
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Constructing, Counting and Matching Combinatorial and Geometric Shapes

Permalink
https://escholarship.org/uc/item/0gp1h1n9

Author
Osegueda Escobar, Martha Carolina

Publication Date
2022

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-ShareAlike License, availalbe at https://creativecommons.org/licenses/by-
nc-sa/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0gp1h1n9
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Constructing, Counting and Matching Combinatorial and Geometric Shapes

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Science

by

Martha Carolina Osegueda Escobar

Dissertation Committee:
Distinguished Professor Michael T. Goodrich, Chair

Distinguished Professor David Eppstein
Professor Sandy Irani

2022

Chapter 3 © 2021 Elsevier B.V.
All other materials © 2022 Martha Carolina Osegueda Escobar

TABLE OF CONTENTS

Page

LIST OF FIGURES iv

LIST OF TABLES vii

ACKNOWLEDGMENTS viii

VITA x

ABSTRACT OF THE DISSERTATION xiii

1 Introduction 1
1.1 Combinatorial Shapes . 2

1.1.1 Learning or Constructing Combinatorial Shapes 3
1.1.2 Counting Combinatorial Shapes . 4
1.1.3 Constructing Shapes with Specific Properties 6

1.2 Real-World and Geometric Shapes . 7

2 Reconstructing Biological Phylogenetic Trees in Parallel 9
2.1 Introduction . 9

2.1.1 Related Work . 12
2.2 Preliminaries . 14
2.3 Reconstructing Biological Phylogenetic Trees in Parallel 16

2.3.1 Algorithm . 17
2.3.2 Analysis . 19

2.4 Experiments . 22
2.4.1 Real Data. 23
2.4.2 Synthetic Data. 23

3 Concatenation Arguments and their Applications on Counting Polyomi-
noes and Polycubes 25
3.1 Introduction . 25
3.2 Preliminaries . 27

3.2.1 Concatenation and Super-/Sub- Multiplicative Sequences 27
3.2.2 Quasi Super- and Sub-Multiplicativity 30

3.3 Methods of Concatenation . 32

ii

3.4 Simple Applications . 34
3.4.1 General . 34
3.4.2 Trees . 35

3.5 Recursive Bounding . 37
3.6 Convex Polyominoes . 40

3.6.1 Lower Bound . 43
3.6.2 Upper Bound . 44
3.6.3 Epilogue . 48

3.7 Conclusion . 48

4 Taming the Knight’s Tour:
Minimizing Turns and Crossing 51
4.1 Introduction . 51

4.1.1 Our contributions. 53
4.1.2 Related Work . 54

4.2 The Algorithm . 57
4.2.1 Correctness . 58

4.3 Lower Bounds and Approximation Ratios . 63
4.3.1 Computational Complexity . 63
4.3.2 Number of Turns . 64
4.3.3 Number of Crossings . 71

4.4 Extensions . 73
4.4.1 High-dimensional boards . 74
4.4.2 Odd boards . 76
4.4.3 90 Degree Symmetry . 77
4.4.4 Giraffe’s tour . 78

4.5 Conclusions . 82

5 Geometric Polyhedral Point-Set Pattern Matching 83
5.1 Introduction . 83
5.2 Preliminaries . 85
5.3 Approximating the Minimum Width Annulus 88

5.3.1 Achieving a (1 + ε)-approximation. 90
5.3.2 Faster grid-search in two dimensions. 92

5.4 Approximating MWA allowing rotations . 96

Bibliography 101

iii

LIST OF FIGURES

Page

1.1 Some examples of shapes: (a) a line, (b) a tree, (c) an irregular pentagon,
(d) a cube, (e) a polycube, and (f) the shape of a rough diamond. 1

1.2 An example of a relative distance query where a query with leaves x, y and z
would return (x, y) . 4

1.3 A knight moves one unit along one axis and two units along the other. . . . 7
1.4 An example matching points sampled from the surface of a real-world object

(surface is shown dashed and object is shown in gray) with the minimum
width polyhedral annulus (shown in red). 8

2.1 Two phylogenetic trees. (a) A biological phylogenetic tree of life, showing
relationships between species whose genomes had been sequenced as of 2006;
public domain image by Ivica Letunic, retraced by Mariana Ruiz Villarreal.
(b) A digital phylogenetic tree of images, from Dias et al. [43]. 10

2.2 Illustration of a divide-conquer approach for trees. The edge (x, y) is an even-
edge-separator. Note that the root of T ′′ is r, while y becomes root of T ′. . . 16

2.3 (a) The subgroups leaves are split into. (b) The linking step attaching Ta, Tb

and Tr. 17
2.4 A left-heavy tree drawing displaying node ntop, node nbot and the relevant

partitions . 20
2.5 A scatter plot showing the number of queries and rounds for each of the

three tree reconstruction algorithms for real trees from TreeBase. Since our
algorithm is parallel, we include round complexity to serve as a comparison
for the sequential complexity. 23

2.6 A plot showing the average number of queries and rounds for each of the three
tree reconstruction algorithms. Each data point represents the average for 10
randomly generated trees. 24

3.1 Concatenations of two polyominoes. 28
3.2 Overlapping a cell. 33
3.3 Concatenating trees. 36
3.4 Constructions for the proof of Theorem 3.2. 38
3.5 Convex and staircase polyominoes. 40
3.6 Converting a convex polyomino into an ascending staircase polyomino. . . . 42
3.7 Breaking a convex polyomino into two polyominoes. 45

iv

3.8 Conjectured growth constants of polycubes (blue), and lower bounds produced
by our method (orange). 49

4.1 A knight moves one unit along one axis and two units along the other. . . . 52
4.2 Quartet of knights moving in unison without leaving any unvisited squares.

Note that, in a straight move, the starting and ending position of the quartet
overlap because two of the knights remain in place. 57

4.3 Side by side comparison between the knight’s tour and the underlying quartet
moves in a 30× 30 board. The arrows illustrate sequences of consecutive and
equal formation moves. Starting from the bottom-left square of the board,
the single knight’s tour follows the colored sections of the tour in the following
order: red, green, yellow, purple, blue, orange, black, cyan, and back to red. . 59

4.4 Junctions used in our construction. 60
4.5 The four possible cases for the bottom-right corner. 60
4.6 Visualization of how the heel permutes the position of the knights. Note that

the sequence of moves flips the columns of the knights (the knight in position
tl moves to tr and so on). However, this does not affect their positional
matching. For instance, if the knights were paired in a horizontal matching,
after flipping the columns, they are still in a horizontal matching. The same
holds for vertical and cross matchings. 62

4.7 Left: the heel resulting from formation moves. It has 22 turns and 32
crossings. The crossings are marked with white disks. Center: the optimal
configuration for minimizing turns. It has 21 turns and 31 crossings. Right:
the optimal configuration for minimizing crossings. It has 22 turns and 28
crossings. 65

4.8 Illustration of the terminology for the lower bound. Note that c is a clean cell
(with respect to the crown of a and b) because both of its legs escape it. . . . 66

4.9 The black leg collides would collide with all the red legs. 66
4.10 Each sector of the square shows the process after a different number of

iterations: 1, 2, 3, and 4 iterations on the top, right, bottom, and left sectors,
respectively. 69

4.11 Lower bounds on two ratios. Left: the ratio between the gap between
consecutive crowns and the base of the maximum-size crown that fits in the
gap is > 0.4. Right: the ratio between the gap between a crown and a main
diagonal and the base of the maximum-size crown that fits in the gap is > 0.36. 69

4.12 A configuration pattern that produces the minimum number of crossings along
the edge of the board. The moves in the triplet configurations are shown in
black. The dashed continuations illustrate that the moves in the configuration
pattern can be extended to any number of columns without extra crossings. . 73

4.13 Corners where the knights stay in formation and end at specific positions. . . 75
4.14 Formation move across layers. Each color shows the starting and ending

position of one of the knights. 75
4.15 Adaptations required to add a row to the left of the normal construction, with

a missing cell in the junction. 76

v

4.16 This transformation appears in [94]. Left: four tours missing a corner square
and containing a certain edge. The dashed lines represent the rest of the tour
in each quadrant, which cover every square except the dark square. Right:
single tour that is symmetric under 90◦ rotations. The numbers on the right
side indicate the order in which each part of the tour is visited, showing that
the tour is indeed a single cycle. 78

4.17 Formation of 16 giraffes moving together without leaving any unvisited squares. 80
4.18 A giraffe heel. The formation moves are shown with black arrows (grouping up

to four sequential straight moves together) The intermediate positions of the
formation are marked by rounded squares, showing that every cell is covered.
Note that the tip of the heel fits tightly under the next heel. The red line
shows the path of one specific giraffe. 80

4.19 Two giraffe junctions, their corresponding matchings, and the union of their
matchings. The bottom-left junction consists mostly of formation moves,
whereas the top-right one was computed via brute-force search. The cycle
through the edges of the union is shown with the index of each node. 81

4.20 The formation moves of a giraffe’s tour on a 52× 30 board. 81

5.1 Blockchain transactions in a diamond supply chain, providing provenance,
traceability, and authenticity of an ethically-sourced diamond. 84

5.2 Left: a visual representation of a polyhedral distance function and the
distance between two points. Center: The MinBall under dC containing
all points in S, centered at c. Right: The MWA of S with all points within
MinBall(c)\MaxBall(c). 87

5.3 Planar subdivision defining vertex slabs (red) and edge slabs (blue) for two
candidate center-points, and showing membership of some sample points. . 93

5.4 A visual representation of the projections involved while point locating within
the vertex slabs and while finding the extreme-most points in each slab. . . . 95

5.5 Visual representations for the effect of rotating by α, demonstrating the scale
increase and demonstrating how a rotation by α is defined for higher dimensions. 98

vi

LIST OF TABLES

Page

3.1 Lower bounds on the growth constants of tree polycubes of various dimensions. 37
3.2 Lower bounds on λd, through each method. (Best previously-published

bounds are underlined, our improved bounds appear in bold.) 39

4.1 Result of applying each type of formation move, as well as three compositions
of sequences of moves, to each formation matching. 61

4.2 Cayley table for the group of positional matching permutations. 61

vii

ACKNOWLEDGMENTS

First I’d like to thank my advisor, Michael Goodrich, for his guidance, support and
encouragement these last five years. Although I might have felt uncertain at times he
would always help drive me forward and connected me to opportunities that allowed me
to collaborate with numerous different people. I’d also like to thank Amelia Regan, my first
contact at UCI, for her encouragement and support my first year at UCI. I would also like
to thank Gill Barequet, for all of his words of encouragement, his collaboration and support
ever since we first collaborated during my visit to the Technion. I would also like to thank
David Eppstein and Sandy Irani for serving in my defense and advancement committees,
and to thank Vijay Vazirani and John Avise for serving in my advancement committee.

I was lucky to be introduced to the field of computer science in high-school by Mrs.
Serrano, although my introduction to algorithms was limited I immediately fell in love
with the drafting and optimizing of algorithms. Through my undergraduate studies I was
introduced more formally to algorithms and our ability to characterize their time and space
complexities through proofs. I am grateful I was be able to peer-lead and, later, TA during
my undergraduate studies and grateful for the opportunity to learn from Claudia Casas
who was always so devoted to serving her community, may she rest in peace. I would
also like to thank Dr. Vladik Kreinovich who introduced me to research and collaborated
with on my first publications. Before coming to UCI I was unfamiliar with the fields of
Computational Geometry and Graph Algorithms, all I knew was I really liked beautiful
algorithms and elegant proofs. Ultimately these two fields would represent the majority
of my work throughout this program and I am grateful for the opportunity to both take
and TA for these courses when they were offered by Michael Goodrich and David Eppstein,
respectively. My publications have covered a wide breadth of topics in these fields and for
this I am grateful to my advisor, Michael Goodrich. Through this freedom I was able to
collaborate with a wide array of people and learn about a wide array of topics and this is
something I will always be grateful for.

On that note, I would like to thank my co-authors and collaborators. For their collaboration
in the work included in Chapter 2, I would like to thank Ramtin Afshar, Michael Goodrich
and Pedro Matias. For their collaboration in the work included in Chapter 3, I would like
to thank Gill Barequet and Gil Ben-Shachar, additionally I’d like to thank Günter Rote and
Vuong Bui for helpful comments on preliminary drafts of this work. For their collaboration
in the work included in Chapter 4, I would like to thank Juan Besa, Timothy Johnson, Nil
Mamano and Parker Williams. For their collaboration in the work included in Chapter 5,
I would like to thank Gill Barequet, Shion Fukuzawa, Michael Goodrich, David Mount and
Evrim Ozel. I would also like to thank co-authors in works not included in this dissertation,
including David Eppstein, Daniel Frishberg, Andrei Asinowski and Günter Rote. I would also
like to thank current and former theory graduate students, for their engaging discussions,
friendship and support.

Lastly, I would like to thank people in my life that have supported and encouraged me
throughout this journey. I would like to begin by thanking my partner, David, who has

viii

consistently extended his love and support the entire way and without whom I likely would
not have the strength to get here. I would also like to thank my family for always encouraging
me in my learning, especially my mom who has sacrificed so much to support me and my
siblings. I would like to thank my siblings for motivating me, my sister Andrea through her
perseverance and my brother Alex through his youthful excitement and warmth. I would
also like to thank my dad for instilling curiousity in me throughout my childhood. It would
be impossible for me not to extend the largest of thanks to my aunt and uncle, Lizeth and
Roberto Osegueda, for hosting me through my undergraduate studies, and enabling and
encouraging me to continue my studies. Not only did they host me but they also provided
me with a surrogate family away from home and they will always hold a special place in
my heart. Finally I would also like to thank members of my extended families Osegueda,
Escobar and Baires for their warmth and support.

When I was little I would tell anyone who would listen that I wanted to be a “mad scientist”
when I grew up. This answer has changed very little throughout my life, however I eventually
realized it would be a “mad computer scientist” instead.

ix

VITA

Martha Carolina Osegueda Escobar

EDUCATION

Doctor of Philosophy in Computer Science 2022
University of California, Irvine Irvine, CA

Masters of Science in Computer Science 2019
University of California, Irvine Irvine, CA

Bachelor of Science in Computer Science 2017
University of Texas at El Paso El Paso, TX

RESEARCH EXPERIENCE

Graduate Research Assistant 2017–2022
University of California, Irvine Irvine, CA

Visiting Researcher 2019
Technion — Israel Institute of Technology Haifa, Israel

Undergraduate Student Researcher 2015–2017
University of Texas at El Paso El Paso, TX

TEACHING EXPERIENCE

Teaching Assistant 2017–2022
University of California, Irvine Irvine, CA

Undergraduate Teaching Assistant 2016–2017
University of Texas at El Paso El Paso, TX

Undergraduate Peer-Leader 2014–2015
University of Texas at El Paso El Paso, TX

x

REFEREED JOURNAL PUBLICATIONS

Angles of Arc-Polygons and Lombardi Drawings of
Cacti

Under Review

David Eppstein, Daniel Frishberg, and Martha C. Osegueda

On the Number of Compositions of Two Polycubes Under Review
Andrei Asinowski, Gill Barequet, Gil Ben-Shachar, and Martha C. Osegueda,
Günter Rote

Taming the knight’s tour: Minimizing turns and
crossings

January 2022

Juan Jose Besa, Timothy Johnson, Nil Mamano, Martha C. Osegueda, Parker
Williams

Theoretical Computer Science 902

Concatenation arguments and their applications to
polyominoes and polycubes

October 2021

Gill Barequet, Gil Ben-Shachar, and Martha C. Osegueda

Computational Geometry 98

REFEREED CONFERENCE PUBLICATIONS

Diamonds are Forever in the Blockchain: Geometric
Polyhedral Point-Set Pattern Matching

Under Review

Gill Barequet, Shion Fukuzawa, Michael T. Goodrich, David M. Mount,
Martha C. Osegueda, Evrim Ozel

Mapping Networks via Parallel kth-Hop Traceroute
Queries

March 2022

Ramtin Afshar, Michael T. Goodrich, Pedro Matias, and Martha C. Osegueda

39th International Symposium on Theoretical Aspects of Computer Science
(STACS 2022)

Angles of Arc-Polygons and Lombardi Drawings of
Cacti

August 2021

David Eppstein, Daniel Frishberg, and Martha C. Osegueda

33rd Canadian Conference on Computational Geometry (CCCG 2021)

xi

Taming the knight’s tour: Minimizing turns and
crossings

September 2020

Juan Jose Besa, Timothy Johnson, Nil Mamano, Martha C. Osegueda

10th International Conference on Fun with Algorithms (FUN 2021)

Reconstructing Biological and Digital Phylogenetic
Trees in Parallel

August 2020

Ramtin Afshar, Michael T. Goodrich, Pedro Matias, and Martha C. Osegueda

28th Annual European Symposium on Algorithms (ESA 2020)

Minimum-Width Drawings of Phylogenetic Trees December 2019
Juan Jose Besa, Michael T. Goodrich, Timothy Johnson, and Martha C.
Osegueda

13th International Conference on Combinatorial Optimization and Applica-
tions (COCOA 2019)

Fuzzy-inspired hierarchical version of the von
Neumann-Morgenstern solutions as a natural way
to resolve collaboration-related conflicts

October 2016

Olga Kosheleva, Vladik Kreinovich, Martha Osegueda Escobar

2016 IEEE International Conference on Systems, Man, and Cybernetics
(SMC)

How to transform partial order between degrees into
numerical values

October 2016

Olga Kosheleva, Vladik Kreinovich, Joe Lorkowski, Martha Osegueda

2016 IEEE International Conference on Systems, Man, and Cybernetics
(SMC)

xii

ABSTRACT OF THE DISSERTATION

Constructing, Counting and Matching Combinatorial and Geometric Shapes

By

Martha Carolina Osegueda Escobar

Doctor of Philosophy in Computer Science

University of California, Irvine, 2022

Distinguished Professor Michael T. Goodrich, Chair

A shape can be defined as the representation of an object or its external boundary so as

to characterize the information remaining when describing an object absent manipulations

such as translation, rotation, reflection, or scaling. This includes combinatorial shapes,

such as for structures defined in terms of relationships such as “parent-child”, “sibling”, or

“predecessor-successor”, as well as geometric shapes, such as those defined by polygons or

polytopes. In this thesis, we provide novel methods for constructing, counting, and matching

combinatorial and geometric shapes. For example, we study learning and constructing

phylogenetic trees, which describe evolutionary relationships among a group of objects.

Reconstructing phylogenetic trees is an important problem in computational biology, data

protection and computer security. With respect to counting, we focus on characterizing

the growth in the number of polycubes and families of polycubes, where a polycube is

the shape defined by a connected set of n copies of d-dimensional hypercubes. Counting

polycubes of a given size has been long-studied in statistical physics, given their applications

to percolation processes. We also consider constructing knight’s tour shapes, for chess board

grids, optimizing two new metrics of “simplicity” in knight’s tours: the number of turns

and the number of crossings. Finally, we focus on matching geometric shapes to real-world

objects. In particular, motivated by the tracing of ethically-sourced diamonds, we develop

xiii

approximation algorithms for geometric polyhedral point-set pattern matching as a minimum

width polyhedral annulus problem under translations and rotations.

xiv

Chapter 1

Introduction

A shape is the geometric representation of an object or its external boundary. These

encompass a wide breadth of shapes which are commonly used across a variety of

applications. In particular, we follow precedent set in [76] and define a shape as the

geometric information remaining when removing any manipulations from its description,

such as translation, rotation and uniform scaling. Some examples of shapes include lines,

squares, cubes, polyhedra, polytopes and any combination of them (see Figure 1.1). However,

this also includes combinatoral shapes such as those defined in terms of relationships such as

“parent-child”, “sibling”, or “predecessor-successor” as well as those defined as combinations

of geometric shapes like polycubes.

(a) (b) (c) (d) (e) (f)

Figure 1.1: Some examples of shapes: (a) a line, (b) a tree, (c) an irregular pentagon, (d)
a cube, (e) a polycube, and (f) the shape of a rough diamond.

1

1.1 Combinatorial Shapes

Let us consider a shape to be combinatorial if it can be described as a combination of other

“simple” shapes. For example, in Figure 1.1, (b) and (e) are composed of multiple copies

of (b) and (d), respectively. Although combinatorial shapes can be the result of combining

different simple shape, this disseration focuses on combinatorial shapes that result from

combining multiple copies of the same shape.

Combinatorial shapes lend themselves to solving a variety of problems, since combinations

of simple shapes define different resulting combinatorial shapes. For example, the tree in

Figure 1.1 (b) does not have the same shape as a tree with four leaves even if it uses the

same number of lines. Similarly, the polycube in Figure 1.1 (e) is comprised of three cubes

but does not have the same shape as the polycube where the three cubes are attached in a

straight line.

This also becomes more involved whenever certain copies of the comprising simple shapes

describe distinct relationships. For example, in Figure 1.1(b) it is implied by graph drawing

convention that it is an upward drawing of a tree, where the top node represents the root

and tree edges are directed away from it to represent a “parent-child” relationship. If one

of the implied root’s neighbors became the new root, these relationships would change and

the tree’s shape would be different.

Knowing the general form of a combinatorial shape, creates two natural dual problems:

1. Constructing a given combinatorial shape by finding the required combination, and

2. Counting, or finding, all possible combinatorial shapes.

2

In this dissertation, Chapter 2 studies constructing phylogenetic trees, Chapter 3 focuses

on counting polycubes and families of polycubes, and Chapter 4 focuses on constructing

knight’s tours that minimize turns and crossings.

1.1.1 Learning or Constructing Combinatorial Shapes

We refer to the process of learning the combination achieving a combinatorial shape as

learning or constructing the shape. In general, if the shape is unknown we can rely on

“asking” a series of questions about the structure. The answers impose constraints that

restrict the valid combinations that could form our combinatorial shape. Ultimately the goal

becomes to ask the questions which are the most helpful in isolating the target combination.

Conventionally, the process of asking a question is considered a query and algorithms tend

to focus on minimizing the query-complexity, Q(n).

More specifically we focus on phylogenetic applications where phylogenetic trees are trees

whose shape represents the evolutionary relationships between a group of species. The

branching of the tree describes how the relevant biological entities have evolved through

common ancestors [73, 31, 92]. Learning the shape of the phylogenetic trees involve very

expensive queries (i.e. experiments) that test species’ evolutionary similarity [73, 48, 59, 95,

70, 87, 105, 26, 45, 44, 43]. Similarly, phylogenetic trees have also been used to represent the

evolution of digital objects, and how they have been edited and transformed. Phylogenetic

trees of digital objects have applications for data protection, computer security, privacy,

copyright disputes, and plagiarism checking [59, 95, 70, 87, 105, 26, 45, 44, 43].

Given the biological applications we consider only queries involving the leaves of our tree.

Leaves will usually represent living biological entities and internal nodes will correspond

to evolutionary ancestors that are likely to have become extinct. More specifically we

focus on relative-distance queries, which given three leaf nodes x, y, and z, responds

3

x y z

root

Figure 1.2: An example of a relative distance query where a query with leaves x, y and z
would return (x, y)

with the pair of species (x, y),(x, z) or (y, z) that has the most-recent common ancestor,

i.e. the two “closest” leaves [73] (as shown in Figure 1.2). Previous work on phylogenetic

tree reconstruction through relative-distance queries, to our knowledge, focused solely on

sequential reconstruction and proven O(n log n) queries as optimal [73, 48]. Reconstructions

using a more powerful version of relative-distance queries have been proven to require an

asymptotically optimal O(dn logd n) queries when the tree has maximum degree d [115, 61].

Our Results. In Chapter 2, we propose a randomized divide-and-conquer parallel

algorithm with O(n log n) query complexity and O(log n) rounds, with high probability

(w.h.p.)1. We also provide experimental analysis to compare its performance against the two

known sequential algorithms: the deterministic algorithm introduced by Kannan, Lawler and

Warnow [73] which is reminiscent of insertion sort, and the randomized algorithm introduced

by Emamjomeh-Zadeh and Kempe [48] inspired by hierarchical clustering.

