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R E V I E W
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Abstract: Osteosarcoma is an aggressive primary malignant bone tumor associated with high rates of metastasis and poor 5-year 
survival rates with limited improvements in approximately 40 years. Standard multimodality treatment includes chemotherapy and 
surgery, and survival rates have remained stagnant. Overall, response rates to immunotherapy like immune checkpoint inhibitors have 
been disappointing in osteosarcoma despite exciting results in other epithelial tumor types. The poor response of osteosarcoma to 
current immunotherapies is multifactorial, but a key observation is that the tumor microenvironment in osteosarcoma is profoundly 
immunosuppressive, and increasing evidence suggests a significant role of suppressive myeloid cells in tumor progression and immune 
evasion, particularly by myeloid-derived suppressor cells. Targeting suppressive myeloid cells via novel agents are attractive strategies 
to develop novel immunotherapies for osteosarcoma, and combination strategies will likely be important for durable responses. In this 
review, we will examine mechanisms of the immunosuppressive microenvironment, highlight pre-clinical and clinical data of 
combination strategies including colony-stimulating factor 1 (CSF-1) receptor, phosphoinositide 3-kinase (PI3K), CXCR4, and 
checkpoint inhibition, as well as the role of canine models in elucidating myeloid cells as targets in osteosarcoma immunotherapy. 
Keywords: MDSC, macrophage, immunotherapy, sarcoma, tumor microenvironment

Biological Characteristics and Treatment Resistance of Osteosarcoma
Osteosarcoma (OSA) is the most common primary malignant bone tumor in children and adolescent patients. It is often 
characterized by a frequently aggressive growth pattern and propensity for metastasis, leading to significant morbidity 
and mortality. Approximately 20% of OSA patients are found to have metastatic spread at the time of diagnosis.1–3 

Furthermore, the presence of metastases is the most significant predictor of survival, and metastatic OSA has 
a significantly lower 5-year survival rate of 24% when compared to 76% for localized disease.4

Primary OSA typically occurs in the metaphysis of long bones. It has a clear predilection for metastatic dissemination 
to the lungs.5 The second most common site of metastasis is other bones (20%).5 Other less common sites include brain, 
lymph nodes, liver, peritoneum, and adrenal glands.5–11 Additionally, OSA often displays synchronous metastases, in 
which metastases develop concurrently with the primary tumor.12 In contrast, metachronous metastases may occur after 
initial treatment, and the clinical setting of relapse/recurrence after prior combined modality treatment typically portends 
aggressive tumor biology and a poor prognosis.12 Over the past 40 years, while there has been increased research in 
novel therapeutic targets including insulin-like growth factor (IGF) and vascular endothelial growth factor (VEGF), 
survival rates for OSA have remained stagnant, and despite the clear success of traditional multiagent chemotherapy, 
which includes high-dose methotrexate, doxorubicin, and cisplatin/platinum commonly referred to as MAP regimen, 
patients develop resistance leading to limited treatment options.13–15 A greater understanding of OSA biology and its 
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immunosuppressive impact is therefore required to understand the immunobiology of these tumors and foster the 
development of novel therapies to improve long-term patient outcomes.

Myeloid Cells and the Immunosuppressive Tumor Microenvironment in 
Osteosarcoma
Mounting evidence indicates a significant role of myeloid cells in disease progression and metastasis that may be targeted for 
therapeutic benefit. The tumor microenvironment (TME) of OSA consists of a complex network of osteoblasts, osteocytes, 
stromal cells, vascular cells, immune cells, and an extracellular matrix.16 Myeloid cells are the predominant cell type with 
sequencing analysis showing they comprise approximately 44–53% of all cells and the majority of immune cells in the TME, 
with moderate variability between patients and across studies.17–20 Myeloid cells (as described below) are a significant 
component of both adaptive and innate immune responses through a diversity of functions including phagocytosis, activation 
of bactericidal mechanisms, killing of antibody-coated cells or parasites, promotion of allergic responses, antigen presentation, 
and many more.21,22 Myeloid cells including monocytes, dendritic cells (DCs), macrophages, neutrophils, and others are 
involved in a host of activities related to tumor surveillance including phagocytosis, antigen presentation, and regulation of 
tumor inflammation.19,23,24 There is significant heterogeneity across the many different functional states of myeloid cells, 
particularly macrophages and neutrophils, and specifically in the tumor microenvironment, where these cells can promote 
tumor growth, cancer cell maintenance, and impair immunosurveillance.25,26 An overview of the anti-tumor and pro- 
tumorigenic dichotomous effects of various myeloid cells is provided in Table 1.

