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Abstract

In a recent paper, Laird, Lebiere, and Rosenbloom (2017)
highlight how 40 years of research on cognitive architectures
has begun to yield a dramatic convergence of different ap-
proaches towards a set of basic assumptions that they called
the “Standard Model of the Mind” (SMM), in analogy to the
Standard Model of particle physics. The SMM was designed
to capture a consensus view of “human-like minds”, whether
from AI or cognitive science, which if valid must also be true
of the human brain. Here, we provide a preliminary test of
this hypothesis based on a re-analysis of fMRI data from four
tasks that span a wide range of cognitive functions and cog-
nitive complexity, and are representative of the specific form
of intelligence and flexibility that is associated with higher-
level human cognition. Using an established method (Dynamic
Causal Modeling) to examine functional connectivity between
brain regions, the SMM was compared against two alternative
models that violate either functional or structural assumptions
of the SMM. The results show that, in every dataset, the SMM
significantly outperforms the other models, suggesting that the
SMM best captures the functional requirements of brain dy-
namics in fMRI data among these alternatives.
Keywords: Cognitive architectures; fMRI; Effective Connec-
tivity

Introduction
In a recent paper, Laird, Lebiere, and Rosenbloom (2017)
have argued that, over the course of four decades, cognitive
architectures have slowly converged onto a set of shared core
assumptions, which they have tentatively named the “Stan-
dard Model of the Mind” (henceforth, SMM) in analogy to
the “Standard Model” of particle physics.1 The SMM is artic-
ulated as a series of assumptions about the nature of specific
components and computations that are common to “human-
like minds”; i.e., minds sufficiently similar in structure and
function to human minds. These assumptions cover (A) struc-
ture and processing, (B) memory and content, (C) learning,
and (D) perception and motor. Figure 1 is a visual illustration
of the fundamental components and their architecture.

1The “Standard Model of the Mind” has since been renamed the
“Common Model of Cognition” after input from interested scientists
attending a Fall symposium on the topic.

Figure 1: A graphical representation of the Standard Model
of the Mind, as proposed by Laird et al. (2017)

Although the convergence was specifically illustrated in
the case of the three architectures most closely associated
with the co-authors–Soar (Laird, 2012), ACT-R (Anderson,
Fincham, Qin, & Stocco, 2008), and Sigma (Rosenbloom,
Demski, & Ustun, 2016)–the same case can be convincingly
made for similar approaches as well.

This convergence likely reflects a number of factors, most
notably the cumulative lessons learned from design of intelli-
gent systems in AI and robotics, continual progress in cogni-
tive psychology, and advancements in neuroscience. Because
of the different nature of the forces that have driven this con-
vergence, the authors have postulated that the SMM reflects
a common architecture for intelligent, human-like behavior,
which can be implemented in a biological or artificial system.

Evidence for the SMM

Despite the compelling theoretical arguments outlined in the
paper, human beings remain the only known species capa-
ble of intelligent, general-purpose behavior, and data from
humans remains the primary non-functional test-bed for the
SMM. Also, irrespective of what is true of non-biological in-
telligent systems, it must be true at least of the human brain.
That implies that the SMM must be reflected, to a certain de-
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gree, in the functional architecture of the human brain.
Although an examination of the architecture of the human

brain might seem an incredibly speculative project, it need not
be so. Functional architectures of human brains are routinely
proposed and examined, and ACT-R has been offered as a
general architecture for the brain (Anderson et al., 2008).

In this paper, we show that the SMM can in fact be com-
pared to other alternative architectures by examining the pat-
terns of effective connectivity across cortical and sub-cortical
regions in four neuroimaging datasets from different do-
mains, and show that, in all cases, the SMM provides a better
explanation of the data than alternative architectures of com-
parable complexity.

Designing an Empirical Test of the SMM
The SMM is made of several predictions, concerning the
number and function of the central modules; their relative
connections, and details on how information flows between
modules; the format of the information that is shared between
modules and its associated metadata; and the algorithms gov-
erning learning in the system.

In this paper, we focus on the most general tenets of the
SMM, those concerning the specific components and their
functional relationships. The central idea is that the specific
components outlined in Figure 1 can be put into correspon-
dence with specific brain circuits, and that the functional ar-
rows in the diagram then correspond to the functional con-
nectivity between these circuits, that is, the preferred way in
which information is shared between difference circuits.

