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Abstract
The assembly of plant-pollinator communities

By

Lauren Ponisio

Doctor of Philosophy in Environmental Science, Policy, and Management

University of California, Berkeley

Professor Claire Kremen, Chair

With continued degradation of ecosystems, we need to know how to restore biodiversity — both for con-
servation and to ensure the provision of essential services provided by nature. To manage and restore diversity in
human-modified systems, however, we need to understand the mechanisms that originally maintained biodiver-
sity. A fundamental and widely supported theory of biodiversity is the idea that diversity begets biodiversity (i.e.,
environmental heterogeneity, disturbance, biodiversity itself). These processes contribute to turnover of species
through space and time and subsequent heterogeneity of community composition (β-diversity) — primary deter-
minants of the total species richness supported by a landscape. Communities are being homogenized as human
actions such as habitat conversion, land management practices and invasive species disrupt the processes main-
taining diversity.

In this dissertation, I examine the assembly of plant-pollinator communities in a variety of landscapes
through time and space to better understand how environmental, disturbance and interaction diversity sustains
biodiversity. I focus on mutualistic communities because they are influential biological interactions for the gen-
eration and maintenance of biodiversity. Plant-pollinator mutualisms are also particularly important for service
provision. Pollination systems, however, are under increasing anthropogenic threats. Understanding how to main-
tain plant-pollinator community biodiversity is this both timely and imperative.

I first investigate the capacity of environmental, disturbance and interaction diversity to sustain biodiver-
sity in a system in Yosemite National Park where nature still drove these processes. In frequent fire forests in
Yosemite National Park, California, I found that fire diversity is important for the maintenance of flowering plant
and pollinator diversity, and shifts towards lower diversity fire regimes will negatively influence the long-term
species richness of these communities. Changing climate and fire suppression are eroding fire diversity and thus
homogenizing communities, and thus we must explore management practices that can maintain fire diversity. In
these systems, fire diversity is promoted directly through prescribed fires with varied burn conditions and allowing
wildfires to burn. These management strategies are already recommended, and my results affirm that their usage
should continue and expand.

In Yosemite, I was able to examine the mechanisms sustaining diversity in a natural system and make
recommendations for maintaining those processes. When a landscape is already degraded, however, we must
determine what restoration efforts are able to reassemble functional communities of interacting organisms. This
is often the case in agricultural landscapes where widespread conversion of natural ecosystems to agriculture,
combined with intensification of farming practices, has led to the homogenization of biological communities.
In Chapter 2, I use a long-term pollinator survey data from the intensively managed agricultural landscape of the
Central Valley of California to show that on-farm habitat restoration in the form of native plant “hedgerows,” when
replicated across a landscape, can re-establish community spatial turnover. I also determined that the mechanism
promoting community spatial heterogeneity was the successional dynamics of hedgerow communities promoted
the assembly of phenotypically diverse communities, leading to the accumulation of differences in community
composition between sites over time. This work elucidates the drivers of spatial and temporal diversity while
also validating the role of small-scale restorations such as floral-enhancements for conserving biodiversity and
promoting ecosystem services in agricultural areas.

To fully understand the mechanisms maintaining communities we must also combine our understanding
of the ecological processes enabling their persistence with the evolutionary processes that assembled those com-
munities. Coevolution is a key process producing and maintaining complex networks of interacting species. In
Chapter 3, I use a theoretical approach to determine whether the structure of interactions varied depending on
the community’s evolutionary history. I found that coevolution leaves a weak signal on interaction patterns. Our
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results suggest that determining whether assembly processes structure interactions within a community requires a
synthetic approach, combining data about the biogeographic history of the interacting lineages and their evolution.
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at time T1 (before speciation has had time to add new species). Here, the community far from the
source pool (SF) is lower than the near community (SN). (b) Low rates of species turnover and
many generations of evolution/coevolution will favor niche partitioning, whereas high turnover
will favor niche overlap. (c) The richness of a community will limit number of compartments
of interactions a community can support. With enough time for evolution/coevolution to occur,
however, the community will itself before a source of new species as species diversify, allowing
for greater modularity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
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Introduction

With widespread degradation of landscapes and loss of biodiversity, it is important to understand how to conserve
species groups that provide critical ecosystem functions (Cardinale et al., 2012; Kremen, 2005). Pollinators are
one such key group: 75% of all crop species depend to some extent on pollinators (Klein et al., 2007), and animal-
pollinated crops supply a large proportion of essential nutrients to the human diet (Eilers et al., 2011). However,
honey bees, managed extensively around the world to provide crop pollination, are in global decline (Neumann
& Carreck, 2010; van Engelsdorp et al., 2009). In addition, native pollinators, which also have the capacity to
provide sufficient crop pollination (Kremen et al., 2002; Winfree et al., 2007; Kremen et al., 2004), are threatened
by land-use change, habitat fragmentation, pesticide use, and invasions of non-native plants and animals (Kearns
et al., 1998). Thus, we must understand how to maintain and restore native pollinator populations to both conserve
biodiversity and ensure pollination service provision.

A fundamental impediment to understanding how to restore pollinators, however, is we know little about
the process that originally maintained the diversity of these communities. A widely supported theory of biodiver-
sity maintenance is the idea that diversity begets diversity. This diversity can be disturbance diversity, such as fire
diversity, or in the form of environmental heterogeneity. Biodiversity can also beget further biodiversity — often
through interactions across trophic levels. For example, in mutualistic systems like plant-pollinator communities
where both partners benefit from an interaction, plant diversity contributes to pollinator diversity. Anthropogenic
actions often degrade these processes: we suppress disturbances like fires, we destroy environmental heterogeneity
through homogenizing a landscape into something like monoculture agriculture and, through causing the extinc-
tion of species, we begin to take apart the interactions that link species in a community.

In this thesis I build on our understanding of the processes that contribute to biodiversity maintenance and
how we can harness these processes to manage and restore diversity in human-modified systems. Specifically I
ask:

1. In a system where nature is still driving the processes that maintain biodiversity, are environmental, distur-
bance and interaction diversity important for sustaining plant-pollinator community biodiversity?

2. Where the processes that maintain diversity are eroded, can we restore them? Specifically can community
heterogeneity (β-diversity) be reestablished?

3. Do the communities re-assembled through restoration exhibit the same patterns of interactions and thus
stability dynamics as tightly coevolved communities?

I began my investigation into the processes maintaining plant-pollinator community diversity in Yosemite
National Park, where a history of innovative management by the Park Service allowed natural disturbance pat-
terns to reestablish. I then move to a highly altered system, the Central Valley of California, where widespread
conversion of land to agriculture has greatly disrupted the processes maintaining diversity. There I investigated
whether native plant hedgerows can restore habitat heterogeneity, and thus community diversity. Lastly, I used
a theoretical approach to determine whether the structure of interactions varied depending on the community’s
evolutionary history.
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Chapter 1

Pyrodiversity begets plant-pollinator
community diversity

1.1 Abstract
Fire has a major impact on the structure and function of many ecosystems globally. Pyrodiversity, the diversity of
fires within a region (where diversity is based on fire characteristics such as extent, severity and frequency), has
been hypothesized to promote biodiversity, but changing climate and land management practices have eroded py-
rodiversity. To assess whether changes in pyrodiversity will have impacts on ecological communities, we must first
understand the mechanisms that might enable pyrodiversity to sustain biodiversity, and how such changes might
interact with other disturbances such as drought. Focusing on plant-pollinator communities in mixed conifer forest
with frequent fire in Yosemite National Park, California, we examine how pyrodiversity, combined with drought
intensity, influences those communities. We find that pyrodiversity is positively related to the richness of the pol-
linators, flowering plants, and plant-pollinator interactions. On average, a 5% increase in pyrodiversity led to the
gain of approximately one pollinator and one flowering plant species and nearly two interactions. We also find
that a diversity of fire characteristics contributes to the spatial heterogeneity (β-diversity) of plant and pollinator
communities. Lastly, we find evidence that fire diversity buffers pollinator communities against the effects of
drought-induced floral resource scarcity. Fire diversity is thus important for the maintenance of flowering plant
and pollinator diversity, and predicted shifts in fire regimes to include less pyrodiversity compounded with in-
creasing drought occurrence will negatively influence the richness of these communities in this and other forested
ecosystems. In addition lower heterogeneity of fire severity may act to reduce spatial turnover of plant-pollinator
communities. The heterogeneity of community composition is a primary determinant of the total species diver-
sity present in a landscape and, thus, lower pyrodiversity may negatively affect the richness of plant-pollinator
communities across large spatial scales.

1.2 Introduction
Understanding the mechanisms underlying the maintenance of biodiversity in natural and human dominated sys-
tems is critical to conservation and restoration. One fundamental and widely supported theory of biodiversity in
biogeography is the idea that diversity begets biodiversity (Rosenzweig, 1995; MacArthur & MacArthur, 1961;
Hutchinson, 1959). The “causal” diversity here might take the form of environmental heterogeneity which could
promote coexistence by facilitating resource partitioning (MacArthur & MacArthur, 1961; MacArthur & Levins,
1964), or it might correspond to some aspects of biodiversity promoting other components (Whittaker, 1972;
Thompson, 2005) via interactions across trophic levels (Janz et al., 2006). Disturbance diversity is also thought
to promote biodiversity because shifting environmental conditions discourage dominance (i.e., the intermediate
disturbance hypothesis: Martin & Sapsis, 1992; Connell, 1978; Huston, 1979). All of these mechanisms can also
interact to enhance or suppress their individual effects (e.g., Collins et al., 2007; Kane et al., 2015; Rosenzweig,
1995).

Fire is a disturbance that has the potential to affect biodiversity patterns both directly and indirectly via
interactions between biotic and environmental heterogeneity (Martin & Sapsis, 1992; Parr & Andersen, 2006;
Maravalhas & Vasconcelos, 2014; Davies et al., 2012; Kane et al., 2015; Collins et al., 2007). A fire regime
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is characterized by the frequency, severity, patch size, extent, and season of fire. Fires regimes have landscape-
scale consequences for fire patterns and biotic and abiotic diversity in space and time. All of these factors can be
influenced by both biotic and abiotic diversity including topographic heterogeneity and forest structure (Collins
et al., 2007; Kane et al., 2015). A landscape with a diverse fire history — high “pyrodiversity” (Martin & Sapsis,
1992) — will be characterized by significant local variation in fire history whereby adjacent patches will not have
identical fire histories. This variation can generate diversity in ecological niches across space and time, thereby
allowing a greater number of species to coexist (Martin & Sapsis, 1992; Parr & Brockett, 1999; Burrows, 2008).
In addition, if pyrodiversity increases biodiversity, this may in turn influence subsequent fires, creating a feedback
that might beget additional diversity (Parr & Brockett, 1999; Burrows, 2008). For example, pyrodiversity can
create a mosaic of different successional stages, allowing flora and fauna associated with those different stages to
coexist. If areas with unique fire histories support unique communities, the diversity of fire histories through space
contributes to the spatial heterogeneity of communities and the turnover of species, i.e., β-diversity (Farnsworth
et al., 2014; Burkle et al., 2015). Communities that are spatially heterogeneous in their composition support more
regional diversity than areas with little species turnover (Farnsworth et al., 2014).

Fire, however, also acts as an environmental filter by selecting for species that can tolerate disturbances
(Cavender-Bares & Reich, 2012). Whether there is an opportunity for “pyrodiversity to beget biodiversity” has,
thus, been challenged by findings that some taxa do not respond to fine-scale variation in fire histories (Andersen
et al., 2014; Parr & Andersen, 2006; Farnsworth et al., 2014). In addition, factors associated with land manage-
ment such as logging, grazing and fire suppression and their interaction with the effects of climate change such as
drier summers, have acted to decrease pyrodiversity by leading to larger, homogeneous and higher severity burns
(e.g., Moritz et al., 2012; Noss et al., 2006; Dellasala et al., 2004; Miller, 2012). To assess whether changes in
pyrodiversity will have impacts on ecological communities, we must first understand the mechanisms that might
enable pyrodiversity to sustain biodiversity.

The preservation of species interactions is of particular concern because, through the mechanism of biodi-
versity begetting biodiversity, these interactions have the capacity to generate and maintain biodiversity (Thomp-
son, 2005). Plant-pollinator interactions are particularly ubiquitous, with animal pollination positively influencing
the reproduction of 87% of all flowering plant species (Ollerton et al., 2011a). Pollination systems, however, are
under increasing anthropogenic threats from land-use change, habitat fragmentation, pesticide use, and invasions
of non-native plants and animals (Kearns et al., 1998; Potts et al., 2010).

Though fire directly affects resources that are critical for sustaining pollinator populations, such as floral
communities, our understanding of how pollinator communities assemble in response to fire is limited (Winfree
et al., 2009; Thom et al., 2015). Past work has shown that secondary succession after fire can increase the
abundance of floral resources which can, in turn, lead to higher diversity and abundance of bees (Potts et al.,
2003b,a, 2001; Vulliamy et al., 2006; Van Nuland et al., 2013; Campbell et al., 2007; Grundel et al., 2010). Fire
can also affect nest-site availability by increasing the abundance of key nesting resources, such as bare ground and
cavities in dead wood (Potts et al., 2005a). Pyrodiversity may also play an important role in sustaining pollinator
diversity because pollinators differ in their degree of direct susceptibility to fire (Cane & Neff, 2011). Few studies
have, however, explored the effects of fire on pollinators in forested ecosystems where altered fire regimes may
have the greatest impact. This lack is likely because fire regimes are so altered by human activities (Miller, 2012)
that there are few landscapes where it is possible to study the interaction between natural fire patterns and wildlife
communities.

In addition to understanding the direct effects of pyrodiversity on communities, we must also examine
how pyrodiversity might interact with the types of disturbances that we expect to become more frequent in the
future. Future climate projections predict in some regions droughts, of both long and short duration, to double
and triple, respectively (Sheffield & Wood, 2008). Drought has far-reaching effects on forested ecosystems (Dale
et al., 2001), and affects pollinators by diminishing availability of pollen and nectar resources (Rashad & Parker,
1958; Iserbyt & Rasmont, 2012) and may also cause shifts in the composition of pollinator communities and even
extinction (Minckley et al., 2013; Ehrlich et al., 1980). If drought interacts with fire history such that resources are
differentially affected in different areas, pyrodiversity may be important to buffer the impacts of resource scarcity.

Here, we utilize a landscape with a restored fire regime in Yosemite National Park to test whether landscape
diversity, in the form of environmental diversity or pyrodiversity, contributes to the maintenance of plant-pollinator
biodiversity. We first determine whether pyrodiversity or the diversity of environmental conditions (solar radia-
tion, water availability and soil condition) affects local flowering plant and pollinator richness. In addition, to
test whether landscape diversity has the potential to maintain biodiversity though promoting species interactions,
we examine the relationship between landscape diversity and the richness of plant-pollinator interactions. Next,
we determine whether different fire characteristics, mainly fire severity, has the potential to contribute to regional
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plant-pollinator diversity through affecting community spatial heterogeneity. Lastly we examine whether fire di-
versity buffers pollinator communities against drought-induced resource scarcity. Our study is the first to examine
the potential of fire diversity to sustain the plant-pollinator biodiversity, as well the first to examine the response
of species interactions to pyrodiversity.

1.3 Methods

STUDY SITES AND COLLECTION METHODS

Our study is located in the Illilouette Creek Basin of Yosemite National Park, in the central Sierra Nevada of
California. The basin is approximately 20, 000 hectares, and has never been harvested or grazed. The Illilouette is
in the upper elevation mixed-conifer zone and is dominated by Jeffrey pine (Pinus jeffreyi), white fir (Abies con-
color), red fir (Abies magnifica), and lodgepole pine (Pinus contorta var. murrayana), interspersed with meadows
and shrublands. Based on tree-ring reconstructions, the historic fire regime predominantly consists of frequent
fires, where the alteration of vegetation and soils, known as fire severity, is low to moderate (Collins & Stephens,
2010). Fire was suppressed from the late 1800s until the early 1970s, when Yosemite National Park adopted
a “let burn” management strategy. Lightning-ignited fires are allowed to run their course, restoring natural fire
regimes to the basin and creating a patchwork of burns of varying severities and ages. Because of the unique fire
management of the Illilouette Basin, it has a long history of research on the dynamics of frequent fires in forested
ecosystems (Collins & Stephens, 2010, 2007; Collins et al., 2007; van Wagtendonk et al., 2012). Importantly,
studies have found that after only 30 years of allowing lightning-ignited fires to burn, the historic fire regime and
forest structure have been largely restored to the basin (Collins & Stephens, 2007).

In 2013, we established 18 monitoring sites, each (50 m)2, across the Illilouette Basin. Monitoring sites
were separated by an average of 4 km and a minimum of 500 m (greater than the foraging distance of most bees,
Gathmann & Tscharntke, 2002). Sites were split between two fires, one that burned in 2001, and the other in 2004.

Within each fire perimeter, sites were chosen randomly by selecting coordinates from a 100 m grid (within
2 km of a trail), but stratified to include different burn severities of the most recent fire. The severity of a burn not
only influences changes to soil chemistry and vegetation, but can also affect the plant community that develops
(Swanson et al., 2010; Turner et al., 1999; Wang & Kemball, 2005). We sampled across different fire severities
so that we could explore the interaction between fire severity and plant/pollinator community assembly. Burn
severity was classified according to the Relative difference Normalized Burn Ratio (RdNBR Miller & Thode,
2007) at a (30 m)2 resolution and six predominantly high, five moderate, and seven low burn severity were
selected (Fig. 1.1c). High severity sites had open canopies due to high rates of tree mortality following the fire
and high soil disturbance from the fire. Moderate severity sites also had open canopies, but less tree mortality and
soil disturbance. Low severity sites had little soil disturbance or tree mortality.

We sampled pollinator communities between June and August in 2013 and 2014. Each year, sites were
sampled four times. Sampling began earlier in 2014 to account for the timing of the snow melt. In each round of
sampling, the order in which sites were sampled was randomized. Surveys were conducted under sunny conditions
when the temperature was above 12◦C and wind speed was below 2.5 meters/second. Flower-visitors were netted
for 1.5 hours of active search time (the timer was paused while handling specimens). In addition, five sets of
fluorescent blue, white, and fluorescent yellow pan traps (15 total) were set 12.5m apart in two lines forming
an “X” for 4.5 hours following established protocols (modified from LeBuhn et al., 2003). Pans were placed in
clusters of three with one pan of each color.

