig -0.00∗ - - - - -

platelet 0.00∗ - - - - -
protime 0.23 0.11 0.04 0.05 - -

stage 0.45 0.25 0.22 0.22 0.47 0.41
λn - 0.07 0.10 0.30 4.93 4.02
ξn - - - 0.42 1.00 1.00

# Selected 17 9 8 7 4 6
BIC Score 1028.21 1002.52 1013.48 999.18 984.31 981.94

4.3 Diffuse Large-B-Cell lymphoma data

For an application of SJS-CoxBAR in the ultrahigh dimensional setting, we analyze the
microarray diffuse large-B-cell lymphoma data (?) that was also analyzed in ?. The dataset
consists of n = 240 patients and p = 7399 cDNA microarray expressions. The censoring
rate was around 43%. Similar to ? we remove the 5 patients with observed survival times
close to 0, standardize the genes, and use sure joint screening to reduce the number of genes
from 7399 to 43. We then apply our CoxBAR method with ξn = 1 and both λn = ln(n)
and λn = ln(dn), to the same 43 genes and compare our method to what was reported in
Table 3.5 of ?. These results are provided in Table 6. We see that all four methods have
comparable BIC scores. However, using SJS-CoxBAR with λn = ln(dn) only includes 8 genes
whereas SJS-SCAD includes 30 genes with a negligible difference in BIC score.
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Table 5: (Pediatric NTDB data) Comparison of mCox-LASSO and CoxBAR regression for
the pediatric NTDB data. (CoxBAR1 and CoxBAR2 denote CoxBAR with λn = ln(n) and
λn = ln(dn) respectively)

Method Runtime (in hours) Log-Likelihood # Non-Zero BIC Score
mCox-LASSO 76 -32408.73 253 67918.61

CoxBAR1 16 -32789.64 57 66377.96
CoxBAR2 19 -32475.10 84 65979.83

Table 6: (BLCA data) Comparison of SJS-LASSO, SJS-SCAD, SJS-ALASSO, and SJS-
CoxBAR regression for the BLCA data. (CoxBAR1 and CoxBAR2 denote CoxBAR with
λn = ln(n) and λn = ln(dn) respectively; SJS-LASSO and SJS-SCAD results are from ?)

Method Log-Likelihood # Selected BIC Score
SJS-SCAD -546.1902 30 1256.168

SJS-LASSO -542.9862 36 1282.518
SJS-CoxBAR1 -624.1901 5 1275.678
SJS-CoxBAR2 -607.2283 8 1258.133

5 Discussion

We have presented a new scalable sparse Cox regression method and adapted it to both
sHDMSS and ultrahigh dimensional right-censored survival data. The concept of CoxBAR
regression is based on an iterative Cox ridge regression where the penalty is adaptively
reweighted; which not only results in an estimator that inherits the nice properties of both
L0 and L2-penalized Cox regression while avoiding their pitfalls, but also allows us to take
advantage of existing efficient algorithms and software (?) for large scale L2-penalized Cox
regression. We have shown that CoxBAR regression enjoys the oracle properties and a group-
ing property for highly correlated covariates. Our numerical studies showed that compared
to some competing methods, the CoxBAR method generally has less false positives and
misclassifications, with a small trade-off of slightly increased false negatives for variable se-
lection, and is as good or better for estimation in both low and high dimensional settings. In
addition, as illustrated in Section 3 that the CoxBAR estimator can avoid costly data driven
tuning parameter selection with pre-specified values, which highlights a huge advantage for
large scale studies. For instance, it demonstrated a 20-fold speedup over the L1-penalized
Cox regression on a simulated sHDMSS survival data in Section 3.3. Furthermore, our devel-
oped theory for CoxBAR guarantees that it can be combined with a sure screening procedure
to obtain an oracle two-stage sparse regression method for high (or ultrahigh) dimensional
small sample size data. Finally, our L0-based CoxBAR method and theory can be easily
extended to an Ld-based CoxBAR method for any d ∈ [0, 1], by replacing (β̂

(k−1)
j )2 with

|β̂(k−1)
j |2−d in (4). We have observed from simulations that as d increases towards 1, the

resulting estimator becomes less sparse, and the number of false positives and misclassifica-
tions as well as estimation bias tend to increase especially for larger pn, while the number of
false negatives tends to decrease.
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A Appendix

A.1 Regularity Conditions for Theorem 1.