1.1.2 Counting Combinatorial Shapes

As the number of components in a combinatorial shape increase, it becomes increasingly

more computationally expensive to exhaustively enumerate all possible composite shapes.

For this reason work tends to focus on counting the number of possible shapes of a given

size, or deriving formulas approximating the number of possible shapes of a given size.

1We say that an event occurs with high probability if it occurs 1− 1/nc, for some constant c ≥ 1.

4

Specifically we focus on developing methods for polycubes, which are comprised of n copies of

d-dimensional hypercubes. These hypercubes must be connected through (d−1)-dimensional

facets. Counting polyominoes and polycubes has been a long-standing problem in statistical

physics since the 1950s [30, 110], where they are usually referred to by the more general

term of lattice animals, and play a significant roles in percolation processes and in the

collapse transition when branched polymers are heated. Counts of animals and formulae for

specific types of animals serve as mathematical models to describe these physical processes.

Polycubes are animals of the d-dimensional cubical lattice, but animals of other lattices such

as polyiamonds, animals of the triangular lattice, have also been studied.

In specific we concern ourselves with fixed polycubes, which are equivalent only if they can

be transformed into the other by translation. Numerous previous work has been devoted to

improving the best-known lower [18] and upper [19, 79] bounds on the growth constants of

polyominoes. Conventionally, Ad(n) denotes the number of d-dimensional polycubes of size

n and λd denotes the growth constant. It has been proven [78] that λ2 := limn→∞
n
√
A2(n)

and that A2(n + 1)/A2(n) converges to λ2 as n → ∞ [85], however these results can be

extended to any dimension.

Our Results. In Chapter 3, we extend the notion of “concatenation argument” and

develop methods for deriving lower and upper bounds on the growth constants for families of

polyominoes and polycubes whose enumerating sequences are so-called quasi sub- or super-

multiplicative. We demonstrate various applications of this technique, set improved bounds

on the growth constants of fixed polycubes when d ≥ 3, and demonstrate how to achieve

bounds for tree-like polycubes and convex polyominoes.

5

1.1.3 Constructing Shapes with Specific Properties

Alternatively, one might consider the problem of finding the specific combination of shapes,

which optimize a given criteria in the combinatorial shape. In this process we would construct

or realize a shape fitting the relevant criteria. One example criteria could be minimizing

features such the number of times they changed the direction in which the shapes attach.

However exhaustively identifying each possible combinatorial shape in order to identify the

optimum shape would be equally expensive. Thus, we focus on identifying shapes that

approximate the optimum. The goal of approximation algorithms is to find a solution

within a guaranteed approximation ratio of the optimum, for example, approximating a

minimization problem would guarantee the solution is within the approximation ratio times

the optimal.

Consider the game of chess, each piece moves in a particular way and a move can be defined

in terms of “predecessor-successor” relationships. The movement of a singular piece across

a chess board, therefore defines a combinatorial structure of cells connected by sequences of

piece movements. In particular, this means connected cells must be a legal move away from

eachother with respect to the piece being moved and each visited cell (apart from the start

and endpoint) must have a predecessor and successor.

Specifically we focus on the knight’s tour, which describe a sequence of knight moves

visiting every single cell on the board. A knight moves two cells along one axis and one

along the other (shown in Figure 1.3). The knight’s tour is an old and heavily studied

problem, see [15]. A knight’s tour is consider closed if the last cell visited is also a knight’s

move away from the initial cell. We focus on closed tours, which turns this problem into a

special case of the Hamiltonian cycle problem.

6

Knight Moves

Figure 1.3: A knight moves one unit along one axis and two units along the other.

Our Results. In Chapter 4, we introduce two new metrics of “simplicity” for knight’s

tours: the number of turns and the number of crossings. We propose a novel algorithm for

finding knight’s tours on a n×n board that have 9.25n+O(1) turns and 12n+O(1) crossings.

Consequently we prove that this is a 9.25/6 + o(1) approximation on the minimum number

of turns and 3 + o(1) approximation on the minimum number of crossings. Our algorithm

has an optimal running time, linear to the number of cells in an n ×m board, of O(nm) .

Further, this algorithm is fully parallelizable since it can be computed in constant time for

each given index of the board; with O(nm) processors it can be executed in O(1) time. We

also generalize for variations of the problem including: high-dimensional boards, symmetric

tours under 90◦ rotation, tours in odd-width boards that skip a corner cell and tours for

(1, 4)-leapers (also called giraffes).

1.2 Real-World and Geometric Shapes

The previous section dealt with combinatorial shapes both geometric and non-geometric.

However, the shapes of real-world objects can also be equally as complex. Real-world shapes

include infinitely small details in their surface which are impossible to capture exactly in

a definition. For this purpose we instead represent the approximate shape of an object by

sampling its surface.

However, it is still hard to reason about a point sample, and matching the pointset to

more easily characterized geometric shapes, such as convex polyhedra, can help facilitate

7

comparisons amongst objects. Motivated by applications in the diamond industry, where

the shape of diamonds are expected to fit a particular polyhedral shape, we focus on

finding the minimum width polyhedral annulus that contains the sample points (shown in

Figure 1.4). This would capture any surface imperfections within the annulus and capture

any inaccuracies accrued through sampling. Variations of this problem in the plane have

been studied. Some results include constrained versions of polygon annulus placement under

polygonal offset [16], maximum point coverage with a polygon [17] and finding the minimum-

width annulus for rectangles and squares [58, 12, 14, 13, 90].

Since, samples tend to be noisy we focus on developing efficient approximation schemes

that find (1+ ε)-approximate minimum width annuli for any fixed d-dimensional polyhedra.

Approximation schemes have previously been developed for the minimum-width spherical

annulus [32], and generally focus on identifying small subsets of points guaranteed to have

(1 + ε)-approximate solution [3, 96, 120, 4], these sets are commonly referred to as coresets.

Our Results. In Chapter 5, we provide (1+ε)-approximation algorithms for the minimum

width annuli for any fixed polyhedra and polytopes. Given a set of n points in Rd and a

convex polytope, we provide an O(ε−dn)-time algorithm under translations, for d ≥ 3, and

O(n log ε−1 + ε−2) time for d = 2, and provide an O(fd−1ε1−2dn)-time algorithm when also

allowing for rotations, parameterized on f , which we define as the slimness of the point set.

Figure 1.4: An example matching points sampled from the surface of a real-world object
(surface is shown dashed and object is shown in gray) with the minimum width polyhedral
annulus (shown in red).

8

Chapter 2

Reconstructing Biological

Phylogenetic Trees in Parallel

2.1 Introduction

Phylogenetic trees represent evolutionary relationships among a group of objects. For

instance, each node in a biological phylogenetic tree represents a biological entity, such as a

species, bacteria, or virus, and the branching represents how the entities are believed to have

evolved from common ancestors [73, 31, 92]. (See Figure 2.1a.) In a digital phylogenetic tree,

on the other hand, each node represents a data object, such as a computer virus [59, 95], a

source-code file [70], a text file or document [87, 105], or a multimedia object (such as an

image or video) [26, 45, 44, 43] and the branching represents how these objects are believed

to have evolved through edits or data compression/corruption. (See Figure 2.1b.)

In this chapter, we are interested in studying efficient methods for reconstructing phylo-

genetic trees from queries regarding their structure. In particular, with some exceptions,1

1One notable exception to this restriction of only being able to ask queries involving leaves in a biological
phylogenetic tree is for phylogenetic trees of biological viruses, for which genetic sequencing may be known

9

(a) (b)

Figure 2.1: Two phylogenetic trees. (a) A biological phylogenetic tree of life, showing
relationships between species whose genomes had been sequenced as of 2006; public domain
image by Ivica Letunic, retraced by Mariana Ruiz Villarreal. (b) A digital phylogenetic tree
of images, from Dias et al. [43].

in a biological phylogenetic tree we can only perform queries involving the leaves of the

tree, since these typically represent living biological entities and internal nodes represent

ancestors that are likely to be extinct. This type of phylogenetic tree has also received

attention in the context of hierarchical clustering, where the goal is to provide a hierarchical

grouping structure of items according to their similarity [48]. therefore, we study both types

of querying regimes in this chapter.

More specifically, with respect to biological phylogenetic trees, we focus on relative-

distance queries, where one is given three leaf nodes (corresponding to species), x, y,

and z, and the response is a determination of which pair, (x, y), (x, z), or (y, z), is a closest

pair, hence, has the most-recent common ancestor [73].

The motivation for reconstructing phylogenetic trees comes from a desire to better

understand the evolution of the objects represented in a given phylogenetic tree. For

for all instances; hence, ancestor-descendant path queries might also be appropriate for reconstructing some
biological phylogenetic trees.

10

example, understanding how biological species evolved is useful for understanding and

categorizing the fossil record and understanding when species are close relatives [73, 48].

Similarly, understanding how digital objects have been edited and transformed can be

useful for data protection, computer security, privacy, copyright disputes, and plariagism

detection [59, 95, 70, 87, 105, 26, 45, 44, 43]. For instance, understanding the evolutionary

process of a computer virus can provide insights into its ancestry, characteristics of the

attacker, and where future attacks might come from and what they might look like [95].

The efficiency of a tree reconstruction algorithm can be characterized in terms of its query-

complexity measure, Q(n), which is the total number of queries of a certain type needed

to reconstruct a given tree. This parameter comes from machine-learning and complexity

theory, e.g., see [1, 34, 46, 109], where it is also known as “decision-tree complexity,” e.g.,

see [118, 25]. Previous work on tree reconstruction has focused on sequential methods,

where queries are issued and answered one at a time. For example, in pioneering work for

this research area, Kannan et al. [73] show that an n-node biological phylogenetic tree can

be reconstructed sequentially from O(n log n) three-node relative-distance queries. Indeed,

their reconstruction algorithms are inherently sequential and involve incrementally inserting

leaf nodes into the phylogenetic tree reconstructed for the previously-inserted nodes.

In many tree reconstruction applications, queries are expensive [73, 48, 59, 95, 70, 87, 105,

26, 45, 44, 43], but can be issued in batches. For example, there is nothing preventing the

biological experiments [73] that are represented in three-node relative-distance queries from

being issued in parallel. Thus, in order to speed up tree reconstruction, in this chapter we

are interested in parallel tree reconstruction. To this end, we also use a round-complexity

parameter, R(n), which measures the number of rounds of queries needed to reconstruct

a tree such that the queries issued in any round comprise a batch of independent queries.

That is, no query issued in a given round can depend on the outcome of another query issued

in that round, although both can depend on answers to queries issued in previous rounds.

11

Roughly speaking, R(n) corresponds to the span of a parallel reconstruction algorithm and

Q(n) corresponds to its work. In this chapter, we are interested in studying complexities for

R(n) and Q(n) with respect to biological and digital phylogenetic trees with fixed maximum

degree, d.

2.1.1 Related Work

The general problem of reconstructing graphs from distance queries was studied by Kannan

et al. [74], who provide a randomized algorithm for reconstructing a graph of n vertices using

Õ(n3/2) distance queries.2

Previous parallel work has focused on inferring phylogenetic trees through Bayesian

estimation [5]. However, we are not aware of previous parallel work using a similar query

models to ours. With respect to previous work on sequential tree reconstruction, Culberson

and Rudnicki [37] provide the first sub-quadratic algorithms for reconstructing a weighted

undirected tree with n vertices and bounded degree d from additive queries, where each

query returns the sum of the weights of the edges of the path between a given pair of vertices.

Reyzin and Srivastava [102] show that the Culberson-Rudnicki algorithm uses O(n3/2 ·
√
d)

queries.

Waterman et al. [115] introduce the problem of reconstructing biological phylogenetic trees,

using additive queries, which are more powerful than relative-distance queries. Hein [61]

shows that this problem has a solution that uses O(dn logd n) additive queries, when the

tree has maximum degree d, which is asymptotically optimal [77]. Kannan et al. [73] show

that an n-node binary phylogenetic tree can be reconstructed from O(n log n) three-node

relative-distance queries and prove this is optimal through information theoretic bounds.

Their method appears inherently sequential, however, as it is based on an incremental

2The Õ(·) notation hides poly-logarithmic factors.

12

approach that mimics insertion-sort. Similarly, Emamjomeh-Zadeh and Kempe [48] also

give a sequential method using relative-distance queries that has a query complexity

of O(n log n). Their algorithm, however, was designed for a different context, namely,

hierarchical clustering.

Additionally, there exists some work (e.g. [71, 27, 63]) in an alternative perspective of the

problem reconstructing phylogenetic trees, in which the goal is to find the best tree explaining

the similarity and the relationship between a given fixed (or dynamic) set of data sequences

(e.g. of species), using Maximum Parsimony [51, 54, 103] or Maximum Likelihood [52, 35].

This contrasts with our approach of recovering the “ground truth” tree known only to an

oracle, which is consistent with its answers about the tree.

Our Contributions. In this chapter, we study the parallel phylogenetic tree reconstruction

problem and show that an n-node rooted biological (binary) phylogenetic tree can be

reconstructed from three-node relative-distance queries with R(n) that is O(log n) and

Q(n) that is O(n log n), with high probability (w.h.p.)3. Both bounds are asymptotically

optimal.

Moreover, given the many applications of biological and digital phylogenetic tree recon-

struction, we feel that our algorithms have real-world applications. Thus, we have done an

extensive experimental analysis of our algorithm, using both real-world and synthetic data for

biological and digital phylogenetic trees. Our experimental results provide empirical evidence

that our methods achieve significant parallel speedups while also providing improved query

complexities in practice.

3We say that an event occurs with high probability if it occurs with probability at least 1 − 1/nc, for
some constant c ≥ 1.

13

2.2 Preliminaries

In graph theory, an arborescence is a directed graph, T , with a distinguished vertex, r,

called the root, such that, for any vertex v in T that is not the root, there is exactly one

path from r to v, e.g., see Tutte [112]. That is, an arborescence is a graph-theoretic way of

describing a rooted tree, so that all the edges are going away from the root. In this chapter,

when we refer to a “rooted tree” it should be understood formally to be an arborescence.

We represent a rooted tree as T = (V,E, r), with a vertex set V , edge set E, and root

r ∈ V . The degree of a vertex in such a tree is the sum of its in-degree and out-degree,

and the degree of a tree, T , is the maximum degree of all vertices in T . So, an arborescence

representing a binary tree would have degree 3. Because of the motivating applications, e.g.,

from computational biology, we assume in this chapter that the trees we want to reconstruct

have maximum degree that is bounded by a fixed constant, d.

Let us review a few terms regarding rooted trees.

Definition 2.1. (ancestry) Given a rooted tree, T = (V,E, r), we say u is parent of v

(and v is a child of u) if there exists a directed edge (u, v) in E. The ancestor relation is

the transitive closure of the parent relation, and the descendant relation is the transitive

closure of the child relation. We denote the number of descendants of vertex s by D(s). A

node without any children is called a leaf. Given two leaf nodes, u and v in T , their lowest

common ancestor, lca(u, v), is the node, w in T , that is an ancestor of both u and v and

has no child that is also an ancestor of u and v.

We next define the types of queries we consider in this chapter for reconstructing a rooted

tree, T = (V,E, r).

Definition 2.2. A relative-distance query for T is a function, closer, which takes three

leaf nodes, u, v, and w in T , as input and returns the pair of nodes from the set, {u, v, w},

14

that has the lower lowest common ancestor. That is, closer(u, v, w) = (u, v) if lca(u, v) is a

descendant of lca(u,w) = lca(v, w). Likewise, we also have that closer(u, v, w) = (u,w) if

lca(u,w) is a descendant of lca(u, v) = lca(v, w), and closer(u, v, w) = (v, w) if lca(v, w) is

a descendant of lca(u, v) = lca(u,w).

Definition 2.2 assumes T is a binary tree (of degree 3). Note that in this chapter we

restrict relative-distance queries to leaves, since these represent, e.g., current species in the

application of reconstructing biological phylogenetic trees.

Definition 2.3. A path query for T is a function, path, that takes two nodes, u and v

in T , as input and returns 1 if there is a (directed) path from vertex u to v, and otherwise

returns 0. Also, for u ∈ V and W ⊆ V , we define count(u,W) =
∑

v∈W path(u, v), which is

the number of descendants of u in W .

We next study some preliminaries involving the structure of degree-d rooted trees that will

prove useful for our parallel algorithms.

Definition 2.4. Let T = (V,E, r) be a degree-d rooted tree. We say that an edge e = (x, y) ∈

E is an even-edge-separator if removing e from T partitions it into two rooted trees, T ′ =

(V ′, E ′, y) and T ′′ = (V ′′, E ′′, r), such that |V |
d
≤ |V ′| ≤ |V |(d−1)

d
and |V |

d
≤ |V ′′| ≤ |V |(d−1)

d
.

(See Figure 2.2.)

Lemma 2.1. Every rooted tree of degree-d has an even-edge-separator.

Proof. This follows from a result by Valiant [113, Lemma 2].

As we will see, this fact is useful for designing simple parallel divide-and-conquer algorithms.

Namely, if we can find an even-edge-separator, then we can cut the tree in two by removing

that edge and recurse on the two remaining subtrees in parallel (see Figure 2.2).

15

+

Figure 2.2: Illustration of a divide-conquer approach for trees. The edge (x, y) is an even-
edge-separator. Note that the root of T ′′ is r, while y becomes root of T ′.

2.3 Reconstructing Biological Phylogenetic Trees in

Parallel

Relative-distance queries model an experimental approach to constructing a biological

phylogenetic tree, e.g., where DNA sequences are compared to determine which samples are

the most similar [73]. In simple terms, pairs of DNA sequences that are closer to one another

than to a third sequence are assumed to be from two species with a common ancestor that

is more recent than the common ancestor of all three. In this section, for the sake of tree

reconstruction, we assume the responder has knowledge of the absolute structure of a rooted

binary phylogenetic tree; hence, each response to a closer(u, v, w) query is assumed accurate

with respect to an unknown rooted binary tree, T . As in the pioneering work of Kannan

et al. [73], we assume the distance comparisons are accurate and consistent. The novel

dimension here is that we consider parallel algorithms for phylogenetic tree reconstruction.

As mentioned above, we consider relative-distance queries to occur between leaves of a rooted

binary tree, T . That is, in our query model, the querier has no knowledge of the internal

nodes of T and can only perform queries using leaves. Because T is a binary phylogenetic

tree, we may assume it is a proper binary tree, where each internal node in T has exactly

two children.

16

a b

(a,b)

(a)

R

a b

vlca(a, b)

lca(c, d)

lca(a, c)

w lca(e, f)

cc

u
x

(b)

root(Tr)

Figure 2.3: (a) The subgroups leaves are split into. (b) The linking step attaching Ta, Tb

and Tr.

2.3.1 Algorithm

At a high level, our parallel reconstruction algorithm (detailed in Algorithm 1) uses a

randomized divide-and-conquer approach, similar to Figure 2.2. In our case, however, the

division process is random three-way split through a vertex separator, rather than an edge-

separator-based binary split. Initially, all leaves belong to a single partition, L. Then two

leaves, a and b, are chosen uniformly at random from L and each remaining leaf, c, is queried

in parallel against them using relative-distance queries. Notice that the lowest common

ancestor of a and b splits the tree into three parts. Given a and b, the other leaves are split

into three subsets (R, A, and B) according to their query result (as shown in Figure 2.3(a)):

• A: leaves close to a, i.e., for which closer(a, b, c) = (a, c)

• B: leaves close to b, i.e., for which closer(a, b, c) = (b, c)

• R: remaining leaves, i.e., for which closer(a, b, c) = (a, b)

We then recursively construct the trees in parallel: Ta, for A ∪ {a}; Tb, for B ∪ {b}; and

Tr, for R. The remaining challenge, of course, is to merge these trees to reconstruct the

complete tree, T . The subtree of T formed by subset A ∪ B is rooted at an internal node,

v = lca(a, b); hence, we can create a new node, v, label it “lca(a, b)” and let Ta and Tb be

17

Algorithm 1: Reconstruct a binary tree of a set of leaves, L.

1 Function reconstruct-phylogenetic(L):
2 if |L| ≤ 3 then return the tree formed by querying L
3 Pick two leaves, a, b ∈ L, uniformly at random
4 for each c ∈ L s.t. c ̸= a, b do in parallel
5 Perform query closer(a, b, c)
6 Split the leaves in L into R, A, and B based on results
7 parallel do
8 Ta ← reconstruct-phylogenetic(A ∪ {a})
9 Tb ← reconstruct-phylogenetic(B ∪ {b})

10 Tr ← reconstruct-phylogenetic(R)

11 Let v be a new node, labeled “lca(a, b)”
12 Set v’s left child to root(Ta) and the right to root(Tb)
13 if R = ∅ then return tree, Tv, rooted at v
14 else return link(v, Tr)

v’s children. If R = ∅, then we are done. Otherwise, we need to determine the parent of v

in T ; that is, we need to link v into Tr using function link(v, Tr) (see Algorithm 2).

To identify the parent of v, in T , let us assume inductively that each internal node u ∈ Tr has

a label “lca(c, d)”, since we have already recursively labeled each internal node in T . Recall

that v is labeled with “lca(a, b)”. The crucial observation is to note if there exists an edge

(u → w) in Tr, such that u is labeled “lca(c, d)” and closer(a, c, d) = (a, z) for z ∈ {c, d},

and w is either leaf z or an ancestor of z labeled “lca(e, f)” with closer(a, e, f) = (e, f),

(See Figure 2.3(b)), then edge (u → w) must be where the parent of v belongs in T , and

if there is no such edge, the parent of v is the root of T and the sibling of v is the root of

Tr. We can determine the edge (u→ w) in a single parallel round by performing the query,

closer(a, c, d), for each each internal node u ∈ T (where the label of u is “lca(c, d)”). It is

also worth noting that if the oracle can identify cases where all three leaves share a single

lca, simple modifications to Algorithm 1 would enable it to handle trees of higher degree.

18

Algorithm 2: Link v into the tree, Tr.

1 Function link(v, Tr):
2 for each internal node u ∈ Tr do in parallel
3 Query closer(a, c, d), where u’s label is “lca(c, d)”
4 Let (u→ w) be the edge in Tr such that:

u is labeled “lca(c, d)” and closer(a, c, d) is (a, z),
where z ∈ {c, d}, and
w is leaf z, or an ancestor of z with label “lca(e, f)” and closer(a, e, f) = (e, f)

5 if no such edge (u→ w) exists then
6 Let g be a leaf from root(Tr)’s lca label
7 Create a new root node, labeled “lca(a, g)” with v as left child and root(Tr)

as right child
8 return the tree rooted at this new node

9 Remove (u→ w) from Tr

10 Create a new node, x, labeled “lca(a, z)”, with parent u, left child v, and right
child w

11 return Tr

2.3.2 Analysis

The correctness of our algorithm follows from the way relative-distance queries always return

a label for the lowest common ancestor for the two closest leaves among the three input nodes.

Furthermore, executing the three recursive calls can be done in parallel, because A ∪ {a},

B ∪ {b}, and R form a partition of the set of leaves, L, and at every stage we only perform

relative-distance queries relevant to the respective partition.

Theorem 2.1. Given a set, L, of n leaves in a proper binary tree, T , such as a

biological phylogenetic tree, we can reconstruct T using relative-distance queries with a round

complexity, R(n), that is O(log n) and a query complexity, Q(n), that is O(n log n), with

high probability.

Proof. Because the recursive calls we perform in each call to the reconstruct algorithm are

done in parallel on a partition of the leaf nodes in L, we perform Θ(n) work per round.

Thus, showing that the number of rounds, R(n), is O(log n) w.h.p. also implies that Q(n)

is O(n log n) w.h.p. To prove this, we show that each round in Algorithm 1 has a constant

19

nbot

ntop

β

m

t

root≥ n
α

≥ n
α tR

troot

βR

βL

Figure 2.4: A left-heavy tree drawing displaying node ntop, node nbot and the relevant
partitions

probability of decreasing the problem size by at least a constant factor for each of its recursive

calls. For analysis purposes, we consider the left-heavy representation of each tree, in which

the tree rooted at the left child of any node is always at least as big as the tree rooted

at its right child. (See Figure 2.4.) Using this view, we can characterize when a partition

determines a “good split” and provide bounds on the sizes of the partitions, as follows.