All insect flower visitors that touched the reproductive parts of the flower and insects that entered the pan
traps were collected; however, here we focus only on bees, the most abundant and efficient pollinators in the sys-
tem. Bee specimens were identified to species (or morpho-species for the genera Hylaeus, Nomada and Sphecodes
and Lasioglossum subgenus Dialictus). Expert taxonomist Jason Gibbs aided with assigning the morpho-species
classifications to males and females.

Floral resources were also surveyed each time pollinators were sampled. To do this, each blooming plant
species (excluding graminoids) in the monitoring site was recorded. We did not record plants that bloomed outside
of the flight season of the pollinators (e.g., early season plants like Arctostaphylos) or night-blooming flowers
because they are not as less likely to interact with the pollinator community we sampled. For each blooming
species, an estimate of the number of inflorescences within the sampling area was also recorded (estimated on a
log scale). To make an estimate, the site was divided into quadrants and the number of inflorescences of each
species was counted, then summed for an estimate of the site.
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During our collection period, the Sierra Nevada experienced a drought that began in 2012 (Griffin & An-
chukaitis, 2014). In 2013 the intensity of the drought in our study area was categorized as “severe” (Griffin &
Anchukaitis, 2014). In 2014, the drought conditions were upgraded to “extreme” and “exceptional” — the highest
moisture deficit accumulation than any previous recorded span of years (Griffin & Anchukaitis, 2014). In the field,
the difference between 2013 and 2014 was clear; water levels were lower in the streams and rivers throughout the
season and there were few of the usual summer lightning storms. In addition, perennial plants like Ceanothus
cordulatus experienced die back from exposure to freezing temperatures because of insufficient snow pack. Many
plants that bloomed in 2013 did not in 2014 and many areas the blooming period was cut short. We therefore
contrast the communities in 2013 and 2014 to determine the influence of drought intensity on flowering plant
and pollinator communities. This test is not replicated in time and factors other than drought intensity changed.
However, given the known effects of drought on plant and pollinator communities and the drastic decline in water
availability between 2013 and 2014, we assume the majority of the shifts in the communities between these years
were due to the increase in drought intensity.

PYRODIVERSITY

To estimate pyrodiversity, we developed a metric to quantify the diversity of the fire histories in relation to fire
frequency, age, extent and severity experienced in an area. We obtained fire history data of our study area, dating
back to 1984, from Yosemite National Park and the United States Forest Service (van Wagtendonk et al., 2012;
Miller, 2012; Yosemite National Park, 2012). Each fire digitization contains rasterized values of burn severity
(Miller & Thode, 2007). Fire season, another component of fire history, was not directly considered. There was,
however, little variability in fire season within any one fire, and most fires occurred in different months. Thus,
season is indirectly included in the identity of each fire.

To estimate pyrodiversity, we evaluated the uniqueness of the fire history of each raster cell (30 m)2

resolution, Fig. 1.1a). We first created categories of fire severity within a fire (Miller, 2012). For each raster
cell, we then used the sequence of fires and the severity of each of those fires to define unique fire histories.
We identified 135 unique fire histories in the basin. We then considered two different ways of characterizing
pyrodiversity as the diversity of unique fire histories either unweighted or weighted by their similarity. To calculate
the unweighted pyrodiversity score, raster cells received different categories if they differed in any aspect of fire
history; for example, if they were burned by the same fire but at different severities, or if they were burned by
different fires, even if at the same severity. Pyrodiversity was then calculated as the Simpson’s diversity of fire
history categories (the compliment of the sum of the squared proportion of each fire history category) around a
monitoring plot within 100 m− 250 m buffers in increments of 50 m (Fig. 1.1, Tscharntke et al., 2005). This
allowed us to evaluate the scale at which pyrodiversity affected plant and pollinator communities most strongly.

To calculate the weighted pyrodiversity score, we transformed fire characteristics, mainly the year the
fire occurred and severity, into traits for each pixel and then used a functional dispersion metric to calculate the
diversity of fire “traits” (see Section 1.6.1). The fire histories of each raster cell were thus weighted based on the
similarity of fire traits. For example, a low severity pixel in the same fire would be more similar to a moderate
severity pixel than to a high severity pixel. Fire traits were also weighted by the number of years since the fire
occurred to account for the variety of fire ages. Like the unweighted pyrodiversity, we calculated the weighted
pyrodiversity score within different buffer sizes around the survey sites.

To determine the effect of pyrodiversity on flowering plant and pollinator communities and their interac-
tions, we built generalized linear mixed models that reflected our biological hypotheses (Bates et al., 2014). We
included richness of bees, flowers and interactions (the unique combination of bee and floral species observed
interacting in netted samples) in each sample as response variables and pyrodiversity (either weighted or un-
weighted) as an explanatory variable. Because fire severity can have strong effects on the plant communities that
develop after fire (Swanson et al., 2010; Turner et al., 1999; Wang & Kemball, 2005), we included an interaction
between pyrodiversity and fire severity of the most recent fire to allow the response of the flowering plant and
pollinator communities to pyrodiversity to depend on the most recent fire’s severity. Because the sites were split
between fires that burned only three years apart, we did not have sufficient variation in the time since the most
recent fire to include it as an explanatory variable.

To test whether the effect of pyrodiversity on plant and pollinator communities is mediated by drought
intensity, we also included an interaction between year, which is interpreted as primarily reflecting a shift in
drought intensity, pyrodiversity and fire severity. A significant negative interaction between pyrodiversity and
year would indicate that the response of flowering plants, bees and their interactions to pyrodiversity was eroded
by increasing drought intensity. In addition, a significant interaction between year, pyrodiversity and the severity
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of the most recent fire would indicate that the response of communities to shifts in climate varies depending on
the fire severity of the area.

When considering floral species richness as our response, we included a linear and quadratic day of the
year term to allow for a seasonal phenology in flower blooming. We also included a random effect of site in this
and all subsequent models. We assumed negative binomial error for pollinator models, and Poisson error for floral
models. To facilitate interpretation of coefficients, all continuous variables were scaled by subtracting the mean
and dividing by the standard deviation.

Simulations of the null hypothesis (no effect of the explanatory variables) suggested that the models had
an inflated type I error rate, approximately equal to 0.1 with a nominal P-value of 0.05 (Ives, 2015); therefore, we
used parametric bootstrapping to quantify support for a model that includes pyrodiversity, an interaction between
pyrodiversity and fire severity, and an interaction between pyrodiversity, fire severity and drought intensity in the
models (Booth, 1995). All statistical analyses were conducted in R version 3.2 (R Core Team, 2015).
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ENVIRONMENTAL HETEROGENEITY

We hypothesized that plant-pollinator communities would likely respond to solar radiation, water availability and
soil conditions. We therefore considered the effect of the following three measures of environmental heterogeneity
(see Sec. 1.6.1 for details): heat load (i.e., McCune’s solar radiation, an estimate of solar radiation taking latitude,
slope and aspect into account, McCune & Keon, 2002) and topographic compound index (an estimate of the
balance between water accumulation and drainage, Evans et al., 2014).

As we did for our metric of pyrodiversity, we calculated the diversity of environmental conditions in
buffers of different sizes and used this estimate as a metric of environmental heterogeneity for each variable
(see Sec. 1.6.1). We considered weighted environmental heterogeneity only because the variables are not natu-
rally categorical. We also could not create a composite metric across all environmental variables because there
were too many unique combinations of variables to yield meaningful measures of diversity.

To examine the effect of environmental heterogeneity on flowering plant and pollinator communities, we
followed the same approach as we did when examining the influence of pyrodiversity. With bee, floral or interac-
tion richness as response variables, each environmental heterogeneity measure, along with terms for interactions
between that environmental variable and severity of the most recent fire as well as drought intensity were included
as explanatory variables. Parametric bootstraps were used to determine the support for including the environ-
mental heterogeneity and the interaction between environmental heterogeneity, drought and fire severity in the
model.

β-DIVERSITY

Pyrodiversity may also influence the regional diversity of an area by affecting the spatial heterogeneity of commu-
nities. If areas that experienced different fire characteristics support distinct communities, this will lead to species
turnover (β-diversity). Similarly, communities with similar fire characteristics may share many species, leading
to less spatial heterogeneity between those communities. We investigated the flowering plant, pollinator and in-
teraction β-diversity between communities with different fire characteristics and compared that to the β-diversity
between sites with similar fire characteristics. Because of its strong effects on site conditions, we focused on the
severity of the most recent fire in order to group communities by fire similarity.

We first calculated the pairwise dissimilarity in plants, pollinators and interactions between site pairs across
all sites and within each fire severity classification (calculated using the Jaccard index of dissimilarity, a proxy for
species turnover through space. We also standardized turnover estimates to account for differences in the richness
between sites (see Section 1.6.2 for details).

For the community dissimilarity across and within fire severity classifications, we regressed pairwise com-
munity dissimilarity against geographic distance using linear mixed models (Bates et al., 2014; Kuznetsova et al.,
2014). A positive relationship between community dissimilarity and geographic distance would suggest that
communities were spatially structured such that communities that are closer together share more species than
communities that are farther apart.

Additionally, in the model of dissimilarities within a fire severity classification, we included an interaction
between pair-wise site distances and the fire severity of the site-pair to allow the different site types to have
different rates of turnover through space. A significant interaction with the severity of the most recent fire and the
geographic distance between communities would indicate that the rate of species turnover was influenced by fire
severity.

Lastly, if the positive relationship between geographic distance and community dissimilarity is stronger be-
tween all sites than between sites of the same fire severity, this would be evidence shared fire severity between sites
increases the similarity of these communities. Thus a diversity of fire characteristics would contribute positively
to the dissimilarity between sites and subsequently β-diversity.

RESOURCE AVAILABILITY AND USE

We next investigated whether fire diversity has the potential to buffer against drought-induced resource scarcity.
We first asked whether the floral resources in areas with contrasting fire characteristics responded differently to
drought. We again focused on severity of the most recent fire to contrast the fire characteristics of an area. We
used the total number of inflorescences of each plant species as a proxy for floral resource availability.

To determine whether fire severity influenced the effect of drought on resource availability, we asked
whether floral resources depended on the interaction between severity of the most recent burn and year, assuming
that the resource differences between years are primarily attributable to the shift in drought intensity. We also

7



included a linear and quadratic term for day of the year to account for floral phenologies. The measurements of
floral abundance were taken at the level of flowering plant species, so we included a random effect of plant species
to account for differences in the number of inflorescences across species. We log-transformed floral abundance
and assumed a Gaussian error distribution. A negative effect of year would indicate that floral resources were
decreased in a more extreme drought year, and an interaction with fire severity would indicate that that magnitude
of the effect of drought was influenced by fire characteristics.

Fire severity may also buffer against the effects of resource scarcity by influencing the way pollinator re-
source use is altered by drought. Limited floral resources might cause pollinators to visit less preferred resources
or shift the pollinator community composition to favor generalists. If different fire severity areas are differentially
affected by drought, however, some areas may be able to maintain a more stable level of interaction specialization
through shifts in resource availability. We therefore first determined whether bee community specialization dif-
fered between years to look for an effect of drought intensity, and whether there was evidence for an interaction
effect between year and the severity of the most recent fire.

To investigate this, we created plant-pollinator interaction networks for each survey day. We then calculated
community-level specialization (H2, Blüthgen et al., 2006). This specialization metric measures the deviation of
the observed interaction frequency between plants and pollinators from a null expectation where all partners
interact in proportion to their abundances (Blüthgen et al., 2006). To standardize the metric across communities
with different numbers of species and abundance distributions, we also corrected the specialization estimates
using the expected specialization of randomly assembled communities with the same species richness, species’
abundances, and interactions per species (Blüthgen et al., 2006; Vázquez et al., 2007). To detect changes in
specialization across years, we used the community-level specialization scores as the response variable in a linear
mixed model that included a term for the interaction between fire severity and year. A negative effect of year
would suggest that pollinators were more generalized in a more extreme drought year, and an interaction with fire
severity would indicate that the shift in foraging behavior was influenced by fire characteristics.

Fire severity might also affect pollinator resource use and its interaction with drought by influencing the
spatial distribution of pollinators in relation to their floral hosts. If pollinator communities track floral resources,
differences in floral community composition between sites should lead to corresponding differences in pollinator
communities. Fire severity may also interact with this process if, for example, only high severity areas support
plants that primarily attract the specialized pollinators that are most likely to track the distribution of their floral
hosts. Thus high severity pollinator community composition would be most strongly correlated with floral host
composition. Drought might enhance or diminish this pattern in areas with specific fire severities, depending on
its effect on pollinator community specialization.

To investigate this hypothesis, we tested for an interaction between year and fire severity on patterns of
pollinators tracking specific floral resources across space. We correlated the floral community dissimilarities to
analogous dissimilarities for the pollinator communities using Mantel tests, analyzing each year separately. We did
this within and across communities in different burn severities to determine whether pollinators tracked resources
differently depending on the severity of the most recent fire. We used an abundance-based measure to estimate the
dissimilarity of plant and pollinator communities (Chao et al., 2005a).

1.4 Results
Over two years and across 18 sites, we collected 7626 bee specimens comprising 162 species or morphospecies
across 32 genera. We observed pollinator visitation on 71 flowering plant species. We observed 1213 unique
plant-pollinator interactions (10.5% of potential interactions). Over one thousand specimens were collected in
each of the genera Bombus, Lasioglossum and Hylaeus. The most species rich genera were Osmia (36 species),
Andrena (19 species), Lasioglossum (12 species or morphospecies) and Megachile (12 species). Approximately
20% of the bee species were observed only once, and approximately 40% of species were collected fewer than five
times, rates that are consistent with what is found in other, even longer-term studies (e.g., M’Gonigle et al., 2015;
Petanidou et al., 2008a; Olesen et al., 2008). In addition, in a four-year survey across all of Yosemite National
Park, T. Griswold and colleagues collected around 520 bee species and morphospecies, and in our survey we
collected 30% of those species. All plant and pollinator species were native except the European honey bee, Apis
mellifera, which was common throughout the basin. Around 800 (11%) of collected specimens were honey bees.
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PYRODIVERSITY

Pyrodiversity, both weighted and unweighted by the similarity of fire histories, positively affected floral, pollinator
and interaction richness, though the strength of the effect depended on the scale at which pyrodiversity was calcu-
lated (Figs. 1.2, 1.7). The effect size of both metrics of pyrodiversity peaked within 150 m of the monitoring area
(Tabs. 1.1, 1.3). Within this buffer, the unweighted diversity of fire histories ranged from 0.25 to 0.85 and weighted
diversity from 0.03 to 0.13 (both with hypothetical ranges from 0− 1). In addition, unweighted pyrodiversity at
a 150 m scale explained significant variation in the plant, pollinator and interaction richness. Weighted pyrodi-
versity interacted with the severity of the most recent fire and, for pollinators and plant-pollinator interactions,
pyrodiversity also interacted with drought intensity (Table 1.1). Weighted pyrodiversity showed similar trends,
though the significance was marginal (Table 1.3). Because the trends were similar but unweighted pyrodiversity
showed a stronger effect, we focus on the response of communities to unweighted pyrodiversity.

In areas where the most recent fire was low or moderate in severity, pyrodiversity had a positive effect on
bee, floral and interaction richness (Table 1.2, Fig. 1.2). This translates into a mean gain of 54–58 bee species
(˜35% of the observed bees), 8–14 flowering species (˜20% of flowering plants), and 24–43 interactions (˜4%
of interactions) between areas with the minimum and maximum observed pyrodiversity. In areas where the most
recent fire was high in severity, however, floral, pollinator and interaction richness did not respond to pyrodiversity
(Table 1.2, Fig. 1.2).

High severity areas, however, had higher plant, pollinator and interaction richness than low severity areas
at mean levels of pyrodiversity (i.e., at pyrodiversity = 0, Fig. 1.2, estimate ± bootstrapped standard error of the
estimate of the difference between low and high severity sites bee richness, 2.171± 0.17; plant richness, 0.440±
0.21; interaction richness, 0.532± 0.28). This corresponds to an average of 5 more pollinator and plant species
and 9 more interactions in high severity sites than in low severity sites. Moderate severity sites also had higher
pollinator and floral richness than low severity sites (bee richness, 1.545± 0.18; plant richness, 0.300± 0.22). In
moderate severities sites, there was an average of 4 more plant and pollinator species than in low severity sites.

There was a significant effect of year on bee and interaction richness, suggesting a negative effect of drought
(estimate for the difference between 2013 and 2014 ± standard error of the estimate, bee richness: −0.330±
0.09; interaction richness: −0.625± 0.09). This resulted in 3, 3, and 7 fewer bee species and 6, 6 and 8 fewer
interactions in low, moderate, and high severity sites respectively. The decline in interaction richness in moderate
severity sites was buffered in these sites where the difference between years was less pronounced (estimate for
interaction between moderate site severity and year ± standard error of the estimate, 0.315± 0.12).

In contrast, floral richness in low and moderate severity sites was not significantly reduced in the more
extreme drought year, but it was in high severity sites (estimate of the decline in floral richness, −0.28± 0.14,
Fig. 1.2). Species richness in high severity areas declined by an average of 3 flowering species.

Response of bee and interaction richness to pyrodiversity was weaker in the more intense drought year, and
the magnitude of the difference was higher in areas where severity of the last burn was low or moderate (Table 1.1;
compare the slope of moderate and low in 2013 vs. 2014, Table 1.2; compare first and second panels, Fig. 1.2).
The interaction of year and the relationship between floral richness and pyrodiversity was not significant (Table
1.1, Fig. 1.2).
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Table 1.1: The support for including pyrodiversity of unique fire histories and its interaction with fire severity
and drought intensity. χ2 values represent the ratio of the likelihoods of the model with and without the variable
of interest. P-values are calculated via 1000 parametric bootstrap iterations. They represent the probability of
observing a χ2 value more extreme than the observed value when data is simulated from the model without the
variable of interest. Symbols denote significance, with ’ and * indicating 0.1 and 0.05, respectively. Significant
terms are bolded.