Due to ?, we can rewrite the log-partial likelihood as

ln(β) =
n∑
i=1

[∫ 1

0

βTxi(s)− ln{S(0)(β, s)}
]
dNi(s), (16)

where

S(k)(β, s) =
1

n

n∑
i=1

Yi(s)xi(s)
⊗k exp{βTxi(s)},

for k = 0, 1, 2 and where x⊗k = 1,x,xxT for k = 0, 1, 2, respectively. Further, let the
corresponding martingale for Ni(t) be defined as

Mi(t) = Ni(t)−
∫ 1

0

h0(t) exp{βT0 xi(t)}dt.

Define ‖·‖ as the Euclidean norm (for vectors) and spectral norm (for matrices). The regu-
larity conditions for the oracle properties of the CoxBAR estimator are as follows:

(C1)
∫ 1

0
h0(t)dt <∞;

(C2) There exists some compact neighborhood, B0, of the true value β0 such that: For
k = 0, 1, 2, there exists a bounded scalar, vector, and matrix function s(k)(β; t) defined
on B0 × [0, 1] that are absolutely continuous for t ∈ [0, 1] for β ∈ B0 such that

sup
t∈[0,1],β∈B0

∥∥S(k)(β; t)− s(k)(β; t)
∥∥→ 0

in probability and, furthermore, s(0)(β; t) is bounded away from zero on B0 × [0, 1];

(C3) Using the notation defined in (C2), define e(β, t) = s(1)(β, t)/s(0)(β, t), v(β, t) =
s(2)(β, t)/s(0)(β, t)− e(β, t)⊗2 and let

I(β) =

∫ 1

0

v(β, t)s(0)(β0, t)h0(t)dt.

Let Hn(β) = −n−1l̈n(β), where l̈n(β) is the second derivative of ln(β) with respect to
β. Then there exists some compact neighborhood, B0, of the true value β0, such that

sup
β∈B0
‖Hn(β)− I(β0)‖

a.s.−→ 0, (17)

for some positive-definite pn × pn matrix I(β0). Assume further the existence of some
constant C > 1 such that C−1 < ρmin(I(β0)) ≤ ρmax(I(β0)) < C, for sufficiently large
n, and where ρmin(Q) and ρmax(Q) represent the smallest and largest eigenvalues of
the matrix Q respectively;
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(C4) Let Di =
∫ 1

0
{xi(t)− e(β0; t)} dMi(t). Then for all 1 ≤ j, l ≤ pn, there exists a

constant K such that

sup
1≤i≤n

E(D2
ijD

2
il) < K <∞,

where Dij is the jth element of Di;

(C5) As n → ∞ we have that p2nq/
√
n → 0, ξn/

√
n → 0, λn/

√
n → 0, λ2n/(pn

√
n) → ∞,

and λn
√
q/
√
n→ 0;

(C6) There exists constants 0 < a0 < a1 <∞ such that for all j ∈ {1, . . . , q}, |β0j| ∈ [a0, a1].

? have also required conditions (C1) - (C5) for diverging pn and showed that given

β̂pen = arg min
β

{
−ln(β) + n

pn∑
j=1

pλn(βj)

}
,

where pλn(β) is a non-negative penalty function, then under certain conditions for pλn(βj),

||β̂pen−β0|| = Op(
√
pn/n). Condition (C6) is needed to prove that for diverging pn and with

ξn/
√
n→ 0, ||β̂ridge − β0|| = Op(

√
pn/n), where β̂ridge is the Cox ridge estimator defined in

Equation (3).

A.2 Proof of Theorem 1.

Lemma 1 (Consistency of Ridge Estimator) Let β̂ridge be the Cox ridge estimator de-
fined in Equation (3). Given Conditions (C1) - (C6),

||β̂ridge − β0|| = Op(
√
pn/n). (18)

The proof follows from Theorem 1 of ?. The condition that p4n/n → 0 from ? can be
easily derived from Condition (C5) where we assume p2nq/

√
n→ 0. We need to further show

that an → 0 and bn → 0 where

an = max
1≤j≤q

{|p′ξn(β0j)| : β0j 6= 0},

bn = max
1≤j≤q

{|p′′ξn(β0j)| : β0j 6= 0}.