Testing Connectivity With DCM
Of these two aspects, the identification of SMM components
with particular brain circuits or regions is perhaps the least
controversial. In many cognitive architectures, e.g., specific
modules have been mapped onto specific brain regions.

The examination of the functional connectivity between re-
gions, however, requires special care. Here, we have chosen
to examine the functional connectivity between regions us-
ing Dynamic Causal Modeling, or DCM (Friston, Harrison,
& Penny, 2003). DCM is a mathematical method to estimate
functional connectivity between network “nodes” that corre-
spond to specific brain regions. It can be thought of as a more
complex version of traditional General Linear Model (GLM)
analysis of neuroimaging data, in which, rather than identify-
ing the best fitting parameters for the time series of activity
in every voxel, what is modeled is the time series of neural
activity in a subset of regions (the network’s nodes). While in
GLM analysis the time series of a voxel y is estimated from
the product of a matrix of parameters β and a matrix of exper-
imental conditions x (that is, y = β×x+ε), in DCM the time
series of data in a node is fitted by a dynamic system state
equation:

dy
dt

= Ay+∑
i

xiB(i)y+∑
j

y jD( j)y+Cx (1)

Where A, B, C, and D are four matrices that define, re-
spectively the intrinsic connectivity between different regions
(A); which regions are directly affected by task inputs, such as
special stimuli or conditions (C, akin to “factors” in canonical
GLM analysis); the modulatory effects that task conditions
have on the connectivity between regions (B); and, finally,
the modulatory effect that a network node can have on the
connectivity between two other network nodes (D).

DCM has several advantages that make it the instrument
of choice in our analysis. The first is that it is an explic-
itly top-down analysis method, which works best for testing
and comparing a-priori hypotheses rather than for exploratory
data analysis. This is, of course, exactly the type of approach
needed. Another advantage is that DCM explicitly focuses
on effective and directional connectivity, rather than on sim-
ple correlations between different timeseries. This makes it
ideal to examine the directionality of the arrows in Figure 1.
In this sense, DCM is superior to alternative approaches, such
as Granger Causality (Friston, Moran, & Seth, 2013), because
it better handles the temporal distortions introduced by the
laggish neurovascular coupling response, which determines
the BOLD signal recorded in fMRI and which might vary
substantially between regions (in GLM-based analyses, these
differences can be ignored). The “Causal” in the acronym
refers to the explicit directionality of the models. Yet an-
other advantage of DCM is that parameter estimation is thor-
oughly conducted through a hierarchical Bayesian approach,
thus giving each model the best chance to fit the data, while
penalizing unreasonable physiological parameters. The use
of Bayesian estimation is key to the possibility of directly
comparing models, which is the goal of this paper. Finally,
DCM has the advantage of being modality-independent; net-
work dynamics are first modeled in terms of simplified neu-
ronal activity, and then translated into the specific modality.
This means that the same model can be used to fit both fMRI
data (with high spatial resolution, low temporal resolution,
and 3D spatial distribution of observations) and EEG data
(with low spatial resolution, high temporal resolution, and
surface distribution of observations). Thus, DCM provides
the ideal starting point for a series of different analyses.

As with every method, DCM is not immune to criticisms
(Lohmann, Erfurth, Müller, & Turner, 2012). However, most
of the objections (for instance, the problems of specific pa-
rameter estimation) do not apply to the way this technique is
used in this paper. Furthermore, when the underlying model
is well specified, DCM does converge towards correct net-
work parameters and successfully identifies underlying gen-
erators of neural activity (David et al., 2008).

Implementing the Standard Model in DCM

To proceed with the test, we first need to translate the SMM
into a network of interconnected regions. In turn, this process
requires establishing which regions are mapped to the SMM
components, and how the connectivity between regions re-
flects the principles of the SMM.
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Mapping Modules to Brain Regions In its formulation,
the Standard model is made of five different “modules”.
Given the fact that all of the tasks herein require manual re-
sponses, the action module can be uncontroversially identi-
fied with the motor regions of the brain (Brodmann Area 1).
Because the four tasks examined here differ in the complex-
ity of the visual inputs, we chose to identify the perception
module with the primary visual cortices (Brodmann Area 18).
This approach yielded a remarkably similar and stable lo-
cation across tasks. Following a large amount of literature
(Kane & Engle, 2002), the working memory module was lo-
calized within the dorsal prefrontal cortex (DLPFC), a region
that is similarly implicated in maintaining and updating tem-
porary representations. The long-term memory module, on
the other hand, is specialized for creating and maintaining
stable representations over long intervals of time—a process
that can be identified with the function of the hippocampus
and the medial temporal lobe (Squire, 1992). Finally, the
procedural memory module can be identified with the basal
ganglia, a set of nuclei similarly involved in the acquisition
of procedural skills and action selection (Stocco, Lebiere, &
Anderson, 2010).