Myeloid derived suppressor cells (MDSC) are a diverse group of pathologically activated myeloid cells with potent 
immunosuppressive function, identified in a variety of inflammatory conditions including trauma, sepsis, auto-immunity, 

Table 1 Overview of Myeloid Cell Function in Cancer

Cell Type Surface Markers 
(Limited)

Anti-Tumor Effects Pro-Tumor Effects

Monocyte CD14+ Antigen presentation 
Differentiation into anti-tumor DCs or 

macrophages

Differentiation into pro-tumor DCs, 
macrophages, and MDSCs

Dendritic cell (DC) CD11c+ 

HLA-DR+

Antigen presentation Promote tolerance

Classical (c) DC BDCA1+ Antigen presentation 

Promote CD8+ T cell proliferation

–

Plasmacytoid (p) DC BDCA2+ 

BDCA4+

Type I interferon production Promote tolerance

Monocyte-derived (mo) DC CD14+ 

BDCA4+

Antigen presentation 

Pro-inflammatory

–

Macrophage CD68+ 

CD163+ 

CD206+

Phagocytosis of tumor cells 

Antigen presentation 

Inhibition of metastasis

Support of angiogenesis 

Promote organization of tumor 

Promotion of metastasis

M1-like CD86+ Antigen presentation 

Promotion of TH1

–

M2-like CD206+ – Promotion of Treg 

Angiogenesis via VEGF 
Dampening of T cell response

(Continued)
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surgery, obesity, and malignancy.27–29 MDSCs can be broadly grouped as granulocytic (G-)/polymorphonuclear (PMN-) 
or monocytic (M-) based on their origin of either granulocytic or monocytic myeloid precursor cells; a third group of 
myeloid progenitor cells with neither lineage has also been described as “early” eMDSCs.28 MDSCs suppress natural 
killer (NK) and T cell proliferation and function both directly and indirectly through a multitude of distinct mechanisms 
including generation of reactive oxygen species (ROS) and nitric oxide (NO), depletion of L-arginine by arginase-1, 
secretion of TGFβ, and induction of T regulatory cells by indoleamine 2,3-dioxygenase (IDO) and IL-10. MDSCs also 
promote exhaustion and growth arrest of effector NK and T cells via binding of PD-1-PD-L1 and TIGIT-CD155 receptor 
ligand interactions, among other negative regulatory pathways.28–31 Considering the heterogeneity of myeloid cells and 
their diverse functions, significant effort has been made to better characterize the immune TME.

One study utilizing single-cell RNA sequencing (scRNAseq) analysis sought to create an archive of myeloid cells in 
OSA and further elucidate their potential roles.19 By characterizing OSA cells into high and low copy number variation 
(CNV) cells, investigators demonstrated that OSA cells utilize unique methods of immune evasion to promote immu
nosuppression, including repression of MHC-I on tumor cells as a method to evade macrophages and thus killing by 
cytotoxic T cells.19 Additional RNAseq data have supported the complexity of OSA cell types, pointing at evidence for 
potential modifiers of tumor associated M1 and M2 macrophages.20 Macrophages show significant diversity in their 
functions and have been described by multiple phenotypes including M1, classically described as anti-tumor, and M2, 
classically described as pro-tumor.32,33 M1 and M2 phenotypes were initially described as dichotomous states of 
macrophages activated in vitro after exposure to microbial components, resulting in either enhanced microbial elimina
tion driven by M1 activation or tolerance driven by M2 activation.34,35 While key transcription factor families have been 
associated with both phenotypes, tolerance does not suppress all macrophage responses, and transcriptional studies of 
macrophages across tissues and pathologic states have shown a spectrum of activation states with M1 and M2 
polarization serving as extremes.23,26 Furthermore, epigenetic regulation and microRNAs have been identified as 
mechanisms that modulate macrophage activation states in various conditions.36–38