Following the notation of ?, for ridge regression we can see that pξn(β0j) = (ξn/n)β2
0j for

j = 1, . . . , pn. Thus p′ξn(β0j) = (2ξn/n)β0j and p′′ξn(β0j) = 2ξn/n. From Conditions (C5)
and (C6) we have that ξn/

√
n → 0 and we have that β0j ∈ [a0, a1] for all j ∈ {1, . . . , q}.

Therefore,

an = max
1≤j≤q

{|p′ξn(β0j)| : β0j 6= 0} ≤ 2ξna1
n

=
ξn√
n

2a1√
n

= o(n−1/2),

and

bn = max
1≤j≤q

{|p′′ξn(β0j)| : β0j 6= 0} ≤ 2ξn
n

=
ξn√
n

2√
n

= o(n−1/2).
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Therefore an → 0 and bn → 0. Thus from ?, we have that ||β̂ridge − β0|| = Op(
√
pn/n).

For any β, define β =
(
βT1 ,β

T
2

)T
where βT1 and βT2 correspond to the first q and remaining

pn − q components of β, respectively. Let

Qn(θ;β) = −2ln(θ) + λnθ
TD(β)θ, (19)

where D(β) = diag(β−21 , β−22 , . . . , β−2q , β−2q+1, . . . , β
−2
pn ). For simplicity, let us define Qn(θ;β)

as Qn(θ). Let Q̇n(θ) and Q̈n(θ) be the first and second derivatives of Q(θ), respectively.
Therefore

Q̇n(θ) = −2l̇n(θ) + 2λnD(β)θ, (20)

Q̈n(θ) = −2l̈n(θ) + 2λnD(β). (21)

Lemma 2 Suppose g(β) =
(
g1(β)T , g2(β)T

)T
is a solution to Q̇n(θ) = 0. Furthermore,

define Hn ≡ {β =
(
βT1 ,β

T
2

)T
: |β1| = (|β1|, . . . , |βq|)T ∈ [1/M0,M0]

q, ‖β2‖ ≤ δn
√
pn/
√
n},

where M0 > 1 is a constant such that β01 ∈ [1/M0,M0]
q, and δn is a sequence of positive real

numbers. Suppose δn → ∞ and pnδ
2
n/λn → 0. Then under the regularity conditions (C1) -

(C6), with probability tending to 1, we have that:

(a) g(·) is a mapping from Hn to itself;

(b) For some constant C0 > 1,

sup
β∈Hn

‖g2(β)‖
‖β2‖

<
1

C0

(22)

By first-order Taylor expansion for Q̇(β) at β0 in a neighborhood g(β) we have that,

Q̇n(β0) = Q̇n(g(β)) + Q̈n(β∗)(β0 − g(β)), (23)

where β0 is the true parameter vector, and β∗ ∈ [β0, g(β)]. Rearranging terms,

Q̈n(β∗)g(β) = −Q̇n(β0) + Q̈n(β∗)β0, (24)

since Q̇n(g(β)) = 0. Using (20) and (21) we can rewrite (24) as,{
−2l̈n(β∗) + 2λnD(β)

}
g(β) = −

{
−2l̇n(β0) + 2λnD(β)β0

}
+
{
−2l̈n(β∗) + 2λnD(β)

}
β0

= 2l̇n(β0)− 2l̈n(β∗)β0.

Hence, {
− 1

n
l̈n(β∗) +

λn
n
D(β)

}
g(β) = − 1

n
l̈n(β∗)β0 +

1

n
l̇n(β0). (25)

Define Hn(β∗) = −n−1l̈n(β∗). By Condition (C3), Hn(β∗)−1 exists and can be partitioned
into,

Hn(β∗)−1 =

[
A B
BT G

]
3



Therefore by pre-multiplying both sides of (25) by Hn(β∗)−1 we get

{g(β)− β0}+
λn
n
Hn(β∗)−1D(β)g(β) =

1

n
Hn(β∗)−1l̇n(β0) (26)

Also D(β) can be partitioned into,

D(β) =

[
D1(β1) 0
0T D2(β2)

]
where D1(β1) = diag(β−21 , ..., β−2q ) and D2(β2) = diag(β−2q+1, ..., β

−2
pn ).