Lemma 2.2. With probability of at least α−5
2α2 , a round of Algorithm 1 decreases the problem

size of any recursive call by at least a factor of α−1
α

, for a constant α > 5, thus experiencing

a good split.

Proof. Define the spine to be all nodes on the path from the root to its left-most leaf in a

left-heavy drawing. Let nbot be the bottom-most node on the spine that has at least n/α of

the nodes in its sub-tree. Conversely, let ntop be the parent of the top-most spine node that

has at most (1 − 1/α) · n descendants. (See Figure 2.4.) Consider the three resulting trees

obtained from separating at the incoming edge to nbot and the outgoing edge from ntop to

its left child. As shown in Figure 2.4, let t be the resulting tree retaining the root, β the

tree rooted at nbot and m the tree between ntop and nbot. Within β let βL and βR be the

trees rooted at the left and right child of nbot. Similarly, for t, let tR be the tree rooted at

the right child of ntop. Finally, let troot be the remaining tree when cut at ntop.

20

Consider the size of tree β, |β|, since this is the first tree rooted in the spine with over n/α

nodes, then βL must have had strictly under n/α nodes. Since the trees are in left-heavy

order, βR can have at most as many nodes as βL so n
α
≤ |β| < 2n

α
. Furthermore, we know that

|β|+ |m|+ |tR|+ |troot|+1 = n. Due to the left-heavy order, |tR| ≤ |β|+ |m|. By definition of

ntop, it’s necessary that |troot| < n
α
, thus 2(|β|+ |m|)+1 > n− n

α
and |β|+ |m| >

(
α−1
2α

)
n− 1

2
.

Using the previous inequality and |t| = n − |β| − |m|, we find |t| <
(
α+1
2α

)
n + 1

2
. Also,

|m| = n− |t| − |β|, so |m| > n− 5n+αn
2α

.

n

α
≤ |β| < 2n

α
,

n

α
≤ |t| <

(
α + 1

2α

)
n+

1

2
,

(
α− 5

2α

)
n < |m| ≤

(
α− 2

α

)
n (2.1)

Picking a leaf from β and another from m guarantees that β ⊆ (A ∪ {a}) and t ⊆ R. Thus,

using Equation (2.1), each of the three sub-problem sizes, |A∪{a}|, |B∪{b}|, and |R|, will be

at most
(
α−1
α

)
n, when α > 5. Pr[good split] ≥ Pr[leaf in β] ·Pr[leaf in m]. Asymptotically,

Pr[leaf in β] ≈ Pr[node in β], thus Pr[good split] > α−5
2α2 , which established the lemma.

Returning to the proof of Theorem 2.1, let p = α−5
2α2 . From Lemma 2.2, we expect it will

take 1/p rounds to obtain a good split. Every good split will reduce the problem-size by at

least a constant factor, α−1
α

. Thus, we are guaranteed to have just a single node left after we

get Nsplits = log α
α−1

(n) good splits. Consider the geometric random variable, Xi, describing

the number of rounds required to obtain the i-th good split, then X = X1 + . . . + XNsplits

describes the total number of rounds required by the algorithm. By linearity of expectation,

E[X] = 2α2

(α−5)
·Nsplits =

2α2

(α−5)
· log α

α−1
(n). Therefore, since α > 5 is a constant, this already

implies an expected O(log n) rounds for Algorithm 1. Moreover, by a Chernoff bound for

the sum of independent geometric random variables (see [60, 89]), Pr [X > C · E[X]] ≤

e
−(C−1)·p·Nsplits

5 for any constant C ≥ 3 and constant α > 5. Thus, the probability that we

21

take over C · E[X] rounds is O(1/nC−1). Therefore, by a union bound across the n leaves,

our algorithm completes in O(log n) rounds w.h.p.

Corollary 2.1. Algorithm 1 is optimal when asking θ(n) queries per round.

The query complexity of Algorithm 1 matches an Ω(n log n) lower bound for Q(n), due to

Kannan et al. [73]. Besides, we need Ω(log n) rounds if we have θ(n) processors; hence, the

round complexity of Algorithm 1 is also optimal.

2.4 Experiments

Given that our algorithm is randomized and performs optimally with high probability, we

carried out experiments to analyze the practicality of our algorithm and compared their

performance with the best known algorithms for reconstructing rooted trees.

In order to assess the practical performance of Algorithm 1, we performed experiments

using synthetic phylogenetic trees and real-world biological phylogenetic trees from the

phylogenetic library TreeBase [97], which is a database of biological phylogenetic trees,

comprising over 100,000 distinct taxa in total.

We implemented an oracle interface, instantiated it with the relevant trees, and implemented

our algorithm along with two other phylogenetic tree reconstruction algorithms that use

relative-distance queries. The first is by Emamjomeh-Zadeh and Kempe [48], which is a

randomized sequential divide-and-conquer algorithm. The second is by Kannan et al. [73],

where they use a sequential deterministic procedure reminiscent of insertion-sort. All three

algorithms achieve the optimal asymptotic query complexity of Θ(n log n) in expectation.

22

Figure 2.5: A scatter plot showing the number of queries and rounds for each of the three
tree reconstruction algorithms for real trees from TreeBase. Since our algorithm is parallel,
we include round complexity to serve as a comparison for the sequential complexity.

2.4.1 Real Data.

We instantiated our oracles with 1,220 biological phylogenetic trees from the TreeBase

collection and used them to run all three algorithms. The results, shown in Figure 2.5, suggest

that our algorithm outperforms the algorithm by Kannan et al., both in terms of its round

complexity and query complexity. However our algorithm almost matches Emamjomeh-

Zadeh and Kempe’s in terms of total queries and we believe the small difference is a direct

result of the cost incurred while parallelizing the link step of Algorithm 1. It remains clear

that Algorithm 1 outperforms the two other algorithms when considering the parallel speed-

up.

2.4.2 Synthetic Data.

We also tested this algorithm using synthetic data and found similar results, detailed in

Figure 2.6. In order to generate random instances of trees with maximum degree, d, we

23

Figure 2.6: A plot showing the average number of queries and rounds for each of the three
tree reconstruction algorithms. Each data point represents the average for 10 randomly
generated trees.

synthesized a data set of random degree-d trees of n nodes for different values of n and

d = 2. To generate a random tree, T , for a given n and d, we first generated a random

Prüfer sequence [100] of a labeled tree, which defines a unique sequence associated with that

tree, and converted it to its associated tree. In particular, each n-node tree T = (V,E) has

a unique code sequence s1, s2, . . . , sn−2, where si ∈ V for all 1 ≤ i ≤ n − 2 and every node

vi ∈ V of degree di appears exactly di − 1 times in this sequence. Therefore, in order to

generate random degree-d rooted trees we generate a random Prüfer sequence while imposing

conditions that: (i) all vertices appear at most d − 1 times in the code and (ii) there is at

least one node such that it appears exactly d − 1 times. Converting each such sequence to

its associated tree gave us a random degree-d tree instance that we used in our experiments.

Given our algorithm’s strict focus on biological phylogenetic trees, we use only full binary

trees, where each internal node has exactly two children.

24

Chapter 3

Concatenation Arguments and their

Applications on Counting

Polyominoes and Polycubes

3.1 Introduction

A polycube of size n is a connected set of n cells on the cubical lattice Zd, where

connectivity is through (d−1)-dimensional facets of the cells. Two-dimensional polycubes

are also called polyominoes. Two fixed polycubes are said to be equivalent if one can

be transformed into the other by a translation (as opposed to free polycubes, of which

two instances are equivalent if one can be transformed into the other by a translation,

rotation, and/or mirroring). In the sequel, we consider only fixed polycubes, hence we

simply call them “polycubes.” Counting polyominoes and polycubes is a long-standing

problem: Their study began in the 1950s in statistical physics [30, 110], where they are

25

usually called lattice animals.1 In statistical physics, lattice animals play a significant role

in percolation processes and in the collapse transition that happens when branched polymers

are heated. Counts of animals and formulae for specific types of animals form the basis for

the mathematical models that describe these physical processes.

Let Ad(n) denote the number of d-dimensional polycubes of size n. The sequence (A2(n))

is currently known up to n = 56 [68]. The growth constants (asymptotic growth rates) of

polyominoes and polycubes have also attracted much attention. Klarner [78] showed that

λ2 := limn→∞
n
√
A2(n) exists. The convergence of A2(n + 1)/A2(n) to λ2 (as n→∞) was

proven only three decades later by Madras [85], using a novel pattern-frequency argument.

(These results easily extend to any dimension.) The currently best-known lower [18] and

upper [19] bounds on λ2 are 4.0025 and 4.5252, respectively. (The previous upper bound,

4.6496 [79], which has been the best known for almost half a century, was due to Klarner

and Rivest.) It is widely believed (see, e.g., [56, 57]), but has never been proven rigorously,

that λ2 ≈ 4.06. The best estimate, λ2 = 4.0625696 ± 0.0000005, is currently due to

Jensen [68].

In this chapter, we extend the notion of a “concatenation argument” and develop methods

for deriving lower and upper bounds on the growth constants of families of polyominoes

and polycubes whose enumerating sequences are so-called quasi sub- or super-multiplicative.

We demonstrate various applications of this technique to setting new bounds on the growth

constants of all fixed polyominoes and polycubes, as well as of specific families, such as tree

polycubes and convex polyominoes.

1More precisely, polycubes are called strongly-embedded site animals in this literature. This
terminology comes from the dual graph of the square lattice (which is also a square lattice). In the dual
graph, a polyomino cell becomes a vertex (site), and a neighborhood relation between two polyomino cells
becomes an edge (bond). In the dual notation, the size of a “site animal” is the number of its vertices,
while the size of a “bond animal” is usually the number of its edges. (Both types of animals should still be
represented by connected graphs.) In addition, an edge always belongs to a “strongly-embedded” animal if
its two endpoints are vertices of the animal, while this is not necessarily the case for “weakly-embedded”
animals. For example, the 2×2 polyomino P= corresponds to one strongly-embedded site animal of size 4
(•
••
•, the dual of P), but to five (5) weakly-embedded site animals of the same size (•

••
•, •

••
•, ••

•• , •
•
•
•, and ••

••).
As bond animals, these animals have different sizes.

26

The chapter is organized as follows. In Section 3.2, we introduce a few preliminary notions

and describe the basic concatenation argument. In Section 3.3, we provide several more

complex concatenation methods and analyze the growth constants they imply. Then, we

give some simple applications of these methods in Section 3.4. In Section 3.5, we show how

to apply our methods in a recursive manner, setting new bounds on the growth constants of

polycubes in three and higher dimensions. Finally, in Section 3.6, we show a more involved

application to convex polyominoes. We end in Section 3.7 with some concluding remarks.

3.2 Preliminaries

3.2.1 Concatenation and Super-/Sub- Multiplicative Sequences

A sequence (Z(n)) is called super-multiplicative (resp., sub-multiplicative) if Z(m +

n) ≥ Z(m)Z(n) (resp., Z(m + n) ≤ Z(m)Z(n)) for all m,n ∈ N.2 It is known [99, p. 171]

(using a lemma attributed to Michael Fekete by Klarner [78]) that a super-multiplicative

(resp., sub-multiplicative) sequence Z(n), with the property that the sequence (Z ′(n)) =

(n
√

Z(n)) is bounded from above (resp., below), has a growth constant. That is, the

quantity limn→∞ Z ′(n) exists.

Let us define a total lexicographic order on cells of the cubical lattice: First by x1 (x in two

dimensions), then by x2 (y in two dimensions), and so on. Thus, in two dimensions, the

smallest (resp., largest) square of a polyomino P is the lowest (resp., highest) cell in the

leftmost (resp., rightmost) column of P . The vertical (resp., horizontal) concatenation of

two polyominoes P1, P2 is the positioning of P2 such that its smallest cell lies immediately

above (resp., to the right of) the largest cell of P1 (see Figure 3.1). Similarly, two

d-dimensional polycubes can be concatenated in d ways. Obviously, concatenating two

2Whether or not the relation is strict is insignificant since the asymptotic results are identical.

27

(a) Two polyominoes (b) Vertical (c) Horizontal

Figure 3.1: Concatenations of two polyominoes.

polycubes always yields a valid polycube (connected and with no overlapping cells), and

two different pairs of polycubes of sizes m,n always yield by concatenation two different

polycubes of size m + n. (The first claim follows at once from the lexicographic order of

cells. The second claim can easily be justified by observing the smallest cell in which the

two concatenated polycubes differ.) Many polycubes, however, can be represented as the

concatenations of several pairs of polycubes (of different sizes), whereas others (e.g.,)

cannot be represented at all as the concatenation of smaller polycubes.

The following is a folklore concatenation argument for polyominoes, setting a (rather weak)

lower bound on their growth constant. A direct consequence of the discussion above

is that A2
2(n) < A2(2n). That is, n

√
A2(n) < 2n

√
A2(2n). Hence, a sequence of the

form A∗ =
(

n02
i
√

A2(n02i)
)∞

i=0
is monotone increasing for any natural number n0. Since

the entire sequence A = (A2(n)) is super-multiplicative, and the sequence A′ =
(

n
√
A2(n)

)
is bounded from above [?], the sequence A has a growth constant λ2. Obviously, every

subsequence of A′ also converges to λ2. In addition, since any such subsequence A∗ is

monotone increasing, any element of it, n0

√
A2(n0), is a lower bound on λ2. Empirically, the

best (largest) lower bound is obtained this way by setting n0 = 56 (the largest value of n for

which A2(n) is known), yielding the lower bound λ2 > 3.7031.

28

Remarks.

1. Although A∗ is a subsequence of A′, the monotonicity of the former does not imply the

monotonicity of the latter. Nevertheless, the known values of Ad(n) (in all dimensions)

suggest that A′ be monotone increasing too. We will later refer to this observed

property as “the unproven monotonicity of the root sequence” (“Conjecture
√
UM,”

in short).

2. A stronger observed phenomenon is the monotonicity of the ratio sequence, i.e.,

Ad(n)/Ad(n − 1) < Ad(n + 1)/Ad(n) (for n ≥ 2). Equivalently, A2
d(n) < Ad(n +

1)Ad(n− 1), and in a more general form, A2
d(n) < Ad(n+ k)Ad(n− k) (for 1 ≤ k < n).

3. Yet another observation is that the ratio sequence dominates the root sequence, that

is, n
√
Ad(n) < Ad(n)/Ad(n − 1) for all n > 1, and in a more general form (using the

convention A(0) = 1), n
√

Ad(k)Ad(n− k) < Ad(n− k)/Ad(n− 1− k) (for n > k ≥ 0).

We will later refer to this property as “the unproven dominance of the ratio sequence

over the root sequence” (“Conjecture
•
•
√
UD,” in short).

4. Property (2) implies both Properties (1) and (3). If all three unproven properties are

true, then the ratio sequence (Ad(n + 1)/Ad(n)) converges to λd faster than the root

sequence (n
√
Ad(n)), which is widely believed to be the case.

At any rate, all these observations were never proven and are stated here as conjectures. In

this work, we do not rely on them to be true.

Similarly, for any sub-multiplicative sequence (B(n)), for which B′(n) = n
√
B(n) is bounded

from below, and for which we can show that B′(n) ≥ B′(2n) for any natural number n, we

conclude that any known value B(n0) sets the upper bound B′(n0) on the growth constant

of (B(n)).

29

3.2.2 Quasi Super- and Sub-Multiplicativity

A sequence (Z(n)) is quasi super-multiplicative (resp., quasi sub-multiplicative)

if Z(m+n) ≥ P (m+n)Z(m)Z(n) (resp., Z(m+n) ≤ P (m+n)Z(m)Z(n)), for any m,n ∈ N

and for some positive function P (x) which is sub-exponential with x. (Hereafter, we will

consider cases in which this function is a polynomial.) Sometimes, the sequence enumerating

a family (subset) of polycubes is either quasi super-multiplicative or quasi sub-multiplicative,

or even both (naturally, with different auxiliary functions P (·)). In such cases, we can take

advantage of the fact that limn→∞
n
√
P (n) = 1 and obtain bounds on the growth constant

of Z(n) from known values of Z(n). In favorable cases, where we have as many values of

the enumerating sequence as we want (either by a closed-form or a recursive formula), this

method approaches the growth constant as close as we want.

Theorem 3.1. Assume that the limit µ := limn→∞
n
√
Z(n) exists for a sequence (Z(n)).

Let c1 ̸= 0, c2, c3 be some constants. Then:

(a) (multiplicative polynomial) If c1n
c2Z2(n) ≤ Z(2n) (resp., c1n

c2Z2(n) ≥ Z(2n)) ∀n ∈

N, then n
√
c1(2n)c2Z(n) ≤ µ (resp., n

√
c1(2n)c2Z(n) ≥ µ) ∀n ∈ N.

(b) (index shift) If c1Z
2(n + c3) ≤ Z(2n) (resp., c1Z

2(n + c3) ≥ Z(2n)) ∀n ∈ N,

then n
√

c1Z(n+ 2c3) ≤ µ (resp., n
√

c1Z(n+ 2c3) ≥ µ) ∀n ∈ N. Equivalently,

if c1Z
2(n) ≤ Z(2n+c3) (resp., c1Z

2(n) ≥ Z(2n+c3)) ∀n ∈ N, then n
√

c1Z(n− c3) ≤ µ

(resp., n
√

c1Z(n− c3) ≥ µ) ∀n > c3.

Proof. Our strategy is to manipulate the given relation, in both cases, and reach a relation

of the form ζ(n) ≤ ζ(2n) or ζ(n) ≥ ζ(2n). Then, we follow closely the logic of the basic

argument described in Section 3.2.1.

(a) By straightforward manipulations of the relation c1n
c2Z2(n) ≤ Z(2n) (resp., c1n

c2Z2(n) ≥

Z(2n)), we obtain that n
√

c1(2n)c2Z(n) ≤ 2n
√

c1(4n)c2Z(2n) (resp.,
n
√
c1(2n)c2Z(n) ≥

30

2n
√

c1(4n)c2Z(2n)). Then, by setting ζ(n) = n
√
c1(2n)c2Z(n), we see that ζ(n) ≤ ζ(2n)

(resp., ζ(n) ≥ ζ(2n)). It follows that the subsequence (ζ(2i+1n0))
∞
i=0 is monotone

increasing (resp., decreasing) and converging to µ, for any natural number n0. The

claim follows.

(b) In this case, we substitute n := m + c3 in the relation c1Z
2(n + c3) ≤ Z(2n)

(resp., c1Z
2(n + c3) ≥ Z(2n)) and perform manipulations as in Case (a), ob-

taining that c21Z
2(m + 2c3) ≤ c1Z(2m + 2c3) (resp., c21Z

2(m + 2c3) ≥ c1Z(2m +

2c3)). Hence, m
√

c1Z(m+ 2c3) ≤ 2m
√

c1Z(2m+ 2c3) (resp., m
√

c1Z(m+ 2c3) ≥
2m
√
c1Z(2m+ 2c3)). Elementary calculus shows that the limits of the two se-

quences
(

m
√

c1Z(m)
)

and
(

m
√
c1Z(m+ 2c3)

)
, as m → ∞, are equal. (Indeed,

since limm→∞
Z(m+1)
Z(m)

= µ, there exists some constant δ, such that Z(m+1)
Z(m)

≤ δ, for

all m ∈ N. Hence, c1Z(m) ≤ c1Z(m+ 2c3) ≤ c1δ
2c3Z(m), and, thus, by the squeezing

theorem, limm→∞
m
√

c1Z(m+ 2c3) = µ.) Finally, we fix ζ(m) = m
√

c1Z(m+ 2c3) and

continue as in Case (a). The equivalent case, in which the shift appears in the right

side of the relation, is treated analogously by substituting n := m− c3.

Remark. In fact, reaching any relation of the form ζ(n) ≤ ζ(f(n)), where n < f(n) for

all n ∈ N (for some integer function f(n)), is sufficient for our purposes. Moreover, the

requirement that these relations hold for all n ∈ N can be relaxed to that they hold only for

all n ≥ n0, for some n0 ∈ N, in which case known values of only the n0th element or later in

the sequence can be used for obtaining the bounds.

31

3.3 Methods of Concatenation

We list below the main concatenation variants we employ. For ease of exposition, we use

relations that yield, using Theorem 3.1, lower bounds on the growth constants of polycubes.

However, the same methods can be used for setting upper bounds as well. Consistently with

Conjecture
√
UM, we observed that in all dimensions, the best (largest) lower bounds on λd

were obtained by using the largest known element ofAd(n). Let a1, a2 be the lexicographically

largest and smallest cells, respectively, of the two concatenated polycubes P1, P2. We denote

the enumerating sequence by Z(n) and its growth constant by λZ .

[E] The most elementary method of concatenation, and surprisingly also the most

dominant variant in the literature, attaches cell a1 to cell a2 in a single way. This leads

to the relation Z2(n) ≤ Z(2n), which, as detailed above (see Section 3.2.1), implies

that λZ ≥ n
√
Z(n) for all n ∈ N.

[C] A simple improvement on Method [E] is achieved by considering all possible (lattice

dependent) c ways of attaching a1 to a2, such that a1 is lexicographically smaller

than a2. (For example, two d-dimensional polycubes can be concatenated in d ways as

shown for two dimensions in Figure 3.1.) This leads to the relation c Z2(n) ≤ Z(2n),

which, by Theorem 3.1(a), implies that λZ ≥ n
√

c Z(n) for all n ∈ N.

[M] A possible improvement on Method [C] could be obtained by considering all possible

polycubes of size k for being concatenated in between P1 and P2. As in Method [C],

assume that there are c ways for attaching two cells lexicographically. This leads to

the relation c2Z(k)Z2(n) ≤ Z(2n + k), which, by Theorem 3.1(b), implies that λZ ≥
n
√
c2Z(k)Z(n− k) for all k, n ∈ N, such that n > k.

Remark. It is initially unknown which values of k, n lead to the best (largest)

lower bound on λZ . It is a priori not even known, for a fixed value of k, which

32

Figure 3.2: Overlapping a cell.

value of n yields the best bound. Empirically, for d-D polycubes, the best bound

on λd is obtained by choosing the largest k for which Ad(k) is known, and by

setting n := 2k. This empirical fact is consistent with Conjecture
•
•
√
UD. Indeed,

assume that n
√
Ad(k)Ad(n− k) < Ad(n − k)/Ad(n − 1 − k). After a few simple

manipulations, we see that Ad(k)Ad(n − 1 − k) < (Ad(k)Ad(n − k))(n−1)/n. By

taking the (n−1)st root on both sides, we conclude that n−1
√
Ad(k)Ad(n− 1− k) <

n
√
Ad(k)Ad(n− k), which confirms the empirical findings. However, by setting n = 2k,

we find that n
√
d2Ad(k)Ad(n− k) = 2k

√
d2A2

d(k) = k
√
dAd(k), resulting in the same

bound as in Method [C].

[O] A slightly different method (see Figure 3.2) is based on overlapping cells a1 and a2.

This operation always yields a valid polycube because every remaining cell in P1 is

smaller than a1, and every remaining cell in P2 is larger than a2, so there are no

other overlapping cells. In addition, all pairs of polycubes necessarily generate unique

polycubes by this method of concatenation. This leads to the relation Z2(n) ≤ Z(2n−

1), which, by Theorem 3.1(b), implies that λZ ≥ n
√
Z(n+ 1) for all n ∈ N.

[MO] A possible improvement on Method [O] can be obtained by concatenating P1 and P2

through all possible polycubes of size k, where P1 overlaps the middle polycube’s

smallest cell, and P2 overlaps the middle polycube’s largest cell. This leads to the

relation Z(k)Z2(n) ≤ Z(2n + k − 2), which, by Theorem 3.1(b), implies that λZ ≥
n
√

Z(k)Z(n− k + 2) for all k, n ∈ N, such that n > k − 2.