No interaction Severity interaction Severity, drought interaction
Buffer radius χ2 P-value χ2 P-value χ2 P-value

Bee Richness

100 3.984 0.084′ 6.818 0.193 12.765 0.122
150 5.905 0.030∗ 10.074 0.072′ 17.044 0.034∗
200 4.402 0.065′ 7.517 0.163 12.467 0.140
250 1.932 0.217 3.528 0.496 8.786 0.298

Floral Richness

100 2.06 0.222 6.91 0.186 9.341 0.280
150 3.969 0.104 13.213 0.025∗ 13.84 0.064′

200 3.101 0.123 8.269 0.132 8.442 0.318
250 0.923 0.406 2.662 0.602 2.697 0.901

Interaction Richness

100 3.996 0.081′ 6.877 0.170 15.009 0.067′

150 5.897 0.047∗ 10.187 0.080 19.52 0.020∗
200 4.393 0.058′ 7.563 0.161 14.427 0.078′

250 1.940 0.248 3.582 0.487 10.903 0.179
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Table 1.2: The estimate and standard error of the slope of bee , floral and interaction richness against pyrodiversity.
Terms where the 95% confidence interval around the parameter estimate did not overlap zero (indicated in bold)
were inferred to explain significant variation in floral, bee or interaction richness (using the parametric bootstrap).
Standard errors of the parameter estimates are calculated as the standard deviation of the parametric bootstrap
estimates of the coefficient of interest (Booth, 1995).

Buffer radius Year Low Mod High

Bee Richness

100 2013 0.22± 0.122 0.408± 0.18 0.021± 0.105
150 2013 0.326 ± 0.125 0.337 ± 0.148 −0.012± 0.115
200 2013 0.196± 0.094 0.439± 0.188 −0.026± 0.141
250 2013 0.144± 0.093 0.411± 0.219 −0.043± 0.138
100 2014 0.044± 0.124 0.238± 0.176 0.076± 0.110
150 2014 0.152± 0.127 0.16± 0.155 0.06± 0.113
200 2014 0.086± 0.102 0.238± 0.192 0.066± 0.138
250 2014 0.054± 0.099 0.132± 0.217 0.043± 0.141

Floral Richness

100 2013 0.095± 0.133 0.457± 0.201 −0.001± 0.122
150 2013 0.317 ± 0.137 0.329 ± 0.173 −0.078± 0.125
200 2013 0.161± 0.110 0.45± 0.210 −0.054± 0.152
250 2013 0.102± 0.110 0.294± 0.249 −0.057± 0.158

Interaction Richness

100 2013 0.318± 0.185 0.769± 0.291 0.003± 0.183
150 2013 0.543 ± 0.201 0.59 ± 0.245 −0.033± 0.174
200 2013 0.318± 0.159 0.821± 0.3 −0.054± 0.216
250 2013 0.224± 0.148 0.806± 0.357 −0.076± 0.239
100 2014 0.272± 0.207 0.444± 0.296 0.084± 0.174
150 2014 0.485 ± 0.209 0.325± 0.235 0.045± 0.179
200 2014 0.307± 0.164 0.406± 0.309 0.059± 0.218
250 2014 0.229± 0.155 0.18± 0.357 0.038± 0.226
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Fig. 1.2: The response of bee, floral and interaction richness to pyrodiversity. The color of the curves and points
correspond to low, moderate, and high severity of the most recent fire classifications. The columns depict trends
in 2013 and 2014, severe and extreme/exceptional drought years, respectively. The solid line indicates the mean
slope estimate and the dashed lines are the 95% confidence intervals around the estimate. Points represent the
richness of plants, pollinators or interactions averaged across the study season. The pyrodiversity axis is scaled so
that zero represents the mean pyrodiversity.
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ENVIRONMENTAL HETEROGENEITY

Plant and pollinator communities did not respond to the measures of environmental heterogeneity we considered
at any scale, except there was a negative relationship between bee and interaction richness and heat load diversity
at a buffer size of 200m and 250m (Tabs. 1.4, 1.5, Fig. 1.8).

β-DIVERSITY

The dissimilarity between flowering plant communities across the landscape was positively related to the distance
between sites (estimate of the slope of dissimilarity with distance across all sites, 0.06± 0.026, p-value = 0.02,
Fig. 1.3). In addition, the rate of turnover of floral communities depended on the severity of the fire they ex-
perienced (Fig. 1.3). The dissimilarity between floral communities in high severity sites did not respond to the
distance between sites, whereas the dissimilarity between communities in low and moderate burn sites increased
with distance at the same rate (estimate of the slope of dissimilarity with distance in low and moderate severity
areas: 0.18± 0.055, P-value=0.002, Fig. 1.3). The floral community dissimilarity at the mean geographic distance
between sites was not significantly affected by burn severity, though the dissimilarity of higher severity sites was
higher at the smaller geographic distance between sites.

The relationship between floral community dissimilarity and distance was weaker across all sites than
the relationship within moderate and low severity sites. In addition, at the mean distance between sites, the
dissimilarity of floral communities between all sites was similar to the dissimilarity between sites that experienced
the same fire severity (estimate of the dissimilarity across all sites vs. within the same fire severity, 0.47± 0.026
vs. 0.470± 0.054). Therefore, floral species turnover between sites across different fire severities is not stronger,
on average, than the turnover between sites that experience similar fire histories.

In contrast to the floral communities, bees and interactions were only structured geographically across all
sites (estimate of the slope of distance and bee community dissimilarity: 0.046± 0.020, P-value=0.03; interaction
dissimilarity 0.053± 0.026, P-value=0.03; Fig. 1.3).
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Fig. 1.3: The floral, bee and interaction composition turnover across all sites (top panels) and within a fire severity
classification (bottom panels). Points represent the pair-wise dissimilarity of communities (corrected for differ-
ences in species richness). The solid line indicates the mean slope estimate and the dashed lines are the 95%
confidence intervals around the estimate.
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Fig. 1.4: The effect of the more recent fire severity an area experienced and drought intensity on resource use of
pollinators across different fire severities (top panels) and between plant and pollinator communities at sites with
similar fire histories (bottom panel). ρ corresponds to the Mantel statistic.

RESOURCE AVAILABILITY AND USE

Fire severity affected both availability of floral resources and their diminishment in response to increasing drought
intensity. High severity burn areas had higher floral abundance than low severity areas (estimate ± standard
error of the difference between high and low severity sites in log floral abundance, 2.920± 1.42, p-value= 0.05,
Fig. 1.9), but flower abundance declined more strongly than in low and moderate severity sites in the extreme
drought year (estimate of the decline in floral abundance, −7.60± 0.90, p-value= 10−16, Fig. 1.9). Moderate
and low severity sites also declined in flower abundance between years (−3.74± 0.96, p-value= 10−5, Fig. 1.9).
Pollinators were significantly more generalized in the more extreme drought year (estimate of the difference in
specialization between 2013 and 2014, −0.45± 0.21, p-value= 0.004, Fig. 1.10), though fire severity did not
influence this shift.

In addition, drought also disrupted the spatial correspondence between the composition of pollinator and
floral communities. Like specialization, however, fire severity did not influence this change. In 2013, across the
study landscape, the dissimilarity of pollinator communities was significantly correlated with the plant community
(ρ = 0.3, p-value= 0.009, Fig. 1.4), suggesting that pollinators track their floral hosts. Additionally, in high
and low severity sites, the dissimilarity of plant and pollinator communities were significantly correlated (high:
ρ = 0.6, p-value= 0.02, low: ρ = 0.5, p-value= 0.05, Fig. 1.4). These relationships disappeared in 2014. The
dissimilarity of bee communities in areas with moderate severity burns was not significantly correlated with the
dissimilarity of flowering plants in either year.
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Fig. 1.5: The proportion of sites with disturbance specialists a) Epilobium angustifloium circumvagum (fireweed),
b) Solidago canadensis elongata (goldenrod), c) Apocynum androsaemifolium (dogbane), and d) Ceanothus cor-
dulatus (mountain whitethorn). C. cordulatus is a nitrogen fixer. Photos a),b),d) by L. Ponisio, c) by S. Stephens.
Botanical illustrations by T. Norwood.

1.5 Discussion
We have shown that fire diversity contributes to the maintenance of flowering plant and pollinator biodiversity.
Plant-pollinator communities in low and moderate severity burn areas with the maximum observed pyrodiversity
(as measured by the diversity of fire histories around a site) had 34% more pollinator species, 33% more flow-
ering plant species, and 14% more interactions, on average, than areas with the minimum pyrodiversity. The
turnover of pollinators and species interactions between areas with different fire characteristics was also greater
than within areas that experienced the same most recent fire severity, suggesting fire characteristic diversity is
important for maintaining the spatial heterogeneity of pollinator community composition and plant-pollinator
interactions. Lastly, fire severity interacted with drought such that floral resources were differentially affected
depending on the severity of the most recent fire, suggesting that the diversity of fire characteristics may buffer the
impacts of resource scarcity.

Importantly, however, the severity of the most recent fire interacted with the response of plant-pollinator
communities to fire diversity. Flowering plants, pollinators, and their interactions in low and moderate sever-
ity burns responded positively to pyrodiversity, whereas communities in high severity burns did not. Similarly,
flowering plant communities in low and moderate severity sites were spatially structured (i.e., species turnover
between sites increased with the geographic distance between them) while the floral communities at high severity
sites were not. High severity fires, by definition, strongly affect biotic and abiotic soil conditions and, importantly,
often volatilize soil nitrogen (Hamman et al., 2008; Hart et al., 2005; Johnson et al., 2008). This may act as a
biotic filter, limiting which plant species can establish and persist after a high severity fire. If only a subset of
plant species are able to colonize or germinate after a high severity fire, the community that forms will be depend
less sensitively on landscape context and, hence, will be less affected by the surrounding pyrodiversity. A limited
successful species pool would also constrain the spatial turnover of species. For example, in our study, the com-
munities that characterize high severity patches are often early successional species such as nitrogen fixers and
other disturbance specialists (Aleksoff, 1999; Groen, 2005; Coladonato, 1993, Fig. 1.5).

In contrast to high severity sites, low severity sites were characterized by a greater number of late succession
species, while moderate severity sites were characterized by a mix of early and late colonizers (Fig. 1.5). By
altering the biotic and abiotic soil and canopy structure around these sites (Hamman et al., 2008; Hart et al.,
2005; Johnson et al., 2008), a mosaic of fire histories may create a diversity of ecological niches at local and
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landscape scales. Unlike in high severity sites, after a fire, a diversity of source populations could subsequently
colonize and persist. Together, these mechanisms would allow species of different successional stages to coexist,
thus facilitating the establishment of species rich floral communities. The response of the bee communities to
pyrodiversity mirrored the response of the flowers. This is likely a result of plant-pollinator interactions and
suggests that pyrodiversity has the capacity to generate and maintain biodiversity via interactions across trophic
levels (Potts et al., 2003b; Janz et al., 2006; Thompson, 2005).

Bees may also benefit from the greater diversity of nesting resources that may be found in sites with greater
pyrodiversity. In low and moderate severity sites, the strongest responses to pyrodiversity were in genera of species
with diverse nesting habits, particularly Osmia and Bombus (Fig. 1.11, Cane et al., 2007). A diverse fire history
may thus increase heterogeneity among nesting resources and thus allow species with different preferences to
co-exist. In addition, in some genera there is evidence that floral preferences mediate the response of species to
pyrodiversity. For example, Andrena species richness was generally positively related to pyrodiversity, though
with some variability (Fig. 1.11). Nine of the 19 Andrena species were collected visiting primarily Ceanothus
cordulatus (Fig. 1.5), and the sites with high pyrodiversity but low Andrena species richness did not have blooming
C. cordulatus. Thus though bee richness may respond to diversity of fire histories in an area, the reaction of
specialized species will be depend the presence of their floral hosts.

Interestingly, at a local scale, high severity burn areas had higher richness and abundance of flowers, which
translated into more species rich pollinator communities and interactions. Canopies opened by fire will often
support more floral resources which in turn attract more pollinators (Van Nuland et al., 2013; Grundel et al., 2010;
Campbell et al., 2007). Focusing only on a local scale, therefore, would overlook the potential for high severity
fires to homogenize communities over larger scales by decreasing the spatial structure of floral communities. It is
thus important to consider the effect of pyrodiversity at multiple spatial scales (Farnsworth et al., 2014).

Drought also interacted with the effect of pyrodiversity on plant-pollinator communities by weakening the
response of bees and plant-pollinator interactions to pyrodiversity. This is possibly because a lower level of overall
resource availability across the landscape caused pollinators to shift their resource use. Specifically, the increase in
drought intensity led to changes in pollinator community composition and foraging behavior such that interaction
networks were less specialized and pollinators no longer tracked plant communities. The effect of pyrodiversity
on pollinator communities is, therefore, context dependent, and the capacity for pyrodiversity to maintain diverse
pollinator communities may diminish with increasing drought occurrence.

In contrast to pollinators, the effect of pyrodiversity on floral community richness did not depend on drought
intensity. Floral species richness was most negatively affected by drought in the high severity sites and, prior to the
shift in drought intensity, floral richness at those sites was not related to pyrodiversity. Thus there is no expectation
that increasing drought intensity would alter the response of floral richness to pyrodiversity. It is unclear, however,
whether drought might, over longer time scales, mediate pyrodiversity’s ability to sustain floral diversity.

We found limited evidence that environmental heterogeneity directly affected plant and pollinator commu-
nities and, in fact, the only significant relationship we observed (that between bee and interaction richness and heat
load) was negative. This may be because pollinators might respond positively to certain levels of solar radiation
and negatively to others such that a diversity of conditions could negatively affect bees and subsequently inter-
action richness. Environmental heterogeneity is known to contribute to pyrodiversity (Kane et al., 2015; Collins
et al., 2007) and, thus, fire may provide a link between the diversity of abiotic conditions and the maintenance of
biodiversity.

In the future, fires in this region are predicted to shift from primarily low/moderate to high severity. Histor-
ically in the Sierra Nevada, high severity patches comprised less then 5% of fires and high severity patches were
also smaller (Collins et al., 2007). In the 2013 Rim Fire, over 20% of a nearly 260, 000 acre burn was classified as
high severity (Lydersen et al., 2014). Based on our findings, lower heterogeneity of fire severity may act to reduce
spatial turnover in plant-pollinator communities. The heterogeneity of community composition is a primary de-
terminant of the total species diversity present in a landscape and, thus, lower pyrodiversity may negatively affect
the richness of plant-pollinator communities across large spatial scales (Burkle et al., 2015).

On average, every 5% increase in pyrodiversity within 150 m of a site (a 0.05 unit increase in Simpson’s
diversity) gained approximately one pollinator and flowering plant species and almost two interactions. Thus
predicted shifts in fire regimes to include less pyrodiversity compounded with increasing drought occurrence will
negatively influence the richness of plant and pollinator communities in this and other forested ecosystems. Some
managers only allow fires to burn under mild (prescribed fire) or extreme (wildfire) conditions. We provide further
evidence that pyrodiversity contributes to biodiversity and therefore managers should place more significance on
burning under a wider-range of fire conditions. Wildland Fire Use programs that restore fire regimes, such as those
implemented in the Illilouette Basin, are integral for promoting both pyrodiversity and biodiversity. Additionally,
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the combination of Wildland Fire Use and prescribed fires with varied burn conditions will prevent homogenizing
mega-fires such as the Rim Fire. These management strategies are already recommended, and our results affirm
that their usage should continue and hopefully also expand.

1.6 Supplemental methods

PYRODIVERSITY AND ENVIRONMENTAL HETEROGENEITY WEIGHTED METRICS

Pyrodiversity

To calculate the weighted pyrodiversity metric we used a functional diversity framework (Villéger et al., 2008;
Schleuter et al., 2010; Laliberté & Legendre, 2010). We treated fires like traits and the different fire severity values
as trait values. Within a fire, the severities are treated as ranked traits (so low severity fire is more similar to a
moderate severity fire than a high). Pixels are species categorized by different combinations of fire traits. We
also weighted the importance of different fires in determining the uniqueness of fire histories by the number of
years ago they occurred. Within each buffer around the monitoring site, we calculated the number of pixels of
each combination of fire traits. We then used the metric of functional dispersion to calculate the diversity of fire
histories weighted by similarity (Laliberté & Legendre, 2010).

Environmental heterogeneity

Spatial data were prepared in ArcGIS 10.2. Environmental variables originated with a USGS 10 meter Digital
Elevation Model and projected using bilinear interpolation into NAD 83 UTM 11N (Gesch et al., 2002). Heat
load and topographic compound index were generated with an ArcScript (Fig. 1.6, McCune & Keon, 2002; Dilts,
2010; Evans et al., 2014). We rounded the values of the environmental variables to the hundredth decimal place.

We used a similar procedure to calculate environmental heterogeneity as we did for pyrodiversity. We
treated environmental variables like traits and the different values of those variables as trait values. Pixels
are species categorized by different values of each environmental variable. Unlike pyrodiversity, however, the
weighted diversity of each environmental variable was calculated separately because treating the different vari-
ables as different “traits” of pixels lead to too many unique combinations of traits values to estimate a meaningful
metric of heterogeneity.

DISSIMILARITY STANDARDIZATION

Dissimilarity estimates can be affected by the total number of species sampled at a site (e.g., Chase et al., 2011a).
We use null models to estimate the deviation of the observed β-diversity from that which would be expected under
a completely random community assembly process Chase et al. (2011a).

Randomly assembled communities were generated by constraining the species richness so that they were
the same as those in the observed communities. The algorithm randomizes a binary matrix while maintaining the
same row sums (species richness at a site) and column sums (number of sites at which a species was observed)
using the quasiswap method in the R function commsimulator (Oksanen et al., 2013b). We then calculated the
fraction of randomly assembled communities with dissimilarity values less than (and half of those equal to) that
of the observed community. We used this fraction as a “corrected dissimilarity score” for our observed data.
Corrected dissimilarity values near one indicate that our observed communities exhibit more species turnover
between sites than expected under a random assembly process while values near 0.5 indicate that our observed
communities exhibit levels of turnover more in line with the null expectation.

To account for the fact that the same pair-wise comparisons were included in each year (i.e., the dissimi-
larity between site 1 and site 2), we included a random effect of each site-site combination. This helps account
for the non-independence of pair-wise dissimilarities but does not account for spatial non-independence (i.e., the
dissimilarity of site 1 and site 2 is not independent from the dissimilarity of site 2 and site 3, Anderson et al.,
2011). P-values for linear mixed models were obtained using Satterthwate’s approximations (Kuznetsova et al.,
2014).
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Table 1.3: The support for including pyrodiversity weighted by fire history similarity and its interaction with
fire severity and drought intensity. χ2 values represent the ratio of the likelihoods of the model with and without
the variable of interest. P-values are calculated via 1000 parametric bootstrap iterations. They represent the
probability of observing a χ2 value more extreme than the observed value when data is simulated from the model
without the variable of interest. Symbols denote significance, with ’, * and ** indicating 0.1, 0.05 and 0.01,
respectively. Significant terms are bolded.