Since β0 = (βT01,0
T ), (26) can be re-written as(

g1(β)− β01

g2(β)

)
+
λn
n

(
AD1(β1)g1(β) +BD2(β2)g2(β)
BTD1(β1)g1(β) +GD2(β2)g2(β)

)
=

1

n
Hn(β∗)−1l̇n(β0). (27)

By Theorem 1 of ?, Conditions (C1) - (C5) guarantee that n−1l̇n(β0) = Op(
√
pn/n) and by

Condition (C3), we have that n−1Hn(β∗)−1l̇n(β0) = Op(
√
pn/n). Therefore,

sup
β∈Hn

∥∥∥∥g2(β) +
λn
n
BTD1(β1)g1(β) +

λn
n
GD2(β2)g2(β)

∥∥∥∥ = Op(
√
pn/n). (28)

Note that |β1| ∈ [1/M0,M0]
q and ||g1(β)|| ≤ ||g(β)|| ≤ ||β̂mle|| = Op(

√
pn). Furthermore,∥∥BBT

∥∥− ∥∥A2
∥∥ ≤ ∥∥A2 +BBT

∥∥ ≤ ∥∥Hn(β∗)−2
∥∥ < C2.

So
∥∥BT

∥∥ ≤ √2C and ‖B‖ ≤
√

2C, and therefore by Condition (C3),

sup
β∈Hn

∥∥∥∥λnn BTD1(β1)g1(β)

∥∥∥∥ ≤ λn
n

sup
β∈Hn

∥∥BT
∥∥ ‖D1(β1)‖ ‖g1(β)‖ (29)

≤ λn
n

√
2CM2

0 sup
β∈Hn

‖g1(β)‖ (30)

= op(
√
pn/n). (31)

As a result, we can rewrite (28) as

sup
β∈Hn

∥∥∥∥g2(β) +
λn
n
GD2(β2)g2(β)

∥∥∥∥ = Op(
√
pn/n). (32)

Since G is positive definite, by the singular value decomposition, G =
∑pn−q

i=1 r2iu2iu
T
2i,

where r2i and u2i are the eigenvalues and eigenvectors of G, respectively. Since Condition

4



(C3) assumes that for all i = 1, . . . , pn − q, r2i ∈ (1/C,C) for some C > 1, we have that

λn
n
‖GD2(β2)g2(β)‖ =

λn
n

∥∥∥∥∥
pn−q∑
i=1

r2iu2iu
T
2iD2(β2)g2(β)

∥∥∥∥∥
=
λn
n

(
pn−q∑
i=1

r22i
∥∥uT2iD2(β2)g2(β)

∥∥2)1/2

≥ λn
n

1

C

(
pn−q∑
i=1

∥∥uT2iD2(β2)g2(β)
∥∥2)1/2

=
1

C

∥∥∥∥λnn D2(β2)g2(β)

∥∥∥∥ . (33)

Therefore, with probability tending to one,

1

C

∥∥∥∥λnn D2(β2)g2(β)

∥∥∥∥− ‖g2(β)‖ ≤ δn
√
pn/n. (34)

Let mg2(β)/β2 = (g2(βq+1)/βq+1, . . . , g2(βpn)/βpn)T . So D2(β2)g2(β) = D2(β2)
1/2mg2(β)/β2

and g2(β) = D2(β)−1/2mg2(β)/β2 . Since ||β2|| ≤ δn
√
pn/n, we have that

1

C

∥∥∥∥λnn D2(β2)g2(β)

∥∥∥∥ =
1

C

λn
n

∥∥D2(β2)
1/2mg2(β)/β2

∥∥ ≥ 1

C

λn
n

√
n

δn
√
pn

∥∥mg2(β)/β2

∥∥ , (35)

and

‖g2(β)‖ =
∥∥D2(β2)

−1/2mg2(β)/β2

∥∥ ≤ δn
√
pn√
n

∥∥mg2(β)/β2

∥∥ , (36)

with probability tending to one. Hence it follows from (33), (35), and (36), that with
probability tending to one,

