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Conjugate Gradient Acceleration

of the EM Algorithm

MORTAZA JAMSHIDIAN and ROBERT |. JENNRICH*

The EM algorithm is a very popular and widely applicable algorithm for the computation of maximum likelihood estimates. Although
its implementation is generally simple, the EM algorithm often exhibits slow convergence and is costly in some areas of application.
Past attempts to accelerate the EM algorithm have most commonly been based on some form of Aitken acceleration. Here we
propose an alternative method based on conjugate gradients. The key, as we show, is that the EM step can be viewed (approximately
at least) as a generalized gradient, making it natural to apply generalized conjugate gradient methods in an attempt to accelerate the
EM algorithm. The proposed method is relatively simple to implement and can handle problems with a large number of parameters,
an important feature of most EM algorithms. To demonstrate the effectiveness of the proposed acceleration method, we consider its
application to several problems in each of the following areas: estimation of a covariance matrix from incomplete multivariate normal
data, confirmatory factor analysis, and repeated measures analysis. The examples in these areas demonstrate promise for the new
acceleration method. In terms of operation counts, for all of the examples considered the accelerated EM algorithm increases the
speed of the EM algorithm, in some cases by a factor of 10 or more. In the context of repeated measures analysis, we give a new EM
algorithm that, compared to earlier algorithms, can have a considerably smaller cost per iteration. We have not, however, attempted

to evaluate the performance of this latter algorithm here.

KEY WORDS: Factor analysis; Incomplete data; Repeated measures.

1. INTRODUCTION

The EM algorithm is a general approach to the compu-
tation of maximum likelihood estimates (Dempster, Laird,
and Rubin 1977). An attractive feature of EM algorithms is
their simplicity in many applications. They are often used
as alternatives to the Fisher-scoring and Newton-Raphson
algorithms when the latter are too expensive to use or too
complicated to implement. A common criticism of EM al-
gorithms, however, is that their convergence can be quite
slow (see, for example, Laird, Lange, and Stram 1987; Lind-
stram and Bates 1988; Horng 1987; Redner and Walker
1984; and several discussants (Nelder, Haberman, Sundberg,
and Thompson) of Dempster et al. 1977). For this reason,
methods for accelerating the EM algorithm have been pro-
posed.

The most commonly used method for EM acceleration is
the multivariate Aitken acceleration

AG* = —(J — 1)"'A6, (1)

where A# is the current EM step and J is the p by p matrix
determined by the requirement that it maps each of the p
previous EM steps into the succeeding EM step, where p is
the number of parameters. Here A6* denotes the accelerated
step. Few papers actually have reported on application of
this algorithm, and those that did gave mixed reviews (see,
for example, Laird et al. 1987; Lindstrom and Bates 1988).

The matrix J — Iin (1) is an approximation to the Jacobian
of the EM step A# viewed as a function of the parameter
vector §. Thus (1) is a modified Newton-Raphson algorithm
for finding the zeros of A#. Louis (1982) proposed an algo-
rithm that replaces J — I in (1) by the actual Jacobian of the

* Mortaza Jamshidian is Assistant Professor, Department of Mathematics,
Esfahan University of Technology, Iran. Robert 1. Jennrich is Professor,
Department of Mathematics, UCLA, Los Angeles, CA 90024. The work of
Mortaza Jamshidian was partly supported by National Institute on Drug
Abuse Grant DA01070; the work of Robert I. Jennrich was supported by
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EM step. He called the resulting algorithm an Aitken accel-
erator. It is, of course, also the Newton-Raphson algorithm
for finding the zero of A6, but Louis did not observe this
fact nor have subsequent references to his paper that we
have seen.

As Meilijson (1989) observed, however, it is not clear that
Louis’s algorithm has any advantage over the ordinary New-
ton-Raphson algorithm for maximum likelihood estimation,
and both can be prohibitively expensive on large problems.
The primary point of Louis’s paper was to give methods for
finding the Hessian of the log-likelihood. He used this to find
the Jacobian of the EM step. His algorithm was an example
given to illustrate the application of his methods; it is not
clear that it was intended to be a serious proposal for EM
acceleration.

Meilijson (1989) proposed accelerating the EM algorithm
by using a quasi-Newton algorithm to find zeros of the EM
step, but he did not develop this into a specific proposal and
did not report any experience with this suggestion. Meilijson
also observed that there are a variety of extrapolation pro-
cedures in the numerical analysis literature that may be used
for EM acceleration and gave a small example using minimal
polynomial extrapolation. The Aitken acceleration (1) may
also be viewed as an extrapolator.