Buffer radius χ2 P-value χ2 P-value χ2 P-value

Bee Richness

100 2.821 0.133 4.487 0.383 8.345 0.369
150 0.1 0.764 10.683 0.057′ 14.051 0.08′

200 0.364 0.576 9.085 0.109 10.653 0.184
250 0.191 0.713 3.454 0.481 6.182 0.562

Floral Richness

100 1.745 0.257 5.901 0.246 8.943 0.309
150 1.592 0.259 9.682 0.088′ 10.808 0.177
200 2.361 0.2 5.356 0.303 5.916 0.563
250 0.572 0.511 4.409 0.385 4.608 0.678

Interaction Richness

100 2.835 0.175 4.483 0.352 10.316 0.190
150 0.11 0.762 10.698 0.057′ 15.236 0.063′

200 0.376 0.577 8.973 0.097′ 11.219 0.175
250 0.21 0.726 3.406 0.511 7.169 0.439
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Table 1.4: The support for including heat load diversity and interaction with fire severity and drought intensity.

Buffer radius χ2 P-value χ2 P-value χ2 P-value

Bee Richness

100 2.131 0.205 6.124 0.243 11.7 0.177
150 2.749 0.153 6.643 0.227 10.115 0.228
200 5.596 0.043∗ 6.911 0.199 9.651 0.235
250 6.275 0.027∗ 7.627 0.148 11.165 0.185

Floral Richness

100 0.968 0.415 5.803 0.280 7.173 0.452
150 1.58 0.268 5.47 0.274 5.881 0.588
200 2.196 0.205 2.986 0.566 3.48 0.817
250 1.99 0.236 3.051 0.535 4.278 0.737

Interaction Richness

100 2.164 0.210 6.158 0.244 14.162 0.070
150 2.75 0.149 6.644 0.217 11.8 0.136
200 5.561 0.030∗ 6.865 0.221 11.033 0.175
250 6.219 0.034∗ 7.584 0.171 12.852 0.103
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Table 1.5: The support for including topographic compound index diversity and interaction with fire severity and
drought intensity. Including this variable in the model was not supported by the data.

Buffer radius χ2 P-value χ2 P-value χ2 P-value

Bee Richness

100 1.058 0.363 1.062 0.852 3.565 0.828
150 1.479 0.288 1.564 0.782 5.361 0.619
200 0.914 0.414 1.345 0.823 3.635 0.798
250 0.247 0.653 1.714 0.761 3.318 0.845

Floral Richness

100 0.384 0.594 0.741 0.902 2.771 0.881
150 0.736 0.458 0.856 0.904 1.858 0.960
200 1.213 0.336 1.305 0.824 2.766 0.903
250 0.861 0.432 1.453 0.808 2.829 0.854

Interaction Richness

100 1.033 0.371 1.037 0.893 4.726 0.723
150 1.466 0.278 1.557 0.775 7.102 0.449
200 0.904 0.432 1.334 0.838 4.698 0.706
250 0.243 0.659 1.686 0.775 4.003 0.777
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Fig. 1.6: The distribution of heat load estimates, topographic compound index estimates in the Illilouette Basin.
Monitoring sites are indicated by points.
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Fig. 1.7: The response of floral, bee and interaction richness to pyrodiversity weighted by the similarity of fire
history. The color of the curves and points correspond to low, moderate and high severity fires classifications. The
columns depict trends in 2013 and 2014, severe and extreme/exceptional drought years, respectively. The solid
line indicates the mean slope estimate and the dashed lines are the 95% confidence intervals around the estimate.
Points represent the richness of plants, pollinators and interactions averaged across the study season. Pyrodiversity
axis is scaled so zero represents the mean pyrodiversity.
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Fig. 1.8: The response bee, floral and interaction richness to heat load diversity.
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Fig. 1.9: The effect of fire severity on the abundance of floral resources throughout the study season. Points
represent the mean species abundance of floral resources at each site.
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Fig. 1.10: The specialization of pollinator communities across the study landscape in severe (2013) and extreme
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Fig. 1.11: The response of richness of species within the 32 genera collected to pyrodiversity. The top panels are
the patterns found in sites where the most recent fire was of low or moderate severity, and the bottom panels are
high severity sites. The left panels are the genera where the majority of species use wood to nest, and primarily
ground-nesting genera are on the right panel. Multiple genera of both wood- and ground- nesters responded
positively to pyrodiversity in the low and moderate severity sites. Few genera responded to pyrodiversity in high
severity sites.
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Chapter 2

On-farm habitat restoration counters
biotic homogenization in
intensively-managed agriculture

2.1 Transition
In Yosemite I was able to determine the mechanisms sustaining diversity in a relatively natural system and make
recommendations for maintaining those processes. Often, however, a landscape has already been degraded and we
must determine what restoration efforts are able to reassemble functional communities of interacting organisms.
This is often the case in agricultural landscapes where widespread conversion of natural ecosystems to agriculture,
combined with intensification of farming practices, has led to the homogenization of biological communities.

2.2 Abstract
To slow the rate of global species loss, it is imperative to understand how to restore and maintain native biodiver-
sity in agricultural landscapes. Currently, agriculture is associated with lower spatial heterogeneity and turnover
in community composition (β-diversity). While some techniques are known to enhance α-diversity, it is unclear
whether habitat restoration can re-establish β-diversity. Using a long-term pollinator data-set, comprising ~9, 800
specimens collected from the intensively managed agricultural landscape of the Central Valley of California, we
show that on-farm habitat restoration in the form of native plant “hedgerows”, when replicated across a landscape,
can boost β-diversity by approximately 14% relative to unrestored field margins, to levels similar to some natural
communities. Hedgerows restore β-diversity by promoting the assembly of phenotypically diverse communities.
Intensively managed agriculture imposes a strong ecological filter that negatively affects several important dimen-
sions of community trait diversity, distribution, and uniqueness. However, by helping to restore phenotypically
diverse pollinator communities, small-scale restorations such as hedgerows provide a valuable tool for conserving
biodiversity and promoting ecosystem services.

2.3 Introduction
Widespread conversion of natural ecosystems to agriculture, combined with intensification of farming practices,
is causing major declines in biodiversity globally (Green et al., 2005; Tscharntke et al., 2005; Tilman et al.,
2001). Agriculture is particularly associated with the homogenization of biological communities (Flohre et al.,
2011; Gabriel et al., 2006; Hendrickx et al., 2007; Vellend et al., 2007; Clough et al., 2007; Ekroos et al., 2010).
The turnover of species through space and subsequent heterogeneity of community composition (β-diversity)
is a primary determinant of the total species diversity present in a landscape (Flohre et al., 2011). Thus, by
homogenizing communities, agriculture can act to reduce biodiversity on both local and regional scales (Flohre
et al., 2011; Hendrickx et al., 2007; Ekroos et al., 2010).

Spatial heterogeneity in community composition can be influenced by a variety of deterministic (niche-
based) and stochastic (neutral) processes. Species are thought to “deterministically” track the biotic and abiotic
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conditions to which they are adapted and, in a heterogeneous environment, this will contribute to the spatial struc-
turing of communities (e.g., Whittaker, 1960; Püttker et al., 2014; Chase, 2007; Condit et al., 2002). Stochastic
processes, such as priority effects or rare long distance dispersal events, can then amplify or weaken these signals
(Püttker et al., 2014; Condit et al., 2002; Chase, 2003).

Ecological filters are one deterministic process that can shape community assembly because only species
with particular sets of physical, functional, and life-history traits are able to persist (Chase, 2007; Püttker et al.,
2014). The diversity and distribution of ecological filters in a landscape contributes to spatial heterogeneity. By
reducing the diversity of filters, habitat homogenization (e.g., the conversion of complex landscapes into simplified
landscapes such as monocultures) can reduce β-diversity and species’ trait diversity (Chase, 2007; Püttker et al.,
2014).

The loss of species and/or species trait diversity that can result from conventional monoculture agriculture
may also compromise the provisioning of important ecosystem services such as pollination, pest control, and
nutrient cycling (Tscharntke et al., 2005; Kremen & Miles, 2012). Currently, our agricultural system compensates
for these lost ecosystem services by increasing external inputs (Kremen et al., 2012), which can have unwanted
negative consequences on both humans and wildlife (e.g., Gill et al., 2012; Eskenazi et al., 2007). The negative
ramifications of high input agricultural systems have fostered the development and refinement of agricultural
techniques that minimize external inputs by utilizing and regenerating ecosystem services (Kremen & Miles, 2012;
Kremen et al., 2012). Through local and landscape-scale diversification of crops and habitat, these techniques
seek to promote biological interactions that lead to better provisioning of ecosystem services. Such systems also
support higher local biodiversity (Gonthier et al., 2014; Tuck et al., 2014; Hole et al., 2005; Gabriel et al., 2013)
and spatial heterogeneity in community composition (Gabriel et al., 2006; Clough et al., 2007) than conventional
monoculture agriculture. Particularly, techniques that foster landscape-level diversification by maintaining or
restoring fragments of natural habitat have been shown to be effective in supporting greater numbers of species
and the ecosystem services that they provide (e.g., Kennedy et al., 2013; Garibaldi et al., 2011; Ricketts et al.,
2008) while also increasing community level β-diversity (Kehinde & Samways, 2014). However, if landscape
diversification reduces yields, it may lead to further extensification, harming biodiversity (land-sparing argument
Phalan et al., 2011). Recent work suggests that land-sparing arguments promoting intensive, simplified agriculture
are over-simplified (Kremen, 2015), since such forms of agriculture often also lead to extensification (Meyfroidt
et al., 2014).

In the most simplified agricultural areas, natural habitat is nearly non-existent. In some cases farmers
have adopted the habitat restoration technique by planting strips of native plants along farm edges (hedgerows)
to help diversify the landscape, without removing arable land from production. Hedgerows have been shown
to support higher diversity and abundance of various ecosystem service providers, including beneficial insects,
and birds (Morandin & Kremen, 2013; Hinsley & Bellamy, 2000; Bianchi et al., 2006; Morandin et al., 2014;
Hannon & Sisk, 2009). It remains unclear, however, whether, they mimic natural habitat by re-creating spatially
structured communities, by leading to higher β-diversity. In addition, communities with diverse traits can provide
higher quality and more stable ecosystem services (Klein et al., 2009). Thus if hedgerows maintain the spatial
heterogeneity of communities at different hedgerows by supporting species with a diversity of traits, they may
promote the provisioning of ecosystem services such as pollination in agricultural areas (Klein et al., 2009).
Understanding whether simple restoration interventions such as hedgerows can counter biotic homogenization
when replicated across a landscape will be critical in assessing their value for ecosystem service provision and
biodiversity conservation.

Focusing on pollinators, key ecosystem service providers (Klein et al., 2007), here we ask whether hedgerows
support more spatially rich communities with more diverse suites of species traits. We do so using a long-term
data-set from the highly simplified and intensively managed agricultural landscape of California’s Central Valley.
We also identify which mechanisms are likely responsible for driving the spatial trends we find. Specifically we
uncover the processes leading to the observed patterns in pollinator β-diversity and, further, investigate whether
there is evidence that pollinator species track biotic and abiotic resources. Lastly, we test whether simplified
agriculture imposes an ecological filter on insect pollinators by favoring species with particular set of traits. In
our study landscape, hedgerows augment the richness and abundance of pollinators (Morandin & Kremen, 2013)
and the occurrence, persistence and colonization of both resource generalists and specialists (M’Gonigle et al.,
2015; Kremen & M’Gonigle, 2015), while also exporting pollinators into agricultural fields (Morandin & Kremen,
2013). Understanding whether hedgerows support spatial heterogeneity of communities is the next step towards
understanding whether they can conserve biodiversity and promote the provisioning of ecosystem services in
agricultural areas.
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2.4 Materials & Methods

STUDY SITES AND COLLECTION METHODS

We surveyed pollinators from 21 hedgerow sites and 24 unrestored control sites, located in the Central Valley
of California in Yolo, Colusa and, Solano Counties (Fig. 2.1). This is an intensively managed agricultural area
dominated by monocultures of conventional row crops, vineyards and orchards. The monitoring sites represent
a sample of field margin conditions across the northern Central Valley. Hedgerows, which consist of native,
perennial, shrub and tree plantings (Morandin & Kremen, 2013), are ca. 3–6m wide and approximately 350m
long and border large (ca. 30–hectare) crop fields. They are typically planted along field margins where they do
not remove valuable land from production. Hedgerows differ in age from newly established, “maturing” (1–10
years post-planting) to “mature” (established greater than 10 years ago). By investigating hedgerows at different
stages of maturity, we can determine whether the effects of hedgerows on β-diversity accumulate with hedgerow
maturation. We also monitored unrestored control sites which are weedy edges that represent a variety of relatively
unmanaged field edges found in the region. Control sites were selected to match conditions surrounding the
hedgerow sites. For each hedgerow, we selected 1-2 unrestored controls adjacent to the same crop type (row,
orchard, pasture, or vineyard), within the same landscape context. The crop fields adjacent to hedgerows and
controls were similarly managed as intensive, high-input monocultures. The mean distance between monitoring
sites was 15 km, and the minimum distance between sites of the same type sampled in the same year was 2 km.
The entire area surveyed spanned almost 300 km2.
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We sampled pollinator communities between April and August each year from 2007 through 2013 (Table
2.3 & 2.4). Sites were sampled between two and five times per year (Table 2.3 & 2.4).

In each round of sampling, the order in which sites were sampled was randomized. Surveys were conducted
under sunny conditions when the temperature was above 21◦C and wind speed was below 2.5 meters/second.
Flower-visitors to plants in hedgerows and unrestored controls were netted for one hour of active search time (the
timer was paused when handling specimens). All insect flower visitors that touched the reproductive parts of the
flower were collected; however, here we focus only on wild bees, the most abundant and effective pollinators in
the system (C. Kremen, A. Klein and L. Morandin, unpublished data). Bee specimens were identified to species
(or morpho-species for some bee specimens in the genera Nomada and Sphecodes) by expert taxonomists.

Surveys of the biotic and abiotic conditions were also conducted at each site throughout the flight seasons
of the pollinators. At each site, each flowering plant in 50 one meter quadrats along the length of the hedgerow
or control site was identified to species or morpho-species. The abundance of each plant species was estimated
as the mean number of quadrats a species was present in, each year. In addition, in 2011 and 2012, we used the
same quadrats to evaluate the physical characteristics of the site including the amount of vegetative cover and
uncultivated, bare ground.

DIVERSITY ESTIMATES AND STATISTICAL ANALYSIS

To estimate the species turnover between sites of the same type (i.e., unrestored controls, maturing hedgerows,
or mature hedgerows), we used the variance in community composition as a measure of β-diversity (i.e., multi-
variate dispersion, see Section 2.7.1 for details, Anderson et al., 2011, 2006). To calculate this metric, we first
calculated the pairwise dissimilarity between sites within each year of the dataset using a dissimilarity estimator
that incorporates species abundances, while also accounting for unobserved species (Chao et al., 2005b).

Dissimilarity estimates can be affected by the total number of species and individuals sampled at a site
(e.g., Chase et al., 2011b; Kraft et al., 2011). For example, sampling from a fixed species pool, the probability
that two sites do not share any species is higher when there are few individuals at those sites. Confounding
sampling effects and species turnover can yield misleading results (e.g., Chase et al., 2011b; Kraft et al., 2011).
By extending the method described by Chase et al. (2011b) to include estimates of species’ abundances, we used
null models to estimate the deviation of the observed dissimilarity from that which would be expected under a
completely random community assembly process (see Section 2.7.1 for details). With the corrected dissimilarity
values, we then calculated the multivariate dispersion of communities as the variability in species composition
within a site type (see Section 2.7.1 for details, Anderson et al., 2011).

In order to investigate effects of site type, the β-diversity estimates were used as the response variable in
a linear mixed model with site type (unrestored control, maturing hedgerow, mature hedgerow) as an explanatory
variable along with random effects for both year and site (Bates et al., 2014; Kuznetsova et al., 2014). All analyses
were conducted in R, version 3.1.1 (R Core Team, 2015).

SOURCES OF β-DIVERSITY

We next assessed which spatial pattern was most responsible for maintaining β-diversity within each site type in
our landscape. Communities that turnover in species composition across space (i.e., those that exhibit β-diversity)
are thought to arise via two processes: 1) species replacement and 2) predictable species loss/gain (Baselga, 2012;
Gaston & Blackburn, 2008). In the latter case, species-poor sites will often be subsets of species-rich sites and thus
communities should exhibit some degree of nestedness. Such a pattern might occur when, for example, species
assemble along a resource gradient (Baselga, 2012). In contrast, species replacement should lead to communities
that turnover in composition via substitution of species. This pattern could result when species track their preferred
resource or, somewhat randomly via colonization and priority effects. Unlike species loss/gain, these communities
would not be expected to exhibit any patterns in nestedness. Thus, to identify which of these two scenarios
best describes the patterns in the landscape within each year, we determined whether our communities were
significantly nested (Almeida-Neto et al., 2012). We used the index NODF to measure nestedness (Almeida-Neto
et al., 2012; Ulrich & Gotelli, 2007).

To further uncover the processes contributing to spatial heterogeneity, we asked whether the dissimilarity
between pollinator communities within and between site types was related to the geographic distance between
sites. To do this, we compared the pollinator community dissimilarity matrix to the geographic distance between
sites using Mantel tests. To assess the significance of the correlation, we permuted dissimilarity values among
sites within each year to maintain the hierarchy of the data.
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We also looked for evidence that pollinator communities track resources across the landscape. One im-
portant such resource is floral hosts; if the majority of the pollinators track specific floral resources, differences
in floral community composition between sites should generate corresponding differences in pollinator communi-
ties. To test this, we used Mantel tests to compare the pollinator community dissimilarity matrix to an analogous
dissimilarity matrix for flowering plant species within and between site types. As we did for the bee community,
we used an abundance-based measure to estimate the dissimilarity of the floral communities (Chao et al., 2005b).

Rather than tracking particular flowering plant species, bees may track floral resources generally. There-
fore, we also characterized floral communities according to their species richness, diversity, and total floral abun-
dance, all proxies for floral resource availability. We then used a Gower dissimilarity measure to characterize the
changes in the floral resources between sites and then compared that to the pollinator community, again using
Mantel tests to look for associations between and within site types.

Lastly, both abiotic conditions and resources may affect which pollinator species are present. Bee species
vary considerably in their nesting habits and, therefore, the availability of specific nesting materials may influence
which species are able to occupy an area (e.g., Potts et al., 2005b; Sardinas & Kremen, 2014). To examine this, we
characterized the nesting resources at each site. Specifically, we measured the mean and variability of the amount
bare ground, dead wood, hollow stems, cracks in the soil, and vegetation cover (Potts et al., 2005b). We used
Mantel tests to correlate pollinator community turnover with differences in the physical characteristics of sites,
between and within site types, estimated using Gower dissimilarity.