1

C

λn
n

√
n

δn
√
pn

∥∥mg2(β)/β2

∥∥− δn
√
pn√
n

∥∥mg2(β)/β2

∥∥ ≤ δn
√
pn/n. (37)

Therefore with probability tending to one,∥∥mg2(β)/β2

∥∥ ≤ 1

λn/(Cpnδ2n)− 1
<

1

C0

, (38)

for some constant C0 > 1 provided that λn/(pnδ
2
n)→∞ as n→∞. Now from (38), we have

that

‖g2(β)‖ ≤
∥∥mg2(β)/β2

∥∥ max
qn+1≤j≤pn

g2(βj) ≤
∥∥mg2(β)/β2

∥∥ ‖β2‖ ≤
1

C0

‖β2‖ , (39)

with probability tending to one. Thus

Pr

(
sup
β∈Hn

‖g2(β)‖
‖β2‖

<
1

C0

)
→ 1 as n→∞ (40)
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and (b) is proven. Since C0 > 1 we also have that, with probability tending to one, ‖g2(β)‖ ≤
δn
√
pn/n. Hence for any |g1(β)| ∈ [1/M0,M0]

q, g(β) =
(
g1(β)T , g2(β)T

)T
is a mapping of

g2(β) to itself and shrinks the norm of g2(β) towards 0 at each iterative step. To finish
the proof of (i) we need to show that |g1(β)| ∈ [1/M0,M0]

q with probability tending to 1.
Likewise with (28) and (29), we know that

sup
β∈Hn

∥∥∥∥(g1(β)− β01) +
λn
n
AD1(β1)g1(β) +

λn
n
BD2(β2)g2(β)

∥∥∥∥ = Op(
√
pn/n), (41)

and similarly

sup
β∈Hn

∥∥∥∥λnn AD1(β1)g1(β)

∥∥∥∥ = op(
√
pn/n), (42)

since |β1| ∈ [1/M0,M0]
q and ||g1(β)|| < ||β̂mle|| = Op(

√
pn). From (34) and Condition (C3)

we have that

sup
β∈Hn

∥∥∥∥λnn BD2(β2)g2(β)

∥∥∥∥ ≤ λn
n

sup
β∈Hn

‖D2(β2)g2(β)‖ · ‖B‖ ≤ 2
√

2C2δn
√
pn/n, (43)

with probability tending to one. Therefore,

sup
β∈Hn

‖g1(β)− β01‖ ≤
(2
√

2C2 + 1)δn
√
pn√

n
, (44)

with probability tending to one. By assumption δn
√
pn/n → 0 as n → ∞, and hence for

all ε > 0, Pr(supβ∈Hn
‖g1(β)− β01‖ < ε)→ 1. As a consequence, since |β01| ∈ [1/M0,M0]

q,
we have that |g1(β)| ∈ [1/M0,M0]

q for sufficiently large n. Since |g1(β)| ∈ [1/M0,M0]
q and

‖g2(β)‖ ≤ δn/
√
n with probability tending to one, we have shown that

Pr(g(β) ∈ Hn)→ 1, as n→∞, (45)

and hence g(·) is a mapping from Hn to itself. This completes Lemma 2.

Remark 3 Since β02 = 0, we can now express the objective function of this reduced model
as

Qn1(θ1) = −2ln1(θ1) + λnθ
T
1D1(β1)θ1, (46)

which is similar to that of (19).

Lemma 3 Let f(β1) be a solution to Q̇n1(θ1) = 0. Provided that Conditions (C1) - (C6)
from are satisfied, then with probability tending to one:

(a) f(β1) is a contraction mapping from [1/M0,M0]
q to itself;

(b)
√
nHn1(β

∗
1)1/2(β̂◦1 − β01)

D→ N(0, Iq), where β̂◦1 is the unique fixed point of f(β1).
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First we want to show that f(·) is a mapping from [1/M0,M0]
q to itself with probability

tending to one. Again through a first order Taylor expansion, we have that

(f(β1)− β01) +
λn
n
Hn1(β

∗
1)−1D1(β1)f(β1) =

1

n
Hn1(β

∗
1)−1l̇n1(β01), (47)

where Hn1(β
∗
1) = −n−1l̈n1(β∗1) exists and is invertible and for β∗1 ∈ [β01, f(β1)].