On a different tack, Meilijson suggested alternatives to the
EM algorithm based on EM ideas or, in his words, “im-
provement to the EM algorithm on its own terms.” His pri-
mary alternative was a modified Fisher-scoring algorithm
obtained by replacing the Fisher information matrix by an
“empirical information matrix” computed from score vec-
tors. The relation to the EM algorithm is that the formulas
for the score vectors are derived using EM ideas as proposed

© 1993 American Statistical Association
Journal of the American Statistical Association
March 1993, Vol. 88, No. 424, Theory and Methods

221



222

by Louis (1982). Although EM ideas are involved, this does
not represent an acceleration method for the EM algorithm,
but rather, like the EM algorithm itself, an alternative to the
scoring algorithm.

We propose a general acceleration method that, in keeping
with the usual EM algorithm, is fairly simple and deals con-
veniently with problems having many parameters. The latter
is an area where the EM algorithm is particularly important
and where it often is the only algorithm used. An important
problem of this type is estimating a covariance matrix from
incomplete normal data. As the title suggests, our method
will use conjugate gradients. More specifically, we will treat
an EM step as a generalized gradient and use a generalized
conjugate gradient algorithm as an EM accelerator. Though
not identified as such, this was done by Golub and Nash
(1982) in their alternative to the Yates (1933) EM algorithm
for fitting unbalanced analysis of variance models.

We will attempt to show by examples that the general
conjugate gradient approach proposed can be used effectively
in a variety of application areas. The areas considered include
estimating the covariance matrix from incomplete data,
confirmatory factor analysis, and repeated measures analysis.
These are some applications where the EM algorithm is im-
portant and acceleration is often needed. In some of the
examples we have found reductions of a factor of 10 or more
in the operation count.

Section 2 defines the generalized conjugate gradient al-
gorithm that we used, and Section 3 explains why it is natural
to view EM steps as generalized gradients and, specifically,
how they are to be used in the algorithm of Section 2. Section
4 presents examples.

2. A GENERALIZED CONJUGATE GRADIENT
ALGORITHM

We give here an algorithm for finding the maximum of a
function f(8), where 6 ranges over a subset of Euclidian p
space. Let g(0) denote the gradient of f(#) and consider the
generalized norm

lol = (67we)'’ (2

on Euclidian p space defined by a positive definite matrix
W. Let g(0) be the gradient of /(6) with respect to this norm.
This is a fancy way of saying that

£(6) = W'g(0). (3

The vector g(0) is called the generalized gradient of f(#8) de-
fined by W.

The use of appropriate generalized gradients can signifi-
cantly improve the performance of algorithms that use gra-
dients. Indeed, this choice can be the most important choice
made in the formulation of an algorithm. We will discuss
our choice of generalized gradients in the next section. The
generalized conjugate gradient algorithm that we will use
proceeds as follows:

Given 6, let d = g, and sequentially compute:

oy, the value of « that maximizes f(60; + ad;), (4)

Ok = 0 + ady : ()
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Bk = §Z+l(gk+l - gk)/dZ(gk+l = 8), 6)
and
it = k1 — Bids, @)

where g, = g(0;) and g, = g(0,). This is called a generalized
conjugate gradient algorithm, because it uses generalized
gradients to define the search directions d; and because, for
negative definite quadratic functions f, the dy are orthogonal
in the metric defined by the negative of the Hessian of f.

The choice of the update formula (6) is somewhat arbi-
trary. It differs from the more popular Fletcher-Reeves
(1964) and Polak-Riebere (1969) updates. It has the advan-
tage that for quadratic f(0), di and d,., are conjugate even
if the line searches used in (4) are not exact. What is also
important is that the algorithm requires only gradients and
generalized gradients and does not require explicit compu-
tation of generalized inner products.

The algorithm defined by (4) through (7) will converge to
a maximum of a quadratic function in at most p steps. For
algorithms with this property, it is common practice to restart
every p steps or more often. We do the former, which means
setting d; = g, whenever k is an integer multiple of p.

3. ACCELERATING THE EM ALGORITHM

The EM algorithm of Dempster et al. (1977) is designed
to find a parameter vector 6 that maximizes a likelihood
function L(8), 8 € O. For a specific application, a function
Q(0, 0) is identified. It may be viewed as a local approxi-
mation to log L(#') in a neighborhood of 6. (For an explicit
definition of Q(#, 6), see (A.1) in the Appendix.) Let 6 be
the value of ¢ that maximizes Q(, 0); then the step 8 — 8
is called an EM step. We show in the Appendix that if 8 is
an interior point of ©, then

6—0=—(0(8,6)'g(6) + 0(6 — b), ®)

where g(#8) is the gradient of log L(8) at 8 and J(#, ) is the
Hessian of Q(¢', ) viewed as a function ¢ and evaluated at
(6, 8) = (8, ). Typically J(8, 8) is negative definite. Thus
using (8), when 0 is near 6, the EM step 8 — 0 is, to a good
approximation, a generalized gradient of log L(#0).