33

Remark. In practice, for d-D polycubes, we observed (as in Method [M]) that the

best (largest) lower bound on λd was obtained by setting k = 1 and by choosing the

largest n for which Ad(n + 1) is known, yielding the bound n
√

Ad(1)Ad(n+ 1). For

polycubes, we have that Ad(1) = 1 (for any d), hence, this bound is precisely the

bound obtained by Method [O].

In many cases, one can identify a family F , a subset of animals on the original lattice,

which is closed under concatenation. Clearly, by simple calculus, if the family F has a

growth constant λF of its own, then λZ ≥ λF . This idea can be combined with any of the

methods listed above.

In the following sections, we provide several applications of the listed concatenation methods.

In some cases, we apply additional ad hoc tricks.

3.4 Simple Applications

We now provide a few simple applications of the basic concatenation methods.

3.4.1 General

We can directly apply concatenation methods [E], [C], and [O] to polycubes, and find lower

bounds on λd. Table 3.2 (found in Section 3.5) shows the best lower bounds obtained

in dimensions 2–9, all using the largest known values of the respective sequences. For

example, for polyominoes, Methods [E] and [O] provide, both using n = 56, the lower

bounds 56
√
A2(56) ≈ 3.7031 and 55

√
A2(56) ≈ 3.7923, respectively, on λ2. These bounds are

inferior to the best known bound λ2 > 4.00253 [18], obtained by the much stronger method

of twisted cylinders. However, the cylinders method cannot be generalized efficiently to

34

higher dimensions because it becomes computationally intractable. (This is because the

main factor that affects its running time and consumed memory, namely, boundaries of

polycubes, outnumbers polyominoes when the method is applied to polycubes in three or

higher dimensions.) As we show in Section 3.5, we can improve further all lower bounds

in d ≥ 3 dimensions by applying a recursive technique.

3.4.2 Trees

A polycube is a tree if its cell-adjacency graph (its “dual”) is acyclic. Tree polycubes and

their respective growth constants are significant on their own, and also attracted interest in

the literature (see, e.g., [47, 69]). Naturally, any lower bound on λd;T , the growth constant

of d-dimensional tree polycubes, is also a lower bound on λd. In order to preserve the tree

property, special restrictions must be enforced while concatenating them. Figures 3.3(a,b)

show two pairs of tree polycubes T1, T2, in two and three dimensions, respectively, having

cells σ1, σ2 as their largest and smallest cells, respectively, concatenated by Method [E]. To

guarantee that the concatenation of the trees T1 and T2 is itself a tree (i.e., that it introduces

exactly one edge in the cell-adjacency graph), cells σ1 and σ2 must touch via their maximum,

respectively minimum, faces orthogonal to the most dominant axis of the lexicographic order.

This leaves a (d−1)-dimensional buffer space, in which any cell would be larger than σ1 and

smaller than σ2, making it impossible for any cell in T1 or T2 to occupy this space. On the

other hand, as can be seen in the figure, concatenating T1 and T2 along any other axis risks

that the original trees also touch along the most dominant axis. This is demonstrated by the

simple example shown in Figure 3.3(d). Concatenating along axis x1 (Figure 3.3(e)) yields

a tree, while concatenating along axes x2 or x3 (Figures 3.3(f,g), respectively) introduces a

cycle in the cell-adjacency graph.

35

T1 T2

σ1 σ2

x1

x2

σ2σ1

x1

x3 x2

T1 T2

(a) Two dimensions (b) Three dimensions

T1 T2

x1

x3 x2

σ2
σ1

(d)

x1

σ1 σ2

x2

σ1

σ2

x3

σ1

σ2

(e) (f) (g)

Figure 3.3: Concatenating trees.

36

Table 3.1: Lower bounds on the growth constants of tree polycubes of various dimensions.

Known OEIS Method
Dimensions Values Sequence [E]

2 44 A066158 3.4045
3 17 A118356 5.5592
4 10 A191094 6.7698
5 10 A191095 8.8035
6 8 A191096 9.4576
7 7 A191097 10.0909
8 7 A191098 11.4891

Let Ad;T (n) denote the number of n-cell tree polycubes in d dimensions, and let λd;T

denote their respective growth constants. As in similar examples, we obtain the relation

A2
d;T (n) ≤ Ad;T (2n), which evaluates to λd;T ≥ n

√
Ad;T (n) for all n ∈ N. For example, for tree

polyominoes (in two dimensions), the best (largest) lower bound is obtained with n = 44,3

implying that λ2;T ≥ 44
√
A2;T (44) ≥ 3.4045. Table 3.1 shows the best lower bounds obtained

this way in dimensions 2–8, in all cases using the largest known values of the respective

sequences.

3.5 Recursive Bounding

In this section, we present a recursive scheme for improving the bounds obtained by all

concatenation methods described in Section 3.3. Let us demonstrate the scheme by a concrete

example which aims at setting a lower bound on the growth constant of polycubes, but the

general scheme is also suited for obtaining upper bounds.

As observed in previous sections, the sequence enumerating d-dimensional polycubes,

(Ad(n)), is super-multiplicative and it has a growth constant λd, hence, by concatenation

Method [O], any term of the form n−1
√
Ad(n) is a lower bound on λd. In practice, we can

3The currently largest known element of (A2;T (n)) [67] is A2;T (44) = 257,571,182,441,471,056,810,356.

37

x2

x1

x2

x1

h− 1 n− h− 1

++

h− 2 n− h

++

(a) (b) (c) (d)

Figure 3.4: Constructions for the proof of Theorem 3.2.

prove relations which are tighter than the super-multiplicativity condition by considering

more combinations of polycubes than just configurations obtained by concatenation. Here

is an example.

Theorem 3.2. Let h = ⌊(n+ 1)/2⌋. Then, for every n ≥ 4, we have that

Ad(n) ≥ Ad(h)Ad(n− h+ 1) (3.1)

+
d(d− 1)2

2
(Ad(h− 1)Ad(n− h− 1) + Ad(h− 2)Ad(n− h)).

Proof. The term on the left side of Relation 3.1 is the number of all d-D polycubes of size n,

whereas the terms on the right count a subset of these polycubes.

Let us explain the right side of Relation 3.1. Our goal is to count three types of polycubes,

and distinguish between them according to the connectedness of some of their cells.

The first term, Ad(h)Ad(n − h + 1), is the number of d-dimensional polycubes obtained by

concatenating two polycubes of sizes h and n−h+1 with a 1-cell overlap (i.e., Method [O]).

Note that in these combinations, the lower h cells, as well the upper n−h+1 cells, form two

valid polycubes which share the hth cell.

The second factor of the second term, Ad(h−1)Ad(n−h−1) +Ad(h−2)Ad(n−h), counts two

types of constructions. In both types, we place 3-cell L-shapes (shown in Figures 3.4(a,b)) in

the middle in order to force the hth cell into a position where it is either no longer adjacent

to any of the upper n−h cells, or to any of the lower h−1 cells, as shown in Figures 3.4(c,d),

38

Table 3.2: Lower bounds on λd, through each method. (Best previously-published bounds
are underlined, our improved bounds appear in bold.)

Known OEIS Concatenation Methods Other Recursive
Dims. Values Sequence [E] [C] [O] Methods Bounding

2 56 A001168 3.7031 3.7492 3.7923 4.00253 [18] 3.7944
3 19 A001931 6.0211 6.3795 6.6526 — 6.6621
4 16 A151830 8.4627 9.2286 9.7576 — 9.7714
5 15 A151831 10.9093 12.1449 12.9398 — 12.9569
6 15 A151832 13.5237 15.2396 16.2888 — 16.3087
7 14 A151833 15.5985 17.9245 19.2690 — 19.2927
8 12 A151834 16.6477 19.7976 21.4975 — 21.5298
9 12 A151835 18.8417 22.6277 24.6060 — 24.6416

respectively. The largest and smallest cells of the lower and upper polycubes, respectively,

are marked by empty circles, and the hth cell of the resulting polycube is marked by an

asterisk. The trick is to mix between no-overlap and 1-overlap on the two sides of the L. To

achieve this, the L-shape in Figure 3.4(a) is overlapped with the lower polycube of size h−1,

and concatenated to the upper polycube of size n−h−1 (see Figure 3.4(c)). Similarly, the

L-shape in Figure 3.4(b) is concatenated to the lower polycube of size h−2 and overlapped

with the upper polycube of size n−h (see Figure 3.4(d)).

Let us finally explain the first factor of the second term. First, there are
(
d
2

)
options for

choosing the orientation of L. (The chosen directions are denoted by x1 and x2, where x1

has precedence over x2 in the lexicographic order.) Second, the no-overlap concatenation

(on one of the sides) can be done in d−1 ways: All directions are valid except direction x2,

the direction which would cover the forbidden cell (marked by an “×” in Figures 3.4(a,b)).

This constraint avoids multiple counting; otherwise, we would have in the middle a 2×2

square which can be created in more than one way. Overall, we have a factor of
(
d
2

)
(d− 1) =

d(d− 1)2/2.

It is easy to see that all resulting polycubes are different by construction.

39

Ascending Descending
(a) Convex (b) Staircase

Figure 3.5: Convex and staircase polyominoes.

Relation (3.1) is disadvantageous in the sense that we cannot derive from it “chains” of

lower bounds as we did for all concatenation methods. However, it allows us to apply a

recursive procedure for bounding from below any value of Ad(n). Since we know values

of Ad(n) for 1 ≤ n ≤ n0 (for some n0 ∈ N), we can construct a sequence B(n), such

that B(n) ≤ Ad(n) for every n: For 1 ≤ n ≤ n0, let B(n) = Ad(n); and for n > n0, set B(n)

recursively to the value calculated from the right side of Relation 3.1.

One can apply this method for large values of n ad infinitum, or, more practically, until

one’s available computing resources are exhausted, and choose the best value encountered.

We ran this procedure up to n ≈ 12 · 106 for 2 ≤ d ≤ 9. In two dimensions, we obtained

that λ2 ≥ 3.7944. This bound is slightly better than the one obtained by Method [O], but

it could still not beat the bound λ2 > 4.0025 [18] which was obtained by a stronger method.

However, we improved the lower bounds on λd in all of 3 ≤ d ≤ 9 dimensions. Table 3.2

summarizes the obtained bounds; new bounds appear in boldface.

3.6 Convex Polyominoes

We now provide a much more complex application of concatenation arguments, setting both

lower and upper bounds on the growth constant of convex polyominoes (see Figure 3.5(a)).

40

Definition 3.1. A polyomino is convex if any axis-parallel line intersects the polyomino in

at most one continuous sequence of cells.

Alternatively, a polyomino is convex if its perimeter (in the usual sense–the length of its

boundary curve) is equal to that of its minimum bounding box [29].

Let the symbol C(n) denote the number of convex polyominoes of size n. Although a formula

for C(n) seems to be out of reach, Bousquet-Mélou and Fédou [28] developed a rather

complex generating function for the enumerating sequence. Klarner and Rivest [80] showed

that the growth constant λ2;C := limn→∞
n
√
C(n) exists, and provided almost-matching lower

and upper bounds on it, both roughly equal 2.3091. Soon after, Bender [23] computed the

constant λ2;C precisely. We show below how we obtain easily the same result by applying

Theorem 3.1.

We begin by defining a subfamily of convex polyominoes (see Figure 3.5(b)).

Definition 3.2. A polyomino is an ascending (resp., descending) staircase (or

parallelogram) if it is convex and its boundary contains the bottom-left and top-right (resp.,

top-left and bottom-right) corners of its minimal bounding box.

Denote by S(n) (resp., Sall(n)) the number of ascending (resp., all) staircase polyominoes of

size n. It is rather easy to verify that Sall(n) = 2S(n) − σ0(n), where σ0(n) is the number

of divisors of n (Sequence A000005 in the OEIS [107]). To see this, note that the family

of convex polyomoinoes of size n, that are both ascending and descending, is precisely the

set of rectangles whose height and widths are divisors of n. Since 2 ≤ σ0(n) < 2
√
n for

all n ∈ N, we have that Sall(n) = Θ(S(n)), and, hence, we can investigate S(n) instead

of Sall(n). Let us define λ2;S := limn→∞
n
√

S(n). Theorem 3.3 below states that this limit

exists. Naturally, S(n) ≤ C(n) for all n ∈ N, and the relation is strict for all n ≥ 3. This

implies that λ2;S ≤ λ2;C . In fact, the two growth constants are equal, as is also implied by

41

3○
2○

1○ 4○

5○

1○
2○

3○

4○ 5○

(a) P (convex) (b) Q (staircase)

Figure 3.6: Converting a convex polyomino into an ascending staircase polyomino.

the next theorem. (This result was already proven by Klarner and Rivest [80, p. 34, Eq. 5]

in a different way. We provide here an alternative proof in order to demonstrate the power

of concatenation arguments.)

Theorem 3.3. The quantity λ2;S := limn→∞
n
√

S(n) exists, and λ2;S = λ2;C.

Proof. As mentioned above, we have that S(n) ≤ C(n) for all n ∈ N. We show now that, in

addition, C(n) ≤ 2(n + 1)6S(n) for all n ∈ N. Indeed, any n-cell convex polyomino P can

be converted into an ascending staircase polyomino Q of the same size, and a code of up

to 2(n+ 1)6 possible values, so that P can be reconstructed uniquely from Q and the code,

as follows.

Refer to Figure 3.6. First, identify the widest staircase subpolyomino of P that extends

the full height of P (marked as part 3○, colored in pink), which is either ascending or

descending. (The latter case is seen in the figure.) Then, out of the portion remaining on

the left, identify the highest ascending part with a straight floor (part 2○, colored in yellow),

leaving a descending remainder (part 1○, colored in cyan). Similarly, out of the remainder

42

of P on the right of part 3○, identify the highest ascending part with a straight ceiling

(part 4○, colored in yellow), leaving a descending remainder (part 5○, colored in cyan).

Then, rotate by 90◦ parts 1○ and 5○ counter-clockwise and clockwise, respectively, so as to

make them ascending. In addition, if part 3○ is descending, flip it upside-down for the same

purpose. Finally, concatenate parts 1○– 5○ horizontally in this order (say, in a horizontal

manner) to obtain an ascending staircase polyomino.

The size of each of the parts 1○– 5○ is in the range [0, n]. Hence, the split of Q into the original

parts can be done in at most (n + 1)4 ways. (More precisely, the integer number n can be

represented as the sum of five non-negative integer numbers in
(
n+4
4

)
ways.) The locations of

parts 1○, 2○, 4○, 5○ relative to part 3○ can be coded in a total of at most n2 ways. Whether

or not part 3○ was flipped requires one additional bit of information. Altogether, the entire

process can be encoded in at most 2(n + 1)6 ways. (Clearly, the actual number of possible

codes is usually much smaller.) Therefore, n
√
S(n) ≤ n

√
C(n) ≤ n

√
2(n+ 1)6S(n). Applying

the squeezing theorem finishes the proof.

Fortunately, generating-function manipulations and dynamic-programming procedures pro-

duce quickly and efficiently elements of C(n) and S(n) for values of n as large as we want.

(See sequences A067675 and A006958 in the on-line encyclopedia of integer sequences [107].)

3.6.1 Lower Bound

A standard concatenation argument shows that the sequence S(n) is super-multiplicative.

Theorem 3.4. S(m)S(n) < S(m+ n) for all natural numbers m,n ≥ 2.

A weak relation is easily justified by a concatenation argument identical to that for regular

polyominoes. However, the relation is strict since for any pair of numbers m,n ≥ 2, there

43

exists a staircase polyomino P of size m+ n, which cannot be broken lexicographically into

two staircase polyominoes of sizesm and n, and whose concatenation yields the polyomino P .

Let us derive a lower bound on λ2;S, which is clearly also a lower bound on λ2;C .

Corollary 3.1. λ2;S ≥ 2.3091.

Proof. The following Mathematica program (see Sequence A006958 in the OEIS [107])

implements a continuous fraction (trimmed to five levels) which provides the generating

function of S(n) [55], derived from a q-expansion. In order to obtain exact terms of the

expansion, one needs to set k, the level of trimming, to
⌈√

n+ 1
⌉
, where n is the number of

computed terms. However, since we eventually take the nth root of the nth term, we can

trim the fraction much earlier without any noticeable effect on the result with the number

of decimal digits shown.

n=25000; k=5; Q=1; For[i=k, i>=1, i--, Q=1/(1-x^i/(1-x^i*Q))];

s=CoefficientList[Series[Q,{x,0,n+1}],x][[n+1]] (* s = S(n) *)

Print[n,", ",ScientificForm[s+0.,10],SetPrecision[s^(1/(n-1)),7]]

Using this program, we easily see that S(25000) ≈ 5.289504001 · 109085. Using Method [O],

we have the relation, S2(n) ≤ S(2n− 1) for any n ∈ N. Hence, by Theorem 3.1(a), we have

that λ2;S ≥ 24999
√

S(25000) ≥ 2.30910.

3.6.2 Upper Bound

We now show that the sequence C(n) is quasi sub-multiplicative.

Theorem 3.5. C(m+ n) ≤ (mn+ 2(m+ n) + 1)C(m)C(n) for all m,n ≥ 1.

44

m n nm m n

(a) No kink (b) Kink, no breaks (c) Kink, one break

m n

(1, 3)

m n

Original polyomino Broken polyomino and encoding
(d) Kink, two breaks

Figure 3.7: Breaking a convex polyomino into two polyominoes.

45

Proof. The claim follows from a concatenation argument. Refer to Figure 3.7. Consider a

convex polyomino P of size m + n, and break it into two parts, the first one, colored in

red, containing the smallest m cells of P according to lexicographic order, and the second

one, colored in green, containing the other n cells. Due to the convexity of P , and since

the line parting the two parts may have a “kink,” both parts can be made of one or two

connected components, each of which is convex by itself. (Indeed, since the split is according

to lexicographic order, nonconvexity of any of the up to four components will immediately

result in the nonconvexity of the original polyomino P .) In addition, if a part is broken into

two components, then the component touching the kink from above or below (colored in

dark red or dark green) is necessarily a vertical “stick.” We use the components on each side

of the parting line for constructing two convex polyominoes (of sizes m and n), and encode

the combination by a positive integer number which is at most mn + 2(m + n) + 1, as we

show below. We distinguish between three cases:

1. The parting line does not have a kink (see Figure 3.7(a)). In this case, the original

polyomino is broken into two valid (connected) polyominoes. The relative position of

the two parts can be encoded by a number in the range [1, . . . ,m+ n− 1].

2. The parting line has a kink (see Figure 3.7(b)), but neither part (left or right) is broken

into two components. In this case, there are cells of the original polyomino immediately

below and above the kink, otherwise we were in the first case. Hence, there is only

a single option to combine the two parts into the original polyomino, which we can

encode by a single code.

3. One or two of the parts are broken into two components (see Figures 3.7(c) and (d,left).

In this case, we slide vertically the two components towards each other until they

touch horizontally for the first time (see Figure 3.7(d,right)). If needed, the vertical

translation on the left (resp., right) side is by at most m (resp., n) cells. Together

with the case of no break, a set of at most m+1 (resp., n+1) codes will encode all

46

possibilities. Note that we need both codes in order to restore uniquely the original

polyomino from the two new polyominoes: First, place the two “sticks,” and then

the codes will tell us were to position the other component(s). Altogether, at most

(m+ 1)(n+ 1) different codes can encode all possibilities in this case.

In summary, a total of (m+n−1)+1+(m+1)(n+1) = mn+2(m+n)+1 codes suffice for

encoding all possibilities, allowing us to reconstruct uniquely the original polyomino from the

two polyominoes of sizes m,n and the code. Clearly, the relation is strict for large-enough

values of m,n since this mapping is one-to-one but not surjective—not all combinations of

polyominoes of sizes m,n and a code can be obtained.

Corollary 3.2. λ2;C ≤ 2.3297.

Proof. Using a program (written by Ruben G. Spaans [107, Seq. A067675]) which implements

a dynamic-programming algorithm, we computed values of C(n) up to n = 2000 and found

that C(2000) ≈ 2.319117764·10727. The computation took about 85 hours on a home desktop

with four Intel(R) Core(TM) i7-6700K CPU @4.00GHz processors (8 logical processors) with

32GB of RAM. By Theorem 3.5,

C(2n) ≤ (n2 + 4n+ 1)C2(n) = (1 +
4

n
+

1

n2
)n2C2(n) < 1.0020003 · n2C2(n)

for all n ≥ 2000. Hence, by Theorem 3.1(a),

λ2;C ≤ (1.002003(2 · 2000)2C(2000))1/2000 ≤ 2.32963.

47

3.6.3 Epilogue

As a result of Theorem 3.3, and Corollaries 3.1 and 3.2, we conclude the following.

Theorem 3.6. 2.3091 ≤ λ2;S = λ2;C ≤ 2.3297.

The bounds (the lower of which is closer to the true value) can be made as tight as we want

since we can produce values of S(n) and C(n) for values of n as high as needed.

Klarner and Rivest [80] took a similar approach, in which they developed sequences of integral

equations, from which they obtained generating functions for the enumeration sequence,

which implied polynomials in 1/x whose largest roots served as a lower and upper bounds

on λC . Our method is much simpler as it only requires the knowledge of C(n) and S(n) for

large-enough values of n, which are, as noted, very easy to compute.

3.7 Conclusion

In this chapter, we explore various types of concatenation arguments, and show their

applications to setting bounds on the growth constants of polyominoes and polycubes, as

well as some specialized families of them. Inter alia, we consider tree polycubes and convex

polyominoes. The available counts of animals of different types support several unproven

conjectures about monotonicity and relations between the root and ratio sequences of the

counts. We do not use any of these conjectures in order to prove our bounds. However, we

explain how they are consistent with the specific values that are used for setting the bounds.

A possible direction for future work is analyzing the quality of our lower bounds obtained

by using the methods presented in this chapter. It was recently conjectured [21] that λd, the

growth constant of d-dimensional polycubes, behaves like (2d − 3)e + O(1/d) (as d → ∞),

where e is the base of natural logarithms (see the blue line in the graph shown in Figure 3.8).

48

2 3 4 5 6 7 8 9
Dimension of the d-Dimensional Cubical Lattice (d)

5

10

15

20

25

30

35

40

Gr
ow

th
 C

on
st

an
t V

al
ue

 (
d)

Conjectured
Recursive Bounding

Figure 3.8: Conjectured growth constants of polycubes (blue), and lower bounds produced
by our method (orange).

When we plot the lower bounds obtained by the recursive bounding method (the orange line

in the same figure), we observe that except in dimensions 8 and 9, they also exhibit a linear

dependence on d, which is surprisingly similar to 3.13d−2.63 (obtained with Rvalue=0.9998

by Python’s standard linear least-squares regression tool scipy.stats.linregress). We

attribute the degradation in dimensions 8 and 9 to the lack of sufficient elements of the

sequences enumerating polycubes in high dimensions. Are the approximate slope π and

the approximate intercept −e only a coincidence, or are they inherently related to the

concatenation method?

Another direction for future research is applying the methods proposed in this chapter to

other lattices, such as the planar triangular and hexagonal lattices. A preliminary work in

this direction was done in a companion paper [20], where a simple version of Method [C]

was used for improving the lower bound on the growth constant of polyiamonds (animals

on the triangular lattice). The main challenge related to this lattice is that it contains two

49

distinct types of cells, which can attach to each other but not to themselves. We plan to

investigate whether any method (especially Method [F] combined with recursive bounding)

improves the lower bound further.

50

Chapter 4

Taming the Knight’s Tour:

Minimizing Turns and Crossing

4.1 Introduction

The game of chess is a fruitful source of mathematical puzzles. The puzzles often blend an

appealing aesthetic with interesting and deep combinatorial properties [116]. An old and

well-known problem is the knight’s tour problem. A knight’s tour in a generalized n × m

board is a path through all nm cells such that any two consecutive cells are connected by a

“knight move” (Figure 4.1). For a historic treatment of the problem, see [15].