Since n−1l̇n1(β01) = Op(
√
q/n), we have that

sup
|β1|∈[1/M0,M0]q

∥∥∥∥f(β1)− β01 +
λn
n
Hn1(β

∗
1)−1D1(β1)f(β1)

∥∥∥∥ = Op(
√
q/n). (48)

From Condition (C3) and that ||f(β1)|| ≤ ||β̂mle|| = Op(
√
q), we have

sup
|β1|∈[1/M0,M0]q

∥∥∥∥λnn Hn1(β
∗
1)−1D1(β1)f(β1)

∥∥∥∥ = op(
√
q/n). (49)

Therefore, with probability tending to one

sup
|β1|∈[1/M0,M0]q

‖f(β1)− β01‖ ≤ δn
√
q/n. (50)

Since it is assumed that δn
√
q/n→ 0 as n→∞, we get that

Pr(f(β1) ∈ [1/M0,M0]
q)→ 1 (51)

as n → ∞. Hence f(·) is a mapping from the region [1/M0,M0]
q to itself. To prove that

f(·) is a contraction mapping we need to further show that

sup
|β1|∈[1/M0,M0]q

∥∥∥ḟ(β1)
∥∥∥ = op(1). (52)

Since f(β1) is a solution to Q̇n1(θ1) = 0, we have that

− 1

n
l̇n1(f(β1)) = −λn

n
D1(β1)f(β1). (53)

Taking the derivative of (53) with respect to βT1 and rearranging terms, we have that{
Hn1(f(β1)) +

λn
n
D1(β1)

}
ḟ(β1) =

2λn
n
diag{f1(β1)/β

3
1 , . . . , fq(β1)/β

3
q}f(β1).

Since λn/
√
n→ 0 as n→∞,

sup
|β1|∈[1/M0,M0]q

2λn
n

∥∥diag{f1(β1)/β
3
1 , . . . , fq(β1)/β

3
q}
∥∥ = op(1), (54)

and as a consequence,

sup
|β1|∈[1/M0,M0]q

∥∥∥∥{Hn1(f(β1)) +
λn
n
D1(β1)

}
ḟ(β1)

∥∥∥∥ = op(1). (55)
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For sufficiently large n and (C3), we have that∥∥∥Hn1(f(β1))ḟ(β1)
∥∥∥ ≥ 1

C

∥∥∥ḟ(β1)
∥∥∥ , (56)

and
λn
n

∥∥∥D1(β1)ḟ(β1)
∥∥∥ ≥ λn

n

1

M2
0

∥∥∥ḟ(β1)
∥∥∥ . (57)

Therefore
sup

|β1|∈[1/M0,M0]q

∥∥∥ḟ(β1)
∥∥∥ = op(1), (58)

since λn/n → 0 as n → ∞. Thus, from (58), we have showed that f(·) is a contraction
mapping from [1/M0,M0]

q to itself with probability tending to one. Therefore, as n → ∞
there exists a unique fixed solution β̂◦1 for f(β1) with probability tending to one.

We can algebraically manipulate (47) so that we may obtain

f(β1) =

{
Hn1(β

∗
1) +

λn
n
D1(β1)

}−1{
Hn1(β

∗
1)β01 +

1

n
l̇n1(β01)

}
. (59)

Now,

√
nHn1(β

∗
1)1/2(β̂◦1 − β01) =

√
nHn1(β

∗
1)1/2

[{
Hn1(β

∗
1) +

λn
n
D1(β̂

◦
1)

}−1
Hn1(β

∗
1)− Iq

]
β01

+
√
nHn1(β

∗
1)1/2

[{
Hn1(β

∗
1) +

λn
n
D1(β̂

◦
1)

}−1
1

n
l̇n1(β01)

]
= I1 + I2. (60)

For conformable invertible matrices, Φ and Ψ, we have that

(Φ + Ψ)−1 = Φ−1 − Φ−1Ψ(Φ + Ψ)−1.