COMMUNITY TRAITS

We determined whether agricultural areas act as an ecological filter on pollinator groups by comparing the trait
distributions of pollinators found at unrestored controls to those found at hedgerows. Our unrestored control
sites comprise a variety of unmanaged crop field edges and, therefore, represent the dominant conditions in our
landscape. Consequently, the species visiting these sites are those that are likely present in the landscape prior to
any restoration.

To characterize the trait diversity of the bee communities, we computed three metrics that capture diversity,
uniqueness, and distribution of trait values in the community: trait dispersion, divergence, and evenness (Villéger
et al., 2008; Schleuter et al., 2010). Trait dispersion is a measure of trait diversity, corrected for species richness
(Schleuter et al., 2010); trait divergence measures how species abundances are distributed within the trait space
(i.e., a measure of trait uniqueness, Villéger et al., 2008); trait evenness measures the regularity with which traits
are distributed across trait space, accounting for abundance (Villéger et al., 2008). In combination, these metrics
provide a relatively complete overview of the different aspects of species trait diversity (Villéger et al., 2008;
Schleuter et al., 2010).

Selection of appropriate characters is essential to the characterization of the community’s distribution and
diversity of traits (Villéger et al., 2008). We selected resource capture and use traits that collectively influence the
distribution of bee species as pollinators over space and time (Kremen & M’Gonigle, 2015) including resource
specialization (quantitative, d′; Blüthgen et al., 2006), body size (quantitative, inter-tegular span, mm, Cane,
1987), sociality (categorical: eusocial, solitary, cleptoparasitic), nest location (categorical: above ground, below
ground or mix), and nest construction (categorical: excavate or rent; Williams et al., 2010) as described in more
detail in Kremen & M’Gonigle (2015). Each trait has the same weight in trait diversity metric estimation (Villéger
et al., 2008; Schleuter et al., 2010). Pollinator specialization was calculated using plant-pollinator interaction
observations from a more extensive data-set from Yolo County (18000 interaction records) that included both
the data included in this study and additional data from sites where we collected flower visitors using the same
methods (M’Gonigle et al., 2015). The specialization metric measures the deviation of the observed interaction
frequency between a plant and pollinator from a null expectation where all partners interact in proportion to their
abundances (Blüthgen et al., 2006). It ranges from 0 for generalist species to 1 for specialist species. To determine
whether trait evenness, dispersion, and divergence differed between controls and hedgerows at different stages of
maturation, we used the trait diversity metrics as response variables in linear mixed models with site type as a
fixed effect and year and site as random effects (Bates et al., 2014; Kuznetsova et al., 2014).

If agriculture creates an ecological filter, the trait composition of agricultural bee communities should differ
from that of a community that was randomly assembled from a shared meta-community. To test whether agricul-
ture constitutes an ecological filter, we compared the observed trait values with the distribution of traits of ran-
domly assembled communities. Because species richness differs between hedgerow and control sites (Morandin
& Kremen, 2013) and, furthermore, because differences in species richness may constrain the observed trait val-
ues and trait diversity (for example, if only one species was observed, the trait diversity will always be zero), we
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randomly assembled communities of the same species richness as the observed communities. For quantitative
traits, we focused on the mean trait value at a site weighted by abundance and for categorical traits we calculated
the mean Simpson’s diversity of traits (finite sample formulation). To generate the randomized communities, we
shuffled the species between sites while maintaining the species richness and the number of occurrences of a
species within each year. We then re-calculated the mean trait value and Simpson’s diversity of traits for 9999
randomly assembled communities (Schleuter et al., 2010). Lastly, to calculate the probability of the observed trait
value given a random assembly process, we computed the fraction of randomly assembled communities that had
trait values greater than or equal to that of our observed community. For a given trait, if that probability was less
than 0.025% (two-tailed test), we concluded that site type exerted an ecological filter on that trait.

To complement the previous analysis, we also asked whether the trait diversity and Simpson’s diversity of
traits was significantly different between hedgerows and unrestored controls. We compared the mean trait value
or Simpson’s diversity across site types using linear mixed models, with site status as an explanatory variable and
site and year as random effects, as before (Bates et al., 2014; Kuznetsova et al., 2014).

Lastly, we asked whether the pollinator composition of communities supported by between hedgerows and
unrestored controls differed using a Permutational Multivariate Analysis of Variance (PERMANOVA) (Anderson
& Walsh, 2013). When comparing community composition, PERMANOVAs can be too liberal when the ex-
perimental design is unbalanced and the multivariate dispersions are heterogeneous because it is testing multiple
hypotheses simultaneously (Anderson & Walsh, 2013). Since the number of sites was nearly equal for hedgerows
and controls within but not between years, we compared the community composition within each year.

2.5 Results
Over seven years and 545 samples, we collected and identified 9898 wild bees comprising 114 species. The
species came from five families and 30 bee genera. Most species occurred infrequently in the landscape: nearly
20% of species were observed two or fewer times.

We found that β-diversity was higher in mature hedgerows than unrestored controls (estimate for the dif-
ference between mature hedgerows and controls, ± standard error of the estimate, 0.134± 0.045, p-value=0.005,
Fig. 2.2). β-diversity across maturing hedgerow sites was not, however, significantly different from that for con-
trol sites. These findings were robust to our use of different methods when generating the randomly assembled
communities that we used to account for the expected β-diversity given the observed differences in the number of
individuals and species (compare Fig. 2.2 and Fig. 2.7).
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Fig. 2.2: Mature hedgerows support significantly higher corrected β-diversity than maturing hedgerows and un-
restored controls. Corrected β-diversity values represent the dispersion of site community composition to the
centroid of each site type. Boxplots represent medians (black horizontal line) first and third quartiles (box perime-
ter) and extremes (whiskers).
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Year z-score p-value

Unrestored control

2007 -2.357 0.971
2008 0.403 0.369
2009 0.766 0.23
2010 2.864 0.019
2011 -0.787 0.78
2012 -0.314 0.607
2013 3.634 0.001 ∗ ∗∗

Maturing hedgerow

2009 -0.391 0.644
2011 1.617 0.059
2012 1.062 0.153
2013 -1.55 0.957

Mature hedgerow

2009 -1.15 0.892
2010 -0.788 0.769
2011 -0.785 0.781
2012 0.524 0.287
2013 -0.786 0.79

Table 2.1: The nestedness of pollinator communities, by year, for each site type. The z-scores were calculated by
generating 9999 null communities, subtracting the mean of the calculated nestedness from the observed nested-
ness, and dividing by the standard deviation of the nestedness (Ulrich & Gotelli, 2007). Empirical p-values were
calculated as the probability that the nestedness of the null communities was equal to or greater than the observed
community nestedness. Pollinator communities were significantly nested only in 2013 for the unrestored site type.
Symbols denote significance, with *, **, and *** indicating 0.05, 0.01 and 0.001, respectively.

We found that pollinator communities were not significantly nested, except for a single year and site type
(Table 2.1), suggesting that species replacement, rather than species loss/gain, was the primary determinant of
spatial heterogeneity in species composition for each site type.
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Dissimilarity of pollinator communities at unrestored sites and between all site types was significantly
correlated with the geographic distance (Fig. 2.5, Table 2.2). In addition, we found that the bee community
dissimilarity was significantly correlated with the floral community dissimilarity between site types (Fig. 2.5,
Table 2.2). The bee community was also significantly correlated with the floral community at mature hedgerows
and controls, though the strength of the association at controls was weak (Table 2.2). Thus, the dissimilarity of
floral communities between sites predicts the dissimilarity of the pollinator communities within mature hedgerows,
while geographic distance more strongly structures the compositional turnover in controls. Maturing hedgerows
may still be undergoing community assembly and therefore pollinator communities do not significantly respond
to floral communities. The bee community was not correlated with floral or nesting resources, however (Fig. 2.5,
Table 2.2).
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Mature hedgerows positively affected each of the three trait diversity metrics compared to unrestored con-
trols (estimate for the difference between mature hedgerows and controls, evenness: 0.100± 0.0366, p = 0.009;
dispersion: 0.0759± 0.023, p = 0.002; divergence: 0.100± 0.0367, p = 0.009, Fig. 2.3). Compared to control
sites, mature hedgerows therefore better support individuals with unique traits, as well as a greater diversity of trait
values that are more evenly distributed across trait space. The trait diversity supported by maturing hedgerows,
however, was not significantly different from controls.

Examining each trait individually, we also found evidence that only species characterized by particular trait
values are found in unrestored, agricultural areas. We found that, compared to randomly assembled communities,
control sites exhibited significantly lower trait values for floral specialization and body size, and lower diversity
than expected for each categorical trait except sociality (Fig. 2.4) suggesting that the species that visit or inhabit
unrestored controls comprise only a subset of the available species pool. Mature and maturing sites had trait values
expected by randomly assembled communities. Similarly, the linear mixed models indicated that, compared to bee
communities occupying unrestored controls, bee communities at both mature and maturing hedgerow sites were
comprised of species that are significantly larger (estimate for the difference between controls and mature 0.278±
0.080, p = 0.001; controls and maturing: 0.223± 0.092, p = 0.02) and more specialized (controls and mature:
0.048± 0.013, p = 0.0004; controls and maturing: 0.058± 0.015 p = 0.0003, Fig. 2.4 & 2.8). Bees at hedgerows
also exhibited more diversity in nesting locations and nest construction behaviors (nest location diversity, estimate
for the difference between controls and mature: 0.137± 0.057, p = 0.022, controls and maturing: 0.172± 0.067,
p = 0.014; nest construction trait diversity, controls and mature: 0.121± 0.051, p = 0.02, controls and maturing:
0.158± 0.060, p = 0.012, Fig. 2.4 & 2.8). Sociality diversity was not significantly different between site types.

Though the trait diversity at hedgerows and unrestored controls differed significantly, the composition of
communities did not significantly differ between controls and hedgerows (Tab. 2.6, Fig. 2.6).
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Fig. 2.3: The evenness, divergence and dispersion of the pollinator traits for communities at control sites, maturing
hedgerows, and mature hedgerows. Pollinator communities at mature hedgerows had significantly higher values
for all metrics. Relative to the range of trait values in the landscape, mature hedgerows had 12% higher evenness,
15% higher divergence, and 21% higher dispersion than unrestored controls.
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Fig. 2.4: The mean trait value (top panel) and trait diversity (bottom panel) of pollinator communities at different
site types. The solid lines are the observed trait values, and the shaded curves are trait distributions for randomly
assembled communities with the same species richness as the observed communities for each site type. The
unrestored controls had significantly lower (p < 0.025) trait values and diversity than expected for a randomly
assembled community for all trait groups except sociality diversity. In the context of the range of trait values
observed in the study landscape, mature hedgerows had 21% higher specialization than controls, 16% larger bees,
12% more nest location diversity, and 11% more nest construction diversity.
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2.6 Discussion
We have shown that on-farm restorations in the form of hedgerows, when replicated across a landscape, can pro-
mote the assembly of spatially heterogeneous and phenotypically diverse pollinator communities in intensively
managed and simplified agriculture. Such restorations may thus help to slow or even reverse the biotic homoge-
nization that is characteristic of such landscapes. Without hedgerows, intensive and simplified agriculture imposed
a strong ecological filter that eroded patterns of spatial structuring between communities and diminished almost
every aspect of community trait diversity and distribution that we investigated. This ecological filter affected a
variety of phenotypic traits including nesting habits and also selected for smaller, less specialized bees. In con-
cordance with a number of other studies conducted across a wide variety of taxa, we found that, by homogenizing
communities, agriculture has the potential to affect the distribution of species over large scales (Flohre et al., 2011;
Gabriel et al., 2006; Hendrickx et al., 2007; Ekroos et al., 2010).

Loss of such diversity may impact the functioning and resilience of natural systems which could have
profound implications for humans and wildlife. The provisioning of ecosystem services, such as pollination,
requires a stable and diverse community of wild bees (Kremen, 2005; Klein et al., 2009). These pollination
services are critical both in natural communities and economically: 87% of all flowering plant species and 75%
of crop species depend to some extent on animal pollinators in order to produce fruits or seeds (Klein et al., 2007;
Ollerton et al., 2011b). Animal-pollinated crops also supply a large proportion of essential nutrients to the human
diet (Eilers et al., 2011; Smith et al., 2015).

Based on findings in other cropping systems, lower functional diversity, combined with the loss of key
service providers, will likely negatively affect levels of pollination in both crops and wild plant populations (Klein
et al., 2009; Hoehn et al., 2008; Brittain et al., 2013). In addition, by reducing the size of the species pool,
simplified agriculture may impact the stability of services (Winfree & Kremen, 2009) and thus the reliability
and predictability of plant reproduction and crop yields (Garibaldi et al., 2011, 2013). Encouragingly, however,
relatively small-scale restorations such as hedgerows can mitigate the homogenization caused by simplified agri-
culture, when replicated across landscapes. Hedgerows have also been shown to support other ecosystem services
(Hinsley & Bellamy, 2000; Bianchi et al., 2006; Hannon & Sisk, 2009), so these small-scale, on-farm restoration
measures may also provide an economic benefit to growers (Blaauw & Isaacs, 2014), though this is likely to be
context dependent (Sardiñas & Kremen, 2015).

We have shown that, in addition to supporting a higher diversity and abundance of pollinators (Morandin
& Kremen, 2013), hedgerows also support approximately 14% higher β-diversity and approximately 10% more
trait diversity, uniqueness, and evenness than unrestored field margins. In addition, because the trait diversity of
the communities differed significantly between hedgerows and unrestored controls but community composition
did not, the communities at controls are likely a subset of those at hedgerows. For example, 28% of the total
species pool was found only at hedgerows, whereas only 13% of species were unique to unrestored controls
(Tab. 2.5). Of the species only at controls, 80% were represented by a single individual. The species only at
hedgerows tended to have more specialized nesting requirements (above- ground renters), whereas those only at
controls were primarily generalists (below-ground excavators, Fig. 2.1). Also, though the majority of the species
(68%) were found at both hedgerows and unrestored controls (Tab. 2.5), species ranging from relatively rare (less
than 10 individuals) to common (between 10 and 100 individuals) were infrequent at controls and more abundant
in hedgerows (Fig. 2.9). Interestingly, the three species observed over 100 times, Lasioglossum incompletum,
Halictus tripartitus and Halictus ligatus, all small-bodied floral and nesting resource generalists, were at similar
abundances in hedgerows and unrestored controls, if not slightly more abundant in controls (Fig. 2.9).

Though hedgerows may help counter homogenization of pollinator communities in simplified agricultural
landscapes, comparing the spatial heterogeneity they support to that which is observed in natural communities is
important in assessing their overall conservation value. In remnant chaparral/oak woodland communities in the
same ecoregion and adjacent to our study landscapes (Forrest et al., 2015), an average of 30% of species were
not shared across sites located within 3.5–50 km of each other. The Central Valley, which was once described
as “one vast, level, even flower-bed” (Muir, 1998), has been extensively converted to agriculture, likely limiting
the species pool due to local extinctions. Even so, at hedgerows an average of 15 km apart, we found between
36% and 67% of species were not shared between sites, depending on the year. Both the spatial scale and biota
of our study and that of Forrest et al. (2015) are comparable, suggesting that hedgerows are, in fact, restoring
spatial heterogeneity to approximately the same range as might occur in adjacent natural systems. In addition,
in the disparate landscape of the southwestern U.S., a diversity hotspot for bees (Minckley et al., 1999), 61% of
species were not shared across sites within 1–5 km of each other (Minckley et al., 1999). Though the species
pool is richer in the southwest, the amount of species turnover at hedgerows is not unlike what is observed in that
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highly heterogeneous region (Minckley et al., 1999). Thus, across many aspects of biodiversity, hedgerows might
provide a valuable measure for conserving biodiversity (Klein et al., 2009; Hinsley & Bellamy, 2000; Bianchi
et al., 2006; Morandin & Kremen, 2013; Garibaldi et al., 2014; Kremen & M’Gonigle, 2015).

Only mature hedgerows (and not young, recently planted hedgerows) in this study supported higher trait
and β-diversity when compared to non-restored farm edges. Thus, the processes that lead to a build-up of spatial
turnover in pollinator communities are slow and may take considerable time before observably affecting pollinator
communities. However, we have recently shown that hedgerow restoration leads to increased rates of colonization
and persistence of pollinators in maturing hedgerows and that this effect becomes stronger over time (M’Gonigle
et al., 2015). Further, we found that maturing hedgerows differentially support more specialized species over time
(Kremen & M’Gonigle, 2015). These two temporal studies on the early phases of hedgerow maturation (0− 8
years post restoration) show that hedgerows begin to impact pollinator communities much earlier than 10 years.
Combined, these findings suggest a possible mechanism whereby restoration might lead to increases in species
turnover; as a hedgerow matures, species with a wider variety of life history traits are better able to colonize
and persist there, thus leading to the accumulation of differences in community composition between sites over
time. This then leads to greater spatial heterogeneity in pollinator communities at hedgerows. Conversely, in
unrestored areas, the rate of colonization and persistence is lower, particularly for species with more specialized
habitat requirements, thereby creating an ecological filter that limits the total diversity and, thus, turnover that is
possible.

This above described process can be, in part, deterministic; restored and non-restored farm edges differ fun-
damentally in which pollinator species are able to colonize and/or persist in them (M’Gonigle et al., 2015; Kremen
& M’Gonigle, 2015). Thus pollinators respond to the differences in the plant communities between hedgerows
and controls, and the pollinator community at mature hedgerows tracks floral hosts. Interestingly, however, the
pollinator communities at hedgerows that were closer to one another were not necessarily more similar than sites
that were further apart. In addition, hedgerows maintain β-diversity in the landscape by supporting unique com-
binations of species, and we did not find evidence that communities at hedgerows were nested subsets of one
another (Baselga, 2012). Because hedgerows are planted, the floral communities the pollinators are tracking will
not necessarily be spatially structured like natural communities. In addition, bees are known to be highly spatially
and temporally variable (Minckley et al., 1999; Williams et al., 2001) and, thus, stochastic processes that do not
result in spatial structuring are likely operating as communities assemble.