A knight’s tour is closed if the last cell in the path is one knight move away from the first

one. Otherwise, it is open. This chapter focuses solely on closed tours, so henceforth we

omit the distinction. The knight’s tour problem is a special case of the Hamiltonian cycle

problem, the problem of finding a simple cycle in a graph that visits all the nodes. Consider

the graph with one node for each cell of the board and where nodes are connected if the

51

Knight Moves

Figure 4.1: A knight moves one unit along one axis and two units along the other.

corresponding cells are a knight move apart. The knight’s tour problem corresponds to

finding a Hamiltonian cycle in this graph.

We approach the knight’s tour problem in a novel way. Existing work focuses on the

questions of existence, counting, and construction algorithms. In general, the goal of existing

algorithms is to find any knight’s tour. We propose two new metrics that capture simplicity

and structure in a knight’s tour, and set the goal of finding tours optimizing these metrics.

We define the following optimization problems. We associate each cell in the board with a

point (i, j) in the plane, where i is the row of the cell and j is the column.

Definition 4.1 (Turn). Given a knight’s tour, a turn is a triplet of consecutive cells

with non-collinear coordinates.

Remark 4.1 (Minimum turn knight’s tour). Given a rectangular n ×m board such that a

knight’s tour exists, find the knight’s tour with the smallest number of turns.

Definition 4.2 (Crossing). Given a knight’s tour, a crossing occurs when the two line

segments corresponding to moves in the tour intersect. That is, if {c1, c2} and

{c3, c4} are two distinct pairs of consecutive cells visited along the tour, a crossing happens

if the open line segments (c1, c2) and (c3, c4) intersect.

Remark 4.2 (Minimum crossing knight’s tour). Given a rectangular n×m board such that

a knight’s tour exists, find the knight’s tour with the smallest number of crossings.

52

Knight’s tours are typically visualized by connecting consecutive cells by a line segment.

Turns and crossings make the sequence harder to follow. Minimizing crossings is a central

problem in graph drawing, the sub-field of graph theory concerned with the intelligible

visualization of graphs (e.g., see the survey in [62]). Problem 4.2 is the natural adaptation

for knight’s tours. Problem 4.1 asks for the (self-intersecting) polygon with the smallest

number of vertices that represents a valid knight’s tour.

4.1.1 Our contributions.

We propose a novel algorithm for finding knight’s tours with the following features.

• 9.25n+O(1) turns and 12n+O(1) crossings on a n× n board.

• A 9.25/6+o(1)1 approximation factor on the minimum number of turns (Problem 4.1).

• A 3 + o(1) approximation factor on the minimum number of crossings (Problem 4.2).

• A O(nm) running time on a n×m board, i.e., linear on the number of cells, which is

optimal.

• The algorithm is fully parallelizable, in that it can be executed in O(1) time with

O(nm) processors in the CREW PRAM model. More specifically, the cell at a given

index in the tour sequence (or, conversely, the index of a given cell) can be determined

in constant time, which implies the above.

• It can be generalized to most typical variations of the problem: high-dimensional

boards, boards symmetric under 90 degree rotations, tours in boards with odd width

and height that skip a corner cell, and tours for (1, 4)-leapers, called giraffes, which

move one cell in one dimension and four in the other.

1By o(1), we mean a function f(n) such that for any constant ε > 0, there is an n0 such that, for all
n ≥ n0, f(n) < ε.

53

• The algorithm can be simulated by hand with ease. This is of particular interest in

the context of recreational mathematics and mathematics outreach.

The chapter is organized as follows. In Section 4.1.2, we give an overview of the literature

on the knight’s tour problem and its variants. We describe the algorithm in Section 4.2.

We prove the approximation ratios in Section 4.3. Section 4.4 deals with the mentioned

extensions. We conclude in Section 4.5.

The tours produced by the algorithm can be generated interactively for different board

dimensions at https://www.ics.uci.edu/~nmamano/knightstour.html.

4.1.2 Related Work

Despite being over a thousand years old [116], the knight’s tour problem is still an active

area of research. We review the key questions considered in the literature.

Existence. In rectangular boards, a tour exists as long as one dimension is even and the

board size is large enough; no knight’s tour exists for dimensions 1×n, 2×n or 4×n, for any

n ≥ 1 and, additionally, none exist for dimensions 3× 6 or 3× 8 [104]. In three dimensions

or higher, the situation is similar: a tour exists only if at least one dimension is even and

large enough [41, 42, 49]. In the case of open knight’s tours, a tour exists in two dimensions

if both dimensions are at least 5 [38, 36].

Counting. The number of closed knight’s tours in an even-sized n × n board is at least

Ω(1.35n
2
) and at most 4n

2
[83]. The exact number of knight’s tours in the standard 8 × 8

board is 26, 534, 728, 821, 064 [88]. Furthermore algorithms for enumerating multiple [106]

and enumerating all [6] knight’s tours have also been studied.

54

https://www.ics.uci.edu/~nmamano/knightstour.html

Algorithms. Historically, greedy algorithms have been popular. The idea is to construct

the tour in order, one step at a time, according to some heuristic selection rule. Warnsdorff’s

rule and its refinements [98, 6, 108] work well in practice for small boards, but do not

scale to larger boards [93]. The basic idea is to choose the next node with fewest

continuations. Interestingly, this heuristic can be effective in the more general Hamiltonian

cycle problem [98].

To our knowledge, every efficient algorithm for arbitrary board sizes before this chapter

is based on a divide-and-conquer approach. The tour is solved for a finite set of small,

constant-size boards. Then, the board is covered by these smaller tours like a mosaic. The

small tours are connected into a single one by swapping a few knight moves. This can be

done in a bottom-up [104, 36, 41, 42, 72] or a top-down recursive [94, 84] fashion. This

process is simple and can be done in time linear on the number of cells. Like our algorithm,

these algorithms are highly parallelizable [36, 94]. This is because the tours are made of

predictive repeating patterns.

Divide-and-conquer is not suitable for finding tours with a small number of turns or crossings.

Since each base solution has constant size, a n× n board is covered by Θ(n2) of them, and

each one contains turns and crossings. Thus, the divide-and-conquer approach necessarily

results in Θ(n2) turns and crossings. In contrast, our algorithm has O(n).

Extensions. The above questions have been considered in related settings. Extensions

can be classified into three categories, which may overlap:

• Tours with special properties. Our work can be seen as searching for tours with

special properties. Magic knight’s tours are also in this category: tours such that the

indices of each cell in the tour form a magic square (see [22] for a survey).

55

The study of symmetry in knight’s tours dates back at least to 1917 [24]. Symmetric

tours under 90 degree rotations exist in n × n tours where n ≥ 6 and n is of the

form 4k + 2 for some k [40]. Parberry extended the divide-and-conquer approach to

produce tours symmetric under 90 degree rotations [94]. Jelliss provided results on

which rectangular board sizes can have which kinds of symmetry [66].

Both of our proposed problems are new, but minimizing crossings is related to the

uncrossed knight’s tour problem, which asks to find the longest sequence of knight

moves without any crossings [119]. This strict constraint results in incomplete tours.

This problem has been further studied in two [65, 53] and three [82] dimensions.

• Board variations. Besides higher dimensions, knight’s tours have been considered

in other boards, such as torus boards, where the top and bottom edges are connected,

and the left and right edges are also connected. Any rectangular torus board has a

closed tour [117]. Another option is to consider boards with odd width and height.

Since boards with an odd number of cells do not have tours, it is common to search

for tours that skip a specific cell, such as a corner cell [94].

• Move variations. An (i, j)-leaper is a generalized knight that moves i cells in one

dimension and j in the other (the knight is a (1, 2)-leaper) [91]. Knuth studied the

existence of tours for general (i, j)-leapers in rectangular boards [81]. Tours for giraffes

((4, 1)-leapers) were provided in [40] using a divide-and-conquer approach. Chia and

Ong [33] study which board sizes admit generalized (a, b)-leaper tours. Kamčev [72]

showed that any board with sufficiently large and even size admits a (2, 3)-, (2, 5)-, and

a (a, 1)-leaper tour for any even a, and generalized this to any higher dimensions. Note

that a and b are required to be coprime and not both odd, or no tour can exist [72].

56

Formation Moves

Straight moves

Double straight moves

Diagonal moves

Figure 4.2: Quartet of knights moving in unison without leaving any unvisited squares. Note
that, in a straight move, the starting and ending position of the quartet overlap because two
of the knights remain in place.

4.2 The Algorithm

Given that one of the dimensions must be even for a tour to exist, we assume, without loss

of generality, that the width w of the board is even, while the height h can be odd. We also

assume that w ≥ 16 and h ≥ 12. The construction still works for some smaller sizes, but

may require tweaks to its most general form described here.

Quartet moves. What makes the knight’s tour problem challenging is that knight jumps

leave “gaps”. Our first crucial observation is that a quartet of four knights arranged in a

square 2 × 2 formation can move “like a king”: they can move horizontally, vertically, or

diagonally without leaving any gaps (Figure 4.2).

By using the “formation moves” depicted in Figure 4.2, four knights can easily cover the

board moving vertically and horizontally while remaining in formation. Of course, the goal

is to traverse the entire board in a single cycle, not four paths. We address this issue with

special structures placed in the bottom-left and top-right corners of the board, which we

call junctions, and which tie the paths together to create a single cycle. Note that using

only straight formation moves leads to tours with a large number of turns and crossings.

57

Fortunately, two consecutive diagonal moves in the same direction introduces no turns or

crossings, so our main idea is to use as many diagonal moves as possible. This led us to the

general pattern shown in Figure 4.3.

The full algorithm is given in Algorithm 3. The formation starts at a junction at the bottom-

left corner and ends at a junction at the top-right corner. To get from one to the other,

it zigzags along an odd number of parallel diagonals, alternating between downward-right

and upward-left directions. The junctions in Figure 4.4 have a height, which influences

the number of diagonals traversed by the formation. At the bottom-left corner, we use a

junction with height 5. At the top-right corner, we use a junction with height between 5

and 8. Choosing the height as in Algorithm 3 guarantees that, for any board dimensions, an

odd number of diagonals fit between the two junctions. Sequence 1 in Figure 4.5, which we

call the heel, is used to transition between diagonals along the horizontal edges of the board.

The two non-junction corners may require special sequences of quartet moves, as depicted

in Figure 4.5. In particular, Sequences 1, 2, 3, and 0 are used when the last heel ends 0, 2, 4,

and 6 columns away from the vertical edge, respectively. As with the height of the top-right

junction, these variations are predictable because they cycle as the board dimensions grow2,

so in Algorithm 3 we give expressions for them in terms of w and h.

4.2.1 Correctness

It is clear that the construction visits every cell, and that every node in the underlying graph

of knight moves has degree two. However, it remains to be argued that the construction is

actually a single closed cycle. For this, we need to consider the choice of junctions.

A junction is a pair of disjoint knight paths whose four endpoints are adjacent as in the

quartet formation. Thus, the bottom-left junction connects the knights into two pairs.

2See how the variations cycle at https://www.ics.uci.edu/~nmamano/knightstour.html.

58

https://www.ics.uci.edu/~nmamano/knightstour.html

Algorithm 3: Knight’s tour algorithm for even width w ≥ 16 and height h ≥ 12.

1. Fill the corners of the board as follows:

Bottom-left: first junction in Figure 4.4.

Top-right: junction of height 5 + ((w/2 + h− 1) mod 4) in Figure 4.4 except the first
one.

Bottom-right: Sequence (w/2 + 2) mod 4 in Figure 4.5.

Top-left: Sequence (3− h) mod 4 in Figure 4.5 rotated 180 degrees.

2. Connect the four corners using formation moves, by moving along diagonals from the
bottom-left corner to the top-right corner as in Figure 4.3. To transition between
diagonals:

Vertical edges: use a double straight up move (Figure 4.2).

Horizontal edges: use Sequence 1 in Figure 4.5.

30x30 Tour

Figure 4.3: Side by side comparison between the knight’s tour and the underlying quartet
moves in a 30×30 board. The arrows illustrate sequences of consecutive and equal formation
moves. Starting from the bottom-left square of the board, the single knight’s tour follows the
colored sections of the tour in the following order: red, green, yellow, purple, blue, orange,
black, cyan, and back to red.

59

Junctions

Height 5 Height 6 Height 7 Height 8

Figure 4.4: Junctions used in our construction.

Non-junction Corners

Sequence 0Sequence 3Sequence 2Sequence 1

Figure 4.5: The four possible cases for the bottom-right corner.

Denote the four knight positions in the formation by tl, tr, bl, br, where the first letter

indicates top/bottom and the second left/right. We consider the three possible positional

matchings with respect to these positions: horizontal matching H = (tl, tr), (bl, br), vertical

matching V = (tl, bl), (tr, br), and cross matching X = (tl, br), (tr, bl). LetM = {H,V,X}

denote the set of positional matchings. We are interested in the effect of formation moves on

the positional matching. A formation move does not change which knights are matched with

which, but a non-diagonal move changes their positions, and thus their labels tl, tr, bl, br also

change. For instance, a horizontal matching becomes a cross matching after a straight move

to the right.

It is easy to see that a straight move upwards or downwards has the same effect on the

positional matching. Similarly for left and right straight moves. Thus, we classify the

formation moves in Figure 4.2 (excluding double straight moves, which are a composition of

two straight moves) into vertical straight moves ↕, horizontal straight moves↔, and diagonal

moves ↔. Let S = {↕,↔, ↔} denote the three types of quartet moves. We see each move

type s ∈ S as a function s : M → M (see Table 4.1). Note that the diagonal move ↔

60

↔ ↕ ↔ ↕↔ ↔↕ ↕↔↕
V V X V H X H
H H H X X V V
X X V H V H X

Table 4.1: Result of applying each
type of formation move, as well as
three compositions of sequences of
moves, to each formation matching.

↔ ↕ ↔ ↕↔ ↔↕ ↕↔↕
↔ ↔ ↕ ↔ ↕↔ ↔↕ ↕↔↕
↕ ↕ ↔ ↕↔ ↔ ↕↔↕ ↔↕
↔ ↔ ↔↕ ↔ ↕↔↕ ↕ ↕↔
↕↔ ↕↔ ↕↔↕ ↕ ↔↕ ↔ ↔
↔↕ ↔↕ ↔ ↕↔↕ ↔ ↕↔ ↕
↕↔↕ ↕↔↕ ↕↔ ↔↕ ↕ ↔ ↔

Table 4.2: Cayley table for the group of positional
matching permutations.

is just the identity. Given a sequence of moves S = (s1, . . . , sk), where each si ∈ S, let

S(M) = s1 ◦ · · · ◦ sk(M).

The move types ↕,↔, ↔ seen as functions are, in fact, permutations (Table 4.1). It follows

that any sequence of formation moves permutes the positional matchings, according to the

composed permutation of each move in the sequence. There are six possible permutations of

the three positional matchings, three of which correspond to the “atomic” formation moves

↔, ↕, and ↔. The other three permutations can be obtained by composing atomic moves,

for instance, with the compositions ↕↔,↔↕, and ↕↔↕ (Table 4.1). Thus, any sequence of

moves permutes the positional matchings in the same way as one of the sequences in the set

{ ↔, ↕,↔, ↕↔,↔↕, ↕↔↕}. This is equivalent to saying that this set, under the composition

operation, is isomorphic to the symmetric group of degree three. Table 4.2 shows the Cayley

table of this group.

Let Tw,h be the sequence of formation moves that goes from the bottom-left junction to the

top-right one in Algorithm 3 in a w × h board.

Lemma 4.1. For any even w ≥ 16 and any h ≥ 12, Tw,h(H) = H.

Proof. We show that the entire sequence of moves Tw,h is either neutral or equivalent to single

vertical move, depending on the board dimensions. According to Table 4.1, this suffices to

prove the lemma.

61

Heel

Figure 4.6: Visualization of how the heel permutes the position of the knights. Note that
the sequence of moves flips the columns of the knights (the knight in position tl moves to
tr and so on). However, this does not affect their positional matching. For instance, if the
knights were paired in a horizontal matching, after flipping the columns, they are still in a
horizontal matching. The same holds for vertical and cross matchings.

The sequence Tw,h consists mostly of diagonal moves, which are neutral. The transition

between diagonals along the vertical edges consist of two vertical moves, which are also

neutral (↕↕= ↔). The heel is also neutral, as it consists of the sequence ↕↕↔↔↕↔↔↕

(omitting diagonal moves) which is again equivalent to ↔. This is easy to see by noting

that any two consecutive vertical or horizontal moves cancel out. It is depicted in detail in

Figure 4.6. Thus, Tw,h reduces to composing the sequences in the bottom-right and top-left

corners. As mentioned, Sequence 1 (the heel) is neutral. It is easy to see that the other

sequences (counting each part of Sequence 2 separately) is equivalent to ↕. Thus, we get

that Tw,h is simply the composition of zero to four vertical moves, depending on the width

and height of the board. This further simplifies to zero or one vertical moves.

Theorem 4.1 (Correctness). Algorithm 3 outputs a valid knight’s tour in any board with

even width w ≥ 16 and with height h ≥ 12.

Proof. Clearly, the construction is a set of disjoint cycles in the underlying knight-move

graph. We prove that it is actually one cycle. Given a set of disjoint cycles in a graph,

contracting a node in one of the cycles is the process of removing it and connecting its two

neighbors in the cycle. Clearly, contracting a node in a cycle of length ≥ 3 does not change

62

the number of cycles. Thus, consider the remaining graph if we contract all the nodes except

the four endpoints of the top-right junction.

Note that we use a horizontal matching in the bottom-left junction and a vertical matching

in the top-right junction. Contracting the non-endpoint nodes inside the top-right junction

leaves the two edges corresponding to the vertical matching. By Lemma 4.1, contracting the

nodes outside the top-right junction leaves the edges corresponding to a horizontal matching.

Thus, the resulting graph is a single cycle of four nodes.

The choice of matchings at the junctions is important; using a horizontal matching in the

top-right junction would not result in a knight’s tour.

4.3 Lower Bounds and Approximation Ratios

In this section, we analyze the approximation ratio that our algorithm achieves for

Problem 4.1 and Problem 4.2. For simplicity, we restrict the analysis to square boards.

First, we briefly discuss the classification of these problems in complexity classes.

4.3.1 Computational Complexity

Consider the following decision versions of the problems: is there a knight’s tour on an n×n

board with at most k turns (resp. crossings)? We do not know if these problems are in P.

Furthermore, it may depend on how the input is encoded. Technically, the input consists of

two numbers, n and k, which can be encoded in O(log n + log k) bits. However, it is more

natural to do the analysis as a function of the size of the board (or, equivalently, of the

underlying graph on which we are solving the Hamiltonian Cycle problem), that is, Θ(n2).

It is plausible that the optimal number of turns (resp. crossings) is a simple, arithmetic

63

function of n. This would be the case if the optimal tour follows a predictable pattern like

our construction (note that we can count the number of turns or crossings of our algorithm

without constructing it). If that is the case, then the problems are in P, regardless of how

the input is encoded.

If the input is represented using Θ(n2) space, the problems are clearly in NP, as a tour with

k turns/crossings acts as a certificate of polynomial length. However, unless P = NP, the

problems are not NP-hard. To see this, consider the language

{1n01k | there is a tour with at most k turns in an n× n board},

and analogously for crossings. These languages are sparse, meaning that, for any given word

length, there is a polynomial number of words of that length in the language. Mahaney’s

theorem states that if a sparse language is NP-complete, then P = NP [86]. This suggests

that the problems are in P, though technically they could also be NP-intermediate.

If the input is represented using O(log n+log k) bits, then the problems are in NEXP because

the “unary” versions above are in NP. Note that, in this setting, simply listing a tour would

require time exponential on the input size.

4.3.2 Number of Turns

Upper bound. All the turns in our construction happen near the edges. The four corners

account for a constant number of turns. The left and right edges have eight turns for each

four rows. As it can be seen in Figure 4.6, the heel has 22 turns, so the top and bottom

edges have 22 turns each for each eight columns. Therefore, the number of turns in our

construction is bounded by 28
4
n+ 222

8
n+O(1) = 9.5n+O(1).

64

Figure 4.7: Left: the heel resulting from formation moves. It has 22 turns and 32
crossings. The crossings are marked with white disks. Center: the optimal configuration
for minimizing turns. It has 21 turns and 31 crossings. Right: the optimal configuration
for minimizing crossings. It has 22 turns and 28 crossings.

We can reduce the number of turns slightly by replacing each heel with an alternative

combination of moves that covers the same cells and starts and ends with the four knights

in the same place. In other words, the four knights “break formation” temporarily and

reassemble before leaving the heel in the next diagonal.

We can do an exhaustive search for four knights that cover the squares shown in Figure 4.7,

starting and ending in the two groups of four cells on the top-left. Of all the possible solutions,

Figure 4.7 shows a solution minimizing the number of turns and one minimizing the number

of crossings, including turns and crossings caused by the path continuations outside the heel.

There is no single solution minimizing both turns and crossings. The four knights are not

required to end in any specific configuration, but the optimal solutions happened to end in

the same configuration as the original heel.

Lower bound. We now give a lower bound on the number of turns in the optimal tour.

First, note that every cell next to an edge must contain a turn. This accounts for 4n − 4

turns. Here we focus on the main result, a lower bound of (6− ε)n for any ε > 0. We start

with some intermediate results.

We associate each cell in the board with a point (i, j) in the plane, where i is the row of the

cell and j is the column. An edge cell only has four moves available. We call the directions

65

Crown

a

b

c

crown(a, b)

leg of c

leg of c

D1

D2

D3

D4

Figure 4.8: Illustration of the terminology
for the lower bound. Note that c is a clean
cell (with respect to the crown of a and b)
because both of its legs escape it.

Leg Collisions

Figure 4.9: The black leg collides would
collide with all the red legs.

of these moves D1, D2, D3, and D4, in clockwise order. For an edge cell c, let ri(c), with

1 ≤ i ≤ 4, denote the ray starting at c and in direction Di. That is, the ray that passes

through the cells reachable from c by moving along Di.

Let a and b be two cells along the left edge of the board, with a above b. The discussion is

symmetric for the other three edges. Given two intersecting rays r and r′, one starting from

a and one from b, let S(r, r′) denote the set of cells in the region of the board bounded by r

and r′: the set of cells below or on r and above or on r′. We define the crown of a and b as

the following set of cells (see Figure 4.8):

crown(a, b) = S(r2(a), r1(b)) ∪ S(r3(a), r2(b)) ∪ S(r4(a), r3(b)).

We can associate, with each edge cell c, the two maximal sequences of moves without turns

in the tour that have c as an endpoint. We call them the legs of c. We say that legs begin

at c and end at their other endpoint. We say two legs of different cells collide if they end at

the same cell. Let Ca,b denote the set of edge cells along the right edge between a and b (a

and b included). The following is easy to see.

66

Remark 4.1. Any collision between the legs of edge cells in Ca,b happens inside crown(a, b).

We say that a leg of a cell in Ca,b escapes the crown of a and b if it ends outside the crown.

We say an edge cell in Ca,b is clean, with respect to Ca,b, if both of its legs escape. We use

the following observation.

Remark 4.2. Let m = |Ca,b| and k be the number of clean cells in Ca,b. The number of

turns inside crown(a, b) is at least m+ (m− k)/2.

Proof. Each edge cell is one turn. Further, each of the m− k non-clean cells have a leg that

ends in a turn inside the crown. This turn may be because it collided with the leg of another

edge cell in the crown. Thus, there is at least one turn for each two non-clean edge cells.

To obtain the lower bound, we show that there is only a constant number of clean cells inside

a crown.

Lemma 4.2. Let a, b be two cells along the left edge of the board, with a above b. There are

at most 122 clean cells inside crown(a, b).