Previous attempts to target myeloid cells in OSA included the use of Liposomal Muramyl tri-peptide phosphatidyletha
nolamine (L-MTP-PE) as an immune modulator. L-MTP-PE can activate monocytes and macrophages to target tumor cells.39 

In high-grade OSA, the incorporation of L-MTP-PE into the therapeutic regimen has demonstrated favorable outcomes and 
thereby received regulatory approval in the European Union, but not in the US.40 Despite increased macrophage activity, 
overcoming macrophage evasion by OSA will likely also require additional targeting. For example, messenger RNA and 
proteomic profiling have suggested that CD24 expression on OSA cells repress phagocytosis and macrophage activity, 
potentially contributing to aggressive biologic behavior.41 Future strategies to address both macrophage phagocytic activity 
and avoidance of myeloid suppressive tactics may be promising. Efforts to identify specific new targets directly contributing to 
myeloid-orchestrated immune evasion methods will therefore shape novel drug development.

Table 1 (Continued). 

Cell Type Surface Markers 
(Limited)

Anti-Tumor Effects Pro-Tumor Effects

Neutrophil CD15+ Tumor cell killing 
Phagocytosis

Lymphocyte suppression 
Lymphocyte killing 

Differentiation into MDSCs

Myeloid derived suppressor 

cell (MDSC)

CD11b+ 

CD33+ 

HLA-DR-

None Lymphocyte suppression 

Lymphocyte killing 

Induction of tolerance 
Support pro-tumor DCs, macrophages, and 

regulatory T cells

Notes: All cells share common myeloid markers CD11b. A non-exhaustive list of phenotypic surface markers used to identify each cell is provided.21–23,25,26 

Abbreviations: DC, dendritic cell; MDSC, myeloid derived suppressor cell.
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Standard treatment for high-grade resectable OSA for the last 40 years includes neoadjuvant chemotherapy, resection, 
and adjuvant chemotherapy. While systemic chemotherapy has traditionally been viewed as immunosuppressive, several 
agents utilized against OSA have been shown to alter the tumor microenvironment in ways that may support anti-tumor 
immune responses. Cisplatin upregulates MHC class I expression on tumor cells as well as increases the frequency of 
tumor infiltrating lymphocytes (TILs).42 Doxorubicin can decrease the frequencies of circulating and intratumoral 
MDSCs in mouse models of breast cancer, concurrently increasing frequencies of effector lymphocytes including 
CD8+ T cells and NK cells, and induced apoptosis of circulating human MDSCs from patients with breast cancer.43 

One trial studying induction of doxorubicin followed by anti-PD-1 checkpoint therapy (nivolumab) versus doxorubicin 
alone showed increases in intratumoral T cell clonality with doxorubicin followed by nivolumab compared to nivolumab 
alone.44 Exploiting potential immunomodulatory effects of chemotherapy with specific immunotherapy agents may be 
a thoughtful approach to incorporating novel strategies, as immunotherapy alone may not provide sustained responses.45