In contrast to within hedgerows, the dissimilarity of pollinators at unrestored controls responded positively
to geographic distance. Because the conditions at controls are relatively uniform across space, this suggests a role
for dispersal limitation in determining pollinator community composition at unrestored controls (i.e., Chase et al.,
2005). In addition, the number of shared species between hedgerows and controls was also positively related to
distance (Tab. 2.2), suggesting the communities at controls may be influenced by landscape context such as the
presence of nearby hedgerows. Hedgerows may therefore represent a source of bee diversity in the landscape.

Here we focus on the effects of hedgerows on β-diversity, but there are likely other contributions to spatial
heterogeneity in our landscape. There are a number of crops that provide floral resources to pollinators in our
area, including mass-flowering sunflower, melons and almonds (Klein et al., 2012; Greenleaf & Kremen, 2006;
Kremen et al., 2002). Different crops attract different pollinators (e.g., Winfree et al., 2008) and thus may affect the
spatial heterogeneity of communities. In addition, some crops might also pull resident species from the hedgerows
(Sardiñas & Kremen, 2015), while others may attract species that may subsequently colonize hedgerows (Kovács-
Hostyánszki et al., 2013). Differences in adjacent crops between hedgerows or unrestored controls thus may add
noise to the underlying signal of β-diversity. However, because hedgerows and controls are matched for crop type,
while there may be a contribution of crop type on β-diversity, it should be a random one affecting hedgerows and
controls simultaneously.

To achieve sustainable food production while protecting biodiversity, we need to grow food in a manner that
protects, utilizes and regenerates ecosystem services, rather than replacing them (Kremen & Miles, 2012; Kremen
et al., 2012; Kremen, 2015). Diversification practices such as installing hedgerows, when replicated across a
landscape, may provide a promising mechanism for conserving and restoring ecosystem services and biodiversity
in working landscapes while potentially improving pollination and crop yields (Blaauw & Isaacs, 2014; Garibaldi
et al., 2014).
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2.7 Supplemental methods

β-DIVERSITY CALCULATION

Following (Chase et al., 2011b), we corrected our estimates of β-diversity using null models. We first calcu-
lated the pairwise dissimilarity between sites within each year of the dataset using a dissimilarity estimator that
incorporates species abundances, while also accounting for unobserved species (Chao et al., 2005b).

We next created an expected distribution by generating randomized communities and calculating the dis-
similarity of these communities. To do this, we defined the species pool within each year as the species and
number of individuals present across all samples from that year. We then generated 9999 random communities by
constraining either 1) the total number of individuals caught at each site or 2) the species richness at each site (for
details on the community generation algorithms, see Section 2.7.2). For each of these communities, we calculated
the pair-wise dissimilarity between sites. We then used these dissimilarities to calculate the expected β-diversity
when communities are randomly assembled but constrained so that they have either the same 1) number of indi-
viduals or 2) species richness as the observed communities and with species drawn from a meta-community with
the same species abundance distributions. In order to do this, we followed Chase et al. (2011b). Specifically,
we calculated the fraction of randomly assembled communities with dissimilarity values less than (and half of
those equal to) that of the observed community. We used this fraction as a “corrected dissimilarity score” for
our observed data. Corrected dissimilarity values near one indicate that our observed communities exhibit more
species turnover between sites than expected under a random assembly process while values near 0.5 indicate that
our observed communities exhibit levels of turnover more in line with the null expectation. We calculated the
corrected dissimilarities for each type of randomized community.

We also corrected dissimilarity values by calculating z-scores (subtracting the mean of the nulls from the
observed dissimilarity and dividing by the standard deviation of the nulls (Trøjelsgaard et al., 2015) to confirm
that the method of calculating the corrected dissimilarity score did not qualitatively affect results.

We then generated principle coordinate axes (PCoA) based on the corrected pair-wise dissimilarities (Ok-
sanen et al., 2013b; Anderson et al., 2006, 2011; Anderson, 2006). We calculated dispersion for each site type
by finding the centroid in PCoA space for that site type and then calculating the distances from sites of that type
to that centroid. The centroid is the point that minimizes the sum of these distances. We calculated dispersion
scores separately for each year in order to account for possible changes in the total species pool that can occur
between years (e.g., Petanidou et al., 2008b). The dispersion values were then used in linear mixed-effect models
to investigate the effect of different site types on β-diversity.

Though commonly used (e.g., Karp et al., 2012), average pairwise dissimilarity may be misleading if spatial
heterogeneity in community composition is due to nestedness and not species replacement (Baselga, 2012, 2013).
However, in our case, because dissimilarity is due to species replacement, pair-wise measures of β-diversity are
comparable to multi-site measures (Baselga, 2013).

COMMUNITY RANDOMIZATION ALGORITHMS

Randomly assembled communities were generated by either constraining 1) the species richness at a site or 2) the
number of individuals at a site so that they were the same as those in the observed communities. In 1) we begin by
randomizing a binary matrix while maintaining the same row sums (species richness at a site) and column sums
(number of sites at which a species was observed) using the quasi-swap method in the R function commsimulator
(Oksanen et al., 2013b). Next, we fill the matrix by drawing species with probabilities proportional to their relative
abundances until the total number of individuals in the randomly assembled community is the same as that in the
observed community (Vázquez et al., 2007). To constrain the total number of individuals at a site but not the
species richness at that site, we used a swap-algorithm (Gotelli & Graves, 1996).
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Year

2007 2008 2009 2010 2011 2012 2013

Control-1 0 0 3 4 0 4 5
Control-2 3 3 0 0 0 0 0
Control-3 3 3 3 0 2 4 5
Control-4 0 0 0 0 0 4 5
Control-5 3 3 3 0 2 4 5
Control-6 0 0 3 0 0 4 5
Control-7 0 0 0 0 0 0 5
Control-8 3 3 3 0 2 4 5
Control-9 3 3 3 0 2 4 5

Control-10 3 3 3 0 2 4 5
Control-11 0 0 3 0 0 4 5
Control-12 0 0 0 0 0 4 0
Control-13 3 3 3 0 2 0 0
Control-14 0 0 3 4 0 4 5
Control-15 0 0 0 0 0 0 5
Control-16 0 0 0 0 0 0 5
Control-17 0 0 0 0 0 4 0
Control-18 3 3 3 0 2 4 5
Control-19 0 0 0 0 0 4 5
Control-20 3 3 3 0 2 4 5
Control-21 3 3 3 0 2 4 5
Control-22 3 3 3 0 2 4 5
Control-23 0 0 0 0 0 4 5
Control-24 0 0 0 4 0 4 5

Table 2.3: The number of sampling rounds conducted at each control site in each year of the study.
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Year

2007 2008 2009 2010 2011 2012 2013

Hedgerow-1 0 0 0 0 0 4 5
Hedgerow-2 0 0 0 0 0 0 5
Hedgerow-3 0 0 0 0 0 4 5
Hedgerow-4 0 0 3 4 2 4 5
Hedgerow-5 0 0 0 0 0 4 5
Hedgerow-6 0 0 3 0 2 4 5
Hedgerow-7 0 0 0 0 0 4 5
Hedgerow-8 0 0 0 4 2 4 5
Hedgerow-9 0 0 0 0 0 4 5
Hedgerow-10 0 0 0 0 0 4 5
Hedgerow-11 0 0 3 4 2 4 5
Hedgerow-12 0 0 3 0 2 4 5
Hedgerow-13 0 0 0 0 0 4 0
Hedgerow-14 0 0 0 0 2 4 5
Hedgerow-15 0 0 3 0 2 4 5
Hedgerow-16 0 0 0 0 0 4 5
Hedgerow-17 0 0 3 0 2 4 5
Hedgerow-18 0 0 0 0 0 0 5
Hedgerow-19 0 0 3 0 2 4 5
Hedgerow-20 0 0 0 0 0 4 5
Hedgerow-21 0 0 0 0 2 4 5

Table 2.4: The number of sampling rounds conducted at each hedgerow site in each year of the study.
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Only Hedgerows Both Hedgerows & Controls Only Controls
Andrena angustitarsata Agapostemon texanus Andrena nigrocaerulea
Andrena subaustralis Andrena auricoma Andrena subchalybea
Andrena w-scripta Andrena candida Ceratina timberlakei
Anthidium manicatum Andrena cerasifolii Colletes hyalinus
Ashmeadiella cactorum basalis Andrena chlorogaster Diadasia consociata
Bombus vandykei Andrena cressonii infasciata Diadasia diminuta
Calliopsis hesperia equina Andrena knuthiana Diadasia ochracea
Calliopsis scitula Andrena piperi Eucera actuosa
Coelioxys apacheiorum Andrena scurra Eucera frater albopilosa
Coelioxys gilensis Anthidiellum notatum robertsoni Hylaeus leptocephalus
Coelioxys novomexicana Anthophora urbana Lasioglossum (Evylaeus) diatretum
Dianthidium ulkei Ashmeadiella aridula astragali Lasioglossum mellipes
Heriades occidentalis Ashmeadiella bucconis denticulata Megachile brevis
Hylaeus calvus Bombus californicus Nomada sp. A
Hylaeus episcopalis Bombus crotchii Osmia nemoris
Lasioglossum (Evylaeus) granosum Bombus melanopygus
Lasioglossum (Evylaeus) nigrescens Bombus vosnesenskii
Megachile coquilletti Ceratina acantha
Megachile occidentalis Ceratina arizonensis
Melissodes communis alopex Ceratina dallatorreana
Osmia aglaia Ceratina nanula
Osmia coloradensis Coelioxys octodentata
Osmia granulosa Diadasia enavata
Osmia laeta Halictus ligatus
Osmia texana Halictus tripartitus
Peponapis pruinosa Hoplitis producta gracilis
Stelis laticincta Hylaeus bisinuatus
Stelis montana Hylaeus conspicuus
Triepeolus sp. A Hylaeus mesillae
Xeromelecta californica Hylaeus rudbeckiae
Xylocopa tabaniformis orpifex Lasioglossum (Dialictus) brunneiiventre
Xylocopa varipuncta Lasioglossum (Dialictus) diversopunctatum

Lasioglossum (Dialictus) impavidum
Lasioglossum (Dialictus) incompletum
Lasioglossum (Dialictus) megastictum
Lasioglossum (Dialictus) punctatoventre
Lasioglossum (Dialictus) tegulare group
Lasioglossum (Evylaeus) kincaidii
Lasioglossum sisymbrii
Lasioglossum titusi
Megachile angelarum
Megachile apicalis
Megachile fidelis
Megachile frugalis
Megachile gentilis
Megachile lippiae
Megachile montivaga
Megachile onobrychidis
Megachile parallela
Megachile rotundata
Melissodes agilis
Melissodes lupina
Melissodes robustior
Melissodes stearnsi
Melissodes tepida timberlakei
Nomada sp. 3
Osmia atrocyanea
Osmia gaudiosa
Osmia lignaria propinqua
Osmia regulina
Sphecodes sp. B
Svastra obliqua expurgata
Triepeolus concavus
Triepeolus heterurus
Triepeolus melanarius
Triepeolus subnitens
Triepeolus timberlakei

Table 2.5: Bee species found at hedgerows and controls.
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Year F-statistic p-value

2009 1.442,18 0.18
2010 0.181,4 1.00
2011 0.992,17 0.48
2012 1.712,35 0.17
2013 1.082,37 0.40

Table 2.6: The test statistics for the permutation anovas comparing pollinator community composition between
mature hedgerows, maturing hedgerows and unrestored controls within each year. The community composition
did not vary significantly between site statuses in any year.
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Fig. 2.5: The dissimilarity of pollinator communities as a function of the dissimilarity of the floral communities,
floral resources, nesting resources, and geographic distance at each site type across all years of the study. Pollinator
community dissimilarity is not correlated with any of the variables investigated.

49



●

●

● ●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

PCoA1

2009

P
C

oA
2

●
●

●

●

●

●

PCoA1

2010

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

PCoA1

2011

P
C

oA
2

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●● ●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

PCoA1

2012

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●
●

●

●

●

PCoA1

2013

P
C

oA
2

●

●

●

●

Unrestored
Maturing
Mature

Fig. 2.6: The dissimilarity of communities in multivariate space using a principal coordinate analysis. The axis
represent the first two principal coordinate axes. There is substantial overlap in the community composition of the
different site types.
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Fig. 2.7: The β-diversity (corrected using random communities that have the same number of individual as ob-
served communities) at unrestored controls, maturing hedgerows and mature hedgerows. Corrected β-diversity is
significantly higher in mature hedgerows than in unrestored controls (estimate ± standard error, 0.130± 0.044,
p-value= 0.005). Boxplots represent medians (black horizontal line) first and third quartiles (box perimeter) and
extremes (whiskers).
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Fig. 2.8: The mean trait value (a-b) and trait diversity (c-e) of pollinator communities at different site types.
Mature and maturing hedgerows supported significantly higher trait values and diversity for all of the trait groups
investigated expect sociality diversity.
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Fig. 2.9: The frequency of observing specific abundances at a site across years of a sample of species found in both
hedgerows and controls. The top panel, (a), are the two most abundant species (total abundance > 100 individ-
uals), panel (b) are relatively common species (abundance between 20− 50 individuals), panel (c) are relatively
infrequent (abundance between 10− 20 individuals), and panel (d) are very infrequent (< 10 individuals).
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Chapter 3

Coevolution leaves a weak signal on
ecological networks

3.1 Transition
To fully understand the mechanisms maintaining communities we must combine our understanding of the eco-
logical processes enabling their persistence with the evolutionary processes that assembled those communities.
Coevolution is a key process producing and maintaining complex networks of interacting species. To inform
restoration we must understand whether communities re-assembled through restoration are predicted to exhibit
the same dynamics as tightly coevolved communities.

3.2 Abstract
One of the major challenges in evolutionary ecology is to understand how coevolution shapes species interaction
networks. Important topological properties of networks, such as nestedness and modularity, are thought to be
affected by coevolution. However, there has been no test whether coevolution does, in fact, lead to predictable
network structure. Here we investigate the structure of simulated bipartite networks generated under different
modes of coevolution. We ask whether evolutionary processes influence network structure and, furthermore,
whether any emergent trends are influenced by the strength or “intimacy” of the species interactions. We find
that coevolution leaves a weak and variable signal on network topology, which was not strongly affected by the
intimacy of interactions. Our findings indicate that network metrics, on their own, should not be used to make
inferences about processes underlying the evolutionary history of communities. Instead, a more holistic approach
that combines network approaches with traditional phylogenetic and biogeographic reconstructions is needed.

3.3 Introduction
Dynamics of ecological communities are fundamentally shaped by their networks of interacting species (Thomp-
son, 2005). The study of these networks, which involves the classification of interspecific relationships and the
strength of their reliance upon one another, have important implications for ecology and conservation — inform-
ing, for example, the ability of communities to maintain ecosystem function in the face of disturbance. Specifically,
interaction patterns, are thought to affect the resilience of a network to disturbances such as fluctuating species
abundances, the introduction of new species, or the extinction of existing species.

Ecological networks exhibit two main topologies — modularity and nestedness. Modular community
interactions are more insular, occurring within separate groups or “modules” more often than between modules.
Conversely, nested networks are like pyramid of interactions, where there are some species that interact with many
species, other species that interact with a subset of those species, and so on. Different types of ecological networks,
ranging from mutualistic to antagonistic, exhibit nested (e.g., plants and pollinators, Bascompte et al., 2006, 2003;
hosts and parasites, Vázquez et al., 2005) or modular (e.g., plants and pollinators, Olesen et al., 2007; hosts and
parasites, Krasnov et al., 2012; plants and seed dispersers, Donatti et al., 2011) interaction patterns. Both nested
and modular communities may also exhibit phylogenetically structured interactions, where closely related species
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have more similar interaction patterns than distantly related species (Rezende et al., 2007; Donatti et al., 2011).
A strong phylogenetic signal indicates that network patterns are constrained by past evolutionary history (e.g., by
trait conservatism).

Coevolutionary dynamics likely play a critical role in determining how communities are structured, be-
cause coevolution shapes and maintains the traits involved in species interactions. Modules can be created through
coevolution by a combination of phylogenetic history (Lewinsohn et al., 2006) and/or trait convergence of phylo-
genetically unrelated species (Danieli-Silva et al., 2012; Donatti et al., 2011). Coevolution can alternatively lead to
nestedness if phenotypes constrain interactions (i.e., some links are “forbidden”, Jordano et al., 2003; Santamarı́a
& Rodrı́guez-Gironés, 2007). Coevolution can also affect the degree of dependence between interacting groups,
or the “intimacy” of species associations, which can also affect network structure indirectly (Fontaine et al., 2011;
Guimarães et al., 2007; Ollerton, 2006). The combined effects selection that leads to the avoidance of sharing
interaction partners (so called, partner overlap) and biological limits that influence how many partners a species
can have (interaction niche breath) are expected to lead to more intimate interactions. For example, antagonistic
coevolution favors parasites that are able to overcome host defenses, which can subsequently lead to parasites vis-
iting only a few mutually exclusive host species (e.g., overcoming one host’s defenses might come at the expense
of the ability to overcome other host’s defenses, Nuismer & Thompson, 2006; Fontaine et al., 2011). In contrast,
more generalized interactions with considerable partner overlap may evolve if selection favors phenotypes that are
compatible with traits common to many species in the community, as might be the case for free-living mutualists
(Thompson, 2005; Guimarães et al., 2011; Fontaine et al., 2011). Actual networks exhibit levels of interaction
intimacy that lie along a continuous spectrum, with varying degrees of interaction niche breath and partner overlap
(Fontaine et al., 2011).

A variety of processes other than coevolution are thought to affect species interaction patterns as well,
including ecological dynamics (Thébault & Fontaine, 2010; Bastolla et al., 2009; Krause et al., 2003), spatio-
temporal species distributions (Pillai et al., 2011; Vázquez et al., 2009; Pimm et al., 1991; Encinas-Viso et al.,
2012), stochastic processes (Canard et al., 2012; Jonhson et al., 2013; Krishna et al., 2008), sampling artifacts
(Vázquez et al., 2009), or combinations thereof (Suweis et al., 2013; Vázquez et al., 2009). Understanding which
ecological, evolutionary, and stochastic processes have consistent effects on interaction patterns (i.e., the degree to
which communities are nested or modular) is critical for elucidating the mechanisms that structure communities, as
an interaction’s structure affects its stability. Compared to randomly assembled communities, nested communities
may be more resilient to species extinction and fluctuations in abundance (Memmott et al., 2004; Burgos et al.,
2007; Thébault & Fontaine, 2010; Fortuna & Bascompte, 2006; Valdovinos et al., 2013a, but see Allesina & Tang,
2012; James et al., 2012). Modular interaction patterns are also thought to be more stable than random interactions
(May, 1972; Krause et al., 2003) because fluctuations in species abundance are largely contained within modules
and are less likely to spread throughout an entire community (Krause et al., 2003, but see Pimm & Lawton, 1980;
Thébault & Fontaine, 2010). Additionally, theoretical work suggests that when interactions are phylogenetically
structured, species extinction may trigger extinction cascades of related species and a more pronounced loss of
taxonomic diversity (Rezende et al., 2007).