Proof. First we show that there are at most 60 clean cells such that one of their legs goes in

direction D1. For the sake of contradiction, assume that there are at least 61. Then, there

are two, c and d, such that c is 60r rows above d, for some r ∈ N, r ≥ 1. The contradiction

follows from the fact that the other leg of c, which goes along D2, D3, or D4, would collide

with the leg of b along D1. This is because, for any l ≥ 1, the leg of b along D1 collides with

(see Figure 4.9):

• any leg along D2 starting from a cell 3l rows above b,

• any leg along D3 starting from a cell 5l rows above b, and

• any leg along D4 starting from a cell 4l rows above b.

67

Since 60r is a multiple of 3, 4, and 5, no matter what direction the other leg of c goes, it

collides with the leg of d. As observed, this collision happens inside the crown. Thus, c and

d are not clean.

By a symmetric argument, there are at most 60 clean cells such that one of their legs goes

in direction D4.

Finally, note that there can only be two clean cells with legs in directions D2 and D3. This

is because, by a similar argument, there cannot be two such cells at an even distance of each

other; the leg along D3 of the top one would collide against the leg along D2 of the bottom

one.

Corollary 4.1. Suppose that the crown of a and b has m ≥ 122 edge cells. Then, there are

at least (m− 122)/2 turns inside the crown at non-edge cells.

Now, consider the iterative process depicted in Figure 4.10, defined over the unit square.

The square is divided in four sectors along its main diagonals. Whereas earlier we used the

term ‘crown’ to denote a set of cells, here we use it to denote the polygon with the shape of

a crown. On the first step, a maximum-size crown is placed on each sector. At step i > 1,

we place 2i−1 more crowns in each sector. They are maximum-size crowns, subject to being

disjoint from previous crowns, in each gap between previous crowns and between the crowns

closest to the corners and the main diagonals.

Lemma 4.3. For any 1 > ε > 0, there exists an i ∈ N such that at least (1 − ε) of the

boundary of the unit square is inside a crown after i iterations of the process.

Proof. At each iteration, a constant fraction larger than 0.36 of the length on each side that

is not in a crown is added to a new crown (Figure 4.11). This gives rise to a series Ai for

the fraction of the side inside crowns after i iterations: A1 = 1/3, Ai+1 > Ai + 0.36(1− Ai)

for i > 1; this series converges to 1.

68

Fractal

Figure 4.10: Each sector of the square shows the process after a different number of iterations:
1, 2, 3, and 4 iterations on the top, right, bottom, and left sectors, respectively.

Fractal Ratio

0.4 0.36

1 1

Figure 4.11: Lower bounds on two ratios. Left: the ratio between the gap between
consecutive crowns and the base of the maximum-size crown that fits in the gap is > 0.4.
Right: the ratio between the gap between a crown and a main diagonal and the base of the
maximum-size crown that fits in the gap is > 0.36.

69

Theorem 4.2 (Lower bound). For any constant ε > 0, there is a sufficiently large n such

that any knight’s tour on a n× n board requires (6− ε)n turns.

Proof. We show a seemingly weaker form of the claim: that there is a sufficiently large n

such that any knight’s tour on a n × n board requires (6 − 2ε)n − Cε turns, where Cε is a

constant that depends on ε but not on n. This weaker form is in fact equivalent because,

for sufficiently large n, Cε < εn, and hence (6 − 2ε)n − Cε > (6 − 3ε)n. Thus, the claim

is equivalent up to a multiplicative factor in ε, but note that it is a claim about arbitrarily

small ε, so it is not affected by a multiplicative factor loss.

Let i be the smallest number of iterations of the iterative process in Figure 4.10 such that

at least (1 − ε) of the boundary of the unit square is inside crown shapes. The number i

exists by Lemma 4.3. Fix S to be the corresponding set of crown shapes, and r = |S|. Note

that r = 4(2i− 1) is a constant that depends only on ε. Now, consider a square n×n board

with the crown shapes in S overlaid in top of them. Let the board size n be such that the

smallest crown in S contains more than 122 edge cells. Then, by Corollary 4.1, adding up

the turns at non-edge cells over all the crowns in S, we get at least 4n(1− ε)/2− 61r turns.

Adding the 4n − 4 turns at edge cells, we get that the total number of turns is at least

(6− 2ε)n− 61r − 4. To complete the proof, consider Cε = 61r + 4.

Corollary 4.2. Algorithm 3 achieves a 19/12+o(1) approximation on the minimum number

of turns.

Proof. In a n × n board, let ALG(n) denote the number of turns in the tour produced by

Algorithm 3 and OPT (n) denote the minimum number of turns. Let ε > 0 be an arbitrarily

small constant. We show that there is an n0 such that for all n ≥ n0, ALG(n)/OPT (n) <

19/12 + ε.

70

As mentioned, for any even n ≥ 16, ALG(n) < 9.5n + c for some small constant c. In

addition, by Theorem 4.2, for sufficiently large n, OPT (n) > (6− ε)n. Thus,

ALG(n)

OPT (n)
<

9.5n+ c

(6− ε)n

Furthermore, for large enough n, c/((6− ε)n) < ε/2, so

ALG(n)

OPT (n)
<

9.5

6− ε
+

ε

2
=

19

12− 2ε
+

ε

2
<

19 + 6ε

12
+

ε

2
=

19

12
+ ε.

4.3.3 Number of Crossings

Similarly to the case of turns, all the crossings in our construction happen near the edges.

The four corners account for a constant number of crossings. The left and right edges have

10 crossings for each four rows. The top and bottom edges have 32 crossings for each eight

columns (Figure 4.6). Therefore, the number of turns in our construction is bounded by

210
4
n+ 232

8
n+O(1) = 13n+O(1).

Lower bound. We prove the following lower bound on the number of crossings.

Lemma 4.4. Any knight’s tour on an n× n board has at least 4n−O(1) crossings.

Proof. Let T be an arbitrary knight’s tour on an n×n board. We show that T has n−O(1)

crossings involving knight moves incident to the cells along the left edge of the board. An

analogous argument holds for the three other edges of the board, which combined yield the

desired bound.

71

We partition the edge cells along the left-most column into sets of three consecutive cells,

which we call triplets (if n is not multiple of three, we ignore any remaining cells, as they

only account for a constant number of crossings). Two triplets are adjacent if they contain

adjacent cells. Each triplet has six associated knight moves in the tour T , two for each of

its cells. We call the choice of moves the configuration of the triplet. Since there are
(
4
2

)
= 6

choices of moves for each cell, there are 63 = 216 possible configurations of each triplet.

Consider a weighted directed graph G with a node for each of the 216 possible triplet

configuration and an edge from every node to every node, including a loop from each node

to itself. The graph has weights on both vertices and edges. Given a node v, let C(v) denote

its associated configuration. The weight of v is the number of crossings between moves in

C(v). The weight of each edge v → u is the number of crossings between moves in C(v) and

moves in C(u) when C(v) is adjacent and above C(u).

Each path in G represents a choice of move configurations for a sequence of consecutive

triplets. Note that if two knight moves in T with endpoints in edge cells cross, the edges

cells containing the endpoints are either in the same triplet or in adjacent triplets. Thus, the

sum of the weights of the vertices and edges in the path equals the total number of crossings

among all of these moves. Since G is finite, any sufficiently long path eventually repeats a

vertex. Given a cycle c, let w(c) be the sum of the weights of nodes and edges in c, divided

by the length of c. Let c∗ be the cycle in G minimizing w. Then, w(c∗) is a lower bound on

the number of crossings per triplet along to edge.

By examining G, we can see that w(c∗) = 3. Figure 4.12 shows an optimum cycle, which in

fact uses only one triplet configuration. The cycle minimizing w can be found using Karp’s

algorithm for finding the minimum mean weight cycle in directed graphs [75], which runs

in O(|V | · |E|) time in a graph with vertex set V and edge set E. However, this requires

modifying the graph G, as Karp’s algorithm is not suitable for graphs that also have node

weights. We transform G into a directed graph G′ with weights on only the edges and which

72

Figure 4.12: A configuration pattern that produces the minimum number of crossings along
the edge of the board. The moves in the triplet configurations are shown in black. The
dashed continuations illustrate that the moves in the configuration pattern can be extended
to any number of columns without extra crossings.

preserves the optimal solution, as follows. We double each node v in G into two nodes

vin, vout in G′. We also add an edge vin → vout in G′ with weight equal to the weight of v in

G. For each edge v → u in G, we add an edge vout → uin in G′.

Since we only counted crossings between moves incident to the first column, a question arises

of whether the lower bound can be improved by considering configurations spanning more

columns (e.g., the two or three leftmost columns). The answer is negative for any constant

number of columns. Figure 4.12 shows that the edges can be extended to paths that cover

any fixed number of rows away from the edge without increasing the number of crossings.

Corollary 4.3. Algorithm 3 achieves a 13/4+ o(1) approximation on the minimum number

of crossings.

4.4 Extensions

The idea of using formation moves to cover the board and junctions to close the tour is quite

robust to variations of the problem. We show how this can be done in some of the most

popular generalizations of the problem.

73

A variant that we do not consider is torus boards (where opposite edges are connected).

The problem of finding tours with a small number of turns seems easier on a torus board,

because one is not forced to make a turn when reaching an edge. Nonetheless, in a square

n× n torus board, Ω(n) turns are still required, because making n consecutive moves in the

same direction brings the knight back to the starting position, so at least one turn is required

for each n visited cells. The tours for torus boards in [117] match this lower bound up to

constant factors, at least for some board dimensions (see the last section in [117]). Crossings

are not straightforward to define in torus boards.

4.4.1 High-dimensional boards

We extend our technique to three and higher dimensions. In d dimensions, a knight moves

by 1 and 2 cells along any two dimensions, and leaves the remaining coordinates unchanged.

A typical technique to extend a knight’s tour algorithm to three dimensions is the “layer-

by-layer” approach [116, 41, 42]: a 2D tour is reused on each level of the 3D board, adding

the minimal required modifications to connect them into a single tour. We also follow this

approach. (Watkins and Yulan [101] consider a generalizations of knight moves where the

third coordinate also has a positive offset, but this is not as common.)

For illustration purposes, we start with the 3D case, and later extend it to the general case.

We require one dimenson to be even and ≥ 16 and another dimension to be ≥ 12, which

we assume w.l.o.g. to be the first two. The rest can be any size. Note that at least one

dimension must be even, or no tour exists [49].

The construction works as follows. The 2D construction is reused at each level. However,

there are only two actual junctions, one on the first layer, of height 5, and one on the

last layer, which may have any of the four heights in Figure 4.4. Every other junction is

replaced by a sequence of formation moves. At every layer except the last, the formation

74

3D Corners

Figure 4.13: Corners where the knights stay in formation and end at specific positions.

Figure 4.14: Formation move across layers. Each color shows the starting and ending position
of one of the knights.

ends adjacent to the corner using one of the sequences of moves in Figure 4.13 (note that we

show sequences for 4 different heights, thus guaranteeing that one shape fits for any board

dimensions). The layers are connected with a formation move one layer up and two cells

to the side, as in Figure 4.14. At every layer except the first, the formation starts with the

rightmost sequence of moves in Figure 4.13.

Note that, since the sequence of moves between junctions is more involved than in two

dimensions, Lemma 4.1 may not hold. There is, however, an easy fix: if the entire sequence

is not a single cycle, replace the first junction with one that has a vertical matching (second

junction in Figure 4.4, rotate 180 degrees). This then makes a cycle.

If the number of dimensions is higher than three, simply observe that the same move used

between levels can also be used to jump to the next dimension; instead of changing by 1 the

third coordinate, change the fourth. After the first such move, the formation will be at the

“top” of the second 3D board, which can be traversed downwards. This can be repeated any

number of times, and generalizes to any number of dimensions.

75

Odd Adaptations

Sequence 0Sequence 2

Figure 4.15: Adaptations required to add a row to the left of the normal construction, with
a missing cell in the junction.

Note that in a nd board, Ω(nd−1) turns are needed, because there are nd cells and a turn

must be made after at most n/2 moves. Note that our construction has O(nd−1) turns, as it

consists of nd−2 iterations of the 2D tour. Thus, it achieves a constant approximation ratio

on the minimum number of turns. We do not know of any lower bound on the number of

crossings in higher dimensions.

4.4.2 Odd boards

We show how to construct a tour for a 2D board with odd dimensions which visits every cell

except a corner cell. This is used in the next section to construct a tour that is symmetric

under 90◦ rotations.

Let the board dimensions be w × h, where w > 16 and h > 12 are both odd. First, we use

Algorithm 3 to construct a (w − 1) × h tour which is missing the leftmost column. Then,

we extend our tour to cover this column, except the bottom cell, with the variations of

our construction depicted in 4.15. In particular, for the top-left corner, recall that we use

sequence (3−h) mod 4 in Figure 4.5. Here, the height h is odd, so we only need adaptations

for Sequences 2 and 0.

76

4.4.3 90 Degree Symmetry

In this section, we show how to construct a symmetric tour under 90 degree rotations. We

say a tour is symmetric under a given geometric operation if the tour looks the same when

the operation is applied to the board.

As a side note, our construction is already nearly symmetric under 180◦ rotations. For board

dimensions such as 30×30 where opposite corners have the same shape, the only asymmetry

is in the internal wiring of the junctions. However, the construction cannot easily be made

fully symmetric. It follows from the argument in the proof of Lemma 4.1 that if the two

non-junction corners are equal, the entire sequence of formation moves from one junction

to the other is neutral. Thus, using the same junction in both corners, as required to have

symmetry, would result in two disjoint cycles.

Symmetric tours under 90◦ rotations exist only for square boards where the size n = 4k + 2

is a multiple of two but not a multiple of four [40]. In [94], Parberry gives a construction

for knight’s tours missing a corner cell and then shows how to combine four such tours

into a single tour symmetric under 90◦ rotations. We follow the same approach to obtain

a symmetric tour with a number of turns and crossings linear on n, and thus constant

approximation ratios.

In our construction from Section 4.4.2, cell (0, 0) is missing, and edge e = {(0, 1), (2, 0)} is

present. This suffices to construct a symmetric tour. Divide the 2n×2n board into four equal

quadrants, each of which is now a square board with odd dimensions. Use the construction

for odd bords to fill each quadrant, rotated so that the missing cell is in the center. Finally,

connect all four tours as in Figure 4.16.

77

Symmetric Transformation

4
3

2
1

⇒

Figure 4.16: This transformation appears in [94]. Left: four tours missing a corner square
and containing a certain edge. The dashed lines represent the rest of the tour in each
quadrant, which cover every square except the dark square. Right: single tour that is
symmetric under 90◦ rotations. The numbers on the right side indicate the order in which
each part of the tour is visited, showing that the tour is indeed a single cycle.

4.4.4 Giraffe’s tour

A giraffe is a leaper characterized by the move (1, 4) instead of (1, 2). Giraffe’s tours are

known to exist on square boards of even size n ≥ 104 [72] and on square boards of size 2n

when n is odd and bigger than 4 [40]. Our result extends this to some rectangular sizes.

We adapt our techniques for finding giraffe’s tours with O(w+h) turns and crossings, where

w and h are the width and height of the board. We use a formation of 4 × 4 giraffes.

Figure 4.17 shows the formation moves, Figure 4.18 shows the analogous of a heel to be used

to transition between diagonals, and Figure 4.19 shows the two junctions. Figure 4.20 shows

how these elements are combined to cover the board.

We restrict our construction to rectangular boards where w = 32k+20, for some k ≥ 1, and

h = 8l + 14, for some l ≥ 1 (extending the results to more boards would require additional

heel variations). We start at the bottom-left junction as in the knight’s tour. We transition

between diagonals along the bottom edge with a giraffe heel, and along the top edge with

a flipped giraffe heel. We transition between diagonals along the left and right edges with

four consecutive upward moves. The junction has width 20 and each heel has width 32, so

there are k heels along the bottom and top edges. The junction has height 11 and the tip

78

of the heel has height 3, so there are l sequences of four upward moves along each side (see

Figure 4.20).

It is easy to see that the construction visits every cell. As in the case of knight’s tours, for

the result to be a valid giraffe’s tour it should be a cycle instead of a set of disjoint cycles.

Note that the matchings in the two junctions form a cycle. Thus, if the formation reaches

the top-right junction in the same matching as they left the bottom-left junction, the entire

construction is a single cycle (by an argument analogous to Theorem 4.1). Next, we argue

that this is the case.

Let H,F, and U denote the sequences of formation moves in the heel, in the flipped heel,

and the sequence of four upward moves, respectively. Let Tw,h denote the entire sequence of

moves from one junction to the other, where w = 32k+20, for some k ≥ 1, and h = 8l+14,

for some l ≥ 1. Note that Tw,h is a concatenation, in some order, of H k times, F k times,

and U 2l times (we can safely ignore diagonal moves, which do not change the coordinates

of the giraffes within the formation). Let M be the matching of the bottom-left junction.

We want to argue that, after all the moves in Tw,h, the giraffes are still in matching M , that

is, Tw,h(M) = M using the notation from Section 4.2.

We show that not only the giraffes arrive to the other junction in the same matching but, in

fact, they arrive in the same coordinates in the formation as they started. First, note that

U has the effect of flipping column 1 with 2 and column 3 with 4 in the formation. Perhaps

surprisingly, H and F have the same effect. This is tedious but can be checked for each

giraffe (Figure 4.18 shows one in red). Therefore, Tw,h is equivalent to U 2(l + k) times in a

row. Note that after eight consecutive upward moves, or U twice, each giraffe ends where it

started. Thus, this is true of the entire tour.

79

Giraffe Moves

Straight moves Diagonal moves

Figure 4.17: Formation of 16 giraffes moving together without leaving any unvisited squares.

Giraffe Heel

Figure 4.18: A giraffe heel. The formation moves are shown with black arrows (grouping up
to four sequential straight moves together) The intermediate positions of the formation are
marked by rounded squares, showing that every cell is covered. Note that the tip of the heel
fits tightly under the next heel. The red line shows the path of one specific giraffe.

80

Giraffe Junctions

Bottom-left junction Top-right junction

M1 M2 M1 ∪M2

M1

M2

1

2
3

45

6 7

8
9

10

11

12
13

14
15

16

Cycle

Figure 4.19: Two giraffe junctions, their corresponding matchings, and the union of their
matchings. The bottom-left junction consists mostly of formation moves, whereas the top-
right one was computed via brute-force search. The cycle through the edges of the union is
shown with the index of each node.

Giraffe Tour

Figure 4.20: The formation moves of a giraffe’s tour on a 52× 30 board.

81

4.5 Conclusions

We have introduced two new metrics of “simplicity” for knight’s tours: the number of turns

and the number of crossings. We provided an algorithm which is within a constant factor

of the minimum for both metrics. In doing so, we found that, in a n × n board, the

minimum number of turns and crossings is O(n). Prior techniques such as divide-and-

conquer necessarily result in Θ(n2) turns and crossings, so at the outset of this work it was

unclear whether o(n2) could be achieved at all.

The ideas of the algorithm, while simple, seem to be new in the literature, which is interesting

considering the history of the problem. Perhaps it was our a priori optimization goal that

led us in a new direction. The algorithm exhibits a number of positive traits. It is simple,

efficient to compute, parallelizable, and amenable to generalizations (see Section 4.4). We

conclude with some open questions:

• Our tours have 9.5n+O(1) turns and 13n+O(1) crossings, and we showed respective

lower bounds of (6 − ε)n and 4n − O(1). The main open question is closing or

reducing these gaps, as there may still be room for improvement in both directions.

We conjecture that the minimum number of turns is at least 8n.

• Are there other properties of knight’s tours, besides turns and crossings, that might

be interesting to optimize?

• Our method relies heavily on the topology of the knight-move graph. Thus, it is not

applicable to general Hamiltonian cycle problems. Are there other graph classes with

a similar enough structure that the ideas of formations and junctions can be useful?

82

Chapter 5

Geometric Polyhedral Point-Set

Pattern Matching

5.1 Introduction

A notable recent computational geometry application is for tracking supply chains for natural

diamonds, for which the industry and customers are strongly motivated to prefer ethically-

sourced provenance (e.g., to avoid so-called “blood diamonds”). For example, the Tracr

system employs a blockchain for tracing the supply chain for a diamond from its being mined

as a rough diamond to a customer purchasing a polished diamond [111]. (See Figure 5.1.)

Essential steps in the Tracr blockchain supply-chain process require methods to match point

sets against geometric shapes, e.g., to guarantee that a diamond has not been replaced with

one of questionable provenance [111]. Currently, the Tracr system uses standard machine-

learning techniques to perform the shape matching steps; however, we believe better accuracy

can be achieved by using computational geometry approaches. In particular, motivated by

the Tracr application, we are interested in this chapter in efficient methods for matching

83

Blockchain transactions

Figure 5.1: Blockchain transactions in a diamond supply chain, providing provenance,
traceability, and authenticity of an ethically-sourced diamond.

point sets against geometric shapes, such as polyhedra. Formalizing this problem, we study

the problem of finding the best translation and/or rotation of the boundary of a convex

polytope, P (e.g., defining a polished diamond shape), to match a set of n points in a

d-dimensional (d ≥ 3) space, where the point set is a “good” sample of the boundary of a

polytope that is purported to be P . Since there may be small inaccuracies in the sampling

process, our aim is to compute aminimum width polyhedral annulus determined by P that

contains the sampled points. In the interest of optimizing running time, rather than seeking

an exact solution, we seek an approximate solution that deviates from the real solution by a

predefined quantity ε > 0.

Related Work. We are not familiar with any previous work on the problems we study in

this chapter. Nevertheless, there is considerable prior work on the general area of matching

a geometric shape to a set of points, especially in the plane. For example, Barequet, Bose,

Dickerson, and Goodrich [16] give solutions to several constrained polygon annulus placement

problems for offset and scaled polygons including an algorithm for finding the translation for

the minimum offset of an m-vertex polygon that contains a set of n points in O(n log2 n+m)

time. Barequet, Dickerson, and Scharf [17] study the problem of covering a maximum number

of n points with an m-vertex polygon (not just its boundary) under translations, rotations,

and/or scaling, giving, e.g., an algorithm running in time O(n3m4 log(nm)) for the general

84

problem. There has also been work on finding a minimum-width annulus for rectangles and

squares, e.g., see [58, 12, 14, 90].

Chan [32] presents a (1 + ε)-approximation method that finds a minimum-width spherical

annulus of n points in d dimensions in O(n log(1/ε) + εO(1)) time, and Agarwal, Har-Peled,

and Varadarajan [2] improve this to O(n+ 1/εO(d2)) time via coresets [3, 96, 120, 4]. Arya,

da Fonseca, and Mount [9] show how to find an ε-approximation of the width of n points

in O(n log(1/ε) + 1/ε(d−1)/2+α) time, for a constant α > 0. Bae [13] shows how to find a

min-width d-dimensional hypercubic shell in O(n⌊d/2⌋ logd−1 n) expected time.

Our Results. Given a set of n points in Rd, we provide an O(ε−dn)-time (1 + ε)-

approximate polytope-matching algorithm under translations, for d ≥ 3, and O(n log ε−1 +

ε−2) time for d = 2, and we provide an O(fd−1ε1−2dn)-time algorithm when also allowing for

rotations, where the complexity of the polytope is constant.

5.2 Preliminaries

Definition 5.1. Following previous convention [7, 10, 11, 50, 8], we say that a point set S

is a δ-uniform sample of a surface Σ ⊂ Rd if for every point p ∈ Σ, there exists a point

q ∈ S such that d(p, q) ≤ δ.

Definition 5.2. Let C ⊂ Rd be a polyhedron containing the origin. Given C, and x ∈ Rd,

define x + C = {x + y : y ∈ C} (the translation of C by x), and for r ∈ R, define

rC = {ry : y ∈ C}. A placement of C is a pair (x, r), where x ∈ Rd and r ∈ R≥0,

representing the translated and scaled copy x+ rC. We refer to x and r as the center and

radius of the placement, respectively. Two placements are concentric if they share the

same center.

85

Definition 5.3. Let C be any closed convex body in Rd containing the origin in its interior.