Another recent study analyzed RNA sequencing data from the Therapeutically Applicable Research to Generate 
Effective Treatments (TARGET) database to assess infiltrating immune cell populations in OSA. Consistent with the 
known immunosuppressive TME, M2 and M0 macrophages were the most abundant infiltrating immune cell in naïve 
OSA.46 M0 macrophages were inversely correlated with cytotoxic CD8+ T cells, and higher frequencies of regulatory 
T cells were associated with higher likelihood of necrosis following neoadjuvant therapy. Following neoadjuvant 
chemotherapy (methotrexate, doxorubicin, cisplatin, and ifosfamide) and tumor resection, investigators compared 
immune populations in surgical sections compared to patient-matched biopsies utilizing immunohistochemistry and 
immunofluorescence microscopy. Macrophages were roughly 8 times more prevalent than the next most common cell 
type, T cells, prior to treatment; macrophage subsets were unable to be identified in the tissue microarray. There was also 
a significant increase in CD8+ T cells and decrease in MDSCs after neoadjuvant chemotherapy. Of note, low MDSC 
infiltration in biopsy sections was associated with strong pathological response to neoadjuvant therapy. Interestingly, PD- 
L1 expression on immune cells significantly increased after neoadjuvant chemotherapy, suggesting possible synergy 
when these therapies are combined, with relevant attention to how these therapies are sequenced. Importantly, increased 
density of MDSCs both at diagnosis and after neoadjuvant chemotherapy was associated with an increased likelihood of 
progressive disease compared to stable disease or partial response by RECIST 1.1 criteria; survival analysis was not 
performed in this study.46 Collectively, these results suggest that chemotherapy may be, at least transiently, capable of 
modulating the TME to be more immunogenic, and the addition of immune engagers at specific time-points might sustain 
this response.

Myeloid Cells in Metastasis
The metastatic capability of OSA is multifactorial, and undoubtedly influenced by various genetic mutations. Studies 
have associated metastatic OSA with germline mutations in TP53 (Li-Fraumeni Syndrome) and protein tyrosine 
phosphatase receptor type Q (PTPRQ).47 Additional somatic mutations in signaling pathways such as PI3K-AKT and 
MAPK have also been implicated in OSA metastasis.48 Likely due in part to the genetic heterogeneity of metastatic OSA, 
this disease is known to be highly resistant to standard chemotherapy regimens, especially in the setting of relapse/ 
recurrence after standard MAP chemotherapy regimen.49,50 While clearly important to mechanisms of metastasis and 
immune evasion, genetic mutations in the tumor do not seem to be directly related to the phenotype, function, or 
frequency of myeloid cells in the TME, although rigorous data exploring these aspects of OSA biology are not available 
at this time.

Targeting Suppressive Myeloid Cells
Tumor-associated macrophages (TAMs) are a heterogeneous group of macrophages that play significant roles in tumor 
growth and progression through actions in the TME. TAMs may arise from circulating bone marrow-derived monocytes, 
M-MDSCs, or local yolk-sac progenitors.21,51,52 Considering their heterogeneity and plasticity, as well as the context- 
dependent gene expression and function of macrophages and specifically TAMs, nomenclature surrounding subsets of 
these cells continues to evolve.26,53 Thus, although TAMs can clearly display opposing pro-tumorigenic and anti- 
tumorigenic roles, specifically assigning one or the other of these states in specific pre-clinical or clinical studies may 
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be imprecise given macrophage heterogeneity and plasticity both biologically and how these categories are assessed 
experimentally. These nuances may impact study results across studies and experimental readouts. Nevertheless, TAMs 
directly support tumor growth by promoting angiogenesis through VEGF signaling, improving tumor cell interaction 
with the extracellular matrix via osteonectin secretion, and promoting epithelial–mesenchymal transition.26,52 TAMs also 
indirectly promote tumor growth by suppressing effector cells including T and NK cells.47,51 TAMs express the ligands 
for inhibitory receptors PD-1 and CTLA-4, secrete inhibitory cytokines IL-10 and TGFβ, and suppress T cell activity by 
depleting L-arginine, similar to the M-MDSCs they can arise from (discussed below).52