We propose attempting to accelerate the EM algorithm
by using EM steps, 8 — 0, as the generalized gradients §(6)
in the algorithm of the previous section with f(8) = log L(6).
We call the resulting algorithm the accelerated EM (AEM)
algorithm. Note that this is not strictly speaking an appli-
cation of the algorithm of the previous section, but rather
an approximation to the algorithm of that section that uses

W =-0(8,9). )

The advantage of the approximation, of course, is that it
does not require 6 and in fact does not require W. Each step
begins with an EM step. First, its direction is modified, and
then its length is optimized. The next section will look at
the effectiveness of the proposed acceleration.

Although the algorithm proposed is fairly simple, it is more
complex than the EM algorithm itself. In addition to the
EM steps, one must compute gradients g(6) of log L(6).
Frequently, however, these require only a simple modifica-
tion of the EM code. The biggest complication is the line
search required in (4). Our algorithm for this is given in the



Jamshidian and Jennrich: Acceleration of the EM Algorithm

Appendix. Our experience is that a simple line search is suf-
ficient.

4. NUMERICAL EXAMPLES AND COMPARISONS

We illustrate the acceleration method of the previous sec-
tion by looking at several examples in each of the three areas
identified in the introduction. For each area we give for-
mulas for f(6) = log L(8), for its gradient g(8), and for the
EM step 6 — 6. In most cases the EM step can be expressed
simply in terms of g(#), and in such cases it is this form that
will be given. Throughout we have attempted to implement
our formulas with reasonably efficient code, but there is of
course always a trade-off between efficiency and simplicity.
Our rule of thumb for the examples considered has been that
we will accept an estimated 10% loss of efficiency in return
for simplicity of implementation. We feel that this is a rea-
sonable compromise for our purpose and that it has had
little effect on the comparisons we have made.

We start each AEM algorithm with a few EM steps. More
specifically, given a starting value we continue taking EM
steps as long as the difference between two successive values
of 2 log L(#) is greater than 1; that is, as long as the x>
statistic for testing the equality of two successive iterates is
more than 1. As soon as this condition is violated, we start
applying the AEM algorithm. For our examples and our
starting values, in most cases the AEM algorithm started
after about five steps of the EM algorithm. To compare the
speed of the AEM algorithm to the EM algorithm, we use
the number of floating point operations (FLOPs) required
from the point where the AEM algorithm is started to the
point where we obtain six significant digits of accuracy in
the value of 2 log L. Iterations are counted in the same
manner. The FLOPs are counted by the PC version of the
matrix language MATLAB. This is the language that we have
used to code our algorithms. For the examples considered,
we have noted that six significant digits of accuracy in the
value of 2 log L roughly corresponds to two or three signif-
icant digits of accuracy in the values of the parameters.

4.1 Estimation of a Covariance Matrix
From Incomplete Data

Let x4, . . ., X, be a sample from a p-dimensional normal
distribution with covariance matrix 2. We assume that some
of the components of each x; may not be observed. Let y;
be the subvector of x; containing the observed components.
We wish to estimate = from the density of the observed y;.
In the interest of simplicity, we assume that the distribution
sampled has mean 0. Let Z; denote the covariance matrix
for y;. Then the log-likelihood at 2 is

n

n 1
f=—7log(2m) =5 2 (log|Z;| +y/ Zi'y)) (10)
i=1
and its gradient is
1 n
G =2 T2l - 20277, (11)

i=1

where the expression [ 4] is 4 padded with Os to make a p
by p matrix so that 4 is the same submatrix of [A] as =; is
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of 2. The usual formula for the EM update is
~ 12

2=-2 E(xix{ |yi, 2). (12)

i=1

As shown in the Appendix, we may express the EM step as

2—2=%202. (13)
This shows, as predicted by (8), that the EM step is an ap-
proximate generalized gradient when Z is near its maximum
likelihood estimate 2. It also suggests why the EM algorithm
converges very slowly when £ is nearly singular.

In applying the EM and AEM algorithms, we have taken
0 as the upper triangular part of 2 and have defined g(#6) as
the upper triangular part of (11). Also, g is set to the upper
triangular part of (13).

For numerical comparisons, we report results of three ex-
amples in Table 1. Example 1 used incomplete real data
from a rheumatoid arthritis study (Spiegel et al. 1986), with
92 cases and 8 variables. The variables are four repeated
measures of the 50-foot walk time in seconds for each patient
and the number of assistance devices, ranging from 0 to 16,
that he or she uses on each walk. Each variable was adjusted
by subtracting its mean. Example 2 used artificial data gen-
erated from a multivariate normal distribution with mean
0 and covariance matrix I, the identity, with » = 30 and p
= 10. In this example two 5 by 5 matrices are missing from
the data matrix, one from the top right and one from the
bottom left. The EM algorithm is reasonably efficient for
these two examples; nevertheless, the AEM algorithm ac-
celerated the EM algorithm by a factor of 3.8 on Example
1 and a factor of 3.7 on Example 2.