The convex distance function induced by C is the function dC : Rd × Rd → R≥0, where

dC(p, q) = min{r : r ≥ 0 and q ∈ p + rC}. Thus, the convex distance between p and

q is determined by the minimum radius placement of C centered at p that contains q (see

Figure 5.2). When C is centrally symmetric, this defines a metric, but for general C, the

function dC may not be symmetric. We call the original shape C the unit ball UC under the

distance function dC. Note that dC(a, c) = dC(a, b) + dC(b, c) when a, b and c are colinear

and appear in that order.

Definition 5.4. Define an annulus for C to be the set-theoretic difference of two concentric

placements (p+RC) \ (p+ rC), for 0 ≤ r ≤ R. The width of the annulus is R− r.

Given a δ-uniform sample of points, S, there are three placements of C we are interested in:

Definition 5.5. Minimum enclosing ball (MinBall): A placement of C of the smallest

radius that contains all of the points in S.

Definition 5.6. Maximum enclosed ball (MaxBall): A placement of C of the largest

radius, centered within the convex hull of S, that contains no points in S.

Definition 5.7. Minimum width annulus (MWA): Given a set S ⊂ Rd and a convex

body C, the minimum width annulus of S is the annulus for C of the smallest width that

contains S.

Note that, following the definition of the MaxBall in Definition 5.6, we require that the center

of the MWA must also lie within the convex hull of S. For each of the above placements,

we also refer to parameterized versions, for example MinBall(p), MaxBall(p), or MWA(p).

These respectively refer to the minimum enclosing ball, maximum enclosed ball, or minimum

width annulus centered at the point p.

Further, we use |MinBall(p)| and |MaxBall(p)| to denote the radius of MinBall(p) and

MaxBall(p), respectively, and we use |MWA(p)| to denote the width of MWA(p).

86

p

qdC(p, q) =
||q−p||
||a−p||

UC

a

c

MinBall(c)

cS S

MWA(c)

Figure 5.2: Left: a visual representation of a polyhedral distance function and the distance
between two points. Center: The MinBall under dC containing all points in S, centered at
c. Right: The MWA of S with all points within MinBall(c)\MaxBall(c).

Definition 5.8. Fatness: The fatness, F , of S ⊂ Rd under dC as the ratio of the MinBall

over the MaxBall, such that F := |MinBall|/|MaxBall|. Note that S can either be a closed

body in Rd or sample of a surface.

Definition 5.9. Concentric Fatness: Extend the notion of fatness such that the

concentric fatness, Fc := |MinBall(c)|/|MaxBall(c)| such that c is the center of the MWA.

Definition 5.10. Slimness: Conversely to concentric fatness, define the slimness, f , as

the ratio of the width of the MWA centered at c over the radius of MinBall(c), such that

f := |MinBall(c)|/|MWA| and f−1 = 1− F−1
c .

Remark 5.1. In order for a δ-uniform sample to represent the surface, Σ, with enough

accuracy for a meaningful MWA, the sample must contain at least one point between

corresponding facets of the MWA. Where corresponding facets refer to facets of the MinBall

and MaxBall representing the same facet of UC. Therefore, in the remainder of the chapter,

we assume we have a δ-uniform sample and that δ is small enough to guarantee this condition

for even the smallest facets.

In practice, it would be easy to determine a small enough δ before sampling Σ, since only

sufficiently slim surfaces would benefit from finding the MWA and very fat surfaces would

yield increasingly noisy MaxBall. Thus, setting δ to the smallest facet of the MinBall and

scaling down by an arbitrary constant larger than the maximum expected fatness, such as

100, will easily yield a small enough δ.

87

Also, note that, for a center point c, the problem of finding MWA(c) has a unique solution,

because a unit ball, UC , is convex and once the placement’s radius grows past dC(c, p), it

must contain p ∈ S. Thus, the inner and outer radii are defined as minp∈S dC(c, p) and

maxp∈S dC(c, p), respectively. Further, let us assume that the reference polytope defining

our polyhedral distance function has m facets, where m is a fixed constant, since the sample

size is expected to be much larger than m. Thus, dC can be calculated in O(m) time; hence,

MWA(c) can be found in O(mn) time, which is O(n) under a fixed polytope.

5.3 Approximating the Minimum Width Annulus

Let us first describe how to find a constant factor approximation of MWA under translations.

Note that, by assumption on Definition 5.6, the center c of our approximation lies within

the convex hull of S. Let us denote the center, outer radius, inner radius, and width of the

optimal MWA as copt, Ropt, ropt, and wopt.

Lemma 5.1. The center of the MWA, copt, is under wopt distance away from the center of

the MinBall, c. That is, dC(c, copt) ≤ wopt.

Proof. Recall our assumption from Remark 5.1. Since some points must always exist in each

facet, the MinBall cannot shrink past any facets of MaxBall(c). Suppose for contradiction

that dC(c, copt) > wopt. Let s be the point where a ray projected from c through copt intersects

the boundary of MaxBall(copt) and let R denote the radius of the MinBall.

R > dC(c, s) = dC(c, copt) + dC(copt, s) by colinearity

> wopt + dC(copt, s) by assumption

> wopt + ropt by MaxBall(copt).

88

Thus, since wopt+ropt = Ropt, we find R > Ropt, which is a contradiction since R must be the

smallest radius of the MinBall across all possible centers. Therefore, we have that dC(c, copt)

cannot be larger than wopt.

Lemma 5.1 helps us constrain the region within which c must be contained. Let us now

reason about how different center points would serve as approximations.

Lemma 5.2. Suppose c is an arbitrary center-point in our search region, and the two directed

distances between c and copt are at most t, i.e., t ≥ max{dC(c, copt), dC(copt, c)}. Then, we

have that |MWA(c)| ≤ wopt + 2t.

Proof. Let p be the point where the ray from c through copt intersects the boundary of

MinBall(copt). In the worst case, MinBall(c) would need to contain p; hence,

dC(c, p) = dC(c, copt) + dC(copt, p) ≤ t+ dC(copt, p)

R ≤ Ropt + t.

Conversely, let q be the intersection point where the ray projected from copt through c

intersects the boundary of MaxBall(copt). In the worst case, MaxBall(c) would need to

exclude q; hence, in which case

dC(c, q) = dC(copt, q)− dC(copt, c) ≥ dC(copt, q)− t

r ≥ ropt − t.

Putting together these worst cases for MinBall(c) and MaxBall(c) implies that

|MWA(c)| ≤ wopt + 2t

89

Definition 5.11. For simplicity, let us consider two points a, b to be t-close (under C)

whenever t ≥ max{dC(a, b), dC(b, a)}.

Lemma 5.3. If c is the center of MinBall, then MWA(c) is a constant factor approximation,

i.e., |MWA(c)| ≤ b|MWA|, for some constant b ≥ 1, under translations.

Proof. From Lemma 5.1, we have that dC(c, copt) ≤ wopt. If c and copt are wopt-close, then

we can directly apply the second part of Lemma 5.2 to find r ≥ ropt − wopt and R ≤ Ropt,

such that |MWA(c)| ≤ Ropt − (ropt − wopt), thus proving that this is a 2-approximation. If

dC is a metric, then dC(copt, c) = dC(c, copt) and this must always be the case. However, if

dC(copt, c) > wopt, then we must use the Euclidean distance to find dC(copt, c). Let vector

u := c− copt, and let us define unit vectors with respect to dC and its inverse, dC , such that

ûC =
u

dC(copt, c)
, ûC =

u

dC(c, copt)

||ûC ||dC(copt, c) = ||u|| = ||ûC ||dC(c, copt)

dC(copt, c) ≤
||ûC ||
||ûC ||

wopt from Lemma 5.1.

Under any convex distance function,
||ûC ||
||ûC || is bounded from above by A = maxv∈Rd

||v̂C ||
||v̂C || ,

which corresponds to finding the direction, v, of the largest asymmetry in UC . Thus, by

Lemma 5.2, |MWA(c)| ≤ (A + 1)wopt. Under our (fixed) polyhedral distance function, A is

constant; hence, MWA(c) is a constant-factor approximation.

5.3.1 Achieving a (1 + ε)-approximation.

Let us now describe how to compute a (1 + ε)-approximation of MWA.

90

Lemma 5.4. Suppose copt and c are (εw/(2b))-close, where w = |MWA(cM)|, cM is the

center of MinBall, and b is the constant from Lemma 5.3. Then, MWA(c) is a (1 + ε)-

approximation of MWA under translations.

Proof. To be a (1+ε)-approximation of MWA, the width of our approximated annulus must

be at most (1 + ε) times the width of the optimal one. Assuming c and copt are t-close,

and using Lemma 5.2, we require that wopt + 2t ≤ (1 + ε)wopt, i.e., t ≤ εwopt/2. Let us

then choose t ≤ εw/(2b), knowing that w ≤ bwopt from Lemma 5.3, which is sufficient for

achieving a (1 + ε)-approximation.

Knowing how close our approximation’s center must be, we can now put together a

(1 + ε)-approximation algorithm to find a center satisfying this condition.

Theorem 5.1. One can achieve a (1 + ε)-approximation of the MWA under translations in

O(ε−dn) time.

Proof. The MinBall can be computed in O(n) time through a linear program [39]. By

Lemma 5.1, we have that dC(c, copt) ≤ wopt, where c is the MinBall center. This implies that

copt must lay within the placement c + woptC or more generously in P , defined as c + wC.

Furthermore, from Lemma 5.4, we know that being (εw/(2b))-close to copt suffices for a

(1 + ε)-approximation. Therefore, overlaying a grid G that covers P , such that any point in

p ∈ P is (εw/(2b))-close to a gridpoint, guarantees the existence of a point g ∈ G for which

MWA(g) is a (1 + ε)-approximation.

Since P and (εw/(2b))-closeness are both defined under dC , we translate this to a cubic grid

for simplicity. Let Q be the smallest cube enclosing P and q be the largest cube enclosed by

(εw/(2b))C. Let us now define a grid, G, to span Q with cubes the size of q. This grid, G,

has points Fb/ε apart and F dbdε−d gridpoints in total, where F corresponds to the fatness

of C under the distance function defined by the unit cube (as defined in Definition 5.8).

91

Let us use q to define the distance function dq where the unit ball Uq is (εw/(2b)) times

smaller than q. The grid G guarantees that for every point p, there exists a gridpoint g ∈ G

such that dq(p, g) ≤ εw/(2b). Since the unit cube is contained within the unit polyhedron,

we have that dC(a, b) ≤ dq(a, b) ∀a, b; and since dq defines a metric, p must also be (εw/(2b))-

close under dC . Calculating the width of |MWA(g)|∀g ∈ G takes O(F dbdε−dn) time, and

therefore finding the gridpoint providing the (1 + ε)-approximation also takes O(F dbdε−dn)

time,1 which, under a fixed dC , is O(ε−dn) time.

5.3.2 Faster grid-search in two dimensions.

The algorithm of Theorem 5.1 recalculates the MWA at every gridpoint. However, small

movements along the grid should not affect the MWA much. We use this insight to speed

up MWA recalculations for two dimensions.

Let us first define the contributing edge of a sample point, p ∈ S, as the edge of

C + g intersected by the ray emanating from a gridpoint, g, towards p. Under this center-

point, p will only directly affect the placement of the contributing edge. In Figure 5.2, if p

is a gridpoint then q’s contributing edge would be the edge overlaying a.

Observe that given vectors −→v ∈ C, defined as the vectors directed from the center towards

each vertex, the planar subdivision, created by rays for each −→v originating from g, separates

points by their contributing edge. For any two gridpoints, g1 and g2, and rays projected from

them parallel to −→v , points within these two rays will contribute to different edges under g1

and g2. We denote this region as the vertex slab of vertex v (see Figure 5.3).

Conversely define edge slabs as the regions outside the vertex slabs. Points within an

edge slab will contribute to the same edge under both gridpoints, and so maintaining the

1For metrics, MinBall provides a 2-approximation, thus b = 2. For non-metrics, we can remove this
constant by first using this algorithm with ε = 1 in order to find a 2-approximation in linear-time, and using
this approximation for gridding in the main step.

92

vertex

slab

edge

slab edge

slab

C + g1
C + g2

sample points
p ∈ S

−→v

Figure 5.3: Planar subdivision defining vertex slabs (red) and edge slabs (blue) for two
candidate center-points, and showing membership of some sample points.

constraints it imposes on the MWA can therefore be achieved with two extreme-most points

per edge slab.

If we consider vertex slabs for all g ∈ G, we must be able to quickly calculate the strictest

constraints imposed by points in a subset of vertex slabs. An example of the planar

subdivision for two points is shown in Figure 5.3.

Given a grid G, we write gi,j ∈ G to be the gridpoint at index (i, j). Consider the set of all

grid lines Lv defined by rays parallel to −→v starting at each gridpoint. To quickly recalculate

changes to edges incident on v as we traverse through gridpoints, we need to quickly identify

which slab a sample-point p belongs to, given a planar subdivision defined by Lv.

Lemma 5.5. For a specific vector −→v and an m×m grid, we can identify which slab a sample

point, p, belongs to in O(logm) time with O(m2)-time preprocessing.

Proof. Consider the orthogonal projection of grid lines in Lv onto a line −→v⊥ perpendicular to

−→v , the order in which these lines appear in −→v⊥ defines the possible slabs that p could belong

to (see Figure 5.4a). We can project a given grid line l ∈ Lv onto −→v⊥ in constant time.

After sorting these grid lines, we can perform a binary searchfor the projected sample point

93

through the m2 projected gridpoints in O(logm) time to identify the slab which p would

belong to.

Using general sorting algorithms, we could sort the grid lines in O(m2 logm) time. However,

since these lines belong to a grid, we can exploit the uniformity to sort them in only O(m2)

time. Consider the two basis vectors defining gridpoint positions ı̂ = g(1,0) − g(0,0) and

ȷ̂ = g(0,1)− g(0,0), and their sizes after orthogonal projection onto −→v⊥, |̂ı⊥|, and |ȷ̂⊥|. Without

loss of generality, assume that |̂ı⊥| ≥ |ȷ̂⊥|, in which case grid lines originating from adjacent

gridpoints in the same row must be exactly |̂ı⊥| away. In addition, any region |̂ı⊥|-wide, that

does not start at a grid line, must contain at most a single point from each row. Furthermore,

since points in the same row are always |̂ı⊥| away, they must appear in the same order in

each region.

We can therefore initially split −→v⊥ into regions |̂ı⊥| wide. Sorting the grid lines l ∈ Lv into

their region can therefore be calculated in O(m2) time. Now we can sort the m points in

the region containing points from every row in O(m logm) time. Since each region has the

same order, we can place points in other regions by following the order found in our sorted

region, thus taking O(m2) preprocessing time for sorting the points.

Recall that points to the left of a given line l ∈ Lv contribute to the edge to the left of v,

i.e., all points belonging to slabs to the left of l. We can therefore isolate the points in these

slabs causing the largest potential change in MWA.

Lemma 5.6. For a vertex v ∈ C and grid line l ∈ Lv through gridpoint g, let lL and

lR refer to the slabs on the subdivision imposed by Lv immediately to the left and right

of l, respectively. Assuming lL maintains the points to the left of l imposing the strictest

constraints on MWA(g), and lR to the right, one can calculate MWA(g) in O(1) time.

94

m
...
...
...

m

−→v

C

−→v⊥

. . .
. . .

. . .

...

. . .

p ∈ S

Lv

(a) A demonstration of the point location
problem with the subdivision, Lv, and a
visualization of the gridpoints and sample
point projections onto −→v⊥.

Lv

−→e L

−→v
g ∈ Ggrid points

sample points

(b) Finding the extreme-most points (red)
under −→e L in subdivision Lv for each region
(solid) and for all regions to its left (dashed).

Figure 5.4: A visual representation of the projections involved while point locating within
the vertex slabs and while finding the extreme-most points in each slab.

Proof. Finding minp∈S dC(g, p) and maxp∈S dC(g, p) can now be achieved by optimizing only

over the set of points in {lL ∪ lR ∀v∈C} and all points in edge slabs. This set would contain

two points per vertex and two points per edge, yielding a constant number of points. Thus,

MWA(g) can be found in constant time.

Theorem 5.2. A (1 + ε)-approximation of the MWA in two dimensions can be found in

O(n log ε−1 + ε−2) time under translations.

Proof. For each vertex, v, we use Lemma 5.5 to identify the slab for every sample point. For

each slab, we maintain only the two extreme-most points for each of the edges incident on

−→v . Let −→e L ∈ C denote the vector describing the edge incident on −→v from the left, and vice

versa for −→e R ∈ C incident from the right. For each slab, we maintain only points which

when projected in the relevant direction, −→e , cause the furthest and closest intersections with

the boundary (shown for −→e L in Figure 5.4b). With a left-to-right pass, we update a slab’s

extreme-most points relative to −→e L to maintain the extreme-most points for itself and slabs

95

to its left. With a right-to-left pass, we do the same for −→e R and maintain extreme-most

points in its slab and slabs to its right.

Thus, for each vertex, we create the slabs in O(ε−2) time, identify a sample points slab in

O(log ε−1) time per sample point, and track the extreme-most points per slab in constant

time per sample point. With O(ε−2) time to update the slabs after processing all sample

points, and with O(ε−2) time we can update the slabs such that they hold the extreme-most

points across all slabs to their left or right (relative to −→e L and −→e R, respectively).

For each edge slab, finding the extreme-most points is much simpler since finding min dC(g, p)

and max dC(g, p) across all points in the edge slab will always be based on the contributing

facet.

Thus, after finding the extreme-most points in both vertex slabs and edge slabs, we can

calculate MWA(g) in constant time as described in Lemma 5.6. Taking O(ε−2) time to find

ming∈G |MWA(g)|, which by Theorem 5.1 provides a (1 + ε)-approximation of the minimum

width annulus, completes the proof of the claimed time bound.

5.4 Approximating MWA allowing rotations

In this section we consider rotations. As with Lemma 5.4, our goal is to find the maximum

tolerable rotation sufficient for a (1 + ε)-approximation. Observe that when centered about

the global optimum, the solution found under both rotation and translation is at least as

good as the solution found solely through rotation (i.e., under a fixed center). We will

therefore first prove necessary bounds for a (1 + ε)-approximation under rotation only with

the understanding that they remain when also allowing for translation.

96

Consider the polyhedral cone around −→v and define the bottleneck angle as the narrowest

angle between a point on the surface of the polyhedral cone and −→v . Let θ be the smallest

bottleneck angle across all −→v ∈ C. Let MWAα(c) describe the MWA centered at c, where

C has been rotated by angle α. Let us also use similar notations for MinBall and MaxBall.

Lemma 5.7. Rotating by α causes MinBallα(c) to grow by at most sin(π−θ−α)
sin θ

(and the

reciprocal for MaxBallα(c)).

Proof. In the worst case, MinBall(c) must be completely contained within MinBallα(c). Let

us now consider the triangle formed between c, the vertex v of the original MinBall, v0,

and the rotated vertex vα (shown in Figure 5.5a). Since our calculations focus towards the

same vertex, we will be working with Euclidean distances. The quantity |v0 − c| defines the

radius r1 of the original polyhedron, and r2 = |vα − c| the radius of the rotated one. With

γ = π − θ − α as the remaining angle in our triangle and using the sine rule, we find that

r2
r1

=
sin γ

sin θ
=

sin(π − θ − α)

sin θ
.

Observe that θ is the angle maximizing this scale difference. This applies to rotating

by α in any direction about −→v , and since this direction needs not coincide with θ, the

scaled polyhedron might not touch the original. For MaxBallα(c) to be contained within

MaxBall(c), the same example holds after switching references to the scaled and original. In

this case, θ minimizes r1/r2.

Let us now determine the rotation from the optimal orientation that achieves a (1 + ε)-

approximation.

Lemma 5.8. Given a center c, we have that MWAα(c) is a (1 + ε)-approximation when

α ≤ arcsin

(
sin θ

2f

(
1+ε±

√
(1+ε)2 + 4f(f − 1)

))
− θ.

97

α
r1

r2

θ

r2
r1
= sin(π−θ−α)

sin θ

c

vα

v0

(a) A demonstration of the scale increase necessary for a
polyhedron rotated by α to contain the original.

−→v

copt

α

(b) Visualization of the rotation by α
in an arbitrary direction about −→v .

Figure 5.5: Visual representations for the effect of rotating by α, demonstrating the scale
increase and demonstrating how a rotation by α is defined for higher dimensions.

Proof. Define f as the ratio of the radius of MinBall(copt) to wopt (i.e., fwopt =

|MinBall(copt)|). Note that f corresponds to the inverse of the concentric slimness of S

under dC over all rotations of C.

Using Lemma 5.7, we know that

|MWAα(c)| ≤
sin γ

sin θ
|MinBall(c)| − sin θ

sin γ
|MaxBall(c)|

sin γ

sin θ
fwopt −

sin θ

sin γ
(f−1)wopt ≤ (1+ε)wopt (5.1)

sin γ

sin θ
f − sin θ

sin γ
(f−1) ≤ (1+ε) (5.2)

To be a (1 + ε)-approximation, we need |MWAα(c)| ≤ (1+ε)wopt imposing the right side of

Relation 5.1, its left side follows by definition of f , and Relation 5.2 by cancellation of wopt.

Since θ is constant, we can rearrange the above into a quadratic equation and solve for sin γ.

sin γ =
sin θ

2f

(
1+ε±

√
(1+ε)2 + 4f(f−1)

)
. (5.3)

However, arcsin will find γ ≤ π, whereas we need the obtuse angle π− γ. Thus, proving this

lemma’s titular bound, and achieving a (1 + ε)-approximation.

98

Let us now establish a more generous lower-bound that will prove helpful when developing

algorithms.

Lemma 5.9. The angular deflection required for a (1 + ε)-approximation is larger than

θε/(2f).

Proof. Observe that γ is of the form arcsin(k sin θ) and thus, in order for α = γ−θ to be

positive, we must have θ < π/2 and k > 1. We will prove this is the case.

k =
1+ε

2f
+

√(
1+ε

2f

)2

− 1

f
+ 1 (5.4)√

1

4f 2
− 1

f
+ 1 =

∣∣∣∣1− 1

2f

∣∣∣∣ (5.5)

k >
1+ε

2f
+

∣∣∣∣1− 1

2f

∣∣∣∣ = 1 +
ε

2f
(5.6)

Equation (5.4) follows from Equation (5.3) after expanding. Relation (5.6) follows after using

Equation (5.5) as a lower bound for the square root term in Equation (5.4) since ε > 0 and

f > 1. This allows us to bound arcsin

((
1 +

ε

2f

)
sin θ

)
by using Taylor’s series expansion

to find (1 + k) · θ ≤ arcsin((1 + k) sin θ), thus proving that the bound from Lemma 5.8 is

greater than θε
2f
.

Lemma 5.10. For fixed rotation of C, assume we have an O(g(n))-time algorithm for the

optimal minimum-width annulus under translation. We can find a (1 + ε)-approximation of

the MWA under rotations and translations in O(fd−1ε1−dg(n)) time.

Proof. A d-dimensional shape has a (d−1)-dimensional axis of rotation. Let us evenly divide

the unit circle into k directions. Let us also define a collection of all possible direction

combinations as a grid of directions. For each grid direction, rotate C by the defined direction

and calculate the MWA in O(g(n)) time. The optimal orientation must lie between the

(d−1)-dimensional cube formed by 2d−1 grid directions. Therefore, as long as the diagonal is

99

smaller than θε
f
, there will always exist a grid direction within θε

2f
of the optimal orientation

and therefore achieving a (1 + ε)-approximation by Lemma 5.9. Thus, we can achieve a

(1 + ε)-approximation in O

(
g(n) ·

(
2πf

√
d−1

θε

)d−1
)

time, where d, θ are constant under a

fixed distance function dC and f depends on the inverse of the slimness of the pointset.

With a fixed center, Lemma 5.10 can be used to approximate MWA under rotations in

O(fd−1ε1−dn) time.

Theorem 5.3. One can find a (1 + ε)-approximation of MWA under rotations and

translations in O(fd−1ε1−2dn) time for d ≥ 3, and O(fnε−1 log ε−1 + ε−3) time for d = 2.