One preclinical evaluation of myeloid cells in a mouse model of OSA showed that differentiation of TAMs is 
mediated by colony-stimulating factor 1 (CSF-1) receptor signaling.54 CSF-1 recruits monocytes from the periphery to 
the TME, drives differentiation into macrophages, and further induces polarization of macrophages into the M2-like 
phenotype as opposed to the M1-like phenotype induced by CSF-2.52,55 Bone-marrow derived macrophages showed high 
expression of CD206, associated with the M2-like phenotype, when exposed to CSF-1 or tumor-conditioned media 
generated from the OSA cell line LM8 compared to control media. CSF-1 also induced chemotaxis of macrophages in 
transwell experiments, demonstrating its role in recruitment of macrophages to the OSA TME. These in vitro experiments 
suggest that interactions between tumor cells and the immune system can promote a feed forward loop ultimately 
favoring tumor progression and immune evasion. The investigators further showed that inhibition of CSF-1R with 
pexidartinib reduced both this M2-like polarization and chemotaxis. In another pre-clinical study, pexidartinib showed 
decreased tumor growth and prolonged time to spontaneous lung metastases in a mouse model of OSA utilizing LM8 
tumors with a dose-dependent response.54

Clinical trials have shown overall weak evidence supporting the use of pexidartinib in malignancy despite these 
encouraging pre-clinical results; we have not identified any completed clinical trials to date investigating CSF-1/CSF-1R 
inhibition in OSA specifically, although some Phase I and II trials included small numbers of OSA as advanced solid 
tumors or advanced sarcomas (NCT01004861, NCT05093322, NCT02584647), and many Phase II trials evaluating 
pexidartinib did not show significant efficacy for a variety of solid tumors.56,57 Conversely, the ENLIVEN trial, 
a completed Phase III trial including patients with tenosynovial giant cell tumor (TGCT), showed that pexidartinib led 
to significantly higher overall response than placebo, leading to the first FDA-approved systemic therapy for this rare 
mesenchymal tumor.58 TGCT cells overexpress CSF-1, recruiting the monocytes and macrophages that physically 
compose most of the tumor and promoting polarization to pro-tumor M2-like phenotypes. As such, inhibition of the 
CSF-1/CSF-1R axis is likely to have unique benefit in this tumor type compared to other solid tumors, evidenced by 
these mixed clinical results. Combination therapies that target both TAMs and their interactions with other immune cells 
in the TME, such as T cells and MDSCs, may have synergistic anti-tumor effects. One such strategy involves CSF-1/ 
CSF-1R inhibition combined with checkpoint inhibition, and the results of exciting ongoing clinical trials in sarcoma 
(NCT04242238) as well as other solid tumors (NCT05438420) are eagerly anticipated.

Myeloid Derived Suppressor Cells
The numerous functions of MDSCs are mediated by their effects on many cellular processes. T cell activation is inhibited 
by the depletion of usable L-arginine via hydrolysis by arginase-1 produced by MDSCs and via the glycation of 
L-arginine by methylglyoxal accumulated by MDSCs and directly transferred to T cells.29 Chemotaxis and recognition 
of antigens are both suppressed by the nitration of the T cell receptor, chemokines, and MHC molecules by ROS and 
NOS2. T cell exhaustion is induced by PD-L1 expression on MDSCs.59 The induction of Tregs is mediated by IDO 
produced by MDSCs, and myeloid differentiation is further skewed towards MDSCs and away from dendritic cells with 
anti-tumor effect by synthesis of S100A9, resulting in indirect suppression of T cell activation.60 NK cell function is 
suppressed by the inhibition of IFNγ and TNFα production as a result of TIGIT binding and ROS production by 
MDSCs.61,62 MDSCs additionally drive macrophage polarization towards pro-tumor TAMs via IL-10 production, 
reinforcing an immunosuppressive milieu.62 Strategies to target MDSCs include interrupting the above mechanisms as 
well as preventing their differentiation and recruitment into the TME (see Figure 1). Combination therapies are likely 
necessary for significant clinical benefit considering the impact of MDSCs on so many diverse cellular processes.
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Phosphatidylinositide 3-kinases (PI3Ks) have been shown to activate MDSCs in mice.63 A mouse model utilizing the 
K7M2 OSA line showed increased frequencies of G-MDSCs in tumor-bearing mice compared to control, and MSDC 
function was verified by demonstrating decreased T cell proliferation, interferon (IFN) γ production, and cytotoxicity in 
killing assays. G-MDSCs showed increased expression of the PI3K δ/γ isoforms compared to tumor-infiltrating 
lymphocytes (TILs), and inhibition of the PI3K δ/γ isoforms with (S)-(-)-N-[2-(3-Hydroxy-1H-indol-3-yl)-methyl]- 
acetamide (SNA) reversed MDSC suppression of T cell proliferation as well as IFNγ production. While SNA alone 
did not affect tumor growth nor MDSC infiltration, it increased PD-L1 expression on infiltrating MDSCs and CD8+ 
T cells, promoting immune suppression. Subsequent co-administration of anti-PD1 with SNA showed significant 
increases in survival, decreased tumor growth, increased CD8+ T cell infiltration, and increased IFNγ production on 
CD8+ T cells. Depletion of CD8+ T cells reversed these effects, suggesting the pro-tumor effects of MDSCs in this 
model were T cell dependent.63