Therefore we can rewrite I1 as

I1 =
√
nHn1(β

∗
1)1/2

[{
Hn1(β

∗
1) +

λn
n
D1(β̂

◦
1)

}−1
Hn1(β

∗
1)− Iq

]
β01

= − λn√
n
Hn1(β

∗
1)−1/2D1(β̂

◦
1)

{
Hn1(β

∗
1) +

λn
n
D1(β̂

◦
1)

}−1
Hn1(β

∗
1)β01 (61)

Using Condition (C3) and the assumption that λn
√
q/
√
n→ 0 from Condition (C6), we have

that

‖I1‖ ≤
M2

0λn√
n

∥∥Hn1(β
∗
1)−1/2

∥∥ ‖β01‖ = Op(λn
√
q/
√
n)→ 0.
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Similarly, we can rewrite I2 as

I2 =
√
nHn1(β

∗
1)1/2

[{
Hn1(β

∗
1) +

λn
n
D1(β̂

◦
1)

}−1
1

n
l̇n1(β01)

]
= Hn1(β

∗
1)−1/2

1√
n
l̇n1(β01)−

λn√
n
Hn1(β

∗
1)−1/2D1(β̂

◦
1)
{
H−1n1 (β∗1) +D1(β̂

◦
1)
}−1 1

n
l̇n1(β01)

= Hn1(β
∗
1)−1/2

1√
n
l̇n1(β01) + op(1). (62)

From Condition (C3), as n→∞ we have that Hn1(β
∗
1)→ I1(β), and similarly to ?,

Hn1(β
∗
1)−1/2

1√
n
l̇n1(β01)

D→ N(0, Iq). (63)

Now we have that

√
nHn1(β

∗
1)1/2(β̂◦1 − β01)

D→ N(0, Iq), (64)

or equivalently

√
n(β̂◦1 − β01)

D→ N(0, I1(β)−1). (65)

Proof of Theorem 1:
From part (b) of Lemma 2, we have that

Pr
(

lim
k→∞

g2(β
(k)) = β̂2 = 0

)
→ 1 (66)

as n→∞. Further, we want to show that

Pr
(

lim
k→∞

∥∥∥g1(β(k))− β̂◦1

∥∥∥ = 0
)
→ 1, (67)

where β̂◦1 is the fixed point of f(β1) defined in Lemma 3. We have that g(β) is a solution to

− 1

n
D(β)−1l̇n(θ) +

1

n
λnθ = 0, (68)

where D(β)−1 = diag{β2
1 , . . . , β

2
q , β

2
q+1, . . . , βpn}. It is clear that g2(β) = 0 if β02 = 0. We

can further break down (68) into the following components: g1(β) is a solution to

− 1

n
D−11 (β1)l̇n1(θ1) +

1

n
λnθ1 = 0 (69)

and g2(β) is a solution to

− 1

n
D−12 (β2)l̇n2(θ2) +

1

n
λnθ2 = 0. (70)

From (70) we can see that
lim
β2→0

g2(β;β1,β2) = 0 (71)
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and from (69) we can see that

lim
β2→0

g1(β;β1,β2) = f(β1). (72)

Hence, g(·) is continuous for all β ∈ Hn.

Note that for any β̂
(k)
2 , g(β;β1, β̂

(k)
2 ) is a mapping of β1. Since g is continuous and with

β̂
(k)
2 → 0 with probability tending to one, we have that

ωk ≡ sup
g1(β)∈[1/M0,M0]q

∥∥∥f(β1)− g1(β;β1, β̂
(k)
2 )
∥∥∥→ 0, (73)

as k →∞. Also by (58), for some C1 > 1∥∥∥f(β̂
(k)
1 )− β̂◦1

∥∥∥ =
∥∥∥f(β̂

(k)
1 )− f(β̂◦1)

∥∥∥ ≤ 1

C1

∥∥∥β̂(k)
1 − β̂◦1

∥∥∥ . (74)

Further ∥∥∥β̂(k+1)
1 − β̂◦1

∥∥∥ ≤ ∥∥∥g1(β̂(k))− β̂◦1

∥∥∥ ≤ ∥∥∥g1(β̂(k))− f(β̂
(k)
1 )
∥∥∥+

∥∥∥f(β̂
(k)
1 )− β̂◦1

∥∥∥ , (75)

and thus ∥∥∥β̂(k+1)
1 − β̂◦1

∥∥∥ ≤ 1

C1

∥∥∥β̂(k)
1 − β̂◦1

∥∥∥+ ωk. (76)