The data for Example 3 are given in Table 2. For this
example 2 is nearly singular and the EM algorithm converges
very slowly. The value of 2 log L was correct up to four
significant digits after 174 iterations of the EM algorithm,
as compared to after four iterations of the AEM algorithm.
In terms of the number of FLOPs, this is a factor of more
than 13 in favor of the AEM algorithm. As shown in Table
1, after 2,000 iterations the EM algorithm did not have the
value of 2 log L correct up to six significant digits. Based on
the number of FLOPs, the AEM algorithm exhibited a speed
at least 92 times faster than the EM algorithm to obtain six
significant digits of accuracy. This example demonstrates the
potential for spectacular gains in applications where the EM
algorithm is known to converge slowly (see Horng 1987).

A heuristic explanation for the superior performance of
the AEM algorithm might proceed as follows: The eigen-

Table 1. Comparison of the EM Algorithm With the AEM Algorithm on
Three Covariance Matrix Estimation Examples

Example EM FLOPs® AEM FLOPs EM/AEM®
1 59.2 (59)° 15.6 (7) 3.8
2 35 (74) 9.5 (7) 3.7
3 >22 (>2,000) 24 (8) >92

® The number of FLOPs shown is the actual number of FLOPs divided by 10°. The count starts
as defined in the text.

® The ratio of the number of FLOP's for the EM algorithm to that for the AEM algorithm.

¢ The number of iterations.
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Table 2. Data Used in Covariance Matrix Estimation Example 3

Y1 Y2 Vs
-11/8 —-3/8 8
-3/8 5/8 *
5/8 13/8 *
-3/8 -3/8 *
* -11/8 -1/4
* -3/8 3/4
* 5/8 7/4
* -3/8 -1/4
-3/8 * 3/4
5/8 * -1/4
13/8 * —5/4
—3/8 * -5/4

® Value was not observed.

values of the Hessian H of log L in the metric of £ ® 3
determine the asymptotic rate of convergence of both the
EM and AEM algorithms. If ¥ is nearly singular, but has
only a few small eigenvalues, then we expect H to have a
few large, but mostly moderate, eigenvalues. The AEM al-
gorithm (conjugate gradient) performs well under these con-
ditions, but the EM algorithm (steepest descent) does not
(see, for example, Luenberger 1984, p. 246).

4.2 Confirmatory Factor Analysis

We consider the factor analysis model

y=Af+e, (14)

where y is a vector of observed values, Aisapby k <p
matrix of factor loadings, and f and e are independent nor-
mally distributed random vectors with mean 0 and covari-
ance matrices ® and ¥. By assumption ¥ is diagonal. Fol-
lowing common practice and for simplicity, we have assumed
that the mean of y is 0. The covariance matrix of y is

3= APAT + V. (15)

We allow a priori restrictions that fix arbitrary elements of
A and ¥ at specified values and, following Rubin and Thayer
(1982), we allow & to be set equal to the identity or be totally
free.
Given n independent observations y;, let S = X7,
X y;yr/n. Given S, the log-likelihood of (A, &, ¥) is
f= —g(p log 27 + log|Z| + r S=°1).  (16)
Tpe Proplem is to compute maximum likelihood estimates
(A, ®, V).
Rubin anfi TAhaXer (1982) described the EM algorithm for
obtaining (A, &, W) using (7) as the complete data. At each
step the EM algorithm updates (A, ®, ¥) as follows: Solve

the system of linear equations
[AB— SZ7'A®], =0 (17)

for A. Here [A], is simply A with Os inserted in the places
corresponding to the fixed parameters in A and

B=®%+ ®ATZT(S - Z)Z7'AS. (18)
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Using A,

V- ¥ =[S—¥-2S2'"A®AT+ ABAT],, (19)

where [ ]y is defined in a manner similar to [-],. Finally, if
® is free, then

$ = B; (20)
otherwise, ® = I and is not a parameter.
The derivatives of fare given by
af
A E_l _ -1
A n (S—2)T7'AdP, 21)
af n
I ATE—I _ E -1
2% 2 S )Z7IA, 22)
and
af _ n .. 1o _ -1
P 2dlag[E (S-2)=7']. (23)