Overall, immune checkpoint inhibition has not shown significant clinical benefit for patients with OSA in clinical trials.64 

One murine model of OSA utilizing the K7M2 cell line in immune competent BALB/C mice found significant PD-L1 
expression on stromal cells in the majority of osteosarcoma tissues.65 Expression of the chemokine receptor CXCR4 in tumor 
tissues was associated with decreased CD8+ T cell infiltration as well as significantly shorter overall survival. CXCR4 was 
found to be expressed on most tumor infiltrating MDSCs, at higher frequencies than splenic MDSCs. Combination blockade 
with anti-PD-1 and the CXCR4 antagonist AMD3100 significantly decreased tumor growth and prolonged survival compared 

Figure 1 Mechanisms of myeloid-derived suppressor cell function as therapeutic targets in osteosarcoma. 
Notes: Schematic showing mechanisms of myeloid-derived suppressor cell (MDSC) suppression through direct effects on effector lymphocytes and indirectly through 
regulatory T cells and tumor-associated macrophages (TAMs). Effector T cells are activated by binding of the TCR to MHC class I on tumor cells and secrete perforin (PFN), 
granzyme B (GzmB), interferon gamma (IFNγ), and tumor necrosis factor alpha (TNFα) to induce apoptosis of osteosarcoma (OSA) tumor cells. MDSCs inhibit T cell 
activation by depleting L-arginine and prevent the activation, proliferation, and secretion of these T cell soluble factors by production of reactive oxygen species (ROS) and 
nitric oxide. Natural killer cell function is suppressed through similar mechanisms (not shown). MDSCs induce T cell exhaustion via PD-L1 expression. MDSCs produce IL-10 
and indoleamine 2.3-dioxygenase (IDO), promoting differentiation of tumor-associated macrophages (TAMs) and regulatory T cells (T regs), respectively, that both 
subsequently suppress T cell function via TGFβ and other mechanisms not shown. TAMs also exhibit direct tumorigenic effects including supporting angiogenesis via 
VEGF. MDSC survival and function are driven by the G protein coupled receptor CXCR4, colony-stimulating factor 1 receptor (CSF-1R), and phosphatidylinositide 3-kinases 
(PI3K). TAM differentiation and OSA growth are also driven by CSF-1R signaling. Mechanisms with potential for therapeutic targeting, particularly in combination for 
synergistic effect, are marked by a red asterisk*. Created in BioRender. Sholevar, C. (2025) https://BioRender.com/n14l999.
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to either monotherapy. CXCR4 antagonism increased CD8+ T cell infiltration in the tumor microenvironment, and combina
tion blockade significantly increased activation of effector T cells as measured by Ki67, granzyme B, IFNγ, and TNFα 
expression. Checkpoint inhibition did not show an effect on MDSC infiltration, while AMD3100 and combination blockade 
both resulted in lower frequencies of tumor infiltrating MDSCs. MDSC migration was found to be dependent on CXCL12/ 
stromal cell-derived factor-1, the ligand for CXCR4, and was inhibited by AMD3100. MDSCs exposed to AMD3100 showed 
increased apoptosis and decreased levels of phosphorylated Akt.65 This murine model overall demonstrated that AMD3100 
inhibits MDSC migration mediated by the CXCL12/CXCR4 axis, decreased MDSC survival through CXCR4 downstream 
signaling via the Akt pathway, and ultimately increased effector T cell infiltration in the tumor microenvironment.