Proof. Consider using an approximation algorithm (from Theorems 5.1 or 5.2) instead of

an exact algorithm as in Lemma 5.10. Let us define (1 + ξ) as the approximation ratio

necessary from the subroutines in order to achieve an overall approximation ratio of (1+ ε),

such that (1 + ξ)2 = 1 + ε. Since ξ =
√
1 + ε − 1 and 0 < ε < 1, then ξ must always

be larger than (
√
2 − 1)ε, and thus, we can always pick a value for ξ which is O(ε)

and achieves the desired approximation. Thus, by following Lemma 5.10, we can find a

(1 + (
√
2 − 1)ε)-approximation using the (1 + (

√
2 − 1)ε)-approximation algorithm from

Theorem 5.1 to find a (1 + ε)-approximation in O(fd−1ε1−d · ε−dn) time. Alternatively,

for two dimensions, we can instead use the algorithm from Theorem 5.2 to find a

(1 + ε)-approximation in O(fnε−1 log ε−1 + fε−3) time.

100

Bibliography

[1] P. Afshani, M. Agrawal, B. Doerr, C. Doerr, K. G. Larsen, and K. Mehlhorn. The query
complexity of finding a hidden permutation. In A. Brodnik, A. López-Ortiz, V. Raman,
and A. Viola, editors, Space-Efficient Data Structures, Streams, and Algorithms -
Papers in Honor of J. Ian Munro on the Occasion of His 66th Birthday, volume 8066
of Lecture Notes in Computer Science, pages 1–11. Springer, 2013.

[2] P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan. Approximating extent measures
of points. J. ACM, 51(4):606–635, 2004.

[3] P. K. Agarwal, S. Har-Peled, K. R. Varadarajan, et al. Geometric approximation via
coresets. Combinatorial and Computational Geometry, 52(1), 2005.

[4] P. K. Agarwal, S. Har-Peled, and H. Yu. Robust shape fitting via peeling and grating
coresets. Discrete & Computational Geometry, 39(1):38–58, 2008.

[5] G. Altekar, S. Dwarkadas, J. P. Huelsenbeck, and F. Ronquist. Parallel metropolis
coupled markov chain monte carlo for bayesian phylogenetic inference. Bioinform.,
20(3):407–415, 2004.

[6] K. Alwan and K. Waters. Finding re-entrant knight’s tours on n-by-m boards. In
Proceedings of the 30th Annual Southeast Regional Conference, ACM-SE 30, pages
377–382, New York, NY, USA, 1992. ACM.

[7] N. Amenta, D. Attali, and O. Devillers. Size of Delaunay triangulation for points
distributed over lower-dimensional polyhedra: a tight bound. Neural Information
Processing Systems (NeurIPS): Topological Learning, 2007.

[8] N. Amenta and M. Bern. Surface reconstruction by Voronoi filtering. Discrete &
Computational Geometry, 22(4):481–504, 1999.

[9] S. Arya, G. D. da Fonseca, and D. M. Mount. Approximate convex intersection
detection with applications to width and Minkowski sums. In 26th European
Symposium on Algorithms (ESA). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2018.

[10] D. Attali and J.-D. Boissonnat. Complexity of the delaunay triangulation of points on
polyhedral surfaces. Discrete & Computational Geometry, 30(3):437–452, 2003.

101

[11] D. Attali and J.-D. Boissonnat. A linear bound on the complexity of the Delaunay
triangulation of points on polyhedral surfaces. Discrete & Computational Geometry,
31(3):369–384, 2004.

[12] S. W. Bae. Computing a minimum-width square annulus in arbitrary orientation.
Theoretical Computer Science, 718:2–13, 2018.

[13] S. W. Bae. Computing a minimum-width cubic and hypercubic shell. Operations
Research Letters, 47(5):398–405, 2019.

[14] S. W. Bae. On the minimum-area rectangular and square annulus problem.
Computational Geometry, 92:101697, 2021.

[15] W. R. Ball and H. Coxeter. Mathmatical Recreations & Essays: 12th Edition.
University of Toronto Press, 1974.

[16] G. Barequet, P. Bose, M. T. Dickerson, and M. T. Goodrich. Optimizing a constrained
convex polygonal annulus. J. Discrete Algorithms, 3(1):1–26, 2005.

[17] G. Barequet, M. T. Dickerson, and Y. Scharf. Covering points with a polygon.
Computational Geometry, 39(3):143–162, 2008.

[18] G. Barequet, G. Rote, and M. Shalah. λ¿ 4: An improved lower bound on the growth
constant of polyominoes. Communications of the ACM, 59(7):88–95, 2016.

[19] G. Barequet and M. Shalah. Improved upper bounds on the growth constants of
polyominoes and polycubes. In LATIN 2020: Theoretical Informatics: 14th Latin
American Symposium, São Paulo, Brazil, January 5-8, 2021, Proceedings, page
532–545, Berlin, Heidelberg, 2021. Springer-Verlag.

[20] G. Barequet, M. Shalah, and Y. Zheng. An improved lower bound on the growth
constant of polyiamonds. Journal of Combinatorial Optimization, 37(2):424–438, 2019.

[21] R. Barequet, G. Barequet, and G. Rote. Formulae and growth rates of high-dimensional
polycubes. Combinatorica, 30(3):257–275, 2010.

[22] J. D. Beasley. Magic knight’s tours. The College Mathematics Journal, 43(1):72–75,
2012.

[23] E. A. Bender. Convex n-ominoes. Discrete Mathematics, 8(3):219–226, 1974.

[24] E. Bergholt. Three memoirs on knight’s tours. The Games and Puzzles Journal,
2(18):327–341, 2001.

[25] A. Bernasconi, C. Damm, and I. E. Shparlinski. Circuit and decision tree complexity
of some number theoretic problems. Inf. Comput., 168(2):113–124, 2001.

[26] P. Bestagini, M. Tagliasacchi, and S. Tubaro. Image phylogeny tree reconstruction
based on region selection. In 2016 IEEE International Conference on Acoustics, Speech
and Signal Processing, ICASSP 2016, Shanghai, China, March 20-25, 2016, pages
2059–2063. IEEE, 2016.

102

[27] A. Bhattacharjee, K. Z. Sultana, and Z. Shams. Dynamic and parallel approaches to
optimal evolutionary tree construction. In Proceedings of the Canadian Conference on
Electrical and Computer Engineering, CCECE 2006, May 7-10, 2006, Ottawa Congress
Centre, Ottawa, Canada, pages 119–122. IEEE, 2006.

[28] M. Bousquet-Mélou and J.-M. Fédou. The generating function of convex polyominoes:
the resolution of a q-differential system. Discrete Mathematics, 137(1-3):53–75, 1995.

[29] M. Bousquet-Mélou, A. Guttmann, W. Orrick, and A. Rechnitzer. Inversion relations,
reciprocity and polyominoes. Annals of Combinatorics, 3(2):223–249, 1999.

[30] S. R. Broadbent and J. M. Hammersley. Percolation processes: I. crystals and mazes.
Mathematical proceedings of the Cambridge philosophical society, 53(3):629–641, 1957.

[31] G. S. Brodal, R. Fagerberg, C. N. S. Pedersen, and A. Östlin. The complexity of
constructing evolutionary trees using experiments. In F. Orejas, P. G. Spirakis, and
J. van Leeuwen, editors, Automata, Languages and Programming, 28th International
Colloquium, ICALP 2001, Crete, Greece, July 8-12, 2001, Proceedings, volume 2076
of Lecture Notes in Computer Science, pages 140–151. Springer, 2001.

[32] T. M. Chan. Approximating the diameter, width, smallest enclosing cylinder, and
minimum-width annulus. In 16th Symposium on Computational Geometry (SoCG),
pages 300–309, 2000.

[33] G. Chia and S.-H. Ong. Generalized knight’s tours on rectangular chessboards. Discrete
Applied Mathematics, 150(1):80 – 98, 2005.

[34] S. Choi and J. H. Kim. Optimal query complexity bounds for finding graphs. Artif.
Intell., 174(9-10):551–569, 2010.

[35] B. Chor and T. Tuller. Maximum likelihood of evolutionary trees: hardness and
approximation. In Proceedings Thirteenth International Conference on Intelligent
Systems for Molecular Biology 2005, Detroit, MI, USA, 25-29 June 2005, pages 97–
106, 2005.

[36] A. Conrad, T. Hindrichs, H. Morsy, and I. Wegener. Solution of the knight’s
hamiltonian path problem on chessboards. Discrete Applied Mathematics, 50(2):125 –
134, 1994.

[37] J. C. Culberson and P. Rudnicki. A fast algorithm for constructing trees from distance
matrices. Inf. Process. Lett., 30(4):215–220, 1989.

[38] P. Cull and J. De Curtins. Knight’s tour revisited. Fibonacci Quarterly, 16:276–285,
6 1978.

[39] S. Das, A. Nandy, and S. Sarvottamananda. Linear time algorithm for 1-Center in Rd

under convex polyhedral distance function. In D. Zhu and S. Bereg, editors, Frontiers
in Algorithmics, volume 9711, pages 41–52. Springer, 2016.

103

[40] I. J. Dejter. Equivalent conditions for euler’s problem on z4-hamilton cycles. Ars
Combinatoria, 16–B:285–295, 1983.

[41] J. DeMaio. Which chessboards have a closed knight’s tour within the cube? the
electronic journal of combinatorics, 14(1):32, 2007.

[42] J. DeMaio and M. Bindia. Which chessboards have a closed knight’s tour within the
rectangular prism? the electronic journal of combinatorics, 18(1):14, 2011.

[43] Z. Dias, S. Goldenstein, and A. Rocha. Exploring heuristic and optimum branching
algorithms for image phylogeny. J. Vis. Commun. Image Represent., 24(7):1124–1134,
2013.

[44] Z. Dias, S. Goldenstein, and A. Rocha. Large-scale image phylogeny: Tracing image
ancestral relationships. IEEE Multim., 20(3):58–70, 2013.

[45] Z. Dias, A. Rocha, and S. Goldenstein. Image phylogeny by minimal spanning trees.
IEEE Trans. Information Forensics and Security, 7(2):774–788, 2012.

[46] S. Dobzinski and J. Vondrák. From query complexity to computational complexity. In
H. J. Karloff and T. Pitassi, editors, Proceedings of the 44th Symposium on Theory of
Computing Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012, pages
1107–1116. ACM, 2012.

[47] J. Duarte and H. Ruskin. The branching of real lattice trees as dilute polymers. Journal
de Physique, 42(12):1585–1590, 1981.

[48] E. Emamjomeh-Zadeh and D. Kempe. Adaptive hierarchical clustering using ordinal
queries. In A. Czumaj, editor, Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January
7-10, 2018, pages 415–429. SIAM, 2018.

[49] J. Erde, B. Golénia, and S. Golénia. The closed knight tour problem in higher
dimensions. the electronic journal of combinatorics, 19(4):9, 2012.

[50] J. Erickson. Nice point sets can have nasty Delaunay triangulations. In 17th Symposium
on Computational Geometry (SoCG), pages 96–105, 2001.

[51] J. S. Farris. Methods for Computing Wagner Trees. Systematic Biology, 19(1):83–92,
03 1970.

[52] J. Felsenstein. Evolutionary trees from dna sequences: a maximum likelihood approach.
Journal of molecular evolution, 17(6):368–376, 1981.

[53] A. Fischer. New records in nonintersecting knight paths. The Games and Puzzles
Journal, 2006.

[54] W. M. Fitch. Toward defining the course of evolution: Minimum change for a specific
tree topology. Systematic Zoology, 20(4):406–416, 1971.

104

[55] P. Flajolet. Pólya festoons. PhD thesis, INRIA, 1991.

[56] D. Gaunt. The critical dimension for lattice animals. Journal of Physics A:
Mathematical and General, 13(4):L97, 1980.

[57] D. Gaunt, M. Sykes, and H. Ruskin. Percolation processes in d-dimensions. Journal
of Physics A: Mathematical and General, 9(11):1899, 1976.

[58] O. N. Gluchshenko, H. W. Hamacher, and A. Tamir. An optimal O(n log n) algorithm
for finding an enclosing planar rectilinear annulus of minimum width. Operations
Research Letters, 37(3):168–170, 2009.

[59] L. A. Goldberg, P. W. Goldberg, C. A. Phillips, and G. B. Sorkin. Constructing
computer virus phylogenies. J. Algorithms, 26(1):188–208, 1998.

[60] M. T. Goodrich and R. Tamassia. Algorithm Design and Applications. Wiley, New
York, NY, 2011.

[61] J. J. Hein. An optimal algorithm to reconstruct trees from additive distance data.
Bulletin of mathematical biology, 51(5):597–603, 1989.

[62] I. Herman, G. Melançon, and M. S. Marshall. Graph visualization and navigation in
information visualization: A survey. IEEE Transactions on visualization and computer
graphics, 6(1):24–43, 2000.

[63] J. P. Huelsenbeck. Performance of phylogenetic methods in simulation. Systematic
biology, 44(1):17–48, 1995.

[64] M. Jagadish and A. Sen. Learning a bounded-degree tree using separator queries. In
S. Jain, R. Munos, F. Stephan, and T. Zeugmann, editors, Algorithmic Learning Theory
- 24th International Conference, ALT 2013, Singapore, October 6-9, 2013. Proceedings,
volume 8139 of Lecture Notes in Computer Science, pages 188–202. Springer, 2013.

[65] G. P. Jelliss. Non-intersecting paths by leapers. The Games and Puzzles Journal,
2(17):305 – 310, 1999.

[66] G. P. Jelliss. Symmetry in knight’s tours. The Games and Puzzles Journal, 2(16):282
– 287, 1999.

[67] I. Jensen. Enumerations of lattice animals and trees. Journal of statistical physics,
102(3):865–881, 2001.

[68] I. Jensen. Counting polyominoes: A parallel implementation for cluster computing. In
International Conference on Computational Science, pages 203–212. Springer, 2003.

[69] I. Jensen and A. J. Guttmann. Statistics of lattice animals (polyominoes) and polygons.
Journal of Physics A: Mathematical and General, 33(29):L257, 2000.

105

[70] J.-H. Ji, S.-H. Park, G. Woo, and H.-G. Cho. Generating pylogenetic tree of
homogeneous source code in a plagiarism detection system. International Journal
of Control, Automation, and Systems, 6(6):809–817, 2008.

[71] N. C. Jones, P. A. Pevzner, and P. Pevzner. An introduction to bioinformatics
algorithms. MIT press, 2004.

[72] N. Kamčev. Generalised knight’s tours. the electronic journal of combinatorics,
21(1):32, 2011.

[73] S. Kannan, E. L. Lawler, and T. J. Warnow. Determining the evolutionary tree using
experiments. J. Algorithms, 21(1):26–50, 1996.

[74] S. Kannan, C. Mathieu, and H. Zhou. Graph reconstruction and verification. ACM
Trans. Algorithms, 14(4):40:1–40:30, 2018.

[75] R. M. Karp. A characterization of the minimum cycle mean in a digraph. Discrete
mathematics, 23(3):309–311, 1978.

[76] D. G. Kendall. Shape manifolds, procrustean metrics, and complex projective spaces.
Bulletin of the London mathematical society, 16(2):81–121, 1984.

[77] V. King, L. Zhang, and Y. Zhou. On the complexity of distance-based evolutionary tree
reconstruction. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, January 12-14, 2003, Baltimore, Maryland, USA, pages 444–453.
ACM/SIAM, 2003.

[78] D. A. Klarner. Cell growth problems. Canadian Journal of Mathematics, 19:851–863,
1967.

[79] D. A. Klarner and R. L. Rivest. A procedure for improving the upper bound for the
number of n-ominoes. Canadian Journal of Mathematics, 25(3):585–602, 1973.

[80] D. A. Klarner and R. L. Rivest. Asymptotic bounds for the number of convex n-
ominoes. Discret. Math., 8(1):31–40, 1974.

[81] D. E. Knuth. Leaper graphs. The Mathematical Gazette, 78(483):274–297, 1994.

[82] A. Kumar. Non-crossing Knight’s Tour in 3-Dimension. ArXiv e-prints, Mar. 2008.

[83] O. Kyek, I. Parberry, and I. Wegener. Bounds on the number of knight’s tours. Discrete
Applied Mathematics, 74(2):171 – 181, 1997.

[84] S.-S. Lin and C.-L. Wei. Optimal algorithms for constructing knight’s tours on arbitrary
n×m chessboards. Discrete Applied Mathematics, 146(3):219 – 232, 2005.

[85] N. Madras. A pattern theorem for lattice clusters. Annals of Combinatorics, 3(2):357–
384, 1999.

106

[86] S. R. Mahaney. Sparse complete sets for np: Solution of a conjecture of berman and
hartmanis. Journal of Computer and System Sciences, 25(2):130 – 143, 1982.

[87] G. D. Marmerola, M. A. Oikawa, Z. Dias, S. Goldenstein, and A. Rocha. On the
reconstruction of text phylogeny trees: evaluation and analysis of textual relationships.
PloS one, 11(12):e0167822, 2016.

[88] B. D. McKay. Knight’s tours of an 8× 8 chessboard. Technical report, Australian
National University, Department of Computer Science, 2 1997.

[89] M. Mitzenmacher and E. Upfal. Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press, 2005.

[90] J. Mukherjee, P. R. Sinha Mahapatra, A. Karmakar, and S. Das. Minimum-width
rectangular annulus. Theoretical Computer Science, 508:74–80, 2013.

[91] C. Nash-Williams. Abelian groups, graphs and generalized knights. In Mathematical
Proceedings of the Cambridge Philosophical Society, volume 55, pages 232–238.
Cambridge University Press, 1959.

[92] M. Pagel. Inferring the historical patterns of biological evolution. Nature,
401(6756):877–884, 1999.

[93] I. Parberry. Scalability of a neural network for the knight’s tour problem.
Neurocomputing, 12(1):19 – 33, 1996.

[94] I. Parberry. An efficient algorithm for the knight’s tour problem. Discrete Applied
Mathematics, 73(3):251–260, 1997.

[95] A. Pfeffer, C. Call, J. Chamberlain, L. Kellogg, J. Ouellette, T. Patten, G. Zacharias,
A. Lakhotia, S. Golconda, J. Bay, R. Hall, and D. Scofield. Malware analysis and
attribution using genetic information. In 7th International Conference on Malicious
and Unwanted Software, MALWARE 2012, Fajardo, PR, USA, October 16-18, 2012,
pages 39–45. IEEE Computer Society, 2012.

[96] J. M. Phillips. Coresets and sketches. In Handbook of Discrete and Computational
Geometry, pages 1269–1288. Chapman and Hall/CRC, 2017.

[97] W. Piel, L. Chan, M. Dominus, J. Ruan, R. Vos, and V. Tannen. Treebase v. 2: A
database of phylogenetic knowledge. e-biosphere, 2009.

[98] I. Pohl. A method for finding hamilton paths and knight’s tours. Commun. ACM,
10(7):446–449, July 1967.

[99] G. Pólya and G. Szegő. Aufgaben und Lehrsätze aus der Analysis, volume 1. J. Springer,
1925.

[100] H. Prüfer. Neuer beweis eines satzes über permutationen. Arch. Math. Phys,
27(1918):742–744, 1918.

107

[101] Y. Qing and J. J. Watkins. Knight’s tours for cubes and boxes. Congressus
Numerantium, 01 2006.

[102] L. Reyzin and N. Srivastava. On the longest path algorithm for reconstructing trees
from distance matrices. Inf. Process. Lett., 101(3):98–100, 2007.

[103] F. J. Rohlf. J. felsenstein, inferring phylogenies, sinauer assoc., 2004, pp. xx + 664. J.
Classif., 22(1):139–142, 2005.

[104] A. J. Schwenk. Which rectangular chessboards have a knight’s tour? Mathematics
Magazine, 64(5):325–332, 1991.

[105] B. Shen, C. W. Forstall, A. de Rezende Rocha, and W. J. Scheirer. Practical text
phylogeny for real-world settings. IEEE Access, 6:41002–41012, 2018.

[106] J. A. Shufelt and H. J. Berliner. Generating knight’s tours without backtracking from
errors. Technical report, Carnegie-Mellon University, School of Computer Science,
1993.

[107] N. J. Sloane et al. The on-line encyclopedia of integer sequences. Published
electronically at https://oeis. org, 2018.

[108] D. Squirrel and P. Cull. A warnsdorff-rule algorithm for knight’s tours on square
chessboards. 1996.

[109] G. Tardos. Query complexity, or why is it difficult to seperate NP a cap co npa from
pa by random oracles a? Combinatorica, 9(4):385–392, 1989.

[110] H. N. V. Temperley. Combinatorial problems suggested by the statistical mechanics
of domains and of rubber-like molecules. Physical Review, 103(1):1, 1956.

[111] U. Thakker, R. Patel, S. Tanwar, N. Kumar, and H. Song. Blockchain for diamond
industry: Opportunities and challenges. IEEE Internet of Things Journal, pages 1–1,
2020.

[112] W. Tutte. Graph Theory. Cambridge Mathematical Library. Cambridge University
Press, 2001.

[113] L. G. Valiant. Universality considerations in VLSI circuits. IEEE Trans. Computers,
30(2):135–140, 1981.

[114] Z. Wang and J. Honorio. Reconstructing a bounded-degree directed tree using
path queries. In 57th Annual Allerton Conference on Communication, Control, and
Computing, Allerton 2019, Monticello, IL, USA, September 24-27, 2019, pages 506–
513. IEEE, 2019.

[115] M. S. Waterman, T. F. Smith, M. Singh, and W. A. Beyer. Additive evolutionary
trees. Journal of theoretical Biology, 64(2):199–213, 1977.

108

[116] J. J. Watkins. Across the Board: The Mathematics of Chessboard Problems. Princeton
Puzzlers. Princeton University Press; Reissue edition, 2012.

[117] J. J. Watkins and R. L. Hoenigman. Knight’s tours on a torus. Mathematics Magazine,
70(3):175–184, 1997.

[118] A. C. Yao. Decision tree complexity and betti numbers. In F. T. Leighton and M. T.
Goodrich, editors, Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory
of Computing, 23-25 May 1994, Montréal, Québec, Canada, pages 615–624. ACM,
1994.

[119] L. D. Yarbrough. Uncrossed knight’s tours. Journal of Recreational Mathematics,
1(3):140–142, 1969.

[120] H. Yu, P. K. Agarwal, R. Poreddy, and K. R. Varadarajan. Practical methods for
shape fitting and kinetic data structures using coresets. Algorithmica, 52(3):378–402,
2008.

109

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction
	Combinatorial Shapes
	Learning or Constructing Combinatorial Shapes
	Counting Combinatorial Shapes
	Constructing Shapes with Specific Properties

	Real-World and Geometric Shapes

	Reconstructing Biological Phylogenetic Trees in Parallel
	Introduction
	Related Work

	Preliminaries
	Reconstructing Biological Phylogenetic Trees in Parallel
	Algorithm
	Analysis

	Experiments
	Real Data.
	Synthetic Data.

	Concatenation Arguments and their Applications on Counting Polyominoes and Polycubes
	Introduction
	Preliminaries
	Concatenation and Super-/Sub- Multiplicative Sequences
	Quasi Super- and Sub-Multiplicativity

	Methods of Concatenation
	Simple Applications
	General
	Trees

	Recursive Bounding
	Convex Polyominoes
	Lower Bound
	Upper Bound
	Epilogue

	Conclusion

	Taming the Knight's Tour: Minimizing Turns and Crossing
	Introduction
	Our contributions.
	Related Work

	The Algorithm
	Correctness

	Lower Bounds and Approximation Ratios
	Computational Complexity
	Number of Turns
	Number of Crossings

	Extensions
	High-dimensional boards
	Odd boards
	90 Degree Symmetry
	Giraffe's tour

	Conclusions

	Geometric Polyhedral Point-Set Pattern Matching
	Introduction
	Preliminaries
	Approximating the Minimum Width Annulus
	Achieving a (1+)-approximation.
	Faster grid-search in two dimensions.

	Approximating MWA allowing rotations

	Bibliography