Recently, several authors have used theoretical models to explore the effect of evolution on networks
(Guimarães et al., 2011; Nuismer et al., 2013; Loeuille, 2010). However, there have been no explicit tests of
how different evolutionary assembly mechanisms may lead to predictably different network topologies. Here, we
develop and analyze a model of coevolution and community assembly to test whether coevolution leads to pre-
dictable network structures. We also examine whether interaction intimacy, measured as the degree of interaction
niche breath and partner sharing between species, accentuates the signal of these different assembly mechanisms
on the structure of networks.

3.4 Material and methods

COMMUNITY GENERATION APPROACH

We simulate coevolution and community assembly of two interacting clades of species under four different modes
of coevolution, each of which corresponds to a limiting case of the possible coevolutionary mechanisms. We then
build interaction networks, using trait values to determine which pairs of species can interact. Finally, we calculate
network metrics. All simulations were conducted in R version 3.2 (R Core Team, 2015).

We do not explicitly make a distinction between predatory, mutualistic, parasitic, or commensal inter-
actions. These scenarios differ in how species interactions affect fitness. Because species’ fitnesses are not a
component of our data simulation process, our conclusions should apply to networks containing interactions of all
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types. To facilitate biological intuition, however, we will develop our methods using language most appropriate
for mutualistic interactions.

Phylogeny and trait generation

We begin by generating phylogenetic trees for a fixed number of resource-providing species (e.g., plants) and
resource-seeking species (e.g., pollinators). We do this using a birth-death process (Stadler, 2012) which approx-
imates diversification of clades by assuming homogeneous rates of speciation (birth, λ) and extinction (death, µ)
across taxa and time (Stadler, 2012). The shape of phylogenetic trees has the potential to affect the structure of
networks (Chamberlain et al., 2014), so we generated birth-death trees for a range of extinction and speciation
rates (Fig. 3.1). Specifically we simulated trees with primarily deep or primarily shallow divergences (Fig. 3.1).

We next simulated trait evolution along these trees under a Brownian motion process (Paradis, 2012) except
in one scenario (described below) where we also used an Ornstein-Uhlenbeck process (Gillespie, 1996; Nuismer
& Harmon, 2015). Because trait variance and tree age are linearly related under a Brownian motion model, we
altered the variance of the Brownian motion process while holding the tree age constant. The four scenarios under
which we simulated trait evolution we as follows:

1. Coevolution and cospeciation (Fig. 3.2a): High levels of interaction specificity lead to tight coevolution
and cospeciation and, consequently, evolution of congruent phylogenies (Farenholz, 1913). The plausibility
of this scenario has been extensively criticized for its lack of realism (e.g., Klassen, 1992). Recently even
obligate mutualisms have been shown to deviate from predictions of this model (e.g., figs and fig wasps,
Machado et al., 2005; Cruaud et al., 2011; oil producing orchids and Euglossine bees, Ramı́rez et al.,
2011, yucca plants and yucca moths, Althoff et al., 2012). Different groups of parasites, including macro-
parasites (internal and external) and their vertebrate hosts also do not exhibit a strong signal of cospeciation
(for a review see Hoberg & Brooks, 2008). However, this scenario provides a useful benchmark, because
communities assembled under this strict scenario represent an extreme outcome of coevolution. We simulate
this mode of coevolution by generating communities where the tree topology and trait values of interacting
taxa are identical (Fig. 3.2a).

2. Coevolution without cospeciation (Fig. 3.2b): Trait complementarity is the result of natural selection
honing the traits involved in interactions across many lineages (e.g., corolla tubes of plants and the length of
pollinators’ proboscises). Interacting communities are composed of phylogenetically related and unrelated
species that have converged on similar traits (Donatti et al., 2011; Olesen et al., 2007; Danieli-Silva et al.,
2012; Krasnov et al., 2012, 2014). This pattern of trait convergence is often observed in interacting species,
such as patterns of fruit design in unrelated plant species (Jordano, 1995), oil production in orchids (Ramı́rez
et al., 2011), and ecto-parasites of mammals (Krasnov et al., 2012). To investigate this scenario, we generate
communities where the speciation of the mutualistic partners occurs independently and thus phylogenetic
topologies differ between the two groups, but trait distributions of interacting species are probabilistically
matched (Fig. 3.2b). To link the trait distributions, the traits of one interacting group are first simulated
under Brownian motion evolution. The traits of this group are then used as lineage-specific optima in an
Ornstein-Uhlenbeck process to generate the traits in the other interacting group. To approximate reciprocal
selection, we then use the traits of the second group as optima in another Ornstein-Uhlenbeck process to
re-generate traits for the first group.

3. Cospeciation without coevolution (Fig. 3.2c): Concurrent allopatric speciation of lineages across a shared
biogeographic and climatic landscape leads to congruence between phylogenies of interacting species, with-
out reciprocal selection on species’ traits (Althoff et al., 2012; Smith et al., 2008). For example, the phy-
logenetic congruence between yuccas and yucca moths is likely due to shared biogeographic history rather
than coevolutionary selection (Althoff et al., 2012). When species co-occur geographically, it is likely that
they evolve or coevolve. However, we present an extreme case where no coevolution takes place to explore
the effect of cospeciation alone. To model this, we generate communities where interacting taxa share the
same tree topology, but the traits of the partners evolve independently via Brownian motion along each tree
(Fig. 3.2c).

4. No coevolution, no cospeciation (Fig. 3.2d): Speciation and trait evolution proceed independently of one
another. Such independent evolution could occur if environmental or developmental constraints on the traits
involved in interactions (e.g., the body size of pollinators and the flower size of plants) enable interactions
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to occur without coevolution taking place. To construct communities under this scenario, we generate trees
and traits of interacting taxa independently (Fig. 3.2d).

Linkage rules and interaction intimacy

Several ecological “linkage rules” have been suggested for determining how a species’ trait values mediate its
interactions (Santamarı́a & Rodrı́guez-Gironés, 2007). Here, we assume that interactions are depend on the com-
plementarity between the trait values of the resource producing species and the reward seeking species (matching
traits, Santamarı́a & Rodrı́guez-Gironés, 2007; Nuismer et al., 2013; Stang et al., 2007, Fig. 3.2) and, further, that
the range of acceptable trait values in a partner is proportional to the magnitude of a species’ evolved trait values
(Williams & Martinez, 2000a; Pires et al., 2011; Santamarı́a & Rodrı́guez-Gironés, 2007). Our formulation of
matching traits is similar to the niche model (Williams & Martinez, 2000a) or to the “single trait complementary
model” (Santamarı́a & Rodrı́guez-Gironés, 2007), both of which have been shown to generate empirically feasi-
ble bipartite networks (Santamarı́a & Rodrı́guez-Gironés, 2007; Pires et al., 2011). Depending on the variance in
trait values and the structure of the phylogenetic tree, the distribution of traits was normal to right-skewed, which
also matches the empirical literature (Stang et al., 2009, 2006). Our formulation of trait ranges also reflects the
observation that species with larger traits (e.g., proboscises length) are able to interact more widely (e.g., access
to a greater variety of nectar depths, Stang et al., 2009).

The degree of interaction intimacy in a community is determined by the amount of partner overlap in the
community and the interaction niche breath of the constituent species. We varied both components of interaction
intimacy by changing the specificity of the interactions which we did by changing the maximum acceptable dif-
ference in trait values that would still enable two potential partners to interact (Fig. 3.3). Specifically, we varied
the range of acceptable trait values in a partner from ±10% of a focal individual’s trait value (narrow trait range)
to ±100% (wide trait range). For example, if the trait value of a species is 2, with a narrow trait range, the species
would interact with partners whose trait values fell within the range 2± 2 ∗ 0.1. With a wide trait range, however,
acceptable partner trait values would lie in the interval 2± 2 ∗ 1. Traits ranges above 100% or below 10% yielded
interaction matrices where nearly all or nearly none of the species interacted and, thus, they were not considered.

We also generated weighted networks, in which partners interact in proportion to the amount of overlap
in their trait ranges, and unweighted networks, in which species interact equally frequently with all others whose
trait ranges overlap. In the weighted case, a species with a trait range of 2± 2 would interact twice as much with
a species with a trait range of 3± 3 (an overlap of 4) than a species with a trait range of 1± 1 (an overlap of 2).

We calculated niche breath as S = d̄ where d̄ denotes the mean proportion of potential interaction partners
a species interacts with, from the total possible (i.e., the mean species degree). We calculated partner overlap as
P = s̄ij where s̄ij denotes the mean trophic similarity of pairs of species belonging to the same interaction group
(Gower, 1971; Oksanen et al., 2013a).

Because we assume that interactions require complementarity of traits between partner species (Stang
et al., 2007; Santamarı́a & Rodrı́guez-Gironés, 2007; Nuismer et al., 2013), traits of interacting lineages are
positively correlated in each of the coevolutionary scenarios. For hosts and parasites, this positive correlation
might correspond to a match between traits that govern susceptibility in hosts and mode of attack in parasites.
Traits such as the depth of nectar tube in a flower and the length of a pollinator’s tongue would also be expected
to positively correlate when interactions are mutualistic.

When simulating phylogenies, we began with a 1:1 ratio of resource-providing species to resource-seeking
species. We did this in order to facilitate comparisons between scenarios where there is necessarily a one-to-one
congruence (e.g., the coevolution and cospeciation scenario) with those where there is not. However, species that
evolve to possess trait values that prohibit them from interacting with any members of the community were not
included in the network. Thus the communities vary in the number of species in each group of interacting species.
We would expect this feedback between species’ traits community composition when species with ill-suited trait
values are unable to persist in that community.

CHARACTERIZING NETWORK TOPOLOGIES

For each of the resulting interaction networks, we calculated topological descriptors, focusing in particular on
nestedness and modularity. We use NODF (weighted or unweighted) to evaluate network nestedness (Almeida-
Neto et al., 2008). NODF evaluates whether species with fewer partners interact with subsets of partners with
which more connected species interact (Almeida-Neto et al., 2008). Many methods exist for partitioning networks
into sub-communities for modularity computation, and all have potential pitfalls (Fortunato, 2010). We, therefore,
considered three community partitioning methods: 1) a dynamic algorithm via a random walk (Pons & Latapy,
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2005; Csardi & Nepusz, 2006), 2) a greedy modularity optimization (Clauset et al., 2004; Csardi & Nepusz, 2006),
and 3) a hierarchical clustering algorithm (Newman & Girvan, 2004; Csardi & Nepusz, 2006).

We calculated standardized z-scores so that network metrics could be compared between communities.
The z-scores were calculated by generating an ensemble of 99 randomly assembled communities, subtracting
the mean of the statistic calculated across these communities from the observed value, and then dividing by the
standard deviation. To assemble random communities, we reshuffled the interactions between species but fixed
the total number of interactions and species, and, in quantitative networks, the distribution of the interaction
frequencies (Galeano et al., 2009). Simulating > 99 for all analyses presented here was too computationally
intensive. However, we verified that conclusions did not differ qualitatively for a subset of scenarios when using
999 vs. 99 null communities.

We estimated the strength of the phylogenetic interaction signal as the correlation between the evolutionary
time separating species and the dissimilarity of their interaction partners. The evolutionary distance between two
species is proportional to their phylogenetic distance – the sum of the branch lengths connecting those species
(Paradis et al., 2004). We measured the dissimilarity of interaction partners by calculating the relative overlap of
interaction partners between pairs of species (Oksanen et al., 2013a). We then calculated phylogenetic interaction
signal as the correlation between the phylogenetic distance matrix and the interaction dissimilarity matrix using a
Mantel test (Rezende et al., 2007). A high correlation indicates that species with older divergence times are less
likely to share interaction partners.

To calculate the effect of coevolution, we selected random pairs of communities that shared the same
cospeciation history but had evolved traits under different coevolutionary conditions (one community had co-
evolved whereas the other had not). We then calculated the difference between metric scores between those paired
communities. The mean and standard deviation of these differences across replicate pairs of communities was
used as an estimate of the effect of coevolution.

3.5 Results
We found that the coevolutionary history of a community can have consistent and detectable effects on the structure
of interactions (Fig. 3.4, Tables 3.2 – 3.4). Specifically, when interaction probabilities were not weighted by the
degree of overlap between partner traits, communities that coevolved and cospeciated were more modular and
anti-nested (Fig. 3.4a,c). This is likely because cospeciating clades form interacting modules (for example, see
Fig. 3.2a). The metric used for calculating modularity (edge-betweenness, greedy optimization, and random walk)
did not qualitatively affect the relative differences between coevolutionary scenarios (Fig. 3.7).

In addition, communities that cospeciated had the highest phylogenetic interaction signal (Fig. 3.4e-f, Table
3.4). That a strong phylogenetic interaction signal characterizes cospeciating communities is likely a consequence
of the fact that shared tree topologies between interaction groups constrain trait evolution such that closely related
species will have similar traits and thus share interaction partners, with or without coevolution.

The effect of coevolution did not depend strongly on phylogenetic tree structure or the variance in evolved
trait values, (Tables 3.1). Because these community characteristics did not have distinct effects on the differ-
ences between coevolutionary communities, we restrict our focus to community with shallow divergences between
species within interaction groups and a low variance in evolved trait values (see Fig. 3.1 for parameter details in
all figures).

There was also no detectable effect of coevolution on network structure in communities with the same
cospeciation history. In both communities that cospeciated and those that did not, the mean effect size of co-
evolution (calculated as the difference in network metrics between communities with and without coevolution)
was smaller than the standard deviation of the difference (Tables 3.1). Thus the effect of coevolution was never
significantly different from zero. In addition, at any level of interaction niche breath or partner overlap, the effect
of coevolution was highly variable and not significantly different from zero (Figs. 3.5 – 3.6).

3.6 Discussion
We found that coevolution leaves a weak signal on network topology in four coevolutionary community assem-
bly scenarios. These scenarios represent extreme possibilities, ranging from coevolution and cospeciation to
completely independent evolution and speciation. Real-world communities likely fall somewhere between these
extremes and are, thus, likely to exhibit intermediate patterns to those reported here. Because the topological dif-
ferences reported here are small, detecting signals of coevolution will likely be difficult. Thus, caution should be
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taken when using only the most common network topology descriptors (nestedness, modularity, and phylogenetic
interaction signal) to make inferences about the processes that underlie the evolutionary history of a community.

Because communities with coevolved species were not consistently more nested or modular than commu-
nities that did not coevolve, we would be reluctant to make predictions about resilience of coevolved communities
expected based on interaction structure (Memmott et al., 2004; Burgos et al., 2007; Fortuna & Bascompte, 2006).
However, cospeciation left a relatively strong phylogenetic interaction signal. Because closely related species
share interaction partners, this may make communities that cospeciate more vulnerable to coextinction cascades
(Rezende et al., 2007).

By assembling evolutionary communities both with and without coevolution in the same framework,
our approach differs from those that consider coevolutionary dynamics in isolation (e.g., Nuismer et al., 2013;
Loeuille, 2010; Guimarães et al., 2011). Here, coevolutionary feedbacks between phylogenies, traits, and inter-
actions were modeled implicitly, so that the same framework can be used for communities that did and did not
coevolve. However, our coevolutionary communities exhibit similar structural properties to communities gener-
ated by explicit coevolutionary models of bipartite networks (Nuismer et al., 2013). We found that trait matching
based species interactions led to anti-nested networks (Fig. 3.4) — this result is consistent with other studies
(Nuismer et al., 2013).

Our finding that different coevolutionary processes do not lead to drastically different interaction patterns
in networks sheds light on why other studies have found it difficult to distinguish mechanisms (e.g., Althoff et al.,
2012; Machado et al., 2005; Cruaud et al., 2011; Ramı́rez et al., 2011). Until recently, coevolution and cospe-
ciation were thought to play a critical role in structuring many one-to-one symbiotic relationships, such as those
between figs and fig wasps or yucca and yucca moths. Evidence was largely based on the congruence between
traits of interacting species and their phylogenies. Recent work using more synthetic approaches and diverse data
sources, however, has shown that these apparent patterns were largely due cospeciation of interacting lineages due
to a shared biogeographic history, and not coevolution (Althoff et al., 2012) and/or incomplete sampling (Machado
et al., 2005; Cruaud et al., 2011).