Barriers to Targeting Immunosuppressive Myeloid Cells
Many of the in vitro and in vivo pre-clinical studies discussed above, including checkpoint inhibition, CSF-1/CSF-1R 
blockade, PI3K inhibition, and CXCR4 targeting, showed profound anti-tumor effects while subsequent clinical trials did 
not demonstrate meaningful clinical benefit. As previously discussed, immune populations in the OSA TME show 
significant heterogeneity between patients, across timepoints, and in response to chemotherapy, and macrophage 
polarization as well as MDSC suppressive capability can be influenced by tumor cells.19,24,26 The dynamic nature of 
myeloid cells suggests an inherent resistance to single-agent therapies targeting an individual functional mechanism or 
pathway, and changes in myeloid cells over time may contribute to the negative clinical trials completed thus far 
targeting individual mechanisms of suppression by myeloid cells. An additional challenge in effectively targeting 
myeloid cells lies in the multitude of mechanisms that pro-tumor macrophages and MDSCs use to dampen immune 
responses and promote tumor survival. Many of these mechanisms are either directly or indirectly connected, as shown in 
Figure 1, and inhibiting a single pathway is unlikely to produce durable effects in patients. These difficulties are 
compounded by the fundamental limitations of using transgenic mouse models to study complex immune interactions.

Leveraging Canine Models to Study Immunosuppressive Myeloid Infiltration
When evaluating the role of immunosuppressive MDSC and M2 macrophages within the OSA TME with the intent to 
identify novel drug targets, it is essential to have a spontaneous mammalian tumor model in which tumor immunody
namics are analogous. Pre-clinical murine models have traditionally been used to evaluate the complex biological 
pathways that contribute to local tumor progression and metastasis.66 Mouse models also provide an opportunity to 
examine therapeutic intervention in vivo; however, the natural development of OSA in mice is rare, thus most models 
involve xenograft or transgenic mouse models that lack an intact immune system and are contained within controlled 
environmental conditions.67–70 Collectively, these factors likely contribute to the lack of success when translating novel 
immunotherapy agents to human clinical trials.68–70 The incorporation of pet dogs with naturally-occurring OSA 
provides an opportunity to evaluate the immune system in an outbred, patient-based population that is complementary 
to humans with OSA. Importantly, dogs are a heterogeneous group of large animals with an intact immune system that 
share the same complex environment as humans. Canine OSA further shows significant homology to human OSA, and 
occurs in relatively high frequency compared to humans, contributing tremendous value in the development of novel 
therapeutic approaches.71–74 Indeed, preclinical success of the incorporation of L-MTP with surgery and adjuvant 
doxorubicin-cyclophosphamide in canine osteosarcoma aided in its translation to the clinic.75,76

Similar to human OSA, macrophages and MDSCs have gained significant traction as potential immunotherapy targets 
in pet dogs with OSA, as their recruitment and activation may contribute to progression and therapeutic resistance.77,78 

Increased pre-treatment peripheral monocyte concentrations have been correlated with shorter disease-free intervals in 
dogs with OSA compared to dogs with low peripheral monocyte concentrations, which has been demonstrated in 
pediatric OSA as well.79,80 One primary limitation in evaluating peripheral monocyte counts is that subtypes are not 
evaluated, which could alter the potential OSA TME. For example, in mouse models of OSA and naturally-occurring pet 
dogs with OSA, animals with infections (eg, postoperative infection) have delayed time to metastasis compared to 
animals without infections.81,82 Importantly, depletion of macrophages/monocytes or natural killer cells reversed the 
positive effects of concurrent infection and OSA, supporting that macrophages are not purely immunosuppressive and 
can contribute to upregulated anti-tumor immunity.81 Another canine study utilized flow cytometry and quantitative RT- 
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PCR to evaluate monocyte phenotype while also evaluating migration ability.77 Investigators found that, when compared 
to healthy dogs, OSA-bearing dogs had depressed chemokine receptors and reduced chemotactic function.