The gradient g of f is formed by selecting the elements from
these matrices corresponding to free parameters, and g is
formed by selecting from A — A, ® — &, and ¥ — ¥.
Table 3 shows the result of using the EM and AEM al-
gorithms on three examples. The data for Example 1 are
based on the nine psychological tests exploration sample first
analyzed by Holzinger and Swineford (1939). We use the
model used by Higglund (1982). This model has three factors
and 33 free parameters. For starting values we use Hiagglund’s
FABIN3 estimates, reported in his Tables 1 through 3. On
this example the AEM algorithm was 2.7 times as fast as the
EM algorithm as shown in Table 3.
Examples 2 and 3 are artificial data problems with p = 15,
k = 4, and n = 300. They both use the same model. The
matrix A = (4,), where I is a 4 by 4 identity matrix and A,
is a free 11 by 4 matrix. All elements of ® and all the diagonal
elements of ¥ are assumed to be free. This structure was
used to produce two moderate-sized problems with a rela-
tively large number of identified parameters: 69 in each case.
To generate the data for Example 2, random numbers
were selected in the interval [0, 3] for the components of A,
and the matrices ¢ and ¥ were taken as identity matrices.
These were used to compute =, which in turn was used to
generate 300 random normal vectors y; . The latter were the
data for Example 2. As shown in Table 3, the AEM algorithm
was 10 times faster than the EM algorithm for this example.
The data for Example 3 were generated like those for Ex-
ample 2, except that the elements of ® were set to ¢; = .7!"7!.
We chose this because it seems that the performance of the

Table 3. Comparison of the EM Algorithm With the AEM Algorithm on
Three Confirmatory Factor Analysis Examples

Example EM FLOPs® AEM FLOPs EM/AEM®
1 1.6 (21)° 6(4) 2.7
2 100 (333) 9.9 (17) 10
3 143 (473) 12 (21) 12

® The number of FLOPs shown is the actual number of FLOPs divided by 10°. The count starts
as defined in the text.

® The ratio of the number of FLOPs for the EM algorithm to that for the AEM algorithm.

¢ The number of iterations.
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EM algorithm is sensitive to the spread of the eigenvalues
of &. The more spread the eigenvalues of &, the slower the
EM algorithm converges. As shown in Table 3, the AEM
algorithm converged reasonably rapidly and beat the EM
algorithm by a factor of 12. The starting values for Examples
2 and 3 were the values of A, &, and ¥ used to generate the
datay;.

4.3 The Repeated Measures Model

Here we consider a general linear mixed model for re-
peated measures. More specifically, let y; denote a ¢; by 1
vector of ¢; measurements observed on the ith of a set of
experimental units. We use the two-stage mixed model con-
sidered by Laird and Ware (1982):

Yi =Xi8+Zb, +e;, (24)

where X; and Z; are known ¢; by p and ¢; by g design matrices,
B is a vector of fixed effects to be estimated, and b, and e;
are independent random vectors distributed as N (0, D) and
N (0, pI;). Here D is a positive definite g by ¢ matrix, p > 0,
and I; is a ¢; by ¢; identity matrix. We seek estimates for 8,
D, and p.

For this model,

E(y:) = XiB8
and
var(y;) = 2; = Z;DZT + pI,.
The log-likelihood is

(25)

1 n
f==5|Tlog2r + 3 (log|Z;| +1{Z7'm) |,

i=1

where T = 27., t; and r; = y, — X;8. The derivatives of
with respect to 8, D, and p are

0f _ < pre-
i 21 XI'zi'n, (26)
j_f = % ?. ZI=ri(ea? = 2)=27' 7, @n
and
% =%i=§n:ltr[2i_'(r,»r,T— Z)2. (28)

Laird and Ware (1982) gave an iterative algorithm for
computing maximum likelihood estimates of 8, D, and p.
Given current values of p and D, they computed

n -1 n
/§=(2 XiTEi_lXi) > XI=ty; (29)
i=1 i=1
and then used
20%8f
A _— Y
=T e (30)
and
2 df
AD = —D—f-D 31

225

to update p and D. Here 57 /dp and éﬁ’ /0D are (27) and (28)
evaluated at (8, D, p). The formulas (30) and (31) are a
reformulation of the Laird and Ware (LW) algorithm that
isderived in the Appendix. This algorithm was called a hybrid
EM algorithm by Jennrich and Schluchter (1986). This name
is appropriate, because at each step the value of 3 is computed
by generalized least squares and then, assuming that 8 is
fixed at its new value, the EM algorithm is applied to update
values of D and p.

The EM algorithm for this problem using (3,) as the com-
plete data is also derived in the Appendix. The steps at a
point (8, D, p) are

n -1 af
= T . —
Aﬂ P(IE X Xz) 66 5 (32)
_2,9
AD_nDaDD’ (33)
and
_1(, 29/ _ r9f
Ap = T(Zp 9 pAB 6,8) . (34)

Surprisingly, we could not find this EM algorithm in the
literature. It beat the LW algorithm in two out of three of
our experiments. This is mainly because the LW algorithm
requires computation of (X 7-; X 727! X;) ™! every iteration,
as opposed to the EM algorithm, which requires instead the
computation of (X7, X7 X;)™! only once.

It is difficult to conclude anything about the relative per-
formance of the EM and LW algorithms from our limited
examples. The first example, which we will describe shortly,
involves complete data. Generalized and ordinary least
squares are identical for this example. As a consequence,
both algorithms make identical steps; but as noted the LW
algorithm uses formulas that are more expensive to evaluate.