Intrinsic Connectivity Most of the arrows in Figure 1
can be straightforwardly translated into connections between
the corresponding brain regions in the DCM implementation
of the SMM. The sole exception is the arrow between the
model’s procedural and working memory modules, which
must be interpreted in light of the special function of the
procedural module in the SMM. There are two assumptions
about the procedural module that have important implications
for effective connectivity. Assumption B3a states that global
control is provided by procedural knowledge in terms of rule-
like conditions and actions, while assumption B3b states that
the firing of procedural rules drives the Standard Model’s cog-
nitive cycle by modifying the contents of working memory.
In other words, the procedural module controls the transfer
of signals to the global working memory space. In terms of
effective connectivity, this function of procedural knowledge
can be captured by assuming that the striatum modulates the
connectivity from the other regions to the DLPFC (dashed ar-
rows in Figure 2), rather than directly affecting the DLPFC
(solid arrows in Figure 2). A similar approach has been pre-
viously suggested for DCM models of the basal ganglia (Prat,
Stocco, Neuhaus, & Kleinhans, 2016), and is compatible with
contemporary neural network models of the circuit (Stocco et
al., 2010). The final implementation of our model is repre-
sented in Figure 2A. In the figure, the boxes represent the
SMM components, and their positions represent the (approx-
imate) locations of the corresponding brain circuits over the
outlines of a standard brain template. The solid black ar-
rows represent the directional information channels of Figure
1, while the dashed lines terminating in circles represent the
modulatory effects of the procedural module (i.e., the basal
ganglia).

Evaluating the DCM Implementation

The SMM captures lessons learned from developing general-
purpose, intelligent cognitive architectures. As such, it is
does not represent an optimal architecture system for a spe-
cific task. Rather, it represents the best single functional ar-
chitecture that can successfully perform a large variety of
tasks of different complexity. For this reason, the best way
to test the SMM is not by providing a statistical fit against a
specific dataset, but by comparing it over a variety of tasks
against alternative architectures of similar complexity (that
is, with a similar number of modules). If the SMM is cor-
rect, its corresponding DCM implementation should provide
a comparably superior fit than other, alternative models of the
neural data. In this paper, we will compare the SMM net-
work against two alternative models of effective connectiv-
ity between the same regions. As a preliminary evaluation,
these two models do not provide an exhaustive search of the
possible architectures. They do, however, provide meaning-
ful comparisons as they lay on opposite sides of the space of
possible architectures.

The Structural Model In the structural model (Figure 2B),
the modulatory connections of the basal ganglia are replaced
by direct connections between the procedural module and the
working memory module. Thus, this model implements a
version of the SMM that reflects the general communication
pathways in Figure 1, but does not reflect the special func-
tional role of the procedural module, as defined by assump-
tions B3a–b. This model provides an interesting comparison
for the SMM because of its similarity and greater simplicity,
which provide an advantage in terms of Bayesian model com-
parison. In other words, the comparison between the SMM
and the structural model reveals whether the functional as-
sumption about the role of procedural knowledge is necessary
to capture the flow of activity in the human brain.

The Fully Connected Model In the fully connected model
(Figure 2C), all brain areas are bidirectionally connected to
all others. This models serves as a theoretical counterpart
to the structural model, and implements an opposite view
of the nature of brain function. While the structural model
assumes that constraints on the directionality between brain
regions are sufficient to explain patterns of network activ-
ity, this model embodies the opposite viewpoint that there is
no true “architecture” that is invariant across tasks, and that
the brain’s ability to perform multiple tasks arises from the
fact that all regions are in principle connected, rather than by
means of a functional organization. In other words, there is
no invariant architecture, only task-driven activity.