Finally, in a recent study that evaluated lung tissue from dogs with treatment-naïve OSA or dogs without cancer, 
authors highlighted altered monocyte/macrophage dynamics that may shed light on the metastatic cascade.83 

Investigators compared multiplex immunofluorescence detection of M2 macrophages (CD204+ and CD206+ macro
phages) and CD11d+ bone marrow-derived cells (presumptive bone marrow-derived monocyte origin) in lung tissue of 
OSA-bearing dogs and non-cancer bearing dogs. In OSA-bearing dogs without pulmonary metastasis, a significantly 
higher population of M2 macrophages and CD11d+ bone marrow-derived monocytes was measured compared to control 
dogs. However, in OSA-bearing dogs with established pulmonary metastasis, the proportion of CD11d+ bone marrow- 
derived monocytes was significantly lower compared to dogs without metastasis, leading the authors to postulate that 
these bone-marrow derived cells aid in the establishment of the pre-metastatic niche. Therapies that limit infiltration of 
M2 macrophages and bone marrow-derived cells may hinder distant metastasis. Collectively, these data serve to highlight 
the significance of simultaneously evaluating the peripheral monocyte compartment in the context of the OSA TME to 
better understand monocyte/macrophage dynamics. As novel therapeutic approaches are tested, study design could 
incorporate similar techniques to evaluate M2 macrophage and MDSC populations within lung tissue.

MDSCs are increased in dogs with OSA and show similar suppression of T cell proliferation as human MDSCs.84 

Additionally, M-MDSC, PMN-MDSC, and eMDSC populations that are similar to human MDSC subtypes have been 
identified in several canine tumor types.84,85 One canine clinical trial in metastatic OSA showed significant clinical 
benefit in blocking monocyte recruitment and MDSC migration with the combination of losartan, an angiotensin II 
receptor blocker (ARB) widely used as an antihypertensive agent in human patients, and toceranib, a tyrosine kinase 
inhibitor.86 Losartan, in addition to its ARB activity, has also been observed by Regan et al to significantly inhibit 
signaling of the chemokine CCL2 through its receptor CCR2, an axis implicated in OSA tumor progression.87 Toceranib 
is a canine tyrosine kinase inhibitor that targets KIT, VEGFR-2, PDGFR and Flt-3 to modulate the TME, similar to 
human sunitinib. Interestingly, sunitinib has been shown to decrease MDSC accumulation in some solid tumors, and may 
synergize well with traditional immunotherapy approaches, thus supporting the rationale to combine myeloid targeting 
agents.86,88,89

Leveraging this powerful pet dog model is an exciting opportunity to address several knowledge gaps regarding 
MDSCs and immunosuppressive M2 macrophages. Because pet dogs are large, repeated peripheral blood and tumor 
sampling is feasible, and may shed light on the immunodynamics of myeloid populations migrating from blood to tumor. 
These immune responses can be directly tied to objective tumor responses through standard advanced imaging 
approaches used in humans, as novel combination immunotherapy approaches continue development.

Summary and Conclusions
Osteosarcoma is an aggressive malignancy that has not responded to current T cell-based immunotherapies. While OSA 
shows relatively poor lymphocytic infiltration, the immune TME is populated by suppressive myeloid cells, particularly 
pro-tumor TAMs and MDSCs. Challenges in targeting these cells for therapeutic benefit include their phenotypic and 
functional plasticity as well as the variety of connected but distinct suppressive mechanisms. Strategies targeting 
individual suppressive pathways based on murine models have not yet demonstrated clinical benefit in osteosarcoma 
as they have in other tumors. Combination therapies targeting multiple suppressive pathways are likely to have 
translational relevance, and canine models for cancer immunotherapy have high potential to benefit both dog and 
human patients with this devastating disease.
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