It is the EM algorithm defined by (32) through (34) that
we will attempt to accelerate, but we include the Laird and
Ware algorithm for the purpose of comparison. Equations
(26) through (28) define the elements of g and (32) through
(34) define the elements of g for the AEM algorithm.

For our examples we use the data given by Pothoff and
Roy (1964) and Model 6 given by Jennrich and Schluchter
(1986). Starting values for p and D are computed as described
in Section 4.4 of Laird et al. (1987). The starting values of
B for the EM and AEM algorithms were obtained by ordinary
least squares. The LW algorithm does not require a starting
value for 3.

In Example 1 we used the Pothoff and Roy (1964) data
with no missing values. As shown in Table 4, for this example
the AEM algorithm is 13 times faster than the LW algorithm
and 6.5 times faster than the EM algorithm.

Example 2 uses the data given by Little and Rubin (1987,
p. 159), which is the Pothoff and Roy (1964) data with some
observations missing. For this example AEM is 2.5 times
faster than EM and 1.6 times faster than LW, these are rather
modest factors. This is also an example where the LW al-
gorithm did better than the EM algorithm by a factor of
about 1.5.
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Table 4. Comparison of the EM, LW, and AEM Algorithms on Three
Repeated Measures Examples

EM LW AEM
Example  FLOPs® FLOPs  FLOPs LW/AEM® EM/AEM
1 20.0(51)°  10(51) 1.54(4) 13 6.5
2 2.6 (8) 3.8(23) 1.60(5) 1.6 25
3 89.0(387) 436(387) 1.8 (7)  49.4 24.2

2 The number of FLOPs shown is the actual number of FLOPs divided by 10°. The count starts
as defined in the text.

b The ratio of the number of FLOPs for the LW algorithm to that for the AEM algorithm.

° The number of iterations.

Finally, Example 3 uses the Pothoff and Roy (1964) data
with one observation deleted at random per subject. Again
from Table 4, the EM and LW algorithms required the same
number of iterations; however, in terms of the number of
FLOPs, EM is twice as fast as LW. We have no explanation
why both algorithms used the same number of iterations.
They did not follow the same path. Also in this example,
AEM converges considerably faster than EM and LW; spe-
cifically, it beats EM by a factor of 24 and LW by a factor
of 49.

5. DISCUSSION

The EM algorithm often works well, which explains its
popularity. What we have done here is to attempt to extend
the range of its applicability without sacrificing too much of
the simplicity it usually enjoys. The EM algorithm is partic-
ularly important for problems involving a large number of
parameters; for such problems, it is often the only algorithm
used. The conjugate gradient method, which is simple and
does not require storage or inversion of large matrices, is a
particularly natural method to use as an acceleration device
for the EM algorithm.

There are, however, many problems that do not involve
large numbers of parameters; for those, one might consider
replacing the conjugate gradient algorithm, considered here,
by a quasi-Newton algorithm. Because for quadratic func-
tions the generalized conjugate gradient algorithm is the
Davidon-Fletcher-Powell algorithm using ordinary gra-
dients, but started with W ™! as the initial inverse Hessian
approximation, this would be a natural choice of quasi-
Newton algorithm. In our present context we do not have
W explicitly, but assuming that one has both ordinary and
generalized gradients, the explicit use of W can be avoided
by using (3).

As noted previously, Meilijson has suggested using a quasi-
Newton algorithm for finding the Os of the EM step; but
some care is required. Because the Jacobian of the EM step
is in general not symmetric, familiar symmetric quasi-New-
ton updates, such as the one given by Meilijson (1989), will
not work. One solution is to use general nonsymmetric up-
dates (see, for example, Broyden 1972), but this ignores the
fact that the EM step is an approximate generalized gradient
and hence its Jacobian has special structure. A better alter-
native, we suspect, is one that uses updates that are self-
adjoint in the metric of W. There are many options here.
As far as we know, none of these have been tried.
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Finally, we have derived a new EM algorithm for the re-
peated measures problem. Its cost per iteration can be con-
siderably less than that of the LW algorithm, but our expe-
rience with the two algorithms is too limited to recommend
one over the other. The EM algorithm proposed can be made
simpler still by dropping the term involving AB from (34).
This is motivated by the fact that near a solution, the dropped
term will be very small. It would be natural to consider con-
jugate gradient acceleration of both the LW algorithm and
that just identified. We have had some success in accelerating
the LW algorithm, but in keeping with our title, we have
restricted our report here to the acceleration of the EM al-
gorithm.