Letting ak =
∥∥∥β̂(k)

1 − β̂◦1

∥∥∥ for all k ≥ 0, we can rewrite (76) as

ak+1 ≤
1

C1

ak + ωk. (77)

From (76), we know that there exists an N > 0 such that for all k > N and for all ε > 0, we
have that |ωk| < ε. Therefore for k > N , we have that as k →∞

ak+1 ≤
1

C1

ak + ωk

≤ ak−1
C2

+
ωk−1
C

+ ωk

≤ a1
Ck

+
ω1

Ck−1 + · · ·+ ωN
Ck−N +

( ωN+1

Ck−N−1 + · · ·+ ωk−1
C

+ ωk

)
≤ (a1 + ω1 + ...+ ωN)

1

Ck−N +
1− (1/C)k−N

1− 1/C
ε→ 0,

with probability tending to one. Therefore,

Pr
(

lim
k→∞

∥∥∥β̂(k)
1 − β̂◦1

∥∥∥ = 0
)

= 1, (78)

or equivalently
Pr(β̂1 = β̂◦1) = 1. (79)

Thus from (79) and (66), we have that

lim
k→∞

β̂(k) = lim
k→∞

(g1(β
(k))T , g2(β

(k))T )T = (β̂◦T1 ,0T )T , (80)

and therefore part (a) of Theorem 1 is complete. Part (b) of Theorem 1 follows from part
(b) of Lemma 3.
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A.3 Proof of Theorem 2.

We have that β̂ = lim
k→∞

β̂(k), where

β̂(k+1) = g(β̂(k)) = arg min
β

−2ln(β) + λn

pn∑
j=1

1(βj 6= 0)β2
j(

β̂j
(k)
)2

 .

Looking at (20) we have that,

D(β̂(k))−1l̇n(β̂(k+1)) = λnβ̂
(k+1) (81)

Therefore for any l = i, j where β̂i 6= 0, β̂j 6= 0,

β̂
(k+1)
l =

(β̂
(k)
l )2

λn
l̇nl(β̂

(k+1)). (82)

From Theorem 1, we also have that as k →∞, β̂(k) → β̂ and hence as k →∞, (82) can be
rewritten as

β̂−1l =
1

λn
l̇nl(β̂). (83)

Let η = Xβ and

ζ(ηi) =
∂

∂ηi
ln(β) = Ni(1)−

∫ 1

0

Yi(s) exp(ηi)∑n
j=1 Yj(s) exp(ηj)

dN̄(s) i = 1, . . . , n. (84)

Then

|ζ(η̂i)| ≤ |Ni(1)|+

∣∣∣∣∣
∫ 1

0

Yi(s) exp(η̂i)∑n
j=1 Yj(s) exp(η̂j)

dN̄(s)

∣∣∣∣∣ ≤ 1 + dn i = 1, . . . , n, (85)

since the integrand is at most one and where dn =
∑n

i=1 δi. Hence

‖ζ(η̂)‖ ≤ ‖1 + d1‖ =
√
n(1 + d)2. (86)

Let x[,i] denote the ith column of X. Since X is assumed to be standardized, xT[,i]x[,i] = n− 1

and xT[,i]x[,j] = (n − 1)rij, for all i 6= j and where rij is the sample correlation between x[,i]
and x[,j]. Since

β̂−1i =
1

λn
xT[,i]ζ(η̂) and β̂−1j =

1

λn
xT[,j]ζ(η̂), (87)

we have that ∣∣∣β̂−1i − β̂−1j ∣∣∣ =

∣∣∣∣ 1

λn
xT[,i]ζ(η̂)− 1

λn
xT[,j]ζ(η̂)

∣∣∣∣
=

∣∣∣∣ 1

λn
(x[,i] − x[,j])

T ζ(η̂)

∣∣∣∣
≤ 1

λn

∥∥(x[,i] − x[,j])
∥∥ ‖ζ(η̂)‖

≤ 1

λn

√
2{(n− 1)− (n− 1)rij}

√
n(1 + d)2 (88)

for any β̂i 6= 0 and β̂j 6= 0.
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