Testing Across Multiple Tasks

To capture the generality of the SMM, the three models
above were compared across a spectrum of tasks that cover
a broad range of cognitive capabilities, from relatively sim-
ple stimulus-response mappings to unstructured, fluid prob-
lem solving.
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Figure 2: The three model architectures used in this analysis

Materials and Methods

Datasets and Tasks

Four functional MRI datasets were used for this analysis, all
from either published studies or the first author’s laboratory.
The four tasks were chosen to be representative of the spread
of high-level cognitive abilities in humans. Table 1 summa-
rizes the technical specifications of the four datasets.

The Flanker task In the Flanker task (Eriksen & Eriksen,
1974), participants respond to a central arrow-like symbol
(e.g., “<”) with the hand corresponding to the symbol’s direc-
tion (e.g., left). The central symbol, however, is surrounded
by four distractors, or “flankers”, that either point in the same
direction (congruent trials, e.g., “<<<<<”) or in the oppo-
site direction (incongruent trials, e.g., “<<><<”). Incon-
gruent stimuli require additional control to manage the in-
terference caused by the flankers. This task is perhaps the
simplest of the experimental paradigms used to study cogni-
tive control and executive functions, requiring minimal pro-
cessing of the stimulus and depending on natural stimulus-
response mappings. The dataset used is from the OpenfMRI
public repository, and has been described and used by Kelly,
Uddin, Biswal, Castellanos, and Milham (2008).

The Stroop task In the Stroop task (MacLeod, 1991) par-
ticipants indicate through a manual response the color a word
is printed in. Interference arises because the words are
themselves color names, thus giving rise to congruent (e.g.,
“BLUE” in blue) and incongruent (e.g., “BLUE” in red) stim-
uli. This specific dataset is from the OpenfMRI public repos-
itory, and has been described and used by Verstynen (2014).

Rapid Instructed Task Learning (RITL) RITL is a
paradigm recently developed to study cognitive flexibility
and dynamic control of behavior (Cole, Laurent, & Stocco,
2013). Participants perform a different task each trial. To
make this possible, each trial is divided into an “instruction”
phase (where the task is communicated in a simple, prede-
fined notation) and an “execution” phase, during which the
instructions are applied to a specific stimulus. Tasks of com-
parable difficulty are created by combining basic mental op-

erations (such as arithmetic or semantic operations) in pre-
defined ways. Mental flexibility is measured by comparing
entirely new tasks against a subset of tasks that have been
practiced in advance (Cole et al., 2013). This specific data
comes from an unpublished study conducted by the first au-
thor. However, a different dataset with an identical paradigm
had been previously published and described in detail by
Stocco and Prat (2014).

Raven’s Advanced Progressive Matrices (RAPM)
RAPM is one of the most widely-used non-verbal tests of
fluid intelligence and fluid reasoning abilities. Each problem
consists of a 3-by-3 matrix. Eight cells of the matrix contain a
figure made of different elements, while the bottom-right cell
is empty. The visual features (such as color or orientation)
of each figure vary across rows and columns according to
specific but undisclosed rules. Participants must infer the
rules and correctly identify the figure that completes the
matrix within an array of four possible options. This specific
dataset comes from what is, to the best of our knowledge, the
only fMRI study that uses standard RAPM problems instead
of simplified versions (Stocco, Prat, & Graham, submitted).

Task Implementation in DCM
Although the general architecture of the DCM models can be
defined independently of the task, model estimation requires
an explicit definition of how different stimuli affect the re-
gions. To make the estimation and comparison procedures as
general as possible, we used a uniform scheme to represent
the experimental conditions across the four different tasks. In
this scheme, every stimulus that is presented is encoded as an
input to the visual cortex. In certain tasks, visual stimuli can
differ significantly in nature. For example, in RITL (Stocco
& Prat, 2014), stimuli can be either three-word instructions or
two one-digit numbers, while in RAPM, stimuli can be either
a 9-cell complex visual problem or a set of 4 possible 1-cell
solutions. To account for this variability, different categories
of stimuli are represented by separate types of inputs.

All tasks also share a basic comparison between an “easy”
and a “difficult” condition, the latter of which requires addi-
tional processing. This is the case, for example, of incongru-
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Table 1: Details of the four datasets. RAPM = Raven’s Advanced Progressive Matrices; RITL = Rapid Instructed Task Learning;
Slices = Number of oblique axial slices; TR = Repetition time; TE = Echo time; N = Number of participants per dataset.