It should be clear that the acceleration methods proposed
here need not be restricted to the EM algorithm. One might
try these methods on any algorithm where steps are, ap-
proximately at least, generalized gradients. They might for
example be used to accelerate the scoring algorithm, because
its steps are approximately generalized gradients in the metric
of the Fisher information matrix evaluated at 8. We have
looked at a number of such alternative applications in the
context of factor analysis (Jamshidian and Jennrich 1988),
with some success.

APPENDIX: ACCELERATION OF THE EM ALGORITHM

Here we give several derivations promised in the text and our
line search algorithm.

A.1 Derivation of Equation (8)

Equation (8) follows from Theorem 1 on page 219. Given a family
of densities f;(y|0), 8 € 0, the EM algorithm is a device for finding
a maximum likelihood estimate § for 6 based on y. It begins by
introducing a function h and a second family of densities f,(x|6),
0 € O related to the first by the requirement that if a random vector
x has density f;(x|8), then the random vector y = h(x) has density
f1(y|6). The algorithm is determined by the choice of the second
family f5(x|8). The vector x is usually referred to as the complete
data, and y is referred to as the observed, or incomplete, data.

The algorithm begins by defining the function

Q(0', 6) = E[log f2(x]6')]y, 6]. (A.1)
Given 0, a step of the EM algorithm creates a new vector 6 such
that 6’ = § maximizes Q(¢, 8). By replacing 6 with 0, the algorithm
produces a sequence of values of 6 that hopefully converges to a
maximum likelihood estimate. Dempster et al. (1977) and Wu
(1983) have given sufficient conditions for this convergence. Usually
one attempts to choose the complete data, so it is simple to maximize
Q(#’, 8) with respect to 8. In what follows we assume that there is
a function A4 that generates 8 from 6 so that § = A4(6), and that § is
a fixed point of 4. Let Q(0’, §) and O(#’, 8) denote the gradient
and Hessian of Q(#’, §) with respect to its first argument, and let
s(0) = d(log f;(y|0))/30 be the Fisher score vector for the observed
data.

Lemma 1. Let O be a convex open subset of @ containing 0.
If (a) Q(#’, 0) is twice continuously differentiable with respect to 6’
for all 8’ and 0 in O, (b) 4 has a Jacobian at 8, and (c) O(9, 9)
= s(8) for all § € O, then for 0 near 8,

s(0) + O(b, 0)(A4(8) — 0) = 0(0 — B). (A2)

Proof. Let 6 € O and § = 4(6). Also, let 0:(0', 9) be the ith
component of O(#’, 6) and let §; (@', 6) be the ith row of Q(#, ).
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By the mean value theorem, there is a 8 between 8 and 8 such that

0i(8,0) = 0:(0, 8) + 0:(8, 6)(6 — 6). (A3)
Because 8’ = § maximizes Q(0’, 6) with respect to 6’,
0:(8,0) = (A.4)

Let s;(0) be the ith element of s(8). Using (A.4) and (c), it follows
from (A.3) that

0=15.(0)+ 0:(8,0)(6— 0
= s5:(0)+ 0,(8,0)(8 - 0)

+(0:(8, 6) — 0i (8, 8))(8 — 0). (A5)
Let J be the Jacobian of 4 at 8; then
0—0=(—1)0—0)+0(6—0). (A.6)
By the continuity of J;,
0:(8,0) — Qi(8,8) >0, (A7)
as 0 — 0. Using (A.6) and (A.7), (A.5) takes the form
0=s/(0)+ Q0:(8,0)(8—0) + 0;(8 — ). (A.8)

The lemma follows from the fact that (A.8) holds for each i = 1,
.., D.

. The:orem 1. If, in addition to the assul:nptions of Lemma 1,

Q(48, ) is negative definite, then for 0 near 6,

A(0) — 0 = —(0(8, 0))"'s(8) + o(0 — 0). (A.9)

Proof. Apply Lemma 1.

Equation (8) is obtained by noting that g(8) = s(6). Assumption
(c) is a technical condition that often holds. Fisher (1925) showed
that

s(0) = E(a—‘z,log A0y, o) .

Assuming that the derivative can be removed from under the con-
ditional expectation leads to (c).

(A.10)

A.2 Derivation of Equation (13)
Letx;,...,X,andy,,..., Yy, be defined as in Section 4.1, and
let /(x| Z’) denote the joint density of the complete data x,, . . .,
X,. Itis easy to verify that
5‘2‘:‘, H(x|Z) = -E N (xx] —

Taking conditional expectation given the observed datay,,...,y,
and =, evaluating the result at £’ = Z and using (A.10) gives

z)=h (A.11)

G=G(2)= % é}l SNExx] |y, 2) - 2)Z7'. (A.12)
But using (12),
G=72"'E -7z (A.13)
Solving for £ — = in (A.13) gives equation (13).
A.3 Derivations of Equations (30) and (31)
Laird and Ware (1982) updated p by the equation
p= lTé E(lly; — Xi8 — Zib 1?1y, 6). (A.14)