Because so many mechanisms give rise to the same interaction patterns, additional tests have to be devised
and undertaken to assess the contribution of different assembly mechanisms. Specially, determining whether
assembly processes structure interactions will require a synthetic approach — combining network approaches
with more traditional phylogenetic, trait and biogeographic reconstructions (e.g., Ramı́rez et al., 2011).
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Tree
divergences

Trait
evolution vari-
ance

Coevolutionary
community

Interaction weights Mean Standard deviation

Shallow Low No coevolution, no cospeciation Unweighted 5.313 3.342
Shallow Low Coevolution, no cospeciation Unweighted 6.05 3.163
Shallow Low No coevolution, cospeciation Unweighted 6.053 3.169
Shallow Low Coevolution, cospeciation Unweighted 7.54 2.311
Deep Low No coevolution, no cospeciation Unweighted 6.327 2.926
Deep Low Coevolution, no cospeciation Unweighted 6.015 3.167
Deep Low No coevolution, cospeciation Unweighted 6.04 3.223
Deep Low Coevolution, cospeciation Unweighted 7.489 2.34
Deep High No coevolution, no cospeciation Unweighted 1.866 4.271
Deep High Coevolution, no cospeciation Unweighted 6.112 3.142
Deep High No coevolution, cospeciation Unweighted 6.129 3.123
Deep High Coevolution, cospeciation Unweighted 7.56 2.288
Shallow High No coevolution, no cospeciation Unweighted 5.27 3.354
Shallow High Coevolution, no cospeciation Unweighted 6.002 3.188
Shallow High No coevolution, cospeciation Unweighted 6.055 3.204
Shallow High Coevolution, cospeciation Unweighted 7.496 2.343
Shallow Low No coevolution, no cospeciation Weighted 0.932 4.239
Shallow Low Coevolution, no cospeciation Weighted 3.101 3.927
Shallow Low No coevolution, cospeciation Weighted 3.116 3.917
Shallow Low Coevolution, cospeciation Weighted 2.709 4.985
Deep Low No coevolution, no cospeciation Weighted 3.306 3.851
Deep Low Coevolution, no cospeciation Weighted 3.153 3.887
Deep Low No coevolution, cospeciation Weighted 3.276 3.883
Deep Low Coevolution, cospeciation Weighted 2.696 5.051
Deep High No coevolution, no cospeciation Weighted -0.525 3.697
Deep High Coevolution, no cospeciation Weighted 3.145 3.851
Deep High No coevolution, cospeciation Weighted 3.183 3.849
Deep High Coevolution, cospeciation Weighted 2.772 4.929
Shallow High No coevolution, no cospeciation Weighted 0.807 4.246
Shallow High Coevolution, no cospeciation Weighted 2.992 3.908
Shallow High No coevolution, cospeciation Weighted 3.083 3.887
Shallow High Coevolution, cospeciation Weighted 2.655 5.015

Table 3.2: The mean and standard deviation of the relative modularity (z-scores) of different coevolutionary
communities (see Table 1 for parameter details).
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Tree
divergences

Trait
evolution vari-
ance

Coevolutionary
community

Interaction weights Mean Standard deviation

Shallow Low No coevolution, no cospeciation Unweighted -4.499 3.798
Shallow Low Coevolution, no cospeciation Unweighted -2.701 5.251
Shallow Low No coevolution, cospeciation Unweighted -2.738 5.218
Shallow Low Coevolution, cospeciation Unweighted -6.274 2.671
Deep Low No coevolution, no cospeciation Unweighted -3.165 4.877
Deep Low Coevolution, no cospeciation Unweighted -2.699 5.254
Deep Low No coevolution, cospeciation Unweighted -2.823 5.169
Deep Low Coevolution, cospeciation Unweighted -6.257 2.68
Deep High No coevolution, no cospeciation Unweighted 0.84 6.298
Deep High Coevolution, no cospeciation Unweighted -2.66 5.275
Deep High No coevolution, cospeciation Unweighted -2.795 5.191
Deep High Coevolution, cospeciation Unweighted -6.242 2.694
Shallow High No coevolution, no cospeciation Unweighted -4.706 3.739
Shallow High Coevolution, no cospeciation Unweighted -2.699 5.257
Shallow High No coevolution, cospeciation Unweighted -2.722 5.278
Shallow High Coevolution, cospeciation Unweighted -6.255 2.695
Shallow Low No coevolution, no cospeciation Weighted -1.964 5.106
Shallow Low Coevolution, no cospeciation Weighted -0.712 5.688
Shallow Low No coevolution, cospeciation Weighted -0.76 5.674
Shallow Low Coevolution, cospeciation Weighted -4.371 3.759
Deep Low No coevolution, no cospeciation Weighted -1.14 5.42
Deep Low Coevolution, no cospeciation Weighted -0.717 5.703
Deep Low No coevolution, cospeciation Weighted -0.873 5.6
Deep Low Coevolution, cospeciation Weighted -4.288 3.778
Deep High No coevolution, no cospeciation Weighted 3.725 6.258
Deep High Coevolution, no cospeciation Weighted -0.715 5.704
Deep High No coevolution, cospeciation Weighted -0.885 5.603
Deep High Coevolution, cospeciation Weighted -4.348 3.753
Shallow High No coevolution, no cospeciation Weighted -2.16 5.061
Shallow High Coevolution, no cospeciation Weighted -0.713 5.679
Shallow High No coevolution, cospeciation Weighted -0.82 5.675
Shallow High Coevolution, cospeciation Weighted -4.374 3.765

Table 3.3: The mean and standard deviation of the relative nestedness (z-scores) of different coevolutionary
communities (see Table 1) for parameter details).

62



Tree
divergences

Trait
evolution vari-
ance

Coevolutionary
community

Interaction weights Mean Standard deviation

Shallow Low No coevolution, no cospeciation Unweighted 0.004 0.075
Shallow Low Coevolution, no cospeciation Unweighted 0.025 0.096
Shallow Low No coevolution, cospeciation Unweighted 0.211 0.22
Shallow Low Coevolution, cospeciation Unweighted 0.215 0.213
Deep Low No coevolution, no cospeciation Unweighted 0.022 0.089
Deep Low Coevolution, no cospeciation Unweighted 0.024 0.097
Deep Low No coevolution, cospeciation Unweighted 0.205 0.214
Deep Low Coevolution, cospeciation Unweighted 0.21 0.214
Deep High No coevolution, no cospeciation Unweighted 0.038 0.142
Deep High Coevolution, no cospeciation Unweighted 0.026 0.101
Deep High No coevolution, cospeciation Unweighted 0.202 0.212
Deep High Coevolution, cospeciation Unweighted 0.21 0.21
Shallow High No coevolution, no cospeciation Unweighted 0.005 0.076
Shallow High Coevolution, no cospeciation Unweighted 0.024 0.097
Shallow High No coevolution, cospeciation Unweighted 0.213 0.217
Shallow High Coevolution, cospeciation Unweighted 0.216 0.215
Shallow Low No coevolution, no cospeciation Weighted 0.004 0.072
Shallow Low Coevolution, no cospeciation Weighted 0.027 0.101
Shallow Low No coevolution, cospeciation Weighted 0.21 0.219
Shallow Low Coevolution, cospeciation Weighted 0.223 0.211
Deep Low No coevolution, no cospeciation Weighted 0.023 0.092
Deep Low Coevolution, no cospeciation Weighted 0.026 0.101
Deep Low No coevolution, cospeciation Weighted 0.205 0.213
Deep Low Coevolution, cospeciation Weighted 0.219 0.213
Deep High No coevolution, no cospeciation Weighted 0.034 0.142
Deep High Coevolution, no cospeciation Weighted 0.028 0.103
Deep High No coevolution, cospeciation Weighted 0.201 0.214
Deep High Coevolution, cospeciation Weighted 0.219 0.21
Shallow High No coevolution, no cospeciation Weighted 0.005 0.071
Shallow High Coevolution, no cospeciation Weighted 0.026 0.102
Shallow High No coevolution, cospeciation Weighted 0.211 0.217
Shallow High Coevolution, cospeciation Weighted 0.223 0.213

Table 3.4: The mean and standard deviation of the phylogenetic interaction signal of different coevolutionary
communities (see Table 1 for parameter details).
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Fig. 3.1: Dependence of tree shape on speciation (µ) and extinction rates (λ). The low values of µ and λ generated
trees with shallow divergences, and the high values generated deep divergences. The panels show the distribu-
tion of trait values generated by the different combinations of phylogenetic tree structure and Brownian motion
variance.
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Fig. 3.2: Coevolutionary and non-coevolutionary phylogeny-trait combinations and linkage rules. Trait values are
represented by circle size on the phylogenetic tree branch tips. The matrix of interactions (for example, plants
and pollinators where pollinators are the columns and plant are the rows) is depicted with interaction frequency of
interaction represented by colored squares. Unweighted interactions result in only 0s (white) or 1s (black).

65



Fig. 3.3: The interaction niche breath and partner overlap of communities as the range of trait values a species can
interact with is varied from wide to narrow.
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Fig. 3.4: Mean relative modularity, nestedness, and phylogenetic interaction signal of 10, 000 simulated communi-
ties. Communities comprised 30 species in each interaction group. Colors correspond to different coevolutionary
scenarios. In left panels, all species interactions were equally frequent, whereas in right panels the interaction
probability depended on the degree of trait overlap between potentially interacting pairs of species. Relative
nestedness and modularity are corrected for the null expectation, given the number of interactions and species in
the interaction network (z-scores, top two panels). Scores greater than ∼ 2 or less than ∼ −2 are significantly
more or less structured than randomly assembled communities. Vertical bars denote the 95% confidence intervals.
Modularity was calculated using a hierarchical clustering algorithm.
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Fig. 3.5: The effect of coevolution on the relative modularity, nestedness, and phylogenetic interaction signal
across a range of levels of mean interaction niche breath. Interaction niche breath is measured the mean proportion
of potential interaction partners a species interacts with out of the total possible. The solid curves represent
smoothed mean differences between randomly selected pairs of communities and the filled area corresponds to
95% confidence intervals. Note that we do not directly vary interaction niche breath, but instead do so indirectly
by varying the size of the range of trait values that a species will accept in a partner (see Fig. S2 for further
interpretation of these values).
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Fig. 3.6: The effect of coevolution on the relative modularity, nestedness, and phylogenetic interaction signal for
simulated communities across a range of partner overlap values. Partner overlap is measured the mean tropic
similarity of pairs of species belonging to the same interaction group. Curves were calculated as described in the
caption to Fig. 3.5. The solid curves represent smoothed means and the filled area corresponds to 95% confidence
intervals.
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Fig. 3.7: The modularity of different coevolution communities calculated with different community partitioning
methods. Communities evolved with a low trait evolution variance and shallow divergences between species of
the same interaction group is represented as an example.
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Chapter 4

Conclusion

Throughout my thesis, I found that species interactions have a profound influence on the ecological dynamics of
communities (e.g., Thompson, 2005). In both Yosemite and the Central Valley, the diversity of plants and polli-
nators was correlated, and the geographic distribution of pollinators tracked their floral hosts. I am now seeking
to move past these correlative relationships to uncover the mechanisms underlying the assembly of different in-
teraction patterns. Ecological networks have emerged as a powerful method to understand the dynamics of the
myriad species and their interactions that comprise complex ecosystems. In particular, modeling communities as
networks enables us to develop our understanding of how the species-level interactions led to emergent patterns
of interaction. The structure of interactions is in turn related to the community resilience to disturbance, and the
ability of the system to avoid collapse (e.g., Montoya et al., 2006). To predict the response to communities to
global change, it is thus important to elucidate the mechanisms that underlie the patterns of interactions observed
in communities.

NETWORK ASSEMBLY

To explore the mechanisms that influence network topology, I am examining how foraging decisions of species
change as a community assembles, and the subsequent impacts on network topology. Specifically, I modified an
adaptive foraging network model (Valdovinos et al., 2013b, 2010) to allow for the colonization and extinction of
species to reflect the community assembly conditions on the hedgerows in the Central Valley. The empirical data
supports the prediction of the optimum foraging model that more generalized species begin to niche partition and
limit their diet breath as the community develops (Ponisio and Valdovinos, in prep). This shift in species foraging
causes the network topology to become more specialized and less nested. By examining how patterns of inter-
actions change as the community develops, we can make predictions about how resilience of these communities
evolves through time to better set targets for restoration.

Next I hope to isolate whether specific mechanisms of assembly give rise to different patterns on inter-
action, building on my work in Chapter 3. Models incorporating both ecological and evolutionary dynamics,
so-called large community evolution models, reproduce the observed structure of networks (e.g., Allhoff et al.,
2015; Guimarães et al., 2011; Loeuille, 2010; Brännström et al., 2011). Much simpler models, however, that incor-
porate only ecological dynamics (population dynamics, Thébault & Fontaine, 2010; Bastolla et al., 2009; Krause
et al., 2003; spatio-temporal species distributions, Pillai et al., 2011; Pimm et al., 1991; Encinas-Viso et al., 2012;
stochastic processes Canard et al., 2012; Jonhson et al., 2013; Krishna et al., 2008) or even just simple interaction
rules (e.g. static community models, Williams & Martinez, 2000b; Cattin et al., 2004) also generate networks
with properties comparable to those found in empirical communities.

To develop the framework that would be necessary to disentangle different assembly mechanisms, I lead an
interdisciplinary workshop in collaboration with the Berkeley institute for Data Science on network approaches
to community assembly. I brought together theoreticians (e.g., Neo Martinez and Robert Holt) and empiricists
(e.g., Rosemary Gillespie) to discuss approaches to develop new theory and analyze data describing networks of
ecological interactions to propel a new synthesis of our understanding of ecological and evolutionary assembly
of communities. Our discussion provided the basis for an Ideas and Perspectives article for Ecology Letters,
currently in preparation. We suggest that to elucidate the mechanisms shaping interaction patterns, we must
examine the process of network assembly through time both through modeling and empirical work, and how
community characteristics affect that process.
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Fig. 4.1: A conceptual outline of future research.

FUTURE WORK: THEORY

In my future work, I plan to undertake the theoretical work we identified in our workshop as lacking but critical for
understanding network assembly. I am currently developing a template for studying community assembly based
on network theory, the theory of island biogeography and coevolutionary theory.

I will build a large community evolution model to examine how community variables affect the structure
of interactions. I will focus on two community characteristics — temporal turnover of species and community
age (Figure 4.1a). The temporal turnover of species is ubiquitous across different types of interaction networks
(pollination: Olesen et al., 2011, 2008; Alarcón et al., 2008; Petanidou et al., 2008a; Fang & Huang, 2012; Burkle
& Irwin, 2009; ant-plant: Dı́az-Castelazo et al., 2010; frugivore-plant: Carnicer et al., 2009; host-parasite: Pilosof
et al., 2013; Saavedra et al., 2015; predator-prey: (Owen-Smith & Mills, 2008). Temporal turnover is most
fundamentally governed by the rates of immigration and extinction (Figure 4.2a, MacArthur & Wilson, 2015).
Though large community evolution models have been employed to study community assembly (Allhoff et al.,
2015; Guimarães et al., 2011; Loeuille, 2010; Brännström et al., 2011), few have examined the effect of varying
rates of immigration (Allhoff et al., 2015). A more thorough exploration of the effects of species turnover on the
trajectory of community assembly, and the species interactions that govern that trajectory has yet to be explored
(Brännström et al., 2012).
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Fig. 4.2: Conceptual framework and hypothesis regarding how species turnover and evolution/coevolution influ-
ence the patterns of interactions in a community. (a) The rate of species turnover will depend on the rates of
immigration and extinction into a community. The rate of extinction of species near source pools will be lower
then those far from sources because of the rescue effect. Similarly, immigration rates will be lower for communi-
ties far from source pools. Here, the turnover of species in the community near the source pool (TN) is higher than
the more isolated community (TF). Rates of immigration and extinction will also determine the species richness
of a community at time T1 (before speciation has had time to add new species). Here, the community far from
the source pool (SF) is lower than the near community (SN). (b) Low rates of species turnover and many gener-
ations of evolution/coevolution will favor niche partitioning, whereas high turnover will favor niche overlap. (c)
The richness of a community will limit number of compartments of interactions a community can support. With
enough time for evolution/coevolution to occur, however, the community will itself before a source of new species
as species diversify, allowing for greater modularity.
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FUTURE WORK: SYNTHESIS

The proposed theoretical work will help lay the foundation for understanding the interaction patterns favored
by assembly in real-world communities that vary in their rate of temporal species turnover. Based on island
biogeography theory (MacArthur & Wilson, 2015), large islands far from sources (e.g., Hawaii) will have lower
species temporal turnover than small islands near sources (e.g., habitat fragments). By using a synthesis approach
to compare the assembly of true islands, natural island-like systems, and anthropogenically generated habitat
islands, I will build on our understanding of how and why the interaction patterns vary between human modified
and more natural landscapes. (Figure 4.1b).

I am working to compile and augment existing collections of plant-pollinator interaction networks from
true islands such as the Channel Islands, natural island-like systems like montane meadows in the Sierra Nevada,
and human generated islands like habitat fragments in agricultural matrices. I will test the predictions from my
theoretical work on the effect of species temporal turnover on interaction patterns. I will also use the empirical
data as starting points for my large community evolution model (Section 4.0.2), and examine the evolutionary
trajectory of the communities through time. I can then explore how the stability and response to perturbations
of the different island systems changes through time. An understanding of the differences in network structures
between islands and islands-like systems will help elucidate any differences in resilience between these systems,
as well as provide targets for restoration interventions.

FUTURE WORK: EMPIRICAL

Lastly, I also plan to test my theoretical predictions (Section 4.0.2) empirically by examining how similar types of
ecological communities that vary along geographic gradient of species temporal turnover differ in their network
structure (Figure 4.1c). The Madrean sky islands, an archipelago of mountains surrounded by “seas” of desert,
provides an ideal system to explore these questions. The islands vary in their distance from the two source pools
(the Rocky Mountains and the Sierra Madre) and thus likely their temporal species turnover (Figure 4.3). I plan to
lead a highly interdisciplinary study, using genetic techniques to reconstruct patters of species immigration across
the sky islands, and examining how the structure of interaction networks changes along this spatial gradient.
Though my original focus will be plant-pollinator communities, I also hope to examine other types of mutualistic
systems (e.g., rhizome-legume) in collaboration with other researchers.

Similar to the island synthesis study, I will also use the empirical data from the different sky islands as
starting points for my large community evolution model (Section 4.0.2), and examine the evolutionary trajectory
and resilience of the communities through time. Island-systems are also both fundamental to theories of biogeog-
raphy, and fascinating because of their endemic flora and fauna. At the same time, these systems are threatened
by anthropogenic impacts such as climate and land-use change. My work presents a unique opportunity for elu-
cidating the mechanisms sustaining the biodiversity of these systems and their ability to withstand disturbance to
inform conservation efforts.
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Pires MM, Prado PI, Guimarães PR (2011) Do food web models reproduce the structure of mutualistic networks?
PLoS One, 6, e27280.

Pons P, Latapy M (2005) Computing communities in large networks using random walks. In: Computer and
Information Sciences-ISCIS 2005, pp. 284–293. Springer.

Potts S, Biesmeijer J, Kremen C, Neumann P, Schweiger O, Kunin W (2010) Global pollinator declines: trends,
impacts and drivers. Trends Ecol. Evol., 24, 345–353.

Potts S, Vulliamy B, Dafni A, Ne’eman G, Willmer P (2003a) Response of plant-pollinator communities to fire:
Changes in diversity, abundance and floral reward structure. Oikos, 101, 103.

84



Potts S, Vulliamy B, Roberts S, O’Toole C, Dafni A, Ne’eman G, Willmer P (2005a) Role of nesting resources in
organising diverse bee communities in a mediterranean landscape. Ecol. Entomol., 30, 78.

Potts SG, Dafni A, Ne’eman G (2001) Pollination of a core flowering shrub species in mediterranean phrygana:
variation in pollinator diversity, abundance and effectiveness in response to fire. Oikos, 92, 71.

Potts SG, Vulliamy B, Dafni A, Ne’eman G, Willmer P (2003b) Linking bees and flowers: how do floral commu-
nities structure pollinator communities? Ecology, 84, 2628–2642.

Potts SG, Vulliamy B, Roberts S, O’Toole C, Dafni A, Ne’eman G, Willmer P (2005b) Role of nesting resources
in organising diverse bee communities in a mediterranean landscape. Ecol. Entomol., 30, 78–85.
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