Task Publication Scanner Functional Imaging Parameters Slices N
Flanker Kelly et al. (2008) Siemens Trio TR = 2.0 s, TE = 20 ms 40 26
Stroop Verstynen (2014) Siemens Trio TR = 1.5 s, TE = 30 ms 29 28
RAPM Stocco et al. (submitted) Philips Achieva TR = 2.0 s, TE = 20 ms 36 24
RITL Stocco and Prat (2014) Philips Achieva TR = 2.0 s, TE = 30 ms 36 25

ent stimuli in the Flanker task (i.e., “<<><<”, as opposed
to “<<<<<”). As a technique, DCM is agnostic about the
nature of the stimuli. Thus, the fact that certain trials or con-
ditions require additional processing needs to be explicitly
encoded. In this study, we made the choice of including an
additional input to the working memory region to mark the
additional demands for processing for stimuli in the “diffi-
cult” conditions.2 This decision reflects the rather uncontro-
versial assumption that the greater processing of certain stim-
uli would be accompanied by greater working memory load.
Note that this assumption remains still fairly general, since
it does not take into account the specific ways in which the
“difficult” trials might be different across tasks.

Results
To compare the three models across the four datasets, we used
a group-level Bayesian model selection algorithm, originally
described in Stephan, Penny, Daunizeau, Moran, and Friston
(2009). Figure 3 shows the results of the model comparisons.
To make a relative comparison across a common scale, the
plots use relative log-likelihood, while the labels above the
bars are true log-likelihood values from the analysis.

Across all four datasets, the SMM model provides the best
explanation for the data. To put this result in perspective, we
can examine the quantitative differences in log-likelihood be-
tween the models. Because DCM calculates priors (also tak-
ing into account model complexity), the differences in log-
likelihood can be used to derive posterior probabilities of one
model being better than the others. Across all comparisons,
the posterior probability of the SMM being the best explana-
tion of the data was p ≥ 0.99. Assuming, instead, uninfor-
mative priors (that is, no initial preference between models),
log-likelihood differences can be interpreted as Bayes factors;
thus, a difference of d in favor of model M1 over model M2
means that M1 is ed times more probable than M2. Accord-
ing to the standards established by Kass and Raftery (1995),
values of d > 30 provides “strong evidence” for one model
over the other. As shown in Figure 3, the SMM model has
an advantage of at least d > 124 against the structural model,
and at least d ≥ 30 against the fully connected model across
all tasks. Thus, across all datasets, we can conclude that the
SMM is supported by strong empirical evidence.

2Note that in DCM, unlike in canonical GLM analysis, task fac-
tors do not need to be orthogonal with each other.

Discussion
This paper has provided a preliminary test of the hypothesis
that human cognition depends on functional and architectural
constraints that are common to every intelligent system. This
hypothesis, known as the “Standard Model of the Mind”, was
proposed by Laird et al. (2017) on the basis of a comparative
analysis of cognitive architectures. Our preliminary study
provides the first direct empirical support to this hypothesis
by showing that the SMM is a reliable explanation for the pat-
terns of data found in four human neuroimaging studies, and,
furthermore, can be favorably compared against other mod-
els. More importantly, and perhaps surprisingly, our results
demonstrate that the tenets of the SMM hold across a large
number of participants (for a combined N = 103) and across
four different tasks that vary greatly in terms of complexity. It
is worth noting that, while the SMM was consistently selected
as the best model, the relative rank of the other two models
varied across tasks. In particular, the Fully Connected model
surpassed the Structural model in the RITL paradigm, which
requires a greater variety of mental operations and their com-
bination. This suggests that our findings are not tied to any
of the models having a priori less chance to fit the data. Al-
though encouraging, these results are still preliminary, and
future work is still needed. In particular, the validity of the
SMM should be tested against a larger set of alternative mod-
els that covers a larger portion of the space of possible ar-
chitectures. It would be valuable to replicate these analyses
across more datasets that span a more diverse set of domains,
including, for example, long-term memory, decision-making,
and language tasks. Finally, it would be important to integrate
connectivity analysis with other types of analysis that tests
other assumptions of SMM; for instance, using Representa-
tional Similarity Analysis (Kriegeskorte, Mur, & Bandettini,
2008) to investigate assumptions about knowledge represen-
tations. Existing large-scale neuroimaging databases, such as
the Human Connectome Project, provide perhaps the most
exciting venue to further this project.
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Figure 3: Bayesian model comparison across tasks. Bars represent relative and labels indicate absolute log-likelihoods
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