Let ,(x|0") denote the joint density of the complete data (3.); i
=1,...,n,with 8 = (8, p’, D’), where @ is defined by (29). It is
easy to verify that

d T
_1 = —
P og f(x]6") 2

"Yi - Xiﬁ —Zb, ||2/P'2-

M=

1
= A.15
+3 (A.15)

1

r
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Taking conditional expectation with respect to the observed data
Yi, . - . » Y» and using Fisher’s result (A.10) gives
aof
8 — 120+ TH 207,
dp
where 67 /dp is the derivative (28) evaluated at (8, p, D). Solving
(A.16) gives

(A.16)

_20%9)

T 6p°

which is (30). Equation (31) follows from a similar, but simpler,
argument.

(A.17)

A.4 Derivation of Equations (32), (33), and (34)

Let f,(x|0’) be as in the previous section, but let 8’ = (8, p/,
D’). It is easy to verify that

a n
53‘,108 LH(x|0) =2 XT(y, — XiB' — Zbi)/p".  (A.18)
i=1

"Let 6 denote the current value of 8 and let § be its value after an

EM step. Taking conditional expectation given y, ..
evaluating the result at ' =

.,¥»and 6,
6 and at ' = 0, and using Fisher’s result

(A.10) gives
0= XT(y, — X — Zb}) (A.19)
i=1
and
0L 3 XTIty - x8 - ZbY), (A.20)
aﬂ i=1
where bY = E(b;|y;, 6). Solving (A.19) and (A.20) gives
n -1
ﬁ—ﬂ=p(ZXiTXi) 5 (A21)
i1 B

which is Equation (32). 3
It is easy to verify that dlog f,(x|0")/dp’is (A.15) with 8 replaced

by B'. Taking conditional expectations and evaluating at §’ = 6 and
at 8’ = 0 as before gives

0=-Tp+ 2 ("Yi - Xiﬁ_ Zibi"2)* (A.22)

=1

and

2 6f : 2\ %

2p % =-Tp+ 2 ("Yi - X8 — Zibi" )% (A.23)
i=1

where ( - )* denotes the conditional expectation of (- ). Using (A.19),
the summation on the right side of (A.23) may be written as

Uy, =XB8-Zb|H*+ 3 X B-8)I>. (A24)
i=1 =1
Using this and solving (A.22) and (A.23) gives
2p° % =T(p—p)+ Z X (8 - 81> (A.25)
i=1
Using (A.21) gives
L ,0f r9f
o= T(zp B - B) aﬂ) )

which is equation (34). Equation (33) follows by a similar, but
simpler, argument.

A.5 A Line Search Algorithm

Let @ be a given point in a p-dimensional Euclidian space, and
let d be a given p-dimensional vector. Here we give the algorithm
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used in the examples of Section 4 to locate the maximum of

F(a)=f(0+ ad), a=0. (A.27)
The slope of F(a) at « is given by
F(a)=d"g,, (A.28)

where g, is the gradient of fevaluated at § + ad. We assume that
F(o) and g, are defined at a = 0 and that F(0) = 0. To obtain the
maximizing &, we look for the solution of the equation F(a) = 0
using the secant method (see, for example, Johnson and Riess 1982,
p. 166). This method, along with some added details, is as follows:

Step 0: Set &g = 0, ; = 2, and n = 0, compute F(0), and set F(oyp)
= F(0).

Step 1: If F(ay,) is defined, then

e compute F(a;)

esetn=n+1.
Otherwise:

e if n = 10, quit

® set oy = 011/2

esetn=n+1

e go to Step 1.

Step 2: If n = 10, quit. If n # 1 and | F(a;)| < .1F(0), then accept
«; as the minimizing value and go to the next iteratipn.
Otherwise, if sign[(o; — ao)](F(ao) — F(ay))/(| F(ao)|
+ | F(a;)|) < 107°, then quit;

Otherwise: ) )
o set a* = (o F () — aoF(a1))/(F(ao) — F(ay))
® set ag = oy
o set F(ap) = F(ay)
® set oy = o*
e go to Step 1.

As indicated in Steps 1 and 2, we allow at most 10 and require
at least two function-gradient evaluations per line search. In our
examples the mode for n was 2. We feel that limiting » to 2 will
have little, if any, effect on the convergence of the AEM algorithm.
We did not encounter n = 10 or a “true” response for the second
“if”” in Step 2. Had we encountered either of these, we would have
quit the search and restarted the AEM algorithm. As indicated in
Step 2, « is accepted as a good approximation to the maximizing
a, if |F(a)| < .1F(0). The value .1 is, of course, our choice and
is one which in our experience seems to give a good enough ap-
proximation to the maximizing value. The choice a; = 2 in Step
0 is natural, because it corresponds to a double-length EM step.

[Received January 1990. Revised May 1992.]
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